Science.gov

Sample records for hawaiian volcano observatory

  1. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  2. The origin of the Hawaiian Volcano Observatory

    SciTech Connect

    Dvorak, John

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  3. Hawaiian Volcano Observatory 1956 Quarterly Administrative Reports

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. This report consists of four parts.

  4. Hawaiian Volcano Observatory 1977 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  5. Hawaiian Volcano Observatory 1978 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  6. Hawaiian Volcano Observatory 1984 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  7. Hawaiian Volcano Observatory 1961 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  8. Hawaiian Volcano Observatory 1960 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  9. Hawaiian Volcano Observatory 1981 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  10. Hawaiian Volcano Observatory 1957 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  11. Hawaiian Volcano Observatory 1968 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  12. Hawaiian Volcano Observatory 1969 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  13. Hawaiian Volcano Observatory 1967 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  14. Hawaiian Volcano Observatory 1970 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  15. Hawaiian Volcano Observatory 1971 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  16. Hawaiian Volcano Observatory 1974 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  17. Hawaiian Volcano Observatory 1965 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  18. Hawaiian Volcano Observatory 1958 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  19. Hawaiian Volcano Observatory 1975 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  20. Hawaiian Volcano Observatory 1982 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  1. Hawaiian Volcano Observatory 1966 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  2. Hawaiian Volcano Observatory 1972 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  3. Hawaiian Volcano Observatory 1963 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  4. Hawaiian Volcano Observatory 1959 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  5. Hawaiian Volcano Observatory 1983 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  6. Hawaiian Volcano Observatory 1985 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  7. Hawaiian Volcano Observatory 1976 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  8. Hawaiian Volcano Observatory 1964 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  9. Hawaiian Volcano Observatory 1973 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  10. Hawaiian Volcano Observatory 1980 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  11. Hawaiian Volcano Observatory 1979 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  12. Hawaiian Volcano Observatory 1962 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  13. Chasing lava: a geologist's adventures at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Duffield, Wendell A.

    2003-01-01

    A lively account of the three years (1969-1972) spent by geologist Wendell Duffield working at the Hawaiian Volcano Observatory at Kilauea, one of the world's more active volcanoes. Abundantly illustrated in b&w and color, with line drawings and maps, as well. Volcanologists and general readers alike will enjoy author Wendell Duffield's report from Kilauea--home of Pele, the goddess of fire and volcanoes. Duffield's narrative encompasses everything from the scientific (his discovery that the movements of cooled lava on a lava lake mimic the movements of the earth's crust, providing an accessible model for understanding plate tectonics) to the humorous (his dog's discovery of a snake on the supposedly snake-free island) to the life-threatening (a colleague's plunge into molten lava). This charming account of living and working at Kilauea, one of the world's most active volcanoes, is sure to be a delight.

  14. Hawaiian Volcano Observatory Seismic Data, January to December 2007

    USGS Publications Warehouse

    Nakata, Jennifer S.; Okubo, Paul G.

    2008-01-01

    The U.S. Geological Survey (USGS), Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data and is complete in that most data for events of M=1.5 are included. All latitude and longitude references in this report are stated in Old Hawaiian Datum. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data necessitated an annual publication, beginning with Summary 74 for the year 1974. Beginning in 2004, summaries are simply identified by the year, rather than by summary number. Summaries originally issued as administrative reports were republished in 2007 as Open-File Reports. All the summaries since 1956 are listed at http://geopubs.wr.usgs.gov/ (last accessed September 30, 2008). In January 1986, HVO adopted CUSP (California Institute of Technology USGS Seismic Processing). Summary 86 includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes background information about the seismic network to provide the end user an understanding of the processing parameters and how the data were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary.

  15. Modernization of the USGS Hawaiian Volcano Observatory Seismic Processing Infrastructure

    NASA Astrophysics Data System (ADS)

    Antolik, L.; Shiro, B.; Friberg, P. A.

    2016-12-01

    The USGS Hawaiian Volcano Observatory (HVO) operates a Tier 1 Advanced National Seismic System (ANSS) seismic network to monitor, characterize, and report on volcanic and earthquake activity in the State of Hawaii. Upgrades at the observatory since 2009 have improved the digital telemetry network, computing resources, and seismic data processing with the adoption of the ANSS Quake Management System (AQMS) system. HVO aims to build on these efforts by further modernizing its seismic processing infrastructure and strengthen its ability to meet ANSS performance standards. Most notably, this will also allow HVO to support redundant systems, both onsite and offsite, in order to provide better continuity of operation during intermittent power and network outages. We are in the process of implementing a number of upgrades and improvements on HVO's seismic processing infrastructure, including: 1) Virtualization of AQMS physical servers; 2) Migration of server operating systems from Solaris to Linux; 3) Consolidation of AQMS real-time and post-processing services to a single server; 4) Upgrading database from Oracle 10 to Oracle 12; and 5) Upgrading to the latest Earthworm and AQMS software. These improvements will make server administration more efficient, minimize hardware resources required by AQMS, simplify the Oracle replication setup, and provide better integration with HVO's existing state of health monitoring tools and backup system. Ultimately, it will provide HVO with the latest and most secure software available while making the software easier to deploy and support.

  16. Hawaiian Volcano Observatory seismic data, January to December 2005

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2006-01-01

    The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that most data for events of M-1.5 routinely gathered by the Observatory are included. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. Beginning with 2004, summaries will simply be identified by the year, rather than Summary number. The present summary includes background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary.

  17. Hawaiian Volcano Observatory Seismic Data, January to December 2006

    USGS Publications Warehouse

    Nakata, Jennifer

    2007-01-01

    Introduction The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that most data for events of M>1.5 routinely gathered by the Observatory are included. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. Beginning with 2004, summaries are simply identified by the year, rather than Summary number. The present summary includes background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary.

  18. Hawaiian Volcano Observatory Seismic Data, January to December 2008

    USGS Publications Warehouse

    Nakata, Jennifer S.; Okubo, Paul G.

    2009-01-01

    The U.S. Geological Survey (USGS), Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data and is complete in that most data for events of M greater than 1.5 are included. All latitude and longitude references in this report are stated in Old Hawaiian Datum. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data necessitated an annual publication, beginning with Summary 74 for the year 1974. Beginning in 2004, summaries are simply identified by the year, rather than by summary number. Summaries originally issued as administrative reports were republished in 2007 as Open-File Reports. All the summaries since 1956 are listed at http://geopubs.wr.usgs.gov/ (last accessed 09/21/2009). In January 1986, HVO adopted CUSP (California Institute of Technology USGS Seismic Processing). Summary 86 includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes background information about the seismic network to provide the end user an understanding of the processing parameters and how the data were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary. Figures 11-14 are maps showing computer-located hypocenters. The maps were generated using the Generic Mapping Tools (GMT http://gmt.soest.hawaii.edu/, last accessed 09/21/2009) in place of traditional Qplot maps.

  19. Scientists probe Earth’s secrets at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Unger, J.D.

    1974-01-01

    The Hawaiian Volcano Observatory (HVO) sits on the edge of Kilauea Caldera at the summit of Kilauea Volcao, one of the five volcanoes on the island of Hawaii, the largest island in the Hawaiian Islands chain. Of the five, only Kilauea and Mauna Loa have been active in the past 100 years. Before its last eruption in June 1950, Mauna Loa had erupted more frequently and copiously than Kilauea, but since then only Kilauea has been active. 

  20. One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can

  1. The evolution of seismic monitoring systems at the Hawaiian Volcano Observatory: Chapter 2 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Okubo, Paul G.; Nakata, Jennifer S.; Koyanagi, Robert Y.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    In the century since the Hawaiian Volcano Observatory (HVO) put its first seismographs into operation at the edge of Kīlauea Volcano’s summit caldera, seismic monitoring at HVO (now administered by the U.S. Geological Survey [USGS]) has evolved considerably. The HVO seismic network extends across the entire Island of Hawai‘i and is complemented by stations installed and operated by monitoring partners in both the USGS and the National Oceanic and Atmospheric Administration. The seismic data stream that is available to HVO for its monitoring of volcanic and seismic activity in Hawai‘i, therefore, is built from hundreds of data channels from a diverse collection of instruments that can accurately record the ground motions of earthquakes ranging in magnitude from <1 to ≥8. In this chapter we describe the growth of HVO’s seismic monitoring systems throughout its first hundred years of operation. Although other references provide specific details of the changes in instrumentation and data handling over time, we recount here, in more general terms, the evolution of HVO’s seismic network. We focus not only on equipment but also on interpretative products and results that were enabled by the new instrumentation and by improvements in HVO’s seismic monitoring, analytical, and interpretative capabilities implemented during the past century. As HVO enters its next hundred years of seismological studies, it is well situated to further improve upon insights into seismic and volcanic processes by using contemporary seismological tools.

  2. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Thelen, Weston A.

    2014-01-01

    The installation of new seismic stations is only the first part of building a volcanic early warning capability for seismicity in the State of Hawaii. Additional personnel will likely be required to study the volcanic processes at work under each volcano, analyze the current seismic activity at a level sufficient for early warning, build new tools for monitoring, maintain seismic computing resources, and maintain the new seismic stations.

  3. Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.; Orr, Tim R.; Davies, Ashley G.; Ramsey, Michael S.

    2016-01-01

    Hawaiian volcanoes are highly accessible and well monitored by ground instruments. Nevertheless, observational gaps remain and thermal satellite imagery has proven useful in Hawai‘i for providing synoptic views of activity during intervals between field visits. Here we describe the beginning of a thermal remote sensing programme at the US Geological Survey Hawaiian Volcano Observatory (HVO). Whereas expensive receiving stations have been traditionally required to achieve rapid downloading of satellite data, we exploit free, low-latency data sources on the internet for timely access to GOES, MODIS, ASTER and EO-1 ALI imagery. Automated scripts at the observatory download these data and provide a basic display of the images. Satellite data have been extremely useful for monitoring the ongoing lava flow activity on Kīlauea's East Rift Zone at Pu‘u ‘Ō‘ō over the past few years. A recent lava flow, named Kahauale‘a 2, was upslope from residential subdivisions for over a year. Satellite data helped track the slow advance of the flow and contributed to hazard assessments. Ongoing improvement to thermal remote sensing at HVO incorporates automated hotspot detection, effusion rate estimation and lava flow forecasting, as has been done in Italy. These improvements should be useful for monitoring future activity on Mauna Loa.

  4. A Versatile Time-Lapse Camera System Developed by the Hawaiian Volcano Observatory for Use at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Orr, Tim R.; Hoblitt, Richard P.

    2008-01-01

    Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.

  5. The Changing Role of the Hawaiian Volcano Observatory within the Volcanological Community through its 100 year history

    NASA Astrophysics Data System (ADS)

    Kauahikaua, J. P.; Poland, M. P.

    2011-12-01

    When Thomas Jaggar, Jr., founded the Hawaiian Volcano Observatory in 1912, he wanted to "keep and publish careful records, invite the whole world of science to co-operate, and interest the business man." After studying the disastrous volcanic eruption at Martinique and Naples and the destructive earthquakes at Messina and the Caribbean Ocean, he saw observatories with these goals as a way to understand and mitigate these hazards. Owing to frequent eruptions, ease of access, and continuous record of activity (since January 17, 1912), Kilauea Volcano has been the focus for volcanological study by government, academic, and international investigators. New volcano monitoring techniques have been developed and tested on Hawaiian volcanoes and exported worldwide. HVO has served as a training ground for several generations of volcanologists; many have contributed to volcano research and hazards mitigation around the world. In the coming years, HVO and the scientific community will benefit from recent upgrades in our monitoring network. HVO had the first regional seismic network in the US and it will be fully digital; continuous GPS, tilt, gravity, and strain data already complement the seismic data; an array of infrared and visual cameras simultaneously track geologic surface changes. Scientifically, HVO scientists and their colleagues are making great advances in understanding explosive basaltic eruptions, volcanic gas emission and dispersion and its hazards, and lava flow mechanics with these advanced instruments. Activity at Hawaiian volcanoes continues to provide unparalleled opportunities for research and education, made all the more valuable by HVO's scientific legacy.

  6. The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism: Chapter 1 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.; Kauahikaua, James P.; Brantley, Steven R.; Neal, Christina A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    This chapter summarizes HVO’s history and some of the scientific achievements made possible by this permanent observatory over the past century as it grew from a small wooden structure with only a small staff and few instruments to a modern, well-staffed, world-class facility with state-of-the-art monitoring networks that constantly track volcanic and earthquake activity. The many successes of HVO, from improving basic knowledge about basaltic volcanism to providing hands-on experience and training for hundreds of scientists and students and serving as the testing ground for new instruments and technologies, stem directly from the acquisition, integration, and analysis of multiple datasets that span many decades of observations of frequent eruptive activity. HVO’s history of the compilation, interpretation, and communication of long-term volcano monitoring and eruption data (for instance, seismic, geodetic, and petrologic-geochemical data and detailed eruption chronologies) is perhaps unparalleled in the world community of volcano observatories. The discussion and conclusions drawn in this chapter, which emphasize developments since the 75th anniversary of HVO in 1987, are general and retrospective and are intended to provide context for the more detailed, topically focused chapters of this volume.

  7. Hawaiian Volcano Observatory summary 100; Part 1, seismic data, January to December 2000

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2001-01-01

    The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year and a chronological narrative describing the volcanic events. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that all data for events of M≥1.5 routinely gathered by the Observatory are included. The emphasis in collection of tilt and deformation data has shifted from quarterly measurements at a few water-tube tilt stations (“wet” tilt) to a larger number of continuously recording borehole tiltmeters, repeated measurements at numerous spirit-level tilt stations (“dry” tilt), and surveying of level and trilateration networks. Because of the large quantity of deformation data now gathered and differing schedules of data reduction, the seismic and deformation summaries are published separately. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes enough background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered.

  8. Hawaiian volcano observatory summary 103; Part I, seismic data, January to December 2003

    USGS Publications Warehouse

    Nakata, Jennifer S.; Heliker, C.; Orr, T.; Hoblitt, R.

    2004-01-01

    The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year and a chronological narrative describing the volcanic events. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that most data for events of M= 1.5 routinely gathered by the Observatory are included. The emphasis in collection of tilt and deformation data has shifted from quarterly measurements at a few water-tube tilt stations ('wet' tilt) to a larger number of continuously recording borehole tiltmeters, repeated measurements at numerous spirit-level tilt stations ('dry' tilt), and surveying of level and trilateration networks. Because of the large quantity of deformation data now gathered and differing schedules of data reduction, the seismic and deformation summaries are published separately. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered.

  9. Hawaiian Volcano Observatory summary 101: Part 1, seismic data, January to December 2001

    USGS Publications Warehouse

    Nakata, Jennifer S.; Chronological summary by Heliker, C.

    2002-01-01

    The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year and a chronological narrative describing the volcanic events. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that all data for events of M>1.5 routinely gathered by the Observatory are included. The emphasis in collection of tilt and deformation data has shifted from quarterly measurements at a few water-tube tilt stations ("wet" tilt) to a larger number of continuously recording borehole tiltmeters, repeated measurements at numerous spirit-level tilt stations ("dry" tilt), and surveying of level and trilateration networks. Because of the large quantity of deformation data now gathered and differing schedules of data reduction, the seismic and deformation summaries are published separately. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes enough background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered.

  10. The story of the Hawaiian Volcano Observatory -- A remarkable first 100 years of tracking eruptions and earthquakes

    USGS Publications Warehouse

    Babb, Janet L.; Kauahikaua, James P.; Tilling, Robert I.

    2011-01-01

    The year 2012 marks the centennial of the Hawaiian Volcano Observatory (HVO). With the support and cooperation of visionaries, financiers, scientists, and other individuals and organizations, HVO has successfully achieved 100 years of continuous monitoring of Hawaiian volcanoes. As we celebrate this milestone anniversary, we express our sincere mahalo—thanks—to the people who have contributed to and participated in HVO’s mission during this past century. First and foremost, we owe a debt of gratitude to the late Thomas A. Jaggar, Jr., the geologist whose vision and efforts led to the founding of HVO. We also acknowledge the pioneering contributions of the late Frank A. Perret, who began the continuous monitoring of Kīlauea in 1911, setting the stage for Jaggar, who took over the work in 1912. Initial support for HVO was provided by the Massachusetts Institute of Technology (MIT) and the Carnegie Geophysical Laboratory, which financed the initial cache of volcano monitoring instruments and Perret’s work in 1911. The Hawaiian Volcano Research Association, a group of Honolulu businessmen organized by Lorrin A. Thurston, also provided essential funding for HVO’s daily operations starting in mid-1912 and continuing for several decades. Since HVO’s beginning, the University of Hawaiʻi (UH), called the College of Hawaii until 1920, has been an advocate of HVO’s scientific studies. We have benefited from collaborations with UH scientists at both the Hilo and Mänoa campuses and look forward to future cooperative efforts to better understand how Hawaiian volcanoes work. The U.S. Geological Survey (USGS) has operated HVO continuously since 1947. Before then, HVO was under the administration of various Federal agencies—the U.S. Weather Bureau, at the time part of the Department of Agriculture, from 1919 to 1924; the USGS, which first managed HVO from 1924 to 1935; and the National Park Service from 1935 to 1947. For 76 of its first 100 years, HVO has been

  11. The Hawaiian Volcano Observatory's current approach to forecasting lava flow hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Kauahikaua, J. P.

    2013-12-01

    Hawaiian Volcanoes are best known for their frequent basaltic eruptions, which typically start with fast-moving channelized `a`a flows fed by high eruptions rates. If the flows continue, they generally transition into pahoehoe flows, fed by lower eruption rates, after a few days to weeks. Kilauea Volcano's ongoing eruption illustrates this--since 1986, effusion at Kilauea has mostly produced pahoehoe. The current state of lava flow simulation is quite advanced, but the simplicity of the models mean that they are most appropriately used during the first, most vigorous, days to weeks of an eruption - during the effusion of `a`a flows. Colleagues at INGV in Catania have shown decisively that MAGFLOW simulations utilizing satellite-derived eruption rates can be effective at estimating hazards during the initial periods of an eruption crisis. However, the algorithms do not simulate the complexity of pahoehoe flows. Forecasts of lava flow hazards are the most common form of volcanic hazard assessments made in Hawai`i. Communications with emergency managers over the last decade have relied on simple steepest-descent line maps, coupled with empirical lava flow advance rate information, to portray the imminence of lava flow hazard to nearby communities. Lavasheds, calculated as watersheds, are used as a broader context for the future flow paths and to advise on the utility of diversion efforts, should they be contemplated. The key is to communicate the uncertainty of any approach used to formulate a forecast and, if the forecast uses simple tools, these communications can be fairly straightforward. The calculation of steepest-descent paths and lavasheds relies on the accuracy of the digital elevation model (DEM) used, so the choice of DEM is critical. In Hawai`i, the best choice is not the most recent but is a 1980s-vintage 10-m DEM--more recent LIDAR and satellite radar DEM are referenced to the ellipsoid and include vegetation effects. On low-slope terrain, steepest

  12. Cascades Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Driedger, Carolyn; Pallister, John

    2008-01-01

    Washington's Mount St. Helens volcano reawakens explosively on October 1, 2004, after 18 years of quiescence. Scientists at the U.S. Geological Survey's Cascades Volcano Observatory (CVO) study and observe Mount St. Helens and other volcanoes of the Cascade Range in Washington, Oregon, and northern California that hold potential for future eruptions. CVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Mount St. Helens and CVO at http://vulcan.wr.usgs.gov/.

  13. Mahukona: The missing Hawaiian volcano

    SciTech Connect

    Garcia, M.O.; Muenow, D.W. ); Kurz, M.D. )

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  14. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  15. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  16. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  17. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  18. Iridium emissions from Hawaiian volcanoes

    NASA Technical Reports Server (NTRS)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  19. Predicting the Timing and Location of the next Hawaiian Volcano

    ERIC Educational Resources Information Center

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  20. Predicting the Timing and Location of the next Hawaiian Volcano

    ERIC Educational Resources Information Center

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  1. Valley development on Hawaiian volcanoes

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.; Gulick, Virginia C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains.

  2. Valley development on Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.; Gulick, Virginia C.

    1987-05-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains.

  3. Voluminous submarine lava flows from Hawaiian volcanoes

    SciTech Connect

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  4. A Submarine Perspective on Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2011-12-01

    Postwar improvements in navigation, sonar-based mapping, and submarine photography enabled the development of bathymetric maps, which revealed submarine morphologic features that could be dredged or explored and sampled with a new generation of manned and unmanned submersibles. The maps revealed debris fields from giant landslides, the great extent of rift zones radiating from volcanic centers, and two previously unknown submarine volcanoes named Mahukona and Loihi, the youngest Hawaiian volcano. About 70 major landslides cover half the flanks of the Hawaiian Ridge out to Midway Island. Some of the landslides attain lengths of 200 km and have volumes exceeding 5,000 km3. More recent higher resolution bathymetry and sidescan data reveal that many submarine eruptions construct circular, flat-topped, monogenetic cones; that large fields of young strongly alkalic lava flows, such as the North Arch and South Arch lava fields, erupt on the seafloor within several hundred km of the islands; and that alkalic lavas erupt during the shield stage on Kilauea and Mauna Loa. The North Arch flow field covers about 24,000 km2, has an estimated volume between about 1000 and 1250 km3, has flows as long as 108 km, and erupted from over 100 vents. The source and melting mechanisms for their production is still debated. The maps also displayed stair-step terraces, mostly constructed of drowned coral reefs, which form during early rapid subsidence of the volcanoes during periods of oscillating sea level. The combination of scuba and underwater photography facilitated the first motion pictures of the mechanism of formation of pillow lava in shallow water offshore Kilauea. The age progression known from the main islands was extended westward along the Hawaiian Ridge past Midway Island, around a bend in the chain and northward along the Emperor Seamounts. Radiometric dating of dredged samples from these submarine volcanoes show that the magma source that built the chain has been active for

  5. Eruptions of Hawaiian Volcanoes - Past, Present, and Future

    USGS Publications Warehouse

    Tilling, Robert I.; Heliker, Christina; Swanson, Donald A.

    2010-01-01

    Viewing an erupting volcano is a memorable experience, one that has inspired fear, superstition, worship, curiosity, and fascination since before the dawn of civilization. In modern times, volcanic phenomena have attracted intense scientific interest, because they provide the key to understanding processes that have created and shaped more than 80 percent of the Earth's surface. The active Hawaiian volcanoes have received special attention worldwide because of their frequent spectacular eruptions, which often can be viewed and studied with relative ease and safety. In January 1987, the Hawaiian Volcano Observatory (HVO), located on the rim of Kilauea Volcano, celebrated its 75th Anniversary. In honor of HVO's Diamond Jubilee, the U.S. Geological Survey (USGS) published Professional Paper 1350 (see list of Selected Readings, page 57), a comprehensive summary of the many studies on Hawaiian volcanism by USGS and other scientists through the mid-1980s. Drawing from the wealth of data contained in that volume, the USGS also published in 1987 the original edition of this general-interest booklet, focusing on selected aspects of the eruptive history, style, and products of two of Hawai'i's active volcanoes, Kilauea and Mauna Loa. This revised edition of the booklet-spurred by the approaching Centennial of HVO in January 2012-summarizes new information gained since the January 1983 onset of Kilauea's Pu'u 'O'o-Kupaianaha eruption, which has continued essentially nonstop through 2010 and shows no signs of letup. It also includes description of Kilauea's summit activity within Halema'uma'u Crater, which began in mid-March 2008 and continues as of this writing (late 2010). This general-interest booklet is a companion to the one on Mount St. Helens Volcano first published in 1984 and revised in 1990 (see Selected Readings). Together, these publications illustrate the contrast between the two main types of volcanoes: shield volcanoes, such as those in Hawai'i, which generally

  6. Eruptions of Hawaiian volcanoes - Past, present, and future

    USGS Publications Warehouse

    Tilling, Robert I.; Heliker, Christina; Swanson, Donald A.

    2010-01-01

    Viewing an erupting volcano is a memorable experience, one that has inspired fear, superstition, worship, curiosity, and fascination since before the dawn of civilization. In modern times, volcanic phenomena have attracted intense scientific interest, because they provide the key to understanding processes that have created and shaped more than 80 percent of the Earth's surface. The active Hawaiian volcanoes have received special attention worldwide because of their frequent spectacular eruptions, which often can be viewed and studied with relative ease and safety. In January 1987, the Hawaiian Volcano Observatory (HVO), located on the rim of Kilauea Volcano, celebrated its 75th Anniversary. In honor of HVO's Diamond Jubilee, the U.S. Geological Survey (USGS) published Professional Paper 1350 (see list of Selected Readings, page 57), a comprehensive summary of the many studies on Hawaiian volcanism by USGS and other scientists through the mid-1980s. Drawing from the wealth of data contained in that volume, the USGS also published in 1987 the original edition of this general-interest booklet, focusing on selected aspects of the eruptive history, style, and products of two of Hawai'i's active volcanoes, Kilauea and Mauna Loa. This revised edition of the booklet-spurred by the approaching Centennial of HVO in January 2012-summarizes new information gained since the January 1983 onset of Kilauea's Pu'u 'O'o-Kupaianaha eruption, which has continued essentially nonstop through 2010 and shows no signs of letup. It also includes description of Kilauea's summit activity within Halema'uma'u Crater, which began in mid-March 2008 and continues as of this writing (late 2010). This general-interest booklet is a companion to the one on Mount St. Helens Volcano first published in 1984 and revised in 1990 (see Selected Readings). Together, these publications illustrate the contrast between the two main types of volcanoes: shield volcanoes, such as those in Hawai'i, which generally

  7. Infrared surveys of Hawaiian volcanoes

    USGS Publications Warehouse

    Fischer, W. A.; Moxham, R.M.; Polcyn, F.; Landis, G.H.

    1964-01-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain.Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities.Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected.Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  8. Earthquakes of Loihi submarine volcano and the Hawaiian hot spot.

    USGS Publications Warehouse

    Klein, F.W.

    1982-01-01

    Loihi is an active submarine volcano located 35km S of the island of Hawaii and may eventually grow to be the next and S most island in the Hawaiian chain. The Hawaiian Volcano Observatory recorded two major earthquake swarms located there in 1971-1972 and 1975 which were probably associated with submarine eruptions or intrusions. The swarms were located very close to Loihi's bathymetric summit, except for earthquakes during the second stage of the 1971-1972 swarm, which occurred well onto Loihi's SW flank. The flank earthquakes appear to have been triggered by the preceding activity and possible rifting along Loihi's long axis, similar to the rift-flank relationship at Kilauea volcano. Other changes accompanied the shift in locations from Loihi's summit to its flank, including a shift from burst to continuous seismicity, a rise in maximum magnitude, a change from small earthquake clusters to a larger elongated zone, a drop in b value, and a presumed shift from concentrated volcanic stresses to a more diffuse tectonic stress on Loihi's flank. - Author

  9. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  10. Continuous monitoring of Hawaiian volcanoes using thermal cameras

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.

    2012-12-01

    Thermal cameras are becoming more common at volcanoes around the world, and have become a powerful tool for observing volcanic activity. Fixed, continuously recording thermal cameras have been installed by the Hawaiian Volcano Observatory in the last two years at four locations on Kilauea Volcano to better monitor its two ongoing eruptions. The summit eruption, which began in March 2008, hosts an active lava lake deep within a fume-filled vent crater. A thermal camera perched on the rim of Halema`uma`u Crater, acquiring an image every five seconds, has now captured about two years of sustained lava lake activity, including frequent lava level fluctuations, small explosions , and several draining events. This thermal camera has been able to "see" through the thick fume in the crater, providing truly 24/7 monitoring that would not be possible with normal webcams. The east rift zone eruption, which began in 1983, has chiefly consisted of effusion through lava tubes onto the surface, but over the past two years has been interrupted by an intrusion, lava fountaining, crater collapse, and perched lava lake growth and draining. The three thermal cameras on the east rift zone, all on Pu`u `O`o cone and acquiring an image every several minutes, have captured many of these changes and are providing an improved means for alerting observatory staff of new activity. Plans are underway to install a thermal camera at the summit of Mauna Loa to monitor and alert to any future changes there. Thermal cameras are more difficult to install, and image acquisition and processing are more complicated than with visual webcams. Our system is based in part on the successful thermal camera installations by Italian volcanologists on Stromboli and Vulcano. Equipment includes custom enclosures with IR transmissive windows, power, and telemetry. Data acquisition is based on ActiveX controls, and data management is done using automated Matlab scripts. Higher-level data processing, also done with

  11. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Large Hawaiian volcanoes can persist as islands through the rapid subsidence by building upward rapidly enough. But in the long run, subsidence, coupled with surface erosion, erases any volcanic remnant above sea level in about 15 m.y. One consequence of subsidence, in concert with eustatic changes in sea level, is the drowning of coral reefs that drape the submarine flanks of the actively subsiding volcanoes. At least six reefs northwest of the Island of Hawai‘i form a stairstep configuration, the oldest being deepest.

  12. Continuous monitoring of Hawaiian volcanoes with thermal cameras

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.

    2014-01-01

    Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.

  13. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  14. The California Volcano Observatory: Monitoring the state's restless volcanoes

    USGS Publications Warehouse

    Stovall, Wendy K.; Marcaida, Mae; Mangan, Margaret T.

    2014-01-01

    Volcanic eruptions happen in the State of California about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have taken place in California in the past 1,000 years—most recently at Lassen Peak in Lassen Volcanic National Park (1914 to 1917) in the northern part of the State—and future volcanic eruptions are inevitable. The U.S. Geological Survey California Volcano Observatory monitors the State's potentially hazardous volcanoes.

  15. 2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF MEDIAN. NOTE VOLCANIC STONE CURBING (EDGING) TYPICAL OF MOST PARKING AREAS; TRIANGLING AT END NOT TYPICAL. MAUNA LOA VOLCANO IN BACK. - Crater Rim Drive, Volcano, Hawaii County, HI

  16. The dynamics of Hawaiian-style eruptions: a century of study: Chapter 8 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Mangan, Margaret T.; Cashman, Katharine V.; Swanson, Donald A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    This chapter, prepared in celebration of the Hawaiian Volcano Observatoryʼs centennial, provides a historical lens through which to view modern paradigms of Hawaiian-style eruption dynamics. The models presented here draw heavily from observations, monitoring, and experiments conducted on Kīlauea Volcano, which, as the site of frequent and accessible eruptions, has attracted scientists from around the globe. Long-lived eruptions in particular—Halema‘uma‘u 1907–24, Kīlauea Iki 1959, Mauna Ulu 1969–74, Pu‘u ‘Ō‘ō-Kupaianaha 1983–present, and Halema‘uma‘u 2008–present—have offered incomparable opportunities to conceptualize and constrain theoretical models with multidisciplinary data and to field-test model results. The central theme in our retrospective is the interplay of magmatic gas and near-liquidus basaltic melt. A century of study has shown that gas exsolution facilitates basaltic dike propagation; volatile solubility and vesiculation kinetics influence magma-rise rates and fragmentation depths; bubble interactions and gas-melt decoupling modulate magma rheology, eruption intensity, and plume dynamics; and pyroclast outgassing controls characteristics of eruption deposits. Looking to the future, we anticipate research leading to a better understanding of how eruptive activity is influenced by volatiles, including the physics of mixed CO2-H2O degassing, gas segregation in nonuniform conduits, and vaporization of external H2O during magma ascent.

  17. Decision Analysis Tools for Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  18. Geologic Mapping, Volcanic Stages and Magmatic Processes in Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.

    2005-12-01

    The concept of volcanic stages arose from geologic mapping of Hawaiian volcanoes. Subaerial Hawaiian lava successions can be divided generally into three constructional phases: an early (shield) stage dominated by thin-bedded basaltic lava flows commonly associated with a caldera; a later (postshield) stage with much thicker bedded, generally lighter colored lava flows commonly containing clinopyroxene; calderas are absent in this later stage. Following periods of quiescence of a half million years or more, some Hawaiian volcanoes have experienced renewed (rejuvenated) volcanism. Geological and petrographic relations irrespective of chemical composition led to the identification of mappable units on Niihau, Kauai, Oahu, Molokai, Maui and Hawaii, which form the basis for this 3-fold division of volcanic activity. Chemical data have complicated the picture. There is a growing tendency to assign volcanic stage based on lava chemistry, principally alkalicity, into tholeiitic shield, alkalic postshield, and silica undersaturated rejuvenation, despite the evidence for interbedded tholeiitic and alkalic basalts in many shield formations, and the presence of mildly tholeiitic lavas in some postshield and rejuvenation formations. A consistent characteristic of lava compositions from most postshield formations is evidence for post-melting evolution at moderately high pressures (3-7 kb). Thus, the mapped shield to postshield transitions primarily reflect the disappearance of shallow magma chambers (and associated calderas) in Hawaiian volcanoes, not the earlier (~100 ka earlier in Waianae Volcano) decline in partial melting that leads to the formation of alkalic parental magmas. Petrological signatures of high-pressure evolution are high-temperature crystallization of clinopyroxene and delayed crystallization of plagioclase, commonly to <3 % MgO. Petrologic modeling using pMELTS and MELTS algorithms allows for quantification of the melting and fractionation conditions giving

  19. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Magma supply to Hawaiian volcanoes has varied over millions of years but is presently at a high level. Supply to Kīlauea’s shallow magmatic system averages about 0.1 km3/yr and fluctuates on timescales of months to years due to changes in pressure within the summit reservoir system, as well as in the volume of melt supplied by the source hot spot. Magma plumbing systems beneath Kīlauea and Mauna Loa are complex and are best constrained at Kīlauea. Multiple regions of magma storage characterize Kīlauea’s summit, and two pairs of rift zones, one providing a shallow magma pathway and the other forming a structural boundary within the volcano, radiate from the summit to carry magma to intrusion/eruption sites located nearby or tens of kilometers from the caldera. Whether or not magma is present within the deep rift zone, which extends beneath the structural rift zones at ~3-km depth to the base of the volcano at ~9-km depth, remains an open question, but we suggest that most magma entering Kīlauea must pass through the summit reservoir system before entering the rift zones. Mauna Loa’s summit magma storage system includes at least two interconnected reservoirs, with one centered beneath the south margin of the caldera and the other elongated along the axis of the caldera. Transport of magma within shield-stage Hawaiian volcanoes occurs through dikes that can evolve into long-lived pipe-like pathways. The ratio of eruptive to noneruptive dikes is large in Hawai‘i, compared to other basaltic volcanoes (in Iceland, for example), because Hawaiian dikes tend to be intruded with high driving pressures. Passive dike intrusions also occur, motivated at Kīlauea by rift opening in response to seaward slip of the volcano’s south flank.

  20. Ambient noise recovery of surface wave Green's functions: Application at Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Ballmer, S.; Wolfe, C. J.; Okubo, P.; Haney, M. M.; Thurber, C. H.

    2010-12-01

    Hazard assessment of Hawaiian volcanoes critically depends on the understanding of their evolution and dynamics. Previous studies suggest that ambient seismic noise analyses may aid in volcano research and monitoring. Green’s functions derived from ambient noise have been used to perform tomography of the shallow structures (< 5 km depth) at other volcanoes [1, 2]. Moreover, these Green’s functions have been used to monitor very small shallow velocity perturbations prior to eruptions [3]. This promising technique, however, has not yet been applied to any Hawaiian volcano. Here, we examine data from the USGS Hawaii Volcano Observatory short-period seismic network to assess the potential of such ambient noise analyses to constrain spatial velocity heterogeneity and temporal perturbations at Kilauea and Mauna Loa volcanoes. We have obtained continuous seismic data from May 2007 through April 2008. This time period includes two important volcanic events. 1) The Father’s Day dike intrusion into Kilauea’s east rift zone that occurred on June 17, 2007. 2) The Kilauea summit eruption of March 19, 2008 and the high summit activity (that includes high tremor levels) that has since followed. The success of any noise study of temporal velocity perturbations will depend critically on whether stable Green’s functions can be recovered. However, for applications at Hawaii it is possible that during some time frames high volcanic tremor levels may distort ambient noise records and hence limit the results. Using the technical approach described in [2], we plan to examine numerous station pairs to determine the times when stable Green’s functions can be extracted from noise (0.1-1 Hz) that is typically made up of Rayleigh waves created by wind-generated ocean waves. As a first step, we investigate the period around the 2007 dike intrusion to evaluate the applicability of noise interferometry to Kilauea volcano. [1] Brenguier, F., N. M. Shapiro, M. Campillo, A. Nercessian

  1. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes

    USGS Publications Warehouse

    Got, J.-L.; Monteiller, V.; Monteux, J.; Hassani, R.; Okubo, P.

    2008-01-01

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process - emission of magma onto the oceanic crust - the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes. ??2008 Nature Publishing Group.

  2. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.

    PubMed

    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul

    2008-01-24

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes.

  3. Compositions of Hawaiian Double Track Volcanoes: Shallow or Deep Controls?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Farnetani, C. G.; Class, C.

    2012-12-01

    At least three mechanisms have been proposed to explain the compositional differences between the two parallel chains of Hawaiian volcanoes known as Loa and Kea trends, respectively: (1) The Hawaiian plume is concentrically zoned, and Loa trend volcanoes tap the central portions, whereas Kea trend volcanoes tap more peripheral portions of the plume. (2) Variations in lithospheric thickness control the depth and extent of melt extraction, and therefore the specific compositional mix between enriched and depleted components distributed uniformly throughout an otherwise unzoned plume. (3) The two tracks sample a large-scale compositional gradient initially located in the plume source, the thermal boundary layer near the base of the mantle. Model (1) is inconsistent with the observation that both pre-shield and post-shield Loa-trend volcanoes, which sample the periphery of the plume, have Loa-type, not Kea-type, isotopic characteristics. Model (2), as proposed by Ballmer et al. (2011), invokes systematically higher extents of melting for Kea-trend volcanoes. This conflicts with geochemical evidence, such as La/Yb ratios that are consistently higher in Kea-trend shield volcanoes than in corresponding Loa-shields, indicating lower, not higher extents of melting for Kea-shields. It also conflicts with radiogenic 208Pb*/206Pb* ratios of pre-shield Loihi, which, in spite of a large difference in melt fraction, are similar to Loa-shield lavas. Model (3) has recently been linked to the isotopic DUPAL anomaly and the edge of the large, lower-mantle shear-wave velocity anomaly in the Pacific (Weis et al., 2011). Using geodynamic modeling, we show how an isotopic gradient in the lower-mantle thermal boundary layer is drawn into the plume conduit and sampled by the two volcano tracks. An isotopic gradient or sharp boundary, even when initially located away from the plume conduit by hundreds of kilometers, will nevertheless ultimately be drawn into the center of the conduit. This

  4. Iridium and other trace metal enrichments from Hawaiian volcanoes

    SciTech Connect

    Finnegan, D.L.; Miller, T.L.; Zoller, W.H.

    1989-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were analyzed by INAA for over 40 elements. We have found Ir in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Os was also seen in the Mauna Loa samples. Enrichment factors for Ir in the volcanic fumes range from 10/sup 4/ to 10/sup 5/ relative to BHVO. Flux calculations for Ir at Mauna Loa and Kilauea had ranges of 80 to 3000 and 10 to 315 g/d respectively. The percentage of Ir released from the magma into the fumes ranged from 1% to 12% for both volcanoes. Calculations assuming the Deccan as the source of Ir for the K/T boundary layer show that the concentration of Ir left in the basalts may be too low to account for all of the K/T Ir. It would require a very high fraction (> 30%) of the Ir to be purged from the basalt to account for all the Ir, which cannot be supported by the Hawaiian data. 26 refs., 1 fig., 4 tabs.

  5. Effects of volcanic tremor on noise-based measurements of temporal velocity changes at Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Ballmer, S.; Wolfe, C. J.; Okubo, P.; Haney, M. M.; Thurber, C. H.

    2011-12-01

    Green's functions calculated with ambient seismic noise may aid in volcano research and monitoring. The continuous character of ambient seismic noise and hence of the reconstructed Green's functions has enabled measurements of short-term (~days) temporal perturbations in seismic velocities. Very small but clear velocity decreases prior to some volcanic eruptions have been documented and motivate our present study. We apply this method to Hawaiian volcanoes using data from the USGS Hawaiian Volcano Observatory (HVO) seismic network. In order to obtain geologically relevant and reliable results, stable Green's functions need to be recovered from the ambient noise. Station timing problems, changes in noise source directivity, as well as changes in the source's spectral content are known biases that critically affect the Green's functions' stability and hence need to be considered. Here we show that volcanic tremor is a potential additional bias. During the time period of our study (2007-present), we find that volcanic tremor is a common feature in the HVO seismic data. Pu'u O'o tremor is continuously present before a dike intrusion into Kilauea's east rift zone in June 2007 and Halema'uma'u tremor occurs before and during resumed Kilauea summit activity from early 2008 and onward. For the frequency band considered (0.1-0.9 Hz), we find that these active tremor sources can drastically modify the recovered Green's functions for station pairs on the entire island at higher (> 0.5 Hz) frequencies, although the effect of tremor appears diminished at lower frequencies. In this presentation, we perform measurements of temporal velocity changes using ambient noise Green's functions and explore how volcanic tremor affects the results. Careful quality assessment of reconstructed Green's functions appears to be essential for the desired high precision measurements.

  6. Petrologic Constraints on Magma Plumbing Systems Beneath Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Peterman, K. J.; Scott, J. L.; Barton, M.

    2016-12-01

    We have calculated the pressures of partial crystalliztion of basaltic magmas from Hawaii using a petrological method. A total of 1576 major oxide analyses of glasses from four volcanoes (Kilauea and the Puna Ridge, Loihi, Mauna Loa, and Mauna Kea, on the Big Island) were compiled and used as input data. Glasses represent quenched liquid compositions and are ideal for calculation of pressures of partial crystallization. The results were filtered to exclude samples that yielded unrealistic high errors associated with the calculated pressure or negative value of pressure, and to exclude samples with non-basaltic compositions. Calculated pressures were converted to depths of partial crystallization. The majority (68.2%) of pressures for the shield-stage subaerial volcanoes Kilauea, Mauna Loa, and Mauna Kea, fall in the range 0-140 MPa, corresponding to depths of 0-5 km. Glasses from the Puna Ridge yield pressures ranging from 18 to 126 MPa and are virtually identical to pressures determined from glasses from Kilauea (0 to 129 MPa). These results are consistent with the presence of magma reservoirs at depths of 0-5 km beneath the large shield volcanoes. The inferred depth of the magma reservoir beneath the summit of Kilauea (average = 1.8 km, maximum = 5 km) agrees extremely well with depths ( 2-6 km) estimated from seismic studies. The results for Kilauea and Mauna Kea indicate that significant partial crystallization also occurs beneath the summit reservoirs at depths up to 11 km. These results are consistent with seismic evidence for the presence of a magma reservoir at 8-11 km beneath Kilauea at the base of the volcanic pile. The results for Loihi indicate crystallization at higher average pressures (100-400 MPa) and depths (3-14 km) than the large shield volcanoes, suggesting that the plumbing system is not yet fully developed, and that the Hawaiian volcanic plumbing systems evolve over time.

  7. University Students Join NASA on Trip to Hawaiian Volcano

    NASA Image and Video Library

    2015-06-02

    Prepared Everyone carried a respirator into the field, in case the plume from the volcano blew their way. Credit: NASA/GSFC/Andrea Jones In June, five student journalists from Stony Brook University’s Alan Alda Center for Communicating Science packed their hiking boots and hydration packs and joined a NASA-funded science team for 10 days on the lava fields of Kilauea, an active Hawaiian volcano. Kilauea’s lava fields are an ideal place to test equipment designed for use on Earth’s moon or Mars, because volcanic activity shaped so much of those terrains. The trip was part of an interdisciplinary program called RIS4E – short for Remote, In Situ, and Synchrotron Studies for Science and Exploration – which is designed to prepare for future exploration of the moon, near-Earth asteroids and the moons of Mars. To read reports from the RIS4E journalism students about their experiences in Hawaii, visit http://ReportingRIS4E.com

  8. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    All seaward flank movement occurs along a detachment fault, or décollement, that forms within the mixture of pelagic clays and volcaniclastic deposits on the old seafloor and pushes up a bench of debris along the distal margin of the flank. The offshore uplift that builds this bench is generated by décollement slip that terminates upward into the overburden along thrust faults. Finite strain and finite strength models for volcano growth on a low-friction décollement reproduce this bench structure, as well as much of the morphology and patterns of faulting observed on the actively growing volcanoes of Mauna Loa and Kīlauea. These models show how stress is stored within growing volcano flanks, but not how rapid, potentially seismic slip is triggered along their décollements. The imbalance of forces that triggers large, rapid seaward displacement of the flank after decades of creep may result either from driving forces that change rapidly, such as magma pressure gradients; from resisting forces that rapidly diminish with slip, such as those arising from coupling of pore pressure and dilatancy within décollement sediment; or, from some interplay between driving and resisting forces that produces flank motion. Our understanding of the processes of flank motion is limited by available data, though recent studies have increased our ability to quantitatively address flank instability and associated hazards.

  9. Three Short Videos by the Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Wessells, Stephen; Lowenstern, Jake; Venezky, Dina

    2009-01-01

    This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic

  10. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  11. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, P.W.; Calvert, A.T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ?? 34 to 1159 ?? 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (???870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot. ?? 2011 Geological Society of America.

  12. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    USGS Publications Warehouse

    Decker, Robert; Okamura, Arnold; Miklius, Asta; Poland, Michael

    2008-01-01

    Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt

  13. Propagation of the Hawaiian-Emperor volcano chain by Pacific plate cooling stress

    USGS Publications Warehouse

    Stuart, W.D.; Foulger, G.R.; Barall, M.

    2007-01-01

    The lithosphere crack model, the main alternative to the mantle plume model for age-progressive magma emplacement along the Hawaiian-Emperor volcano chain, requires the maximum horizontal tensile stress to be normal to the volcano chain. However, published stress fields calculated from Pacific lithosphere tractions and body forces (e.g., subduction pull, basal drag, lithosphere density) are not optimal for southeast propagation of a stress-free, vertical tensile crack coincident with the Hawaiian segment of the Hawaiian-Emperor chain. Here we calculate the thermoelastic stress rate for present-day cooling of the Pacific plate using a spherical shell finite element representation of the plate geometry. We use observed seafloor isochrons and a standard model for lithosphere cooling to specify the time dependence of vertical temperature profiles. The calculated stress rate multiplied by a time increment (e.g., 1 m.y.) then gives a thermoelastic stress increment for the evolving Pacific plate. Near the Hawaiian chain position, the calculated stress increment in the lower part of the shell is tensional, with maximum tension normal to the chain direction. Near the projection of the chain trend to the southeast beyond Hawaii, the stress increment is compressive. This incremental stress field has the form necessary to maintain and propagate a tensile crack or similar lithosphere flaw and is thus consistent with the crack model for the Hawaiian volcano chain.?? 2007 The Geological Society of America.

