Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) Project Status as of May 2010
NASA Technical Reports Server (NTRS)
Striepe, Scott A.; Epp, Chirold D.; Robertson, Edward A.
2010-01-01
This paper includes the current status of NASA s Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) Project. The ALHAT team has completed several flight tests and two major design analysis cycles. These tests and analyses examine terrain relative navigation sensors, hazard detection and avoidance sensors and algorithms, and hazard relative navigation algorithms, and the guidance and navigation system using these ALHAT functions. The next flight test is scheduled for July 2010. The paper contains results from completed flight tests and analysis cycles. ALHAT system status, upcoming tests and analyses is also addressed. The current ALHAT plans as of May 2010 are discussed. Application of the ALHAT system to landing on bodies other than the Moon is included
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.
2013-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.
NASA Technical Reports Server (NTRS)
Rutishauser, David; Epp, Chirold; Robertson, Edward
2013-01-01
The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.
Real-Time Hazard Detection and Avoidance Demonstration for a Planetary Lander
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Robertson, Edward A.; Carson, John M., III
2014-01-01
The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. In addition to precision landing close to a pre-mission defined landing location, the ALHAT System must be capable of autonomously identifying and avoiding surface hazards in real-time to enable a safe landing under any lighting conditions. This paper provides an overview of the recent results of the ALHAT closed loop hazard detection and avoidance flight demonstrations on the Morpheus Vertical Testbed (VTB) at the Kennedy Space Center, including results and lessons learned. This effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).
NASA Technical Reports Server (NTRS)
Brady, Tye; Bailey, Erik; Crain, Timothy; Paschall, Stephen
2011-01-01
NASA has embarked on a multiyear technology development effort to develop a safe and precise lunar landing capability. The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is investigating a range of landing hazard detection methods while developing a hazard avoidance capability to best field test the proper set of relevant autonomous GNC technologies. Ultimately, the advancement of these technologies through the ALHAT Project will provide an ALHAT System capable of enabling next generation lunar lander vehicles to globally land precisely and safely regardless of lighting condition. This paper provides an overview of the ALHAT System and describes recent validation experiments that have advanced the highly capable GNC architecture.
NASA Technical Reports Server (NTRS)
Rutishauser, David K.; Epp, Chirold; Robertson, Ed
2012-01-01
The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. Since its inception in 2006, the ALHAT Project has executed four field test campaigns to characterize and mature sensors and algorithms that support real-time hazard detection and global/local precision navigation for planetary landings. The driving objective for Government Fiscal Year 2012 (GFY2012) is to successfully demonstrate autonomous, real-time, closed loop operation of the ALHAT system in a realistic free flight scenario on Earth using the Morpheus lander developed at the Johnson Space Center (JSC). This goal represents an aggressive target consistent with a lean engineering culture of rapid prototyping and development. This culture is characterized by prioritizing early implementation to gain practical lessons learned and then building on this knowledge with subsequent prototyping design cycles of increasing complexity culminating in the implementation of the baseline design. This paper provides an overview of the ALHAT/Morpheus flight demonstration activities in GFY2012, including accomplishments, current status, results, and lessons learned. The ALHAT/Morpheus effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).
ALHAT: Autonomous Landing and Hazard Avoidance Technology
NASA Technical Reports Server (NTRS)
Robertson, Edward A.; Carson, John M., III
2015-01-01
The ALHAT project was chartered by NASA HQ in 2006 to develop and mature to TRL 6 an autonomous lunar landing GN&C and sensing system for crewed, cargo, and robotic planetary landing vehicles. The multi-center ALHAT team was tasked with providing a system capable of identifying and avoiding surface hazards in real time to enable safe precision landing to within tens of meters of a designated planetary landing site under any lighting conditions.
Autonomous Landing and Hazard Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold
2007-01-01
This viewgraph presentation reviews the work towards technology that will result in an autonomous landing on the lunar surface, that will avoid the hazards of lunar landing. In October 2005, the Exploration Systems Mission Directorate at NASA Headquarters assigned the development of new technologies to support the return to the moon. One of these was Autonomous Precision Landing and Hazard Detection and Avoidance Technology now known as ALHAT ALHAT is a lunar descent and landing GNC technology development project led by Johnson Space Center (JSC) with team members from Langley Research Center (LaRC), Jet Propulsion Laboratory (JPL), Draper Laboratories (CSDL) and the Applied Physics Laboratory (APL)
Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance
NASA Technical Reports Server (NTRS)
Paschall, Steve; Brady, Tye; Sostaric, Ron
2009-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system design process.
2014-04-30
CAPE CANAVERAL, Fla. – Engineers and technicians check NASA's Project Morpheus prototype lander after it touched down on a dedicated landing pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus launched on a free-flight test from a new launch pad at the north end of the landing facility. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver before landing on the dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Real-time Imaging Technology for the Return to the Moon
NASA Technical Reports Server (NTRS)
Epp, Chirold
2008-01-01
This viewgraph presentation reviews realtime Autonomous Landing Hazard Avoidance Technology (ALHAT) technology for the return to the Moon. The topics inclde: 1) ALHAT Background; 2) Safe and Precise Landing; 3) ALHAT Mission Phases; 4) Terminal Descent Phase; 5) Lighting; 6) Lander Tolerance; 7) HDA Sensor Performance; and 8) HDA Terrain Sensors.
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Smith, Thomas B.
2007-01-01
As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.
2014-04-30
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander touches down on the autonomous landing and hazard avoidance technology, or ALHAT, field after lifting off on a free-flight test from a new launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-04-30
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander touches down on the autonomous landing and hazard avoidance technology, or ALHAT, field after lifting off on a free-flight test from a new launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
Morpheus Alhat Integrated and Laser Test
2014-03-21
CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for an automated landing and hazard avoidance technology, or ALHAT, and laser test at a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Morpheus Alhat Integrated and Laser Test
2014-03-21
CAPE CANAVERAL, Fla. – Engineers run an automated landing and hazard avoidance technology, or ALHAT, and laser test on the Project Morpheus prototype lander at a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. At left, in the blue shirt is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. At far left, in the white shirt is Jon Olansen, Johnson Space Center Project Morpheus Manager. At left, in the blue shirt is Chirold Epp, JSC project manager for ALHAT. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, field at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the hazard field and speak with Morpheus managers. In the white shirt is Jon Olansen, Johnson Space Center Project Morpheus Manager. Behind Olansen is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-04-30
CAPE CANAVERAL, Fla. – A technician vents off the gas from the propellant lines of NASA's Project Morpheus prototype lander after it completed a free-flight test at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-04-30
CAPE CANAVERAL, Fla. – Technicians vent off the gas from the propellant lines of NASA's Project Morpheus prototype lander after it completed a free-flight test at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-04-30
CAPE CANAVERAL, Fla. – A technician vents off the gas from the propellant lines of NASA's Project Morpheus prototype lander after it landed from a free-flight test at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Morpheus Alhat Integrated and Laser Test
2014-03-21
CAPE CANAVERAL, Fla. – A crane lowers the Project Morpheus prototype lander onto a launch pad at a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Engineers and technicians are preparing Morpheus for an automated landing and hazard avoidance technology, or ALHAT, and laser test at the new launch site. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Morpheus Alhat Integrated and Laser Test
2014-03-21
CAPE CANAVERAL, Fla. – Engineers and technicians wearing safety goggles, prepare the Project Morpheus prototype lander for an automated landing and hazard avoidance technology, or ALHAT, and laser test at a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Fisher, Jody l.; Striepe, Scott A.
2007-01-01
The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.
2014-01-21
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander touches down in the autonomous landing and hazard avoidance technology, or ALHAT, hazard field after launching on its fourth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 64-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 305 feet, significantly increasing the ascent velocity from the last test. The lander flew forward, covering about 358 feet in 25 seconds before descending and landing within 15 inches of its target on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett
2014-01-21
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander touched down in the autonomous landing and hazard avoidance technology, or ALHAT, hazard field after launching on its fourth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 64-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 305 feet, significantly increasing the ascent velocity from the last test. The lander flew forward, covering about 358 feet in 25 seconds before descending and landing within 15 inches of its target on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett
Morpheus Alhat Tether Test Preparations
2014-03-27
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is positioned near a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for a tether test. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. In the foreground of the photo is the ALHAT field. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky
2014-05-21
CAPE CANAVERAL, Fla. – From left behind the reporter in the white shirt, Chirold Epp, the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, project manager, Jon Olansen, Morpheus project manager, and Greg Gaddis, Morpheus/ALHAT site director, speak to members of the media near the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Media also viewed Morpheus inside a facility near the landing facility. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander touches down in the automated landing and hazard avoidance technology, or ALHAT, hazard field after completing its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
2014-05-21
CAPE CANAVERAL, Fla. – Chirold Epp, the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Epp is the Project Morpheus prototype lander. Project Morpheus tests NASA’s ALHAT sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
NASA Technical Reports Server (NTRS)
Crain, Timothy P.; Bishop, Robert H.; Carson, John M., III; Trawny, Nikolas; Hanak, Chad; Sullivan, Jacob; Christian, John; DeMars, Kyle; Campbell, Tom; Getchius, Joel
2016-01-01
The Morpheus Project began in late 2009 as an ambitious e ort code-named Project M to integrate three ongoing multi-center NASA technology developments: humanoid robotics, liquid oxygen/liquid methane (LOX/LCH4) propulsion and Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) into a single engineering demonstration mission to be own to the Moon by 2013. The humanoid robot e ort was redirected to a deploy- ment of Robonaut 2 on the International Space Station in February of 2011 while Morpheus continued as a terrestrial eld test project integrating the existing ALHAT Project's tech- nologies into a sub-orbital ight system using the world's rst LOX/LCH4 main propulsion and reaction control system fed from the same blowdown tanks. A series of 33 tethered tests with the Morpheus 1.0 vehicle and Morpheus 1.5 vehicle were conducted from April 2011 - December 2013 before successful, sustained free ights with the primary Vertical Testbed (VTB) navigation con guration began with Free Flight 3 on December 10, 2013. Over the course of the following 12 free ights and 3 tethered ights, components of the ALHAT navigation system were integrated into the Morpheus vehicle, operations, and ight control loop. The ALHAT navigation system was integrated and run concurrently with the VTB navigation system as a reference and fail-safe option in ight (see touchdown position esti- mate comparisons in Fig. 1). Flight testing completed with Free Flight 15 on December 15, 2014 with a completely autonomous Hazard Detection and Avoidance (HDA), integration of surface relative and Hazard Relative Navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman lter software, and landing within 2 meters of the VTB GPS-based navigation solution at the safe landing site target. This paper describes the Mor- pheus joint VTB/ALHAT navigation architecture, the sensors utilized during the terrestrial ight campaign, issues resolved during testing, and the navigation results from the ight tests.
Terrain Hazard Detection and Avoidance During the Descent and Landing Phase of the Altair Mission
NASA Technical Reports Server (NTRS)
Strhan, Alan L.; Johnson, Andrew E.
2010-01-01
This paper describes some of the environmental challenges associated with landing a crewed or robotic vehicle at any certified location on the lunar surface (i.e. not a mountain peak, permanently dark crater floor or overly steep terrain), with a specific focus on how hazard detection technology may be incorporated to mitigate these challenges. For this discussion, the vehicle of interest is the Altair Lunar Lander, being the vehicle element of the NASA Constellation Program aimed at returning humans to the moon. Lunar environmental challenges for such global lunar access primarily involve terrain and lighting. These would include sizable rocks and slopes, which are more concentrated in highland areas; small craters, which are essentially everywhere independent of terrain type; and for polar regions, low-angle sunlight, which leaves significant terrain in shadow. To address these issues, as well as to provide for precision landing, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was charted by NASA Headquarters, and has since been making significant progress. The ALHAT team considered several sensors for real-time hazard detection, settling on the use of a Flash Lidar mounted to a high-speed gimbal, with computationally intense image processing and elevation interpretation software. The Altair Project has been working with the ALHAT team to understand the capabilities and limitations of their concept, and has incorporated much of the ALHAT hazard detection system into the Altair baseline design. This integration, along with open issues relating to computational performance, the need for system redundancy, and potential pilot interaction, will be explored further in this paper.
2014-01-21
CAPE CANAVERAL, Fla. – Technicians and engineers perform safing procedures on the Project Morpheus prototype lander after it touched down in the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. The lander successfully completed its fourth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 64-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 305 feet, significantly increasing the ascent velocity from the last test. The lander flew forward, covering about 358 feet in 25 seconds before descending and landing within 15 inches of its target on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett
2014-03-05
CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for its sixth free flight test from a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander begins to ascend on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high and moves forward after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander begins to ascend on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander begins to ascend on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-03-05
CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for its sixth free flight test from a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander soars high after launching on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
2014-03-05
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander ascends on its sixth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
2014-03-05
CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for its sixth free flight test from a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 82-second test began at 11:32 a.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending to 465 feet. The lander flew forward, covering 633 feet while performing a 55-foot divert to emulate a hazard avoidance maneuver before descending and landing on a dedicated pad inside the automated landing and hazard avoidance technology, or ALHAT, hazard field. Morpheus landed 10 inches west of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
A Self Contained Method for Safe and Precise Lunar Landing
NASA Technical Reports Server (NTRS)
Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald
2008-01-01
The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.
Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin
2015-01-01
A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.
2014-03-11
CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander touches down in the automated landing and hazard avoidance technology, or ALHAT, hazard field after completing its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers
2014-01-21
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is transported to a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
2014-01-21
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is being lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
Morpheus Alhat Tether Test Preparations
2014-03-27
CAPE CANAVERAL, Fla. – Engineers and technicians prepare the Project Morpheus prototype lander for a tether test near a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky
Morpheus Alhat Tether Test Preparations
2014-03-27
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is positioned near a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for a tether test. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky
Morpheus Alhat Tether Test Preparations
2014-03-27
CAPE CANAVERAL, Fla. – A technician prepares the Project Morpheus prototype lander for a tether test near a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky
2014-05-21
CAPE CANAVERAL, Fla. – From left, Chirold Epp, the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, project manager, and Jon Olansen, Morpheus project manager, speak to members of the media near the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Media also viewed Morpheus inside a facility near the landing facility. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
Preparation and Integration of ALHAT Precision Landing Technology for Morpheus Flight Testing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Robertson, Edward A.; Pierrottet, Diego F.; Roback, Vincent E.; Trawny, Nikolas; Devolites, Jennifer L.; Hart, Jeremy J.; Estes, Jay N.; Gaddis, Gregory S.
2014-01-01
The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests.
Hazard Detection Software for Lunar Landing
NASA Technical Reports Server (NTRS)
Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.
2011-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of viewing on hazard detection performance. The software has also been deployed to Johnson Space Center and integrated into the ALHAT real-time Hardware-in-the-Loop testbed.
2014-03-11
CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander soars high on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers
2014-03-11
CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander soars high on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers
2014-03-11
CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander soars high on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers
Morpheus 1C preps & post launch activities
2014-03-11
CAPE CANAVERAL, Fla. - Technicians prepare the Project Morpheus prototype lander for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Morpheus 1C preps & post launch activities
2014-03-11
CAPE CANAVERAL, Fla. - Engineers and technicians prepare the Project Morpheus prototype lander for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-03-11
CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander soars high on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers
Morpheus 1C preps & post launch activities
2014-03-11
CAPE CANAVERAL, Fla. - Preparations are underway to prepare the Project Morpheus prototype lander for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Morpheus 1C preps & post launch activities
2014-03-11
CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander is transported to the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for the seventh free flight test. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-03-11
CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander begins to ascend on its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Mike Chambers
Morpheus 1C preps & post launch activities
2014-03-11
CAPE CANAVERAL, Fla. - An engineer checks the Project Morpheus prototype lander after it landed in the automated landing and hazard avoidance technology, or ALHAT, hazard field, completing its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Morpheus 1C preps & post launch activities
2014-03-11
CAPE CANAVERAL, Fla. - The Project Morpheus prototype lander lifts off in the automated landing and hazard avoidance technology, or ALHAT, hazard field for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-01-17
CAPE CANAVERAL, Fla. – Members of the news media view the Project Morpheus prototype lander inside a hangar near the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Speaking to the media, from left are Jon Olansen, Morpheus project manager at Johnson Space Center in Houston, and Greg Gaddis, the Kennedy Morpheus and ALHAT site manager. Morpheus successfully completed its third free flight test Jan. 16. The 57-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 187 feet, nearly doubling the target ascent velocity from the last test in December 2013. The lander flew forward, covering about 154 feet in 20 seconds before descending and landing within 11 inches of its target on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett
2014-01-21
CAPE CANAVERAL, Fla. – Technicians monitor the progress as a crane lowers the Project Morpheus prototype for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
2014-01-21
CAPE CANAVERAL, Fla. – Technicians and engineers monitor the progress as the Project Morpheus prototype lander is lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
2014-01-21
CAPE CANAVERAL, Fla. – Technicians monitor the progress as the Project Morpheus prototype lander is lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
Morpheus 1C preps & post launch activities
2014-03-11
CAPE CANAVERAL, Fla. - Engineers and technicians assist as a crane lowers the Project Morpheus prototype lander in preparation for its seventh free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet, its highest to date. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-03-14
CAPE CANAVERAL, Fla. – A flatbed truck carries the launch pad for the Project Morpheus prototype lander to a new location at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad is being moved to a different location to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis
2014-03-14
CAPE CANAVERAL, Fla. – Construction workers assist as a crane lowers a portion of the launch pad for the Project Morpheus prototype lander onto a transporter at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad is being moved to a different location at the landing facility to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis
2014-03-14
CAPE CANAVERAL, Fla. – Construction workers assist as a crane lowers a large portion of the launch pad for the Project Morpheus prototype lander onto a transporter at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad is being moved to a different location at the landing facility to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis
2014-03-14
CAPE CANAVERAL, Fla. – A crane is used to lower the launch pad for the Project Morpheus prototype lander onto a new location at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis
2014-03-14
CAPE CANAVERAL, Fla. – Construction workers begin to reassemble the launch pad for the Project Morpheus prototype lander at a new location at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad was moved to a different location to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis
2014-03-14
CAPE CANAVERAL, Fla. – Construction workers attach a crane to part of the launch pad for the Project Morpheus prototype lander at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad will be moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis
Morpheus Alhat Tether Test Preparations
2014-03-27
CAPE CANAVERAL, Fla. – Technicians watch as a crane lowers the Project Morpheus prototype lander onto a launch pad at a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Preparations are underway for a tether test. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky
Morpheus Alhat Tether Test Preparations
2014-03-27
CAPE CANAVERAL, Fla. – A crane lowers the Project Morpheus prototype lander onto a launch pad at a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Preparations are underway for a tether test. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky
Morpheus Alhat Tether Test Preparations
2014-03-27
CAPE CANAVERAL, Fla. – Engineers and technicians monitor the progress as a crane lifts the Project Morpheus prototype lander off the ground for a tether test near a new launch site at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s automated landing and hazard avoidance technology, or ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Ben Smegelsky
Morpheus Campaign 2A Tether Test
2014-03-27
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is positioned near a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for a tethered test. The test will be performed to verify the lander's recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors and integration system. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Glenn Benson
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, members of the media view the Morpheus prototype lander and speak with Morpheus managers. In front is Gregory Gaddis, Kennedy Project Morpheus/ALHAT site manager. To his left, are Jon Olansen, Johnson Space Center Project Morpheus manager and Chirold Epp, JSC ALHAT project manager. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Lidar Sensors for Autonomous Landing and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.; Reisse, Robert A.; Pierrottet, Diego F.