  14. Revised age for Midway volcano, Hawaiian volcanic chain

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.; Lanphere, M.A.

    1977-01-01

    New conventional K-Ar, 40Ar/39Ar, and petrochemical data on alkalic basalt pebbles from the basalt conglomerate overlying tholeiitic flows in the Midway drill hole show that Midway evolved past the tholeiitic shield-building stage and erupted lavas of the alkalic suite 27.0 ?? 0.6 m.y. ago. The data also show that previously published conventional K-Ar ages on altered samples of tholeiite are too young by about 9 m.y. These results remove a significant anomaly in the age-distance relationships of the Hawaiian chain and obviate the need for large changes in either the rate of rotation of the Pacific plate about the Hawaiian pole or the motion of the plate relative to the Hawaiian hot spot since the time of formation of the Hawaiian-Emperor bend. All of the age data along the Hawaiian chain are now reasonably consistent with an average rate of volcanic propagation of 8.0 cm/yr and with 0.83??/m.y. of angular rotation about the Hawaiian pole. ?? 1977.

  15. Developing monitoring capability of a volcano observatory: the example of the Vanuatu Geohazards Observatory

    NASA Astrophysics Data System (ADS)

    Todman, S.; Garaebiti, E.; Jolly, G. E.; Sherburn, S.; Scott, B.; Jolly, A. D.; Fournier, N.; Miller, C. A.

    2010-12-01

    Vanuatu lies on the Pacific 'Ring of Fire'. With 6 active subaerial and 3 submarine (identified so far) volcanoes, monitoring and following up their activities is a considerable work for a national observatory. The Vanuatu Geohazards Observatory is a good example of what can be done from ‘scratch’ to develop a volcanic monitoring capability in a short space of time. A fire in June 2007 completely destroyed the old observatory building and many valuable records leaving Vanuatu with no volcano monitoring capacity. This situation forced the Government of Vanuatu to reconsider the structure of the hazards monitoring group and think about the best way to rebuild a complete volcano monitoring system. Taking the opportunity of the re-awakening of Gaua volcano (North of Vanuatu), the Vanuatu Geohazards section in partnership with GNS Science, New Zealand developed a new program including a strategic plan for Geohazards from 2010-2020, the installation of a portable seismic network with real-time data transmission in Gaua, the support of the first permanent monitoring station installation in Ambrym and the design and implementation of volcano monitoring infrastructure and protocol. Moreover the technology improvements of the last decade and the quick extension of enhanced communication systems across the islands of Vanuatu played a very important role for the development of this program. In less than one year, the implementation of this program was beyond expectations and showed considerable improvement of the Vanuatu Geohazards Observatory volcano monitoring capability. In response to increased volcanic activity (or unrest) in Ambae, the Geohazards section was fully capable of the installation of a portable seismic station in April 2010 and to follow the development of the activity. Ultimately, this increased capability results in better and timelier delivery of information and advice on the threat from volcanic activity to the National Disaster Management Office and

  16. Is mercury from Hawaiian volcanoes a natural source of pollution.

    NASA Technical Reports Server (NTRS)

    Eshleman, A.; Siegel, S. M.; Siegel, B. Z.

    1971-01-01

    An analysis shows that 98% of mercury from Hawaiian fumaroles is gaseous or solid particles less than 0.3 micron in diameter. It is suggested that both natural and industrial sources may be contributors to mercury pollution of the air in Hawaii.

  17. Revised Calculated Volumes Of Individual Shield Volcanoes At The Young End Of The Hawaiian Ridge

    NASA Astrophysics Data System (ADS)

    Robinson, J. E.; Eakins, B. W.

    2003-12-01

    Recent, high-resolution multibeam bathymetry and a digital elevation model of the Hawaiian Islands allow us to recalculate Bargar and Jackson's [1974] volumes of coalesced volcanic edifices (Hawaii, Maui-Nui, Oahu, Kauai, and Niihau) and individual shield volcanoes at the young end of the Hawaiian Ridge, taking into account subsidence of the Pacific plate under the load of the volcanoes as modeled by Watts and ten Brink [1989]. Our volume for the Island of Hawaii (2.48 x105 km3) is twice the previous estimate (1.13 x105 km3), due primarily to crustal subsidence, which had not been accounted for in the earlier work. The volcanoes that make up the Hawaii edifice (Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea, and Loihi) are generally considered to have formed within the past million years and our revised volume for Hawaii indicates that either magma-supply rates are greater than previously estimated (0.25 km3/yr as opposed to 0.1 km3/yr) or that Hawaii's volcanoes have erupted over a longer period of time (>1 million years). Our results also indicate that magma supply rates have increased dramatically to build the Hawaiian edifices: the average rate of the past 5 million years (0.096 km3/yr) is substantially greater than the overall average of the Hawaiian Ridge (0.018km3/yr) or Emperor Seamounts (0.012 km3/yr) as calculated by Bargar and Jackson, and that rates within the past million years are greater still (0.25 km3/yr). References: Bargar, K. E., and Jackson, E. D., 1974, Calculated volumes of individual shield volcanoes along the Hawaiian-Emperor Chain, Jour. Research U.S. Geol. Survey, Vol. 2, No. 5, p. 545-550. Watts, A. B., and ten Brink, U. S., 1989, Crustal structure, flexure, and subsidence history of the Hawaiian Islands, Jour. Geophys. Res., Vol. 94, No. B8, p. 10,473-10,500.

  18. Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge

    USGS Publications Warehouse

    Robinson, Joel E.; Eakins, Barry W.

    2006-01-01

    High-resolution multibeam bathymetry and a digital elevation model of the Hawaiian Islands are used to calculate the volumes of individual shield volcanoes and island complexes (Niihau, Kauai, Oahu, the Maui Nui complex, and Hawaii), taking into account subsidence of the Pacific plate under the load of the Hawaiian Ridge. Our calculated volume for the Island of Hawaii and its submarine extent (213 × 103 km3) is nearly twice the previous estimate (113 × 103 km3), due primarily to crustal subsidence that had not been accounted for in the earlier work. The volcanoes that make up the Island of Hawaii (Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea and Loihi) are generally considered to have been formed within the past million years, and our revised volume for the island indicates that magma supply rates are greater than previously estimated, 0.21 km3/yr as opposed to ∼ 0.1 km3/yr. This result also shows that compared with rates calculated for the Hawaiian Islands (0–6 Ma, 0.095 km3/yr), the Hawaiian Ridge (0–45 Ma, 0.017 km3/yr), and the Emperor Seamounts (45–80 Ma, 0.010 km3/yr), magma supply rates have increased dramatically to build the Island of Hawaii.

  19. Hawaiian Volcano Observatory seismic data, January to March 2009

    USGS Publications Warehouse

    Nakata, Jennifer S.; Okubo, Paul G.

    2010-01-01

    Figures 11–14 are maps showing computer-located hypocenters. The maps were generated using the Generic Mapping Tools (GMT), found at http://gmt.soest.hawaii.edu/ (last accessed 01/22/2010), in place of traditional QPLOT maps.

  20. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Contributions to our knowledge of the nature of the mantle source(s) of Hawaiian basalts are reviewed briefly, although this is a topic where debate is ongoing. Finally, our accumulated petrologic observations impose constraints on the nature of the summit reservoirs at Kīlauea and Mauna Loa, specifically whether the summit chamber has been continuous or segmented during past decades.

  1. A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Cashman, Katherine V.; Mangan, Margaret T.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The Hawaiian Volcano Observatory (HVO) was established as a natural laboratory to study volcanic processes. Since the most frequent form of volcanic activity in Hawai‘i is effusive, a major contribution of the past century of research at HVO has been to describe and quantify lava flow emplacement processes. Lava flow research has taken many forms; first and foremost it has been a collection of basic observational data on active lava flows from both Mauna Loa and Kīlauea volcanoes that have occurred over the past 100 years. Both the types and quantities of observational data have changed with changing technology; thus, another important contribution of HVO to lava flow studies has been the application of new observational techniques. Also important has been a long-term effort to measure the physical properties (temperature, viscosity, crystallinity, and so on) of flowing lava. Field measurements of these properties have both motivated laboratory experiments and presaged the results of those experiments, particularly with respect to understanding the rheology of complex fluids. Finally, studies of the dynamics of lava flow emplacement have combined detailed field measurements with theoretical models to build a framework for the interpretation of lava flows in numerous other terrestrial, submarine, and planetary environments. Here, we attempt to review all these aspects of lava flow studies and place them into a coherent framework that we hope will motivate future research.

  2. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  3. Thermal mapping of Hawaiian volcanoes with ASTER satellite data

    USGS Publications Warehouse

    Patrick, Matthew R.; Witzke, Coral-Nadine

    2011-01-01

    Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawai‘i that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halema‘uma‘u vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.

  4. Mount St. Helens and Kilauea volcanoes

    SciTech Connect

    Barrat, J. )

    1989-01-01

    Mount St. Helens' eruption has taught geologists invaluable lessons about how volcanoes work. Such information will be crucial in saving lives and property when other dormant volcanoes in the northwestern United States--and around the world--reawaken, as geologists predict they someday will. Since 1912, scientists at the U.S. Geological Survey's Hawaiian Volcano Observatory have pioneered the study of volcanoes through work on Mauna Loa and Kilauea volcanoes on the island of Hawaii. In Vancouver, Wash., scientists at the Survey's Cascades Volcano Observatory are studying the after-effects of Mount St. Helens' catalysmic eruption as well as monitoring a number of other now-dormant volcanoes in the western United States. This paper briefly reviews the similarities and differences between the Hawaiian and Washington volcanoes and what these volcanoes are teaching the volcanologists.

  5. Exploring Hawaiian Volcanism

    NASA Astrophysics Data System (ADS)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-02-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  6. Exploring Hawaiian volcanism

    USGS Publications Warehouse

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  7. Evolution of Hawaiian shield volcano revealed by antecryst-hosted melt inclusions

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sakyi, P. A.; Kobayashi, K.; Nakamura, E.

    2009-12-01

    Ocean island basalts, exemplified by the Hawaiian Volcanics, are often considered to be the best targets for understanding the chemical and thermal structure of upwelling mantle plumes. The important feature with regards to the petrogenesis of the recent Hawaiian shield building lavas is the existence of a double volcanic loci (Loa and Kea), which has resulted in large-scale heterogeneity between the north-western and south-eastern sides of the plume. The temporal Sr-Nd-Hf-Pb isotopic trends displayed by the Loa-type lavas may have been caused by systematic vertical heterogeneity of the SW part of the Hawaiian plume. The majority of the available OIB samples are limited to the youngest lava flows covering the shield, with the exception of samples obtained from drilled cores and land slide deposits. Thus, sampling is biased to the latest stages of the shield building process, and consequently, so are geochemical studies. We found that the majority of olivine crystals coarser than ˜1 mm in the Hawaiian lavas are antecryst, which originally crystallized from previous stages of Hawaiian magmatism. These anatecrysts were then plastically deformed prior to entrainment in the erupted host magmas. The Pb isotopic compositions of antecryst-hosted melt inclusions reveal that the mantle source components that formed Hawaiian shields successively changed during shield formation. The temporal geochemical trend in the Kilauea melt inclusion could be caused by increasing the degree of partial melting by moving the melting source of the volcano from the periphery to the centre of the plume. The Pb isotopic trend of Koolau melt inclusions are consistent with the previously identified temporal isotopic trend, which shows that the 207Pb/206Pb and 208Pb/206Pb of the Koolau magma systematically increased with time. Thus, antecryst-hosted melt inclusions preserve geochemical information regarding the petrogenesis of the Hawaiian shield lavas, which is unobtainable via whole rock

  8. Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes

    USGS Publications Warehouse

    Flinders, Ashton F.; Ito, Garrett; Garcia, Michael O.; Sinton, John M.; Kauahikaua, Jim; Taylor, Brian

    2013-01-01

    The Hawaiian Islands are the most geologically studied hot-spot islands in the world yet surprisingly, the only large-scale compilation of marine and land gravity data is more than 45 years old. Early surveys served as reconnaissance studies only, and detailed analyses of the crustal-density structure have been limited. Here we present a new chain-wide gravity compilation that incorporates historical island surveys, recently published work on the islands of Hawai‘i, Kaua‘i, and Ni‘ihau, and >122,000 km of newly compiled marine gravity data. Positive residual gravity anomalies reflect dense intrusive bodies, allowing us to locate current and former volcanic centers, major rift zones, and a previously suggested volcano on Ka‘ena Ridge. By inverting the residual gravity data, we generate a 3-D view of the dense, intrusive complexes and olivine-rich cumulate cores within individual volcanoes and rift zones. We find that the Hāna and Ka‘ena ridges are underlain by particularly high-density intrusive material (>2.85 g/cm3) not observed beneath other Hawaiian rift zones. Contrary to previous estimates, volcanoes along the chain are shown to be composed of a small proportion of intrusive material (<30% by volume), implying that the islands are predominately built extrusively.

  9. Temporal helium isotopic variations within Hawaiian volcanoes: Basalts from Mauna Loa and Haleakala

    SciTech Connect

    Kurz, M.D.; O'Brien, P.A. ); Garcia, M.O. ); Frey, F.A. )

    1987-11-01

    Helium isotope ratios in basalts spanning the subaerial eruptive history of Mauna Loa and Haleakala vary systematically with eruption age. In both volcanoes, olivine mineral separates from the oldest samples have the highest {sup 3}He/{sup 4}he ratios. The Haleakala samples studied range in age from roughly one million years to historic time, while the Mauna Loa samples are radiocarbon dated flows younger than 30,000 years old. The Honomanu tholeiites are the oldest samples from Haleakala and have {sup 3}He/{sup 4}he ratios that range from 13 to 16.8X atmospheric, while the younger Kula and Hana series alkali basalts all have {sup 3}He/{sup 4}He close to 8X atmospheric. A similar range is observed on Manua Loa; the oldest samples have {sup 3}He/{sup 4}He ratios of 15 to 20X atmospheric, with a relatively smooth decrease to 8X atmospheric with decreasing age. The consistent trend of decreasing {sup 3}He/{sup 4}he ratio with time in both volcanoes, coherence between the helium and Sr and Nd isotopes (for Haleakala), and the similarity of {sup 3}He/{sup 4}He in the late stage basalts to depleted mid-ocean ridge basalt (MORB) helium, argue against the decrease being the result of radiogenic ingrowth of {sup 4}He. The data strongly suggest an undegassed mantle source for the early shield building stages of Hawaiian volcanism, and are consistent with the hotspot/mantle plume model. The data are difficult to reconcile with models for Hawaiian volcanism that require recycled oceanic crust or derivation from a MORB-related upper mantle source. The authors interpret the decrease in {sup 3}He/{sup 4}He with volcano evolution to result from an increasing involvement of depleted mantle and/or lithosphere during the late stages of Hawaiian volcanism.

  10. Development of Alaska Volcano Observatory Seismic Networks, 1988-2008

    NASA Astrophysics Data System (ADS)

    Tytgat, G.; Paskievitch, J. F.; McNutt, S. R.; Power, J. A.

    2008-12-01

    The number and quality of seismic stations and networks on Alaskan volcanoes have increased dramatically in the 20 years from 1988 to 2008. Starting with 28 stations on six volcanoes in 1988, the Alaska Volcano Observatory (AVO) now operates 194 stations in networks on 33 volcanoes spanning the 2000 km Aleutian Arc. All data are telemetered in real time to laboratory facilities in Fairbanks and Anchorage and recorded on digital acquisition systems. Data are used for both monitoring and research. The basic and standard network designs are driven by practical considerations including geography and terrain, access to commercial telecommunications services, and environmental vulnerability. Typical networks consist of 6 to 8 analog stations, whose data can be telemetered to fit on a single analog telephone circuit terminated ultimately in either Fairbanks or Anchorage. Towns provide access to commercial telecommunications and signals are often consolidated for telemetry by remote computer systems. Most AVO stations consist of custom made fiberglass huts that house the batteries, electronics, and antennae. Solar panels are bolted to the south facing side of the huts and the seismometers are buried nearby. The huts are rugged and have allowed for good station survivability and performance reliability. However, damage has occurred from wind, wind-blown pumice, volcanic ejecta, lightning, icing, and bears. Power is provided by multiple isolated banks of storage batteries charged by solar panels. Primary cells are used to provide backup power should the rechargable system fail or fall short of meeting the requirement. In the worst cases, snow loading blocks the solar panels for 7 months, so sufficient power storage must provide power for at least this long. Although primarily seismic stations, the huts and overall design allow additional instruments to be added, such as infrasound sensors, webcams, electric field meters, etc. Yearly maintenance visits are desirable, but some

  11. Recent improvements in monitoring Hawaiian volcanoes with webcams and thermal cameras

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.

    2012-12-01

    Webcams have become essential tools for continuous observation of ongoing volcanic activity. The use of both visual webcams and Web-connected thermal cameras has increased dramatically at the Hawaiian Volcano Observatory over the past five years, improving our monitoring capability and understanding of both Kilauea's summit eruption, which began in 2008, and the east rift zone eruption, which began in 1983. The recent bolstering of the webcam network builds upon the three sub-megapixel webcams that were in place five years ago. First, several additional fixed visual webcam systems have been installed, using multi-megapixel low-light cameras. Second, several continuously operating thermal cameras have been deployed, providing a new view of activity, easier detection of active flows, and often "seeing" through fume that completely obscures views from visual webcams. Third, a new type of "mobile" webcam - using cellular modem telemetry and capable of rapid deployment - has allowed us to respond quickly to changes in eruptive activity. Fourth, development of automated analysis and alerting scripts provide real-time products that aid in quantitative interpretation of incoming images. Finally, improvements in the archiving and Web-based display of images allow efficient review of current and recent images by observatory staff. Examples from Kilauea's summit and lava flow field provide more detail on the improvements. A thermal camera situated at Kilauea's summit has tracked the changes in the active lava lake in Halema`uma`u Crater since late 2010. Automated measurements from these images using Matlab scripts are now providing real-time quantitative data on lava level and, in some cases, lava crust velocity. Lava level essentially follows summit tilt over short time scales, in which near-daily cycles of deflation and inflation correspond with about ten meters of lava level drop and rise, respectively. The data also show that the long-term Halema`uma`u lava level tracked

  12. Hawaiian Volcano Flank Stability Appraised From Strength Testing the Hawaiian Scientific Drilling Project's (HSDP) 3.1-km Drill Core

    NASA Astrophysics Data System (ADS)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2005-12-01

    the means of the basaltic flows, intrusive and pillow lava values. The test results imply that shallow rotational slumps that develop within the upper few kilometers of spreading Hawai'ian volcanoes within low strength, poorly-consolidated, smectite-rich hyaloclastites are similar to those we have found from the incipient and smectitic alteration zones of the HSDP cores. Deeper slumps might be directed through over-pressured pillow lava units as a result of the stronger pillow lava units permitting deeper failure surfaces to develop. Petrographically the Mauna Kea hyaloclastites appear similar to those from actively spreading Hawai'ian shield volcanoes. Alteration processes apparently affect the strength of these hyaloclastites. In the shallower zones of incipient and smectitic alteration, hyaloclastites generally retain their high primary porosities. In the deeper, palagonitic zone of alteration, the hyaloclastites gain both compressive and shear strength, primarily through consolidation and zeolitic cementation. The marked strength contrast between hyaloclastites, and the lavas that overlie and underlie them is significant, and may be a primary factor in localizing the destabilization of the flanks of Hawaiian volcanoes.

  13. Volcano and Earthquake Monitoring Plan for the Yellowstone Volcano Observatory, 2006-2015

    USGS Publications Warehouse

    ,

    2006-01-01

    To provide Yellowstone National Park (YNP) and its surrounding communities with a modern, comprehensive system for volcano and earthquake monitoring, the Yellowstone Volcano Observatory (YVO) has developed a monitoring plan for the period 2006-2015. Such a plan is needed so that YVO can provide timely information during seismic, volcanic, and hydrothermal crises and can anticipate hazardous events before they occur. The monitoring network will also provide high-quality data for scientific study and interpretation of one of the largest active volcanic systems in the world. Among the needs of the observatory are to upgrade its seismograph network to modern standards and to add five new seismograph stations in areas of the park that currently lack adequate station density. In cooperation with the National Science Foundation (NSF) and its Plate Boundary Observatory Program (PBO), YVO seeks to install five borehole strainmeters and two tiltmeters to measure crustal movements. The boreholes would be located in developed areas close to existing infrastructure and away from sensitive geothermal features. In conjunction with the park's geothermal monitoring program, installation of new stream gages, and gas-measuring instruments will allow YVO to compare geophysical phenomena, such as earthquakes and ground motions, to hydrothermal events, such as anomalous water and gas discharge. In addition, YVO seeks to characterize the behavior of geyser basins, both to detect any precursors to hydrothermal explosions and to monitor earthquakes related to fluid movements that are difficult to detect with the current monitoring system. Finally, a monitoring network consists not solely of instruments, but requires also a secure system for real-time transmission of data. The current telemetry system is vulnerable to failures that could jeopardize data transmission out of Yellowstone. Future advances in monitoring technologies must be accompanied by improvements in the infrastructure for

  14. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano.

    PubMed

    Herzberg, Claude

    2006-11-30

    There is uncertainty about whether the abundant tholeiitic lavas on Hawaii are the product of melt from peridotite or pyroxenite/eclogite rocks. Using a parameterization of melting experiments on peridotite with glass analyses from the Hawaii Scientific Deep Project 2 on Mauna Kea volcano, I show here that a small population of the core samples had fractionated from a peridotite-source primary magma. Most lavas, however, differentiated from magmas that were too deficient in CaO and enriched in NiO (ref. 2) to have formed from a peridotite source. For these, experiments indicate that they were produced by the melting of garnet pyroxenite, a lithology that had formed in a second stage by reaction of peridotite with partial melts of subducted oceanic crust. Samples in the Hawaiian core are therefore consistent with previous suggestions that pyroxenite occurs in a host peridotite, and both contribute to melt production. Primary magma compositions vary down the drill core, and these reveal evidence for temperature variations within the underlying mantle plume. Mauna Kea magmatism is represented in other Hawaiian volcanoes, and provides a key for a general understanding of melt production in lithologically heterogeneous mantle.

  15. Petrology and Geochronology of Kaula Volcano lavas: An off-axis window into the Hawaiian Mantle Plume

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Weis, D.; Jicha, B. R.; Tree, J. P.; Bizimis, M.

    2014-12-01

    The Hawaiian Islands extend NW for 625 km from Lō'ihi to Ka'ula island. One anomalous feature cross-cutting the Hawaiian Islands is the Kaua'i Ridge, a 165 km-long bathymetric high with three well-defined gravity highs. These gravity highs are centered under or near the islands of Ka'ula, Ni'ihau and Kaua'i, and represent the cores of three shield volcanoes whose volumes decrease dramatically with distance from the axis of the Hawaiian Chain (Kaua'i, 58 x 103 km3, Ni'ihau x 103 km, Ka'ula 10 x 103 km; Robinson and Eakins 2006). Ka'ula Volcano, on the SW end of the Kaua'i Ridge, is centered 100 km off the axis of the Hawaiian mantle plume. The volcano is capped by a small island, which is a remnant of a nephelinitic tuff cone. The cone contains abundant accidental bombs of lava (tholeiite, phonolite and basanite), peridotite and pyroxenite, and unexploded ordnance from US military bombing. Two JASON dives on the flanks of Ka'ula recovered only alkalic lavas. Three stage of Ka'ula volcanism have been identified from sampling the volcanic bombs and flanks of the volcano. These rocks were dated using 40Ar/39Ar methods for the basalts and K-Ar for the phonolites. A tholeiitic shield basalt yielded an age of 6.2 Ma, the oldest reliable age for any Hawaiian Island tholeiite. Post-shield phonolites gave ages of 4.0 to 4.2 Ma (Garcia et al., 1986) and rejuvenation stage alkalic basalts yielded ages of 1.9 to 0.5 Ma. These ages are nearly identical to those for the same stages for adjacent Ni'ihau volcano but slightly older than on Kauai, 100 km to the NE (Sherrod et al. 2007). Thus, volcanism was nearly simultaneous along Kaua'i Ridge. The new age results extend to 420 km the distance within the Hawaiian Islands that experienced coeval rejuvenated volcanism. Geochemically, the rejuvenated and tholeiitic lavas from the Kaua'i Ridge are very similar with mixed source signatures of Loa and Kea trend compositions. Mixed Loa-Kea sources have been found for many other Hawaiian

  16. Dynamics of magma supply, storage and migration at basaltic volcanoes: Geophysical studies of the Galapagos and Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Bagnardi, Marco

    Basaltic shields forming ocean island volcanoes, in particular those of Hawai'i and of the Galapagos Islands, constitute some of the largest volcanic features on Earth. Understanding subsurface processes such as those controlling magma supply, storage and migration at these volcanoes, is essential to any attempt to anticipate their future behavior. This dissertation presents a series of studies carried out at Hawaiian and Galapagos volcanoes. InSAR measurements acquired between 2003 and 2010 at Fernandina Volcano, Galapagos, are used to study the structure and the dynamics of the shallow magmatic system of the volcano (Chapter 3). Spatial and temporal variations in the measured displacements reveal the presence of two hydraulically connected areas of magma storage, and the modeling of the deformation data provides an estimate of their location and geometry. The same dataset also provides the first geodetic evidence for two subvolcanic sill intrusions (in 2006 and 2007) deep beneath the volcano's flank. The lateral migration of magma from the reservoirs during these intrusions could provide an explanation for enigmatic volcanic events at Fernandina such as the 1968 caldera collapse without significant eruption. Space-geodetic measurements of the surface deformation produced by the most recent eruptions at Fernandina, reveal that all have initiated with the intrusion of subhorizontal sills from the shallow magma reservoir (Chapter 4). A synthetic aperture radar (SAR) image acquired 1-2 h before the start of a radial fissure eruption in 2009 captures one of these sills in the midst of its propagation toward the surface. Galapagos eruptive fissures of all orientations have previously been presumed to be fed by vertical dikes, but these new findings allow a reinterpretation of the internal structure and evolution of Galapagos volcanoes and of similar basaltic shields elsewhere on Earth and on other planets. A joint analysis of InSAR and groud-based microgravity data

  17. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  18. The Mauna Kea Observatories Outreach Committee Brings Astronomy To The Hawaiian Public

    NASA Astrophysics Data System (ADS)

    Heyer, I.; Harvey, J.; Usuda, K. S.; Fujihara, G.; Hamilton, J.

    2010-08-01

    The Mauna Kea Observatories Outreach Committee (MKOOC) combines the outreach activities of the 13 telescopes on Mauna Kea on the Big Island of Hawaii. For the International Year of Astronomy (IYA) 2009 we branded our annual local events, and in addition developed several unique activities and products to bring astronomy to the public during IYA. Our Journey Through The Universe classroom visit and teacher training program was augmented by several evening public events for the whole family. For AstroDay we developed a set of astronomy trading cards, such that people had to visit all the observatory booths to collect the whole set. In collaboration with the local newspapers, we produced an astronomy supplement, available both on paper and online, highlighting the work being done at our observatories. A year-long introductory astronomy class for K-12 teachers was held, emphasizing hands-on activities to teach important concepts. In collaboration with a local supermarket, we held a poster contest for students, making the connection between astronomy and Hawaiian culture. We also participated in the "100 Hours of Astronomy" webcast. In the fall, we celebrated the Galilean Nights with an all-observatories block party, with activities, music, and give-aways.

  19. The Mauna Kea Observatories Outreach Committee brings Astronomy to the Hawaiian Public

    NASA Astrophysics Data System (ADS)

    Heyer, Ingeborg; Harvey, J.; Usuda, K. S.; Fujihara, G.

    2010-01-01

    The Mauna Kea Observatories Outreach Committee (MKOOC) combines the outreach activities of the 13 telescopes on Mauna Kea on the Big Island of Hawai`i. For the International Year of Astronomy (IYA) 2009 we branded our annual local events, and in addition developed several unique activities and products to bring astronomy to the public during IYA. Our Journey Through The Universe classroom visit and teacher training program was augmented by several evening public events for the whole family. For AstroDay we developed a set of astronomy trading cards, such that people had to visit all the observatory booths to collect the whole set. In collaboration with the local newspapers we produced an astronomy supplement, available both on paper and online, highlighting the work being done at our observatories. A year-long introductory astronomy class for K-12 teachers was held, emphasizing hands-on activities to teach important concepts. In collaboration with a local supermarket we held a poster contest for students, making the connection between astronomy and Hawaiian culture. We also participated in the "100 Hours for Astronomy" webcast. In the fall we celebrated the Galilean Nights with an all-observatories block party, with activities, music, and give-aways.

  20. The Mauna Kea Observatories Outreach Committee brings Astronomy to the Hawaiian Public

    NASA Astrophysics Data System (ADS)

    Heyer, Ingeborg; Harvey, J.; Usuda, K. S.; Fujihara, G.; Michaud, P. M.

    2010-01-01

    The Mauna Kea Observatories Outreach Committee (MKOOC) combines the outreach activities of the 13 telescopes on Mauna Kea on the Big Island of Hawai`i. For the International Year of Astronomy (IYA) 2009 we branded our annual local events, and in addition developed several unique activities and products to bring astronomy to the public during IYA. Our Journey Through The Universe classroom visit and teacher training program was augmented by several evening public events for the whole family. For AstroDay we developed a set of astronomy trading cards, such that people had to visit all the observatory booths to collect the whole set. In collaboration with the local newspapers we produced an astronomy supplement, available both on paper and online, highlighting the work being done at our observatories. A year-long introductory astronomy class for K-12 teachers was held, emphasizing hands-on activities to teach important concepts. In collaboration with a local supermarket we held a poster contest for students, making the connection between astronomy and Hawaiian culture. We also participated in the "100 Hours for Astronomy" webcast. In the fall we celebrated the Galilean Nights with an all-observatories block party, with activities, music, and give-aways.

  1. Hyaloclastites and the slope stability of Hawaiian volcanoes: Insights from the Hawaiian Scientific Drilling Project's 3-km drill core

    NASA Astrophysics Data System (ADS)

    Schiffman, Peter; Watters, Robert J.; Thompson, Nick; Walton, Anthony W.

    2006-03-01

    Core samples recovered during the Hawaiian Scientific Drilling Project (HSDP) drilling project reveal that the upper 1 km of the submarine flank of Mauna Kea is comprised mainly of hyaloclastites. Progressive, very low-temperature alteration of these hyaloclastites has been accompanied by systematic transformations in physical properties of these deposits. Hyaloclastite deposits which directly underlie ca. 1 km of subaerially-emplaced lavas are very poorly consolidated. But over a depth interval of ca. 500 m, compaction and, especially, precipitation of zeolitic, pore-filling cements associated with palagonitization of sideromelane, have eliminated porosity as well as promoted the consolidation of these hyaloclastites. The latter is reflected in unconfined compressive strengths which increase from mean values, respectively, of 2.5 and 4.6 MPa in weakly consolidated, smectite-rich hyaloclastites from the incipient (1080 to 1335 mbsl) and smectitic (1405-1573 mbsl) alteration zones, to a mean value of 10.0 MPa in the more highly consolidated hyaloclastites of the palagonitic zone of alteration (from 1573 mbsl to the bottom of the drill hole). Conversely, overlying, intercalated, and underlying lava flows are generally much less altered, and have mean compressive strengths which are 1 to 2 orders of magnitude greater then hyaloclastites at equivalent depths. The shear strengths of the hyaloclastites also increase with depth and grade of alteration, but are uniformly and substantially lower in the lavas. Those hyaloclastites exhibiting the highest grade of alteration (i.e., palagonitic) also exhibit the highest measured strengths, and thus the alteration of hyaloclastites appears to strengthen as opposed to weaken the flanks of the edifice. However, the contrast in strength between hyaloclastites and lavas may be a primary factor in localizing destabilization, and the zones of weak and poorly consolidated hyaloclastites may facilitate slumping by servings as hosts for

  2. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  3. Role of olivine cumulates in destabilizing the flanks of Hawaiian volcanoes

    USGS Publications Warehouse

    Clague, D.A.; Denlinger, R.P.

    1994-01-01

    The south flank of Kilauea Volcano is unstable and has the structure of a huge landslide; it is one of at least 17 enormous catastrophic landslides shed from the Hawaiian Islands. Mechanisms previously proposed for movement of the south flank invoke slip of the volcanic pile over seafloor sediments. Slip on a low friction de??collement alone cannot explain why the thickest and widest sector of the flank moves more rapidly than the rest, or why this section contains a 300 km3 aseismic volume above the seismically defined de??collement. It is proposed that this aseismic volume, adjacent to the caldera in the direction of flank slip, consists of olivine cumulates that creep outward, pushing the south flank seawards. Average primary Kilauea tholeiitic magma contains about 16.5 wt.% MgO compared with an average 10 wt.% MgO for erupted subaerial and submarine basalts. This difference requires fractionation of 17 wt.% (14 vol.%) olivine phenocrysts that accumulate near the base of the magma reservoir where they form cumulates. Submarine-erupted Kilauea lavas contain abundant deformed olivine xenocrysts derived from these cumulates. Deformed dunite formed during the tholeiitic shield stage is also erupted as xenoliths in subsequent alkalic lavas. The deformation structures in olivine xenocrysts suggest that the cumulus olivine was densely packed, probably with as little as 5-10 vol.% intercumulus liquid, before entrainment of the xenocrysts. The olivine cumulates were at magmatic temperatures (>1100??C) when the xenocrysts were entrained. Olivine at 1100??C has a rheology similar to ice, and the olivine cumulates should flow down and away from the summit of the volcano. Flow of the olivine cumulates places constant pressure on the unbuttressed seaward flank, leading to an extensional region that localizes deep intrusions behind the flank; these intrusions add to the seaward push. This mechanism ties the source of gravitational instability to the caldera complex and deep

  4. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  5. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  6. Failure and runout of giant landslides on Hawaiian volcanoes; cases of enigmatic mechanics?

    USGS Publications Warehouse

    Iverson, R.M.

    1991-01-01

    Landslide failure and runout are distinct mechanical processes. Whereas failure is a quasi-static phenomenon that generally can be quantified by means of conventional limit-equilibrium or elastostatic stress analyses, runout is a dynamic phenomenon that can be quantified only if momentum transport and energy dissipation in moving landslides are understood. The balance of forces that governs landslide failure is highly sensitive to only a few factors: the slope morphology, pore-pressure distribution, friction coefficient, and a lateral pressure coefficient. None of these factors produces scale-dependent effects. Consequently, although runout dynamics of giant landslides are poorly understood and are possibly scale-dependent, failure mechanisms are generally less vexing. Giant landslides that have occurred on Hawaiian volcanoes pose an exception to this generalization; both their failure and runout appear to be mechanically enigmatic. Failure is difficult to explain because the volcano slopes are typically inclined less than ten degrees, and simple ground-water flow analyses show that the pore-pressure distributions necessary to trigger failure of these low-angle slopes are unlikely to arise in high-permeability volcanic rocks. Similarly, limit-equilibrium analyses show that dike injection at prospective headscarps provides insufficient pressure to push the landslides downslope. Large earthquakes or the presence of extraordinarily weak rocks might facilitate failure, but these hypotheses remain untested. On the basis of GLORIA data reported by Moore et al. (JGR, 94, 1989, p. 17465), some giant Hawaiian landslides appear to have descent-to-runout (H/L) ratios smaller than 0.1, which indicate remarkably efficient post-failure movement. Runout paths are entirely submarine. However, most of the mechanisms proposed to account for efficient runout of giant landslides (e.g., air-layer lubrication, acoustic fluidization, mechanical fluidization, pore-fluid vaporization

  7. New K-Ar ages for calculating end-of-shield extrusion rates at West Maui volcano, Hawaiian island chain

    USGS Publications Warehouse

    Sherrod, D.R.; Murai, T.; Tagami, Takahiro

    2007-01-01

    Thirty-seven new K-Ar ages from West Maui volcano, Hawai'i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9-2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai'anae volcano (O'ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai'i). These rates diminish sharply during the final 0.3-0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative. ?? Springer-Verlag 2006.

  8. Geophysical monitoring from seafloor observatories in Italian volcanic sites: Marsili Seamount, Etna Volcano and Stromboli Island.

    NASA Astrophysics Data System (ADS)

    Giovanetti, Gabriele; Monna, Stephen; Lo Bue, Nadia; Embriaco, Davide; Frugoni, Francesco; Marinaro, Giuditta; De Caro, Mariagrazia; Sgroi, Tiziana; Montuori, Caterina; De Santis, Angelo; Cianchini, Gianfranco; Favali, Paolo; Beranzoli, Laura

    2016-04-01

    Many volcanoes on Earth are located within or near the oceans and observations from the seafloor can be very important for a more complete understanding of the structure and nature of these volcanoes. We present some results obtained from data acquired in volcanic sites in the Central Mediterranean Sea. Data were taken by means of stand-alone free-fall systems, and fixed-point ocean observatories, both cabled and autonomous, some of which are part of the European research infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org). EMSO observatories strongly rely on a multidisciplinary approach, in spite of the many technical challenges that the operation of very different sensors by means of a single acquisition system presents. We focus on three volcanic sites near the coasts of Italy (Marsili seamount, Stromboli Island and Etna Volcano) involved in subduction processes and to the opening of the Central Mediterranean basin. Through multidisciplinary analysis we were able to associate geophysical and oceanographic signals to a common volcanic source in a more reliable way with respect to single sensor analysis, showing the potential of long-term seafloor monitoring in unravelling otherwise still obscure aspects of such volcanoes. The very strong expansion of seafloor monitoring, which is taking place both in the quantity of the infrastructures and in the technological capabilities, suggests that there will be important developments in the near future.

  9. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  10. Tectono-Magmatic Investigations with Societal Implications: Progress on the Tanzania Volcano Observatory (TZVOLCANO)

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Saria, E.; Jones, J. R.; Daniels, M. D.; Mencin, D.

    2016-12-01

    Cross-domain collaborations amongst geoscientists and technologists become necessary when the scientific and societal needs surpass current cyberinfrastructure and data access mechanisms. For example, characterizing magma movement and fault-slip in real-time on and around active volcanoes is crucial for volcanic hazards and risk assessment. The necessary real-time positioning sensors are available, however the technological capacity for import, export, and analysis are in the early phases of development. Here, we present progress on the new, multi-national Tanzania Volcano Observatory (TZVOLCANO) initiated in June 2016. The observatory currently utilizes the pilot EarthCube cyberinfrastructure "Cloud-hosted Real-time Data Services for the Geosciences" (CHORDS) to visualize near-real time positioning data (http://tzvolcano.chordsrt.com/) that are accessible through the UNAVCO real-time archive. Our work aligns with the "resilience to disasters" and "holistic disaster risk management at all levels" targets of Sustainable Development Goal 11: Sustainable Cities and Communities.

  11. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  12. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  13. General Purpose Real-time Data Analysis and Visualization Software for Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Cervelli, P. F.; Miklius, A.; Antolik, L.; Parker, T.; Cervelli, D.

    2011-12-01

    In 2002, the USGS developed the Valve software for management, visualization, and analysis of volcano monitoring data. In 2004, the USGS developed similar software, called Swarm, for the same purpose but specifically tailored for seismic waveform data. Since then, both of these programs have become ubiquitous at US volcano observatories, and in the case of Swarm, common at volcano observatories across the globe. Though innovative from the perspective of software design, neither program is methodologically novel. Indeed, the software can perform little more than elementary 2D graphing, along with basic geophysical analysis. So, why is the software successful? The answer is that both of these programs take data from the realm of discipline specialists and make them universally available to all observatory scientists. In short, the software creates additional value from existing data by leveraging the observatory's entire intellectual capacity. It enables rapid access to different data streams, and allows anyone to compare these data on a common time scale or map base. It frees discipline specialists from routine tasks like preparing graphics or compiling data tables, thereby making more time for interpretive efforts. It helps observatory scientists browse through data, and streamlines routine checks for unusual activity. It encourages a multi-parametric approach to volcano monitoring. And, by means of its own usefulness, it creates incentive to organize and capture data streams not yet available. Valve and Swarm are both written in Java, open-source, and freely available. Swarm is a stand-alone Java application. Valve is a system consisting of three parts: a web-based user interface, a graphing and analysis engine, and a data server. Both can be used non-interactively (e.g., via scripts) to generate graphs or to dump raw data. Swarm has a simple, built-in alarm capability. Several alarm algorithms have been built around Valve. Both programs remain under active

  14. Hazard communication by the Alaska Volcano Observatory Concerning the 2008 Eruptions of Okmok and Kasatochi Volcanoes, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.; Cameron, C. E.; Neal, T. A.; Shipman, J. S.

    2008-12-01

    The significant explosive eruptions of Okmok and Kasatochi volcanoes in 2008 tested the hazard communication systems at the Alaska Volcano Observatory (AVO) including a rigorous test of the new format for written notices of volcanic activity. AVO's Anchorage-based Operations facility (Ops) at the USGS Alaska Science Center serves as the hub of AVO's eruption response. From July 12 through August 28, 2008 Ops was staffed around the clock (24/7). Among other duties, Ops staff engaged in communicating with the public, media, and other responding federal and state agencies and issued Volcanic Activity Notices (VAN) and Volcano Observatory Notifications for Aviation (VONA), recently established and standardized products to announce eruptions, significant activity, and alert level and color code changes. In addition to routine phone communications with local, national and international media, on July 22, AVO held a local press conference in Ops to share observations and distribute video footage collected by AVO staff on board a U.S. Coast Guard flight over Okmok. On July 27, AVO staff gave a public presentation on the Okmok eruption in Unalaska, AK, 65 miles northeast of Okmok volcano and also spoke with local public safety and industry officials, observers and volunteer ash collectors. AVO's activity statements, photographs, and selected data streams were posted in near real time on the AVO public website. Over the six-week 24/7 period, AVO staff logged and answered approximately 300 phone calls in Ops and approximately 120 emails to the webmaster. Roughly half the logged calls were received from interagency cooperators including NOAA National Weather Service's Alaska Aviation Weather Unit and the Center Weather Service Unit, both in Anchorage. A significant number of the public contacts were from mariners reporting near real-time observations and photos of both eruptions, as well as the eruption of nearby Cleveland Volcano on July 21. As during the 2006 eruption of

  15. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  16. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  17. Comparative Spectrograms Between the Popocatepetl Volcano Magnetic Station and the Teoloyucan Magnetic Observatory, Mexico.

    NASA Astrophysics Data System (ADS)

    Cifuentes-Nava, G.; Hernandez-Quintero, J. E.; Cabral-Cano, E.; Martin-Del Pozzo, A. L.; Chavez-Segura, R. E.

    2007-05-01

    We present a comparative spectrogram analysis for the Popocatepetl Volcano magnetic station (70.943° N CoLat, 261.363° E, 4029 m) and the Teoloyucan Magnetic Observatory (70.254° N CoLat, 260.807º E, 2280 m) time series between 1997 and 2003. Instrumentation at both sites include a Geometrics G856 proton-precession magnetometer operating at a 60 second sampling rate and is complemented with the magnetic record from a dF fluxgate variograph at the Teoloyucan Magnetic Observatory (TEO). Popocatepetl's total magnetic field record is reconstructed using a harmonic analysis technique, and subtracted to the TEO record, which is considered as a reference site. The resulting difference shows a significant diurnal component, presumably from a local magnetic induction or from ionospheric origin. This is in sharp contrast with our initial considerations for geomagnetic volcano monitoring that considered the distance between both sites to be close enough and assumed similar ionospheric conditions at both sites. This diurnal component influence can be removed using a normalized difference approach or by cancellation during the harmonic reconstruction process. This analysis will improve previously used techniques such as normalized differences or correlation in magnetic data analysis for short, middle and long term active volcano magnetic monitoring.

  18. The New USGS Volcano Hazards Program Web Site

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Graham, S. E.; Parker, T. J.; Snedigar, S. F.

    2008-12-01

    The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) has launched a revised web site that uses a map-based interface to display hazards information for U.S. volcanoes. The web site is focused on better communication of hazards and background volcano information to our varied user groups by reorganizing content based on user needs and improving data display. The Home Page provides a synoptic view of the activity level of all volcanoes for which updates are written using a custom Google® Map. Updates are accessible by clicking on one of the map icons or clicking on the volcano of interest in the adjacent color-coded list of updates. The new navigation provides rapid access to volcanic activity information, background volcano information, images and publications, volcanic hazards, information about VHP, and the USGS volcano observatories. The Volcanic Activity section was tailored for emergency managers but provides information for all our user groups. It includes a Google® Map of the volcanoes we monitor, an Elevated Activity Page, a general status page, information about our Volcano Alert Levels and Aviation Color Codes, monitoring information, and links to monitoring data from VHP's volcano observatories: Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Long Valley Observatory (LVO), Hawaiian Volcano Observatory (HVO), and Yellowstone Volcano Observatory (YVO). The YVO web site was the first to move to the new navigation system and we are working on integrating the Long Valley Observatory web site next. We are excited to continue to implement new geospatial technologies to better display our hazards and supporting volcano information.

  19. Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement

    USGS Publications Warehouse

    Dvorak, J.J.

    1992-01-01

    At some well-studied volcanoes, surface movements of at least several centimeters take place out to distances of about 10 km from the summit of the volcano. Widespread deformation of this type is relatively easy to monitor, because the necessary survey stations can be placed at favorable sites some distance from the summit of the volcano. Examples of deformation of this type include Kilauea and Mauna Loa in Hawaii, Krafla in Iceland, Long Valley in California, Camp Flegrei in Italy, and Sakurajima in Japan. In contrast, surface movement at some other volcanoes, usually volcanoes with steep slopes, is restricted to places within about 1 km of their summits. Examples of this class of volcanoes include Mount St. Helens in Washington, Etna in Italy, and Tangkuban Parahu in Indonesia. Local movement on remote, rugged volcanoes of this type is difficult to observe using conventional methods of measuring ground movement, which generally require a clear line-of-sight between points of interest. However, a revolutionary new technique, called the Global Positional System (GPS), provides a very efficient, alternative method of making such measurements. GPS, which uses satellites and ground-based receivers to accurately record slight crustal movements, is rapidly becoming the method of choice to measure deformation at volcanoes

  20. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  1. Petrology and geochronology of lavas from Ka'ula Volcano: Implications for rejuvenated volcanism of the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Garcia, Michael O.; Weis, Dominique; Jicha, Brian R.; Ito, Garrett; Hanano, Diane

    2016-07-01

    Marine surveying and submersible sampling of Ka'ula Volcano, located 100 km off the axis of the Hawaiian chain, revealed widespread areas of young volcanism. New 40Ar/39Ar and geochemical analyses of the olivine-phyric submarine and subaerial volcanic rocks show that Ka'ula is shrouded with 1.9-0.5 Ma alkalic basalts. The ages and chemistry of these rocks overlap with rejuvenated lavas on nearby, northern Hawaiian Island shields (Ni'ihau, Kaua'i and South Kaua'i Swell). Collectively, these rejuvenated lavas cover a vast area (∼7000 km2), much more extensive than any other area of rejuvenated volcanism worldwide. Ka'ula rejuvenated lavas range widely in alkalinity and incompatible element abundances (e.g., up to 10× P2O5 at a given MgO value) and ratios indicating variable degrees of melting of a heterogeneous source. Heavy REE elements in Ka'ula lavas are pinned at a mantle normalized Yb value of 10 ± 1, reflecting the presence of garnet in the source. Trace element ratios indicate the source also contained phlogopite and an Fe-Ti oxide. The new Ka'ula ages show that rejuvenated volcanism was nearly coeval from ∼0.3 to 0.6 Ma along a 450 km segment of the Hawaiian Islands (from West Maui to north of Ka'ula). The ages and volumes for rejuvenated volcanism are inconsistent with all but one geodynamic melting model proposed to date. This model advocates a significant contribution of pyroxenite to rejuvenated magmas. Analyses of olivine phenocryst compositions suggest a major (33-69%) pyroxenite component in Ka'ula rejuvenated lavas, which correlates positively with radiogenic Pb isotope ratios for Ka'ula. This correlation is also observed in lavas from nearby South Kaua'i lavas, as was reported for Atlantic oceanic islands. The presence of pyroxenite in the source may have extended the duration and volume of Hawaiian rejuvenated volcanism.