2013-01-01
Lidar technology will play an important role in enabling highly ambitious missions being envisioned for exploration of solar system bodies. Currently, NASA is developing a set of advanced lidar sensors, under the Autonomous Landing and Hazard Avoidance (ALHAT) project, aimed at safe landing of robotic and manned vehicles at designated sites with a high degree of precision. These lidar sensors are an Imaging Flash Lidar capable of generating high resolution three-dimensional elevation maps of the terrain, a Doppler Lidar for providing precision vehicle velocity and altitude, and a Laser Altimeter for measuring distance to the ground and ground contours from high altitudes. The capabilities of these lidar sensors have been demonstrated through four helicopter and one fixed-wing aircraft flight test campaigns conducted from 2008 through 2012 during different phases of their development. Recently, prototype versions of these landing lidars have been completed for integration into a rocket-powered terrestrial free-flyer vehicle (Morpheus) being built by NASA Johnson Space Center. Operating in closed-loop with other ALHAT avionics, the viability of the lidars for future landing missions will be demonstrated. This paper describes the ALHAT lidar sensors and assesses their capabilities and impacts on future landing missions.
Advancing Lidar Sensors Technologies for Next Generation Landing Missions
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander
2015-01-01
Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.
Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.
2007-01-01
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.
NASA Technical Reports Server (NTRS)
Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.
2015-01-01
The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.
A Hybrid FPGA/Tilera Compute Element for Autonomous Hazard Detection and Navigation
NASA Technical Reports Server (NTRS)
Villalpando, Carlos Y.; Werner, Robert A.; Carson, John M., III; Khanoyan, Garen; Stern, Ryan A.; Trawny, Nikolas
2013-01-01
To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.
A hybrid FPGA/Tilera compute element for autonomous hazard detection and navigation
NASA Astrophysics Data System (ADS)
Villalpando, C. Y.; Werner, R. A.; Carson, J. M.; Khanoyan, G.; Stern, R. A.; Trawny, N.
To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.
Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project
NASA Technical Reports Server (NTRS)
Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.;
2008-01-01
Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.
A Super-Resolution Algorithm for Enhancement of FLASH LIDAR Data: Flight Test Results
NASA Technical Reports Server (NTRS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse Robert
2014-01-01
This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.
A super-resolution algorithm for enhancement of flash lidar data: flight test results
NASA Astrophysics Data System (ADS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse, Robert
2013-03-01
This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.
2014-03-14
CAPE CANAVERAL, Fla. – Construction workers assist as a crane is used to lift a large portion of the launch pad for the Project Morpheus prototype lander onto a transporter at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad is being moved to a different location at the landing facility to support the next phase of flight testing. Morpheus completed its seventh free flight test on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis
2014-03-14
CAPE CANAVERAL, Fla. – Construction workers monitor the progress as a crane is used to lift a portion of the launch pad for the Project Morpheus prototype lander at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The launch pad will be moved to a different location at the landing facility to support the next phase of flight testing. The seventh free flight test of Morpheus occurred on March 11. The 83-second test began at 3:41 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending to 580 feet. Morpheus then flew its fastest downrange trek at 30 mph, travelling farther than before, 837 feet. The lander performed a 42-foot divert to emulate a hazard avoidance maneuver before descending and touching down on Landing Site 2, at the northern landing pad inside the automated landing and hazard avoidance technology ALHAT hazard field. Morpheus landed within one foot of its intended target. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces . The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Dimitri Gerondidakis
2014-05-21
CAPE CANAVERAL, Fla. – Jon Olansen, Morpheus project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Olansen is the Project Morpheus prototype lander. Project Morpheus tests NASA’s autonomous landing and hazard avoidance technology, or ALHAT, sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
2014-05-21
CAPE CANAVERAL, Fla. – Jon Olansen, Morpheus project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Olansen is the Project Morpheus prototype lander. Project Morpheus tests NASA’s autonomous landing and hazard avoidance technology, or ALHAT, sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.
2015-01-01
The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.
Flash LIDAR Emulator for HIL Simulation
NASA Technical Reports Server (NTRS)
Brewster, Paul F.
2010-01-01
NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is building a system for detecting hazards and automatically landing controlled vehicles safely anywhere on the Moon. The Flash Light Detection And Ranging (LIDAR) sensor is used to create on-the-fly a 3D map of the unknown terrain for hazard detection. As part of the ALHAT project, a hardware-in-the-loop (HIL) simulation testbed was developed to test the data processing, guidance, and navigation algorithms in real-time to prove their feasibility for flight. Replacing the Flash LIDAR camera with an emulator in the testbed provided a cheaper, safer, more feasible way to test the algorithms in a controlled environment. This emulator must have the same hardware interfaces as the LIDAR camera, have the same performance characteristics, and produce images similar in quality to the camera. This presentation describes the issues involved and the techniques used to create a real-time flash LIDAR emulator to support HIL simulation.
ALHAT COBALT: CoOperative Blending of Autonomous Landing Technology
NASA Technical Reports Server (NTRS)
Carson, John M.
2015-01-01
The COBALT project is a flight demonstration of two NASA ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) capabilities that are key for future robotic or human landing GN&C (Guidance, Navigation and Control) systems. The COBALT payload integrates the Navigation Doppler Lidar (NDL) for ultraprecise velocity and range measurements with the Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. Terrestrial flight tests of the COBALT payload in an open-loop and closed-loop GN&C configuration will be conducted onboard a commercial, rocket-propulsive Vertical Test Bed (VTB) at a test range in Mojave, CA.
2013-12-10
CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-17
CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, Chirold Epp, Johnson Space Center Project Manager for ALHAT, speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2013-12-17
CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2013-12-17
CAPE CANAVERAL, Fla. -- Engineers and technicians prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2013-12-10
CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-10
CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-17
CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2013-12-10
CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-17
CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
2013-12-10
CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-10
CAPE CANAVERAL, Fla. – Technicians and engineers prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
High-Fidelity Flash Lidar Model Development
NASA Technical Reports Server (NTRS)
Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin
2014-01-01
NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.
NASA Technical Reports Server (NTRS)
Roback, VIncent E.; Amzajerdian, Farzin; Brewster, Paul F.; Barnes, Bruce W.; Kempton, Kevin S.; Reisse, Robert A.; Bulyshev, Alexander E.
2013-01-01
A second generation, compact, real-time, air-cooled 3-D imaging Flash Lidar sensor system, developed from a number of cutting-edge components from industry and NASA, is lab characterized and helicopter flight tested under the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project. The ALHAT project is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar incorporates a 3-D imaging video camera based on Indium-Gallium-Arsenide Avalanche Photo Diode and novel micro-electronic technology for a 128 x 128 pixel array operating at a video rate of 20 Hz, a high pulse-energy 1.06 µm Neodymium-doped: Yttrium Aluminum Garnet (Nd:YAG) laser, a remote laser safety termination system, high performance transmitter and receiver optics with one and five degrees field-of-view (FOV), enhanced onboard thermal control, as well as a compact and self-contained suite of support electronics housed in a single box and built around a PC-104 architecture to enable autonomous operations. The Flash Lidar was developed and then characterized at two NASA-Langley Research Center (LaRC) outdoor laser test range facilities both statically and dynamically, integrated with other ALHAT GN&C subsystems from partner organizations, and installed onto a Bell UH-1H Iroquois "Huey" helicopter at LaRC. The integrated system was flight tested at the NASA-Kennedy Space Center (KSC) on simulated lunar approach to a custom hazard field consisting of rocks, craters, hazardous slopes, and safe-sites near the Shuttle Landing Facility runway starting at slant ranges of 750 m. In order to evaluate different methods of achieving hazard detection, the lidar, in conjunction with the ALHAT hazard detection and GN&C system, operates in both a narrow 1deg FOV raster-scanning mode in which successive, gimbaled images of the hazard field are mosaicked together as well as in a wider, 4.85deg FOV staring mode in which digital magnification, via a novel 3-D superresolution technique, is used to effectively achieve the same spatial precision attained with the more narrow FOV optics. The lidar generates calibrated and corrected 3-D range images of the hazard field in real-time and passes them to the ALHAT Hazard Detection System (HDS) which stitches the images together to generate on-the-fly Digital Elevation Maps (DEM's) and identifies hazards and safe-landing sites which the ALHAT GN&C system can then use to guide the host vehicle to a safe landing on the selected site. Results indicate that, for the KSC hazard field, the lidar operational range extends from 100m to 1.35 km for a 30 degree line-of-sight angle and a range precision as low as 8 cm which permits hazards as small as 25 cm to be identified. Based on the Flash Lidar images, the HDS correctly found and reported safe sites in near-real-time during several of the flights. A follow-on field test, planned for 2013, seeks to complete the closing of the GN&C loop for fully-autonomous operations on-board the Morpheus robotic, rocket-powered, free-flyer test bed in which the ALHAT system would scan the KSC hazard field (which was vetted during the present testing) and command the vehicle to landing on one of the selected safe sites.
2014-12-11
CAPE CANAVERAL, Fla. – NASA Project Morpheus prototype lander is being lifted by crane during preparations for free flight test number 15 at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-10
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being transported to the north end of the Shuttle Landing Facility for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-10
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 on a launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is prepared for transport to the north end of the Shuttle Landing Facility for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-10
CAPE CANAVERAL, Fla. – NASA Project Morpheus prototype lander and support equipment are being transported to the north end of the Shuttle Landing Facility for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and controllers in a mobile control room prepare for flight number 15 of NASA's Project Morpheus prototype lander at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare the launch pad for NASA's Project Morpheus prototype lander at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus is being prepared for free flight test number 15 at the SLF. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-10
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being transported from a hangar at the Shuttle Landing Facility, or SLF, for free flight test number 15 at the north end of the SLF at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-10
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being lowered by crane onto a launch pad at the north end of the Shuttle Landing Facility in preparation for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 on a launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus is being lowered by crane onto the launch pad. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-11-03
Bob Richards, co-founder and chief executive officer of Moon Express Inc., of Moffett Field, California, speaks to the media during an event to announce the company's selection to use Kennedy Space Center's facilities as part of NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
CAPE CANAVERAL, Fla. - Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center in Florida, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Greg C. Shavers, Lander Technology director at Marshall Space Flight Center in Alabama, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Bob Richards, co-founder and chief executive officer of Moon Express Inc., of Moffett Field, California, speaks to the media during an event to announce the company's selection to use Kennedy Space Center's facilities as part of NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
Greg C. Shavers, Lander Technology director at Marshall Space Flight Center in Alabama, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center in Florida, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15 at. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15 at. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars overhead during free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars 800 feet above the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida on free flight test No. 15. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander soars overhead during free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2013-12-10
CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the engine fires and the lander lifts off at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-10
CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the engine fires and the lander begins to lift off at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2014-11-19
CAPE CANAVERAL, Fla. –NASA's Project Morpheus prototype lander is lifted by a crane in preparation for a tethered-flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. For the 40-second test, the lander will be hoisted 20 feet. The spacecraft will ascend an additional five feet and hover for five seconds. Morpheus then will perform a 5.6-foot ascent coupled with a 9.8-foot traverse, and hover for five more seconds before returning to the launch point. A number of changes have been made, primarily focused on autonomous landing and hazard avoidance technology ALHAT and moving the Doppler Lidar to the front of the forward liquid oxygen tank. The tether test was cut short due to Morpheus exceeding onboard abort rate limits. The vehicle was taken back to the hangar and data from the test is being studied. After review, managers will determine when a new test date will be set. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-11-19
CAPE CANAVERAL, Fla. –NASA's Project Morpheus prototype lander undergoes final preparations for a tethered-flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. For the 40-second test, the lander will be hoisted 20 feet. The spacecraft will ascend an additional five feet and hover for five seconds. Morpheus then will perform a 5.6-foot ascent coupled with a 9.8-foot traverse, and hover for five more seconds before returning to the launch point. A number of changes have been made, primarily focused on autonomous landing and hazard avoidance technology ALHAT and moving the Doppler Lidar to the front of the forward liquid oxygen tank. The tether test was cut short due to Morpheus exceeding onboard abort rate limits. The vehicle was taken back to the hangar and data from the test is being studied. After review, managers will determine when a new test date will be set. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-11-19
CAPE CANAVERAL, Fla. –NASA's Project Morpheus prototype lander is prepared for lifting by a crane in preparation for a tethered-flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. For the 40-second test, the lander will be hoisted 20 feet. The spacecraft will ascend an additional five feet and hover for five seconds. Morpheus then will perform a 5.6-foot ascent coupled with a 9.8-foot traverse, and hover for five more seconds before returning to the launch point. A number of changes have been made, primarily focused on autonomous landing and hazard avoidance technology ALHAT and moving the Doppler Lidar to the front of the forward liquid oxygen tank. The tether test was cut short due to Morpheus exceeding onboard abort rate limits. The vehicle was taken back to the hangar and data from the test is being studied. After review, managers will determine when a new test date will be set. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.;
2016-01-01
The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, hazard avoidance instrumentation it being prepared for installation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-13
CAPE CANAVERAL, Fla. – A Huey helicopter tests hazard avoidance instrumentation at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks using the instrument. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a technician installs hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a technician tests hazard avoidance instrumentation recently installed on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is moved into position at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida in preparation for free flight test No. 15. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander rises above a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander comes to rest after a successful landing, capping free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
2014-12-15
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman
2014-12-15
CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander is enveloped in a cloud of dust as it takes off on free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Roback, V. Eric; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Bulyshev, Alexander E.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.
2015-01-01
For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging Flash Lidar is a second generation, compact, real-time, aircooled instrument developed from a number of components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The Flash Lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision (1-s). The Flash Lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Navigation Doppler Lidar (NDL) system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The NDLâ€"TM"s measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter (LA), also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the Flash Lidar, can provide range along a separate vector. The LA measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the ALHAT system and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. Guidance provided by the ALHAT system was impeded in portions of the trajectory and intermittent near the end of the trajectory due to optical effects arising from air heated by the rocket engine. The Flash Lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide; however, it was occasionally susceptible to an increase in range noise due to scintillation arising from air heated by the Morpheus rocket engine which entered its Field-of-View (FOV). The Flash Lidar was also susceptible to pre-triggering, during the HRN phase, on a dust cloud created during launch and transported down-range by the wind. The NDL provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The LA, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine.
2014-11-03
Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
CAPE CANAVERAL, Fla. - Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
COBALT: A GN&C Payload for Testing ALHAT Capabilities in Closed-Loop Terrestrial Rocket Flights
NASA Technical Reports Server (NTRS)
Carson, John M., III; Amzajerdian, Farzin; Hines, Glenn D.; O'Neal, Travis V.; Robertson, Edward A.; Seubert, Carl; Trawny, Nikolas
2016-01-01
The COBALT (CoOperative Blending of Autonomous Landing Technology) payload is being developed within NASA as a risk reduction activity to mature, integrate and test ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) systems targeted for infusion into near-term robotic and future human space flight missions. The initial COBALT payload instantiation is integrating the third-generation ALHAT Navigation Doppler Lidar (NDL) sensor, for ultra high-precision velocity plus range measurements, with the passive-optical Lander Vision System (LVS) that provides Terrain Relative Navigation (TRN) global-position estimates. The COBALT payload will be integrated onboard a rocket-propulsive terrestrial testbed and will provide precise navigation estimates and guidance planning during two flight test campaigns in 2017 (one open-loop and closed- loop). The NDL is targeting performance capabilities desired for future Mars and Moon Entry, Descent and Landing (EDL). The LVS is already baselined for TRN on the Mars 2020 robotic lander mission. The COBALT platform will provide NASA with a new risk-reduction capability to test integrated EDL Guidance, Navigation and Control (GN&C) components in closed-loop flight demonstrations prior to the actual mission EDL.