  2. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  3. Response of the Alaska Volcano Observatory to Public Inquiry Concerning the 2006 Eruption of Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.

    2006-12-01

    The 2006 eruption of Augustine Volcano provided the Alaska Volcano Observatory (AVO) with an opportunity to test its newly renovated Operations Center (Ops) at the Alaska Science Center in Anchorage. Because of the demand for interagency operations and public communication, Ops became the hub of Augustine monitoring activity, twenty-four hours a day, seven days a week, from January 10 through May 19, 2006. During this time, Ops was staffed by 17 USGS AVO staff, and over two dozen Fairbanks-based AVO staff from the Alaska Department of Geological and Geophysical Surveys and the University of Alaska Fairbanks Geophysical Institute and USGS Volcano Hazards Program staff from outside Alaska. This group engaged in communicating with the public, media, and other responding agencies throughout the eruption. Before and during the eruption, reference sheets - ;including daily talking - were created, vetted, and distributed to prepare staff for questions about the volcano. These resources were compiled into a binder stationed at each Ops phone and available through the AVO computer network. In this way, AVO was able to provide a comprehensive, uniform, and timely response to callers and emails at all three of its cooperative organizations statewide. AVO was proactive in scheduling an Information Scientist for interviews on-site with Anchorage television stations and newspapers several times a week. Scientists available, willing, and able to speak clearly about the current activity were crucial to AVO's response. On January 19, 2006, two public meetings were held in Homer, 120 kilometers northeast of Augustine Volcano. AVO, the West Coast Alaska Tsunami Warning Center, and the Kenai Peninsula Borough Office of Emergency Management gave brief presentations explaining their roles in eruption response. Representatives from several local, state, and federal agencies were also available. In addition to communicating with the public by daily media interviews and phone calls to Ops

  4. Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models

    USGS Publications Warehouse

    Kauahikaua, J.; Hildenbrand, T.; Webring, M.

    2000-01-01

    A simplified three-dimensional model for the island of Hawai'i, based on 3300 gravity measurements, provides new insights on magma pathways within the basaltic volcanoes. Gravity anomalies define dense cumulates and intrusions beneath the summits and known rift zones of every volcano. Linear gravity anomalies project southeast from Kohala and Mauna Kea summits and south from Huala??lai and Mauna Loa; these presumably express dense cores of previously unrecognized rift zones lacking surface expression. The gravity-modeled dense cores probably define tholeiitic shield-stage structures of the older volcanoes that are now veneered by late alkalic lavas. The three-dimensional gravity method is valuable for characterizing the magmatic systems of basaltic oceanic volcanoes and for defining structures related to landslide and seismic hazards.

  5. Living on Active Volcanoes - The Island of Hawai'i

    USGS Publications Warehouse

    Heliker, Christina; Stauffer, Peter H.; Hendley, James W.

    1997-01-01

    People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.

  6. The EarthScope Plate Boundary Observatory Akutan Alaskan Volcano Tiltmeter Installation

    NASA Astrophysics Data System (ADS)

    Pauk, B. A.; Gallaher, W.; Dittmann, T.; Smith, S.

    2007-12-01

    During August of 2007, the Plate Boundary Observatory (PBO) successfully installed four Applied Geomechanics Lily Self Leveling Borehole Tiltmeters on Akutan Volcano, in the central Aleutian islands of Alaska. All four stations were collocated with existing PBO Global Positioning Systems (GPS) stations installed on the volcano in 2005. The tiltmeters will aid researchers in detecting and measuring flank deformation associated with future magmatic intrusions of the volcano. All four of the tiltmeters were installed by PBO field crews with helicopter support provided by JL Aviation and logistical support from the Trident Seafood Corporation, the City of Akutan, and the Akutan Corporation. Lack of roads and drivable trails on the remote volcanic island required that all drilling equipment be transported to each site from the village of Akutan by slinging gear beneath the helicopter and with internal loads. Each tiltmeter hole was drilled to a depth of approximately 30 feet with a portable hydraulic/pneumatic drill rig. The hole was then cased with splined 2.75 inch PVC. The PVC casing was cemented in place with grout and the tiltmeters were installed and packed with fine grain sand to stabilize the tiltmeters inside the casing. The existing PBO NetRS GPS receivers were configured to collect the tiltmeter data through a spare receiver serial port at one sample per minute and 1 hour files. Data from the GPS receivers and tiltmeters is telemetered directly or through a repeater radio to a base station located in the village of Akutan that transmits the data using satellite based communications to connect to the internet and to the UNAVCO Facility data archive where it is made freely available to the public.

  7. Abstract volume for the 2016 biennial meeting of the Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Lowenstern, Jacob B.

    2016-10-20

    IntroductionEvery two years, scientists, natural resource managers, outreach specialists, and a variety of other interested parties get together for the biennial meeting of the Yellowstone Volcano Observatory (YVO). Each time, the theme varies. In past years, we have focused the meeting around topics including monitoring plans, emergency response, geodesy, and outreach. This year, we spent the first half-day devoted to recent research results, plans for upcoming studies, and geothermal monitoring. On the second day, our focus switched to eruption precursors, particularly as they apply to large caldera systems.Very few large explosive eruptions from caldera systems have taken place in recorded history. Therefore, there are few empirical data with which to characterize the nature of volcanic unrest that might precede eruptions with volcano explosivity index (VEI) of six or greater. For this reason, we set up a series of talks that explore what we know and don’t know about large eruptions. We performed an informal expert elicitation (a frequently used method to characterize expert opinion) with a small number of our colleagues, which served as the basis for a productive discussion session.This short volume of abstracts and extended abstracts provides a summary of the presentations made at the YVO meeting held in Mammoth Hot Springs, Wyoming, on May 10–11, 2016.

  8. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  9. Volcanoes!

    USGS Publications Warehouse

    ,

    1997-01-01

    Volcanoes is an interdisciplinary set of materials for grades 4-8. Through the story of the 1980 eruption of Mount St. Helens, students will answer fundamental questions about volcanoes: "What is a volcano?" "Where do volcanoes occur and why?" "What are the effects of volcanoes on the Earth system?" "What are the risks and the benefits of living near volcanoes?" "Can scientists forecast volcanic eruptions?"

  10. Natural hazards and risk reduction in Hawai'i: Chapter 10 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Kauahikaua, James P.; Tilling, Robert I.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Although HVO has been an important global player in advancing natural hazards studies during the past 100 years, it faces major challenges in the future, among which the following command special attention: (1) the preparation of an updated volcano hazards assessment and map for the Island of Hawai‘i, taking into account not only high-probability lava flow hazards, but also hazards posed by low-probability, high-risk events (for instance, pyroclastic flows, regional ashfalls, volcano flank collapse and associated megatsunamis), and (2) the continuation of timely and effective communications of hazards information to all stakeholders and the general public, using all available means (conventional print media, enhanced Web presence, public-education/outreach programs, and social-media approaches).

  11. Implementation of Simple and Functional Web Applications at the Alaska Volcano Observatory Remote Sensing Group

    NASA Astrophysics Data System (ADS)

    Skoog, R. A.

    2007-12-01

    Web pages are ubiquitous and accessible, but when compared to stand-alone applications they are limited in capability. The Alaska Volcano Observatory (AVO) Remote Sensing Group has implemented web pages and supporting server software that provide relatively advanced features to any user able to meet basic requirements. Anyone in the world with access to a modern web browser (such as Mozilla Firefox 1.5 or Internet Explorer 6) and reasonable internet connection can fully use the tools, with no software installation or configuration. This allows faculty, staff and students at AVO to perform many aspects of volcano monitoring from home or the road as easily as from the office. Additionally, AVO collaborators such as the National Weather Service and the Anchorage Volcanic Ash Advisory Center are able to use these web tools to quickly assess volcanic events. Capabilities of this web software include (1) ability to obtain accurate measured remote sensing data values on an semi- quantitative compressed image of a large area, (2) to view any data from a wide time range of data swaths, (3) to view many different satellite remote sensing spectral bands and combinations, to adjust color range thresholds, (4) and to export to KML files which are viewable virtual globes such as Google Earth. The technologies behind this implementation are primarily Javascript, PHP, and MySQL which are free to use and well documented, in addition to Terascan, a commercial software package used to extract data from level-0 data files. These technologies will be presented in conjunction with the techniques used to combine them into the final product used by AVO and its collaborators for operational volcanic monitoring.

  12. Depth and Pressures of Crystallization of Magma Chambers beneath Hawai'ian Volcanoes

    NASA Astrophysics Data System (ADS)

    Ditkof, J.

    2010-12-01

    The Hawai’ian Emperor Seamount Chain was formed by a mantle plume beginning about 80 Ma. The crust is raised by the plume while continuous eruptions form islands. As the islands begin to slide off the plume, they fall back to the sea floor, becoming a seamount. There are currently more than 80 undersea volcanoes stretching from the Aleutian Trench to the newly formed Loi’hi seamount. There are currently eight major islands which make up the state of Hawai’i. Seismic and other geophysical data have been used previously to determine the depth of magma chambers beneath Hawai’ian Volcanoes. Yang et al (1996) created a method in which three equations are used to calculate liquid compositions along the olivine-plagioclase-clinopyroxene coetectic. I used chemical analyses of glasses, which represent quenched liquid compositions, to calculate the pressure and temperature at which these liquids crystallize the minerals olivine, plagioclase, and clinopyroxene. The depth of crystallization can be calculated from these pressures. I then filtered the data, removing any classes that contained excess aluminum or water. Plotting the results for the filtered data set in CoPlot yields similar trends for all of the Hawai’ian Volcanoes in plots of CaO versus MgO, P versus MgO, T versus MgO, and depth versus MgO. The results agree with geophysical data, showing that the magma chambers lie at shallow depths, less than 10km at a pressure of about 1kilobar. Knowledge of the depths of chambers and pressures of crystallization is important for a number of reasons including understanding the chemical composition of molten rock that is flowing within the chamber and predicting when an eruption will occur.

  13. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  14. Magma paths at Piton de la Fournaise volcano: a synthesis of Hawaiian and Etnean rift zones

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Ferrazzini, Valérie; Di Muro, Andrea; Chaput, Marie; Famin, Vincent

    2014-05-01

    On ocean basaltic volcanoes, magma transfer to the surface occurs along sub-vertical ascent from the mantle lithosphere through the oceanic crust and the volcanic edifice, eventually followed by lateral propagation along rift zones. We use a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the pyroclastic cones to determine the geometry and the dynamics of the magma paths intersecting the edifice of Piton de la Fournaise volcano. We show that the overall plumbing system, from about 30 km depth to the surface, is composed of two structural levels that feed distinct types of rift zones. The lower plumbing system has a southeastward (N120) orientation and permits magma transfer from the lithospheric mantle to the base of the La Réunion edifice (5 km bsl). The related rift zone is wide, linear, spotted by small to large pyroclastic cones and related lava flows and involving magma resulting from high-pressure fractionation of ol ± cpx and presents an eruption periodicity of around 200 years over the last 30 kyrs. Seismic data suggest that the long-lasting activity of this rift zone result from a regional NNE-SSW extension reactivating inherited lithospheric faults by the effect of underplating and/or thermal erosion of the mantle lithosphere. The upper plumbing system originates at the base of the edifice in the vertical continuity of the lower plumbing system. It feeds frequent (1 eruption every 9 months on average), short-lived summit and distal (flank) eruptions along summit and outer rift zones, respectively. Summit rift zones are short and present an orthogonal pattern restricted to the central active cone of Piton de la Fournaise whereas outer rift zones extend from inside the Enclos Fouqué caldera to the NE and SE volcano flanks. We show that the outer rift zones are genetically linked to the east flank seaward displacements, whose most recent events where detected in 2004 and 2007. The lateral movements are themselves

  15. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  16. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  17. Volcanoes

    SciTech Connect

    Decker, R.W.; Decker, B.

    1989-01-01

    This book describes volcanoes although the authors say they are more to be experienced than described. This book poses more question than answers. The public has developed interest and awareness in volcanism since the first edition eight years ago, maybe because since the time 120 volcanoes have erupted. Of those, the more lethal eruptions were from volcanoes not included in the first edition's World's 101 Most Notorious Volcanoes.

  18. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  19. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  20. ʻŌhiʻa Lehua rainforest: born among Hawaiian volcanoes, evolved in isolation: the story of a dynamic ecosystem with relevance to forests worldwide

    USGS Publications Warehouse

    Mueller-Dombois, Dieter; Jacobi, James D.; Boehmer, Hans Juergen; Price, Jonathan P.

    2013-01-01

    In the early 1970s, a multidisciplinary team of forest biologists began a study of Hawaiian ecosystems under the International Biological Program (IBP). Research focus was on the intact native ecosystems in and around Hawai'i Volcanoes National Park, in particular the ʻŌhiʻa Lehua rainforest. Patches of dead ʻŌhiʻa stands had been reported from the windward slopes of Mauna Loa and Mauna Kea. Subsequent air photo analyses by a team of US and Hawai'i State foresters discovered rapidly spreading ʻŌhiʻa dieback, also called ʻŌhiʻa forest decline. A killer disease was suspected to destroy the Hawaiian rain forest in the next 15-25 years. Ecological research continued with a focus on the dynamics of the Hawaiian rainforest. This book explains what really happened and why the ʻŌhiʻa rainforest survived in tact as everyone can witness today.

  1. Submarine lavas from Mauna Kea Volcano, Hawaii: Implications for Hawaiian shield stage processes

    NASA Astrophysics Data System (ADS)

    Yang, Huai-Jen; Frey, Frederick A.; Garcia, Michael O.; Clague, David A.

    1994-08-01

    The island of Hawaii is composed of five voluminous shields but only the youngest, active and well-exposed shields of Mauna Loa and Kilauea have been studied in detail. The shield lavas forming Kohala, Hualalai, and Mauna Kea are largely covered by postshield lavas with geochemical characteristics that differ from the shield lavas. In order to determine the geochemical characteristics of the Mauna Kea shield which is adjacent to the Kilauea and Mauna Loa shields, 12 Mauna Kea shield basalts dredged from the submarine east rift were analyzed for major and trace element contents and isotopic (Sr, Nd, and Pb) ratios. The lavas are MgO-rich (11 to 20%), submarine erupted, tholeiitic basalts, but they are not representative of crystallized MgO-rich melts. Their whole rock and mineral compositions are consistent with mixing of an evolved magma, less than 7% MgO, with a magma containing abundant olivine xenocrysts, probably disaggregated from a dunitic cumulate. At a given MgO content, some of the Mauna Kea whole rocks have lower abundances of CaO and higher abundances of incompatible elements. The evolved melt component in these lavas reflects significant fractionation of plagioclase and clinopyroxene and in some cases even the late crystallizing phases orthopyroxene and Fe-Ti oxide. Although these Mauna Kea lavas are not isotopically homogenous, in general their Sr, Nd, and Pb isotopic ratios overlap with the fields for lavas from Loihi and Kilauea volcanoes.

  2. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  3. Observing active deformation of volcanoes in North America: Geodetic data from the Plate Boundary Observatory and associated networks

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground

  4. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  5. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, J.; Poland, M.

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  6. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  7. Volcanoes

    MedlinePlus

    ... Earth's crust. Hot rock, steam, poisonous gases, and ash reach the Earth's surface when a volcano erupts. ... rain, fires, and even tsunamis. Volcanic gas and ash can damage the lungs of small infants, older ...

  8. Volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.; ,

    1998-01-01

    Volcanoes destroy and volcanoes create. The catastrophic eruption of Mount St. Helens on May 18, 1980, made clear the awesome destructive power of a volcano. Yet, over a time span longer than human memory and record, volcanoes have played a key role in forming and modifying the planet upon which we live. More than 80 percent of the Earth's surface--above and below sea level--is of volcanic origin. Gaseous emissions from volcanic vents over hundreds of millions of years formed the Earth's earliest oceans and atmosphere, which supplied the ingredients vital to evolve and sustain life. Over geologic eons, countless volcanic eruptions have produced mountains, plateaus, and plains, which subsequent erosion and weathering have sculpted into majestic landscapes and formed fertile soils.

  9. Volcano-Monitoring Instrumentation in the United States, 2008

    USGS Publications Warehouse

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  10. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  11. Comparison of numerical approaches for modeling gravitationally-induced horizontal deviatoric stresses within a Hawaiian basaltic shield volcano

    NASA Astrophysics Data System (ADS)

    Klein, E. C.; Le Corvec, N.; Galgana, G.

    2014-12-01

    Basaltic shield volcanoes are subjected to important gravitational loads that lead to their spreading. Such deformation influences the stress state within the volcano, thus the formation of faults and the location of earthquakes and the propagation of magmas and the potential eruption location. Using distinct numerical approaches constrained by geophysical data from the Hawai`i Island Shield Volcano (HISV), we studied the extent to which horizontal deviatoric stresses (HDS) induced from gravitational loading drives the process of volcanic spreading. Two distinct numerical approaches based on similar models were used: 1- the thin-sheet method, and 2- finite element models using COMSOL Multiphysics. We quantified depth integrals of vertical stress (i.e., the gravitational potential energy per unit area or GPE) and then we derived the HDS that balance the horizontal gradients in GPE. We performed the integration over series of single layers that encompasses the surface of variable topography down to a uniform depth of 10 km b.s.l. consistent with the base of the HISV. To compare the results of our numerical approaches we built a fine-scale, Island-wide, set of kinematically constrained deformation indicators (KCDI) using the slip-rate and fault style information from a comprehensive fault database for the HISV. We measure the success of each numerical approach by how well model HDS match the horizontal styles of the strain rates associated with KCDI. Thus far we find that the HDS obtained using the thin-sheet method match well with the KCDI. This may indicate that to first order that patterns of observed surface deformation on the HISV are governed by gradients in GPE. This provides a balance to the gravitationally-induced stresses associated with the volcano load. These HDS do not account for other competing sources of stress (e.g., flexure, magmatic, or hoop) that taken all together may combine to better explain the volcano spreading process for basaltic shield type

  12. Towards a Network Matched Filter Observatory for Alaska/Aleutian Volcano Monitoring and Research.

    NASA Astrophysics Data System (ADS)

    Holtkamp, S. G.

    2015-12-01

    Network Matched Filtering (NMF, commonly referred to as template matching), is a procedure which utilizes waveforms recorded from a cataloged seismic event (the "template event") to find additional seismic events by cross-correlating the template event with continuous seismic data over the time period of interest. NMF has been successfully used to populate seismic catalogs for a wide variety of seismic signals which are difficult to identify, such as tectonic low frequency earthquakes, early or triggered aftershocks, and small magnitude induced seismic sequences. NMF provides robust event detection of signals with signal to noise ratios near one, and the output of the filter is largely independent of unrelated seismic noise, making it an ideal technique for identifying events during noisy time periods, such as immediately following a large earthquake or during a volcanic eruption. We also show how NMF can be used over longer time periods, with dynamic seismic network status, to more robustly compare time periods with disparate network geometries. Here, we present efforts to develop processing infrastructure for semi-automated execution of the NMF technique applied to volcanoes in the state of Alaska. We present a series of case studies involving both monitored and unmonitored volcanoes. Given the large scope of this endeavor, we focus our preliminary efforts on cataloging deep long period (DLP) seismicity, as DLP's have high scientific interest (as well as providing a reasonable benchmark), have been cataloged at many of Alaska's volcanoes, and yet are rare enough to speed up code development and testing. At Redoubt, for example, we use NMF to develop a catalog of ~300 DLP's from 2008 through July 2015. Most cataloged DLP's and new matches from NMF occurred close in time to the 2009 eruption, but we find that DLP activity has continued through July 2015. At Kasatochi, an unmonitored volcano which erupted in 2008, we show that NMF is more effective at cataloging

  13. Infrared Surveys of Hawaiian Volcanoes: Aerial surveys with infrared imaging radiometer depict volcanic thermal patterns and structural features.

    PubMed

    Fisher, W A; Moxham, R M; Polcyn, F; Landis, G H

    1964-11-06

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  14. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    USGS Publications Warehouse

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  15. Catalog of Hawaiian earthquakes, 1823-1959

    USGS Publications Warehouse

    Klein, Fred W.; Wright, Thomas L.

    2000-01-01

    This catalog of more than 17,000 Hawaiian earthquakes (of magnitude greater than or equal to 5), principally located on the Island of Hawaii, from 1823 through the third quarter of 1959 is designed to expand our ability to evaluate seismic hazard in Hawaii, as well as our knowledge of Hawaiian seismic rhythms as they relate to eruption cycles at Kilauea and Mauna Loa volcanoes and to subcrustal earthquake patterns related to the tectonic evolution of the Hawaiian chain.

  16. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  17. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  18. Introduction to Special Section on How Volcanoes Work: Part 3

    NASA Astrophysics Data System (ADS)

    Tilling, Robert I.

    1988-12-01

    The nine papers in this issue represent the third, and final, part of the special section on "How Volcanoes Work." Part 1 of this special section was published in the December 1987 [Tilling, 1987] and part 2 in May 1988 [Tilling, 1988] all three parts will be published together as a separate volume titled "How Volcanoes Work" by the American Geophysical Union. In its entirety, the special section gives a good sampling of the nearly 300 papers presented at an international symposium of the same name held in Hilo, Hawaii, in January 1987 in commemoration of the Diamond Jubilee (75th Anniversary) of the founding of the Hawaiian Volcano Observatory [Wright and Decker, 1987]. The breadth of topics covered in all three parts of the special section (Table 1) amply attests to the multidisciplinary nature of modern studies of volcanic phenomena. Collectively, these studies also comprise a most fitting tribute to Thomas A. Jaggar, Jr., who founded the Hawaiian Volcano Observatory in 1912 and was a dominant force in quantifying the science of volcanology. Not only was Jaggar a scientific visionary, but he also stressed that the scientific knowledge on volcanoes must be applied to reduce death and destruction from volcanic hazards. It is clear from the papers contained in the special section of the Journal of Geophysical Research that great strides have been made in our scientific understanding of how volcanoes work since Jaggar's time. But the destructive eruptions at Mount St. Helens (United States, May 1980), E1 Chichón (Mexico, March-April 1982), and Nevado del Ruiz (Colombia, November 1985), each causing the worst volcanic disaster in the recorded history of each of these countries [Tilling and Newhall, 1987] are tragic reminders that commensurate advances in reducing volcanic risk on a global basis have not yet been achieved.

  19. Volcano hazards program in the United States

    USGS Publications Warehouse

    Tilling, R.I.; Bailey, R.A.

    1985-01-01

    Volcano monitoring and volcanic-hazards studies have received greatly increased attention in the United States in the past few years. Before 1980, the Volcanic Hazards Program was primarily focused on the active volcanoes of Kilauea and Mauna Loa, Hawaii, which have been monitored continuously since 1912 by the Hawaiian Volcano Observatory. After the reawakening and catastrophic eruption of Mount St. Helens in 1980, the program was substantially expanded as the government and general public became aware of the potential for eruptions and associated hazards within the conterminous United States. Integrated components of the expanded program include: volcanic-hazards assessment; volcano monitoring; fundamental research; and, in concert with federal, state, and local authorities, emergency-response planning. In 1980 the David A. Johnston Cascades Volcano Observatory was established in Vancouver, Washington, to systematically monitor the continuing activity of Mount St. Helens, and to acquire baseline data for monitoring the other, presently quiescent, but potentially dangerous Cascade volcanoes in the Pacific Northwest. Since June 1980, all of the eruptions of Mount St. Helens have been predicted successfully on the basis of seismic and geodetic monitoring. The largest volcanic eruptions, but the least probable statistically, that pose a threat to western conterminous United States are those from the large Pleistocene-Holocene volcanic systems, such as Long Valley caldera (California) and Yellowstone caldera (Wyoming), which are underlain by large magma chambers still potentially capable of producing catastrophic caldera-forming eruptions. In order to become better prepared for possible future hazards associated with such historically unpecedented events, detailed studies of these, and similar, large volcanic systems should be intensified to gain better insight into caldera-forming processes and to recognize, if possible, the precursors of caldera-forming eruptions

  20. A space-borne, multi-parameter, Virtual Volcano Observatory for the real-time, anywhere-anytime support to decision-making during eruptive crises

    NASA Astrophysics Data System (ADS)

    Ferrucci, F.; Tampellini, M.; Loughlin, S. C.; Tait, S.; Theys, N.; Valks, P.; Hirn, B.

    2013-12-01

    The EVOSS consortium of academic, industrial and institutional partners in Europe and Africa, has created a satellite-based volcano observatory, designed to support crisis management within the Global Monitoring for Environment and Security (GMES) framework of the European Commission. Data from 8 different payloads orbiting on 14 satellite platforms (SEVIRI on-board MSG-1, -2 and -3, MODIS on-board Terra and Aqua, GOME-2 and IASI onboard MetOp-A, OMI on-board Aura, Cosmo-SkyMED/1, /2, /3 and /4, JAMI on-board MTSAT-1 and -2, and, until April 8th2012, SCHIAMACHY on-board ENVISAT) acquired at 5 different down-link stations, are disseminated to and automatically processed at 6 locations in 4 countries. The results are sent, in four separate geographic data streams (high-temperature thermal anomalies, volcanic Sulfur dioxide daily fluxes, volcanic ash and ground deformation), to a central facility called VVO, the 'Virtual Volcano Observatory'. This system operates 24H/24-7D/7 since September 2011 on all volcanoes in Europe, Africa, the Lesser Antilles, and the oceans around them, and during this interval has detected, measured and monitored all subaerial eruptions occurred in this region (44 over 45 certified, with overall detection and processing efficiency of ~97%). EVOSS borne realtime information is delivered to a group of 14 qualified end users, bearing the direct or indirect responsibility of monitoring and managing volcano emergencies, and of advising governments in Comoros, DR Congo, Djibouti, Ethiopia, Montserrat, Uganda, Tanzania, France and Iceland. We present the full set of eruptions detected and monitored - from 2004 to present - by multispectral payloads SEVIRI onboard the geostationary platforms of the MSG constellation, for developing and fine tuning-up the EVOSS system along with its real-time, pre- and post-processing automated algorithms. The set includes 91% of subaerial eruptions occurred at 15 volcanoes (Piton de la Fournaise, Karthala, Jebel al

  1. Preliminary assessment for the use of VORIS as a tool for rapid lava flow simulation at Goma Volcano Observatory, Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-10-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga volcanic province in the Democratic Republic of the Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than 2 years, and produced lava flows sometimes reaching distances of over 20 km from the volcano. Though most of the lava flows did not reach urban areas, only impacting the forests of the endangered Virunga National Park, some of them related to distal flank eruptions affected villages and roads. In order to identify a useful tool for lava flow hazard assessment at Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling the lava flow propagation. We tested different parameters and digital elevation models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to evaluate the sensitivity of the models to changes in input parameters of VORIS 2.0.1. Simulations were tested against the known lava flows and topography from the 2010 Nyamulagira eruption. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested when input parameters are appropriately chosen. In practice, these results will be used by GVO to calibrate VORIS for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  2. Island of Hawaii, Hawaiian Archipelago

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This single photo covers almost all of the big island of Hawaii (19.5N, 155.5E) in the Hawaiian Archipelago. The active Kilauea Volcano and lava flow is under clouds and hardly visible at the lower right edge but the Mauna Loa volcano crater and its older lava flow is at the bottom center. The Kona Coast, that produces the only coffee grown in the United States, is to the left. Mauna Kea is the extinct volcano and lava flow in the right center.

  3. Island of Hawaii, Hawaiian Archipelago

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This single photo covers almost all of the big island of Hawaii (19.5N, 155.5E) in the Hawaiian Archipelago. The active Kilauea Volcano and lava flow is under clouds and hardly visible at the lower right edge but the Mauna Loa volcano crater and its older lava flow is at the bottom center. The Kona Coast, that produces the only coffee grown in the United States, is to the left. Mauna Kea is the extinct volcano and lava flow in the right center.

  4. Technical-Information Products for a National Volcano Early Warning System

    USGS Publications Warehouse

    Guffanti, Marianne; Brantley, Steven R.; Cervelli, Peter F.; Nye, Christopher J.; Serafino, George N.; Siebert, Lee; Venezky, Dina Y.; Wald, Lisa

    2007-01-01

    Introduction Technical outreach - distinct from general-interest and K-12 educational outreach - for volcanic hazards is aimed at providing usable scientific information about potential or ongoing volcanic activity to public officials, businesses, and individuals in support of their response, preparedness, and mitigation efforts. Within the context of a National Volcano Early Warning System (NVEWS) (Ewert et al., 2005), technical outreach is a critical process, transferring the benefits of enhanced monitoring and hazards research to key constituents who have to initiate actions or make policy decisions to lessen the hazardous impact of volcanic activity. This report discusses recommendations of the Technical-Information Products Working Group convened in 2006 as part of the NVEWS planning process. The basic charge to the Working Group was to identify a web-based, volcanological 'product line' for NVEWS to meet the specific hazard-information needs of technical users. Members of the Working Group were: *Marianne Guffanti (Chair), USGS, Reston VA *Steve Brantley, USGS, Hawaiian Volcano Observatory HI *Peter Cervelli, USGS, Alaska Volcano Observatory, Anchorage AK *Chris Nye, Division of Geological and Geophysical Surveys and Alaska Volcano Observatory, Fairbanks AK *George Serafino, National Oceanic and Atmospheric Administration, Camp Springs MD *Lee Siebert, Smithsonian Institution, Washington DC *Dina Venezky, USGS, Volcano Hazards Team, Menlo Park CA *Lisa Wald, USGS, Earthquake Hazards Program, Golden CO

  5. Hawaiian Island Archipelago

    NASA Image and Video Library

    1988-10-03

    STS026-43-082 (29 Sept. - 3 Oct. 1988) --- This 70mm northerly oriented frame over the Pacific Ocean features the Hawaiian Islands chain. The islands perturb the prevailing northeasterly winds producing extensive cloud wakes in the lee of the islands. Photo experts feel that atmospheric haze in the Hawaii wake is probably a result of the continuing eruptions of Kilauea volcano on the southeast coast. From the lower right corner in a diagonal directed upward to the north are the islands of Nihau, Kauai, Oahu, Molokai, Lanai, Maui, Kahoolawe, and Hawaii. This photo was shown during the post-flight press conference on October 11, 1988 by the STS-26 astronauts, who at one time during the flight wore Hawaiian attire to pay tribute to the working staff of the Hawaii tracking station.

  6. Galactic Super Volcano Similar to Iceland Volcano

    NASA Image and Video Library

    This composite image from NASAs Chandra X-ray Observatory with radio data from the Very Large Array shows a cosmic volcano being driven by a black hole in the center of the M87 galaxy. This eruptio...

  7. Spoken Hawaiian.

    ERIC Educational Resources Information Center

    Elbert, Samuel H.

    The objects of this beginning text in Hawaiian, the result of two decades' efforts in teaching, are to present the principal conversational and grammatical patterns and the most common idioms, in order to prepare the student to read and enjoy the rich heritage of Hawaiian traditional legends and poetry. A short introductory section discusses…

  8. New insights into Kilauea's volcano dynamics brought by large-scale relative relocation of microearthquakes

    USGS Publications Warehouse

    Got, J.-L.; Okubo, P.

    2003-01-01

    We investigated the microseismicity recorded in an active volcano to infer information concerning the volcano structure and long-term dynamics, by using relative relocations and focal mechanisms of microearthquakes. There were 32,000 earthquakes of the Mauna Loa and Kilauea volcanoes recorded by more than eight stations of the Hawaiian Volcano Observatory seismic network between 1988 and 1999. We studied 17,000 of these events and relocated more than 70%, with an accuracy ranging from 10 to 500 m. About 75% of these relocated events are located in the vicinity of subhorizontal decollement planes, at a depth of 8-11 km. However, the striking features revealed by these relocation results are steep southeast dipping fault planes working as reverse faults, clearly located below the decollement plane and which intersect it. If this decollement plane coincides with the pre-Mauna Loa seafloor, as hypothesized by numerous authors, such reverse faults rupture the pre-Mauna Loa oceanic crust. The weight of the volcano and pressure in the magma storage system are possible causes of these ruptures, fully compatible with the local stress tensor computed by Gillard et al. [1996]. Reverse faults are suspected of producing scarps revealed by kilometer-long horizontal slip-perpendicular lineations along the decollement surface and therefore large-scale roughness, asperities, and normal stress variations. These are capable of generating stick-slip, large-magnitude earthquakes, the spatial microseismic pattern observed in the south flank of Kilauea volcano, and Hilina-type instabilities. Rupture intersecting the decollement surface, causing its large-scale roughness, may be an important parameter controlling the growth of Hawaiian volcanoes.

  9. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    USGS Publications Warehouse

    Patrick, Matthew R.; Swanson, Don; Orr, Tim

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  10. Long Valley Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Hill, David

    2008-01-01

    The ~300-year-old lava on Paoha Island in Mono Lake was produced by the most recent eruption in the Long Valley Caldera area in east-central California. The Long Valley Caldera was formed by a massive volcanic eruption 760,000 years ago. The region is monitored by the Long Valley Observatory (LVO), one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about the Long Valley Caldera region and LVO at http://volcanoes.usgs.gov/lvo.

  11. VALVE: Volcano Analysis and Visualization Environment

    NASA Astrophysics Data System (ADS)

    Cervelli, D. P.; Cervelli, P.; Miklius, A.; Krug, R.; Lisowski, M.

    2002-12-01

    Modern volcano observatories collect data using a wide variety of instruments. Visualizing these disparate data on a common time base is critical to interpreting and reacting to geophysical changes. With this in mind, the Hawaiian Volcano Observatory (HVO) created Valve, the Volcano Analysis and Visualization Environment. Valve integrates a wide range of both continuous and discontinuous data sources into a common, internet web-browser based interface that allows scientists to interactively select and visualize these data on a common time base and, if appropriate, in three dimensions. Advances in modern internet browser technology allow for a truly interactive user-interface experience that could previously only be found in stand-alone applications--all while maintaining client platform independence and network portability. This system aids more traditional in-depth analysis by providing a common front-end to retrieving raw data. In most cases, the raw data are being served from an SQL database, a system that lends itself to quickly retrieving, logically arranging, and safely storing data. Beyond Valve's visualization capabilities, the system also provides a variety of tools for time series analysis and source modeling. For example, a user could load several tilt and GPS time series, estimate co-seismic or co-intrusive deformation, and then model the event with an elastic point source or dislocation. From the source model, Coulomb stress changes could be calculated and compared to pre- and post-event hypocenter distribution. Employing a heavily object-oriented design, Valve is easily extensible, modular, portable, and remarkably cost efficient. Quickly visualizing arbitrary data is a trivial matter, while implementing methods for permanent, continuous data streams requires only minimal programming. Portability is ensured by using software that is readily available on a wide variety of operating systems; cost efficiency is achieved by using software that is open

  12. Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008

    USGS Publications Warehouse

    Orr, Tim R.

    2011-01-01

    Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.

  13. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    USGS Publications Warehouse

    Gregg, Chris E.; Houghton, B.F.; Paton, Douglas; Swanson, D.A.; Lachman, R.; Bonk, W.J.

    2008-01-01

    On average, 72% of respondents favored the construction of earthen barriers to hold back or divert lava and protect Kapoho, but far fewer agreed with the military's use of bombs (14%) to protect Kapoho. In contrast, about one-third of respondents conditionally agreed with the use of bombs. It is suggested that local participation in the bombing strategy may explain the increased conditional acceptance of bombs as a mitigation tool, although this can not be conclusively demonstrated. Belief in Pele and being of Hawaiian ethnicity did not reduce support for the use of barriers, but did reduce support for bombs in both bombing scenarios. The disparity in levels of acceptance of barriers versus bombing and of one bombing strategy versus another suggests that historically public attitudes toward lava flow hazard mitigation strategies were complex. A modern comparative study is needed before the next damaging eruption to inform debates and decisions about whether or not to interfere with the flow of lava. Recent changes in the current eruption of Kīlauea make this a timely topic.

  14. An analysis of three new infrasound arrays around Kīlauea Volcano

    USGS Publications Warehouse

    Thelen, Weston A.; Cooper, Jennifer

    2015-01-01

    A network of three new infrasound station arrays was installed around Kīlauea Volcano between July 2012 and September 2012, and a preliminary analysis of open-vent monitoring has been completed by Hawaiian Volcano Observatory (HVO). Infrasound is an emerging monitoring method in volcanology that detects perturbations in atmospheric pressure at frequencies below 20 Hz, which can result from volcanic events that are not always observed optically or thermally. Each array has the capability to detect various infrasound events as small as 0.05 Pa as measured at the array site. The infrasound monitoring network capabilities are demonstrated through case studies of rockfalls, pit collapses, and rise-fall cycles at Halema'uma'u Crater and Pu'u 'Ōʻō.

  15. Constraints on the Composition and Hydrothermal Alteration History of the Pacific Lower Crust beneath the Hawaiian Islands: Geochemical Investigation of Gabbroic Xenoliths from Hualalai Volcano

    NASA Astrophysics Data System (ADS)

    Gao, R.; Lassiter, J. C.

    2013-12-01

    Understanding the composition and hydrothermal alteration history of the lower oceanic crust (LOC) can help constrain deep hydrothermal circulation at mid-ocean ridges, which may have a substantial impact on the thermal regime and magmatic processes at spreading centers. Previous studies of LOC primarily examined ophiolites or layer-3 gabbros exposed at the seafloor through faulting. These potentially have experienced secondary hydrothermal alteration in response to faulting, uplift and exposure. We examined major and trace element and isotopic compositions of a suite of gabbroic xenoliths derived from the 1800-1801 Kapulehu flow, Hualalai, Hawaii to constrain the composition and 'primary' hydrothermal alteration history of the in situ Pacific crust beneath the Hawaiian Islands (HI). Although most Hualalai gabbros have trace element and isotopic compositions consistent with derivation from Hualalai magmas, a subset has characteristics indicative of an origin from MORB-related melts. These gabbros contain LREE-depleted clinopyroxene, have Sr-Nd-Hf isotopic compositions that overlap the range of EPR basalts, and are geochemically distinct from Hualalai-related xenoliths and lavas. Despite the limited range recorded, plagioclase and clinopyroxene oxygen isotope compositions correlate well for both MORB-related and Hualalai-related gabbroic xenoliths. This suggests clinopyroxene and plagioclase are in equilibrium. The △plag-cpx (~0.6-0.9‰) is consistent with closure temperatures of ~1170-1220 C.δ18Ocpx (+4.9-5.3‰) of the MORB-related gabbros are negatively correlated with cpx 87Sr/86Sr, but not with 143Nd/144Nd or La/Sm. In contrast, δ18Oplag does not correlate with plag 87Sr/86Sr. Cpx Sr-isotopes may be affected by seawater alteration, which is not as apparent in plag due to higher Sr concentrations. However, the MORB-related gabbros have δ18O values that are largely in the range for normal, fresh MORB (δ18Omelt/NMORB = +5.7-6.0‰, △melt-cpx~0.7‰). This

  16. Volcanic gases: hydrogen burning at kilauea volcano, hawaii.

    PubMed

    Cruikshank, D P; Morrison, D; Lennon, K

    1973-10-19

    Spectroscopic evidence for hydrogen burning in air was obtained at Kilauea Volcano. The abundance of hydrogen required to support combustion is consistent with that predicted for gases in equilibrium with typical Hawaiian tholeiitic basalt.

  17. Iridium enrichment in airborne particles from kilauea volcano: january 1983.

    PubMed

    Zoller, W H; Parrington, J R; Kotra, J M

    1983-12-09

    Airborne particulate matter from the January 1983 eruption of Kilauea volcano was inadvertently collected on air filters at Mauna Loa Observatory at a sampling station used to observe particles in global circulation. Analyses of affected samples revealed unusually large concentrations of selenium, arsenic, indium, gold, and sulfur, as expected for volcanic emissions. Strikingly large concentrations of iridium were also observed, the ratio of iridium to aluminum being 17,000 times its value in Hawaiian basalt. Since iridium enrichments have not previously been observed in volcanic emissions, the results for Kilauea suggest that it is part of an unusual volcanic system which may be fed by magma from the mantle. The iridium enrichment appears to be linked with the high fluorine content of the volcanic gases, which suggests that the iridium is released as a volatile IrF(6).

  18. Klyuchevskaya Volcano

    NASA Image and Video Library

    2017-09-27

    Shiveluch volcano on Russia’s Kamchatka Peninsula. This is a false-color satellite image, acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on March 10, 2010. To download a full high res version of this image and to learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=43103 Credit: NASA Earth Observatory image by Jesse Allen and Robert Simmon, based on data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Instrument: Terra - ASTER For more information about the Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html

  19. A Hundred Volatile Years Of Hawaiian Volcanic Gas Studies

    NASA Astrophysics Data System (ADS)

    Sutton, A. J.; Elias, T.

    2011-12-01

    As Thomas Jaggar, HVO's founder, stated "The observatory worker, who has lived a quarter of a century with Hawaiian lavas frothing in action, cannot fail to realize that gas chemistry is the heart of the volcano magma problem". Despite the fervor of this statement, hazardous field conditions associated with sampling volcanic vents and the modest evolutionary state of analytical techniques applied to gas samples conspired to produce only modest progress in the understanding of gas release processes for many years. Still, principal volatile constituents were identified and what were once invisible gases suddenly became visible at least in the scientific literature. Much has changed regarding volcanic gas studies at HVO since the time of Jaggar and other early observers of the 20th century. The careful sampling and analytical work of these studies allowed more recent follow-on researchers, notably T. Gerlach, to reinterpret Jaggar's partial analyses through the lens of modern chemical thermodynamics. Field-based UV and IR spectroscopic techniques make it possible to acquire bulk emission data of several principle volcanic volatile constituents. Spurred by a long-running eruption in Kilauea volcano's east rift zone and more recently at Kilauea's summit caldera, along with comparatively easy access to summit and rift emission sources, it became practical to link measured emission rates with ratioed chemical abundance data to test idealized models for how Kilauea and other volcanoes like it, work. Gas analyses, and solubility data, coupled with emission rate studies allow routine estimation of lava effusion rates. Modern gas measurement techniques, such as in-situ gas sensing instruments and spectroscopic methods facilitate time series comparisons of gas and real-time geophysical measurements such as tilt and seismicity, in order to help elucidate short duration processes.

  20. The chemical structure of the Hawaiian mantle plume.

    PubMed

    Ren, Zhong-Yuan; Ingle, Stephanie; Takahashi, Eiichi; Hirano, Naoto; Hirata, Takafumi

    2005-08-11

    The Hawaiian-Emperor volcanic island and seamount chain is usually attributed to a hot mantle plume, located beneath the Pacific lithosphere, that delivers material sourced from deep in the mantle to the surface. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear, parallel trends (termed 'Kea' and 'Loa'), whose rocks are characterized by general geochemical differences. This has led to the proposition that Hawaiian volcanoes sample compositionally distinct, concentrically zoned, regions of the underlying mantle plume. Melt inclusions, or samples of local magma 'frozen' in olivine phenocrysts during crystallization, may record complexities of mantle sources, thereby providing better insight into the chemical structure of plumes. Here we report the discovery of both Kea- and Loa-like major and trace element compositions in olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes--even within single rock samples. We infer from these data that one mantle source component may dominate a single lava flow, but that the two mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. We therefore suggest that the Hawaiian mantle plume is unlikely to be compositionally concentrically zoned. Instead, the observed chemical variation is probably controlled by the thermal structure of the plume.

  1. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Lopaka; Kamibayashi, Kevan; Antolik, Loren; Werner, Cynthia

    2015-07-01

    SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely "off-the-shelf" components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.

  2. Hawaiian birds

    USGS Publications Warehouse

    Scott, J. Michael; Sincock, John L.; Di Silvestro, Roger L.

    1985-01-01

    Hawaii's 132 islands, reefs, and shoals extend 1,523 miles from the southernmost island of Hawaii to the northernmost islands at Kure Atoll. The northernmost islands, now eroded almost to sea level, are about 27 million years old, whereas the still-forming island of Hawaii is only about 750,000 years old. The Hawaiian Islands are the most isolated in the world and, as such, have developed many species and subspecies of plants and animals found nowhere else. the arrival of few ancestral species and the isolation of the islands, with their varying ages, elevations, climates, and microhabitats, were ideal for creating this great endemic biota through adaptive radiation.

  3. Hydrogeology of the Hawaiian islands

    USGS Publications Warehouse

    Gingerich, Stephen B.; Oki, Delwyn S.; Cabrera, Maria del Carmen; Lambán, Luis Javier; Valverde, Margarida

    2011-01-01

    Volcanic-rock aquifers are the most extensive and productive aquifers in the Hawaiian Islands. These aquifers contain different types of groundwater systems depending on the geologic setting in which they occur. The most common groundwater systems include coastal freshwater-lens systems in the dike-free flanks of the volcanoes and dike-impounded systems within the dike-intruded areas of the volcanoes. In some areas, a thick (hundreds of meters) freshwater lens may develop because of the presence of a coastal confining unit, or caprock, that impedes the discharge of groundwater from the volcanic-rock aquifer, or because the permeability of the volcanic rocks forming the aquifer is low. In other areas with low groundwater-recharge rates and that lack a caprock, the freshwater lens may be thin or brackish water may exist immediately below the water table. Dike-impounded groundwater systems commonly have high water levels (hundreds of meters above sea level) and contribute to the base flow of streams where the water table intersects the stream. Recent numerical modeling studies have enhanced the conceptual understanding of groundwater systems in the Hawaiian Islands.

  4. Remote-controlled pan, tilt, zoom cameras at Kilauea and Mauna Loa Volcanoes, Hawai'i

    USGS Publications Warehouse

    Hoblitt, Richard P.; Orr, Tim R.; Castella, Frederic; Cervelli, Peter F.

    2008-01-01

    Lists of important volcano-monitoring disciplines usually include seismology, geodesy, and gas geochemistry. Visual monitoring - the essence of volcanology - is usually not mentioned. Yet, observations of the outward appearance of a volcano provide data that is equally as important as that provided by the other disciplines. The eye was almost certainly the first volcano monitoring-tool used by early man. Early volcanology was mostly descriptive and was based on careful visual observations of volcanoes. There is still no substitute for the eye of an experienced volcanologist. Today, scientific instruments replace or augment our senses as monitoring tools because instruments are faster and more sensitive, work tirelessly day and night, keep better records, operate in hazardous environments, do not generate lawsuits when damaged or destroyed, and in most cases are cheaper. Furthermore, instruments are capable of detecting phenomena that are outside the reach of our senses. The human eye is now augmented by the camera. Sequences of timed images provide a record of visual phenomena that occur on and above the surface of volcanoes. Photographic monitoring is a fundamental monitoring tool; image sequences can often provide the basis for interpreting other data streams. Monitoring data are most useful when they are generated and are available for analysis in real-time or near real-time. This report describes the current (as of 2006) system for real-time photograph acquisition and transmission from remote sites on Kilauea and Mauna Loa volcanoes to the U.S. Geological Survey Hawaiian Volcano Observatory (HVO). It also describes how the photographs are archived and analyzed. In addition to providing system documentation for HVO, we hope that the report will prove useful as a practical guide to the construction of a high-bandwidth network for the telemetry of real-time data from remote locations.

  5. Results from the Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by Spacecraft

    NASA Astrophysics Data System (ADS)

    Doubleday, J.; Behar, A.; Davies, A.; Mora-Vargas, A.; Tran, D.; Abtahi, A.; Pieri, D. C.; Boudreau, K.; Cecava, J.

    2008-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors were incorporated into expendable "Volcano Monitor" capsules and placed downwind of the Pu'u 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors were collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. When SO2 readings exceeded a predetermined threshold, the modem within the Volcano Monitor sent an alert to the Sensor Web, and triggered a request for prompt Earth Observing-1 (EO-1) spacecraft data acquisition. The Volcano Monitors were also triggered by the Sensor Web in response to an eruption detection by the MODIS instrument on Terra. During these pre- defined "critical events" the Sensor Web ordered the SO2 sensors within the Volcano Monitor to increase their sampling frequency to every 5 minutes (high power "burst mode"). Autonomous control of the sensors' sampling frequency enabled the Sensor Web to monitor and respond to rapidly evolving conditions, and allowed rapid compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1 and 5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We also especially thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable scientific guidance and logistical assistance.

  6. Augustine Volcano, Cook Inlet, Alaska January 31, 2006

    NASA Image and Video Library

    2006-02-02

    Since last spring, the U.S. Geological Survey Alaska Volcano Observatory AVO has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. This image is from NASA Terra spacecraft.

  7. Augustine Volcano, Cook Inlet, Alaska January 12, 2006

    NASA Image and Video Library

    2006-02-02

    Since last spring, the U.S. Geological Survey Alaska Volcano Observatory AVO has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. This image is from NASA Terra spacecraft.

  8. Large landslides from oceanic volcanoes

    USGS Publications Warehouse

    Holcomb, R.T.; Searle, R.C.

    1991-01-01

    Large landslides are ubiquitous around the submarine flanks of Hawaiian volcanoes, and GLORIA has also revealed large landslides offshore from Tristan da Cunha and El Hierro. On both of the latter islands, steep flanks formerly attributed to tilting or marine erosion have been reinterpreted as landslide headwalls mantled by younger lava flows. These landslides occur in a wide range of settings and probably represent only a small sample from a large population. They may explain the large volumes of archipelagic aprons and the stellate shapes of many oceanic volcanoes. Large landslides and associated tsunamis pose hazards to many islands. -from Authors

  9. The Hawaiian Mantle Plume from Toe to Head along the Northwest Hawaiian Ridge

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Weis, D.; Garcia, M. O.

    2015-12-01

    The Hawaiian-Emperor (HE) chain records ~82 Myr of volcanism1 with two distinct geochemical and geographical trends, Kea and Loa, identified on the archipelago. The Northwest Hawaiian Ridge (NWHR) includes 51 volcanoes, spanning ~42 Myr between the bend in the HE chain and the Hawaiian Islands (47% of the HE chain2), that has no high-precision isotopic data aside from two volcanoes near the bend1. Only Kea compositions have been observed on Emperor seamounts (>50 Ma)1,3, whereas the Hawaiian Islands (<6.5 Ma) have both Kea and Loa lavas3,4. We have analyzed 23 samples of shield stage tholeiitic lavas from 13 NWHR volcanoes for Pb isotopes to test if the Loa trend exhibits a persistent presence along the ridge after Diakakuji seamount1. Age corrected 206Pb/204Pb range from 17.870 at Diakakuji to 18.654 at Midway atoll. The most enriched Loa isotopic compositions are erupted at Diakakuji (comparable to Lanai), and Mokumanamana, West Nihoa, and Nihoa have isotopic compositions similar to Mauna Loa. These observations suggest an ephemeral presence of the Loa geochemical trend along the NWHR. When shield-stage lavas of each Hawaiian volcano is averaged, NWHR volcanoes shows the most and least radiogenic Pb of the entire HE dataset: Diakakuji (0.9703) and Midway (0.9247). The NWHR exhibits the most geochemically extreme lava compositions along a region where many geophysical parameters (volcanic propagation rate, magmatic flux, mantle potential temperature) were changing significantly2,5. At a broader scale, correlation between radiogenic Pb and magmatic flux suggests source composition may control some of these changes, and help explain why the Hawaiian mantle plume seems to be strengthening5 rather than waning like classic plumes and LIPs. 1Regelous et al., 2003, J. Pet., 44, 1, 113-140. 2Garcia et al., 2015, GSA Sp. Pap. 511. 3Tanaka et al., 2008, EPSL, 265, 450-465. 4Weis et al., 2011, Nat. Geosci., 4, 831-838. 5Vidal & Bonneville, 2004, J. Geophy. Res., 109.

  10. Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Multiangle Imaging Spectro-Radiometer (MISR) image of five Hawaiian Islands was acquired by the instrument's vertical- viewing (nadir) camera on June 3, 2000. The image shows the islands of Oahu, Molokai, Lanai, Maui, and Kahoolawe. The prevailing Pacific trade winds bring higher levels of rainfall to the eastern slopes of the islands, leading to a greater abundance of vegetation on the windward coasts. The small change in observation angle across the nadir camera's field-of- view causes the right-hand portion of the image to be more affected by Sun glint, making the ocean surface appear brighter. Oahu is the westernmost of the islands seen in this image. Waikiki Beach and the city of Honolulu are located on the southern shore, to the west of Diamond Head caldera. MISR is one of several Earth-observing instruments on the Terra satellite, launched in December 1999. The Terra spacecraft, the flagship of a fleet of satellites dedicated to understanding our global environment, is part of NASA's Earth Sciences Enterprise, a long-term research program dedicated to understanding how human-induced and natural changes affect our world. Image courtesy NASA/GSFC/JPL, MISR Team

  11. Volcano monitoring using the Global Positioning System: Filtering strategies

    USGS Publications Warehouse

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  12. Age of the Hawaiian-Emperor bend

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.

    1976-01-01

    40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko??ko Seamounts, the new data indicate that the best age for the bend is 42.0 ?? 1.4 m.y. Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain. 40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with 40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of 39Ar from nonretentive montmorillonite clays that have also lost 40Ar. ?? 1976.

  13. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  14. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  15. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.

  16. Hawaiian Starlight: Sharing the Beauty of the Hawaiian Skies

    NASA Astrophysics Data System (ADS)

    Cuillandre, J. C.

    Canada-France-Hawaii Telescope Corp. The summit of Mauna Kea (14,000 feet) offers the best viewing of the Cosmos in the northern hemisphere, and the film "Hawaiian Starlight" delivers a pure esthetic experience from the mountain into the Universe. Seven years in the making, this cinematic symphony reveals the spectacular beauty of the mountain and its connection to the Cosmos through the magical influence of time-lapse cinematography scored exclusively (no narration) with the awe-inspiring, critically acclaimed, Halo music by Martin O'Donnell and Michael Salvatori. Daytime and nighttime landscapes and skyscapes alternate with stunning true color images of the Universe captured by an observatory on Mauna Kea, all free of any computer generated imagery. An extended segment of the film will be presented at the Advanced Maui Optical and Space Surveillance Technologies Conference to celebrate the international year of Astronomy 2009, a global effort initiated by the IAU (International Astronomical Union) and UNESCO (United Nations Educational, Scientific and Cultural Organization) to help the citizens of the world rediscover their place in the Universe through the day- and night-time sky, and thereby engage a personal sense of wonder and discovery. Hawaiian Starlight is true to this commitment. The inspiration and technology of the film will be shortly presented by the film's director.

  17. What, When, Where, and Why of Secondary Hawaiian Hotspot Volcanism

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Ito, G.; Applegate, B.; Weis, D.; Swinnard, L.; Flinders, A.; Hanano, D.; Nobre-Silva, I.; Bianco, T.; Naumann, T.; Geist, D.; Blay, C.; Sciaroni, L.; Maerschalk, C.; Harpp, K.; Christensen, B.

    2007-12-01

    Secondary hotspot volcanism occurs on most oceanic island groups (Hawaii, Canary, Society) but its origins remain enigmatic. A 28-day marine expedition used multibeam bathymetry and acoustic imagery to map the extent of submarine volcanic fields around the northern Hawaiian Islands (Kauai, Niihau and Kaula), and the JASON2 ROV to sample many volcanoes to characterize the petrology, geochemistry (major and trace elements, and isotopes) and ages of the lavas from these volcanoes. Our integrated geological, geochemical and geophysical study attempts to examine the what (compositions and source), where (distribution and volumes), when (ages), and why (mechanisms) of secondary volcanism on and around the northern Hawaiian Islands. A first-order objective was to establish how the submarine volcanism relates in space, time, volume, and composition to the nearby shield volcanoes and their associated onshore secondary volcanism. Our surveying and sampling revealed major fields of submarine volcanoes extending from the shallow slopes of these islands to more than 100 km offshore. These discoveries dramatically expand the volumetric importance, distribution and geodynamic framework for Hawaiian secondary volcanism. New maps and rock petrology on the samples collected will be used to evaluate currently proposed mechanisms for secondary volcanism and to consider new models such as small-scale mantle convection driven by thermal and melt-induced buoyancy to produce the huge volume of newly discovered lava. Our results seem to indicate substantial revisions are needed to our current perceptions of hotspot dynamics for Hawaii and possibly elsewhere.

  18. Hawaii's volcanoes revealed

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  19. Origin and evolution of valleys on Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Baker, Victor R.

    1990-01-01

    Medium (1:2,000,000) and high (1:500,000) resolution Viking images were used to locate, map, and analyze drainage systems of six moderate-sized Martian volcanoes of various ages (including Ceraunius Tholus, Hecates Tholus, Alba Patera, Hadriaca Patera, Apollinaris Patera, and Tyrrhena Patera) in order to determine the origin and the evolution of valley forms on these volcanoes. The morphological characteristics of the drainage forms were compared to those of terrestrial volcanic valleys of known origin. On the basis of studies of valleys on the Hawaiian volcanoes, an evolutionary sequence for valleys on the Martian volcanoes is proposed.

  20. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    article title:  Eyjafjallajökull, Iceland, Volcano Ash Cloud     View larger ... Europe and captured this image of the Eyjafjallajökull Volcano ash cloud as it continued to drift over the continent. Unlike other ...

  1. Syrian Volcano

    NASA Image and Video Library

    2006-07-23

    This MOC image shows a small volcano in the Syria Planum region of Mars. Today, the lava flows that compose this small volcano are nearly hidden by a mantle of rough-textured, perhaps somewhat cemented, dust

  2. Prodigious submarine landslides on the Hawaiian Ridge

    NASA Astrophysics Data System (ADS)

    Moore, J. G.; Clague, D. A.; Holcomb, R. T.; Lipman, P. W.; Normark, W. R.; Torresan, M. E.

    1989-12-01

    The extensive area covered by major submarine mass wasting deposits on or near the Hawaiian Ridge has been delimited by systematic mapping of the Hawaiian exclusive economic zone using the side-looking sonar system GLORIA. These surveys show that slumps and debris avalanche deposits are exposed over about 100,000 km2 of the ridge and adjacent seafloor from Kauai to Hawaii, covering an area more than 5 times the land area of the islands. Some of the individual debris avalanches are more than 200 km long and about 5000 km3 in volume, ranking them among the largest on Earth. The slope failures that produce these deposits begin early in the history of individual volcanoes when they are small submarine seamounts, culminate near the end of subaerial shield building, and apparently continue long after dormancy. Consequently, landslide debris is an important element in the internal structure of the volcanoes. The dynamic behavior of the volcanoes can be modulated by slope failure, and the structural features of the landslides are related to elements of the volcanoes including rift zones and fault systems. The landslides are of two general types, slumps and debris avalanches. The slumps are slow moving, wide (up to 110 km), and thick (about 10 km) with transverse blocky ridges and steep toes. The debris avalanches are fast moving, long (up to 230 km) compared to width, and thinner (0.05-2 km); they commonly have a well-defined amphitheater at their head and hummocky terrain in the lower part. Oceanic disturbance caused by rapid emplacement of debris avalanches may have produced high-level wave deposits (such as the 365-m elevation Hulopoe Gravel on Lanai) that are found on several islands. Most present-day submarine canyons were originally carved subaerially in the upper parts of debris avalanches. Subaerial canyon cutting was apparently promoted by the recently steepened and stripped slopes of the landslide amphitheaters.

  3. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  4. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  5. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  6. Web-based volcano monitoring data from the Pu‘u ‘O‘o eruptive vent (Kilauea Volcano, Hawai‘i) as a tool for geoscience education

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Townson, R.; Loren, A.; Brooks, B. A.; Foster, J. H.

    2009-12-01

    A significant challenge in college and university geoscience courses is conveying the dynamic nature of the Earth to students. The Internet, however, offers an opportunity to engage classes by making accessible the best examples of current geologic activity, regardless of location. In volcanology, Kilauea, Hawai‘i, is well known as one of the most active volcanoes in the world, and the Web site for the U.S. Geological Survey’s Hawaiian Volcano Observatory offers a daily update of volcanic activity that is followed by people around the globe. The Pu‘u ‘O‘o eruptive vent, on Kilauea‘s east rift zone, has been the focus of near continuous eruption since 1983, experiencing cycles of growth and collapse, high lava fountains, lava lakes, and other phenomena over the course of its existence. To track volcanic activity, various types of monitoring instruments have been installed on and around Pu‘u ‘O‘o, including (as of August 2009) two webcams, one short-period seismometer, one broadband seismometer, seven continuous GPS stations, and two continuous borehole tiltmeters. Monitoring data from Pu‘u ‘O‘o will be made available via the Internet as part of a collaborative research and education project between the Hawaiian Volcano Observatory, National Aeronautics and Space Administration, and University of Hawai‘i at Mānoa. The educational Web site is intended for use in college and university courses, from introductory science classes to graduate-level seminars. Scheduled to come on line by fall 2009, the Web site will provide tools to explore current monitoring results from the eruptive vent. Geophysical data, such as GPS, seismic, and tilt measurements, will be accessible via a time-series query tool, and the complete archive of webcam imagery will be available for examination of visual changes in volcanic activity over time. The Web site will also include background information and references concerning the 1983-present eruption, descriptions of

  7. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater

    USGS Publications Warehouse

    Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Robert Lopaka; Kamibayashi, Kevan P.; Antolik, Loren; Werner, Cynthia A.

    2015-01-01

    SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely “off-the-shelf” components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.

  8. The Pu'u 'O'o-Kupaianaha Eruption of Kilauea Volcano, Hawaii: The First 20 Years

    USGS Publications Warehouse

    Heliker, Christina C.; Swanson, Donald A.; Takahashi, Taeko Jane

    2003-01-01

    The Pu'u 'O'o-Kupaianaha eruption started on January 3, 1983. The ensuing 20-year period of nearly continuous eruption is the longest at Kilauea Volcano since the famous lava-lake activity of the 19th century. No rift-zone eruption in more than 600 years even comes close to matching the duration and volume of activity of these past two decades. Fortunately, such a landmark event came during a period of remarkable technological advancements in volcano monitoring. When the eruption began, the Global Positioning System (GPS) and the Geographic Information System (GIS) were but glimmers on the horizon, broadband seismology was in its infancy, and the correlation spectrometer (COSPEC), used to measure SO2 flux, was still very young. Now, all of these techniques are employed on a daily basis to track the ongoing eruption and construct models about its behavior. The 12 chapters in this volume, written by present or past Hawaiian Volcano Observatory staff members and close collaborators, celebrate the growth of understanding that has resulted from research during the past 20 years of Kilauea's eruption. The chapters range widely in emphasis, subject matter, and scope, but all present new concepts or important modifications of previous ideas - in some cases, ideas long held and cherished.

  9. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  10. An overview of the Icelandic Volcano Observatory response to the on-going rifting event at Bárðarbunga (Iceland) and the SO2 emergency associated with the gas-rich eruption in Holuhraun

    NASA Astrophysics Data System (ADS)

    Barsotti, Sara; Jonsdottir, Kristin; Roberts, Matthew J.; Pfeffer, Melissa A.; Ófeigsson, Benedikt G.; Vögfjord, Kristin; Stefánsdóttir, Gerður; Jónasdóttir, Elin B.

    2015-04-01

    On 16 August, 2014, Bárðarbunga volcano entered a new phase of unrest. Elevated seismicity in the area with up to thousands of earthquakes detected per day and significant deformation was observed around the Bárðarbunga caldera. A dike intrusion was monitored for almost two weeks until a small, short-lived effusive eruption began on 29 August in Holuhraun. Two days later a second, more intense, tremendously gas-rich eruption started that is still (as of writing) ongoing. The Icelandic Volcano Observatory (IVO), within the Icelandic Meteorological Office (IMO), monitors all the volcanoes in Iceland. Responsibilities include evaluating their related hazards, issuing warnings to the public and Civil Protection, and providing information regarding risks to aviation, including a weekly summary of volcanic activity provided to the Volcanic Ash Advisory Center in London. IVO has monitored the Bárðarbunga unrest phase since its beginning with the support of international colleagues and, in collaboration with the University of Iceland and the Environment Agency of Iceland, provides scientific support and interpretation of the ongoing phenomena to the local Civil Protection. The Aviation Color Code, for preventing hazards to aviation due to ash-cloud encounter, has been widely used and changed as soon as new observations and geophysical data from the monitoring network have suggested a potential evolution in the volcanic crisis. Since the onset of the eruption, IVO is monitoring the gas emission by using different and complementary instrumentations aimed at analyzing the plume composition as well as estimating the gaseous fluxes. SO2 rates have been measured with both real-time scanning DOASes and occasional mobile DOAS traveses, near the eruption site and in the far field. During the first month-and-a-half of the eruption, an average flux equal to 400 kg/s was registered, with peaks exceeding 1,000 kg/s. Along with these measurements the dispersal model CALPUFF has

  11. Low-productivity Hawaiian volcanism between Kaua‘i and O‘ahu

    NASA Astrophysics Data System (ADS)

    Greene, Andrew R.; Garcia, Michael O.; Weis, Dominique; Ito, Garrett; Kuga, Maia; Robinson, Joel; Yamasaki, Seiko

    2010-11-01

    The longest distance between subaerial shield volcanoes in the Hawaiian Islands is between the islands of Kaua`i and O`ahu, where a field of submarine volcanic cones formed astride the axis of the Hawaiian chain during a period of low magma productivity. The submarine volcanoes lie ˜25-30 km west of Ka`ena Ridge that extends ˜80 km from western O`ahu. These volcanoes were sampled by three Jason2 dives. The cones are flat topped, <400 m high and 0.4-2 km in diameter at water depths between ˜2700 and 4300 m, and consist predominantly of pillowed flows. Ar-Ar and K-Ar ages of 11 tholeiitic lavas are between 4.9 and 3.6 Ma. These ages overlap with shield volcanism on Kaua`i (5.1-4.0 Ma) and Wai`anae shield basalts (3.9-3.1 Ma) on O`ahu. Young alkalic lavas (circa 0.37 Ma) sampled southwest of Ka`ena Ridge are a form of offshore secondary volcanism. Half of the volcanic cones contain high-SiO2 basalts (51.0-53.5 wt % SiO2). The trends of isotopic compositions of West Ka`ena tholeiitic lavas diverge from the main Ko`olau-Kea shield binary mixing trend in isotope diagrams and extend to lower 208Pb/204Pb and 206Pb/204Pb than any Hawaiian tholeiitic lava. West Ka`ena tholeiitic lavas have geochemical and isotopic characteristics similar to volcanoes of the Loa trend. Hence, our results show that the Loa-type volcanism has persisted for at least 4.9 Myr, beginning prior to the development of the dual, subparallel chain of volcanoes. Several West Ka`ena samples are similar to higher SiO2, Loa trend lavas of Ko`olau Makapu`u stage, Lāna`i, and Kaho`olawe; these lavas may have been derived from a pyroxenite source in the mantle. The high Ni contents of olivines in West Ka`ena lavas also indicate contribution from pyroxenite-derived melting. Average compositions of Hawaiian shield volcanoes show a clear relation between 206Pb/204Pb and SiO2 within Loa trend volcanoes, which supports a prominent but variable influence of pyroxenite in the Hawaiian plume source. In addition

  12. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability

  13. Volcano warning systems: Chapter 67

    USGS Publications Warehouse

    Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.

    2015-01-01

    Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.

  14. Hawaiian Music for Hawaii's Children

    ERIC Educational Resources Information Center

    Gillett, Dorothy K.

    1972-01-01

    Hawaiian music has developed from the simple chant and accompanying hula to choral singing and the use of the guitar and ukulele. Article also presents a compositional and choreographic analysis of Hawaiian music. (RK)

  15. Internet-accessible, near-real-time volcano monitoring data for geoscience education: the Volcanoes Exploration Project—Pu`u `O`o

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Teasdale, R.; Kraft, K.

    2010-12-01

    Internet-accessible real- and near-real-time Earth science datasets are an important resource for geoscience education, but relatively few comprehensive datasets are available, and background information to aid interpretation is often lacking. In response to this need, the U.S. Geological Survey’s (USGS) Hawaiian Volcano Observatory, in collaboration with the National Aeronautics and Space Administration and the University of Hawai‘i, Mānoa, established the Volcanoes Exploration Project: Pu‘u ‘O‘o (VEPP). The VEPP Web site provides access, in near-real time, to geodetic, seismic, and geologic data from the Pu‘u ‘O‘o eruptive vent on Kilauea Volcano, Hawai‘i. On the VEPP Web site, a time series query tool provides a means of interacting with continuous geophysical data. In addition, results from episodic kinematic GPS campaigns and lava flow field maps are posted as data are collected, and archived Webcam images from Pu‘u ‘O‘o crater are available as a tool for examining visual changes in volcanic activity over time. A variety of background information on volcano surveillance and the history of the 1983-present Pu‘u ‘O‘o-Kupaianaha eruption puts the available monitoring data in context. The primary goal of the VEPP Web site is to take advantage of high visibility monitoring data that are seldom suitably well-organized to constitute an established educational resource. In doing so, the VEPP project provides a geoscience education resource that demonstrates the dynamic nature of volcanoes and promotes excitement about the process of scientific discovery through hands-on learning. To support use of the VEPP Web site, a week-long workshop was held at Kilauea Volcano in July 2010, which included 25 participants from the United States and Canada. The participants represented a diverse cross-section of higher learning, from community colleges to research universities, and included faculty who teach both large introductory non-major classes

  16. Response of native Hawaiian woody species to lava-ignited wildfires in tropical forests and shrublands

    Treesearch

    Alison Ainsworth; J. Boone Kauffman

    2009-01-01

    Wildfires are rare in the disturbance history of Hawaiian forests but may increase in prevalence due to invasive species and global climate change. We documented survival rates and adaptations facilitating persistence of native woody species following 2002–2003 wildfires in Hawaii Volcanoes National Park, Hawaii. Fires occurred during an El Niño drought and were...

  17. “Points requiring elucidation” about Hawaiian volcanism: Chapter 24

    USGS Publications Warehouse

    Poland, Michael P.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Hawaiian volcanoes, which are easily accessed and observed at close range, are among the most studied on the planet and have spurred great advances in the geosciences, from understanding deep Earth processes to forecasting volcanic eruptions. More than a century of continuous observation and study of Hawai‘i's volcanoes has also sharpened focus on those questions that remain unanswered. Although there is good evidence that volcanism in Hawai‘i is the result of a high-temperature upwelling plume from the mantle, the source composition and dynamics of the plume are controversial. Eruptions at the surface build the volcanoes of Hawai‘i, but important topics, including how the volcanoes grow and collapse and how magma is stored and transported, continue to be subjects of intense research. Forecasting volcanic activity is based mostly on pattern recognition, but determining and predicting the nature of eruptions, especially in serving the critical needs of hazards mitigation, require more realistic models and a greater understanding of what drives eruptive activity. These needs may be addressed by better integration among disciplines as well as by developing dynamic physics- and chemistry-based models that more thoroughly relate the physiochemical behavior of Hawaiian volcanism, from the deep Earth to the surface, to geological, geochemical, and geophysical data.

  18. “Points requiring elucidation” about Hawaiian volcanism

    USGS Publications Warehouse

    Poland, Michael P.

    2015-01-01

    Hawaiian volcanoes, which are easily accessed and observed at close range, are among the most studied on the planet and have spurred great advances in the geosciences, from understanding deep Earth processes to forecasting volcanic eruptions. More than a century of continuous observation and study of Hawai‘i's volcanoes has also sharpened focus on those questions that remain unanswered. Although there is good evidence that volcanism in Hawai‘i is the result of a high-temperature upwelling plume from the mantle, the source composition and dynamics of the plume are controversial. Eruptions at the surface build the volcanoes of Hawai‘i, but important topics, including how the volcanoes grow and collapse and how magma is stored and transported, continue to be subjects of intense research. Forecasting volcanic activity is based mostly on pattern recognition, but determining and predicting the nature of eruptions, especially in serving the critical needs of hazards mitigation, require more realistic models and a greater understanding of what drives eruptive activity. These needs may be addressed by better integration among disciplines as well as by developing dynamic physics- and chemistry-based models that more thoroughly relate the physiochemical behavior of Hawaiian volcanism, from the deep Earth to the surface, to geological, geochemical, and geophysical data.

  19. Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source

    NASA Technical Reports Server (NTRS)

    Stille, P.; Unruh, D. M.; Tatsumoto, M.

    1986-01-01

    The isotopic Pb, Sr, Nd, and Hf compositions of rocks from nine Hawaiian volcanos are determined using the analytical procedures described by Tatsumoto and Unruh (1976) and Patchett and Tatsumoto (1980). The results are presented in graphs, tables, and maps and characterized in detail. The mantle plume, the oceanic lithosphere, and the depleted mantle are identified as distinct sources of the Hawaiian basalts, with different mechanisms responsible for the formation of shield-building tholeiites, late-stage alkalic rocks, and posterosional basalts. The uniqueness of the Hawaiian basalts and the possibility that the Koolau end member represents an undepleted 'primitive' mantle reservoir are considered.

  20. Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source

    NASA Technical Reports Server (NTRS)

    Stille, P.; Unruh, D. M.; Tatsumoto, M.

    1986-01-01

    The isotopic Pb, Sr, Nd, and Hf compositions of rocks from nine Hawaiian volcanos are determined using the analytical procedures described by Tatsumoto and Unruh (1976) and Patchett and Tatsumoto (1980). The results are presented in graphs, tables, and maps and characterized in detail. The mantle plume, the oceanic lithosphere, and the depleted mantle are identified as distinct sources of the Hawaiian basalts, with different mechanisms responsible for the formation of shield-building tholeiites, late-stage alkalic rocks, and posterosional basalts. The uniqueness of the Hawaiian basalts and the possibility that the Koolau end member represents an undepleted 'primitive' mantle reservoir are considered.

  1. Bathymetry of the southwest flank of Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Fox, Christopher G.

    1994-01-01

    Much of the seafloor topography in the map area is on the southwest submarine flank of the currently active Mauna Loa Volcano. The benches and blocky hills shown on the map were shaped by giant landslides that resulted from instability of the rapidly growing volcano. These landslides were imagined during a 1986 to 1991 swath sonar program of the United States Hawaiian Exclusive Economic Zone, a cooperative venture by the U.S. Geological Survey and the British Institute of Oceanographic Sciences (Lipman and others, 1988; Moore and others, 1989). Dana Seamount (and probably also the neighboring Day Seamount) are apparently Cretaceous in age, based on paleomagnetic studies, and predate the growth of the Hawaiian Ridge volcanoes (Sager and Pringle, 1990).

  2. Hawaiian Goose (Branta sandvicensis)

    USGS Publications Warehouse

    Banko, Paul C.; Black, Jeffrey M.; Banko, Winston E.

    1999-01-01

    Evolving in the remote Hawaiian Archipelago and having the smallest range of any living goose, the Hawaiian Goose, or better known by its Hawaiian name—Nënë, is among the most isolated, sedentary, and threatened of waterfowl. The Nënë is also highly terrestrial, and several structural features demonstrate its adaptation to life on islands with limited freshwater habitat: It stands taller and more upright than geese of similar weight, enabling it to reach high to browse the fruits, seeds, and foliage that constitute its herbivorous diet; its legs and padded toes are long and strong, promoting swift, sure walking and running over rugged terrain; webbing is reduced between the toes; and though it is a capable swimmer and readily uses freshwater habitats when available, the Nënë does not require freshwater or oceanic habitats in the same way that many other waterfowl do.

  3. Kilauea volcano eruption seen from orbit

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.

  4. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  5. Widespread Secondary Volcanism Near Northern Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Garcia, Michael; Ito, Garrett; Weis, Dominique; Geist, Dennis; Swinnard, Lisa; Bianco, Todd; Flinders, Ashton; Taylor, Brian; Appelgate, Bruce; Blay, Chuck; Hanano, Diane; Nobre Silva, Inês; Naumann, Terry; Maerschalk, Claude; Harpp, Karen; Christensen, Branden; Sciaroni, Linda; Tagami, Taka; Yamasaki, Seiko

    2008-12-01

    Hot spot theory provides a key framework for understanding the motion of the tectonic plates, mantle convection and composition, and magma genesis. The age-progressive volcanism that constructs many chains of islands throughout the world's ocean basins is essential to hot spot theory. In contrast, secondary volcanism, which follows the main edifice-building stage of volcanism in many chains including the Hawaii, Samoa, Canary, Mauritius, and Kerguelen islands, is not predicted by hot spot theory. Hawaiian secondary volcanism occurs hundreds of kilometers away from, and more than 1 million years after, the end of the main shield volcanism, which has generated more than 99% of the volume of the volcano's mass [Macdonald et al., 1983; Ozawa et al., 2005]. Diamond Head, in Honolulu, is the first and classic example of secondary volcanism.

  6. Volcano deformation and gravity workshop synopsis and outcomes: the 2008 volcano deformation and temporal gravity change workshop

    USGS Publications Warehouse

    Dzurisin, Daniel; Lu, Zhong

    2009-01-01

    A volcano workshop was held in Washington State, near the U.S. Geological Survey (USGS) Cascades Volcano Observatory. The workshop, hosted by the USGS Volcano Hazards Program (VHP), included more than 40 participants from the United States, the European Union, and Canada. Goals were to promote (1) collaboration among scientists working on active volcanoes and (2) development of new tools for studying volcano deformation. The workshop focused on conventional and emerging techniques, including the Global Positioning System (GPS), borehole strain, interferometric synthetic aperture radar (InSAR), gravity, and electromagnetic imaging, and on the roles of aqueous and magmatic fluids.

  7. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  8. Dante's volcano

    NASA Astrophysics Data System (ADS)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  9. Application of Earthquake Subspace Detectors at Kilauea and Mauna Loa Volcanoes, Hawai`i

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Benz, H.; Yeck, W.

    2016-12-01

    Recent studies have demonstrated the capabilities of earthquake subspace detectors for detailed cataloging and tracking of seismicity in a number of regions and settings. We are exploring the application of subspace detectors at the United States Geological Survey's Hawaiian Volcano Observatory (HVO) to analyze seismicity at Kilauea and Mauna Loa volcanoes. Elevated levels of microseismicity and occasional swarms of earthquakes associated with active volcanism here present cataloging challenges due the sheer numbers of earthquakes and an intrinsically low signal-to-noise environment featuring oceanic microseism and volcanic tremor in the ambient seismic background. With high-quality continuous recording of seismic data at HVO, we apply subspace detectors (Harris and Dodge, 2011, Bull. Seismol. Soc. Am., doi: 10.1785/0120100103) during intervals of noteworthy seismicity. Waveform templates are drawn from Magnitude 2 and larger earthquakes within clusters of earthquakes cataloged in the HVO seismic database. At Kilauea, we focus on seismic swarms in the summit caldera region where, despite continuing eruptions from vents in the summit region and in the east rift zone, geodetic measurements reflect a relatively inflated volcanic state. We also focus on seismicity beneath and adjacent to Mauna Loa's summit caldera that appears to be associated with geodetic expressions of gradual volcanic inflation, and where precursory seismicity clustered prior to both Mauna Loa's most recent eruptions in 1975 and 1984. We recover several times more earthquakes with the subspace detectors - down to roughly 2 magnitude units below the templates, based on relative amplitudes - compared to the numbers of cataloged earthquakes. The increased numbers of detected earthquakes in these clusters, and the ability to associate and locate them, allow us to infer details of the spatial and temporal distributions and possible variations in stresses within these key regions of the volcanoes.

  10. Two views of Hawaiian plume structure

    NASA Astrophysics Data System (ADS)

    Hofmann, Albrecht W.; Farnetani, Cinzia G.

    2013-12-01

    Fundamentally contradictory interpretations of the isotopic compositions of Hawaiian basalts persist, even among authors who agree that the Hawaiian hotspot is caused by a deep-mantle plume. One view holds that the regional isotopic pattern of the volcanoes reflects large-scale heterogeneities in the basal thermal boundary layer of the mantle. These are drawn into the rising plume conduit, where they are vertically stretched and ultimately sampled by volcanoes. The alternative view is that the plume resembles a "uniformly heterogeneous plum pudding," with fertile plums of pyroxenite and/or enriched peridotite scattered in a matrix of more refractory peridotite. In a rising plume, the plums melt before the matrix, and the final melt composition is controlled significantly by the bulk melt fraction. Here we show that the uniformly heterogeneous plum pudding model is inconsistent with several geochemical observations: (1) the relative melt fractions inferred from La/Yb ratios in shield-stage basalts of the two parallel (Kea- and Loa-) volcanic chains, (2) the systematic Pb-isotopic differences between the chains, and the absence of such differences between shield and postshield phases, (3) the systematic shift to uniformly depleted Nd-isotopic compositions during rejuvenated volcanism. We extend our previous numerical simulation to the low melt production rates calculated far downstream (200-400 km) from shield volcanism. Part of these melts, feeding rejuvenated volcanism, are formed at pressures of ˜5 GPa in the previously unmelted underside of the plume, from material that originally constituted the uppermost part of the thermal boundary layer at the base of the mantle.

  11. Volcano Infrasound

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Fee, D.; Matoza, R. S.

    2013-12-01

    Open-vent volcanoes generate prodigious low frequency sound waves that tend to peak in the infrasound (<20 Hz) band. These long wavelength (> ~20 m) atmospheric pressure waves often propagate long distances with low intrinsic attenuation and can be well recorded with a variety of low frequency sensitive microphones. Infrasound records may be used to remotely monitor eruptions, identify active vents or track gravity-driven flows, and/or characterize source processes. Such studies provide information vital for both scientific study and volcano monitoring efforts. This presentation proposes to summarize and standardize some of the terminology used in the still young, yet rapidly growing field of volcano infrasound. Herein we suggest classification of typical infrasound waveform types, which include bimodal pulses, blast (or N-) waves, and a variety of infrasonic tremors (including broadband, harmonic, and monotonic signals). We summarize various metrics, including reduced pressure, intensity, power, and energy, in which infrasound excess pressures are often quantified. We also describe the spectrum of source types and radiation patterns, which are typically responsible for recorded infrasound. Finally we summarize the variety of propagation paths that are common for volcano infrasound radiating to local (<10 km), regional (out to several hundred kilometers), and global distances. The effort to establish common terminology requires community feedback, but is now timely as volcano infrasound studies proliferate and infrasound becomes a standard component of volcano monitoring.

  12. Carnegie Observatories

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Carnegie Observatories were founded in 1902 by George Ellery Hale. Their first facility was the MOUNT WILSON OBSERVATORY, located in the San Gabriel Mountains above Pasadena, California. Originally a solar observatory, it moved into stellar, galactic and extragalactic research with the construction of the 60 in (1.5 m), and 100 in (2.5 m) telescopes, each of which was the largest in the world...

  13. An olivine-free mantle source of Hawaiian shield basalts.

    PubMed

    Sobolev, Alexander V; Hofmann, Albrecht W; Sobolev, Stephan V; Nikogosian, Igor K

    2005-03-31

    More than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are inconsistent with a deep olivine-bearing source, because this mineral together with pyroxene buffers both nickel and silicon at lower levels. This can be resolved if the olivine of the mantle peridotite is consumed by reaction with melts derived from recycled oceanic crust, to form a secondary pyroxenitic source. Our modelling shows that more than half of Hawaiian magmas formed during the past 1 Myr came from this source. In addition, we estimate that the proportion of recycled (oceanic) crust varies from 30 per cent near the plume centre to insignificant levels at the plume edge. These results are also consistent with volcano volumes, magma volume flux and seismological observations.

  14. Growth History of Kaena Volcano, the Isolated, Dominantly Submarine, Precursor Volcano to Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.; Eason, D. E.

    2014-12-01

    The construction of O'ahu began with the recently recognized, ~3.5-4.9 Ma Ka'ena Volcano, as an isolated edifice in the Kaua'i Channel. Ka'ena remained submarine until, near the end of its lifetime as magma supply waned and the volcano transitioned to a late-shield stage of activity, it emerged to reach a maximum elevation of ~1000 m above sea level. We estimate that Ka'ena was emergent only for the last 15-25% of its lifespan, and that subaerial lavas make up < 5% of the total volume (20-27 x 103 km3). O'ahu's other volcanoes, Wai'anae (~3.9-2.85 Ma) and Ko'olau (~3.0-1.9 Ma), were built at least partly on the flanks of earlier edifices and both were active subaerial volcanoes for at least 1 Ma. The constructional history of Ka'ena contrasts with that of Wai'anae, Ko'olau, and many other Hawaiian volcanoes, which likely emerge within a few hundred kyr after inception, and with subaerial lavas comprising up to 35 volume % of the volcano. These relations suggest that volcano growth history and morphology are critically dependent on whether volcanic initiation and growth occur in the deep ocean floor (isolated), or on the flanks of pre-existing edifices. Two other volcanoes that likely formed in isolation are West Moloka'i and Kohala, both of which have long submarine rift zones, and neither attained great heights above sea level despite having substantial volume. The partitioning of volcanism between submarine and subaerial volcanism depends on the distance between volcanic centers, whether new volcanoes initiate on the flanks of earlier ones, and the time over which neighboring volcanoes are concurrently active. Ka'ena might represent an end-member in this spectrum, having initiated far from its next oldest neighbor and completed much of its evolution in isolation.

  15. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  16. Observatories: History

    NASA Astrophysics Data System (ADS)

    Krisciunas, K.; Murdin, P.

    2000-11-01

    An astronomical OBSERVATORY is a building, installation or institution dedicated to the systematic and regular observation of celestial objects for the purpose of understanding their physical nature, or for purposes of time reckoning and keeping the calendar. At a bona fide observatory such work constitutes a main activity, not just an incidental one. While the ancient Egyptians, Babylonians, Chi...

  17. Amateur Observatories

    NASA Astrophysics Data System (ADS)

    Gavin, M.

    1997-08-01

    A roundup of amateur observatories in this country and abroad, with construction and location details, concluding with a detailed description and architect's drawing of the author's own observatory at Worcester Park, Surrey. The text of the 1996 Presidential Address to the British Astronomical Association.

  18. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    SciTech Connect

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  19. Catalogue of Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  20. The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi Seamount, Hawaii

    USGS Publications Warehouse

    Staudigel, H.; Zindler, A.; Hart, S.R.; Leslie, T.; Chen, C.-Y.; Clague, D.

    1984-01-01

    Sr, Nd, and Pb isotope ratios for a representative suite of 15 basanites, alkali basalts, transitional basalts and tholeiites from Loihi Seamount, Hawaii, display unusually large variations for a single volcano, but lie within known ranges for Hawaiian basalts. Nd isotope ratios in alkali basalts show the largest relative variation (0.51291-0.51305), and include the nearly constant tholeiite value ( ??? 0.51297). Pb isotope ratios show similarly large ranges for tholeiites and alkali basalts and continue Tatsumoto's [31] "Loa" trend towards higher 206Pb 204Pb ratios, resulting in a substantial overlap with the "Kea" trend. 206Pb 204Pb ratios for Loihi and other volcanoes along the Loa and Kea trends [31] are observed to correlate with the age of the underlying lithosphere suggesting lithosphere involvement in the formation of Hawaiian tholeiites. Loihi lavas display no correlation of Nd, Sr, or Pb isotope ratios with major element compositions or eruptive age, in contrast with observations of some other Hawaiian volcanoes [38]. Isotope data for Loihi, as well as average values for Hawaiian volcanoes, are not adequately explained by previously proposed two-end-member models; new models for the origin and the development of Hawaiian volcanoes must include mixing of at least three geochemically distinct source regions and allow for the involvement of heterogeneous oceanic lithosphere. ?? 1984.

  1. Hawaiian Island Archipelago

    NASA Image and Video Library

    1985-06-24

    The entire Hawaiian Island Archipelago (21.5N, 158.0W) is seen in this single view. The islands are a favorite international resort and tourist attraction drawing visitors from all over the world to enjoy the tropical climate, year round beaches and lush island flora. Being volcanic in origin, the islands' offer a rugged landscape and on the big island of Hawaii, there is still an occasional volcanic eruption of lava flows and steam vents.

  2. Hawaiian Island Archipelago

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The entire Hawaiian Island Archipelago (21.5N, 158.0W) is seen in this single view. The islands are a favorite international resort and tourist attraction drawing visitors from all over the world to enjoy the tropical climate, year round beaches and lush island flora. Being volcanic in origin, the islands' offer a rugged landscape and on the big island of Hawaii, there is still an occasional volcanic eruption of lava flows and steam vents.

  3. Geochemical Systematics of Hawaiian Post-shield Lavas: Implications for the Chemical Structure of the Hawaiian Mantle Plume

    NASA Astrophysics Data System (ADS)

    Hanano, D.; Weis, D.; Aciego, S.; Scoates, J. S.; Depaolo, D. J.

    2005-12-01

    High-precision Pb and Hf isotopic ratios by MC-ICP-MS and trace element concentrations by HR-ICP-MS of lavas forming Hawaiian volcanoes allow for new perspectives in the study of the source components associated with the Hawaiian mantle plume. In particular, late-stage lavas represent small-volume eruptions and small degrees of melting, and can provide better resolution of the geochemical heterogeneities in the plume. This study involves post-shield lavas from the Mauna Kea, Kohala, and Hualalai volcanoes on the island of Hawaii. Lavas from these specific volcanoes provide information about the region in which the plume is being deflected and sheared to the northwest by the movement of the Pacific plate. Pb isotopic compositions from Hualalai are the least radiogenic with 206Pb/204Pb = 17.888-18.028, compared to 18.343-18.408 for Mauna Kea and 18.286-18.439 for Kohala, which is consistent with each volcano belonging to their respective Loa-Kea Pb trends. Mauna Kea post-shield lavas are less radiogenic in Pb than the shield and post-shield Mauna Kea lavas from HSDP-2, showing a systematic decrease as the volcano evolved from the shield to post-shield stage. A similar trend is observed between the tholeiites and alkaline lavas of Hualalai, while the opposite trend is observed for Kohala. Hualalai and Kohala post-shield lavas form linear arrays in Pb-Pb space with their respective tholeiites, indicating an origin from the same source. However, the relative proportions of the components involved in the genesis of the post-shield lavas appear to be different. Mauna Kea post-shield lavas lie along the lower extension of the Kea-lo8 array of HSDP-2 (Eisele et al., 2003), distinct from older (350-550 kyr) Mauna Kea lavas and recent Kilauea lavas (Abouchami et al., 2005). The low 206Pb/204Pb ratios of Hualalai post-shield lavas are indicative of a unique component in that volcano. The Pb isotopic compositions of the post-shield lavas are thus sampling isotopically distinct

  4. Native gold in Hawaiian alkalic magma

    USGS Publications Warehouse

    Sisson, T.W.

    2003-01-01

    Native gold found in fresh basanite glass from the early submarine phase of Kilauea volcano, Hawaii, may be the first documented case of the transport of gold as a distinct precious metal phase in a mantle-derived magma. The gold-bearing glass is a grain in bedded volcanic glass sandstone (Japan Marine Science and Technology Center (JAMSTEC) sample S508-R3) collected by the submersible Shinkai 6500 at 3879 m depth off Kilauea's south flank. Extensive outcrops there expose debris-flow breccias and sandstones containing submarine-erupted alkalic rock fragments and glasses from early Kilauea. Precipitation of an immiscible gold liquid resulted from resorption of magmatic sulfides during crystallization-differentiation, with consequent liberation of sulfide-hosted gold. Elevated whole-rock gold concentrations (to 36 ppb) for fresh lavas and clasts from early Kilauea further show that some magmas erupted at the beginning stages of Hawaiian shield volcanoes were distinctly gold rich, most likely owing to limited residual sulfide in their mantle source. Alkalic magmas at other ocean islands may also be gold rich, and oceanic hot-spot provinces may contain underappreciated gold resources.

  5. Syrian Volcano

    NASA Technical Reports Server (NTRS)

    2006-01-01

    23 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small volcano in the Syria Planum region of Mars. Today, the lava flows that compose this small volcano are nearly hidden by a mantle of rough-textured, perhaps somewhat cemented, dust. The light-toned streaks that cross the scene were formed by passing dust devils, a common occurrence in Syria.