NASA Astrophysics Data System (ADS)
Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.
2016-05-01
For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-σ. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.
NASA Technical Reports Server (NTRS)
Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.
2016-01-01
For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-delta. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.
Compute Element and Interface Box for the Hazard Detection System
NASA Technical Reports Server (NTRS)
Villalpando, Carlos Y.; Khanoyan, Garen; Stern, Ryan A.; Some, Raphael R.; Bailey, Erik S.; Carson, John M.; Vaughan, Geoffrey M.; Werner, Robert A.; Salomon, Phil M.; Martin, Keith E.;
2013-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is building a sensor that enables a spacecraft to evaluate autonomously a potential landing area to generate a list of hazardous and safe landing sites. It will also provide navigation inputs relative to those safe sites. The Hazard Detection System Compute Element (HDS-CE) box combines a field-programmable gate array (FPGA) board for sensor integration and timing, with a multicore computer board for processing. The FPGA does system-level timing and data aggregation, and acts as a go-between, removing the real-time requirements from the processor and labeling events with a high resolution time. The processor manages the behavior of the system, controls the instruments connected to the HDS-CE, and services the "heavy lifting" computational requirements for analyzing the potential landing spots.
NASA Technical Reports Server (NTRS)
Roback, Vincent E.; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.; Bulyshev, Alexander E.
2015-01-01
For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, guide the Morpheus autonomous, rocket-propelled, free-flying test bed to a safe landing on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging flash lidar is a second generation, compact, real-time, air-cooled instrument developed from a number of cutting-edge components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The flash lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision at 1 sigma. The flash lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Doppler Lidar system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The Doppler Lidar's measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter, also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the flash lidar, can provide range along a separate vector. The Laser Altimeter measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the lidar suite and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. The flash lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide, however, it was occasionally susceptible to an increase in range noise due to heated air from the Morpheus rocket plume which entered its Field-of-View (FOV). The flash lidar was also susceptible to pre-triggering on dust during the HRN phase which was created during launch and transported by the wind. The Doppler Lidar provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The Laser Altimeter, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine.
2013-12-04
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians prepare to load the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to lower the Project Morpheus prototype lander onto a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-04
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians have loaded the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-04
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is attached to a tether at the launch platform located at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to move the Project Morpheus prototype lander to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians prepare the Project Morpheus prototype lander to be transported from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians attaches a tether to the Project Morpheus prototype lander near the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for Morpheus’ tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a convoy of vehicles accompanies the Project Morpheus prototype lander as it is transported to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander is prepared for its move from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2013-08-30
CAPE CANAVERAL, Fla. - Workers install a flame deflector at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida for the Project Morpheus lander. The site is adjacent to a hazard field created to support the project at the north end of the SLF. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for a free flight at Kennedy later this year. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst obstacles during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert
2013-05-01
Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GNC) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 μm Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GNC system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of humanmade geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in realtime for later reconstruction into Digital Elevation Maps (DEM's).
NASA Technical Reports Server (NTRS)
Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert
2013-01-01
Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the foreground is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-01
CAPE CANAVERAL, Fla. - At a hangar near the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida, the Johnson Space Center Project Morpheus Manager Jon Olansen speaks to members of the media. In the background is the Morpheus prototype lander, which arrived at Kennedy on July 27. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. The SLF will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2012-08-03
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, NASA Administrator Charles Bolden, left, joins Dr. Jon Olansen, Morpheus project manager, in the control room at the Shuttle Landing Facility for the first tethered flight of the Morpheus lander. After undergoing testing at Johnson Space Center in Houston for nearly a year, Morpheus arrived at Kennedy on July 27 to begin about three months of tests. A field, replete with boulders, rocks, slopes, craters and hazards to avoid, was created at the north end of Kennedy's runway to provide a realistic landscape for test flights of the lander. Morpheus utilizes autonomous landing and hazard avoidance technology, or ALHAT, to navigate to a safe landing site during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA's Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
2012-08-03
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, NASA Administrator Charles Bolden joins Morpheus project manager Dr. Jon Olansen, pointing at monitor, in the control room at the Shuttle Landing Facility for the first tethered flight of the Morpheus lander. After undergoing testing at Johnson Space Center in Houston for nearly a year, Morpheus arrived at Kennedy on July 27 to begin about three months of tests. A field, replete with boulders, rocks, slopes, craters and hazards to avoid, was created at the north end of Kennedy's runway to provide a realistic landscape for test flights of the lander. Morpheus utilizes autonomous landing and hazard avoidance technology, or ALHAT, to navigate to a safe landing site during its descent. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA's Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html. Photo credit: NASA/Kim Shiflett
Coherent Lidar Activities at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.; Singh, Upendra N.; Yu, Jirong
2007-01-01
NASA Langley Research Center has been developing and using coherent lidar systems for many years. The current projects at LaRC are the Global Wind Observing Sounder (GWOS) mission preparation, the Laser Risk Reduction Program (LRRP), the Instrument Incubator Program (IIP) compact, rugged Doppler wind lidar project, the Autonomous precision Landing and Hazard detection and Avoidance Technology (ALHAT) project for lunar landing, and the Skywalker project to find and use thermals to extend UAV flight time. These five projects encompass coherent lidar technology development; characterization, validation, and calibration facilities; compact, rugged packaging; computer simulation; trade studies; data acquisition, processing, and display development; system demonstration; and space mission design. This paper will further discuss these activities at LaRC.
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been lifted by a tether and hovers above a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander’s engine begins firing for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine begins to fire during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander is lifted 20 feet by crane, and will ascend another 10 feet, maneuver backwards 10 feet, and then fly forward and descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine has completed its firing during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being raised from a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tethered test includes lifting the lander 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being prepared for a tether test on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tether test includes lifting the lander 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander is being prepared for placement on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
Developing a Prototype ALHAT Human System Interface for Landing
NASA Technical Reports Server (NTRS)
Hirsh, Robert L.; Chua, Zarrin K.; Heino, Todd A.; Strahan, Al; Major, Laura; Duda, Kevin
2011-01-01
The goal of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is to safely execute a precision landing anytime/anywhere on the moon. This means the system must operate in any lighting conditions, operate in the presence of any thruster generated regolith clouds, and operate without the help of redeployed navigational aids or prepared landing site at the landing site. In order to reach this ambitious goal, computer aided technologies such as ALHAT will be needed in order to permit these landings to be done safely. Although there will be advanced autonomous capabilities onboard future landers, humans will still be involved (either onboard as astronauts or remotely from mission control) in any mission to the moon or other planetary body. Because many time critical decisions must be made quickly and effectively during the landing sequence, the Descent and Landing displays need to be designed to be as effective as possible at presenting the pertinent information to the operator, and allow the operators decisions to be implemented as quickly as possible. The ALHAT project has established the Human System Interface (HSI) team to lead in the development of these displays and to study the best way to provide operators enhanced situational awareness during landing activities. These displays are prototypes that were developed based on multiple design and feedback sessions with the astronaut office at NASA/ Johnson Space Center. By working with the astronauts in a series of plan/build/evaluate cycles, the HSI team has obtained astronaut feedback from the very beginning of the design process. In addition to developing prototype displays, the HSI team has also worked to provide realistic lunar terrain (and shading) to simulate a "out the window" view that can be adjusted to various lighting conditions (based on a desired date/time) to allow the same terrain to be viewed under varying lighting terrain. This capability will be critical to determining the effect of terrain/lighting on the human pilot, and how they use windows and displays during landing activities. The Apollo missions were limited to about 28 possible launch days a year due to lighting and orbital constraints. In order to take advantage of more landing opportunities and venture to more challenging landing locations, future landers will need to utilize sensors besides human eyes for scanning the surface. The ALHAT HSI system must effectively convey ALHAT produced information to the operator, so that landings can occur during less "optimal" conditions (lighting, surface terrain, slopes, etc) than was possible during Apollo missions. By proving this capability, ALHAT will simultaneously provide more flexible access to the moon, and greater safety margins for future landers. This paper will specifically focus on the development of prototype displays (the Trajectory Profile Display (TPD), Landing Point Designation (LPD), and Crew Camera View (CCV) ), implementation of realistic planetary terrain, human modeling, and future HSI plans.
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Olansen, Jon B.
2015-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; DeMars, Kyle; Trawny, Nikolas; Crain, Tim; Hanak, Chad; Carson, John M.; Christian, John
2016-01-01
The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being prepared for placement on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians and engineers assist as the Project Morpheus prototype lander is attached to a tether and lowered onto a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet. The lander will maneuver backwards 10 feet, and then fly forward and descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – Inside a control room at NASA’s Kennedy Space Center in Florida, engineers monitor the progress as the Project Morpheus prototype lander is being prepared for a tether test on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tethered test will include lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being lowered onto a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn
2011-06-01
An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.
2011-01-01
An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.
Flight Test Performance of a High Precision Navigation Doppler Lidar
NASA Technical Reports Server (NTRS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George
2009-01-01
A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.
2012-08-09
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the Morpheus prototype lander begins to lift off of the ground during a free-flight test. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A forklift is used at the Kennedy Space Center in Florida to unload NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is inspected after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - Wheels are assembled for transporting NASA's Morpheus lander, a vertical test bed vehicle after its arrival at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is uncrated after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A crane supports unloading of NASA's Morpheus lander, a vertical test bed vehicle, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
LIDAR-Aided Inertial Navigation with Extended Kalman Filtering for Pinpoint Landing
NASA Technical Reports Server (NTRS)
Busnardo, David M.; Aitken, Matthew L.; Tolson, Robert H.; Pierrottet, Diego; Amzajerdian, Farzin
2011-01-01
In support of NASA s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project, an extended Kalman filter routine has been developed for estimating the position, velocity, and attitude of a spacecraft during the landing phase of a planetary mission. The proposed filter combines measurements of acceleration and angular velocity from an inertial measurement unit (IMU) with range and Doppler velocity observations from an onboard light detection and ranging (LIDAR) system. These high-precision LIDAR measurements of distance to the ground and approach velocity will enable both robotic and manned vehicles to land safely and precisely at scientifically interesting sites. The filter has been extensively tested using a lunar landing simulation and shown to improve navigation over flat surfaces or rough terrain. Experimental results from a helicopter flight test performed at NASA Dryden in August 2008 demonstrate that LIDAR can be employed to significantly improve navigation based exclusively on IMU integration.
Development of Navigation Doppler Lidar for Future Landing Mission
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Pierrottet, Diego F.; Carson, John M., III
2016-01-01
A coherent Navigation Doppler Lidar (NDL) sensor has been developed under the Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project to support future NASA missions to planetary bodies. This lidar sensor provides accurate surface-relative altitude and vector velocity data during the descent phase that can be used by an autonomous Guidance, Navigation, and Control (GN&C) system to precisely navigate the vehicle from a few kilometers above the ground to a designated location and execute a controlled soft touchdown. The operation and performance of the NDL was demonstrated through closed-loop flights onboard the rocket-propelled Morpheus vehicle in 2014. In Morpheus flights, conducted at the NASA Kennedy Space Center, the NDL data was used by an autonomous GN&C system to navigate and land the vehicle precisely at the selected location surrounded by hazardous rocks and craters. Since then, development efforts for the NDL have shifted toward enhancing performance, optimizing design, and addressing spaceflight size and mass constraints and environmental and reliability requirements. The next generation NDL, with expanded operational envelope and significantly reduced size, will be demonstrated in 2017 through a new flight test campaign onboard a commercial rocketpropelled test vehicle.
2012-07-19
CAPE CANAVERAL, Fla. - Just north of the Kennedy Space Center’s Shuttle Landing Facility, or SLF, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-16
CAPE CANAVERAL, Fla. –This panoramic view shows a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prot otype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. - Just north of the Kennedy Space Center’s Shuttle Landing Facility runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians secure connections for a crane which will be used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
Doppler Lidar Sensor for Precision Landing on the Moon and Mars
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Petway, Larry; Hines, Glenn; Barnes, Bruce; Pierrottet, Diego; Lockhard, George
2012-01-01
Landing mission concepts that are being developed for exploration of planetary bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe soft landing at the pre-designated sites. To address this need, a Doppler lidar is being developed by NASA under the Autonomous Landing and Hazard Avoidance (ALHAT) project. This lidar sensor is a versatile instrument capable of providing precision velocity vectors, vehicle ground relative altitude, and attitude. The capabilities of this advanced technology have been demonstrated through two helicopter flight test campaigns conducted over a vegetation-free terrain in 2008 and 2010. Presently, a prototype version of this sensor is being assembled for integration into a rocket-powered terrestrial free-flyer vehicle. Operating in a closed loop with vehicle's guidance and navigation system, the viability of this advanced sensor for future landing missions will be demonstrated through a series of flight tests in 2012.
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, arrives at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, arrives at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, heads towards the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - Support equipment for NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
A Long Distance Laser Altimeter for Terrain Relative Navigation and Spacecraft Landing
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.
2014-01-01
A high precision laser altimeter was developed under the Autonomous Landing and Hazard Avoidance (ALHAT) project at NASA Langley Research Center. The laser altimeter provides slant-path range measurements from operational ranges exceeding 30 km that will be used to support surface-relative state estimation and navigation during planetary descent and precision landing. The altimeter uses an advanced time-of-arrival receiver, which produces multiple signal-return range measurements from tens of kilometers with 5 cm precision. The transmitter is eye-safe, simplifying operations and testing on earth. The prototype is fully autonomous, and able to withstand the thermal and mechanical stresses experienced during test flights conducted aboard helicopters, fixed-wing aircraft, and Morpheus, a terrestrial rocket-powered vehicle developed by NASA Johnson Space Center. This paper provides an overview of the sensor and presents results obtained during recent field experiments including a helicopter flight test conducted in December 2012 and Morpheus flight tests conducted during March of 2014.
Project Morpheus: Lessons Learned in Lander Technology Development
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the 15,000-foot long Shuttle Landing Facility at the Kennedy Space Center, Fla. At the north end of the runway, to the bottom, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s 15,000-foot long Shuttle Landing Facility. On the far left at the end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows a rock and crater-filled planetary scape that has been built at the north end of the Kennedy Space Center’s Shuttle Landing Facility. The site will allow engineers to test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway, in the upper right, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway, to the right, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the 15,000-foot long Shuttle Landing Facility at the Kennedy Space Center, Fla. At the north end of the runway, to the right, is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. –This aerial view shows a rock and crater-filled planetary scape that has been built at the north end of the Kennedy Space Center’s Shuttle Landing Facility. The site will allow engineers to test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the north end of the Kennedy Space Center’s Shuttle Landing Facility. At the end of the runway is a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
Lean Development with the Morpheus Simulation Software
NASA Technical Reports Server (NTRS)
Brogley, Aaron C.
2013-01-01
The Morpheus project is an autonomous robotic testbed currently in development at NASA's Johnson Space Center (JSC) with support from other centers. Its primary objectives are to test new 'green' fuel propulsion systems and to demonstrate the capability of the Autonomous Lander Hazard Avoidance Technology (ALHAT) sensor, provided by the Jet Propulsion Laboratory (JPL) on a lunar landing trajectory. If successful, these technologies and lessons learned from the Morpheus testing cycle may be incorporated into a landing descent vehicle used on the moon, an asteroid, or Mars. In an effort to reduce development costs and cycle time, the project employs lean development engineering practices in its development of flight and simulation software. The Morpheus simulation makes use of existing software packages where possible to reduce the development time. The development and testing of flight software occurs primarily through the frequent test operation of the vehicle and incrementally increasing the scope of the test. With rapid development cycles, risk of loss of the vehicle and loss of the mission are possible, but efficient progress in development would not be possible without that risk.
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right-center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, kneeling on the left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
NASA Technical Reports Server (NTRS)
Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.
2014-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.
Post2 End-to-End Descent and Landing Simulation for ALHAT Design Analysis Cycle 2
NASA Technical Reports Server (NTRS)
Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Johnson, Andrew E.; Paschall, Stephen C., II
2010-01-01
The ALHAT project is an agency-level program involving NASA centers, academia, and industry, with a primary goal to develop a safe, autonomous, precision-landing system for robotic and crew-piloted lunar and planetary descent vehicles. POST2 is used as the 6DOF descent and landing trajectory simulation for determining integrated system performance of ALHAT landing-system models and lunar environment models. This paper presents updates in the development of the ALHAT POST2 simulation, as well as preliminary system performance analysis for ALDAC-2 used for the testing and assessment of ALHAT system models. The ALDAC-2 POST2 Monte Carlo simulation results have been generated and focus on HRN model performance with the fully integrated system, as well performance improvements of AGNC and TSAR model since the previous design analysis cycle
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the Shuttle Landing Facility’s air traffic control tower at the Kennedy Space Center in Florida. Just below the tower is the mid-field park site used for runway support vehicles. At the north end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the launch platform for the Project Morpheus lander at the midfield point of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. At the north end of the runway is a rock and crater-filled planetary scape built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the launch platform for the Project Morpheus lander at the midfield point of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. At the north end of the runway is a rock and crater-filled planetary scape built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows a 50,000-square-foot hangar located on the Shuttle Landing Facility at the Kennedy Space Center, Fla., providing shelter and storage for NASA and non-NASA aircraft and maintenance operations. Adjacent to the hangar is an operations building housing personnel who support operations at the 15,000-foot long concrete runway. At the north end of the runway, a rock and crater-filled planetary scape has been built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Project Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-08-09
CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA
Advances in LADAR Components and Subsystems at Raytheon
NASA Technical Reports Server (NTRS)
Jack, Michael; Chapman, George; Edwards, John; McKeag, William; Veeder, Tricia; Wehner, Justin; Roberts, Tom; Robinson, Tom; Neisz, James; Andressen, Cliff;
2012-01-01
Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High sensitivity is obtained by integrating high performance detectors with gain, i.e., APDs with very low noise Readout Integrated Circuits (ROICs). Unique aspects of these designs include: independent acquisition (non-gated) of pulse returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image. Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting. SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range resolution enabling detailed 3D imagery both at short range and long ranges. In the following we will review progress in real-time 3D LADAR imaging receiver products in three areas: (1) scanning 256 x 4 configuration for the Multi-Mode Sensor Seeker (MMSS) program and (2) staring 256 x 256 configuration for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) lunar landing mission and (3) Photon-Counting SCAs which have demonstrated a dramatic reduction in dark count rate due to improved design, operation and processing.
NASA Technical Reports Server (NTRS)
Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.
2014-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.
Development of LIDAR sensor systems for autonomous safe landing on planetary bodies
NASA Astrophysics Data System (ADS)
Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.
2017-11-01
Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.
Development of lidar sensor systems for autonomous safe landing on planetary bodies
NASA Astrophysics Data System (ADS)
Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.
2017-11-01
Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project [1]. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.
2012-08-09
CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA
2012-08-09
CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.
2013-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.
Development of Lidar Sensor Systems for Autonomous Safe Landing on Planetary Bodies
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierottet, Diego F.; Petway, Larry B.; Vanek, Michael D.
2010-01-01
Lidar has been identified by NASA as a key technology for enabling autonomous safe landing of future robotic and crewed lunar landing vehicles. NASA LaRC has been developing three laser/lidar sensor systems under the ALHAT project. The capabilities of these Lidar sensor systems were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard helicopters and a fixed wing aircraft. The airborne tests were performed over Moon-like terrain in the California and Nevada deserts. These tests provided the necessary data for the development of signal processing software, and algorithms for hazard detection and navigation. The tests helped identify technology areas needing improvement and will also help guide future technology advancement activities.
34 CFR 75.611 - Avoidance of flood hazards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Avoidance of flood hazards. 75.611 Section 75.611... by a Grantee? Construction § 75.611 Avoidance of flood hazards. In planning the construction, a...) Evaluate flood hazards in connection with the construction; and (b) As far as practicable, avoid uneconomic...
2009-09-01
22 b. Hazard Detection and Avoidance ( HDA )...............................22 c. Hazard Relative Navigation (HRN...Navigation (HRN) and Hazard Detection and Avoidance ( HDA ). In addition to the TRN and HDA sensors used during these phases, which will be discussed...and Avoidance ( HDA ) During the HAD phase, the expected landing site is examined and evaluated, and a new site may be selected. Using the HDA
All-digital full waveform recording photon counting flash lidar
NASA Astrophysics Data System (ADS)
Grund, Christian J.; Harwit, Alex
2010-08-01
Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.
Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management
NASA Technical Reports Server (NTRS)
2005-01-01
This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).
Innovative hazard detection and avoidance strategy for autonomous safe planetary landing
NASA Astrophysics Data System (ADS)
Jiang, Xiuqiang; Li, Shuang; Tao, Ting
2016-09-01
Autonomous hazard detection and avoidance (AHDA) is one of the key technologies for future safe planetary landing missions. In this paper, we address the latest progress on planetary autonomous hazard detection and avoidance technologies. First, the innovative autonomous relay hazard detection and avoidance strategy adopted in Chang'e-3 lunar soft landing mission and its flight results are reported in detail. Second, two new conceptual candidate schemes of hazard detection and avoidance are presented based on the Chang'e-3 AHDA system and the latest developing technologies for the future planetary missions, and some preliminary testing results are also given. Finally, the related supporting technologies for the two candidate schemes above are analyzed.
Enhancing hazard avoidance in teen-novice riders.
Vidotto, Giulio; Bastianelli, Alessia; Spoto, Andrea; Sergeys, Filip
2011-01-01
Research suggests that novice drivers' safety performance is inferior to that of experienced drivers in different ways. One of the most critical skills related to accident avoidance by a novice driver is the detection, recognition and reaction to traffic hazards; it is called hazard perception and is defined as the ability to identify potentially dangerous traffic situations. The focus of this research is to assess how far a motorcycle simulator could improve hazard avoidance skills in teenagers. Four hundred and ten participants (207 in the experimental group and 203 in the control group) took part in this research. Results demonstrated that the mean proportion of avoided hazards increases as a function of the number of tracks performed in the virtual training. Participants of the experimental group after the training had a better proportion of avoided hazards than participants of the control group with a passive training based on a road safety lesson. Results provide good evidence that training with the simulator increases the number of avoided accidents in the virtual environment. It would be reasonable to explain this improvement by a higher level of hazard perception skills. Copyright © 2010 Elsevier Ltd. All rights reserved.
Analysis of On-board Hazard Detection and Avoidance for Safe Lunar Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Huertas, Andres; Werner, Robert A.; Montgomery, James F.
2008-01-01
Landing hazard detection and avoidance technology is being pursued within NASA to improve landing safety and increase access to sites of interest on the lunar surface. The performance of a hazard detection and avoidance system depends on properties of the terrain, sensor performance, algorithm design, vehicle characteristics and the overall all guidance navigation and control architecture. This paper analyzes the size of the region that must be imaged, sensor performance parameters and the impact of trajectory angle on hazard detection performance. The analysis shows that vehicle hazard tolerance is the driving parameter for hazard detection system design.
Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements
NASA Technical Reports Server (NTRS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel
2008-01-01
An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.
Hazard avoidance via descent images for safe landing
NASA Astrophysics Data System (ADS)
Yan, Ruicheng; Cao, Zhiguo; Zhu, Lei; Fang, Zhiwen
2013-10-01
In planetary or lunar landing missions, hazard avoidance is critical for landing safety. Therefore, it is very important to correctly detect hazards and effectively find a safe landing area during the last stage of descent. In this paper, we propose a passive sensing based HDA (hazard detection and avoidance) approach via descent images to lower the landing risk. In hazard detection stage, a statistical probability model on the basis of the hazard similarity is adopted to evaluate the image and detect hazardous areas, so that a binary hazard image can be generated. Afterwards, a safety coefficient, which jointly utilized the proportion of hazards in the local region and the inside hazard distribution, is proposed to find potential regions with less hazards in the binary hazard image. By using the safety coefficient in a coarse-to-fine procedure and combining it with the local ISD (intensity standard deviation) measure, the safe landing area is determined. The algorithm is evaluated and verified with many simulated descent downward looking images rendered from lunar orbital satellite images.
Laser Imaging Detection and Ranging Performance in a High-Fidelity Lunar Terrain Field
NASA Technical Reports Server (NTRS)
Chuang, Jason
2015-01-01
The prime objective of this project is to evaluate Laser Imaging Detection and Ranging (LIDAR) systems and compare their performance for hazard avoidance when tested at the NASA Marshall Space Flight Center's (MSFC's) lunar high-fidelity terrain field (see fig. 1). Hazard avoidance is the ability to avoid boulders, holes, or slopes that would jeopardize a safe landing and the deployment of scientific payloads. This capability is critical for any sample return mission intending to land in challenging terrain. Since challenging terrain is frequently where the most scientifically attractive targets are, hazard avoidance will be among the highest priorities for future robotic exploration missions. The maturation of hazard avoidance sensing addressed in this project directly supports the MSFC Tier I priority of sample return.
Structured Light-Based Hazard Detection For Planetary Surface Navigation
NASA Technical Reports Server (NTRS)
Nefian, Ara; Wong, Uland Y.; Dille, Michael; Bouyssounouse, Xavier; Edwards, Laurence; To, Vinh; Deans, Matthew; Fong, Terry
2017-01-01
This paper describes a structured light-based sensor for hazard avoidance in planetary environments. The system presented here can also be used in terrestrial applications constrained by reduced onboard power and computational complexity and low illumination conditions. The sensor is on a calibrated camera and laser dot projector system. The onboard hazard avoidance system determines the position of the projected dots in the image and through a triangulation process detects potential hazards. The paper presents the design parameters for this sensor and describes the image based solution for hazard avoidance. The system presented here was tested extensively in day and night conditions in Lunar analogue environments. The current system achieves over 97 detection rate with 1.7 false alarms over 2000 images.
Probability-based hazard avoidance guidance for planetary landing
NASA Astrophysics Data System (ADS)
Yuan, Xu; Yu, Zhengshi; Cui, Pingyuan; Xu, Rui; Zhu, Shengying; Cao, Menglong; Luan, Enjie
2018-03-01
Future landing and sample return missions on planets and small bodies will seek landing sites with high scientific value, which may be located in hazardous terrains. Autonomous landing in such hazardous terrains and highly uncertain planetary environments is particularly challenging. Onboard hazard avoidance ability is indispensable, and the algorithms must be robust to uncertainties. In this paper, a novel probability-based hazard avoidance guidance method is developed for landing in hazardous terrains on planets or small bodies. By regarding the lander state as probabilistic, the proposed guidance algorithm exploits information on the uncertainty of lander position and calculates the probability of collision with each hazard. The collision probability serves as an accurate safety index, which quantifies the impact of uncertainties on the lander safety. Based on the collision probability evaluation, the state uncertainty of the lander is explicitly taken into account in the derivation of the hazard avoidance guidance law, which contributes to enhancing the robustness to the uncertain dynamics of planetary landing. The proposed probability-based method derives fully analytic expressions and does not require off-line trajectory generation. Therefore, it is appropriate for real-time implementation. The performance of the probability-based guidance law is investigated via a set of simulations, and the effectiveness and robustness under uncertainties are demonstrated.
Project M: Scale Model of Lunar Landing Site of Apollo 17: Focus on Lighting Conditions and Analysis
NASA Technical Reports Server (NTRS)
Vanik, Christopher S.; Crain, Timothy P.
2010-01-01
This document captures the research and development of a scale model representation of the Apollo 17 landing site on the moon as part of the NASA INSPIRE program. Several key elements in this model were surface slope characteristics, crater sizes and locations, prominent rocks, and lighting conditions. This model supports development of Autonomous Landing and Hazard Avoidance Technology (ALHAT) and Project M for the GN&C Autonomous Flight Systems Branch. It will help project engineers visualize the landing site, and is housed in the building 16 Navigation Systems Technology Lab. The lead mentor was Dr. Timothy P. Crain. The purpose of this project was to develop an accurate scale representation of the Apollo 17 landing site on the moon. This was done on an 8'2.5"X10'1.375" reduced friction granite table, which can be restored to its previous condition if needed. The first step in this project was to research the best way to model and recreate the Apollo 17 landing site for the mockup. The project required a thorough plan, budget, and schedule, which was presented to the EG6 Branch for build approval. The final phase was to build the model. The project also required thorough research on the Apollo 17 landing site and the topography of the moon. This research was done on the internet and in person with Dean Eppler, a space scientist, from JSC KX. This data was used to analyze and calculate the scale of the mockup and the ratio of the sizes of the craters, ridges, etc. The final goal was to effectively communicate project status and demonstrate the multiple advantages of using our model. The conclusion of this project was that the mockup was completed as accurately as possible, and it successfully enables the Project M specialists to visualize and plan their goal on an accurate three dimensional surface representation.
Method for detecting and avoiding flight hazards
NASA Astrophysics Data System (ADS)
von Viebahn, Harro; Schiefele, Jens
1997-06-01
Today's aircraft equipment comprise several independent warning and hazard avoidance systems like GPWS, TCAS or weather radar. It is the pilot's task to monitor all these systems and take the appropriate action in case of an emerging hazardous situation. The developed method for detecting and avoiding flight hazards combines all potential external threats for an aircraft into a single system. It is based on an aircraft surrounding airspace model consisting of discrete volume elements. For each element of the volume the threat probability is derived or computed from sensor output, databases, or information provided via datalink. The position of the own aircraft is predicted by utilizing a probability distribution. This approach ensures that all potential positions of the aircraft within the near future are considered while weighting the most likely flight path. A conflict detection algorithm initiates an alarm in case the threat probability exceeds a threshold. An escape manoeuvre is generated taking into account all potential hazards in the vicinity, not only the one which caused the alarm. The pilot gets a visual information about the type, the locating, and severeness o the threat. The algorithm was implemented and tested in a flight simulator environment. The current version comprises traffic, terrain and obstacle hazards avoidance functions. Its general formulation allows an easy integration of e.g. weather information or airspace restrictions.
Teaching Preschool Children to Avoid Poison Hazards
ERIC Educational Resources Information Center
Dancho, Kelly A.; Thompson, Rachel H.; Rhoades, Melissa M.
2008-01-01
We evaluated the effectiveness of group safety training and in situ feedback and response interruption to teach preschool children to avoid consuming potentially hazardous substances. Three children ingested ambiguous substances during a baited baseline assessment condition and continued to ingest these substances following group safety training.…
Probabilistic Surface Characterization for Safe Landing Hazard Detection and Avoidance (HDA)
NASA Technical Reports Server (NTRS)
Johnson, Andrew E. (Inventor); Ivanov, Tonislav I. (Inventor); Huertas, Andres (Inventor)
2015-01-01
Apparatuses, systems, computer programs and methods for performing hazard detection and avoidance for landing vehicles are provided. Hazard assessment takes into consideration the geometry of the lander. Safety probabilities are computed for a plurality of pixels in a digital elevation map. The safety probabilities are combined for pixels associated with one or more aim points and orientations. A worst case probability value is assigned to each of the one or more aim points and orientations.
Lee, Joohyun; Possemato, Kyle; Ouimette, Paige C
2017-10-01
Military personnel who have experienced combat trauma are at risk for developing posttraumatic stress disorder (PTSD). A greater recognition of the complex array of vulnerability factors that contribute to PTSD severity has led researchers to examine other non-combat-related factors. This longitudinal study examined a number of pre-, peri-, and postdeployment factors hypothesized to contribute to PTSD symptomatology among returning Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn veterans presenting with at least subthreshold PTSD symptoms and hazardous alcohol use in a primary care setting. Purported risk factors included childhood family environment, severity of combat exposure, postdeployment social support, alcohol dependence severity, and an avoidant coping style. At baseline, postdeployment social support and avoidant coping contributed to PTSD severity. Only avoidant coping was associated with changes in PTSD symptom at 1-year follow-up. Reducing avoidant coping may deter the maintenance of PTSD among veterans with PTSD symptoms and hazardous alcohol use.
Hazard detection and avoidance sensor for NASA's planetary landers
NASA Technical Reports Server (NTRS)
Lau, Brian; Chao, Tien-Hsin
1992-01-01
An optical terrain analysis based sensor system specifically designed for landing hazard detection as required for NASA's autonomous planetary landers is introduced. This optical hazard detection and avoidance (HDA) sensor utilizes an optoelectronic wedge-and-ting (WRD) filter for Fourier transformed feature extraction and an electronic neural network processor for pattern classification. A fully implemented optical HDA sensor would assure safe landing of the planetary landers. Computer simulation results of a successful feasibility study is reported. Future research for hardware system implementation is also provided.
30 CFR 46.11 - Site-specific hazard awareness training.
Code of Federal Regulations, 2011 CFR
2011-07-01
... environmental conditions, recognition and avoidance of hazards such as electrical and powered-haulage hazards, traffic patterns and control, and restricted areas; and warning and evacuation signals, evacuation and...
Large-bowel surgery, 1979: self-assessment.
Matheson, N A; Valerio, D
1980-01-01
Evidence of wide variability in the immediate results of large-bowel surgery stimulated self-assessment during 1979. The hazards of large-bowel surgery can usually be avoided by good bowel preparation, sound anastomotic technique, primary resection in large bowel emergencies, avoidance of anastomosis when hazardous, and antibiotic lavage for extant or potential peritoneal and wound contamination. PMID:7427416
Precision Landing and Hazard Avoidance (PL&HA) Domain
NASA Technical Reports Server (NTRS)
Robertson, Edward A.; Carson, John M., III
2016-01-01
The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C (Guidance, Navigation and Control) functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking.
Spacecraft hazard avoidance utilizing structured light
NASA Technical Reports Server (NTRS)
Liebe, Carl Christian; Padgett, Curtis; Chapsky, Jacob; Wilson, Daniel; Brown, Kenneth; Jerebets, Sergei; Goldberg, Hannah; Schroeder, Jeffrey
2006-01-01
At JPL, a <5 kg free-flying micro-inspector spacecraft is being designed for host-vehicle inspection. The spacecraft includes a hazard avoidance sensor to navigate relative to the vehicle being inspected. Structured light was selected for hazard avoidance because of its low mass and cost. Structured light is a method of remote sensing 3-dimensional structure of the proximity utilizing a laser, a grating, and a single regular APS camera. The laser beam is split into 400 different beams by a grating to form a regular spaced grid of laser beams that are projected into the field of view of an APS camera. The laser source and the APS camera are separated forming the base of a triangle. The distance to all beam intersections of the host are calculated based on triangulation.