    Location near: 13.0oS, 102.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  6. Syrian Volcano

    NASA Technical Reports Server (NTRS)

    2006-01-01

    23 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small volcano in the Syria Planum region of Mars. Today, the lava flows that compose this small volcano are nearly hidden by a mantle of rough-textured, perhaps somewhat cemented, dust. The light-toned streaks that cross the scene were formed by passing dust devils, a common occurrence in Syria.

    Location near: 13.0oS, 102.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  7. Chilean Volcanoes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On the border between Chile and the Catamarca province of Argentina lies a vast field of currently dormant volcanoes. Over time, these volcanoes have laid down a crust of magma roughly 2 miles (3.5 km) thick. It is tinged with a patina of various colors that can indicate both the age and mineral content of the original lava flows. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on May 15, 1999. This is a false-color composite image made using shortwave infrared, infrared, and green wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  8. From Purgatory to Paradise: The Volatile Life of Hawaiian Magma

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.

    2014-12-01

    Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in Hawaiian lavas reveal key processes within a deep-seated mantle plume (e.g., mantle heterogeneity, source lithology, partial melting, and magma degassing). Shield-stage Hawaiian lavas likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes (e.g., 206Pb/204Pb). The mantle source region may also be heterogeneous with respect to volatile contents, yet the link between pre-eruptive volatile budgets and mantle source lithology in the Hawaiian plume is poorly constrained due to shallow magmatic degassing and mixing. Here, we use a novel approach to investigate this link using Os isotopic ratios, and major, trace, and volatile elements in olivines and mineral-hosted melt inclusions (MIs) from 34 samples from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi. These samples reveal a strong correlation between volatile contents in olivine-hosted MIs and Os isotopes of the same olivines, in which lavas that originated from greater proportions of recycled oceanic crust/pyroxenite (i.e. 'Loa' chain volcanoes: Koolau, Mauna Loa, Loihi) have MIs with the lower H2O, F, and Cl contents than 'Kea' chain volcanoes (i.e. Kilauea) that contain greater amounts of peridotite in the source region. No correlation is observed with CO2 or S. The depletion of fluid-mobile elements (H2O, F, and Cl) in 'Loa' chain volcanoes indicates ancient dehydrated oceanic crust is a plume component that controls much of the compositional variation of Hawaiian Volcanoes. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes the mafic part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [1,2]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other

  9. Culture Studies: Hawaiian Studies Project.

    ERIC Educational Resources Information Center

    Hazama, Dorothy, Ed.

    Reports and materials from the Hawaiian Studies Project are presented. The document, designed for elementary school teachers contains two major sections. The first section describes the planning phase of the project, the Summer Institute for Hawaiian Culture Studies (1976) and the follow-up workshops and consultant help (1976-77). The appendix to…

  10. Prosodic Features of Hawaiian English

    ERIC Educational Resources Information Center

    Vanderslice, Ralph; Pierson, Laura Shun

    1967-01-01

    This paper describes a "neglected" aspect of Hawaiian ("Pidgin") English--the suprasegmental or prosodic features. Illustrated by contrastive samples of Hawaiian American English (HAE) and General American English (GAE), the salient prosodic features are presented as follows--(1) syllable-timed rhythm, modified by emphatic…

  11. Digital data set of volcano hazards for active Cascade Volcanos, Washington

    USGS Publications Warehouse

    Schilling, Steve P.

    1996-01-01

    Scientists at the Cascade Volcano Observatory have completed hazard assessments for the five active volcanos in Washington. The five studies included Mount Adams (Scott and others, 1995), Mount Baker (Gardner and others, 1995), Glacier Peak (Waitt and others, 1995), Mount Rainier (Hoblitt and others, 1995) and Mount St. Helens (Wolfe and Pierson, 1995). Twenty Geographic Information System (GIS) data sets have been created that represent the hazard information from the assessments. The twenty data sets have individual Open File part numbers and titles

  12. Age, geochemistry and melt flux variations for the Hawaiian Ridge

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Weis, D. A.; Greene, A. R.; Wessel, P.; Harrison, L.; Tree, J.

    2012-12-01

    The Hawaiian Ridge portion of the Hawaiian-Emperor Chain, the classic example of a mantle plume produced linear island chain, is 6000 km in length, active for 80+ Myr, and tectonically simple. Despite its importance to our understanding of mantle plumes and Cenozoic plate motion, there are large data gaps for the age and geochemistry of lavas from volcanoes along the Hawaiian Ridge (HR) portion of the Chain. Ages: Only volcanoes near the Hawaiian-Emperor bend and in the Hawaiian Islands have modern Ar-Ar ages, leaving a gap of 2000 km where existing K-Ar ages suggest synchronous volcanism over a 1000 km section. Geochemistry: There is a 2900 km gap in high precision geochemical data for the HR. The Emperor Seamounts (>45 Ma) have better regional coverage of recent isotopic data and show a correlation of Sr isotope composition with age of the underlying oceanic lithosphere (Regelous et al. 2003). The HR has an unexplained, exponential increase in magma flux over the last 30 Myr (Vidal & Bonneville 2004). Potential explanations for the increase in magma flux include: changes in melting conditions (temperature and/or pressure), change in source fertility related to rock type (pyroxenite vs. peridotite) or previous melting history, and/or changes in plate stresses resulting from reconfigurations of plate motion. Our new multi-disciplinary project will: 1) Determine 40Ar/39Ar ages, and whole-rock major, trace element, and Pb, Sr, Nd and Hf isotopic geochemistry for lavas from 20 volcanoes spanning ~2150 km of the HR (NW of the Hawaiian Islands). 2) Use the geochemical data to determine the long-term evolution of the Hawaiian mantle plume source components and to evaluate whether there have been systematic variations in mantle potential temperature, melting pressure, and/or source lithology during the creation of the HR. If so, are they responsible for the 300% variation in melt production along the Ridge? Also, we will assess when the more fertile Loa source component

  13. Volcano Hazards Program

    USGS Publications Warehouse

    Venezky, Dina Y.; Myers, Bobbie; Driedger, Carolyn

    2008-01-01

    Diagram of common volcano hazards. The U.S. Geological Survey Volcano Hazards Program (VHP) monitors unrest and eruptions at U.S. volcanoes, assesses potential hazards, responds to volcanic crises, and conducts research on how volcanoes work. When conditions change at a monitored volcano, the VHP issues public advisories and warnings to alert emergency-management authorities and the public. See http://volcanoes.usgs.gov/ to learn more about volcanoes and find out what's happening now.

  14. Taosi Observatory

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  15. Wise Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Wise Observatory, in Mitzpe Ramon, Israel, is owned and operated by Tel Aviv University, and has a well-equipped 1 m telescope. Since construction in 1971, the large percentage of clear nights at its desert site and its unique longitude have made the observatory particularly useful for long-term monitoring projects (e.g. reverberation mapping of quasars and active galaxies), and as a part of glo...

  16. Nyiragonga Volcano

    NASA Image and Video Library

    2002-02-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue. http://photojournal.jpl.nasa.gov/catalog/PIA03462

  17. Klyuchevskaya Volcano

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Klyuchevskaya Volcano on Russia's Kamchatka Peninsula continued its ongoing activity by releasing another plume on May 24, 2007. The same day, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image, at 01:00 UTC. In this image, a hotspot marks the volcano's summit. Outlined in red, the hotspot indicates where MODIS detected unusually warm surface temperatures. Blowing southward from the summit is the plume, which casts its shadow on the clouds below. Near the summit, the plume appears gray, and it lightens toward the south. With an altitude of 4,835 meters (15,863 feet), Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) is both the highest and most active volcano on the Kamchatka Peninsula. As part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Klyuchevskaya is estimated to have experienced more than 100 flank eruptions in the past 3,000 years. Since its formation 6,000 years ago, the volcano has seen few periods of inactivity. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC. The Rapid Response Team provides daily images of this region.

  18. Chikurachki Volcano

    Atmospheric Science Data Center

    2013-04-16

    ... southeast. The darker areas of the plume typically indicate volcanic ash, while the white portions of the plume indicate entrained water droplets and ice. According to the Kamchatkan Volcanic Eruptions Response Team (KVERT), the temperature of the plume near the volcano ...

  19. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Melting model of Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Takahashi, E.; Gao, S.

    2015-12-01

    Eclogite component entrained in ascending plume is considered to be essentially important in producing flood basalts (e.g., Columbia River basalt, Takahashi et al., 1998 EPSL), alkalic OIBs (e.g., Kogiso et al.,2003), ferro-picrites (Tuff et al.,2005) and Hawaiian shield lavas (e.g., Hauri, 1996; Takahashi & Nakajima, 2002, Sobolev et al.,2005). Size of the entrained eclogite, which controls the reaction rates with ambient peridotite, however, is very difficult to constrain using geophysical observation. Among Hawaiian shield volcanoes, Koolau is the most enriched end-member in eclogite component (Frey et al, 1994). Reconstruction of Koolau volcano based on submarine study on Nuuanu landslide (AGU Monograph vol.128, 2002, Takahashi Garcia Lipman eds.) revealed that silica-rich tholeiite appeared only at the last stage (Makapuu stage) of Koolau volcano. Chemical compositions of lavas as well as isotopes change abruptly and coherently across a horizon (Shinozaki et al. and Tanaka et al. ibid.). Based on these observation, Takahashi & Nakajima (2002 ibid) proposed that the Makapuu stage lava in Koolau volcano was supplied from a single large eclogite block. In order to study melting process in Hawaiian plume, high-pressure melting experiments were carried out under dry and hydrous conditions with layered eclogite/peridotite starting materials. Detail of our experiments will be given by Gao et al (2015 AGU). Combined previous field observation with new set of experiments, we propose that variation in SiO2 among Hawaiian tholeiites represent varying degree of wall-rock interaction between eclogite and ambient peridotite. Makapuu stage lavas in Koolau volcano represents eclogite partial melts formed at ~3 GPa with various amount of xenocrystic olivines derived from Pacific plate. In other words, we propose that "primary magma" in the melting column of Hawaiian plume ranges from basaltic andesite to ferro-picrite depending on the lithology of the source. Solidus of

  20. Smithsonian Volcano Data on Google Earth

    NASA Astrophysics Data System (ADS)

    Venzke, E.; Siebert, L.; Luhr, J. F.

    2006-12-01

    Interactive global satellite imagery datasets such as hosted by Google Earth provide a dynamic platform for educational outreach in the Earth Sciences. Users with widely varied backgrounds can easily view geologic features on a global-to-local scale, giving access to educational background on individual geologic features or events such as volcanoes and earthquakes. The Smithsonian Institution's Global Volcanism Program (GVP) volcano data became available as a Google Earth layer on 11 June 2006. Locations for about 1550 volcanoes with known or possible Holocene activity are shown as red triangles with associated volcano names that appear when zooming in to a regional-scale view. Clicking on a triangle opens an informational balloon that displays a photo, geographic data, and a brief paragraph summarizing the volcano's geologic history. The balloon contains links to a larger version of the photo with credits and a caption and to more detailed information on the volcano, including eruption chronologies, from the GVP website. Links to USGS and international volcano observatories or other websites focusing on regional volcanoes are also provided, giving the user ready access to a broad spectrum of volcano data. Updates to the GVP volcano layer will be provided to Google Earth. A downloadable file with the volcanoes organized regionally is also available directly from the GVP website (www.volcano.si.edu) and provides the most current volcano data set. Limitations of the implied accuracy of spacially plotted data at high zoom levels are also apparent using platforms such as Google Earth. Real and apparent mismatches between plotted locations and the summits of some volcanoes seen in Google Earth satellite imagery occur for reasons including data precision (deg/min vs. deg/min/sec) and the GVP convention of plotting the center-point of large volcanic fields, which often do not correspond to specific volcanic vents. A more fundamental problem originates from the fact that

  1. Eruption of Alaska volcano breaks historic pattern

    USGS Publications Warehouse

    Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.

    2009-01-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  2. Restoration of Native Hawaiian Dryland Forest at Auwahi, Maui

    USGS Publications Warehouse

    Medieros, Arthur C.; vonAllmen, Erica

    2006-01-01

    BACKGROUND The powerful volcanoes that formed the high islands of the Hawaiian archipelago block northeasterly tradewinds, creating wet, windward rain forests and much drier, leeward forests. Dryland forests in Hawai'i receive only about 20 inches of rain a year. However, the trees in these forests intercept fog and increase ground moisture levels, thereby enabling these seemingly inhospitable habitats to support a diverse assemblage of plants and animals. Dryland forests of the Hawaiian Islands, like those worldwide, have been heavily impacted by humans both directly and indirectly. Less than 10% of Hawai'i's original dryland forest habitat remains. These forests have been severely impacted by urban development, ranching and agriculture, and invasive species. In particular, browsing animals and alien grasses have caused significant damage. Feral ungulates, including goats, sheep, cattle, and pigs, consume sensitive plants. Alien grasses have become dominant in the understory in many dryland habitats. In addition, these introduced grasses are fire-adapted and have increased the incidence of wildfire in these ecosystems. Native Hawaiian plants did not evolve with frequent fires or mammalian herbivores and typically do not survive well under these pressures.

  3. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  4. Seismic tomography of compressional wave attenuation structure for Kı¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing; Shearer, Peter M.; Amelung, Falk; Okubo, Paul G.

    2015-04-01

    We present a frequency-independent three-dimensional (3-D) compressional wave attenuation model (indicated by the reciprocal of quality factor Qp) for Kı¯lauea Volcano in Hawai`i. We apply the simul2000 tomographic algorithm to the attenuation operator t* values for the inversion of Qp perturbations through a recent 3-D seismic velocity model and earthquake location catalog. The t* values are measured from amplitude spectra of 26708 P wave arrivals of 1036 events recorded by 61 seismic stations at the Hawaiian Volcanology Observatory. The 3-D Qp model has a uniform horizontal grid spacing of 3 km, and the vertical node intervals range between 2 and 10 km down to 35 km depth. In general, the resolved Qp values increase with depth, and there is a correlation between seismic activity and low-Qp values. The area beneath the summit caldera is dominated by low-Qp anomalies throughout the entire resolved depth range. The Southwest Rift Zone and the East Rift Zone exhibit very high Qp values at about 9 km depth, whereas the shallow depths are characterized with low-Qp anomalies comparable with those in the summit area. The seismic zones and fault systems generally display relatively high Qp values relative to the summit. The newly developed Qp model provides an important complement to the existing velocity models for exploring the magmatic system and evaluating and interpreting intrinsic physical properties of the rocks in the study area.

  5. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  6. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  7. Mating asymmetry and the direction of evolution in the Hawaiian cricket genus Laupala.

    PubMed

    Shaw, K L; Lugo, E

    2001-03-01

    Based on studies from native Hawaiian Drosophila, a model was proposed to explain sexual isolation and mating asymmetry, from which one could potentially infer the 'direction of evolution'. We examined sexual isolation between allopatric cricket species of the genus Laupala, another endemic Hawaiian insect with an elaborate mating system, to begin to explore the nature of sexual isolation and mating asymmetry in closely related Hawaiian organisms. We studied sexual isolation and mating asymmetry in two contrasts. First, an inter-island comparison, including L. makaio from the older island of Maui and L. paranigra from the younger island of Hawaii, and second, an intra-island (Hawaii) comparison, including L. nigra from the older volcano of Mauna Kea and L. paranigra with a primary distribution on the younger volcanoes of Mauna Loa and Kilauea. We used a 'no-choice' experimental design, pairing individual males and females in homospecific or heterospecific combinations. Several behavioural aspects of courtship (proportion of male singing, latency to male singing, production of spermatophores and courtship initiation speed) were quantified as well as the success or failure of matings. We demonstrate asymmetry in sexual isolation between reciprocal combinations of L. makaio and L. paranigra. This result is examined in light of the differences in courtship behaviour manifest in the experiments with these two species. We did not find evidence of asymmetry in sexual isolation between L. nigra and L. paranigra, although differences in courtship initiation speed were evident between reciprocal combinations of these two species. In addition to the geological argument that species on older islands and older volcanoes give rise to species on younger islands and younger volcanoes, we discuss phylogenetic evidence consistent with these biogeographic hypotheses of relationships among the focal taxa. The patterns of asymmetrical sexual isolation and mating asymmetry are

  8. Calculated geochronology and stress field orientations along the Hawaiian chain

    USGS Publications Warehouse

    Jackson, E.D.; Shaw, H.R.; Bargar, K.E.

    1975-01-01

    A new method has been discovered for calculating ages of the main shield building stages of volcanoes along the Hawaiian chain from Kilauea to the Hawaiian-Emperor bend. The method is based on a graphical technique for hypothetical subtraction of distance intervals that theoretically represent regions of simultaneous volcanism along adjacent or nearly en-echelon loci of volcanism. Distances along the chain, measured from Kilauea, when progressively foreshortened by the distances of hypothetical "collapse" and plotted versus existing age data are found to give linear age-distance relationships. A calibration graph is presented that agrees closely with the measured ages in 17 of the 20 existing dated volcanoes. The criterion for simultaneous activity on different loci is based on the concept of equal azimuths of synchronous volcanic propagation within coeval segments of the chain. This is the predicted relationship when magmatic fluids inject the lithosphere along directions normal to a nearly horizontal least principal stress. It appears that the Pacific plate has been subjected to oscillatory, but principally clockwise, rotations of horizontal stress components during the last 40 m.y. ?? 1975.

  9. The Kea- and Loa- trends and magma genesis in the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Ingle, S.; Takahashi, E.; Hirano, N.; Hirata, T.; Tatsumi, Y.

    2005-12-01

    The Hawaiian-Emperor volcanic island and seamount chain has been created by a hot mantle plume located beneath the Pacific lithosphere. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear parallel trends, termed _eKea_Eand _eLoa_E(Jackson et al., 1972). Lavas from these two trends are commonly believed to have different geochemical characteristics (Tatsumoto, 1978; Frey et al., 1994; Hauri, 1996; Lassiter et al., 1996; Abouchami et al., 2005). The Kea- and Loa- geochemical trends within the Hawaiian shield volcanoes have been interpreted to reflect melting above a compositionally concentrically zoned (Hauri, 1996; Lassiter et al., 1996; Kurz et al., 1996; DePaolo et al., 2001) or compositionally left-right asymmetrically zoned mantle plume (Abouchami et al., 2005). In order to evaluate the homogeneity of the mantle plume source sampled by the Kea- and Loa- trends, we analyzed major and trace element compositions of olivine-hosted melt inclusions from Hawaiian shield lavas, using EPMA and Laser ICP-MS. We selected lava samples form submarine Hana Ridge, Haleakala volcano (Kea trend) and submarine exposures of the Makapuu stage, Koolau volcano (Loa trend), respectively. We found both Kea- and Loa-like major and trace element compositions from olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes, even within single rock samples. We infer from these data that although one mantle source component may dominate a single lava flow, the two (or more) mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. On the basis of whole rock geochemical characteristics (Ren et al., J. pet., 2004; 2005) combined with the melt inclusion data (Ren et al., 2005, Nature), we propose a Hawaiian mantle plume characterized by more random heterogeneity than would be present in a simple compositionally zoned mantle plume. The geochemical differences in

  10. MATLAB tools for improved characterization and quantification of volcanic incandescence in Webcam imagery; applications at Kilauea Volcano, Hawai'i

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.; Antolik, Loren

    2010-01-01

    Webcams are now standard tools for volcano monitoring and are used at observatories in Alaska, the Cascades, Kamchatka, Hawai'i, Italy, and Japan, among other locations. Webcam images allow invaluable documentation of activity and provide a powerful comparative tool for interpreting other monitoring datastreams, such as seismicity and deformation. Automated image processing can improve the time efficiency and rigor of Webcam image interpretation, and potentially extract more information on eruptive activity. For instance, Lovick and others (2008) provided a suite of processing tools that performed such tasks as noise reduction, eliminating uninteresting images from an image collection, and detecting incandescence, with an application to dome activity at Mount St. Helens during 2007. In this paper, we present two very simple automated approaches for improved characterization and quantification of volcanic incandescence in Webcam images at Kilauea Volcano, Hawai`i. The techniques are implemented in MATLAB (version 2009b, Copyright: The Mathworks, Inc.) to take advantage of the ease of matrix operations. Incandescence is a useful indictor of the location and extent of active lava flows and also a potentially powerful proxy for activity levels at open vents. We apply our techniques to a period covering both summit and east rift zone activity at Kilauea during 2008?2009 and compare the results to complementary datasets (seismicity, tilt) to demonstrate their integrative potential. A great strength of this study is the demonstrated success of these tools in an operational setting at the Hawaiian Volcano Observatory (HVO) over the course of more than a year. Although applied only to Webcam images here, the techniques could be applied to any type of sequential images, such as time-lapse photography. We expect that these tools are applicable to many other volcano monitoring scenarios, and the two MATLAB scripts, as they are implemented at HVO, are included in the appendixes

  11. High-precision relocation of long-period events beneath the summit region of Kı̄lauea Volcano, Hawai‘i, from 1986 to 2009

    USGS Publications Warehouse

    Matoza, Robin S.; Shearer, Peter M.; Okubo, Paul G.

    2016-01-01

    Long-period (0.5–5 Hz, LP) seismicity has been recorded for decades in the summit region of Kı̄lauea Volcano, Hawai‘i, and is postulated as linked with the magma transport and shallow hydrothermal systems. To better characterize its spatiotemporal occurrence, we perform a systematic analysis of 49,030 seismic events occurring in the Kı̄lauea summit region from January 1986 to March 2009 recorded by the ∼50-station Hawaiian Volcano Observatory permanent network. We estimate 215,437 P wave spectra, considering all events on all stations, and use a station-averaged spectral metric to consistently classify LP and non-LP seismicity. We compute high-precision relative relocations for 5327 LP events (43% of all classified LP events) using waveform cross correlation and cluster analysis with 6.4 million event pairs, combined with the source-specific station term method. The majority of intermediate-depth (5–15 km) LPs collapse to a compact volume, with remarkable source location stability over 23 years indicating a source process controlled by geological or conduit structure.

  12. Activity at Shiveluch Volcano

    NASA Image and Video Library

    2017-09-27

    NASA image acquired Sept 7, 2010 Shiveluch (also spelled Sheveluch) is one of the largest and most active volcanoes on Russia’s Kamchatka Peninsula. It has been spewing ash and steam intermittently—with occasional dome collapses, pyroclastic flows, and lava flows, as well—for the past decade. Shiveluch is a stratovolcano, a steep-sloped formation of alternating layers of hardened lava, ash, and rocks thrown out by earlier eruptions. A lava dome has been growing southwest of the 3,283-meter (10,771-foot) summit. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite acquired this image on September 7, 2010. Brown and tan debris—perhaps ash falls, perhaps mud from lahars—covers the southern landscape of the volcano, while the hills on the northern side remain covered in snow and ice. The Kamchatkan Volcanic Eruption Response Team (KVERT) reported that seismic activity at Shiveluch was "above background levels" from September 3-10. Ash plumes rose to an altitude of 6.5 kilometers (21,300 feet) on September 3-4, and gas-and-ash plumes were reported on September 7, when this image was acquired. According to the Smithsonian Institution's volcano program, at least 60 large eruptions of Shiveluch have occurred during the current Holocene Epoch of geological history. Intermittent explosive eruptions began in the 1990s, and the largest historical eruptions from Shiveluch occurred in 1854 and 1964. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Mike Carlowicz. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on

  13. A scale for ranking volcanoes by risk

    NASA Astrophysics Data System (ADS)

    Scandone, Roberto; Bartolini, Stefania; Martí, Joan

    2016-01-01

    We propose a simple volcanic risk coefficient (VRC) useful for comparing the degree of risk arising from different volcanoes, which may be used by civil protection agencies and volcano observatories to rapidly allocate limited resources even without a detailed knowledge of each volcano. Volcanic risk coefficient is given by the sum of the volcanic explosivity index (VEI) of the maximum expected eruption from the volcano, the logarithm of the eruption rate, and the logarithm of the population that may be affected by the maximum expected eruption. We show how to apply the method to rank the risk using as examples the volcanoes of Italy and in the Canary Islands. Moreover, we demonstrate that the maximum theoretical volcanic risk coefficient is 17 and pertains to the large caldera-forming volcanoes like Toba or Yellowstone that may affect the life of the entire planet. We develop also a simple plugin for a dedicated Quantum Geographic Information System (QGIS) software to graphically display the VRC of different volcanoes in a region.

  14. Dudley Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Dudley Observatory, in Schenectady, New York, is a private foundation supporting research and education in astronomy, astrophysics and the history of astronomy. Chartered in 1852, it is the oldest organization in the US, outside academia and government, dedicated to the support of astronomical research. For more than a century it was a world leader in astrometry, with such achievements as pub...

  15. Bathymetry of southern Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Garcia, Michael O.; Fox, Christopher G.

    1993-01-01

    Manua Loa, the largest volcano on Earth, lies largely beneath the sea, and until recently only generalized bathymetry of this giant volcano was available. However, within the last two decades, the development of multibeam sonar and the improvement of satellite systems (Global Positioning System) have increased the availability of precise bathymetric mapping. This map combines topography of the subaerial southern part of the volcano with modern multibeam bathymetric data from the south submarine flank. The map includes the summit caldera of Mauna Loa Volcano and the entire length of the 100-km-long southwest rift zone that is marked by a much more pronounced ridge below sea level than above. The 60-km-long segment of the rift zone abruptly changes trend from southwest to south 30 km from the summit. It extends from this bend out to sea at the south cape of the island (Kalae) to 4 to 4.5 km depth where it impinges on the elongate west ridge of Apuupuu Seamount. The west submarine flank of the rift-zone ridge connects with the Kahuku fault on land and both are part of the ampitheater head of a major submarine landslide (Lipman and others, 1990; Moore and Clague, 1992). Two pre-Hawaiian volcanic seamounts in the map area, Apuupuu and Dana Seamounts, are apparently Cretaceous in age and are somewhat younger than the Cretaceous oceanic crust on which they are built.

  16. Multibeam Bathymetry of Haleakala Volcano, Maui

    NASA Astrophysics Data System (ADS)

    Eakins, B. W.; Robinson, J.

    2002-12-01

    The submarine northeast flank of Haleakala Volcano, Maui was mapped in detail during the summers of 2001 and 2002 by a joint team from the Japan Marine Science and Technology Center (JAMSTEC), Tokyo Institute of Technology, University of Hawaii, and the U.S. Geological Survey. JAMSTEC instruments used included SeaBeam 2112 hull-mounted multibeam sonar (bathymetry and sidescan imagery), manned submersible Shinkai 6500 and ROV Kaiko (bottom video, photographs and sampling of Hana Ridge), gravimeter, magnetometer, and single-channel seismic system. Hana Ridge, Haleakala's submarine east rift zone, is capped by coral-reef terraces for much of its length, which are flexurally tilted towards the axis of the Hawaiian Ridge and delineate former shorelines. Its deeper, more distal portion exhibits a pair of parallel, linear crests, studded with volcanic cones, that suggest lateral migration of the rift zone during its growth. The northern face of the arcuate ridge terminus is a landslide scar in one of these crests, while its southwestern prong is a small, constructional ridge. The Hana slump, a series of basins and ridges analogous to the Laupahoehoe slump off Kohala Volcano, Hawaii, lies north of Hana Ridge and extends down to the Hawaiian moat. Northwest of this slump region a small, dual-crested ridge strikes toward the Hawaiian moat and is inferred to represent a fossil rift zone, perhaps of East Molokai Volcano. A sediment chute along its southern flank has built a large submarine fan with a staircase of contour-parallel folds on its surface that are probably derived from slow creep of sediments down into the moat. Sediments infill the basins of the Hana slump [Moore et al., 1989], whose lowermost layers have been variously back-tilted by block rotation during slumping and flexural loading of the Hawaiian Ridge; the ridges define the outer edges of those down-dropped blocks, which may have subsided several kilometers. An apron of volcaniclastic debris shed from

  17. WOVOdat Progress 2012: Installable DB template for Volcano Monitoring Database

    NASA Astrophysics Data System (ADS)

    Ratdomopurbo, A.; Widiwijayanti, C.; Win, N.-T.-Z.; Chen, L.-D.; Newhall, C.

    2012-04-01

    WOVOdat is the World Organization of Volcano Observatories' (WOVO) Database of Volcanic Unrest. Volcanoes are frequently restless but only a fraction of unrest leads to eruptions. We aim to compile and make the data of historical volcanic unrest available as a reference tool during volcanic crises, for observatory or other user to compare or look for systematic in many unrest episodes, and also provide educational tools for teachers and students on understanding volcanic processes. Furthermore, we promote the use of relational databases for countries that are still planning to develop their own monitoring database. We are now in the process of populating WOVOdat in collaboration with volcano observatories worldwide. Proprietary data remains at the observatories where the data originally from. Therefore, users who wish to use the data for publication or to obtain detail information about the data should directly contact the observatories. To encourage the use of relational database system in volcano observatories with no monitoring database, WOVOdat project is preparing an installable standalone package. This package is freely downloadable through our website (www.wovodat.org), ready to install and serve as database system in the local domain to host various types of volcano monitoring data. The WOVOdat project is now hosted at Earth Observatory of Singapore (Nanyang Technological University). In the current stage of data population, our website supports interaction between WOVOdat developers, observatories, and other partners in building the database, e.g. accessing schematic design, information and documentation, and also data submission. As anticipation of various data formats coming from different observatories, we provide an interactive tools for user to convert their data into standard WOVOdat format file before then able to upload and store in the database system. We are also developing various visualization tools that will be integrated in the system to ease

  18. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  19. Asthma and Native Hawaiians/Pacific Islanders

    MedlinePlus

    ... Population Profiles > Native Hawaiian/Other Pacific Islander > Asthma Asthma and Native Hawaiians/Pacific Islanders National data for ... very limited. While all of the causes of asthma remain unclear, children exposed to secondhand tobacco smoke ...

  20. Ancient Hawaiian Astronomy

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive L. N.

    The Hawaiian Islands provide a cultural setting where the prominent place of astronomy within religious, navigational, and calendrical traditions is evident from a rich ethnohistoric record. The many hundreds of temple platforms and enclosures (heiau) whose remains survive across the archipelago have provided a natural focus for archaeoastronomers not only to examine orientations and structural alignments but to explore a range of issues relating to field method and practice in a context where spatially patterned archaeological data and ethnohistorical evidence exist in relatively fine balance. As archaeoastronomy has developed within the islands, it has become better integrated into archaeological investigations tackling questions of broader anthropological significance, one of the most fascinating being when, how, and why Polynesian chiefdoms became transformed into archaic states, something that happened here but nowhere else in Polynesia.

  1. Grand Observatory

    NASA Astrophysics Data System (ADS)

    Young, Eric W.

    2002-01-01

    Various concepts have been recently presented for a 100 m class astronomical observatory. The science virtues of such an observatory are many: resolving planets orbiting around other stars, resolving the surface features of other stars, extending our temporal reach back toward the beginning (at and before stellar and galactic development), improving on the Next Generation Space Telescope, and other (perhaps as yet) undiscovered purposes. This observatory would be a general facility instrument with wide spectral range from at least the near ultraviolet to the mid infrared. The concept espoused here is based on a practical, modular design located in a place where temperatures remain (and instruments could operate) within several degrees of absolute zero with no shielding or cooling. This location is the bottom of a crater located near the north or south pole of the moon, most probably the South Polar Depression. In such a location the telescope would never see the sun or the earth, hence the profound cold and absence of stray light. The ideal nature of this location is elaborated herein. It is envisioned that this observatory would be assembled and maintained remotely through the use of expert robotic systems. A base station would be located above the crater rim with (at least occasional) direct line-of-sight access to the earth. Certainly it would be advantageous, but not absolutely essential, to have humans travel to the site to deal with unexpected contingencies. Further, observers and their teams could eventually travel there for extended observational campaigns. Educational activities, in general, could be furthered thru extended human presence. Even recreational visitors and long term habitation might follow.

  2. Eruption of Shiveluch Volcano, Kamchatka Peninsula

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On March 29, 2007, the Shiveluch Volcano on the Russian Federation's Kamchatka Peninsula erupted. According to the Alaska Volcano Observatory the volcano underwent an explosive eruption between 01:50 and 2:30 UTC, sending an ash cloud skyward roughly 9,750 meters (32,000 feet), based on visual estimates. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard NASA's Aqua satellite took this picture at 02:00 UTC on March 29. The top image shows the volcano and its surroundings. The bottom image shows a close-up view of the volcano at 250 meters per pixel. Satellites often capture images of volcanic ash plumes, but usually as the plumes are blowing away. Plumes have been observed blowing away from Shiveluch before. This image, however, is different. At the time the Aqua satellite passed overhead, the eruption was recent enough (and the air was apparently still enough) that the ash cloud still hovered above the summit. In this image, the bulbous cloud casts its shadow northward over the icy landscape. Volcanic ash eruptions inject particles into Earth's atmosphere. Substantial eruptions of light-reflecting particles can reduce temperatures and even affect atmospheric circulation. Large eruptions impact climate patterns for years. A massive eruption of the Tambora Volcano in Indonesia in 1815, for instance, earned 1816 the nickname 'the year without a summer.' Shiveluch is a stratovolcano--a steep-sloped volcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. One of Kamchatka's largest volcanoes, it sports a summit reaching 3,283 meters (10,771 feet). Shiveluch is also one of the peninsula's most active volcanoes, with an estimated 60 substantial eruptions in the past 10,000 years.

  3. In Brief: Russian volcano warnings reinstated

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-04-01

    The Kamchatka Volcanic Eruption Response Team (KVERT) is again issuing warnings for aviation during periods of activity by Kamchatkan volcanoes. KVERT had stopped issuing warnings on 1 March due to a loss of funding by the Federal Unitary Enterprise State Air Traffic Management Corporation of Russia (see Eos 88(12), 2007). The funding for this work has now resumed. KVERT is a collaborative project of scientists from the Russian Institute of Volcanology and Seismology, the Kamchatka Experimental and Methodical Seismological Department, and the Alaska Volcano Observatory.

  4. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the

  5. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the

  6. Hawaiian Studies Curriculum Guide. Grade 3.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    This curriculum guide suggests activities and educational experiences within a Hawaiian cultural context for Grade 3 students in Hawaiian schools. First, an introduction discusses the contents of the guide; the relationship of classroom teacher and the kupuna (Hawaiian-speaking elder); the identification and scheduling of Kupunas; and how to use…

  7. Incorporating Technology into a Hawaiian Language Curriculum.

    ERIC Educational Resources Information Center

    Ka'awa, Makalapua; Hawkins, Emily

    This paper describes Hawaiian language courses that incorporate computer technology at the University of Hawaii at Manoa. In the past decade, enrollments in all types of Hawaiian language programs have increased rapidly. The University of Hawaii is committed to extending Hawaiian language education, especially the full development of Hawaiian…

  8. Hawaiian Nonverbal Communication: Two Classroom Applications.

    ERIC Educational Resources Information Center

    Anthony, Alberta Pualani

    Although there are only about 2,000 active speakers of the Hawaiian language, there exists a coherent system of nonverbal behavior which can be identified as Hawaiian and which contrasts sharply with middle class white American behavior. Teachers of Hawaiian children should be aware of this in order to avoid potential misunderstandings in the…

  9. Postshield stage transitional volcanism on Mahukona Volcano, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Calvert, A.T.

    2009-01-01

    Age spectra from 40Ar/39Ar incremental heating experiments yield ages of 298??25 ka and 310??31 ka for transitional composition lavas from two cones on submarine Mahukona Volcano, Hawaii. These ages are younger than the inferred end of the tholeiitic shield stage and indicate that the volcano had entered the postshield alkalic stage before going extinct. Previously reported elevated helium isotopic ratios of lavas from one of these cones were incorrectly interpreted to indicate eruption during a preshield alkalic stage. Consequently, high helium isotopic ratios are a poor indicator of eruptive stage, as they occur in preshield, shield, and postshield stage lavas. Loihi Seamount and Kilauea are the only known Hawaiian volcanoes where the volume of preshield alkalic stage lavas can be estimated. ?? Springer-Verlag 2008.

  10. First scientific contributions from the High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    León Vargas, H.; HAWC Collaboration

    2015-09-01

    The High Altitude Water Cherenkov Observatory (HAWC), located at the slopes of the volcanoes Sierra Negra and Pico de Orizaba in Mexico, was inaugurated on March 20, 2015. However, data taking started in August 2013 with a partially deployed observatory and since then the instrument has collected data as it got closer to its final configuration. HAWC is a ground based TeV gamma-ray observatory with a large field of view that will be used to study the Northern sky with high sensitivity. In this contribution we present some of the results obtained with the partially built instrument and the expected capabilities to detect different phenomena with the complete observatory.

  11. Santorini Volcano

    NASA Astrophysics Data System (ADS)

    Heiken, Grant

    What is it about Santorini (Thera) that attracts volcanologists? This small archipelago in the Aegean has captivated volcanic pilgrims since Fouque published his geologic study of the volcanic field in 1879 [Fouqué, 1879].It must be the combination of its spectacular setting, rising out of the blue waters of the Aegean, the remarkable exposures that lay open its violent past for everyone to see, or possibly the slower pace of life and remarkable Greek hospitality Perhaps it is the Lower Bronze Age town of Akrotiri, destroyed yet preserved by a large explosive eruption 3600 years ago. There are thousands of volcanoes yet to be studied on our planet, but for 140 years, groups of volcanologists have regularly visited this flooded caldera complex to add yet another bit of information to the foundation laid by Fouqué.

  12. Growth and persistence of Hawaiian volcanic rift zones

    NASA Astrophysics Data System (ADS)

    Dieterich, James H.

    1988-05-01

    Hawaiian volcanic rift zones are modeled by representing the rifts and adjacent volcano flanks as long ridges with the geometry of flattened triangular prisms. The intrusion of dikes along the axis of a rift requires a mechanism to generate the appropriate dike-trapping stress field within the prism. Possible factors that affect the state of stress in the prism include multiple dike intrusion along the ridge axis, faulting, and gravitational sagging of the topography. In extreme models with very steep slopes and high Poisson's ratio, corresponding to the gelatin models of rift zones by Fiske and Jackson (1972), results of finite element calculations indicate that gravity-induced stresses are sufficient to trap a dike into propagating within the prism and parallel to the rift zone as proposed by Fiske and Jackson. However, the mechanism does not work for gently sloping flanks or a more acceptable Poisson's ratio of about 0.25. Additionally, trapping stresses in the gravity-loading and density stratification models will not persist after a few dike injection episodes. Therefore in mature Hawaiian rift zones with possibly thousands of dikes, additional processes must act to control the stresses that permit continued dike intrusion and rift persistence. It is proposed that accommodation to dike emplacement occurs by slip on deep faults, possibly of the type proposed for the 1975 Kalapana, Hawaii, earthquake. As suggested by others for this earthquake, the faults could coincide with the contact of the volcano with the seafloor within the weak seafloor sediments. Such faulting not only provides a means for the flanks to adjust continuously to intrusions but also generates the stress patterns needed to constrain future dikes to propagate along the rift axis. Other possible faulting mechanisms, such as shallow gravity slides and normal faulting of the flanks, do not appear to favor rift zone persistence. In this model the horizontal stress generated by a standing column of

  13. Advances in volcano monitoring and risk reduction in Latin America

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; White, R. A.; Lockhart, A. B.; Marso, J. N.; Assitance Program, V. D.; Volcano Observatories, L. A.

    2014-12-01

    We describe results of cooperative work that advanced volcanic monitoring and risk reduction. The USGS-USAID Volcano Disaster Assistance Program (VDAP) was initiated in 1986 after disastrous lahars during the 1985 eruption of Nevado del Ruiz dramatizedthe need to advance international capabilities in volcanic monitoring, eruption forecasting and hazard communication. For the past 28 years, VDAP has worked with our partners to improve observatories, strengthen monitoring networks, and train observatory personnel. We highlight a few of the many accomplishments by Latin American volcano observatories. Advances in monitoring, assessment and communication, and lessons learned from the lahars of the 1985 Nevado del Ruiz eruption and the 1994 Paez earthquake enabled the Servicio Geológico Colombiano to issue timely, life-saving warnings for 3 large syn-eruptive lahars at Nevado del Huila in 2007 and 2008. In Chile, the 2008 eruption of Chaitén prompted SERNAGEOMIN to complete a national volcanic vulnerability assessment that led to a major increase in volcano monitoring. Throughout Latin America improved seismic networks now telemeter data to observatories where the decades-long background rates and types of seismicity have been characterized at over 50 volcanoes. Standardization of the Earthworm data acquisition system has enabled data sharing across international boundaries, of paramount importance during both regional tectonic earthquakes and during volcanic crises when vulnerabilities cross international borders. Sharing of seismic forecasting methods led to the formation of the international organization of Latin American Volcano Seismologists (LAVAS). LAVAS courses and other VDAP training sessions have led to international sharing of methods to forecast eruptions through recognition of precursors and to reduce vulnerabilities from all volcano hazards (flows, falls, surges, gas) through hazard assessment, mapping and modeling. Satellite remote sensing data

  14. Activity at Klyuchevskaya Volcano Resumes

    NASA Image and Video Library

    2017-09-27

    NASA image acquired December 4, 2010 After a respite of less than a month, Klyuchevskaya Volcano resumed erupting in late November 2010. The Global Volcanism Program reported several ash plumes that rose up to 7.9 kilometers (26,000 feet) above sea level from November 25–29. According to the Kamchatka Volcanic Eruption Response Team (KVERT) seismicity was “slightly above background levels” on November 26th and 27th, and they reported observations of strombolian activity on December 1st and 2nd. A plume of ash, steam, and other volcanic gases streamed from Klyuchevskaya on December 4, 2010, visible in this natural-color image acquired by the Advanced Land Imager (ALI) aboard the Earth Observing-1 (EO-1) satellite. In the large image, a much smaller plume is visible above neighboring Bezymianny Volcano. NASA Earth Observatory image by Jesse Allen & Robert Simmon, using ALI data from the NASA EO-1 team. Caption by Robert Simmon. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  15. Soufriere Hills Volcano Resumes Activity

    NASA Image and Video Library

    2017-09-27

    A massive eruption of Montserrat’s Soufrière Hills Volcano covered large portions of the island in debris. The eruption was triggered by a collapse of Soufrière Hills’ summit lava dome on February 11, 2010. Pyroclastic flows raced down the northern flank of the volcano, leveling trees and destroying buildings in the village of Harris, which was abandoned after Soufrière Hills became active in 1995. The Montserrat Volcano Observatory reported that some flows, about 15 meters (49 feet) thick, reached the sea at Trant’s Bay. These flows extended the island’s coastline up to 650 meters (2,100 feet). These false-color satellite images show the southern half of Montserrat before and after the dome collapse. The top image shows Montserrat on February 21, 2010, just 10 days after the event. For comparison, the bottom image shows the same area on March 17, 2007. Red areas are vegetated, clouds are white, blue/black areas are ocean water, and gray areas are covered by flow deposits. Fresh deposits tend to be lighter than older deposits. On February 21, the drainages leading down from Soufrière Hills, including the White River Valley, the Tar River Valley, and the Belham River Valley, were filled with fresh debris. According to the Montserrat Volcano Observatory, pyroclastic flows reached the sea through Aymers Ghaut on January 18, 2010, and flows entered the sea near Plymouth on February 5, 2010. NASA Earth Observatory image by Robert Simmon, using data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Robert Simmon. To read more go to: earthobservatory.nasa.gov/IOTD/view.php?id=42792 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  16. Manam Volcano, Papua New Guinea

    NASA Image and Video Library

    2017-09-27

    NASA image acquired June 16, 2010. Papua New Guinea’s Manam Volcano released a thin, faint plume on June 16, 2010, as clouds clustered at the volcano’s summit. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite took this picture the same day. Rivulets of brown rock interrupt the carpet of green vegetation on the volcano’s slopes. Opaque white clouds partially obscure the satellite’s view of Manam. The clouds may result from water vapor from the volcano, but may also have formed independent of volcanic activity. The volcanic plume appears as a thin, blue-gray veil extending toward the northwest over the Bismarck Sea. Located 13 kilometers (8 miles) off the coast of mainland Papua New Guinea, Manam forms an island 10 kilometers (6 miles) wide. It is a stratovolcano. The volcano has two summit craters, and although both are active, most historical eruptions have arisen from the southern crater. NASA Earth Observatory image created by Jesse Allen, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Michon Scott. Instrument: EO-1 - ALI To view the full image go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=4430... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  17. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  18. Source components of the Hawaiian shield lavas and their distribution in the plume

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Hanyu, T.; Chang, Q.; Kawabata, H.; Miyazaki, T.; Takahashi, T.; Hirahara, Y.; Tatsumi, Y.

    2006-12-01

    We examined major, trace elements and Sr-, Nd-, Pb-, He- isotope compositions in a suite of fresh lavas from the submarine Koolau, Kilauea and Loihi volcanoes, as these volcanoes are believed to have sampled the three distinct Hawaiian plume components. The trace element ratios and isotopic variations imply that, to a first order, the composition of the Hawaiian shield lavas appears to be dominated by a mixture of two components: a relatively enriched component (Koolau) and a relatively depleted component (Loihi). The Koolau component consists of a higher proportion of ancient recycled oceanic crust (lower crust); the Loihi and Kea component contains a higher proportion relatively depleted FOZO like component that is from the lower mantle. On the basis of our new data involving previous whole rock (Ren et al., J. Petrol., 2004; 2006) and melt inclusion data (Ren et al., 2005, Nature), combined with the geochemical evolutions of the individual shield volcanoes, we propose a Hawaiian mantle plume characterized by more random heterogeneity than would be present in a simple compositionally zoned mantle plume. The plume may have a peridotite matrix from the lower mantle with recycled oceanic crust that may remain distinct geochemistry, forming streaks or ribbons distributed throughout the entire plume. The dominant component sampled at a given stage of the shield volcanoes is likely to be controlled by the thermal structure of the plume and the melting points of the different materials in the plume. References: (1)Ren, Z.-Y., Takahashi, E., Orihashi, Y., K. M. T. Johnson (2004), J. Petrol., 45, 2067-2099. (2)Ren, Z.-Y., T. Shibata, M. Yoshikawa, K. Johnson, E. Takahashi (2006), J. Petrol., 47, 255-275. (3)Ren, Z.-Y., S. Stephanie, E. Takahashi, N. Hirano, T. Hirata (2005), Nature, 436, 837-840.

  19. Stability analysis of Hawaiian Island flanks using insight gained from strength testing of the HSDP core

    NASA Astrophysics Data System (ADS)

    Thompson, Nick; Watters, Robert J.; Schiffman, Peter

    2008-04-01

    Hawaiian Island flank failures are recognized as the largest landslide events on Earth, reaching volumes of several thousand cubic kilometers and lengths of over 200 km and occurring on an average of once every 100 000 years. The 3.1 km deep Hawaii Scientific Drilling Project (HSDP) enabled an investigation of the rock mass strength variations on the island of Hawaii [Schiffman, P., Watters, R.J., Thompson, N., Walton, A.W., 2006. Hyaloclastites and the slope stability of Hawaiian volcanoes: insights from the Hawaiian Scientific Drilling Project's 3-km drill core. Journal of Volcanology and Geothermal Research, 151 (1-3): 217-228]. This study builds on that of Schiffman et al. [Schiffman, P., Watters, R.J., Thompson, N., Walton, A.W., 2006. Hyaloclastites and the slope stability of Hawaiian volcanoes: Insights from the Hawaiian Scientific Drilling Project's 3-km drill core. Journal of Volcanology and Geothermal Research, 151 (1-3): 217-228] by considering more in-depth rock mass classification and strength testing methods of the HSDP core. Geotechnical core logging techniques combined with laboratory strength testing methods show that rock strength differences exist within the edifice. Comparing the rock strength parameters obtained from the various volcano lithologies identified weak zones, suggesting the possible location of future slip surfaces for large flank failures. Relatively weak rock layers were recognized within poorly consolidated hyaloclastite zones, with increases in strength based on degree of alteration. Subaerial and submarine basalt flows are found to be significantly stronger. With the aid of digital elevation models, cross-sections have been developed of key flank areas on the island of Hawaii. Limit equilibrium slope stability analyses are performed on each cross-section using various failure criteria for the rock mass strength calculations. Based on the stability analyses the majority of the slopes analyzed are considered stable. In cases

  20. Temporal variations in the mantle potential temperatures along the Northwest Hawaiian Ridge using olivine-liquid equilibria: Implications for Hawaiian plume melt flux variations

    NASA Astrophysics Data System (ADS)

    Tree, J. P.; Garcia, M. O.; Putirka, K. D.

    2013-12-01

    The Northwest Hawaiian Ridge extends 2800 km and comprises 47% of the total length of the Hawaiian-Emperor (H-E) Chain. The Ridge contains at least 52 volcanoes whose shape, volume, and distance from neighboring volcanoes vary markedly. The temporal melt flux variation of the H-E has been estimated with various geophysical methods involving fluid dynamics and lithospheric modeling. These models show a dramatic increase (up to 300%) in melt flux over the last 30 Myr. A potential explanation for the increase in melt flux is a temporal increase in the temperature of melting. Olivine thermometry offers the best method for evaluating mantle source temperature variations along the Ridge. An olivine-liquid equilibration temperature estimate can then be recast into a mantle potential temperature after accounting for the heat of fusion during mantle melting and decompression of the mantle as it follows an adiabat to the surface. New whole-rock XRF and olivine analyzes for 18 tholeiitic, three transitional tholeiites, and two picro-basalts from 11 volcanoes spanning the entire length of the Ridge from Middle Bank to Yuryaku (just south of the Bend) were made. These data were used to obtain a temperature estimate of the mantle during shield formation of each volcano. After screening samples for those in chemical equilibrium using a Rhodes diagram and assuming a Kdol-liq(Fe-Mg)=0.345 ×0.03, data from six volcanoes were input into the thermometers of Beattie (1993; Contrib. Mineral. Petr., 118, 103-111) and Putirka et al., (2007; Chemical Geology, 241, 177-206). The results were averaged to estimate mantle potential temperatures. These calculations yield mantle potential temperature estimates that vary positively with volcano volume (e.g., 1460oC at Yuryaku vs 1608-1630oC at Gardner Pinnacles, the largest volume seamount in the Ridge). These results suggest that temperature variations may be playing a significant role in modulating the melt flux of the Ridge. Seven more

  1. Inherited Pb isotopic records in olivine antecryst-hosted melt inclusions from Hawaiian lavas

    NASA Astrophysics Data System (ADS)

    Sakyi, Patrick Asamoah; Tanaka, Ryoji; Kobayashi, Katsura; Nakamura, Eizo

    2012-10-01

    Dislocation textures of olivine grains and Pb isotopic compositions (207Pb/206Pb and 208Pb/206Pb) of olivine-hosted melt inclusions in basaltic lavas from three Hawaiian volcanoes (Kilauea, Mauna Loa, and Koolau) were examined. More than 70% of the blocky olivine grains in the studied samples have a regular-shaped dislocation texture with their dislocation densities exceeding 106 cm-2, and can be considered as deformed olivine. The size distribution of blocky olivine grains shows that more than 99% of blocky olivines coarser than 1.2 mm are identified as deformed olivine. These deformed olivine grains are identified as antecrysts, which originally crystallized from previous stages of magmatism in the same shield, followed by plastic deformation prior to entrainment in the erupted host magmas. This study revealed that entrainment of mantle-derived crystallization products by younger batches of magma is an important part of the evolution of magnesium-rich Hawaiian magma. Lead isotopic compositions of melt inclusions hosted in the olivine antecrysts provide information of the evolutionary history of Hawaiian volcanoes which could not have been accessed if only whole rock analyses were carried out. Antecryst-hosted melt inclusions in Kilauea and Koolau lavas demonstrate that the source components in the melting region changed during shield formation. In particular, evidence of interaction of plume-derived melts and upper mantle was observed in the earliest stage of Koolau magmatism.

  2. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    USGS Publications Warehouse

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2016-01-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  3. Volcano Monitoring Using Google Earth

    NASA Astrophysics Data System (ADS)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  4. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    USGS Publications Warehouse

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux

  5. Sheveluch Volcano, Kamchatka, Russia

    NASA Image and Video Library

    2010-04-05

    Sheveluch Volcano in Kamchatka, Siberia, is one of the frequently active volcanoes located in eastern Siberia. In this image from NASA Terra spacecraft, brownish ash covers the southern part of the mountain, under an ash-laden vertical eruption plume.

  6. Posterosional volcanism in the Cretaceous part of the Hawaiian hotspot trail

    NASA Astrophysics Data System (ADS)

    Lonsdale, Peter; Dieu, Julie; Natland, James

    1993-03-01

    Multibeam bathymetry and seismic reflection profiling shows the Cretaceous products of the Hawaiian hotspot to be a ridge of coalesced guyots that prolong the N-NW trend of the more isolated Paleocene Emperor Seamounts, a 10,000 sq km plateau (Detroit Plateau), where the trail changes strike to NW, and the Obruchev Rise hotspot ridge, which extends to the Kamchatka Trench. The northernmost guyots were submerged and tilted southeast by the load of new shield volcanoes added to the end of the chain, then secondary volcanism built small cones on their summit platforms and in a gap between two guyots. On one guyot these submarine eruptions were in the alkalic postshield stage of Hawaiian volcanism and at another were probably in the alkalic rejuvenated stage. Seamount-building eruptions at Detroit Plateau produced lavas that belong geochemically to the alkalic rejuvenated stage and are very similar to Pleistocene lavas in the Hawaiian Islands. However, these eruptions postdated passage off the hotspot plume by a much longer time than the 0.5-2.5 m.y. observed in the Hawaiian Islands and were probably initiated by different tectonic processes.

  7. Surviving Paradise: A Hawaiian Tale.

    ERIC Educational Resources Information Center

    Gibson, Andrea

    2002-01-01

    An Ohio University program that introduces botany students to field work sent a team to study Hawaiian species of violets and algae, endangered by invasive, imported plants. The situation of the native species relates to larger scientific and ecological issues because algae is the basis of the aquatic food chain, and violets adapt in unique ways…

  8. Hawaiian Tourism: Costs, Benefits, Alternatives

    ERIC Educational Resources Information Center

    Marsh, John S.

    1975-01-01

    Hawaiian tourism has greatly increased in the past ten years. With this increase, the island has been economically developed to attract and accommodate tourists. Now, citizen groups are becoming aware of the environmental costs of this business and are asking for a tourist reduction to save their natural resources. (MA)

  9. Hawaiian Tourism: Costs, Benefits, Alternatives

    ERIC Educational Resources Information Center

    Marsh, John S.

    1975-01-01

    Hawaiian tourism has greatly increased in the past ten years. With this increase, the island has been economically developed to attract and accommodate tourists. Now, citizen groups are becoming aware of the environmental costs of this business and are asking for a tourist reduction to save their natural resources. (MA)

  10. Kula Kaiapuni: Hawaiian Immersion Schools.

    ERIC Educational Resources Information Center

    Kame'eleihiwa, Lilikala

    1992-01-01

    The Hawaii State Department of Education offers a growing number of Hawaiian language immersion schools for its students. The article presents the history of immersion schools in Hawaii, examining criticisms of immersion schools, discussing their benefits, and explaining necessary components for success. (SM)

  11. Surviving Paradise: A Hawaiian Tale.

    ERIC Educational Resources Information Center

    Gibson, Andrea

    2002-01-01

    An Ohio University program that introduces botany students to field work sent a team to study Hawaiian species of violets and algae, endangered by invasive, imported plants. The situation of the native species relates to larger scientific and ecological issues because algae is the basis of the aquatic food chain, and violets adapt in unique ways…

  12. The Origin of Rejuvenated Magmatism on the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Farnetani, C. G.

    2013-12-01

    Rejuvenated volcanism on the Hawaiian islands has long been known for its enigmatic geochemical features, and both the geochemistry and geodynamics of "rejuvenation" are subject of debate. In particular, the consistently depleted nature of its isotopic compositions (unradiogenic Sr and radiogenic Nd-Hf isotopes relative to shield and post-shield lavas) is seemingly at odds with high concentrations of incompatible and volatile elements. Also, the isotopic distinctions between the shield basalts of the two parallel lines of Hawaiian volcanoes are lost during rejuvenated stages. Some earlier attempts to explain these phenomena invoked melting of local oceanic lithosphere heated by the Hawaiian plume, but the isotopic compositions, though depleted, are systematically different from Pacific upper mantle. More recent explanations invoked renewed melting of plume material that had previously produced shield-type tholeiitic magmas from its more fertile components. The renewed melting would involve the more refractory portions of the source rock that had escaped the earlier melting. But such models fail to explain why the volatile budget survived the earlier melting history. Another recent explanation invoked melting of the outer sheath of the plume consisting of mantle material entrained by the plume during its ascent. However, such entrained material lacks the excess temperature needed to undergo any melting at all. Our numerical simulations show that, 200 to 400 km downstream from the locus of shield volcanism, previously unmelted material rises slowly in the deep 'underbelly' of the plume, crosses the solidus at ~ 5GPa, and generates rejuvenated magmas. This material is ultimately derived from the upper portion of the thermal boundary layer from which the plume originates. It consists of 'ordinary', depleted mantle, it has not lost its volatiles, and it is hot enough to undergo low degrees of melting. This model can therefore resolve several unexplained features of

  13. Spatial Distribution, Density Structure, and Relationship of Intrusive and Extrusive Volcanics of Seamounts Along the Northwest Hawaiian Ridge

    NASA Astrophysics Data System (ADS)

    Tree, J. P.; Ito, G.; Garcia, M. O.; Kelley, C.; Wessel, P.; Shiro, B.; Boston, B.; Togia, H.; Smith, J. R., Jr.

    2014-12-01

    The Papahānaumokuākea Marine National Monument (PMNM) is a 362,073 km2 conservation area encompassing islands and seamounts with prodigious diversity of size and morphologies formed by Hawaiian hotspot volcanism 7-31 Myr ago. During the winter and spring of 2014, we collaborated with the Schmidt Ocean Institute to conduct a detailed bathymetric mapping and geophysical survey of the PMNM on board the R/V Falkor. On two cruises, we collected 14,585 km of gravity data using UNOL's BGM-3 marine gravimeter and magnetic data with the University of Hawaii's G-882 cesium magnetometer. We will present these new data paired with a select set of existing NGDC marine geophysical data. Using these new gravity and magnetics data, we will investigate the internal density structures of these seamounts and the oceanic lithosphere upon which they were emplaced. The locations and volumes of the dense intrusive magmatic centers and rift zone dike complexes of these seamounts will be determined to investigate whether the ratio of intrusive to extrusive volume varies with time and volcano size. One of the largest rift zones of Hawaiian volcanoes is that of the St. Rogatien volcano ( ~125 km in length), and preliminary results from the Bouguer gravity anomaly suggest it is largely made of a dense dike complex. This rift zone, and other long rifts within the Monument will be compared to and contrasted with previously studied rift zones in main Hawaiian Islands to more completely characterize these features along the chain. Few volcanoes within the Monument that have been sampled. Some of these have yielded Cretaceous ages (e.g., O'Conner et al. 2013) and therefore it is unclear how many volcanoes within the Monument were formed by the Hawaiian mantle plume. The gravity data will be used to identify which of the undated seamounts are compensated by an uncharacteristically thin elastic plate and thus, did not form as a part of the hotspot chain. These results will help refine models of

  14. Quaternary subsidence of the Oahu Coastal Plain, Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Toomey, M.; Sandstrom, R. M.; Huppert, K.; Taylor, F. W.; Cronin, T. M.

    2016-12-01

    Inter-plate hotspots continue to test our understanding of how the Earth's lithosphere deforms in response to an applied load, in part, because many current models are based on short or discontinuous observational datasets. Here we reconstruct a record of relative sea level rise spanning nearly two million years using the strontium isotope stratigraphy (SIS) of shallow water carbonates (e.g. corals, mollusks) recovered from a >300 m long drill core through the coastal plain of Oahu. We then compare it to model-predicted subsidence histories for our site that incorporate displacements at Ewa Beach, Oahu, due to the flexural isostatic response of the lithosphere to loading of each volcano along the Hawaiian Ridge as well as its migration over the Hawaiian Swell. Preliminary results indicate Oahu experienced relatively rapid rates of subsidence ( 0.45 mm/yr) during the mid-Pleistocene—vertical displacements our model largely attributes to loading of West Molokai. An abrupt slowing of subsidence over the past million years may be driven by the relative eastward progression of volcanism, including construction of large shields on Maui and Hawaii. Shallowly buried, late Pleistocene aged corals, however, may suggest: (1) a more limited flexural response to this loading for southeastern Oahu than has been inferred from raised marine isotope stage (MIS) 11/13 dated, shallow-water, deposits found elsewhere on the island and/or (2) substantial dissolution of coastal plain carbonates between MIS 31 and 11.

  15. Seismic imaging of melt in a displaced Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.; Laske, Gabi; Harmon, Nicholas; Shearer, Peter M.

    2013-08-01

    The Hawaiian Islands are the classic example of hotspot volcanism: the island chain formed progressively as the Pacific plate moved across a fixed mantle plume. However, some observations are inconsistent with simple, vertical upwelling beneath a thermally defined plate and the nature of plume-plate interaction is debated. Here we use S-to-P seismic receiver functions, measured using a network of land and seafloor seismometers, to image the base of a melt-rich zone located 110 to 155 km beneath Hawaii. We find that this melt-rich zone is deepest 100 km west of Hawaii, implying that the plume impinges on the plate here and causes melting at greater depths in the mantle, rather than directly beneath the island. We infer that the plume either naturally upwells vertically beneath western Hawaii, or that it is instead deflected westwards by a compositionally depleted root that was generated beneath the island as it formed. The offset of the Hawaiian plume adds complexity to the classical model of a fixed plume that ascends vertically to the surface, and suggests that mantle melts beneath intraplate volcanoes may be guided by pre-existing structures beneath the islands.

  16. Focus: alien volcanos

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Lopes, Rosaly

    2007-03-01

    Part 1: Volcanoes on Earth - blowing their top; Part 2: Volcanoes of the inner Solar System - dead or alive: the Moon, Mercury, Mars, Venus; Part 3: Volcanoes of the outer Solar System - fire and ice: Io, Europa, Ganymede and Miranda, Titan, Triton, Enceladus.

  17. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  18. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  19. False Color Image of Volcano Sapas Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day

  20. Haystack Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Radio astronomy programs comprise three very-long-baseline interferometer projects, ten spectral line investigations, one continuum mapping in the 0.8 cm region, and one monitoring of variable sources. A low-noise mixer was used in mapping observations of 3C273 at 31 GHz and in detecting of a new methyl alcohol line at 36,169 MHz in Sgr B2. The new Mark 2 VLBI recording terminal was used in galactic H2O source observations using Haystack and the Crimean Observatory, USSR. One feature in W29 appears to have a diameter of 0.3 millisec of arc and a brightness temperature of 1.4 x 10 to the 15th power K. Geodetic baseline measurements via VLBI between Green Bank and Haystack are mutually consistent within a few meters. Radar investigations of Mercury, Venus, Mars, and the Moon have continued. The favorable opposition of Mars and improvements in the radar permit measurements on a number of topographic features with unprecedented accuracy, including scarps and crater walls. The floor of Mare Serenitatis slopes upward towards the northeast and is also the location of a strong gravitational anomaly.

  1. Results of repeated leveling surveys at Newberry Volcano, Oregon, and near Lassen Peak Volcano, California

    USGS Publications Warehouse

    Dzurisin, D.

    1999-01-01

    Personnel from the U.S. Geological Survey's Cascades Volcano Observatory conducted first-order, class-II leveling surveys near Lassen Peak, California, in 1991 and at Newberry Volcano, Oregon, in 1985, 1986, and 1994. Near Lassen Peak no significant vertical displacements had occurred along either of two traverses, 33 and 44 km long, since second-order surveys in 1932 and 1934. At Newberry, however, the 1994 survey suggests that the volcano's summit area had risen as much as 97??22 mm with respect to a third-order survey in 1931. The 1931 and 1994 surveys measured a 37-km-long, east-west traverse across the entire volcano. The 1985 and 1986 surveys, on the other hand, measured only a 9-km-long traverse across the summit caldera with only one benchmark in common with the 1931 survey. Comparison of the 1985, 1986, and 1994 surveys revealed no significant differential displacements inside the caldera. A possible mechanism for uplift during 1931-1994 is injection of approximately 0.06 km3 of magma at a depth of approximately 10 km beneath the volcano's summit. The average magma supply rate of approximately 1 x 10-3 km3/year would be generally consistent with the volcano's growth rate averaged over its 600,000-year history (0.7-1.7 x 10-3 km3/year).

  2. Conservation status and recovery strategies for endemic Hawaiian birds

    USGS Publications Warehouse

    Banko, Paul C.; David, Reginald E.; Jacobi, James D.; Banko, Winston E.

    2001-01-01

    of birds initially increase slowly even when habitat conditions are favorable. Consequently, even as habitat conditions begin to improve, small populations may disappear unless they are supplemented directly. Hawaiian bird conservation is also affected by social and legal factors, including hunting alien game species, commercial land use practices, and lawsuits and policies concerning endangered species and critical habitat. Influenced by this mixture of conflicting and competing issues, Hawaiian bird recovery programs range from management of single species and some components of their habitats to limited forms of community or ecosystem management. Although the effectiveness of most programs is difficult to evaluate because of monitoring limitations, several programs exemplify species and community management. Programs primarily intended to recover single species include Hawaiian Goose or Nene (Branta sandvicensis), Hawaiian Crow or ‘Alala (Corvus hawaiiensis), and Palila (Loxioides bailleui). Programs attempting to manage entire communities of forest birds include Hakalau Forest National Wildlife Refuge and Hawai‘i Volcanoes National Park on Hawai‘i, and Waikamoi Preserve, Hanawi Natural Area Reserve, and Haleakala National Park on Maui.

  3. Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea

    USGS Publications Warehouse

    Swanson, Donald A.

    2008-01-01

    Culturally significant oral tradition involving Pele, the Hawaiian volcano deity, and her youngest sister Hi'iaka may involve the two largest volcanic events to have taken place in Hawai'i since human settlement: the roughly 60-year-long ‘Ailā’au eruption during the 15th century and the following development of Kīlauea's caldera. In 1823, Rev. William Ellis and three others became the first Europeans to visit Kīlauea's summit and were told stories about Kīlauea's activity that are consistent with the Pele–Hi'iaka account and extend the oral tradition through the 18th century. Recent geologic studies confirm the essence of the oral traditions and illustrate the potential value of examining other Hawaiian chants and stories for more information about past volcanic activity in Hawai‘i.

  4. Volcano Seismology

    NASA Astrophysics Data System (ADS)

    Chouet, B.

    - A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  5. Volcano seismology

    USGS Publications Warehouse

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  6. On the morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  7. GlobVolcano: Earth Observation Services for global monitoring of active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, L.; Ratti, R.; Borgström, S.; Seifert, F. M.; Solaro, G.

    2009-04-01

    The GlobVolcano project is part of the Data User Element (DUE) programme of the European Space Agency (ESA). The objective of the project is to demonstrate EO-based (Earth Observation) services able to support the Volcanological Observatories and other mandate users (Civil Protection, scientific communities of volcanoes) in their monitoring activities. The information service is assessed in close cooperation with the user organizations for different types of active volcano, from various geographical areas in various climatic zones. Users are directly and actively involved in the validation of the Earth Observation products, by comparing them with ground data available at each site. The following EO-based information services have been defined, harmonising the user requirements provided by a worldwide selection of user organizations. - Deformation Mapping - Surface Thermal Anomalies - Volcanic Gas Emission (SO2) - Volcanic Ash Tracking During the first phase of the project (completed in June 2008) a pre-operational information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations (i.e. Piton de la Fournaise in La Reunion Island, Karthala in Comore Islands, Stromboli, Volcano and Etna in Italy, Soufrière Hills in Montserrat Island, Colima in Mexico, Merapi in Indonesia). The second phase of the project (currently on-going) concerns the service provision on pre-operational basis. Fifteen volcanic sites located in four continents are regularly monitored and as many user organizations are involved and cooperating with the project team. Based on user requirements, the GlobVolcano Information System has been developed following system engineering rules and criteria, besides most recent interoperability standards for geospatial data. The GlobVolcano Information System includes two main elements: 1. The GlobVolcano Data Processing System, which consists of seven of EO data processing subsystems

  8. A young source for the Hawaiian plume.

    PubMed

    Sobolev, Alexander V; Hofmann, Albrecht W; Jochum, Klaus Peter; Kuzmin, Dmitry V; Stoll, Brigitte

    2011-08-10

    Recycling of oceanic crust through subduction, mantle upwelling, and remelting in mantle plumes is a widely accepted mechanism to explain ocean island volcanism. The timescale of this recycling is important to our understanding of mantle circulation rates. Correlations of uranogenic lead isotopes in lavas from ocean islands such as Hawaii or Iceland, when interpreted as model isochrons, have yielded source differentiation ages between 1 and 2.5 billion years (Gyr). However, if such correlations are produced by mixing of unrelated mantle components they will have no direct age significance. Re-Os decay model ages take into account the mixing of sources with different histories, but they depend on the assumed initial Re/Os ratio of the subducted crust, which is poorly constrained because of the high mobility of rhenium during subduction. Here we report the first data on (87)Sr/(86)Sr ratios for 138 melt inclusions in olivine phenocrysts from lavas of Mauna Loa shield volcano, Hawaii, indicating enormous mantle source heterogeneity. We show that highly radiogenic strontium in severely rubidium-depleted melt inclusions matches the isotopic composition of 200-650-Myr-old sea water. We infer that such sea water must have contaminated the Mauna Loa source rock, before subduction, imparting a unique 'time stamp' on this source. Small amounts of seawater-derived strontium in plume sources may be common but can be identified clearly only in ultra-depleted melts originating from generally highly (incompatible-element) depleted source components. The presence of 200-650-Myr-old oceanic crust in the source of Hawaiian lavas implies a timescale of general mantle circulation with an average rate of about 2 (±1) cm yr(-1), much faster than previously thought.

  9. The seismicity of Marapi volcano, West Sumatra.

    NASA Astrophysics Data System (ADS)

    D'Auria, L.

    2009-04-01

    Marapi is one of the active volcanoes in West Sumatra. It is a stratovolcano with an edifice that is elongated in the ENE-WSW direction. Its elevation is about 2,900 m a.s.l. The summit area is characterized by a caldera that contains some active craters aligned along the ENE-WSW direction. The Marapi volcano is an attractive region for tourists and hosts many small communities its surrounding areas. The recent history of Mt. Marapi is characterized by explosive activity at the summit craters. No lava flows have passed the rim of the summit caldera in recent times. The last eruption occurred on August 5, 2004, and consisted of moderate explosive activity from the central crater. In 1975 an eruption with magmatic and phreatic explosive phases and mudflows and lahars occurred that caused fatalities in the surrounding areas. Since 1980 other eruptions have occurred at Marapi volcano. Even if the explosive intensities of those eruptions have been small to moderate, in some cases, there were fatalities. A cooperation project started between Italy and Indonesia (COVIN) for the monitoring of volcanoes in West Sumatra. In the context of this project a monitoring centre has been set up at the Bukittinggi Observatory and a seismological monitoring system for Marapi volcano has been realized. This system is based on a broadband seismic network including 4 three-component stations. The data acquired by the broadband network of Marapi volcano are continuous recordings of the seismic signals starting from 19/10/2006. Volcano-Tectonic and Long Period events of Marapi volcano together with regional and teleseismic earthquakes are recorded. Several events of high magnitude located at short distances from the network were also recorded such as on March 6, 2007, when two events of Magnitudes Mw 6.4 and 6.3 were recorded with the epicentres near the Marapi volcano. During the following days, there was a sequence of hundreds of aftershocks. The preliminary analysis of the seismicity of

  10. Hawaiian Duck's Future Threatened by Feral Mallards

    USGS Publications Warehouse

    Uyehara, Kimberly J.; Engilis, Andrew; Reynolds, Michelle

    2007-01-01

    Nearly 70 percent of Hawaii's native bird species are found nowhere else on Earth, and many of these species are declining or in danger of extinction. Although the Hawaiian Islands were once home to a remarkable diversity of waterfowl, only three species remain-the Hawaiian Goose (Nene), Laysan Duck, and Hawaiian Duck (Koloa maoli)-all Federally endangered. The Koloa maoli is the only Hawaiian bird threatened by 'genetic extinction' from hybridization with an invasive species-feral Mallard ducks. U.S. Geological Survey (USGS) biologists in Hawaii are working to find the causes of bird endangerment and ways to prevent extinction of the Koloa maoli and other threatened birds.

  11. Streamlining volcano-related, web-based data display and design with a new U.S. Geological Survey Volcano Science Center website

    NASA Astrophysics Data System (ADS)

    Stovall, W. K.; Randall, M. J.; Cervelli, P. F.

    2011-12-01

    The goal of the newly designed U.S. Geological Survey (USGS) Volcano Science Center website is to provide a reliable, easy to understand, and accessible format to display volcano monitoring data and scientific information on US volcanoes and their hazards. There are greater than 150 active or potentially active volcanoes in the United States, and the Volcano Science Center aims to advance the scientific understanding of volcanic processes at these volcanoes and to lessen the harmful impacts of potential volcanic activity. To fulfill a Congressional mandate, the USGS Volcano Hazards Program must communicate scientific findings to authorities and the public in a timely and understandable form. The easiest and most efficient way to deliver this information is via the Internet. We implemented a new database model to organize website content, ensuring consistency, accuracy, and timeliness of information display. Real-time monitoring data is available for over 50 volcanoes in the United States, and web-site visitors are able to interact with a dynamic, map-based display system to access and analyze these data, which are managed by scientists from the five USGS volcano observatories. Helicorders, recent hypocenters, webcams, tilt measurements, deformation, gas emissions, and changes in hydrology can be viewed for any of the real-time instruments. The newly designed Volcano Science Center web presence streamlines the display of research findings, hazard assessments, and real-time monitoring data for the U.S. volcanoes.

  12. The Alignment and Spacing of Volcanoes on Earth: Are Oceanic and Continental Settings Really That Different?

    NASA Astrophysics Data System (ADS)

    Naumann, T. R.

    2002-12-01

    The origin of the alignment and spacing of volcanoes has traditionally been treated from two fundamentally different perspectives: continental and oceanic. With the overwhelming evidence from the Hawaiian-Emperor chain, where a robust plume has generated a simple time-transgressive chain of volcanic islands, many oceanic alignments worldwide have been ascribed to plate motion above a fixed source of melting. Conversely, alignments of volcanoes in continental settings are primarily ascribed to some structural or tectonic pathway that serves to guide rising magmas. This fundamental difference of cause and effect, with respect to these two settings, has led to misinterpretations regarding the age and evolution of some island chains. In the Hawaiian Islands attributes like volcano age, elevation, morphology, and lava composition change systematically in the direction of plate motion away from the most recent activity on the island of Hawaii. However, some other plume-related volcanic archipelagoes have more diffuse volcanic activity and the relative ages among some the islands are not so clear. In the Galapagos Islands, although the maximum measured ages of the lava flows increase systematically eastward from Fernandina to San Cristobal, the large western volcanoes are essentially coeval. Similar ages imply that morphological and geochemical differences among these volcanoes are due to differences in melt generation and magma supply imposed by variations in plume strength and lithospheric structure rather than an evolutionary model like that predicted for Hawaiian systems. Comparisons of other volcanic chains and fields less voluminous than Hawaii indicate that although oceanic and continental magmas are chemically quite different, the controls governing their emplacement are not. The emplacement of smaller volume oceanic systems like the Galapagos, Canaries, Reunion, and many seamounts may share more aspects with continental volcanic fields than they do with large

  13. Wryneck in the ancient Hawaiians.

    PubMed

    Douglas, M T

    1991-03-01

    A unique cranial asymmetry previously noted in the skeletal remains from Mokapu, O'ahu, Hawai'i, is described. The anomaly involves an indentation of one or both of the occipital condyles and facial and vault asymmetry. This examination of the asymmetry includes a search for other reported occurrences, a detailed description, and a differential diagnosis. A multiple working hypothesis approach is employed. Comparison of the osseous material with the expected clinical pictures in craniosynostosis, Kleippel-Feil syndrome, primary basilar impression, and torticollis results in the most likely explanation of congenital torticollis. A high rate of occurrence of the anomaly (1.8%) is found in the skeletal remains from the Hawaiian Islands, but it has been documented in only two instances outside Hawai'i. A survey of patients seen at The Shriner's Hospital for Crippled Children does not reveal a high rate of occurrence of torticollis in Hawaiians relative to other ethnic groups.

  14. Characteristics of Offshore Hawai';i Island Seismicity and Velocity Structure, including Lo';ihi Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.

    2013-12-01

    The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than

  15. Copious, Long-lived Rejuvenated Volcanism in the Northern Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Weis, D.; Hanano, D. W.; Jicha, B. R.; Ito, G.

    2015-12-01

    New marine surveying and submersible sampling of Kaul'a Volcano, located 100 km off the axis of the Hawaiian Chain, have revealed widespread areas of young volcanism. New 40Ar/39Ar and geochemical analyses of the olivine-phyric submarine and subaerial volcanic rocks show that Kaul'a is shrouded with young alkalic basalts (1.9 to 0.5 Ma). The ages and chemistry of these rocks overlap with rejuvenated lavas from nearby shields Ni'ihau, Kaua'i and South Kaua'i Swell. Collectively, rejuvenated lavas cover a vast area (~7000 km2) in the northern Hawaiian Islands. Kaul'a rejuvenated lavas show a much larger (5x) variation of incompatible elements than those from adjacent Ni'ihau but comparable to Honolulu rejuvenated lavas. Unlike both suites, heavy REE elements in Kaul'a lavas are pinned at Ybn 10, indicating a strong garnet signature in the source. Rejuvenated lavas from the Kaua'i Ridge have slightly higher radiogenic Pb isotope ratios than those from the southern Hawaiian Islands (Maui to O'ahu) and partly straddle the LOA-KEA boundary. Rejuvenated volcanism was nearly coeval occurrence from ~0.3 to 0.6 Ma along a 450 km segment of the Hawaiian Islands (West Maui to north of Ni'ihau), which is inconsistent with most models for rejuvenated volcanism except the Ballmer et al.2 dynamic melting model. This model invokes increasing pyroxenite contributions and the interaction with scale-scale convection rolls in the lithosphere to enhance the volume and duration of rejuvenation volcanism. Thus, a pyroxenite-bearing, mixed Kea-Loa source component may have contributed to the prolonged and extensive rejuvenated volcanism in the northern Hawaiian Islands. 1Robinson & Eakins 2006, J. Vol. Geotherm. Res., 151, 309-317; 2Ballmer et al. 2011, Nat. Geosc. 4, 457-460.

  16. Leg 197 synthesis: Southward motion and geochemical variability of the Hawaiian hotspot

    USGS Publications Warehouse

    Duncan, R.A.; Tarduno, J.A.; Scholl, D. W.

    2006-01-01

    The bend in the Hawaiian-Emperor volcanic chain is an often-cited example of a change in plate motion with respect to a stationary hotspot. Growing evidence, however, suggests that the bend might instead record variable drift of the Hawaiian hotspot within a convecting mantle. Paleomagnetic and radiometric age data from samples recovered during Ocean Drilling Program (ODP) Leg 197 define an age-progressive paleolatitude history, indicating that the Emperor Seamounts volcanic trend was formed principally by rapid (4-5 cm/yr) southward motion of the Hawaiian hotspot during Late Cretaceous to early Tertiary time (81-47 Ma). Paleointensity data derived from Leg 197 suggest an inverse relationship between field strength and reversal frequency, consistent with an active lower mantle that controls the efficiency of the geodynamo. Petrochemical data and observations of volcanic products (lava flows and volcaniclastic sediments) from Detroit, Nintoku, and Koko Seamounts provide records of the evolution of these volcanic systems for comparison with recent activity in the Hawaiian Islands. We find that the Emperor Seamounts formed from similar mantle sources for melting (plume components and lithosphere) and in much the same stages of volcanic activity and time span as the Hawaiian volcanoes. Changes in major and trace element and Sr isotopic compositions of shield lavas along the lineament can be related to variations in thickness of the lithosphere overlying the hotspot that control the depth and extent of partial melting. Other geochemical tracers, such as He, Pb, and Hf isotopic compositions, indicate persistent contributions to melting from the plume throughout the volcanic chain.

  17. Using Google Maps to Access USGS Volcano Hazards Information

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Snedigar, S.; Guffanti, M.; Bailey, J. E.; Wall, B. G.

    2006-12-01

    The U.S. Geological Survey (USGS) Volcano Hazard Program (VHP) is revising the information architecture of our website to provide data within a geospatial context for emergency managers, educators, landowners in volcanic areas, researchers, and the general public. Using a map-based interface for displaying hazard information provides a synoptic view of volcanic activity along with the ability to quickly ascertain where hazards are in relation to major population and infrastructure centers. At the same time, the map interface provides a gateway for educators and the public to find information about volcanoes in their geographic context. A plethora of data visualization solutions are available that are flexible, customizable, and can be run on individual websites. We are currently using a Google map interface because it can be accessed immediately from a website (a downloadable viewer is not required), and it provides simple features for moving around and zooming within the large map area that encompasses U.S. volcanism. A text interface will also be available. The new VHP website will serve as a portal to information for each volcano the USGS monitors with icons for alert levels and aviation color codes. When a volcano is clicked, a window will provide additional information including links to maps, images, and real-time data, thereby connecting information from individual observatories, the Smithsonian Institution, and our partner universities. In addition to the VHP home page, many observatories and partners have detailed graphical interfaces to data and images that include the activity pages for the Alaska Volcano Observatory, the Smithsonian Google Earth files, and Yellowstone Volcano Observatory pictures and data. Users with varied requests such as raw data, scientific papers, images, or brief overviews expect to be able to quickly access information for their specialized needs. Over the next few years we will be gathering, cleansing, reorganizing, and posting

  18. Punctuated Evolution of Volcanology: An Observatory Perspective

    NASA Astrophysics Data System (ADS)

    Burton, W. C.; Eichelberger, J. C.

    2010-12-01

    Volcanology from the perspective of crisis prediction and response-the primary function of volcano observatories-is influenced both by steady technological advances and singular events that lead to rapid changes in methodology and procedure. The former can be extrapolated somewhat, while the latter are surprises or shocks. Predictable advances include the conversion from analog to digital systems and the exponential growth of computing capacity and data storage. Surprises include eruptions such as 1980 Mount St Helens, 1985 Nevado del Ruiz, 1989-1990 Redoubt, 1991 Pinatubo, and 2010 Eyjafjallajokull; the opening of GPS to civilian applications, and the advent of an open Russia. Mount St Helens switched the rationale for volcanology in the USGS from geothermal energy to volcano hazards, Ruiz and Pinatubo emphasized the need for international cooperation for effective early warning, Redoubt launched the effort to monitor even remote volcanoes for purposes of aviation safety, and Eyjafjallajokull hammered home the need for improved ash-dispersion and engine-tolerance models; better GPS led to a revolution in volcano geodesy, and the new Russian Federation sparked an Alaska-Kamchatka scientific exchange. The pattern has been that major funding increases for volcano hazards occur after these unpredictable events, which suddenly expose a gap in capabilities, rather than out of a calculated need to exploit technological advances or meet a future goal of risk mitigation. It is up to the observatory and national volcano hazard program to leverage these sudden funding increases into a long-term, sustainable business model that incorporates both the steadily increasing costs of staff and new technology and prepares for the next volcano crisis. Elements of the future will also include the immediate availability on the internet of all publically-funded volcano data, and subscribable, sophisticated hazard alert systems that run computational, fluid dynamic eruption models. These

  19. Global Volcano Model

    NASA Astrophysics Data System (ADS)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  20. Is the Hawaiian Archipelago dominantly Loa-trend?

    NASA Astrophysics Data System (ADS)

    Weis, D.; Harrison, L.; Garcia, M. O.; Rhodes, M. M.

    2015-12-01

    Hawaiian volcanoes are distributed en echelon on the islands along two chains, the Loa and Kea trends, that are geographically and geochemically distinct1,2. These geochemical differences may be attributed to source zoning (concentric or bilateral) of the Hawaiian mantle plume (HMP) or to variations in pressure and temperature of melting. Most of these models assume a degree of independence of the two trends that is perhaps not realistic. To explore the isotopic characteristics of two "Kea"-trend volcanoes with transitional signatures, we analyzed 11 samples of Kohala shield-stage tholeiitic lavas and three from Haleakala for high-precision Pb-Nd-Sr-Hf isotopes. These samples are transitional in all isotopic systems between Loa and Kea compositions and cross-over the Pb-Pb boundary3. Minor cross-overs had been documented in Mauna Kea4, Kilauea5, and W Molokai6 basalts. A bilateral or concentric view of the HMP is thus too simplistic. Statistical analysis of the MC-ICP-MS or triple-spike shield tholeiite data (n>600) and the existence of three Pb-Pb trends originating from average Loa indicate that Loa is the dominant mantle source composition on the archipelago. Isotopically, four geochemical groups are identified: Kea (Mauna Kea, Kilauea), average Loa (Mauna Loa, Hualalai, Kauai, Waianae, W. Molokai, Loihi), enriched Loa (Koolau Makapuu, Lanai, Kahoolawe) and transitional Kea (E. Molokai, W. Maui, Haleakala, Kohala). The implications are: 1) HMP source components refresh and grade into and out of existence on a smaller timescale than previously thought; 2) the Kea trend is also heterogeneous; and 3) vertical heterogeneity of the plume is important on a regional scale as well as at the scale of individual volcanoes6. 1Jackson et al., 1972, GSA Bull. 83, 1-17. 2Weis et al., 2011, Nat. Geosci., 4, 831-838. 3Abouchami et al., 2005, Nature, 434, 851-856. 4Eisele et al., 2003, G-cubed, 4, 5, 32 pages. 5Marske et al., 2007, EPSL, 259, 34-50. 6Xu et al., 2014, GCA, 132

  1. Native Hawaiian Community College Students: What Happens?

    ERIC Educational Resources Information Center

    Hagedorn, Linda Serra; Lester, Jaime; Moon, Hye Sun; Tibbetts, Katherine

    2006-01-01

    Using a weighted database of approximately 3,000 students, this study involves the tracing of the postsecondary history of 2,516 students who identified as Native Hawaiian, graduated from high school between 1993 and 1995, and attended college. Virtually none of the students are 100% Hawaiian. Due to a long history of intermarriage, the Hawaiian…

  2. Tenure Experiences of Native Hawaiian Women Faculty

    ERIC Educational Resources Information Center

    Ka opua, Heipua

    2013-01-01

    This study examines the status of women of color in academe with a particular focus on Native Hawaiian women faculty. Using a qualitative narrative design, this research examined the experiences of tenured instructional Native Hawaiian women faculty (Na Wahine) at the University of Hawai'i at Manoa. Two research questions guided this inquiry: 1)…

  3. Tenure Experiences of Native Hawaiian Women Faculty

    ERIC Educational Resources Information Center

    Ka opua, Heipua

    2013-01-01

    This study examines the status of women of color in academe with a particular focus on Native Hawaiian women faculty. Using a qualitative narrative design, this research examined the experiences of tenured instructional Native Hawaiian women faculty (Na Wahine) at the University of Hawai'i at Manoa. Two research questions guided this inquiry: 1)…

  4. Spattering activity at Halemáumáu in 2015 and the transition between Hawaiian and Strombolian eruptions

    NASA Astrophysics Data System (ADS)

    Mintz, B. G.; Houghton, B. F.; Orr, T. R.; Taddeucci, J.; Gaudin, D.; Kueppers, U.; Carey, R.; Scarlato, P.; Del Bello, E.

    2016-12-01

    Explosive activity in 2015 at the free surface of the Halemáumáu lava lake at Kīlauea showed features of both Hawaiian fountaining and Strombolian explosivity. Like low Hawaiian fountains, spattering events often persisted for tens of minutes or hours. However, like Strombolian explosions, the activity consisted of a series of bursting of discrete, meter-sized gas bubbles. Each bubble burst threw fluidal bombs, with meter to decimeter diameters, to elevations of meters to a few tens of meters above the collapsing bubble remnant. Initial velocities of the pyroclasts were lower than either Strombolian explosions or high Hawaiian fountains, typically only 7 to 14 meters/second on average.Although some events were triggered by short-lived rock falls that penetrated the crust of the lava lake, the resulting outgassing activity would become self-sustaining and persistent. Activity was at times, confined to a single point source, to several point sources, or along arcs extending tens of meters parallel to the lake margin.This activity represents another type of behavior exhibited by basaltic volcanoes and provides greater insight into the spectrum between Hawaiian fountaining and Strombolian explosivity. Consequently, this activity is highly instructive in terms of: (a) the diversity of degassing/outgassing possible at basaltic volcanoes and (b) the controls on mechanically coupled versus decoupled behavior of the exsolved bubbles. The 2015 Halemáumáu activity was often continuous over similar timescales to Hawaiian fountaining but was markedly less steady than high fountains. A significant portion of the gas phase was released as discrete bubble bursts, but with frequencies two or three orders of magnitude higher than at Stromboli, which permitted sustained but not steady events.

  5. Applications of geophysical methods to volcano monitoring

    USGS Publications Warehouse

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  6. Volcanoes: observations and impact

    USGS Publications Warehouse

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  7. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Goff, Fraser

    2005-05-01

    Adventure travels to volcanoes offer chance encounters with danger, excitement, and romance, plus opportunities to experience scientific enlightenment and culture. To witness a violently erupting volcano and its resulting impacts on landscape, climate, and humanity is a powerful personal encounter with gigantic planetary forces. To study volcano processes and products during eruptions is to walk in the footsteps of Pliny himself. To tour the splendors and horrors of 25 preeminent volcanoes might be the experience of a lifetime, for scientists and nonscientists alike. In The Volcano Adventure Guide, we now have the ultimate tourist volume to lead us safely to many of the world's famous volcanoes and to ensure that we will see the important sites at each one.

  8. Volcanoes, Observations and Impact

    NASA Astrophysics Data System (ADS)

    Thurber, Clifford; Prejean, Stephanie

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  9. Ocean Acoustic Observatory Federation

    DTIC Science & Technology

    1999-09-30

    Preliminary report of the detection of and response to the January 1998 eruption at Axial Volcano, Juan de Fuca Ridge , RIDGE Events, July 1998. Blackman, D.K...January 1998 earthquake swarm at Axial Volcano, Juan de Fuca Ridge : Hydroacoustic evidence of seafloor volcanic activity, Geophysical Research Letters...in press). Dziak, Robert P., and Christopher G. Fox. Long-Term Seismicity and Ground Deformation at Axial Volcano, Juan de Fuca Ridge , Geophysical

  10. Ocean Acoustic Observatory Federation

    DTIC Science & Technology

    2001-09-30

    J., C. G. Fox, and F. K. Duennebier, Hydroacoustic detection of submarine landslides on Kilauea volcano , Geophys. Res. Lett., vol. 28, 1811-1814...acoustic tomography experiments in the vicinity of coastal North America, • Monitor, in real time, marine mammals, earthquakes and volcanoes in the...distances, coastal tomography and thermometry, and earthquakes and volcanoes in the northern Pacific. APPROACH The members of the Ocean Acoustic

  11. The Anatahan volcano-monitoring system

    NASA Astrophysics Data System (ADS)

    Marso, J. N.; Lockhart, A. B.; White, R. A.; Koyanagi, S. K.; Trusdell, F. A.; Camacho, J. T.; Chong, R.

    2003-12-01

    A real-time 24/7 Anatahan volcano-monitoring and eruption detection system is now operational. There had been no real-time seismic monitoring on Anatahan during the May 10, 2003 eruption because the single telemetered seismic station on Anatahan Island had failed. On May 25, staff from the Emergency Management Office (EMO) of the Commonwealth of the Northern Mariana Islands and the U. S. Geological Survey (USGS) established a replacement telemetered seismic station on Anatahan whose data were recorded on a drum recorder at the EMO on Saipan, 130 km to the south by June 5. In late June EMO and USGS staff installed a Glowworm seismic data acquisition system (Marso et al, 2003) at EMO and hardened the Anatahan telemetry links. The Glowworm system collects the telemetered seismic data from Anatahan and Saipan, places graphical display products on a webpage, and exports the seismic waveform data in real time to Glowworm systems at Hawaii Volcano Observatory and Cascades Volcano Observatory (CVO). In early July, a back-up telemetered seismic station was placed on Sarigan Island 40 km north of Anatahan, transmitting directly to the EMO on Saipan. Because there is currently no population on the island, at this time the principal hazard presented by Anatahan volcano would be air traffic disruption caused by possible erupted ash. The aircraft/ash hazard requires a monitoring program that focuses on eruption detection. The USGS currently provides 24/7 monitoring of Anatahan with a rotational seismic duty officer who carries a Pocket PC-cell phone combination that receives SMS text messages from the CVO Glowworm system when it detects large seismic signals. Upon receiving an SMS text message notification from the CVO Glowworm, the seismic duty officer can use the Pocket PC - cell phone to view a graphic of the seismic traces on the EMO Glowworm's webpage to determine if the seismic signal is eruption related. There have been no further eruptions since the monitoring system was

  12. Conversing with Pelehonuamea: A workshop combining 1,000+ years of traditional Hawaiian knowledge with 200 years of scientific thought on Kīlauea volcanism

    USGS Publications Warehouse

    Kauahikaua, James P.; Babb, Janet L.; Kauahikaua, James P.; Babb, Janet L.