Passive imaging based multi-cue hazard detection spacecraft safe landing
NASA Technical Reports Server (NTRS)
Huertas, Andres; Cheng, Yang; Madison, Richard
2006-01-01
Accurate assessment of potentially damaging ground hazards during the spacecraft EDL (Entry, Descent and Landing) phase is crucial to insure a high probability of safe landing. A lander that encounters a large rock, falls off a cliff, or tips over on a steep slope can sustain mission ending damage. Guided entry is expected to shrink landing ellipses from 100-300 km to -10 km radius for the second generation landers as early as 2009. Regardless of size and location, however, landing ellipses will almost always contain hazards such as craters, discontinuities, steep slopes, and large rocks. It is estimated that an MSL (Mars Science Laboratory)-sized lander should detect and avoid 16- 150m diameter craters, vertical drops similar to the edges of 16m or 3.75m diameter crater, for high and low altitude HAD (Hazard Detection and Avoidance) respectively. It should also be able to detect slopes 20' or steeper, and rocks 0.75m or taller. In this paper we will present a passive imaging based, multi-cue hazard detection and avoidance (HDA) system suitable for Martian and other lander missions. This is the first passively imaged HDA system that seamlessly integrates multiple algorithm-crater detection, slope estimation, rock detection and texture analysis, and multicues- crater morphology, rock distribution, to detect these hazards in real time.
Chemical Safety Alert: Fire Hazard from Carbon Adsorption Deodorizing Systems
Activated carbon systems used to adsorb vapors for odor control may pose a fire hazard when used for certain types of substances, such as crude sulfate turpentine. Facilities should take precautions and proper procedures to avoid or mitigate these hazards.
Vision guided landing of an an autonomous helicopter in hazardous terrain
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Montgomery, Jim
2005-01-01
Future robotic space missions will employ a precision soft-landing capability that will enable exploration of previously inaccessible sites that have strong scientific significance. To enable this capability, a fully autonomous onboard system that identifies and avoids hazardous features such as steep slopes and large rocks is required. Such a system will also provide greater functionality in unstructured terrain to unmanned aerial vehicles. This paper describes an algorithm for landing hazard avoidance based on images from a single moving camera. The core of the algorithm is an efficient application of structure from motion to generate a dense elevation map of the landing area. Hazards are then detected in this map and a safe landing site is selected. The algorithm has been implemented on an autonomous helicopter testbed and demonstrated four times resulting in the first autonomous landing of an unmanned helicopter in unknown and hazardous terrain.
Project M: Scale Model of Lunar Landing Site of Apollo 17
NASA Technical Reports Server (NTRS)
O'Brien, Hollie; Crain, Timothy P.
2010-01-01
The basis of the project was creating a scale model representation of the Apollo 17 lunar landing site. Vital components included surface slope characteristics, crater sizes and locations, prominent rocks, and lighting conditions. The model was made for Project M support when evaluating approach and terminal descent as well as when planning surface operations with respect to the terrain. The project had five main mi lestones during the length of the project. The first was examining the best method to use to re-create the Apollo 17 landing site and then reviewing research fmdings with Dr. Tim Crain and EO staff which occurred on June 25, 2010 at a meeting. The second step was formulating a construction plan, budget, and schedule and then presenting the plan for authority to proceed which occurred on July 6,2010. The third part was building a prototype to test materials and building processes which were completed by July 13, 2010. Next was assembling the landing site model and presenting a mid-term construction status report on July 29, 2010. The fifth and final milestone was demonstrating the model and presenting an exit pitch which happened on August 4, 2010. The project was very technical: it needed a lot of research about moon topography, lighting conditions and angles of the sun on the moon, Apollo 17, and Autonomous Landing and Hazard Avoidance Technology (ALHAT), before starting the actual building process. This required using Spreadsheets, searching internet sources and conducting personal meetings with project representatives. This information assisted the interns in deciding the scale of the model with respect to cracks, craters and rocks and their relative sizes as the objects mentioned could interfere with any of the Lunar Landers: Apollo, Project M and future Landers. The project concluded with the completion of a three dimensional scale model of the Apollo 17 Lunar landing site. This model assists Project M members because they can now visualize approach phase, terminal descent phase, and surface phase operations on the physical model. The project had an additional requirement that was also satisfied: the granite table the model was placed on must be returnable to its original condition if needed in the future.
Camera Image Transformation and Registration for Safe Spacecraft Landing and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Jones, Brandon M.
2005-01-01
Inherent geographical hazards of Martian terrain may impede a safe landing for science exploration spacecraft. Surface visualization software for hazard detection and avoidance may accordingly be applied in vehicles such as the Mars Exploration Rover (MER) to induce an autonomous and intelligent descent upon entering the planetary atmosphere. The focus of this project is to develop an image transformation algorithm for coordinate system matching between consecutive frames of terrain imagery taken throughout descent. The methodology involves integrating computer vision and graphics techniques, including affine transformation and projective geometry of an object, with the intrinsic parameters governing spacecraft dynamic motion and camera calibration.
2009-10-01
The F-16D Automatic Collision Avoidance Technology aircraft tests of the Automatic Ground Collision Avoidance System, or Auto-GCAS, included flights in areas of potentially hazardous terrain, including canyons and mountains.
Collision warning and avoidance considerations for the Space Shuttle and Space Station Freedom
NASA Technical Reports Server (NTRS)
Vilas, Faith; Collins, Michael F.; Kramer, Paul C.; Arndt, G. Dickey; Suddath, Jerry H.
1990-01-01
The increasing hazard of manmade debris in low earth orbit (LEO) has focused attention on the requirement for collision detection, warning and avoidance systems to be developed in order to protect manned (and unmanned) spacecraft. With the number of debris objects expected to be increasing with time, the impact hazard will also be increasing. The safety of the Space Shuttle and the Space Station Freedom from destructive or catastrophic collision resulting from the hypervelocity impact of a LEO object is of increasing concern to NASA. A number of approaches to this problem are in effect or under development. The collision avoidance procedures now in effect for the Shuttle are described, and detection and avoidance procedures presently being developed at the Johnson Space Center for the Space Station Freedom are discussed.
2008-12-18
cannot be restored as a result of the action (e.g., extinction of a threatened or endangered species or the demolition of a historical building). For...of solid waste, including hazardous waste, and the transportation of hazardous waste. 1.6.4 Biological Resources The Endangered Species Act (16...USC 1531-1544) requires federal agencies to avoid jeopardizing the continued existence of endangered or threatened species and avoid destroying or
Coping strategies and self-esteem in the high-risk offspring of bipolar parents.
Goodday, Sarah M; Bentall, Richard; Jones, Steven; Weir, Arielle; Duffy, Anne
2018-03-01
This study investigated whether there were differences in coping strategies and self-esteem between offspring of parents with bipolar disorder (high-risk) and offspring of unaffected parents (control), and whether these psychological factors predicted the onset and recurrence of mood episodes. High-risk and control offspring were followed longitudinally as part of the Flourish Canadian high-risk bipolar offspring cohort study. Offspring were clinically assessed annually by a psychiatrist using semi-structured interviews and completed a measure of coping strategies and self-esteem. In high-risk offspring, avoidant coping strategies significantly increased the hazard of a new onset Diagnostic and Statistical Manual of Mental Disorders, 4th Edition twice revised mood episode or recurrence (hazard ratio: 1.89, p = 0.04), while higher self-esteem significantly decreased this hazard (hazard ratio: 2.50, p < 0.01). Self-esteem and avoidant coping significantly interacted with one another ( p < 0.05), where the risk of a Diagnostic and Statistical Manual of Mental Disorders, 4th Edition twice revised new onset mood episode or recurrence was only significantly increased among high-risk offspring with both high avoidant coping and low self-esteem. A reduction of avoidant coping strategies in response to stress and improvement of self-esteem may be useful intervention targets for preventing the new onset or recurrence of a clinically significant mood disorder among individuals at high familial risk.
30 CFR 46.5 - New miner training.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the recognition and avoidance of electrical hazards and other hazards present at the mine, such as traffic patterns and control, mobile equipment (e.g., haul trucks and front-end loaders), and loose or... aspects of an assigned task in paragraph (b)(4) of this section, if hazard recognition training specific...
30 CFR 46.5 - New miner training.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the recognition and avoidance of electrical hazards and other hazards present at the mine, such as traffic patterns and control, mobile equipment (e.g., haul trucks and front-end loaders), and loose or... aspects of an assigned task in paragraph (b)(4) of this section, if hazard recognition training specific...
Avoiding the Hazards of Hazardous Waste.
ERIC Educational Resources Information Center
Hiller, Richard
1996-01-01
Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…
Code of Federal Regulations, 2012 CFR
2012-10-01
... avoid, minimize, or correct damage to the environment—land, water, and air—and to avoid, minimize, or correct hazards to the public health and safety. The regulations in this part prescribe procedures to that...
Code of Federal Regulations, 2010 CFR
2010-10-01
... avoid, minimize, or correct damage to the environment—land, water, and air—and to avoid, minimize, or correct hazards to the public health and safety. The regulations in this part prescribe procedures to that...
Code of Federal Regulations, 2013 CFR
2013-10-01
... avoid, minimize, or correct damage to the environment—land, water, and air—and to avoid, minimize, or correct hazards to the public health and safety. The regulations in this part prescribe procedures to that...
30 CFR 46.6 - Newly hired experienced miner training.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Instruction on the recognition and avoidance of electrical hazards and other hazards present at the mine, such as traffic patterns and control, mobile equipment (e.g., haul trucks and front-end loaders), and... health and safety aspects of an assigned task in paragraph (b)(4) of this section, if hazard recognition...
30 CFR 46.6 - Newly hired experienced miner training.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Instruction on the recognition and avoidance of electrical hazards and other hazards present at the mine, such as traffic patterns and control, mobile equipment (e.g., haul trucks and front-end loaders), and... health and safety aspects of an assigned task in paragraph (b)(4) of this section, if hazard recognition...
Precision Landing and Hazard Avoidance Doman
NASA Technical Reports Server (NTRS)
Robertson, Edward A.; Carson, John M., III
2016-01-01
The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking. Autonomous PL&HA builds upon the core GN&C capabilities developed to enable soft, controlled landings on the Moon, Mars, and other solar system bodies. Through the addition of a Terrain Relative Navigation (TRN) function, precision landing within tens of meters of a map-based target is possible. The addition of a 3-D terrain mapping lidar sensor improves the probability of a safe landing via autonomous, real-time Hazard Detection and Avoidance (HDA). PL&HA significantly improves the probability of mission success and enhances access to sites of scientific interest located in challenging terrain. PL&HA can also utilize external navigation aids, such as navigation satellites and surface beacons. Advanced Lidar Sensors High precision ranging, velocimetry, and 3-D terrain mapping Terrain Relative Navigation (TRN) TRN compares onboard reconnaissance data with real-time terrain imaging data to update the S/C position estimate Hazard Detection and Avoidance (HDA) Generates a high-resolution, 3-D terrain map in real-time during the approach trajectory to identify safe landing targets Inertial Navigation During Terminal Descent High precision surface relative sensors enable accurate inertial navigation during terminal descent and a tightly controlled touchdown within meters of the selected safe landing target.
Davis, Jessica J; Conlon, Elizabeth G
2017-12-01
Driving self-regulation is considered a means through which older drivers can compensate for perceived declines in driving skill or more general feelings of discomfort on the road. One form of driving self-regulation is situational avoidance, the purposeful avoidance of situations perceived as challenging or potentially hazardous. This study aimed to validate the Situational Avoidance Questionnaire (SAQ, Davis, Conlon, Ownsworth, & Morrissey, 2016) and identify the point on the scale at which drivers practicing compensatory avoidance behavior could be distinguished from those whose driving is unrestricted, or who are avoiding situations for other, non-compensatory reasons (e.g., time or convenience). Seventy-nine Australian drivers (M age =71.48, SD=7.16, range: 55 to 86years) completed the SAQ and were classified as a compensatory-restricted or a non-restricted driver based on a semi-structured interview designed to assess the motivations underlying avoidance behavior reported on the SAQ. Using receiver-operator characteristic (ROC) analysis, the SAQ was found to have high diagnostic accuracy (sensitivity: 85%, specificity: 82%) in correctly classifying the driver groups. Group comparisons confirmed that compensatory-restricted drivers were self-regulating their driving behavior to reduce the perceived demands of the driving task. This group had, on average, slower hazard perception reaction times, and reported greater difficulty with driving, more discomfort when driving due to difficulty with hazard perception skills, and greater changes in cognition over the past five years. The SAQ is a psychometrically sound measure of situational avoidance for drivers in baby boomer and older adult generations. Use of validated measures of driving self-regulation that distinguish between compensatory and non-compensatory behavior, such as the SAQ, will advance our understanding of the driving self-regulation construct and its potential safety benefits for older road users. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
A stereo-vision hazard-detection algorithm to increase planetary lander autonomy
NASA Astrophysics Data System (ADS)
Woicke, Svenja; Mooij, Erwin
2016-05-01
For future landings on any celestial body, increasing the lander autonomy as well as decreasing risk are primary objectives. Both risk reduction and an increase in autonomy can be achieved by including hazard detection and avoidance in the guidance, navigation, and control loop. One of the main challenges in hazard detection and avoidance is the reconstruction of accurate elevation models, as well as slope and roughness maps. Multiple methods for acquiring the inputs for hazard maps are available. The main distinction can be made between active and passive methods. Passive methods (cameras) have budgetary advantages compared to active sensors (radar, light detection and ranging). However, it is necessary to proof that these methods deliver sufficiently good maps. Therefore, this paper discusses hazard detection using stereo vision. To facilitate a successful landing not more than 1% wrong detections (hazards that are not identified) are allowed. Based on a sensitivity analysis it was found that using a stereo set-up at a baseline of ≤ 2 m is feasible at altitudes of ≤ 200 m defining false positives of less than 1%. It was thus shown that stereo-based hazard detection is an effective means to decrease the landing risk and increase the lander autonomy. In conclusion, the proposed algorithm is a promising candidate for future landers.
Approach-avoidance pattern of visual attention in hazardous drinkers with ambivalence.
Lee, Saerom; Cho, Sungkun; Lee, Jang-Han
2014-03-01
Ambivalence toward alcohol often develops when hazardous drinkers try to quit or to control their drinking. The purpose of this study was to investigate the differences between hazardous drinkers with and without ambivalence toward alcohol in terms of their visual attention to alcohol-related pictures over time using an eye-tracker. The study included 20 hazardous drinkers with ambivalence and 21 hazardous drinkers without ambivalence. The eye movements of the participants were monitored while the participants conducted a free-viewing task in which 20 pairs of alcohol-related pictures and matched control pictures were presented. The results showed that the hazardous drinkers with ambivalence were more attentive to the alcohol-related pictures at first and were more attentive to the control pictures toward the end of the task. On the other hand, the hazardous drinkers without ambivalence were more attentive to the alcohol-related pictures from beginning to end. The findings of this study indicated that ambivalence toward alcohol resulted in the inclination to approach and then avoid alcohol in a consecutive sequence. The present results could be helpful in distinguishing hazardous drinkers who may have ambivalence toward alcohol and identifying the pattern of ambivalence more concretely. Additionally, further studies need to consider the time that is important to measure ambivalence toward alcohol. Copyright © 2013 Elsevier Ltd. All rights reserved.
Multi-actuators vehicle collision avoidance system - Experimental validation
NASA Astrophysics Data System (ADS)
Hamid, Umar Zakir Abdul; Zakuan, Fakhrul Razi Ahmad; Akmal Zulkepli, Khairul; Zulfaqar Azmi, Muhammad; Zamzuri, Hairi; Rahman, Mohd Azizi Abdul; Aizzat Zakaria, Muhammad
2018-04-01
The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future.
Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles
NASA Technical Reports Server (NTRS)
Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.
2013-01-01
This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.
Risk-Aware Planetary Rover Operation: Autonomous Terrain Classification and Path Planning
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Fuchs, Thoams J.; Steffy, Amanda; Maimone, Mark; Yen, Jeng
2015-01-01
Identifying and avoiding terrain hazards (e.g., soft soil and pointy embedded rocks) are crucial for the safety of planetary rovers. This paper presents a newly developed groundbased Mars rover operation tool that mitigates risks from terrain by automatically identifying hazards on the terrain, evaluating their risks, and suggesting operators safe paths options that avoids potential risks while achieving specified goals. The tool will bring benefits to rover operations by reducing operation cost, by reducing cognitive load of rover operators, by preventing human errors, and most importantly, by significantly reducing the risk of the loss of rovers.
Landing Hazard Avoidance Display
NASA Technical Reports Server (NTRS)
Abernathy, Michael Franklin (Inventor); Hirsh, Robert L. (Inventor)
2016-01-01
Landing hazard avoidance displays can provide rapidly understood visual indications of where it is safe to land a vehicle and where it is unsafe to land a vehicle. Color coded maps can indicate zones in two dimensions relative to the vehicles position where it is safe to land. The map can be simply green (safe) and red (unsafe) areas with an indication of scale or can be a color coding of another map such as a surface map. The color coding can be determined in real time based on topological measurements and safety criteria to thereby adapt to dynamic, unknown, or partially known environments.