    2017-05-25

    The events surrounding volcanic eruptions and damaging earthquakes in Hawai‘i have often been described in journals, letters, and newspapers articles in the English language; however, the Hawaiian nation was among the most literate of countries in the 19th century, and many Hawaiian-language newspapers were in circulation through all but the earliest decades of the 19th century. Any modern reconstruction of the history of Hawaiian eruptions or earthquakes should take advantage of all available sources, and so we seek to add the Hawaiian-language newspaper articles, journals, stories, and chants to the volcano and earthquake literature. These sources have been used in many recent volcanological studies.Another aspect to the mix of science and traditional Hawaiian values is that many of the volcanic summits in Hawaiʻi are considered sacred to Hawaiians. Hawaiian travelers brought the first Western missionary team to the summit of Kīlauea and advised them of the proper protocols and behaviors while in this sacred area. The missionaries dismissed this advice as native superstition and they began a campaign of aggressively stamping out customs and protocols related to the Hawaiian volcano goddess Pelehonuamea. What has survived as native knowledge of the volcanoes is a few phrases from native guides included in some of the missionaries’ journals, and a few stories. Pualani and Kuʻulei Kanahele provide excellent introductions to the Pelehonuamea chants.In the 21st century, amid a reawakening of Hawaiian culture, modern Hawaiians are demanding protection of their sacred areas, and scientists must be aware of these interests. At the very least, scientists should show respect to Hawaiian values when working in these areas, and should try to minimize disruptions caused by their work. Kaeo Duarte, Peter Mills, and Scott Rowland describe taking this approach in their field work.Traditional knowledge is also contained in place names. It is important not only to preserve

  13. Hawaiian propolis: comparative analysis and botanical origin.

    PubMed

    Inui, Saori; Hosoya, Takahiro; Kumazaw, Shigenori

    2014-02-01

    Propolis is a resinous mixture of substances collected and processed from various botanical sources by honeybees (Apis mellifera). We recently obtained Hawaiian propolis, the study of which, to our knowledge, has not been reported. The purpose of this study was to analyze the composition of Hawaiian propolis and to identify its botanical origin. A comparative analysis of Hawaiian and Okinawan propolis and of the glandular trichomes on Macaranga tanarius fruit (the botanical origin of Okinawan propolis) was performed using reversed-phase high-performance liquid chromatography coupled with high resolution-electrospray mass spectrometry. Hawaiian propolis contained nine prenylflavonoids that were also isolated from Okinawan propolis. In conclusion, we suggest that the botanical origin of Hawaiian propolis is M. tanarius, the same as that of Okinawan propolis.

  14. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  15. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  16. Surveys on the distribution and abundance of the Hawaiian hoary bat (Lasiurus cinereus semotus) in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    SciTech Connect

    Reynolds, M.; Ritchotte, G.; Dwyer, J.; Viggiano, A.; Nielsen, B.; Jacobi, J.D.

    1994-08-01

    In 1993 the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct wildlife surveys relative to identifying potential impacts of geothermal resource development on the native biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the endangered Hawaiian hoary bat (Hawaiian bat), or opeapea (Lasiurus cinereus semotus), within the proposed Hawaii geothermal subzones. Potential effects of geothermal development on Hawaiian bat populations are also discussed. Surveys were conducted to determine the distribution and abundance of bats throughout the District of Puna. Baseline information was collected to evaluate the status of bats within the study area and to identify important foraging habitats. Little specific data exists in the published literature on the population status and potential limiting factors affecting the Hawaiian bat. A USFWS recovery plan does not exist for this endangered species.

  17. Incipient radiation within the dominant Hawaiian tree Metrosideros polymorpha

    PubMed Central

    Stacy, E A; Johansen, J B; Sakishima, T; Price, D K; Pillon, Y

    2014-01-01

    Although trees comprise a primary component of terrestrial species richness, the drivers and temporal scale of divergence in trees remain poorly understood. We examined the landscape-dominant tree, Metrosideros polymorpha, for variation at nine microsatellite loci across 23 populations on young Hawai'i Island, sampling each of the island's five varieties throughout its full geographic range. For four varieties, principal coordinate analysis revealed strong clustering of populations by variety across the 10 430 km2 island, indicating partitioning of the species into multiple evolutionarily significant units. The single island-endemic form, riparian var. newellii, showed especially strong differentiation from other varieties despite occurring in sympatry with other varieties and likely evolved from a bog form on the oldest volcano, Kohala, within the past 500 000 years. Along with comparable riparian forms on other Pacific Islands, var. newellii appears to represent parallel incipient ecological speciation within Metrosideros. Greater genetic distance among the more common varieties on the oldest volcano and an inverse relationship between allelic diversity and substrate age appear consistent with colonization of Hawai'i Island by older, partially diverged varieties followed by increased hybridization among varieties on younger volcanoes. This study demonstrates that broad population-level sampling is required to uncover patterns of diversification within a ubiquitous and long-lived tree species. Hawaiian Metrosideros appears to be a case of incipient radiation in trees and thus should be useful for studies of divergence and the evolution of reproductive isolating barriers at the early stages of speciation. PMID:24824285

  18. Volcano hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Mastin, Larry G.; Scott, William E.; Schilling, Steven P.

    1997-01-01

    Newberry volcano is a broad shield volcano located in central Oregon. It has been built by thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during several eruptive episodes of the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. The most-visited part of the volcano is Newberry Crater, a volcanic depression or caldera at the summit of the volcano. Seven campgrounds, two resorts, six summer homes, and two major lakes (East and Paulina Lakes) are nestled in the caldera. The caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Other eruptions during this time have occurred along a rift zone on the volcano's northwest flank and, to a lesser extent, the south flank. Many striking volcanic features lie in Newberry National Volcanic Monument, which is managed by the U.S. Forest Service. The monument includes the caldera and extends along the northwest rift zone to the Deschutes River. About 30 percent of the area within the monument is covered by volcanic products erupted during the past 10,000 years from Newberry volcano. Newberry volcano is presently quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. This report describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. In terms of our own lifetimes, volcanic events at Newberry are not of day-to-day concern because they occur so infrequently; however, the consequences of some types of eruptions can be severe. When Newberry

  19. Mud volcanoes on Mars?

    NASA Technical Reports Server (NTRS)

    Komar, Paul D.

    1991-01-01

    The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.

  20. Small Tharsis Volcano

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small volcano located southwest of the giant volcano, Pavonis Mons, near 2.5oS, 109.4oW. Lava flows can be seen to have emanated from the summit region, which today is an irregularly-shaped collapse pit, or caldera. A blanket of dust mantles this volcano. Dust covers most martian volcanoes, none of which are young or active today. This picture covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.

  1. Aligning petrology with geophysics: the Father's Day intrusion and eruption, Kīlauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Houghton, B. F.; Poland, M. P.

    2016-12-01

    The Father's Day 2007 eruption at Kīlauea Volcano, Hawai`i, is an unprecedented opportunity to align geochemical techniques with the exceptionally detailed volcano monitoring data collected by the Hawaiian Volcano Observatory (HVO). Increased CO2 emissions were measured during a period of inflation at the summit of Kilauea in 2003-2007, suggesting that the rate of magma supply to the summit had increased [Poland et al., 2012]. The June 2007 Father's Day eruption in the East Rift Zone (ERZ) occurred at the peak of the summit inflation. It offers the potential to sample magmas that have ascended on short timescales prior to 2007 from the lower crust, and perhaps mantle, with limited fractionation in the summit reservoir. The bulk rock composition of the lavas erupted are certainly consistent with this idea, with >8.5 wt% MgO compared to a typical 7.0-7.5 wt% for contemporaneous Pu`u`O`o ERZ lavas. However, our analysis of the major and trace element chemistry of olivine-hosted melt inclusions shows that the melts are in fact relatively evolved, with Mg# <53, compared to up to 63 for some high fountaining eruptions, e.g. Kīlauea Iki. The magma evidently entrained a crystal cargo of more primitive olivines, compositionally typical of summit eruption magma (with 81-84 mol% Fo). The melt inclusion chemistry shows homogenized and narrowly distributed trace element ratios, medium/low CO2 abundances and high concentrations of sulfur (unlike typical ERZ magmas). However, the chemistry is unlike melts that have partially bypassed the summit reservoir, e.g. those erupted at Kīlauea Iki, Mauna Ulu. We suggest that the Father's Day magma had been resident in the magma reservoir prior to the 2003-2007 inflation, and was evacuated from the reservoir into the ERZ in response to the increased rate of intrusion of magma from depth. Dissolved volatile contents along profiles in embayments ("open" melt inclusions) were measured and compared to diffusion models to predict timescales

  2. Lava and Snow on Klyuchevskaya Volcano [detail

    NASA Image and Video Library

    2017-09-27

    This false-color (shortwave infrared, near infrared, green) satellite image reveals an active lava flow on the western slopes of Klyuchevskaya Volcano. Klyuchevskaya is one of several active volcanoes on the Kamchatka Peninsula in far eastern Russia. The lava flow itself is bright red. Snow on Klyuchevskaya and nearby mountains is cyan, while bare ground and volcanic debris is gray or brown. Vegetation is green. The image was collected by Landsat 8 on September 9, 2013. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Instrument: Landsat 8 - OLI More info: 1.usa.gov/1evspH7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Lava Lake Thermal Pattern Classification Using Self-Organizing Maps and Relationships to Eruption Processes at Kīlauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Burzynski, A. M.; Anderson, S. W.; Morrison, K.; LeWinter, A. L.; Patrick, M. R.; Orr, T. R.; Finnegan, D. C.

    2014-12-01

    Nested within the Halema'uma'u Crater on the summit of Kīlauea Volcano, the active lava lake of Overlook Crater poses hazards to local residents and Hawaii Volcanoes National Park visitors. Since its formation in March 2008, the lava lake has enlarged to +28,500 m2 and has been closely monitored by researchers at the USGS Hawaiian Volcano Observatory (HVO). Time-lapse images, collected via visible and thermal infrared cameras, reveal thin crustal plates, separated by incandescent cracks, moving across the lake surface as lava circulates beneath. We hypothesize that changes in size, shape, velocity, and patterns of these crustal plates are related to other eruption processes at the volcano. Here we present a methodology to identify characteristic lava lake surface patterns from thermal infrared video footage using a self-organizing maps (SOM) algorithm. The SOM is an artificial neural network that performs unsupervised clustering and enables us to visualize the relationships between groups of input patterns on a 2-dimensional grid. In a preliminary trial, we input ~4 hours of thermal infrared time-lapse imagery collected on December 16-17, 2013 during a transient deflation-inflation deformation event at a rate of one frame every 10 seconds. During that same time period, we also acquired a series of one-second terrestrial laser scans (TLS) every 30 seconds to provide detailed topography of the lava lake surface. We identified clusters of characteristic thermal patterns using a self-organizing maps algorithm within the Matlab SOM Toolbox. Initial results from two SOMs, one large map (81 nodes) and one small map (9 nodes), indicate 4-6 distinct groups of thermal patterns. We compare these surface patterns with lava lake surface slope and crustal plate velocities derived from concurrent TLS surveys and with time series of other eruption variables, including outgassing rates and inflation-deflation events. This methodology may be applied to the continuous stream of

  4. Infrasound Studies of Alaskan Volcanoes

    NASA Astrophysics Data System (ADS)

    McNutt, S. R.; Arnoult, K.; Szuberla, C.; Olson, J. V.; Wilson, C. R.

    2010-12-01

    Infrasound has been used to study a number of Alaskan volcanic eruptions over the last 15 years. Arrays include the I53US array of 8 sensors in Fairbanks installed in 2002 under the CTBT umbrella; an array of 4 sensors installed at Okmok Volcano in summer 2010 by the Alaska Volcano Observatory (AVO); and a 6-sensor array installed in Dillingham in September 2010 by the UAF Infrasound Group. Individual sensors have been installed by AVO at Pavlof (1996), Shishaldin (1997), Augustine (2006), Fourpeaked (2006), and Redoubt (2009) volcanoes. These have been especially valuable because they provide precise source timing and signal strength that allow the correct identification of atmospheric paths. Small volcanic explosions have been recorded at local stations only for Pavlof, Shishaldin and Fourpeaked volcanoes. The more interesting large explosive eruptions have been recorded on both local stations and arrays from eruptions at Augustine in 2006 (13 events), Fourpeaked in 2006 (2 events), Cleveland in 2007 (1 event), Okmok in 2008 (1 sustained event), Kasatochi in 2008 (5 events), and Redoubt in 2009 (over 30 events). Pressures up to 6 Pa have been recorded for the largest Redoubt event at a distance of 547 km from the array, and 1.2 Pa for the largest Kasatochi event at a distance of 2104 km. We determined reduced pressures (equivalent pressure at 1 km assuming 1/r decay) and find that Kasatochi exceeds 2500 Pa and Redoubt 1600 Pa. The smaller explosive eruptions at Augustine yield reduced pressures of 40 to 300 Pa. There is reasonable correlation between measured pressures and signal durations and the ash cloud heights and tephra volumes, hence the infrasound data are useful for hazard assessment. However, the long travel times (3 sec per km) suggest that infrasound array data arrive too late for primary detection but are good for estimating other attributes such as size. Infrasound data may also be combined with seismic data to determine the partitioning of energy

  5. Volatiles in melt inclusions and osmium isotopes from Hawaiian lavas: investigating the relationship between CO2 and H2O contents with mantle source lithology

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Garcia, M. O.; Pietruszka, A. J.

    2012-12-01

    Variations in radiogenic isotopes (Pb, Sr, Nd, Hf, He, etc.) and magmatic volatiles (CO2 or H2O) in Hawaiian volcanoes reveal a range of important processes that occur from the source to surface (mantle source heterogeneity, extents of melting, magma transportation, mixing, and storage, and eruption style). Hawaiian lavas are thought to originate from partial melting of a heterogeneous plume source containing a mixture of peridotite and ancient recycled oceanic crust (pyroxenite or eclogite). These lavas display a considerable range in volatile abundances (e.g. <1 to >1000 ppm for Kilauea) that is generally attributed to magmatic degassing or mixing during ascent. However, the source region for Hawaiian volcanoes may also be heterogeneous with respect to volatile concentrations. The effect of shallow degassing makes it difficult to determine if there is a relationship between mantle source composition, lithology, and the volatile budget. We will present Os isotopic ratios and volatile contents for over 25 samples from six Hawaiian volcanoes (Koolau, Mauna Kea, Mauna Loa, Hualalai, Kilauea, and Loihi) to determine if pre-eruptive volatiles in shield-stage magmas correlate with the different Hawaiian components (i.e. 'Kea' or 'Loa') and lithologies (i.e. peridotite or pyroxenite) identified by radiogenic isotopes. Rapidly-cooled submarine glasses and tephras will be analyzed, as subaerial lavas cool too slowly to prevent diffusive loss of H2O from melt inclusions. Olivine-hosted melt inclusions or groundmass glasses from each eruption will be analyzed for a range of volatiles (CO2, H2O, S, Cl, F). Additionally, olivine separates from each of these samples will be analyzed for Os isotopes. This study assesses the role of mantle heterogeneity, degree of partial melting, magma transportation, and degassing, in controlling the primary melt volatile concentrations. Although volatile abundances in parental magmas are likely to be modified by variable extents of exsolution

  6. Petrology of Hualalai volcano, Hawaii: Implication for mantle composition

    USGS Publications Warehouse

    Clague, D.A.; Jackson, E.D.; Wright, T.L.

    1980-01-01

    Hualalai is one of five volcanoes whose eruptions built the island of Hawaii. The historic 1800-1801 flows and the analyzed prehistoric flows exposed at the surface are alkalic basalts except for a trachyte cone and flow at Puu Waawaa and a trachyte maar deposit near Waha Pele. The 1800-1801 eruption produced two flows: the upper Kaupulehu flow and the lower Huehue flow. The analyzed lavas of the two 1800-1801 flows are geochemically identical with the exception of a few samples from the toe of the Huehue flow that appear to be derived from a separate magmatic batch. The analyzed prehistoric basalts are nearly identical to the 1800-1801 flows but include some lavas that have undergone considerable shallow crystal fractionation. The least fractionated alkalic basalts from Hualalai are in equilibrium with mantle olivine (Fo87) indicating that the Hawaiian mantle source region is not unusually iron-rich. The 1800-1801 and analyzed prehistoric basalts can be generated by about 5-10% partial fusion of a garnet-bearing source relatively enriched in the light-rare-earths. The mantle underlying the Hawaiian Islands is chemically and mineralogically heterogeneous before and after extraction of the magmas that make up the volcanoes. ?? 1980 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

  7. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  8. Volcano infrasound: A review

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey Bruce; Ripepe, Maurizio

    2011-09-01

    Exploding volcanoes, which produce intense infrasound, are reminiscent of the veritable explosion of volcano infrasound papers published during the last decade. Volcano infrasound is effective for tracking and quantifying eruptive phenomena because it corresponds to activity occurring near and around the volcanic vent, as opposed to seismic signals, which are generated by both surface and internal volcanic processes. As with seismology, infrasound can be recorded remotely, during inclement weather, or in the dark to provide a continuous record of a volcano's unrest. Moreover, it can also be exploited at regional or global distances, where seismic monitoring has limited efficacy. This paper provides a literature overview of the current state of the field and summarizes applications of infrasound as a tool for better understanding volcanic activity. Many infrasound studies have focused on integration with other geophysical data, including seismic, thermal, electromagnetic radiation, and gas spectroscopy and they have generally improved our understanding of eruption dynamics. Other work has incorporated infrasound into volcano surveillance to enhance capabilities for monitoring hazardous volcanoes and reducing risk. This paper aims to provide an overview of volcano airwave studies (from analog microbarometer to modern pressure transducer) and summarizes how infrasound is currently used to infer eruption dynamics. It also outlines the relative merits of local and regional infrasound surveillance, highlights differences between array and network sensor topologies, and concludes with mention of sensor technologies appropriate for volcano infrasound study.

  9. Colima Volcano, Mexico

    NASA Image and Video Library

    1995-10-29

    STS073-E-5274 (3 Nov. 1995) --- Colima was photographed with a color Electronic Still Camera (ESC) onboard the Earth-orbiting space shuttle Columbia. The volcano lies due south of Guadalajara and Lake Chapala. It is considered to be one of Mexico's most active and most dangerous volcanoes, lying not far from heavily populated areas.

  10. Geochemical investigation of Gabbroic Xenoliths from Hualalai Volcano: Implications for lower oceanic crust accretion and Hualalai Volcano magma storage system

    NASA Astrophysics Data System (ADS)

    Gao, Ruohan; Lassiter, John C.; Barnes, Jaime D.; Clague, David A.; Bohrson, Wendy A.

    2016-05-01

    The patterns of axial hydrothermal circulation at mid-ocean ridges both affect and are influenced by the styles of magma plumbing. Therefore, the intensity and distribution of hydrothermal alteration in the lower oceanic crust (LOC) can provide constraints on LOC accretion models (e.g., ;gabbro glacier; vs. ;multiple sills;). Gabbroic xenoliths from Hualalai Volcano, Hawaii include rare fragments of in situ Pacific lower oceanic crust. Oxygen and strontium isotope compositions of 16 LOC-derived Hualalai gabbros are primarily within the range of fresh MORB, indicating minimal hydrothermal alteration of the in situ Pacific LOC, in contrast to pervasive alteration recorded in LOC xenoliths from the Canary Islands. This difference may reflect less hydrothermal alteration of LOC formed at fast ridges than at slow ridges. Mid-ocean ridge magmas from slow ridges also pond on average at greater and more variable depths and undergo less homogenization than those from fast ridges. These features are consistent with LOC accretion resembling the ;multiple sills; model at slow ridges. In contrast, shallow magma ponding and limited hydrothermal alteration in LOC at fast ridges are consistent with the presence of a long-lived shallow magma lens, which limits the penetration of hydrothermal circulation into the LOC. Most Hualalai gabbros have geochemical and petrologic characteristics indicating derivation from Hualalai shield-stage and post-shield-stage cumulates. These xenoliths provide information on the evolution of Hawaiian magmas and magma storage systems. MELTS modeling and equilibration temperatures constrain the crystallization pressures of 7 Hualalai shield-stage-related gabbros to be ∼2.5-5 kbar, generally consistent with inferred local LOC depth. Therefore a deep magma reservoir existed within or at the base of the LOC during the shield stage of Hualalai Volcano. Melt-crust interaction between Hawaiian melts and in situ Pacific crust during magma storage partially

  11. Hawaiian Hailstones-30 January 1985.

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu

    1987-12-01

    Hailstones fell widely over the eastern side of the island of Hawaii on 30 January 1985. These Hawaiian hailstones were observed to have clear, circular centers that probably started on frozen drops. The average size of each frozen drop was estimated as approximately 1.8 mm in diameter. The unusually elongated hailstones suggested the existence of a very high content of supercooled water in the cloud. Analysis suggests that hailclouds in Hawaii contain many large supercooled drops. These raindrops freeze and act as the "embryos" of hailstones.

  12. Hawaiian angiosperm radiations of North American origin

    PubMed Central

    Baldwin, Bruce G.; Wagner, Warren L.

    2010-01-01

    Background Putative phytogeographical links between America (especially North America) and the Hawaiian Islands have figured prominently in disagreement and debate about the origin of Pacific floras and the efficacy of long-distance (oversea) plant dispersal, given the obstacles to explaining such major disjunctions by vicariance. Scope Review of past efforts, and of progress over the last 20 years, toward understanding relationships of Hawaiian angiosperms allows for a historically informed re-evaluation of the American (New World) contribution to Hawaiian diversity and evolutionary activity of American lineages in an insular setting. Conclusions Temperate and boreal North America is a much more important source of Hawaiian flora than suggested by most 20th century authorities on Pacific plant life, such as Fosberg and Skottsberg. Early views of evolution as too slow to account for divergence of highly distinctive endemics within the Hawaiian geological time frame evidently impeded biogeographical understanding, as did lack of appreciation for the importance of rare, often biotically mediated dispersal events and ecological opportunity in island ecosystems. Molecular phylogenetic evidence for North American ancestry of Hawaiian plant radiations, such as the silversword alliance, mints, sanicles, violets, schiedeas and spurges, underlines the potential of long-distance dispersal to shape floras, in accordance with hypotheses championed by Carlquist. Characteristics important to colonization of the islands, such as dispersibility by birds and ancestral hybridization or polyploidy, and ecological opportunities associated with ‘sky islands’ of temperate or boreal climate in the tropical Hawaiian archipelago may have been key to extensive diversification of endemic lineages of North American origin that are among the most species-rich clades of Hawaiian plants. Evident youth of flowering-plant lineages from North America is highly consistent with recent geological

  13. Hawaiian angiosperm radiations of North American origin.

    PubMed

    Baldwin, Bruce G; Wagner, Warren L

    2010-06-01

    Putative phytogeographical links between America (especially North America) and the Hawaiian Islands have figured prominently in disagreement and debate about the origin of Pacific floras and the efficacy of long-distance (oversea) plant dispersal, given the obstacles to explaining such major disjunctions by vicariance. Review of past efforts, and of progress over the last 20 years, toward understanding relationships of Hawaiian angiosperms allows for a historically informed re-evaluation of the American (New World) contribution to Hawaiian diversity and evolutionary activity of American lineages in an insular setting. Temperate and boreal North America is a much more important source of Hawaiian flora than suggested by most 20th century authorities on Pacific plant life, such as Fosberg and Skottsberg. Early views of evolution as too slow to account for divergence of highly distinctive endemics within the Hawaiian geological time frame evidently impeded biogeographical understanding, as did lack of appreciation for the importance of rare, often biotically mediated dispersal events and ecological opportunity in island ecosystems. Molecular phylogenetic evidence for North American ancestry of Hawaiian plant radiations, such as the silversword alliance, mints, sanicles, violets, schiedeas and spurges, underlines the potential of long-distance dispersal to shape floras, in accordance with hypotheses championed by Carlquist. Characteristics important to colonization of the islands, such as dispersibility by birds and ancestral hybridization or polyploidy, and ecological opportunities associated with 'sky islands' of temperate or boreal climate in the tropical Hawaiian archipelago may have been key to extensive diversification of endemic lineages of North American origin that are among the most species-rich clades of Hawaiian plants. Evident youth of flowering-plant lineages from North America is highly consistent with recent geological evidence for lack of high

  14. Queen Jadwiga Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Wszołek, Bogdan

    2016-06-01

    Private Astronomical Observatory was open in June 2015. The main aim of the observatory is to provide and share astronomical and space knowledge. It collects research instruments and expands didactic infrastructure. Continuously, there is an open call for specialists to join the Honorary Staff of the Observatory.

  15. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  16. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Garcia, Michael O.; Rhodes, J. Michael; Jellinek, Mark; Scoates, James S.

    2011-12-01

    Linear chains of volcanic ocean islands are one of the most distinctive features on our planet. The longest, the Hawaiian-Emperor Chain, has been active for more than 80 million years, and is thought to have formed as the Pacific Plate moved across the Hawaiian mantle plume, the hottest and most productive of Earth's plumes. Volcanoes fed by the plume today form two adjacent trends, including Mauna Kea and Mauna Loa, that exhibit strikingly different geochemical characteristics. An extensive data set of isotopic analyses shows that lavas with these distinct characteristics have erupted in parallel along the Kea and Loa trends for at least 5 million years. Seismological data suggest that the Hawaiian mantle plume, when projected into the deep mantle, overlies the boundary between typical Pacific lower mantle and a sharply defined layer of apparently different material. This layer exhibits low seismic shear velocities and occurs on the Loa side of the plume. We conclude that the geochemical differences between the Kea and Loa trends reflect preferential sampling of these two distinct sources of deep mantle material. Similar indications of preferential sampling at the limit of a large anomalous low-velocity zone are found in Kerguelen and Tristan da Cunha basalts in the Indian and Atlantic oceans, respectively. We infer that the anomalous low-velocity zones at the core-mantle boundary are storing geochemical anomalies that are enriched in recycled material and sampled by strong mantle plumes.

  17. Genetic Consequences of Pleistocene Sea-Level Change on Hawaiian Megalagrion Damselflies.

    PubMed

    Jones, Brandon R; Jordan, Steve

    2015-01-01

    The Hawaiian Islands have long been an important laboratory for evolutionary research because their geological histories offer many natural experiments. For example, the Maui Nui complex, 4 islands that have been repeatedly connected and separated by fluctuating sea levels, lie near Hawaii Island, which has never been connected to another island. Here, we examine the genetic consequences of fluctuating island areas and connectivity using microsatellite analysis of 2 widespread, endemic Hawaiian damselflies. We screened 152 Megalagrion xanthomelas individuals from 5 islands at 14 loci and 34 Megalagrion pacificum from 3 islands at 11 loci to explore dispersal patterns and genetic diversity. Our data suggest that Pleistocene fluctuations in sea level alternated between creating land bridges that facilitated gene flow between once and future islands, and ocean channels that inhibited dispersal. Furthermore, interglacial periods of high sea stands likely reduced suitable habitat availability, causing the loss of genetic diversity on Maui Nui due to bottlenecks and founder events. Finally, we propose that gene flow from Molokai to Lanai may be enhanced by assisted dispersal from the trade winds that are channeled between volcanoes on western Maui and eastern Molokai. Our results emphasize the importance of variable microevolutionary processes in Hawaiian biogeography. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Pollen foraging behaviour of solitary Hawaiian bees revealed through molecular pollen analysis.

    PubMed

    Wilson, Erin E; Sidhu, C Sheena; LeVan, Katherine E; Holway, David A

    2010-11-01

    Obtaining quantitative information concerning pollinator behaviour has become a primary objective of pollination studies, but methodological limitations hinder progress towards this goal. Here, we use molecular genetic methods in an ecological context to demonstrate that endemic Hawaiian Hylaeus bees (Hymenoptera: Colletidae) selectively collect pollen from native plant species in Haleakala and Hawaii Volcanoes National Parks. We identified pollen DNA from the crops (internal storage organs) of 21 Hylaeus specimens stored in ethanol for up to 3 years. Genetic analyses reveal high fidelity in pollen foraging despite the availability of pollen from multiple plant species present at each study site. At high elevations in Haleakala, pollen was available from more than 12 species of flowering plants, but Hawaiian silversword (Argyroxiphium sandwicense subsp. macrocephalum) comprised 86% of all pollen samples removed from bee crops. At lower elevations in both parks, we only detected pukiawe (Leptecophylla (Styphelia) tameiameiae) pollen in Hylaeus crops despite the presence of other plant species in flower during our study. Furthermore, 100% of Hylaeus crops from which we successfully identified pollen contained native plant pollen. The molecular approaches developed in this study provide species-level information about floral visitation of Hawaiian Hylaeus that does not require specialized palynological expertise needed for high-throughput visual pollen identification. Building upon this approach, future studies can thus develop appropriate and customized criteria for assessing mixed pollen loads from a broader range of sources and from other global regions. © 2010 Blackwell Publishing Ltd.

  19. How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence.

    PubMed

    Price, Jonathan P; Clague, David A

    2002-12-07

    This study quantifies long-term landscape changes in the Hawaiian archipelago relating to dispersal, speciation and extinction. Accounting for volcano growth, subsidence and erosion, we modelled the elevations of islands at time intervals of 0.5 Myr for the last 32 Myr; we also assessed the variation in the spacing of volcanoes during this period. The size, spacing and total number of volcanic islands have varied greatly over time, with the current landscape of large, closely spaced islands preceded by a period with smaller, more distantly spaced islands. Considering associated changes in rates of dispersal and speciation, much of the present species pool is probably the result of recent colonization from outside the archipelago and divergence within contemporary islands, with limited dispersal from older islands. This view is in accordance with abundant phylogenetic studies of Hawaiian organisms that estimate the timing of colonization and divergence within the archipelago. Twelve out of 15 multi-species lineages have diverged within the lifetime of the current high islands (last 5 Myr). Three of these, and an additional seven (mostly single-species) lineages, have colonized the archipelago within this period. The timing of colonization of other lineages remains uncertain.

  20. How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence.

    PubMed Central

    Price, Jonathan P; Clague, David A

    2002-01-01

    This study quantifies long-term landscape changes in the Hawaiian archipelago relating to dispersal, speciation and extinction. Accounting for volcano growth, subsidence and erosion, we modelled the elevations of islands at time intervals of 0.5 Myr for the last 32 Myr; we also assessed the variation in the spacing of volcanoes during this period. The size, spacing and total number of volcanic islands have varied greatly over time, with the current landscape of large, closely spaced islands preceded by a period with smaller, more distantly spaced islands. Considering associated changes in rates of dispersal and speciation, much of the present species pool is probably the result of recent colonization from outside the archipelago and divergence within contemporary islands, with limited dispersal from older islands. This view is in accordance with abundant phylogenetic studies of Hawaiian organisms that estimate the timing of colonization and divergence within the archipelago. Twelve out of 15 multi-species lineages have diverged within the lifetime of the current high islands (last 5 Myr). Three of these, and an additional seven (mostly single-species) lineages, have colonized the archipelago within this period. The timing of colonization of other lineages remains uncertain. PMID:12495485

  1. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  2. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Neal, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analyzed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analyzed using data from the European Remote Sensing Satellites (ERS), Japanese Earth Resources Satellite (JERS) and the U. S. Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  3. Of Rings and Volcanoes

    NASA Astrophysics Data System (ADS)

    2002-01-01

    show it. The bright spot close to the equator is the remnant of a giant storm in Saturn's extended atmosphere that has lasted more than 5 years. The present photo provides what is possibly the sharpest view of the ring system ever achieved from a ground-based observatory . Many structures are visible, the most obvious being the main ring sections, the inner C-region (here comparatively dark), the middle B-region (here relatively bright) and the outer A-region, and also the obvious dark "divisions", including the well-known, broad Cassini division between the A- and B-regions, as well as the Encke division close to the external edge of the A-region and the Colombo division in the C-region. Moreover, many narrow rings can be seen at this high image resolution , in particular within the C-region - they may be compared with those seen by the Voyager spacecraft during the flybys, cf. the weblinks below. This image demonstrates the capability of NAOS-CONICA to observe also extended objects with excellent spatial resolution. It is a composite of four short-exposure images taken through the near-infrared H (wavelength 1.6 µm) and K (2.2 µm) filters. This observation was particularly difficult because of the motion of Saturn during the exposure. To provide the best possible images, the Adaptive Optics system of NAOS was pointed towards the Saturnian moon Tethys , while the image of Saturn was kept at a fixed position on the CONICA detector by means of "differential tracking" (compensating for the different motions in the sky of Saturn and Tethys). This is also why the (faint) image of Tethys - visible south of Saturn (i.e., below the planet in PR Photo 04a/02 ) - appears slightly trailed. Io - volcanoes and sulphur ESO PR Photo 04b/02 ESO PR Photo 04b/02 [Preview - JPEG: 400 x 478 pix - 39k] [Normal - JPEG: 800 x 955 pix - 112k] ESO PR Photo 04c/02 ESO PR Photo 04c/02 [Preview - JPEG: 400 x 469 pix - 58k] [Normal - JPEG: 800 x 937 pix - 368k] Caption : PR Photo 04b/02 shows

  4. Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii: implications for Hawaiian volcanism

    USGS Publications Warehouse

    Roden, M.F.; Frey, F.A.; Clague, D.A.

    1984-01-01

    Lavas of the post-erosional, alkalic Honolulu Volcanics have significantly lower 87Sr 86Sr and higher 143Nd 144Nd than the older and underlying Koolau tholeiites which form the Koolau shield of eastern Oahu, Hawaii. Despite significant compositional variation within lavas forming the Honolulu Volcanics, these lavas are isotopically (Sr, Nd, Pb) very similar which contrasts with the isotopic heterogeneity of the Koolau tholeiites. Among Hawaiian tholeiitic suites, the Koolau lavas are geochemically distinct because of their lower iron contents and Sr and Nd isotopic ratios which range to bulk earth values. These geochemical data preclude simple models such as derivation of the Honolulu Volcanics and Koolau tholeiites from a common source by different degrees of melting or by mixing of two geochemically distinct sources. There may be no genetic relationship between the origin and evolution of these two lava suites; however, the trend shown by Koolau Range lavas of increasing 143Nd 144Nd and decreasing 87Sr 86Sr with decreasing eruption age and increasing alkalinity also occurs at Haleakala, East Molokai and Kauai volcanoes. A complex mixing model proposed for Haleakala lavas can account for the variations in Sr and Nd isotopic ratios and incompatible element abundances found in lavas from the Koolau Range. This model may reflect mixing and melting processes occurring during ascent of relatively enriched mantle through relatively depleted MORB-related lithosphere. Although two isotopically distinct components may be sufficient to explain Sr and Nd isotopic variations at individual Hawaiian volcanoes, more than two isotopically distinct materials are required to explain variations of Sr, Nd and Pb isotopic ratios in all Hawaiian lavas. ?? 1984.

  5. Geochemistry of Kauai volcanics and a mixing model for the origin of Hawaiian alkali basalts

    NASA Astrophysics Data System (ADS)

    Feigenson, Mark D.

    1984-09-01

    A comprehensive model is developed to explain the major, trace element and strontium and neodymium isotopic characteristics of alkali basalts from Hawaii. The model is similar to that of Chen and Frey (1983) in that it requires mixing of a small melt fraction of MORB-source material with another component to generate the alkalic suite of a particular Hawaiian volcano. It differs from the Chen and Frey model in that the other end-member must be different from primitive mantle if it is to be consistent with both trace element and isotopic data. Alkali basalts and tholeiites from Kauai analyzed in this study show a nearly complete transition in Sr and Nd isotopes. There is a relatively well-constrained array on a Nd-Sr isotope correlation plot that can be explained by two-component mixing of Kauai tholeiite magma and a small amount of melt of East Pacific Rise source rock. After corrections are made for fractional crystallization (involving primarily clinopyroxene and olivine), the Sr and Ba concentrations of Kauai lavas plot along mixing curves defined by the above sources, providing positive tests of the mixing hypothesis. Implications of this model are: (1) the main source of Hawaiian shield-building tholeiites is a mixture of subducted crust, primitive mantle and depleted asthenosphere that has been homogenized prior to melting, (2) early alkalic volcanism (as at Loihi seamount) will be characterized by greater isotopic heterogeneity than will late-stage alkali basalt production, and (3) there are two fundamentally distinct types of alkalic lavas erupted towards the end of magmatism at a given Hawaiian volcano. One represents smaller degrees of melting of the same source that generated shield-building tholeiites (Kohala-type); the other derives from the mixed source discussed in this paper (Haleakala-, Kauai-type).

  6. Hawaiian Electric Company Demand Response Roadmap Project

    SciTech Connect

    Levy, Roger; Kiliccote, Sila

    2013-01-12

    The objective of this project was to develop a “roadmap” to guide the Hawaiian Electric Company (HECO) demand response (DR) planning and implementation in support of the Hawaii Clean Energy Initiative (HCEI) 70% clean energy goal by 2030.

  7. Native Hawaiian and Pacific Islander Health

    MedlinePlus

    ... the health of groups can result from: Genetics Environmental factors Access to care Cultural factors On this page, you'll find links to health issues that affect Native Hawaiians and Pacific Islanders.

  8. Evolution of cuticular hydrocarbons of Hawaiian Drosophilidae.

    PubMed

    Alves, Helena; Rouault, Jacques-Deric; Kondoh, Yasuhiro; Nakano, Yoshiro; Yamamoto, Daisuke; Kim, Yong-Kyu; Jallon, Jean-Marc

    2010-09-01

    Hawaiian Drosophila offer an excellent model for adaptive evolution. More than 500 species are reported in Hawaiian islands, and there is considerable diversity in behavior and morphology. Such diversity is mainly driven by sexual selection. In this study qualitative and quantitative chemical compositions of cuticular hydrocarbons (CHCs) in 138 flies belonging to 27 Hawaiian Drosophila species, picture-winged and non picture-winged, were analyzed regarding sexual dimorphism, differences in saturation, branching position, and lengths of CHCs. We found significant variation in the CHC patterns. In several subgroups, new species show decreases in unsaturated hydrocarbons, and gradual increases in branched compounds, monomethylalkanes and dimethylalkanes, not commonly found in Drosophila. Moreover, branching positions gradually shifted towards internal carbons, and chain lengths increased in the new species. The long-term evolution of CHCs in the light of the recent evolutionary migration and adaptation history of Hawaiian Drosophila species along the developing archipelago was discussed.

  9. Volatile content of Hawaiian magmas and volcanic vigor

    NASA Astrophysics Data System (ADS)

    Blaser, A. P.; Gonnermann, H. M.; Ferguson, D. J.; Plank, T. A.; Hauri, E. H.; Houghton, B. F.; Swanson, D. A.

    2014-12-01

    We test the hypothesis that magma supply to Kīlauea volcano, Hawai'i may be affected by magma volatile content. We find that volatile content and magma flow from deep source to Kīlauea's summit reservoirs are non-linearly related. For example, a 25-30% change in volatiles leads to a near two-fold increase in magma supply. Hawaiian volcanism provides an opportunity to develop and test hypotheses concerning dynamic and geochemical behavior of hot spot volcanism on different time scales. The Pu'u 'Ō'ō-Kupaianaha eruption (1983-present) is thought to be fed by essentially unfettered magma flow from the asthenosphere into a network of magma reservoirs at approximately 1-4 km below Kīlauea's summit, and from there into Kīlauea's east rift zone, where it erupts. Because Kīlauea's magma becomes saturated in CO2 at about 40 km depth, most CO2 is thought to escape buoyantly from the magma, before entering the east rift zone, and instead is emitted at the summit. Between 2003 and 2006 Kīlauea's summit inflated at unusually high rates and concurrently CO2emissions doubled. This may reflect a change in the balance between magma supply to the summit and outflow to the east rift zone. It remains unknown what caused this surge in magma supply or what controls magma supply to Hawaiian volcanoes in general. We have modeled two-phase magma flow, coupled with H2O-CO2 solubility, to investigate the effect of changes in volatile content on the flow of magma through Kīlauea's magmatic plumbing system. We assume an invariant magma transport capacity from source to vent over the time period of interest. Therefore, changes in magma flow rate are a consequence of changes in magma-static and dynamic pressure throughout Kīlauea's plumbing system. We use measured summit deformation and CO2 emissions as observational constraints, and find from a systematic parameter analysis that even modest increases in volatiles reduce magma-static pressures sufficiently to generate a 'surge' in

  10. Investigating the potential for volcano flank instability triggered by recent dike intrusions at Fogo volcano, Cape Verde

    NASA Astrophysics Data System (ADS)

    Bagnardi, Marco; González, Pablo; Hooper, Andrew; Wright, Tim

    2015-04-01

    Gravitational flank-collapses at volcanoes are rare but catastrophic events that have rarely been witnessed by humans (e.g., Mount St. Helens in 1980). It has been proposed that gravitationally unstable volcanic flanks can be classified in two different types based on the flanks slope: volcanoes characterized by gentle slopes (Hawaiian-like) and that have very dynamic flanks exhibiting high rates of deformation and, conversely, steep-sided volcanoes (Macaronesian-like) showing minimal ground deformation. The two types of volcanoes could therefore reach the stable-state through different mechanisms and experience different mass-wasting processes. Numerous giant debris-avalanche deposits have been identified offshore the volcanoes of the Canary Islands and Cape Verde. Given the steep slopes of these volcanoes, the mass-wasting events may have occurred suddenly and with minimal precursory signals. Several mechanisms have been proposed as potential triggers and among these the intrusion of shallow dikes feeding fissure eruptions is one of the best candidates. In this work, we investigate this hypothesis in the light of new and revised results derived from the analysis of geodetic observations at Fogo volcano (Cape Verde). Fogo has erupted twice in the last 20 years (1995 and 2014-2015) and in both occasions the volcano erupted along fissures that seem to be fed by dykes intruding the shallow crust and the volcanic edifice. We re-process radar data from the ERS satellite to obtain state-of-the-art deformation maps spanning the 1995 eruption and revisit previously proposed models of the magmatic system. Our results indicate that both eruptions were fed by sub-vertical dikes, steeply dipping to the SE, and radiating from the Pico do Fogo volcanic cone to the SW. We also study the effect of such magmatic intrusions in terms of the stress regime that they generate and analyze whether the 1995 and 2014 intrusions could potentially destabilize the structures along which a

  11. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  12. The High-Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  13. Pearl and Hermes Reef, Hawaiian Island Chain

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Pearl and Hermes Reef (28.0N, 176.0W) in the Hawaiian Island Chain, are seen with several small sandy islands, forming an atoll that caps a seamount on the long chain that extends some 1,500 miles northwestward from the more familiar Hawaiian Islands proper. Pearl and Hermes Reef lies about 100 miles southeast of Midway island. A reticulate network of coral patch reefs separates the lagoon into more or less isolated pools.

  14. The geochemical components that distinguish Loa- and Kea-trend Hawaiian shield lavas

    NASA Astrophysics Data System (ADS)

    Frey, Frederick A.; Huang, Shichun; Xu, Guangping; Jochum, Klaus P.

    2016-07-01

    Recent (<5 Ma) Hawaiian volcanoes define two sub-parallel spatial trends, Loa and Kea. Despite the short distance (∼30 km) between adjacent volcanoes on these trends, most of the Loa-trend shield lavas are geochemically distinct from most of the Kea-trend shield lavas. These geochemical differences arise from small amounts of the LOA component in the source of Loa-trend shield lavas. This component is most prominent in the uppermost shield lavas of Koolau, Lanai and Kahoolawe volcanoes. Correlations between abundance ratios of incompatible elements and isotopic ratios of Sr, Nd, Hf and Pb in Hawaiian shield lavas indicate that the LOA component consists of three geochemically distinct materials formed by diverse processes. A gabbroic adcumulate (i.e. no trapped melt) with abundant cumulus plagioclase is responsible for the high Sr/Nd, La/Th and La/Nb in Loa-trend shield lavas relative to Kea-trend shield lavas. Also it has relatively low 206Pb/204Pb and high 208Pb/204Pb at a given 206Pb/204Pb, consistent with the low U/Pb and Th/Pb that are characteristic of plagioclase; these distinctive Pb isotope ratios require a long-time interval, ∼3 Ga, to develop. This material is most abundant in the uppermost shield lavas of Koolau volcano. Possible origins of adcumulate gabbros with abundant cumulus plagioclase are the lower oceanic and continental crust. A second material in the LOA component is distinctive because it is offset from the linear trend of 176Hf/177Hf versus 143Nd/144Nd, known as the terrestrial array, to high 176Hf/177Hf at low 143Nd/144Nd. This offset requires an ancient material with high Lu/Hf. It is equally abundant in the shield lavas at Koolau, Lanai and Kahoolawe volcanoes. Possible origins of this material are ancient pelagic sediment or ancient depleted lithosphere. A third material in the LOA component is characterized by relatively high 87Sr/86Sr, but the Rb/Sr of this material is too low to explain the high 87Sr/86Sr in 4.5 Ga. A relatively

  15. Operational Monitoring of Volcanoes Using Keyhole Markup Language

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2007-12-01

    Volcanoes are some of the most geologically powerful, dynamic, visually appealing structures on the Earth's landscape. Volcanic eruptions are hard to predict, difficult to quantify and impossible to prevent, making effective monitoring a difficult proposition. In Alaska, volcanoes are an intrinsic part of the culture, with over 100 volcanoes and volcanic fields that have been active in historic time monitored by the Alaska Volcano Observatory (AVO). Observations and research are performed using a suite of methods and tools in the fields of remote sensing, seismology, geodesy and geology, producing large volumes of geospatial data. Keyhole Markup Language (KML) offers a context in which these different, and in the past disparate, data can be displayed simultaneously. Dynamic links keep these data current, allowing it to be used in an operational capacity. KML is used to display information from the aviation color codes and activity alert levels for volcanoes to locations of thermal anomalies, earthquake locations and ash plume modeling. The dynamic refresh and time primitive are used to display volcano webcam and satellite image overlays in near real-time. In addition a virtual globe browser using KML, such as Google Earth, provides an interface to further information using the hyperlink, rich- text and flash-embedding abilities supported within object description balloons. By merging these data sets in an easy to use interface, a virtual globe browser provides a better tool for scientists and emergency managers alike to mitigate volcanic crises.

  16. Volcano Monitoring Using Google Earth

    NASA Astrophysics Data System (ADS)

    Cameron, W.; Dehn, J.; Bailey, J. E.; Webley, P.