44 CFR 201.7 - Tribal Mitigation Plans.
Code of Federal Regulations, 2010 CFR
2010-10-01
... events. (ii) A description of the Indian tribal government's vulnerability to the hazards described in... its impact on the tribe. The plan should describe vulnerability in terms of: (A) The types and numbers... or avoid long-term vulnerabilities to the identified hazards. (ii) A section that identifies and...
Preparing for an EPA Inspection and Avoiding Common Mistakes.
ERIC Educational Resources Information Center
Manicone, Santo
2000-01-01
Discusses how a higher education facility can prepare for an Environmental Protection Agency inspection with some quick topics designed to smooth the process. Tips include determining if waste is hazardous, labeling waste properly, preventing pollution, improving housekeeping, and having good hazardous materials management practices. (GR)
ERIC Educational Resources Information Center
Virginia State Dept. of Education, Richmond. Div. of Sciences and Elementary Administration.
This 10-chapter handbook (designed for science teachers and school administrators) describes known hazards associated with science teaching and provides information to develop a framework for local safety programs specifically designed to avoid or neutralize the effects of such hazards. Major areas addressed in the chapters include: (1) the nature…
Target Trailing With Safe Navigation With Colregs for Maritime Autonomous Surface Vehicles
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki (Inventor); Aghazarian, Hrand (Inventor); Huntsberger, Terrance L. (Inventor); Howard, Andrew B. (Inventor); Wolf, Michael T. (Inventor); Zarzhitsky, Dimitri V. (Inventor)
2014-01-01
Systems and methods for operating autonomous waterborne vessels in a safe manner. The systems include hardware for identifying the locations and motions of other vessels, as well as the locations of stationary objects that represent navigation hazards. By applying a computational method that uses a maritime navigation algorithm for avoiding hazards and obeying COLREGS using Velocity Obstacles to the data obtained, the autonomous vessel computes a safe and effective path to be followed in order to accomplish a desired navigational end result, while operating in a manner so as to avoid hazards and to maintain compliance with standard navigational procedures defined by international agreement. The systems and methods have been successfully demonstrated on water with radar and stereo cameras as the perception sensors, and integrated with a higher level planner for trailing a maneuvering target.
Development of sinkholes resulting from man's activities in the Eastern United States
Newton, John G.
1987-01-01
Alternatives that allow avoiding or minimizing sinkhole hazards are most numerous when a problem or potential problem is recognized during site evaluation. The number of alternatives declines after the beginning of site development. Where sinkhole development is predictable, zoning of land use can minimize hazards.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... recommends this approach to manufacturers who are labeling substances to indicate a hazard. Accordingly, the... test animals. Additionally, the routine use of topical anesthetics, systemic analgesics, and humane..., systemic analgesics, and humane endpoints to avoid or minimize pain and distress in ocular safety testing...
DOT National Transportation Integrated Search
2018-02-01
The incidence of icefall is one of the most underrepresented and likely underappreciated of all the natural hazards. Falling pieces of ice are subject to melting and sublimation, and evidence of such events may be gone in a matter of days or even hou...
32 CFR 632.5 - Use of firearms.
Code of Federal Regulations, 2010 CFR
2010-07-01
... not fire if shots are likely to harm innocent bystanders. (3) Since warning shots could harm innocent bystanders, avoid firing them. However, when lesser degrees of force have failed, the law enforcement or.... If able to avoid hazards to innocent persons in these cases, fire warning shots. (4) Aim to disable...
Dust Hazard Management in the Outer Solar System
NASA Technical Reports Server (NTRS)
Seal, David A.
2012-01-01
Most robotic missions to the outer solar system must grapple with the hazards posed by the dusty rings of the gas giants. Early assessments of these hazards led simply to ring avoidance due to insufficient data and high uncertainties on the dust population present in such rings. Recent approaches, principal among them the Cassini dust hazard management strategy, provide useful results from detailed modeling of spacecraft vulnerabilities and dust hazard regions, which along with the range of mission trajectories are used to to assess the risks posed by each passage through a zone of potential hazard. This paper shows the general approach used to implement the analysis for Cassini, with recommendations for future outer planet missions.
Meteorological-physical Limitations of Icing in the Atmosphere
NASA Technical Reports Server (NTRS)
Findeisen, W
1939-01-01
The icing hazard can, in most cases, be avoided by correct execution of the flights according to meteorological viewpoints and by meteorologically correct navigation (horizontal and, above all, vertical). The zones of icing hazard are usually narrowly confined. Their location can be ascertained with, in most cases, sufficient accuracy before take-off.
Berlin, M A; Anand, Sheila
2014-01-01
This paper presents Direction based Hazard Routing Protocol (DHRP) for disseminating information about fixed road hazards such as road blocks, tree fall, boulders on road, snow pile up, landslide, road maintenance work and other obstacles to the vehicles approaching the hazardous location. The proposed work focuses on dissemination of hazard messages on highways with sparse traffic. The vehicle coming across the hazard would report the presence of the hazard. It is proposed to use Road Side fixed infrastructure Units for reliable and timely delivery of hazard messages to vehicles. The vehicles can then take appropriate safety action to avoid the hazardous location. The proposed protocol has been implemented and tested using SUMO simulator to generate road traffic and NS 2.33 network simulator to analyze the performance of DHRP. The performance of the proposed protocol was also compared with simple flooding protocol and the results are presented.
Atlas of natural hazards in the Hawaiian coastal zone
Fletcher, Charles H.; Grossman, Eric E.; Richmond, Bruce M.; Gibbs, Ann E.
2002-01-01
The purpose of this report is to communicate to citizens and regulatory authorities the history and relative intensity of coastal hazards in Hawaii. This information is the key to the wise use and management of coastal resources. The information contained in this document,we hope,will improve the ability of Hawaiian citizens and visitors to safely enjoy the coast and provide a strong data set for planners and managers to guide the future of coastal resources. This work is largely based on previous investigations by scientific and engineering researchers and county, state, and federal offices and agencies. The unique aspect of this report is that, to the extent possible, it assimilates prior efforts in documenting Hawaiian coastal hazards and combines existing knowledge into a single comprehensive coastal hazard data set. This is by no means the final word on coastal hazards in Hawaii. Every hazardous phenomenon described here, and others such as slope failure and rocky shoreline collapse, need to be more carefully quantified, forecast, and mitigated. Our ultimate goal, of course, is to make the Hawaiian coast a safer place by educating the people of the state, and their leaders, about the hazardous nature of the environment. In so doing, we will also be taking steps toward improved preservation of coastal environments, because the best way to avoid coastal hazards is to avoid inappropriate development in the coastal zone. We have chosen maps as the medium for both recording and communicating the hazard history and its intensity along the Hawaiian coast.Two types of maps are used: 1) smallscale maps showing a general history of hazards on each island and summarizing coastal hazards in a readily understandable format for general use, and 2) a large-scale series of technical maps (1:50,000) depicting coastal sections approximately 5 to 7 miles in length with color bands along the coast ranking the relative intensity of each hazard at the adjacent shoreline.
Safety parameters for avoiding acute ocular damage from the reflected CO2 (10.6 microns) laser beam.
Friedman, N R; Saleeby, E R; Rubin, M G; Sandu, T; Krull, E A
1987-11-01
Reflections from instruments in the surgical field involving the CO2 laser beam present a serious ocular hazard. In addition to the use of plastic or glass protective eyewear, this hazard can be minimized by utilizing anodized instruments and recognizing the specific distances at which various reflections are no longer hazardous depending upon certain variables, including laser output wattage, emergent beam lengths, and surface characteristics of the reflecting instruments.
Mars rover local navigation and hazard avoidance
NASA Technical Reports Server (NTRS)
Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.
1989-01-01
A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.
Mars Rover Local Navigation And Hazard Avoidance
NASA Astrophysics Data System (ADS)
Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.
1989-03-01
A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between Earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.
High Speed Hazard Avoidance for Unmanned Ground Vehicles in Emergency Situations
2006-11-01
xx κτ ,vnominal ≡ , where x designates the UGV osition in space. If a hazard detected by a range sensor oses a threat, the UGV enacts an...source of error is the calculation of the path curvature, which can be highly sensitive to the GPS and INS position estimates. 6.2. Validation of
Purification process for .sup.153Gd produced in natural europium targets
Johnsen, Amanda M; Soderquist, Chuck Z; McNamara, Bruce K; Risher, Darrell R
2013-04-23
An alteration of the traditional zinc/zinc-amalgam reduction procedure which eliminates both the hazardous mercury and dangerous hydrogen gas generation. In order to avoid the presence of water and hydrated protons in the working solution, which can oxidize Eu.sup.2+ and cause hydrogen gas production, a process utilizing methanol as the process solvent is described. While methanol presents some flammability hazard in a radiological hot cell, it can be better managed and is less of a flammability hazard than hydrogen gas generation.
Systems and Techniques for Identifying and Avoiding Ice
NASA Technical Reports Server (NTRS)
Hansman, R. John
1995-01-01
In-flight icing is one of the most difficult aviation weather hazards facing general aviation. Because most aircraft in the general aviation category are not certified for flight into known icing conditions, techniques for identifying and avoiding in-flight ice are important to maintain safety while increasing the utility and dispatch capability which is part of the AGATE vision. This report summarizes a brief study effort which: (1) Reviewed current ice identification, forecasting, and avoidance techniques; (2) Assessed feasibility of improved forecasting and ice avoidance procedures; and (3) Identified key issues for the development of improved capability with regard to in-flight icing.
NASA Astrophysics Data System (ADS)
Griffin, Sarah M.; Velden, Christopher S.
2018-01-01
A combination of satellite-based and ground-based information is used to identify regions of intense convection that may act as a hazard to high-altitude aircraft. Motivated by concerns that Global Hawk pilotless aircraft, flying near 60,000 feet, might encounter significant convectively-induced turbulence during research overflights of tropical cyclones, strict rules were put in place to avoid such hazards. However, these rules put constraints on science missions focused on sampling convection with onboard sensors. To address these concerns, three hazard avoidance tools to aid in real-time mission decision support are used to more precisely identify areas of potential turbulence: Satellite-derived Cloud-top height and tropical overshooting tops, and ground-based global network lightning flashes. These tools are used to compare an ER-2 aircraft overflight of tropical cyclone Emily in 2005, which experienced severe turbulence, to Global Hawk overflights of tropical cyclones Karl and Matthew in 2010 that experienced no turbulence. It is found that the ER-2 overflew the lowest cloud tops and had the largest vertical separation from them compared to the Global Hawk flights. Therefore, cold cloud tops alone cannot predict turbulence. Unlike the overflights of Matthew and Karl, Emily exhibited multiple lightning flashes and a distinct overshooting top coincident with the observed turbulence. Therefore, these tools in tandem can better assist in identifying likely regions/periods of intense active convection. The primary outcome of this study is an altering of the Global Hawk overflight rules to be more flexible based on the analyzed conditions.
The Safe and Sound Child: Keeping Your Child Safe inside and outside the Home.
ERIC Educational Resources Information Center
Stone, Leslie; And Others
Noting that many types of potentially tragic accidents and calamities can be avoided or averted if we take the time to learn how, this book examines the characteristics of several household and outdoor hazards and how to prevent or minimize the possibility of injury, particularly to children. The chapters deal with the following potential hazards:…
Passive versus active hazard detection and avoidance systems
NASA Astrophysics Data System (ADS)
Neveu, D.; Mercier, G.; Hamel, J.-F.; Simard Bilodeau, V.; Woicke, S.; Alger, M.; Beaudette, D.
2015-06-01
Upcoming planetary exploration missions will require advanced guidance, navigation and control technologies to reach landing sites with high precision and safety. Various technologies are currently in development to meet that goal. Some technologies rely on passive sensors and benefit from the low mass and power of such solutions while others rely on active sensors and benefit from an improved robustness and accuracy. This paper presents two different hazard detection and avoidance (HDA) system design approaches. The first architecture relies only on a camera as the passive HDA sensor while the second relies, in addition, on a Lidar as the active HDA sensor. Both options use in common an innovative hazard map fusion algorithm aiming at identifying the safest landing locations. This paper presents the simulation tools and reports the closed-loop software simulation results obtained using each design option. The paper also reports the Monte Carlo simulation campaign that was used to assess the robustness of each design option. The performance of each design option is compared against each other in terms of performance criteria such as percentage of success, mean distance to nearest hazard, etc. The applicability of each design option to planetary exploration missions is also discussed.
Automatic control of a mobile Viking lander on the surface of Mars
NASA Technical Reports Server (NTRS)
Moore, J.; Scofield, W.; Tobey, W.
1976-01-01
A mobile lander system is being considered for use in a possible follow-on mission to the Viking '75 landings on Mars. A mobile Viking lander, which could be launched as early as the 1979 opportunity, would be capable of traversing 100 m to 1 km per day on a commanded heading while sensing hazards and performing avoidance maneuvers. The degree of autonomous control, and consequently the daily traverse range, is still under study. The mobility concept requires the addition of: (1) track-laying or wheel units in place of the Viking Lander footpads, (2) a set of hazard and navigation sensors, and (3) a mobility control computer capability. The technology required to develop these three subsystems is available today. The principal objective of current design studies, as described in this paper, is to define a mobile lander system that will demonstrate high reliability and fail-safe hazard avoidance while achieving range- and terrain-handling capabilities which satisfy the Mars exploration science requirements.
Scattering of trajectories of hazardous asteroids
NASA Astrophysics Data System (ADS)
Sokolov, Leonid; Petrov, Nikita; Kuteeva, Galina; Vasilyev, Andrey
2018-05-01
Early detection of possible collisions of asteroids with the Earth is necessary to exept the asteroid-comet hazard. Many collisions associate with resonant returns after preceding approaches. The difficulty of collisions prediction is associated with a resonant returns after encounters with the Earth due to loss of precision in these predictions. On the other hand, we can use the fly-by effect to avoid hazardous asteroid from collision. The main research object is the asteroid Apophis (99942), for which we found about 100 orbits of possible impacts with the Earth and more than 10 - with the Moon. It is shown that the early (before 2029) change of the Apophis orbit allows to avoid all main impacts with the Earth in 21st century, associated with resonant returns, and such a change of the orbit, in principle, is feasible. The scattering of possible trajectories of Apophis after 2029 and after 2051, as well as 2015 RN35 and other dangerous objects, is discussed.
Tseng, Yung-Ping; Huang, Yu-Chin; Kyle, Gerard T; Yang, Ming-Ching
2011-01-01
Cetacean-focused tourism in Taiwan has grown rapidly since 1997. This development, measured in terms of both number of tour boats and visitors, has resulted in many resource management challenges stemming from the absence of regulation and scientific data. To fill this void in empirical evidence, we used 464 sighting records from 2002 to 2005 to model the impact of cetacean-focused tourism. Cox proportional hazard analysis indicated cetacean avoidance responses to cetacean watching boats were strongly associated with pod size, mother-calf pairs, and cetacean-vessel distances. Mother-calf pairs abandoned their avoidance tactic by 55% compared to noncalf groups when tour boats approached. Second, the hazard ratio of abundance was 0.996, suggesting that the odds of encountering avoidance responses by the cetaceans decreased by 42% for every 100-member increase in the cetacean pod size. Last, distances maintained by boats from the cetaceans was positively related to avoidance responses (i.e., less avoidance behavior with closer interaction). Based on our findings, we have the following recommendations: (a) limit vessels from approaching mothers with calves, (b) limit vessels from approaching small groups of cetaceans, (c) reduced avoidance behavior to boat traffic may be a red flag for potential long-term disturbance, and (d) apply the "precautionary principle" based on the best scientific information available in cetacean-based tourism in Taiwan. These recommendations will help contribute to the sustainable development of cetacean-focused tourism in Taiwan.
NASA Astrophysics Data System (ADS)
Tseng, Yung-Ping; Huang, Yu-Chin; Kyle, Gerard T.; Yang, Ming-Ching
2011-01-01
Cetacean-focused tourism in Taiwan has grown rapidly since 1997. This development, measured in terms of both number of tour boats and visitors, has resulted in many resource management challenges stemming from the absence of regulation and scientific data. To fill this void in empirical evidence, we used 464 sighting records from 2002 to 2005 to model the impact of cetacean-focused tourism. Cox proportional hazard analysis indicated cetacean avoidance responses to cetacean watching boats were strongly associated with pod size, mother-calf pairs, and cetacean-vessel distances. Mother-calf pairs abandoned their avoidance tactic by 55% compared to noncalf groups when tour boats approached. Second, the hazard ratio of abundance was 0.996, suggesting that the odds of encountering avoidance responses by the cetaceans decreased by 42% for every 100-member increase in the cetacean pod size. Last, distances maintained by boats from the cetaceans was positively related to avoidance responses (i.e., less avoidance behavior with closer interaction). Based on our findings, we have the following recommendations: (a) limit vessels from approaching mothers with calves, (b) limit vessels from approaching small groups of cetaceans, (c) reduced avoidance behavior to boat traffic may be a red flag for potential long-term disturbance, and (d) apply the "precautionary principle" based on the best scientific information available in cetacean-based tourism in Taiwan. These recommendations will help contribute to the sustainable development of cetacean-focused tourism in Taiwan.
T/R Multi-Chip MMIC Modules for 150 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Pukala, David M.; Soria, Mary M.; Sadowy, Gregory A.
2009-01-01
Modules containing multiple monolithic microwave integrated-circuit (MMIC) chips have been built as prototypes of transmitting/receiving (T/R) modules for millimeter-wavelength radar systems, including phased-array radar systems to be used for diverse purposes that could include guidance and avoidance of hazards for landing spacecraft, imaging systems for detecting hidden weapons, and hazard-avoidance systems for automobiles. Whereas prior landing radar systems have operated at frequencies around 35 GHz, the integrated circuits in this module operate in a frequency band centered at about 150 GHz. The higher frequency (and, hence, shorter wavelength), is expected to make it possible to obtain finer spatial resolution while also using smaller antennas and thereby reducing the sizes and masses of the affected systems.
OSHA safety requirements for hazardous chemicals in the workplace.
Dohms, J
1992-01-01
This article outlines the Occupational Safety and Health Administration (OSHA) requirements set forth by the Hazard Communication Standard, which has been in effect for the healthcare industry since 1987. Administrators who have not taken concrete steps to address employee health and safety issues relating to hazardous chemicals are encouraged to do so to avoid the potential of large fines for cited violations. While some states administer their own occupational safety and health programs, they must adopt standards and enforce requirements that are at least as effective as federal requirements.
Driving Responses of Older and Younger Drivers in a Driving Simulator
Fildes, Brian; Charlton, Judith; Muir, Carlyn; Koppel, Sjaanie
2007-01-01
This paper reports the findings of a study of younger and older driver behaviour to hazardous traffic manoeuvres in a driving simulator. Hazardous situations on a highway and residential drive were studied and drivers’ vision and vehicle performance responses were collected. While all drivers were able to avoid crashes, the finding that older drivers were consistently slower to fixate hazardous stimuli in the driving environment and were slower to respond presents a potentially serious road safety concern. Further research is warranted, especially under conditions of increasing traffic complexity. PMID:18184513
Vertical Field of View Reference Point Study for Flight Path Control and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Rudisill, Marianne; Kramer, Lynda J.; Busquets, Anthony M.
2002-01-01
Researchers within the eXternal Visibility System (XVS) element of the High-Speed Research (HSR) program developed and evaluated display concepts that will provide the flight crew of the proposed High-Speed Civil Transport (HSCT) with integrated imagery and symbology to permit path control and hazard avoidance functions while maintaining required situation awareness. The challenge of the XVS program is to develop concepts that would permit a no-nose-droop configuration of an HSCT and expanded low visibility HSCT operational capabilities. This study was one of a series of experiments exploring the 'design space' restrictions for physical placement of an XVS display. The primary experimental issues here was 'conformality' of the forward display vertical position with respect to the side window in simulated flight. 'Conformality' refers to the case such that the horizon and objects appear in the same relative positions when viewed through the forward windows or display and the side windows. This study quantified the effects of visual conformality on pilot flight path control and hazard avoidance performance. Here, conformality related to the positioning and relationship of the artificial horizon line and associated symbology presented on the forward display and the horizon and associated ground, horizon, and sky textures as they would appear in the real view through a window presented in the side window display. No significant performance consequences were found for the non-conformal conditions.
Synopsis of Precision Landing and Hazard Avoidance (PL&HA) Capabilities for Space Exploration
NASA Technical Reports Server (NTRS)
Robertson, Edward A.
2017-01-01
Until recently, robotic exploration missions to the Moon, Mars, and other solar system bodies relied upon controlled blind landings. Because terrestrial techniques for terrain relative navigation (TRN) had not yet been evolved to support space exploration, landing dispersions were driven by the capabilities of inertial navigation systems combined with surface relative altimetry and velocimetry. Lacking tight control over the actual landing location, mission success depended on the statistical vetting of candidate landing areas within the predicted landing dispersion ellipse based on orbital reconnaissance data, combined with the ability of the spacecraft to execute a controlled landing in terms of touchdown attitude, attitude rates, and velocity. In addition, the sensors, algorithms, and processing technologies required to perform autonomous hazard detection and avoidance in real time during the landing sequence were not yet available. Over the past decade, NASA has invested substantial resources on the development, integration, and testing of autonomous precision landing and hazard avoidance (PL&HA) capabilities. In addition to substantially improving landing accuracy and safety, these autonomous PL&HA functions also offer access to targets of interest located within more rugged and hazardous terrain. Optical TRN systems are baselined on upcoming robotic landing missions to the Moon and Mars, and NASA JPL is investigating the development of a comprehensive PL&HA system for a Europa lander. These robotic missions will demonstrate and mature PL&HA technologies that are considered essential for future human exploration missions. PL&HA technologies also have applications to rendezvous and docking/berthing with other spacecraft, as well as proximity navigation, contact, and retrieval missions to smaller bodies with microgravity environments, such as asteroids.
Baldwin, Carryl L
2011-04-01
Matching the perceived urgency of an alert with the relative hazard level of the situation is critical for effective alarm response. Two experiments describe the impact of acoustic and semantic parameters on ratings of perceived urgency, annoyance and alerting effectiveness and on alarm response speed. Within a simulated driving context, participants rated and responded to collision avoidance system (CAS) messages spoken by a female or male voice (experiments 1 and 2, respectively). Results indicated greater perceived urgency and faster alarm response times as intensity increased from -2 dB signal to noise (S/N) ratio to +10 dB S/N, although annoyance ratings increased as well. CAS semantic content interacted with alarm intensity, indicating that at lower intensity levels participants paid more attention to the semantic content. Results indicate that both acoustic and semantic parameters independently and interactively impact CAS alert perceptions in divided attention conditions and this work can inform auditory alarm design for effective hazard matching. Matching the perceived urgency of an alert with the relative hazard level of the situation is critical for effective alarm response. Here, both acoustic and semantic parameters independently and interactively impacted CAS alert perceptions in divided attention conditions. This work can inform auditory alarm design for effective hazard matching. STATEMENT OF RELEVANCE: Results indicate that both acoustic parameters and semantic content can be used to design collision warnings with a range of urgency levels. Further, these results indicate that verbal warnings tailored to a specific hazard situation may improve hazard-matching capabilities without substantial trade-offs in perceived annoyance.
Examination of Icing Induced Loss of Control and Its Mitigations
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.
2010-01-01
Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed
A HW-SW Co-Designed System for the Lunar Lander Hazard Detection and Avoidance Breadboarding
NASA Astrophysics Data System (ADS)
Palomo, Pedro; Latorre, Antonio; Valle, Carlos; Gomez de Aguero, Sergio; Hagenfeldt, Miguel; Parreira, Baltazar; Lindoso, Almudena; Portela, Marta; Garcia, Mario; San Millan, Enrique; Zharikov, Yuri; Entrena, Luis
2014-08-01
This paper presents the HW-SW co-design approach followed to tackle the design of the Hazard Detection and Avoidance (HDA) system breadboarding for the Lunar Lander ESA mission, undertaken given the fact that novel GNC technologies used to promote autonomous systems demand processing capabilities that current (and forthcoming) space processors are not able to satisfy. The paper shows how the current system design has been performed in a process in which the original HDA functionally validated design has been partitioned between SW (deemed for execution in a microprocessor) and HW algorithms (to be executed in an FPGA), considering the performance requirements and resorting to a deep analysis of the algorithms in view of their adequacy to HW or SW implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, F.A.
1983-10-01
In August 1980, the National Institute for Occupational Safety and Health (NIOSH) received a request from the International Brotherhood of Electrical Workers Local 1600 for a Health Hazard Evaluation at the Pennsylvania Power and Light Company's Martins Creek Steam Electric Station in Martins Creek, Pennsylvania. The union was concerned about potential health and explosion hazards to employees from coal dust in Units 1 and 2 and the coal field. Based on environmental studies conducted at the time of the survey, NIOSH has determined that a potential health hazard may have existed due to exposure to respirable coal dust and quartz.more » Recommendations were made to ensure that potential health and explosion hazards are avoided in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Camp
Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we willmore » review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.« less
Environmental Assessment for Construction of Small Arms Range at Tinker Air Force Base, Oklahoma
2008-11-01
Air Force Material Command Tinker Air Force Base, Oklahoma Prepared by: CHEROKEE CRC, LLC 916 West 23rd Street Tulsa, OK 74107...activities to avoid potential for short-term soil erosion which could result in adverse effects to water quality. Hazardous Materials and Waste...erosion which could result in adverse effects to water quality. Hazardous Materials and Waste. Soil from the remediation activities could potentially
Active Collision Avoidance for Planetary Landers
NASA Technical Reports Server (NTRS)
Rickman, Doug; Hannan, Mike; Srinivasan, Karthik
2015-01-01
The use of automotive radar systems are being evaluated for collision avoidance in planetary landers. Our focus is to develop a low-cost, light-weight collision avoidance system that overcomes the drawbacks identified with optical-based systems. We also seek to complement the Autonomous Landing and Hazard Avoidance Technology system by providing mission planners an alternative system that can be used on low-cost, small robotic missions and in close approach. Our approach takes advantage of how electromagnetic radiation interacts with solids. As the wavelength increases, the sensitivity of the radiation to isolated solids of a specific particle size decreases. Thus, rocket exhaust-blown dust particles, which have major significance in visible wavelengths, have much less significance at radar wavelengths.
Automated Purgatoid Identification: Final Report
NASA Technical Reports Server (NTRS)
Wood, Steven
2011-01-01
Driving on Mars is hazardous: technical problems and unforeseen natural hazards can end a mission quickly at the worst, or result in long delays at best. This project is focused on helping to mitigate hazards posed to rovers by purgatoids: small (less than 1 m high, less than 10 m wide), ripple-like eolian bedforms commonly found scattered across the Meridiani Planum region of Mars. Due to the poorly consolidated nature of purgatoids and multiple past episodes of rovers getting stuck in them, identification and avoidance of these eolian bedforms is an important feature of rover path planning (NASA, 2011).
The right to know and the duty to disclose hazard information.
Baram, M S
1984-04-01
In late 1983, the Occupational Safety and Health Administration (OSHA) promulgated its final rule on "hazard communication," establishing the right of workers in manufacturing industries to information about chemical hazards, and the duty of importers and manufacturers to disclose such information. Baram reviews areas where the new, limited OSHA regulation conflicts with existing local, state, and federal laws, many of which are more stringent and more protective of worker and community health. He suggests steps that could be taken to avoid the extensive litigation that might result from the potential preemptive effect of the new OSHA rule.
Virtual reality for mine safety training.
Filigenzi, M T; Orr, T J; Ruff, T M
2000-06-01
Mining has long remained one of America's most hazardous occupations. Researchers believe that by developing realistic, affordable VR training software, miners will be able to receive accurate training in hazard recognition and avoidance. In addition, the VR software will allow miners to follow mine evacuation routes and safe procedures without exposing themselves to danger. This VR software may ultimately be tailored to provide training in other industries, such as the construction, agricultural, and petroleum industries.
Helping Athletes Avoid Hazardous Weight Control Behavior.
ERIC Educational Resources Information Center
Janz, Kathleen
1988-01-01
This article addresses dangerous dieting techniques used by athletes and provides coaches and teachers specific strategies to aid in preventing eating-related disorders among athletes. Symptoms of anorexia and of bulimia are described. (JL)
2012-08-17
The Curiosity engineering team created this cylindrical projection view from images taken by NASA Curiosity rover front hazard avoidance cameras underneath the rover deck on Sol 0. Pictured here are are the pigeon-toed the wheels.
ERIC Educational Resources Information Center
Science and Children, 2001
2001-01-01
Describes a method to collect seeds that are dispersed from weeds while avoiding some outdoor hazards such as rough terrain or animals. Describes a plan for creating a weed fishing pole and includes a materials list. (SAH)
Weather Avoidance Using Route Optimization as a Decision Aid: An AWIN Topical Study. Phase 1
NASA Technical Reports Server (NTRS)
1998-01-01
The aviation community is faced with reducing the fatal aircraft accident rate by 80 percent within 10 years. This must be achieved even with ever increasing, traffic and a changing National Airspace System. This is not just an altruistic goal, but a real necessity, if our growing level of commerce is to continue. Honeywell Technology Center's topical study, "Weather Avoidance Using Route Optimization as a Decision Aid", addresses these pressing needs. The goal of this program is to use route optimization and user interface technologies to develop a prototype decision aid for dispatchers and pilots. This decision aid will suggest possible diversions through single or multiple weather hazards and present weather information with a human-centered design. At the conclusion of the program, we will have a laptop prototype decision aid that will be used to demonstrate concepts to industry for integration into commercialized products for dispatchers and/or pilots. With weather a factor in 30% of aircraft accidents, our program will prevent accidents by strategically avoiding weather hazards in flight. By supplying more relevant weather information in a human-centered format along with the tools to generate flight plans around weather, aircraft exposure to weather hazards can be reduced. Our program directly addresses the NASA's five year investment areas of Strategic Weather Information and Weather Operations (simulation/hazard characterization and crew/dispatch/ATChazard monitoring, display, and decision support) (NASA Aeronautics Safety Investment Strategy: Weather Investment Recommendations, April 15, 1997). This program is comprised of two phases, Phase I concluded December 31, 1998. This first phase defined weather data requirements, lateral routing algorithms, an conceptual displays for a user-centered design. Phase II runs from January 1999 through September 1999. The second phase integrates vertical routing into the lateral optimizer and combines the user interface into a prototype software testbed. Phase II concludes with a dispatcher and pilot evaluation of the route optimizer decision aid. This document describes work completed in Phase I in contract with NASA Langley August 1998 - December 1998. This report includes: (1) Discuss how weather hazards were identified in partnership with experts, and how weather hazards were prioritized; (2) Static representations of display layouts for integrated planning function (3) Cost function for the 2D route optimizer; (4) Discussion of the method for obtaining, access to raw data of, and the results of the flight deck user information requirements definition; (5) Itemized display format requirements identified for representing weather hazards in a route planning aid.
Driving safely into the future with applied technology
DOT National Transportation Integrated Search
1999-10-01
Driver error remains the leading cause of highway crashes. Through the Intelligent Vehicle Initiative (IVI), the Department of Transportation hopes to reduce crashes by helping drivers avoid hazardous mistakes. IVI aims to accelerate the development ...
Management and effective use of changeable message signs
DOT National Transportation Integrated Search
2001-06-01
Changeable message signs (CMS) are used to communicate accurate, timely, and pertinent information to travelers on Kentucky's roadways. This information helps travelers avoid hazards or delays and respond properly to changing roadway conditions. In a...
Sensible Guide for Healthier School Renovations
This booklet provides school administrators, facility managers, staff and the school community with an overview of how to avoid key environmental health hazards and ways to minimize children’s exposures as they prepare for and undergo renovations.
2004-01-13
This image, taken in the JPL In-Situ Instruments Laboratory or Testbed, shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit after the rover has backed up and turned 45 degrees counterclockwise.
Seismic Hazard Legislation in California: Challenges and Changes
NASA Astrophysics Data System (ADS)
Testa, S. M.
2015-12-01
Seismic hazards in California are legislatively controlled by three specific Acts: the Field Act of 1933; the Alquist-Priolo Earthquake Fault Zoning Act (AP) of 1975; and the Seismic Hazards Mapping Act (SHMA) of 1980. The Field Act recognized the need for earthquake resistant construction for California schools and banned unreinforced masonry buildings, and imposed structural design under seismic conditions. The AP requires the California Geological Survey (CGS) to delineate "active fault zones" for general planning and mitigation by various state and local agencies. Under the AP, surface and near-surface faults are presumed active (about 11,000 years before present) unless proven otherwise; and can only be mitigated by avoidance (setback zones). The SHMA requires that earthquake-induced landslides, liquefaction zones, high ground accelerations, tsunamis and seiches similarly be demarcated on CGS-issued maps. Experience over the past ~45 years and related technological advances now show that more than ~95 percent of seismically induced damage and loss of life stems from high ground accelerations, from related ground deformation and from catastrophic structural failure, often far beyond State-mapped AP zones. The SHMA therefore enables the engineering community to mitigate natural hazards from a holistic standpoint that considers protection of public health, safety and welfare. In conformance with the SHMA, structural design and related planning and building codes focus on acceptable risk for natural hazards with a typical recurrence of ~100 yrs to a few thousand years. This contrasts with the current AP "total avoidance" for surface-fault rupture that may have occurred within the last 11,000 years. Accordingly, avoidance may be reasonable for well expressed surface faults in high-density urban areas or where relative fault activity is uncertain. However, in the interest of overall public, health and safety, and for consistency with the SHMA and current professional standards-of-practice, we now propose changes to the AP and related regulations, including consideration for permitting construction near or across surface or near-surface faults that are geologically reasonably well characterized and amenable to structural mitigation.