    2009-12-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO’s remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration’s (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, and NOAA’s Geostationary Operational Environmental Satellites (GOES) data. AVHRR and MODIS data are collected by receiving stations operated by the Geographic Information Network of Alaska (GINA) at the University of Alaska’s Geophysical Institute. An additional AVHRR data feed is supplied by NOAA’s Gilmore Creek satellite tracking station. GOES data are provided by the Naval Research Laboratory (NRL), Monterey Bay. The ability to visualize these images and their derived products is critical for the timely analysis of the data. To this end, AVORS has developed javascript web interfaces that allow the user to view images and metadata. These work well for internal analysts to quickly access a given dataset, but they do not provide an integrated view of all the data. To do this AVORS has integrated its datasets with Keyhole Markup Language (KML) allowing them to be viewed by a number of virtual globes or other geobrowsers that support this code. Examples of AVORS’ use of KML include the ability to browse thermal satellite image overlays to look for signs of volcanic activity. Webcams can also be viewed interactively through KML to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits using polygons; and animated models of ash plumes, created by a combination of ash dispersion modeling and 3D visualization packages.

  17. THE GEOLOGIC RISK IN THE LAKE KIVU BASIN AREA PRODUCTED BY EARTHQUAKES. Case of the February 3th 2008 earthquake. By: L.M.Bagalwa(1), F.Lukaya(1), M.Burume(2), J.Moeyerson(3) (1): Goma Volcano Observatory, D.R.Congo (2): Naturals Sciences Research Center

    NASA Astrophysics Data System (ADS)

    Bagalwa Rukeza, Montfort

    2010-05-01

    The eastern Democratic Republic of Congo is prone to earthquakes of magnitude greater than or equal to 4 on the Richter scale. The western edge of Lake Kivu, the most populated part of the region is no exception to the solicitation of these earthquakes. Since 1997, the western basin of Lake Kivu is experiencing intense seismicity, several earthquakes of great intensity, magnitude greater than or equal to 4 develop major destructive phenomena. These include the 1997 earthquake (M = 4.7) 2000 (M = 4.6 and 5.4), 2002 (M = 4.9, 5.2, 6.1 and 24 October 2002 M = 6.2) of February 3rd 2008 (M = 6). Earthquakes of Kalehe on October 24th 2002 and Birava, February 3rd 2008 have resulted deformations of soil, human and material damage. This latest natural disaster ever known in the south-western basin of Lake Kivu has attracted our scientific curiosity we go there to inquire into its causes and consequences in this region. The basin of Lake Kivu is affected by transform faults emerging (MUKONKI & CHOROWICZ, 1980, quoted by K.S.KAVOTHA & ali, 1990) that delimit the Rift were intersecting at the level of Lake Kivu. We Consider the seismicity, volcanism and uplift of the basin of Lake Kivu as a sign of fracturing under way to delimit a plate tectonics formed (Wong and Von Herzen, 1974, quoted by KSKAVOTHA et al, 1990). The physiography of Lake Kivu is dominated by the fault which borders the western shore and one which intersects the island of Idjwi. The telemetry data of Goma Volcano Observatory added to those of the seismographic station of Lwiro have always revealed a pattern of epicenters clearer in Lake Kivu. In correlation with the faults of the region, earthquakes affect mainly the western edge of Lake Kivu and the island of Idjwi with increasing density from north to south (K.S.KAVOTHA et al, 1990). The great earthquake of Lake Kivu basin on February 03rd 2008, of magnitude 6 on the Richter scale occurred at 07 hours 34 minutes 12 seconds GMT, about 20 km north of Bukavu

  18. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2011

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2012-01-01

    Between January 1 and December 31, 2011, the Alaska Volcano Observatory (AVO) located 4,364 earthquakes, of which 3,651 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity above background levels in 2011 at these instrumented volcanic centers. This catalog includes locations, magnitudes, and statistics of the earthquakes located in 2011 with the station parameters, velocity models, and other files used to locate these earthquakes.

  19. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

    2002-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G.The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes.Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001.This catalog includes: (1) earthquake origin times

  20. Explosions, Tephra, and Lava: A Chronology of the 2008 Summit Eruption of Kilauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Orr, T. R.; Patrick, M. R.; Wooten, K. M.; Swanson, D. A.; Elias, T.; Sutton, J.; Wilson, D. C.; Poland, M. P.

    2008-12-01

    Beginning in early January 2008, sulfur dioxide emission rates from the summit area of Kilauea increased to 2 to 10 times above background values, prompting partial closure of the summit region by late February. On March 12, 2008, a new gas vent appeared low on the southeast wall of Halema'uma'u Crater. Incandescence was seen at the vent, starting on March 13, and by March 18 the area of incandescence had grown to a diameter of about 30 m. At 0258 on March 19, an explosive eruption occurred, opening and widening the new vent slightly and scattering lithic lapilli and coarse ash over an area of about 50 hectares. The vent continued to degas vigorously after the explosion, with the plume alternating between ash-rich brown and ash-poor white. On April 9, another explosive eruption ejected both lithic and juvenile tephra from the vent, and on April 16 a third explosive eruption, smaller than the previous two, produced pink ash and fine lapilli. During the next 3.5 months, only minor quantities of ash were carried aloft by the vigorously degassing vent, which was typically glowing at night. Then, on August 1, a fourth explosive eruption threw lithic and juvenile debris from the crater, ushering in a period of rapid vent widening. Small collapses occurred nearly every day through August and early September, with larger collapses leading to significant explosive eruptions on August 27 and September 2. By September 5, 2008, the vent had nearly doubled in diameter, improving the view and revealing an active lava lake, about 50 m in diameter, several tens of meters below the rim of the vent. The new vent has provided the first prolonged opportunity since 1967-68 to observe shallow magmatic processes at the summit of Kilauea. The Hawaiian Volcano Observatory, in collaboration with academic institutions and government agencies, is carrying out enhanced monitoring and process oriented research in response to this new eruptive activity.

  1. Shaking up volcanoes

    USGS Publications Warehouse

    Prejean, Stephanie G.; Haney, Matthew M.

    2014-01-01

    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  2. Eruption of Kliuchevskoi volcano

    NASA Image and Video Library

    1994-10-04

    STS068-273-060 (4 October 1994) --- Astronauts aboard the Space Shuttle Endeavour recorded this follow-up 70mm frame of the Kliuchevskoi volcano on the Kamchatka Peninsula in Russia. The volcano was near its peak on launch day, five days earlier, but only a small steam plume was rising from the summit in this Day 5 photo. Tendrils of ash are airborne on the northern flank of the volcano. Scientists feel that the source of these plumes is from a flow down the mountain's northern flank. The entire summit region is covered in ash. As various members of the six-person crew were using handheld cameras to record the various stages of the volcano, hardware in Endeavour's cargo bay was taking radar data of the event in support of the Space Radar Laboratory (SRL-2) mission.

  3. Volcano Chaiten, Chile

    NASA Image and Video Library

    2009-05-15

    Chaiten Volcano, Chile continues to erupt after first exploding in May 2008 following about 9,000 years of inactivity. This image from NASA Terra spacecraft shows vegetation in red. You can clearly see the extent of the plume.

  4. Northern Arizona Volcanoes

    NASA Image and Video Library

    2006-05-01

    Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. This image was acquired by NASA Terra spacecraft.

  5. Pb Isotopic Evolution of Koolau Volcano (Oahu, Hawaii)

    NASA Astrophysics Data System (ADS)

    Fekiacova, Z.; Abouchami, W.

    2003-12-01

    High precision Pb isotopes in Hawaiian shield lavas have revealed the existence of source heterogeneities between volcanoes, as well as within a single volcano during its temporal evolution, e.g. Mauna Kea [1, 2]. The Koolau Scientific Drilling Project (KSDP) was initiated in order to evaluate the long-term evolution of Koolau volcano (Oahu), whose subaerial Makapuu stage lavas define the isotopically enriched endmember of Hawaiian shield lavas. We report Pb triple spike data on KSDP main shield-stage lavas (depth range: 304-632 mbsl) and post-erosional Honolulu volcanics. KSDP lavas show a small range of Pb isotopic compositions (206Pb/204Pb=18.02-18.15; 207Pb/204Pb=15.44-15.46; 208Pb/204Pb=37.82-37.87). Pb isotope ratios increase with depth until ˜450 m and then decrease again to a depth of 616 m. Superimposed on this "bell" trend, 206Pb/204Pb ratios oscillate at depth intervals of ˜10m. The Honolulu volcanics display, at a given 206Pb/204Pb ratio, similar 207Pb/204Pb but lower 208Pb/204Pb ratios than KSDP lavas. In 208Pb/204Pb-206Pb/204Pb space, KSDP and Honolulu lavas define two distinct linear arrays which converge at the radiogenic end. However, in 207Pb/204Pb-206Pb/204Pb space, KSDP and Honolulu lavas form a single array, with Honolulu lying at the radiogenic end of the array. While KSDP lavas have more radiogenic Pb isotopic compositions than Makapuu stage lavas [1], they show close resemblance to Nuuanu 1 and Nuuanu 2 landslide blocks [3]. The distinct Pb isotopic features of subaerial, main-shield and post-erosional lavas reflect compositional source changes during the growth of Koolau volcano. The mixing lines defined by KSDP and Honolulu lavas in 208Pb-206Pb space require the presence of three distinct Pb isotopic components. While the enriched "Koolau" component is predominantly sampled during the subaerial stage, its contribution during the main shield building stage has been waxing and waning. The radiogenic Pb endmember common to Honolulu and KSDP

  6. Eruption of Kliuchevskoi volcano

    NASA Image and Video Library

    1994-10-05

    STS068-155-094 (30 September-11 October 1994) --- (Kliuchevskoi Volcano) The crewmembers used a Linhof large format Earth observation camera to photograph this nadir view of the Kamchatka peninsula's week-old volcano. The eruption and the follow-up environmental activity was photographed from 115 nautical miles above Earth. Six NASA astronauts spent a week and a half aboard the Space Shuttle Endeavour in support of the Space Radar Laboratory 2 (SRL-2) mission.

  7. Geology of the Hawaiian islands

    USGS Publications Warehouse

    Stearns, Harold T.

    1946-01-01

    A brief summary of the geography, climate, and geomorphology is given. Streams develop slowly after the extinction of a volcano because of the high permeability of the rock. Once established they cut rapidly because of the steep slopes and fractured condition of the rock. Stream erosion varies enormously on different slopes of the same mountain due to the great differences in rainfall and to other causes. Six reasons are given for the development of amphitheater-headed valleys. Marine erosion has formed cliffs as much as 1,000 feet high on the leeward side and 3,000 feet high on the windward side of some of the domes. The islands have undergone a complex series of emergences and submergences leaving marine fossiliferous limestone up to 1,070 feet above sea level and valleys drowned more than 1,200 feet. Twelve terrace levels are recognized. Some are definitely eustatic.A synopsis is given of the present knowledge of the geology of each volcanic mountain, as well as a table of the rock units, and geologic maps of all major islands. The volcanoes pass through four major phases between birth and extinction and are built around one minor and two major rift zones. The volcanoes began their history above sea level in the Tertiary. Most of them became dormant either before or during the early Quaternary. Activity was renewed in the late Quaternary. Mauna Kea was glaciated in the late Pleistocene. The character of each islet in the archipelago is tabulated.

  8. Geologic Mapping of the Olympus Mons Volcano, Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  9. MODIS' Performance in Volcano Monitoring in the Northeastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Steensen, T. S.; Webley, P.; Dehn, J.; Dean, K. G.

    2009-12-01

    Since the launch of Terra, NASA's first Earth Observing System spacecraft, the accuracy and capability of monitoring volcanoes from the Kuriles to the Cascades has improved due to the increase in spectral and spatial resolution of these sensors. The Alaskan Volcano Observatory uses the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite to detect and track eruptions, ash clouds and thermal anomalies of volcanoes in the region using data recorded in visible and infrared wavelengths, and with a pixel size of 250m and 1km, respectively. Volcanoes in the region pose a threat to both global and local air traffic, human health and the infrastructure in general. Therefore, monitoring of these volcanoes is critical to help prevent loss of life and to minimize structural damage and resulting cost. Currently, 23 different geographical regions are being monitored and up to 200 image products per day are produced. This has led to detailed observations and analyses of over 20 eruptions from large Alaskan volcanoes like Shishaldin, Augustine, Okmok or Redoubt and Russian volcanoes including Kluichevskoi, Shiveluch and Bezymianny in the first ten years of MODIS. This project gives an overview of the possibilities MODIS offers volcano monitoring and the results obtained from the analysis. Examples of the most prominent eruptions across the North Pacific have been selected to illustrate MODIS' strengths as well as the areas where future research and analysis of MODIS data can improve volcanic hazard assessment and early warning of volcanic activity. Techniques developed based on MODIS data will prepare us to take advantage of data from the new forthcoming National Polar-orbiting Operational Environmental Satellite System (NPOESS) series of satellites.

  10. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  11. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  12. Royal Observatory, Edinburgh

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Royal Observatory, Edinburgh (ROE) comprises the UK Astronomy Technology Centre (ATC) of the PARTICLE PHYSICS AND ASTRONOMY RESEARCH COUNCIL, and the University of Edinburgh's Institute for Astronomy....

  13. Working group on the “adequate minimum” V=volcanic observatory

    USGS Publications Warehouse

    Tilling, R.I.

    1982-01-01

    A working group consisting of R. I. Tilling (United States, Chairman), M. Espendola (Mexico), E. Malavassi (Costa Rica), L. Villari (Italy), and J.P Viode (France) met on the island of Guadeloupe on February 20, 1981, to discuss informally the requirements for a "Minimum" volcano observatory, one which would have the essential monitoring equipment and staff to provide reliable information on the state of an active volcno. Given the premise that any monitoring of a volcano is better than none at all, the owrking group then proceeded to consider the concept of an "adequate minimum" observatory

  14. Navigating Rough Waters: Hawaiian Science Teachers Discuss Identity

    ERIC Educational Resources Information Center

    Allaire, Franklin S.

    2013-01-01

    Research with Native Hawaiian science teachers is contributing to a better understanding of issues relating to equity in science education, and toward improving science curriculum to support Native Hawaiian students as well as support systems for Native Hawaiian students interested in pursuing higher education and science-based careers.…

  15. Hawaiian Language Immersion: The Role of Kamehameha Schools.

    ERIC Educational Resources Information Center

    Paleka, Hinano; Hammond, Ormond

    1992-01-01

    Hawaii has a strong crusade to revive the Hawaiian language to preserve the Hawaiian culture. The article examines the events leading up to the implementation of Hawaiian language immersion programs through the State Department of Education and lists specific immersion school goals and strategies. (SM)

  16. Hawaiian Language Immersion Adoption of an Innovation: A Case Study

    ERIC Educational Resources Information Center

    Yong, D. Lilinoe

    2012-01-01

    This is a story about some Native Hawaiian people written by Native Hawaiian people of the Papahana Kaiapuni, or the Hawaiian Language Immersion Program (HLIP) of the Hawai`i public schools. Together they "talk story" and become the voice for the HLIP by painting a picture of their past, present, and future experiences with technology.…

  17. Hawaiian Language Immersion Adoption of an Innovation: A Case Study

    ERIC Educational Resources Information Center

    Yong, D. Lilinoe

    2012-01-01

    This is a story about some Native Hawaiian people written by Native Hawaiian people of the Papahana Kaiapuni, or the Hawaiian Language Immersion Program (HLIP) of the Hawai`i public schools. Together they "talk story" and become the voice for the HLIP by painting a picture of their past, present, and future experiences with technology.…

  18. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2010

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2011-01-01

    Between January 1 and December 31, 2010, the Alaska Volcano Observatory (AVO) located 3,405 earthquakes, of which 2,846 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity in 2010 at these monitored volcanic centers. Seismograph subnetworks with severe outages in 2009 were repaired in 2010 resulting in three volcanic centers (Aniakchak, Korovin, and Veniaminof) being relisted in the formal list of monitored volcanoes. This catalog includes locations and statistics of the earthquakes located in 2010 with the station parameters, velocity models, and other files used to locate these earthquakes.

  19. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2007

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.

    2008-01-01

    Between January 1 and December 31, 2007, AVO located 6,664 earthquakes of which 5,660 occurred within 20 kilometers of the 33 volcanoes monitored by the Alaska Volcano Observatory. Monitoring highlights in 2007 include: the eruption of Pavlof Volcano, volcanic-tectonic earthquake swarms at the Augustine, Illiamna, and Little Sitkin volcanic centers, and the cessation of episodes of unrest at Fourpeaked Mountain, Mount Veniaminof and the northern Atka Island volcanoes (Mount Kliuchef and Korovin Volcano). This catalog includes descriptions of : (1) locations of seismic instrumentation deployed during 2007; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2007; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2007.

  20. Cosmic ray exposure dating with in situ produced cosmogenic He-3 - Results from young Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Kurz, Mark D.; Colodner, Debra; Trull, Thomas W.; Moore, Richard B.; O'Brien, Keran

    1990-01-01

    Cosmogenic helium contents in a suite of Hawaiian radiocarbon-dated lava flows were measured to study the use of the production rate of spallation-produced cosmogenic He-3 as a surface exposure chronometer. Basalt samples from the Mauna Loa and Hualalai volcanoes were analyzed, showing that exposure-age dating is feasible in the 600-13000 year age range. The data suggest a present-day sea-level production rate in olivine of 125 + or - 30 atoms/g yr.

  1. Translocation of the Palila, an endangered Hawaiian honeycreeper

    USGS Publications Warehouse

    Fancy, S.G.

    1997-01-01

    The Palila Loxioides bailleui is an endangered Hawaiian honeycreeper that is restricted to high-elevation dry woodlands on Mauna Kea volcano, Hawaii. Palila are absent or occur in small numbers throughout most of their historic range because of habitat loss, predation and avian disease. The Paula's habitat is regenerating as a result of feral ungulate control, but the species is likely to be slow in recolonizing former ranges because of strong site tenacity. In March 1993, we translocated 35 Palila to Kanakaleonui on the eastern slope of Mauna Kea to determine whether we could speed recovery by releasing adult birds in new areas where predators were controlled. At least two pairs of translocated Palila successfully nested at the release site during their first breeding season, and two other pairs constructed nests. The density of Palila at Kanakaleonui in the three years following the translocation was higher than that before translocation. Approximately half of the translocated birds remained at the release site for 2-6 weeks and then homed back to their capture site, >20 km away. Translocations of adult birds and release of captive-reared juvenile Palila, in combination with additional habitat restoration, may be an effective management tool for speeding the recovery of this species.

  2. Feral Cats: Too Long a Threat to Hawaiian Wildlife

    USGS Publications Warehouse

    Hess, Steven C.; Banko, Paul C.

    2006-01-01

    BACKGROUND Domestic cats (Felis catus) were first brought to Hawai`i aboard sailing ships of European explorers and colonists. The job of these predators was to control mice and rats on the ships during the long voyages. As in other places, cats were taken in and adopted by the families of Hawai`i and soon became household pets known as popoki. But cats have always been very well equipped to live and hunt on their own. On tropical archipelagos like the Hawaiian Islands where no other predatory mammals of comparable size existed, abundant and naive prey were particularly easy game, and cats soon thrived in the wild. Although the details of when cats first came to live in the wild remain little known, adventurers, writers, and naturalists of the day recorded some important observations. Feral cats were observed in remote wilderness around K?ilauea volcano on Hawai`i Island as early as 1840 by explorer William Brackenridge. Mark Twain was so impressed by the great abundance of cats when he visited Honolulu in 1866 that he reported his observations in the Sacramento Union newspaper, which were later reprinted in his book Roughing It: I saw... tame cats, wild cats, singed cats, individual cats, groups of cats, platoons of cats, companies of cats, regiments of cats, armies of cats, multitudes of cats, millions of cats...

  3. Studies of vesicle distribution patterns in Hawaiian lavas

    NASA Technical Reports Server (NTRS)

    Walker, George P. L.

    1987-01-01

    Basaltic lava flows are generally vesicular, and the broader facts relating to vesicle distribution have long been established; few studies have yet been made with a view to determining how and when vesicles form in the cooling history of the lava, explaining vesicle shape and size distribution, and gaining enough understanding to employ vesicles as a geological tool. Various avenues of approach exist by which one may seek to gain a better understanding of these ubiquitous structures and make a start towards developing a general theory, and three such avenues have recently been explored. One avenue involves the study of pipe vesicles; these are a well known feature of lava flows and are narrow pipes which occur near the base of many pahoehoe flow units. Another avenue of approach is that presented by the distinctive spongy pahoehoe facies of lava that is common in distal locations on Hawaiian volcanoes. A third avenue of approach is that of the study of gas blisters in lava. Gas blisters are voids, which can be as much as tens of meters wide, where the lava split along a vesicle-rich layer and the roof up-arched by gas pressure. These three avenues are briefly discussed.

  4. Carter National Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Carter National Observatory is situated in the Botanic Gardens in Wellington, New Zealand. Opened in 1941, the observatory is equipped with a 41 cm Boller and Chivens, an historic 23 cm Cooke photo-visual refractor and a 36 seat Zeiss planetarium. The staff are involved in research, school and tertiary education programs....

  5. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  6. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  7. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  8. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  9. Beijing Ancient Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  10. The Norwegian Naval Observatories

    NASA Astrophysics Data System (ADS)

    Pettersen, Bjørn Ragnvald

    2007-07-01

    Archival material has revealed milestones and new details in the history of the Norwegian Naval Observatories. We have identified several of the instrument types used at different epochs. Observational results have been extracted from handwritten sources and an extensive literature search. These allow determination of an approximate location of the first naval observatory building (1842) at Fredriksvern. No physical remains exist today. A second observatory was established in 1854 at the new main naval base at Horten. Its location is evident on military maps and photographs. We describe its development until the Naval Observatory buildings, including archives and instruments, were completely demolished during an allied air bomb raid on 23 February 1945. The first director, C.T.H. Geelmuyden, maintained scientific standards at the the Observatory between 1842 and 1870, and collaborated with university astronomers to investigate, develop, and employ time-transfer by telegraphy. Their purpose was accurate longitude determination between observatories in Norway and abroad. The Naval Observatory issued telegraphic time signals twice weekly to a national network of sites, and as such served as the first national time-service in Norway. Later the Naval Observatory focused on the particular needs of the Navy and developed into an internal navigational service.

  11. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Anna Michalak, an Orbiting Carbon Observatory science team member from the University of Michigan, Ann Arbor, speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  12. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  13. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  14. Maturation of large scale mass-wasting along the Hawaiian Ridge

    SciTech Connect

    Torresan, M.E.; Clague, D.A.; Moore, J.G. ); Jacobs, C.L. )

    1990-06-01

    Extensive GLORIA side-scan sonar mapping of the Hawaiian Ridge from Hawaii to St. Rogatien Bank shows that massive slumps and blocky debris avalanches are the major degradational processes that affect the island and ridge areas. About 30 failures have been imaged in the region surveyed; they range in area from 250 to > 6,000 km{sup 2} and in volume from 500 to > 5,000 km{sup 3}. Four are rotational slumps, and the rest are blocky debris avalanches. Such deposits cover 125,000 km{sup 2} of the Hawaiian Ridge and adjacent seafloor. The slumps are wide (up to 110 km), short (30-35 km), thick (about 10 km), and slow moving. They are broken into comparatively few major rotational blocks that have not moved far and are characterized by steep toes and transverse ridges. Back rotation of the blocks has elevated their seaward edges, producing transverse ridges and perched basins filled with 5 to > 35 m of sediment. Compared to the slumps, the debris avalanches are lobate, long (up to 230 km), thin (0.5-2 km), and fast-moving. These deposits cross the Hawaiian Trough and run upslope onto the Hawaiian Arch (up to 550 m in elevation over a distance of 140 km). These failures commonly have amphitheaters and subaerial canyons at their heads. Their distal ends are hummocky, and blocky debris litters the seafloor adjacent to the ridge. As one proceeds west from Hawaii to St. Rogatien Bank, the GLORIA sonographs and seismic reflection profiles show a progression from youthful to mature failures and from active to about 12 Ma volcanoes. The Alika and Hilina slide complexes are examples of youthful failures on active volcanoes. Slumping in the Hilina slide is ongoing (7.2 magnitude earthquake in 1975). Little to no sediment covers the blocks and hummocky terrane of the Alika (about 100 ka), whereas the older deposits along the western part of the ridge are covered by up to 30 m of transparent sediment.

  15. Local earthquake tomography with the inclusion of full topography and its application to Kīlauea volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Li, Peng; Lin, Guoqing

    2016-04-01

    We develop a new three-dimensional local earthquake tomography algorithm with the inclusion of full topography (LETFT). We present both synthetic and real data tests based on the P- and S-wave arrival time data for Kīlauea volcano in Hawai'i. A total of 33,768 events with 515,711 P-picks and 272,217 S-picks recorded by 35 stations at the Hawaiian Volcano Observatory are used in these tests. The comparison between the new and traditional methods based on the synthetic test shows that our new algorithm significantly improves the accuracy of the velocity model, especially at shallow depths. In the real data application, the P- and S-wave velocity models of Kīlauea show several intriguing features. We observe discontinuous high Vp (> 7.0 km/s) and Vs (> 3.9 km/s) zones at 5-14 km depth below Kīlauea caldera, its East Rift Zone (ERZ) and the Southwest Rift Zone, which may represent consolidated intrusive gabbro-ultramafic cumulates. At Kīlauea caldera, Vp and Vs decrease from ~ 3.9 km/s and ~ 2.6 km/s from the surface to ~ 3.7 km/s and ~ 2.3 km/s at 2 km depth. We resolve a high Vp zone (> 7.0 km/s) at 5-14 km depth and high Vs zone (> 3.9 km/s) at 5-11 km depth. This high Vp and Vs zone extends to the north of the ERZ at 5-10 km depth and to the upper ERZ at 8-12 km depth. In the Hilina Fault System, there is a high Vp layer (~ 7.0 km/s) at 4-6 km depth and a low Vp body of ~ 5.7 km/s at 6-11 km depth. The high Vp layer could be associated with the intrusive ultramafic gabbro sills. The velocity contrast on the north and south sides of the Koa'e Fault System indicates that the intrusive activities mainly occur to the north of the fault. Our new LETFT method performs well in both the synthetic and real data tests and we expect that it will reveal more robust velocity structures in areas with larger topographic variations.

  16. Volcanoes: Coming Up from Under.

    ERIC Educational Resources Information Center

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  17. Volcanoes: Coming Up from Under.

    ERIC Educational Resources Information Center

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  18. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume.

    PubMed

    Abouchami, W; Hofmann, A W; Galer, S J G; Frey, F A; Eisele, J; Feigenson, M

    2005-04-14

    The two parallel chains of Hawaiian volcanoes ('Loa' and 'Kea') are known to have statistically different but overlapping radiogenic isotope characteristics. This has been explained by a model of a concentrically zoned mantle plume, where the Kea chain preferentially samples a more peripheral portion of the plume. Using high-precision lead isotope data for both centrally and peripherally located volcanoes, we show here that the two trends have very little compositional overlap and instead reveal bilateral, non-concentric plume zones, probably derived from the plume source in the mantle. On a smaller scale, along the Kea chain, there are isotopic differences between the youngest lavas from the Mauna Kea and Kilauea volcanoes, but the 550-thousand-year-old Mauna Kea lavas are isotopically identical to Kilauea lavas, consistent with Mauna Kea's position relative to the plume, which was then similar to that of present-day Kilauea. We therefore conclude that narrow (less than 50 kilometres wide) compositional streaks, as well as the larger-scale bilateral zonation, are vertically continuous over tens to hundreds of kilometres within the plume.

  19. Multichannel seismic evidence for a subcrustal intrusive complex under Oahu and a model for Hawaiian volcanism

    NASA Astrophysics Data System (ADS)

    ten Brink, Uri S.; Brocher, Thomas M.

    1987-12-01

    Coincident multichannel seismic reflection and refraction data acquired during a wide-aperture two-ship experiment provide evidence for a complex crust-mantle (C-M) transition under Oahu, Hawaii. Several large-aperture common depth point lines and three expanding spread profiles suggest the existence of an anomalously thick (3-6 km) C-M transition zone underneath the volcanic ridge which extends for distances of 100 km to the north and south from the center of Oahu. The anomalous C-M transition may represent a plutonic complex which intruded into the upper mantle and the lower crust in a 200-km-wide area centered at Oahu. The existence of such a large volume of intrusions near the base of the crust implies that the surficial expression of volcanism constitutes only a small fraction of the amount of melt generated at depth under the Hawaiian Islands. This interpretation is in accord with previous petrological models which predict trapping and accumulation of upwelling magma at and below the Moho. We have constructed a model which suggests that the interaction between the upwelling magma and the lithospheric flexural stress field may modulate the characteristic eruption history of Hawaiian volcanoes. In particular, the model for the plane stress field which accompanies the flexure of the oceanic crust around island chains indicates that the stress field under individual volcanoes varies considerably with its position relative to the tip of the chain. As a Hawaiian-sized volcano develops, the magnitude of deviatoric compressive stresses under it is probably sufficient to block the conduits of the upwelling magma within the oceanic crust and to terminate eruptions. Further upwelling magma is predicted by the models to be ponded at the base of the crust. Resumption of posterosional volcanism seems to occur at a constant distance behind the center of active shield volcanism, as the horizontal compressive stresses along the axis of the chain are released. Observed

  20. Isotopic Study of the Mauna Loa Southwest Rift Mile High Section: Hawaiian Mantle Plume Components

    NASA Astrophysics Data System (ADS)

    Weis, D.; Rhodes, J. M.; Garcia, M. O.

    2003-12-01

    The new JASON2 ROV was employed to collect 51 samples from a 1.8 km thick submarine landslide scarp along the crest of the southwest rift zone of the Mauna Loa volcano to investigate the nature and history of Hawaiian mantle plume components. The rift zone section records about 400,000 years of eruptive activity, 50% of the volcano's total lifetime, which is comparable to the time-period sampled by the Hawaiian Scientific Drilling Project (HSPD2). Sr, Nd, Pb and Hf isotopes have been analyzed on 14 samples from the "Mile High" section. The range of variation observed falls typically within literature data for the Mauna Loa volcano with 87Sr/86Sr from 0.70368 to 0.70378 and 206Pb/204Pb from 18.16 to 18.26, and is somewhat more radiogenic than most Mauna Loa prehistoric (<31 ka) lavas. In the section, there is a distinct increase in Pb and Sr isotopes, which is also recorded by major and trace element data, at a depth of 1353 m. Isotope ratios continue to increase to the bottom of the section at 2290 m. High precision Pb-Pb isotopic systematics for Mauna Loa lavas do not show the binary mixing trends as also observed in the upper part of the HSDPI pilot hole and contrary to Mauna Kea lavas (Abouchami et al., Chemical Geology 2000). This might imply that the Mauna Loa plume source is more thoroughly mixed than the Mauna Kea source. Most of Mauna Loa isotopic compositions cluster at 18.15-18.20 for 206Pb/204Pb and ˜0.70370 for 87Sr/86Sr, which could be a ubiquitous refractory component in the Hawaiian mantle plume (Rhodes and Weis, Fall AGU 2001). Nevertheless, a more radiogenic plume component with higher 208Pb/204Pb and 208Pb*/206Pb* is clearly present in the lower part of the Mile High section and might be comparable to the Kilauea-like component observed in Mauna Kea lavas in HSDP2 (Blichert-Toft et al., G3 2003). Team members also include: D. Wanless and K. Kolysko, University of Hawaii; H. Guillou, CEA/CNRS, France; M. Kurz and D. Fornari, WHOI; M. Norman and V

  1. Eruption of Kliuchevskoi volcano

    NASA Image and Video Library

    1994-10-09

    STS068-258-028 (9 October 1994) --- Astronauts aboard the Space Shuttle Endeavour recorded this final 70mm frame of the Kliuchevskoi volcano on the Kamchatka Peninsula in Russia. The volcano was near its peak on launch day, 10 days earlier, but a snowstorm left very little indication of the major event that had occurred here, except for the ash-covered summit and the large black flow down the northern flank of the mountain. As various members of the six-person crew were using handheld cameras to record the various stages of the volcano, hardware in Endeavour's cargo bay was taking radar data of the event in support of the Space Radar Laboratory (SRL-2) mission.

  2. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  3. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  4. Ice-clad volcanoes

    USGS Publications Warehouse

    Waitt, Richard B.; Edwards, B.R.; Fountain, Andrew G.; Huggel, C.; Carey, Mark; Clague, John J.; Kääb, Andreas

    2015-01-01

    An icy volcano even if called extinct or dormant may be active at depth. Magma creeps up, crystallizes, releases gas. After decades or millennia the pressure from magmatic gas exceeds the resistance of overlying rock and the volcano erupts. Repeated eruptions build a cone that pokes one or two kilometers or more above its surroundings - a point of cool climate supporting glaciers. Ice-clad volcanic peaks ring the northern Pacific and reach south to Chile, New Zealand, and Antarctica. Others punctuate Iceland and Africa (Fig 4.1). To climb is irresistible - if only “because it’s there” in George Mallory’s words. Among the intrepid ascents of icy volcanoes we count Alexander von Humboldt’s attempt on 6270-meter Chimborazo in 1802 and Edward Whymper’s success there 78 years later. By then Cotopaxi steamed to the north.

  5. Organizational changes at Earthquakes & Volcanoes

    USGS Publications Warehouse

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  6. Principal Component Analysis for pattern recognition in volcano seismic spectra

    NASA Astrophysics Data System (ADS)

    Unglert, Katharina; Jellinek, A. Mark

    2016-04-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we have developed a pattern recognition technique based on a combination of Principal Component Analysis and hierarchical clustering applied to volcano seismic spectra. This technique can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. Preliminary results from applying our method to volcanic tremor from a range of volcanoes including K¯ı lauea, Okmok, Pavlof, and Redoubt suggest that spectral patterns from K¯ı lauea and Okmok are similar, whereas at Pavlof and Redoubt spectra have their own, distinct patterns.

  7. Pattern recognition in volcano seismology - Reducing spectral dimensionality

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Radic, V.; Jellinek, M.

    2015-12-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we evaluate whether a machine learning technique called Self-Organizing Maps (SOMs) can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. This could reduce the dimensions of the spectral space typically analyzed by orders of magnitude, and enable rapid processing and visualization. Preliminary results suggest that the temporal evolution of volcano seismicity at Kilauea Volcano, Hawai`i, can be reduced to as few as 2 spectral components by using a combination of SOMs and cluster analysis. We will further refine our methodology with several datasets from Hawai`i and Alaska, among others, and compare it to other techniques.

  8. Machine Learning Method for Pattern Recognition in Volcano Seismic Spectra

    NASA Astrophysics Data System (ADS)

    Radic, V.; Unglert, K.; Jellinek, M.

    2016-12-01

    Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as Self-Organizing Maps (SOM), Principal Component Analysis (PCA) and clustering methods can help to quickly and automatically identify important patterns related to impending eruptions. In this study we develop and evaluate an algorithm applied on a set of synthetic volcano seismic spectra as well as observed spectra from Kılauea Volcano, Hawai`i. Our goal is to retrieve a set of known spectral patterns that are associated with dominant phases of volcanic tremor before, during, and after periods of volcanic unrest. The algorithm is based on training a SOM on the spectra and then identifying local maxima and minima on the SOM 'topography'. The topography is derived from the first two PCA modes so that the maxima represent the SOM patterns that carry most of the variance in the spectra. Patterns identified in this way reproduce the known set of spectra. Our results show that, regardless of the level of white noise in the spectra, the algorithm can accurately reproduce the characteristic spectral patterns and their occurrence in time. The ability to rapidly classify spectra of volcano seismic data without prior knowledge of the character of the seismicity at a given volcanic system holds great potential for real time or near-real time applications, and thus ultimately for eruption forecasting.

  9. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  10. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  11. Eruption of Kliuchevskoi volcano

    NASA Image and Video Library

    1994-09-30

    STS068-150-045 (30 September 1994) --- (Kliuchevskoi Volcano) The major eruption that began September 30, 1994 (launch day) got almost immediate coverage by the astronauts aboard the Space Shuttle Endeavour. The eruption cloud reached 60,000 feet above sea level, and the winds carried ash as far as 640 miles southeast from the volcano into the North Pacific air routes. This picture was made with a large format Linhof camera. While astronauts used handheld camera's to keep up with the Kamchatka event, instruments in the cargo bay of Endeavour recorded data to support the Space Radar Laboratory (SRL-2) mission.

  12. Volcano-electromagnetic effects

    USGS Publications Warehouse

    Johnston, Malcolm J. S.

    2007-01-01

    Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.

  13. Alaska - Kamchatka Connection in Volcano Monitoring, Research, and Education

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Gordeev, E.; Eichelberger, J. C.; Neal, C. A.

    2009-12-01

    The Aleutian-Kamchatka portion of the Pacific Rim of Fire spans ~4400 km. This segment contains more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three important components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) a series of volcanological schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT), formed in 1993 under the auspices of both IVS and KBGS. Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in June 2009 in Fairbanks, Alaska and brought together more than 150 scientists and students. The key educational component of our collaborative program is the continuous series of international

  14. The added value of time-variable microgravimetry to the understanding of how volcanoes work

    USGS Publications Warehouse

    Carbone, Daniele; Poland, Michael; Greco, Filippo; Diament, Michel

    2017-01-01

    During the past few decades, time-variable volcano gravimetry has shown great potential for imaging subsurface processes at active volcanoes (including some processes that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide information regarding processes such as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, time-variable volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravimetry at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of time-variable gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of time-variable volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of time-variable volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.

  15. Transient Astrophysics Observatory (TAO)

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; TAO Team

    2016-10-01

    The Transient Astrophysics Observatory (TAO) is a NASA MidEx mission concept (formerly known as Lobster) designed to provide simultaneous wide-field gamma-ray, X-ray, and near-infrared observations of the sky.

  16. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  17. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Charles Miller talks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  18. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Panelists are seen during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  19. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Ralph Basilio talks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  20. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Eric Ianson speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  1. Global Health Observatory (GHO)

    MedlinePlus

    ... UNFPA, UNICEF, UN Women, WHO and the World Bank), other UN organizations - including the UN Statistics Division ... data systems Country statistics Regional Health Observatories Africa Americas South-East Asia Europe Eastern Mediterranean Western Pacific ...

  2. Geology of kilauea volcano

    USGS Publications Warehouse

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  3. Volcano evolution on Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Pete; Wilson, Lionel

    1987-01-01

    The diversity of volcanic activity on Mars throughout geologic time was one of the major factors that has controlled the spatial distribution of surface mineralogies. The traditional view of Martian volcanism is one in which effusive activity has dominated the entire preserved geologic history of the planet, with the minor exception of phreatomagnetic activity and associated volcano ground-ice interactions. However, two lines of evidence have caused reconsidering of this view, and have led to the possible role of explosive volcanism on Mars. First, detailed analysis of high resolution Viking Orbiter images has provided good evidence for explosive activity on Hecates Tholus and Alba Patera. Secondly, the problems believed to exist in associating explosive volcanism with silicic magmas on Mars, and the consequent unusual magmatic evolutionary trend for Martian volcanoes from silica-rich to silica-poor, may now be circumvented by the consideration of basatic plinian activity similar in kind to terrestrial eruptions such as the 1886 Tarawera eruption. The morphologic evidence for an early phase of explosive activity on Mars is briefly reviewed, and a model is presented for the emplacement of ash-flow deposits on Martian volcanoes. The volcanoes Alba Patera and Olympus Mons are considered in this context, along with some of the older Martian tholi and paterae

  4. Santa Maria Volcano, Guatemala

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  5. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  6. Geology of Kilauea volcano

    SciTech Connect

    Moore, R.B. . Federal Center); Trusdell, F.A. . Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  7. Spying on volcanoes

    NASA Astrophysics Data System (ADS)

    Watson, Matthew

    2017-07-01

    Active volcanoes can be incredibly dangerous, especially to those who live nearby, but how do you get close enough to observe one in action? Matthew Watson explains how artificial drones are providing volcanologists with insights that could one day save human lives

  8. Volcano evolution on Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Pete; Wilson, Lionel

    1987-01-01

    The diversity of volcanic activity on Mars throughout geologic time was one of the major factors that has controlled the spatial distribution of surface mineralogies. The traditional view of Martian volcanism is one in which effusive activity has dominated the entire preserved geologic history of the planet, with the minor exception of phreatomagnetic activity and associated volcano ground-ice interactions. However, two lines of evidence have caused reconsidering of this view, and have led to the possible role of explosive volcanism on Mars. First, detailed analysis of high resolution Viking Orbiter images has provided good evidence for explosive activity on Hecates Tholus and Alba Patera. Secondly, the problems believed to exist in associating explosive volcanism with silicic magmas on Mars, and the consequent unusual magmatic evolutionary trend for Martian volcanoes from silica-rich to silica-poor, may now be circumvented by the consideration of basatic plinian activity similar in kind to terrestrial eruptions such as the 1886 Tarawera eruption. The morphologic evidence for an early phase of explosive activity on Mars is briefly reviewed, and a model is presented for the emplacement of ash-flow deposits on Martian volcanoes. The volcanoes Alba Patera and Olympus Mons are considered in this context, along with some of the older Martian tholi and paterae

  9. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly

    2005-02-01

    This guide contains vital information for anyone wishing to visit, explore, and photograph active volcanoes safely and enjoyably. Following an introduction that discusses eruption styles of different types of volcanoes and how to prepare for an exploratory trip that avoids volcanic dangers, the book presents guidelines to visiting 42 different volcanoes around the world. It is filled with practical information that includes tour itineraries, maps, transportation details, and warnings of possible non-volcanic dangers. Three appendices direct the reader to a wealth of further volcano resources in a volume that will fascinate amateur enthusiasts and professional volcanologists alike. Rosaly Lopes is a planetary geology and volcanology specialist at the NASA Jet Propulsion Laboratory in California. In addition to her curatorial and research work, she has lectured extensively in England and Brazil and written numerous popular science articles. She received a Latinas in Science Award from the Comision Feminil Mexicana Nacional in 1991 and since 1992, has been a co-organizer of the United Nations/European Space Agency/The Planetary Society yearly conferences on Basic Science for the Benefit of Developing Countries.

  10. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  11. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  12. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  13. Volcanoes and the Environment

    NASA Astrophysics Data System (ADS)

    Marti, Edited By Joan; Ernst, Gerald G. J.

    2005-10-01

    Volcanoes and the Environment is a comprehensive and accessible text incorporating contributions from some of the world's authorities in volcanology. This book is an indispensable guide for those interested in how volcanism affects our planet's environment. It spans a wide variety of topics from geology to climatology and ecology; it also considers the economic and social impacts of volcanic activity on humans. Topics covered include how volcanoes shape the environment, their effect on the geological cycle, atmosphere and climate, impacts on health of living on active volcanoes, volcanism and early life, effects of eruptions on plant and animal life, large eruptions and mass extinctions, and the impact of volcanic disasters on the economy. This book is intended for students and researchers interested in environmental change from the fields of earth and environmental science, geography, ecology and social science. It will also interest policy makers and professionals working on natural hazards. An all-inclusive text that goes beyond the geological working of volcanoes to consider their environmental and sociological impacts Each chapter is written by one of the world's leading authorities on the subject Accessible to students and researchers from a wide variety of backgrounds

  14. Santa Maria Volcano, Guatemala

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  15. Advancing the Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Levenson, Nancy A.

    2012-11-01

    Gemini Science and User Meeting; San Francisco, California, 17-20 July 2012 More than 100 astronomers gathered in San Francisco to discuss results from the Gemini Observatory and to plan for its future. The Gemini Observatory consists of twin 8.1 meter diameter optical/infrared telescopes located on mountaintops in Hawai'i and Chile. Gemini was built and is operated by an international partnership that currently includes the United States, the United Kingdom, Canada, Chile, Australia, Brazil, and Argentina.

  16. The Pierre Auger Observatory

    SciTech Connect

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10{sup 19} eV and with equal exposures for the northern and southern skies.

  17. Acoustic surveys of Hawaiian Hoary Bats in Kahikinui Forest Reserve and Nakula Natural Area Reserve on the Island of Maui

    USGS Publications Warehouse

    Todd, Christopher M.; Pinzari, Corinna A.; Bonaccorso, Frank

    2016-01-01

    The Kahikinui Forest Reserve and the adjoining Nakula Natural Area Reserve (KFR-NNAR) was established in 2011 as a conservation area on the leeward slope of Haleakalā Volcano on the island of Maui to protect unique natural features and endangered species including the Hawaiian hoary bat, Lasiurus cinereus semotus. We recorded bat vocalizations from July 2012 to November 2014 using automated echolocation detectors at 14 point locations in the KFRNNAR. Our study area included remnants of recovering mesic montane forest with interspersed grasses (1,250‒1,850 m elevation, hereafter called “forest”) and xeric subalpine shrubland plant communities (1,860‒2,800 m, hereafter called “shrubland”). Monthly detections of Hawaiian hoary bats, Lasiurus cinereus semotus, within the KFR-NNAR identified areas of high and low detection probability as well as foraging activity. Sixty per cent of all detector-nights had confirmed bat vocalizations and included detections in every month of the study. Monthly detection probability values were highest from July to November 2012; these values were significantly greater than values measured in any month thereafter. Pooled values of detection probabilities, mean pulses/night, percentage of nights with feeding activity, and acoustic detections all were greater in the recovering forest zone than corresponding values from the shrublands. Our data provide baseline levels of hoary bat echolocation activity that may be compared with future studies in the KFR-NNAR relative to success criteria for Hawaiian hoary bat habitat restoration.

  18. Eruption dynamics of Hawaiian-style fountains: The case study of episode 1 of the Kilauea Iki 1959 eruption

    USGS Publications Warehouse

    Stovall, W.K.; Houghton, B.F.; Gonnermann, H.; Fagents, S.A.; Swanson, D.A.

    2011-01-01

    Hawaiian eruptions are characterized by fountains of gas and ejecta, sustained for hours to days that reach tens to hundreds of meters in height. Quantitative analysis of the pyroclastic products from the 1959 eruption of K??lauea Iki, K??lauea volcano, Hawai'i, provides insights into the processes occurring during typical Hawaiian fountaining activity. This short-lived but powerful eruption contained 17 fountaining episodes and produced a cone and tephra blanket as well as a lava lake that interacted with the vent and fountain during all but the first episode of the eruption, the focus of this paper. Microtextural analysis of Hawaiian fountaining products from this opening episode is used to infer vesiculation processes within the fountain and shallow conduit. Vesicle number densities for all clasts are high (106-107 cm-3). Post-fragmentation expansion of bubbles within the thermally-insulated fountain overprints the pre-fragmentation bubble populations, leading to a reduction in vesicle number density and increase in mean vesicle size. However, early quenched rims of some clasts, with vesicle number densities approaching 107 cm-3, are probably a valid approximation to magma conditions near fragmentation. The extent of clast evolution from low vesicle-to-melt ratio and corresponding high vesicle number density to higher vesicle-to-melt ratio and lower vesicle-number density corresponds to the length of residence time within the fountain. ?? 2010 Springer-Verlag.

  19. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John

    2005-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and

  20. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a