NASA Astrophysics Data System (ADS)
Michael, Ralph; Wegener, Alfred
2004-08-01
Hazards from the optical radiation of an operating microscope that cause damage at the corneal, lenticular, and retinal levels were investigated; we considered, in particular, ultraviolet radiation (UVR) and blue light. The spectral irradiance from a Zeiss operation microscope OPMI VISU 200 was measured in the corneal plane between 300 and 1100 nm. Effective irradiance and radiance were calculated with relative spectral effectiveness data from the American Conference for Governmental and Industrial Hygienists. Safe exposure time to avoid UVR injury to the lens and cornea was found to be 2 h without a filter, 4 h with a UVR filter, 200 h with a yellow filter, and 400 h with a filter combination. Safe exposure time to avoid retinal photochemical injury was found to be 3 min without a filter and with a UVR filter, 10 min with a yellow filter, and 49 min with a filter combination. The effective radiance limit for retinal thermal injury was not exceeded. The hazard due to the UVR component from the operating microscope is not critical, and operation time can be safely prolonged with the use of appropriate filters. The retinal photochemical hazard appears critical without appropriate filters, permitting only some minutes of safe exposure time. The calculated safe exposure times are for worst-case conditions and maximal light output and include a safety factor.
Vortex Wakes of Subsonic Transport Aircraft
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.; Nixon, David (Technical Monitor)
1999-01-01
A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.
Michael, Ralph; Wegener, Alfred
2004-08-01
Hazards from the optical radiation of an operating microscope that cause damage at the corneal, lenticular, and retinal levels were investigated; we considered, in particular, ultraviolet radiation (UVR) and blue light. The spectral irradiance from a Zeiss operation microscope OPMI VISU 200 was measured in the corneal plane between 300 and 1100 nm. Effective irradiance and radiance were calculated with relative spectral effectiveness data from the American Conference for Governmental and Industrial Hygienists. Safe exposure time to avoid UVR injury to the lens and cornea was found to be 2 h without a filter, 4 h with a UVR filter, 200 a yellow filter, and 400 h with a filter combination. Safe exposure time to avoid retinal photochemical injury was found to be 3 min without a filter and with a UVR filter, 10 min with a yellow filter, and 49 min with a filter combination. The effective radiance limit for retinal thermal injury was not exceeded. The hazard due to the UVR component from the operating microscope is not critical, and operation time can be safely prolonged with the use of appropriate filters. The retinal photochemical hazard appears critical without appropriate filters, permitting only some minutes of safe exposure time. The calculated safe exposure times are for worst-case conditions and maximal light output and include a safety factor.
Delonay, Aaron J.; Little, Edward E.; Lipton, J.; Woodward, D.F.; Hansen, J.A.
1996-01-01
Natural Resource Damage Assessment (NRDA) provisions enacted under Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the Oil Pollution Act (OPA) empower natural resource trustees to seek compensation for environmental injury resulting from the release of oil or hazardous substances. Under NRDA regulations promulgated under CERCLA, fish avoidance behavior is recognized as an accepted injury, and may be used to support damage claims. In support of an ongoing damage assessment, tests were conducted to determine if avoidance of ambient metals concentrations may contribute to reductions in local salmonid populations. In laboratory tests, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) avoided mixtures of metals (Cd, Cu, Pb, and Zn) at concentrations that occur in impacted river reaches at a contaminated site (Clark Fork River, MT). Avoidance of metal contamination may contribute to population reductions and preclude restoration of instream populations by prohibiting movement of fish into contaminated areas of the river from uncontaminated tributaries. Laboratory avoidance tests were performed at two testing facilities. The similar avoidance responses observed at the two laboratories demonstrated the reproducibility of avoidance measures.
The validity of different measures of automatic alcohol action tendencies.
Kersbergen, Inge; Woud, Marcella L; Field, Matt
2015-03-01
Previous studies have demonstrated that automatic alcohol action tendencies are related to alcohol consumption and hazardous drinking. These action tendencies are measured with reaction time tasks in which the latency to make an approach response to alcohol pictures is compared with the latency to make an avoidance response. In the literature, 4 different tasks have been used, and these tasks differ on whether alcohol is a relevant (R) or irrelevant (IR) feature for categorization and on whether participants must make a symbolic approach response (stimulus-response compatibility [SRC] tasks) or an overt behavioral response (approach avoidance tasks [AAT]) to the pictures. Previous studies have shown positive correlations between measures of action tendencies and hazardous drinking and weekly alcohol consumption. However, results have been inconsistent and the different measures have not been directly compared with each other. Therefore, it is unclear which task is the best predictor of hazardous drinking and alcohol consumption. In the present study, 80 participants completed all 4 measures of action tendencies (i.e., R-SRC, IR-SRC, R-AAT, and IR-AAT) and measures of alcohol consumption and hazardous drinking. Stepwise regressions showed that the R-SRC and R-AAT were the only significant predictors of hazardous drinking, whereas the R-AAT was the only reliable predictor of alcohol consumption. Our results confirm that drinking behavior is positively correlated with automatic alcohol approach tendencies, but only if alcohol-relatedness is the relevant feature for categorization. Theoretical implications and methodological issues are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Applying the Land Use Portfolio Model with Hazus to analyse risk from natural hazard events
Dinitz, Laura B.; Taketa, Richard A.
2013-01-01
This paper describes and demonstrates the integration of two geospatial decision-support systems for natural-hazard risk assessment and management. Hazus is a risk-assessment tool developed by the Federal Emergency Management Agency to identify risks and estimate the severity of risk from natural hazards. The Land Use Portfolio Model (LUPM) is a risk-management tool developed by the U.S. Geological Survey to evaluate plans or actions intended to reduce risk from natural hazards. We analysed three mitigation policies for one earthquake scenario in the San Francisco Bay area to demonstrate the added value of using Hazus and the LUPM together. The demonstration showed that Hazus loss estimates can be input to the LUPM to obtain estimates of losses avoided through mitigation, rates of return on mitigation investment, and measures of uncertainty. Together, they offer a more comprehensive approach to help with decisions for reducing risk from natural hazards.
Risk assessment in infrastructure in educational institution: A study in Malaysia
NASA Astrophysics Data System (ADS)
Rasdan Ismail, Ahmad; Adilah Hamzah, Noor; Kamilah Makhtar, Nor; Azhar Mat Daud, Khairul; Zulkarnaen Khidzir, Nik; Husna Che Hassan, Nurul; Arifpin Mansor, Muhamad
2017-10-01
This particular study was conducted to assess the hazard exposure in education institution and to highlight the possible risk level available. The assessment utilised is Hazard Identification, Risk Assessment and Risk Control (HIRARC). There was a 2008’s form in order to determine the risk level of the hazard. There were over 111 of education institutions were selected around Malaysia to perform this assessment. Area chosen for each institution was office, playing field, canteen, classroom, toilet and drainage. By referring HIRARC Guideline 2008, the determination of risk rank is measure based on the formula likelihood multiply severity and the rank need to refer from risk matrix standard. There are several hazard have be found and shows the high, medium and low of risk level. The higher level of risk was discussed in the study which is hazard found in playing field and hazard in office. There several hazard that need to be control by education management to avoid increase of case accident in Education Sector, Malaysia. As conclusion, the exposure hazard among the staff and educators is high and further action and control are needed. Further study need to explore the best recommendation for control measure of the hazard exposed by education institution.
Studies of uncontrolled air traffic patterns, phase 1
NASA Technical Reports Server (NTRS)
Baxa, E. G., Jr.; Scharf, L. L.; Ruedger, W. H.; Modi, J. A.; Wheelock, S. L.; Davis, C. M.
1975-01-01
The general aviation air traffic flow patterns at uncontrolled airports are investigated and analyzed and traffic pattern concepts are developed to minimize the midair collision hazard in uncontrolled airspace. An analytical approach to evaluate midair collision hazard probability as a function of traffic densities is established which is basically independent of path structure. Two methods of generating space-time interrelationships between terminal area aircraft are presented; one is a deterministic model to generate pseudorandom aircraft tracks, the other is a statistical model in preliminary form. Some hazard measures are presented for selected traffic densities. It is concluded that the probability of encountering a hazard should be minimized independently of any other considerations and that the number of encounters involving visible-avoidable aircraft should be maximized at the expense of encounters in other categories.
Climate Ready Estuaries Rolling Easements Primer
Rolling easements enable wetlands and beaches to migrate inland and allow society to avoid the costs and hazards of protecting low lands from rising sea levels. This document provides a primer on more than a dozen rolling easement approaches.
Aircraft wake vortex measurements at Denver International Airport
DOT National Transportation Integrated Search
2004-05-10
Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic...
25 CFR 103.30 - What standard of care must a lender meet?
Code of Federal Regulations, 2010 CFR
2010-04-01
..., including hazard, liability, key man life, and other kinds of insurance, in amounts reasonably necessary to... necessary to maintain the greatest possible rights to repayment; and (m) Otherwise seek to avoid and...
25 CFR 103.30 - What standard of care must a lender meet?
Code of Federal Regulations, 2011 CFR
2011-04-01
..., including hazard, liability, key man life, and other kinds of insurance, in amounts reasonably necessary to... necessary to maintain the greatest possible rights to repayment; and (m) Otherwise seek to avoid and...
Air quality impacts of intercity freight. Volume 1 : guidebook
DOT National Transportation Integrated Search
2000-01-01
Driver error remains the leading cause of highway crashes. Through the Intelligent Vehicle Initiative (IVI), the Department of Transportation hopes to reduce crashes by helping drivers avoid hazardous mistakes. IVI aims to accelerate the development ...
The MITy micro-rover: Sensing, control, and operation
NASA Technical Reports Server (NTRS)
Malafeew, Eric; Kaliardos, William
1994-01-01
The sensory, control, and operation systems of the 'MITy' Mars micro-rover are discussed. It is shown that the customized sun tracker and laser rangefinder provide internal, autonomous dead reckoning and hazard detection in unstructured environments. The micro-rover consists of three articulated platforms with sensing, processing and payload subsystems connected by a dual spring suspension system. A reactive obstacle avoidance routine makes intelligent use of robot-centered laser information to maneuver through cluttered environments. The hazard sensors include a rangefinder, inclinometers, proximity sensors and collision sensors. A 486/66 laptop computer runs the graphical user interface and programming environment. A graphical window displays robot telemetry in real time and a small TV/VCR is used for real time supervisory control. Guidance, navigation, and control routines work in conjunction with the mapping and obstacle avoidance functions to provide heading and speed commands that maneuver the robot around obstacles and towards the target.
Impediment to Spirit Drive on Sol 1806
NASA Technical Reports Server (NTRS)
2009-01-01
The hazard avoidance camera on the front of NASA's Mars Exploration Rover Spirit took this image after a drive by Spirit on the 1,806th Martian day, or sol, (January 31, 2009) of Spirit's mission on the surface of Mars. The wheel at the bottom right of the image is Spirit's right-front wheel. Because that wheel no longer turns, Spirit drives backwards dragging that wheel. The drive on Sol 1806 covered about 30 centimeters (1 foot). The rover team had planned a longer drive, but Spirit stopped short, apparently from the right front wheel encountering the partially buried rock visible next to that wheel. The hazard avoidance cameras on the front and back of the rover provide wide-angle views. The hill on the horizon in the right half of this image is Husband Hill. Spirit reached the summit of Husband Hill in 2005.A View of Opportunity's Dance Moves
NASA Technical Reports Server (NTRS)
2004-01-01
This rear hazard-avoidance camera image taken by the Mars Exploration Rover Opportunity on the 37th martian day, or sol, of its mission (March 2, 2004) shows the tracks left by the rover during its latest 'dance,' or series of maneuvers, around the rock outcrop near its landing site. Note the view of the lander to the far left and the light-colored outcrop below the horizon. The rear solar panels, located above the rear hazard-avoidance cameras, are captured in the uppermost part of the image.
Since driving off the lander, Opportunity has traveled along the entire outcrop, trenched, and completed a U-turn to revisit scientifically rich spots. Two of these spots are the rock regions dubbed 'El Capitan' and 'Last Chance.' Scientists have used the instruments on the rover's arm to conclude that this area of Mars was once soaked in water for extended amounts of time, possibly providing an environment favorable for life.Analysis of aircraft performance during lateral maneuvering for microburst avoidance
NASA Technical Reports Server (NTRS)
Avila De Melo, Denise; Hansman, R. John, Jr.
1990-01-01
Aircraft response to a severe and a moderate three-dimensional microburst model using nonlinear numerical simulations of a Boeing 737-100 is studied. The relative performance loss is compared for microburst escape procedures with and without lateral maneuvering. The results show that the hazards caused by the penetration of a microburst in the landing phase are attenuated if lateral escape maneuvers are applied in order to turn the aircraft away from the microburst core rather than flying straight through. If the lateral escape maneuver is initiated close to the microburst core, high bank angles tend to deteriorate aircraft performance. Lateral maneuvering is also found to reduce the advanced warning required to escape from microburst hazards but requires that information of the existence and location of the microburst is available (i.e., remote detection) in order to avoid an incorrect turn toward the microburst core.
Active Collision Avoidance for Planetary Landers
NASA Technical Reports Server (NTRS)
Rickman, Doug; Hannan, Mike; Srinivasan, Karthik
2014-01-01
Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be miles from the mission objective, or, mission objectives may be tailored to suit landing sites. Future robotic exploration missions should be capable of autonomously identifying a safe landing target within a specified target area selected by mission requirements. Such autonomous landing sites must (1) 'see' the surface, (2) identify a target, and (3) land the vehicle. Recent advances in radar technology have resulted in small, lightweight, low power radars that are used for collision avoidance and cruise control systems in automobiles. Such radar systems can be adapted for use as active hazard avoidance systems for planetary landers. The focus of this CIF proposal is to leverage earlier work on collision avoidance systems for MSFC's Mighty Eagle lander and evaluate the use of automotive radar systems for collision avoidance in planetary landers.
Safe Maritime Navigation with COLREGS Using Velocity Obstacles
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki; Wolf, Michael T.; Zarzhitsky, Dimitri; Huntsberger, Terrance L.
2011-01-01
This paper presents a motion planning algorithm for Unmanned Surface Vehicles (USVs) to navigate safely in dynamic, cluttered environments. The proposed algorithm not only addresses Hazard Avoidance (HA) for stationary and moving hazards but also applies the International Regulations for Preventing Collisions at Sea (known as COLREGs). The COLREG rules specify, for example, which vessel is responsible for giving way to the other and to which side of the "stand-on" vessel to maneuver. The three primary COLREG rules were considered in this paper: crossing, overtaking, and head-on situations. For USVs to be safely deployed in environments with other traffic boats, it is imperative that the USV's navigation algorithm obey COLREGs. Note also that if other boats disregard their responsibility under COLREGs, the USV will still apply its HA algorithms to avoid a collision. The proposed approach is based on Velocity Obstacles, which generates a cone-shaped obstacle in the velocity space. Because Velocity Obstacles also specify which side of the obstacle the vehicle will pass during the avoidance maneuver, COLREGs are encoded in the velocity space in a natural way. The algorithm is demonstrated via both simulation and on-water tests.
NASA Astrophysics Data System (ADS)
Berlin, Julian; Bogaard, Thom; Van Westen, Cees; Bakker, Wim; Mostert, Eric; Dopheide, Emile
2014-05-01
Cost benefit analysis (CBA) is a well know method used widely for the assessment of investments either in the private and public sector. In the context of risk mitigation and the evaluation of risk reduction alternatives for natural hazards its use is very important to evaluate the effectiveness of such efforts in terms of avoided monetary losses. However the current method has some disadvantages related to the spatial distribution of the costs and benefits, the geographical distribution of the avoided damage and losses, the variation in areas that are benefited in terms of invested money and avoided monetary risk. Decision-makers are often interested in how the costs and benefits are distributed among different administrative units of a large area or region, so they will be able to compare and analyse the cost and benefits per administrative unit as a result of the implementation of the risk reduction projects. In this work we first examined the Cost benefit procedure for natural hazards, how the costs are assessed for several structural and non-structural risk reduction alternatives, we also examined the current problems of the method such as the inclusion of cultural and social considerations that are complex to monetize , the problem of discounting future values using a defined interest rate and the spatial distribution of cost and benefits. We also examined the additional benefits and the indirect costs associated with the implementation of the risk reduction alternatives such as the cost of having a ugly landscape (also called negative benefits). In the last part we examined the current tools and software used in natural hazards assessment with support to conduct CBA and we propose design considerations for the implementation of the CBA module for the CHANGES-SDSS Platform an initiative of the ongoing 7th Framework Programme "CHANGES of the European commission. Keywords: Risk management, Economics of risk mitigation, EU Flood Directive, resilience, prevention, cost benefit analysis, spatial distribution of costs and benefits
Saur, Randi; Hansen, Marianne Bang; Jansen, Anne; Heir, Trond
2017-04-01
To explore the types of risks and hazards that visually impaired individuals face, how they manage potential threats and how reactions to traumatic events are manifested and coped with. Participants were 17 visually impaired individuals who had experienced some kind of potentially traumatic event. Two focus groups and 13 individual interviews were conducted. The participants experienced a variety of hazards and potential threats in their daily life. Fear of daily accidents was more pronounced than fear of disasters. Some participants reported avoiding help-seeking in unsafe situations due to shame at not being able to cope. The ability to be independent was highlighted. Traumatic events were re-experienced through a variety of sense modalities. Fear of labelling and avoidance of potential risks were recurring topics, and the risks of social withdrawal and isolation were addressed. Visual impairment causes a need for predictability and adequate information to increase and prepare for coping and self-efficacy. The results from this study call for greater emphasis on universal design in order to ensure safety and predictability. Fear of being labelled may inhibit people from using assistive devices and adequate coping strategies and seeking professional help in the aftermath of a trauma. Implications for Rehabilitation Visual impairment entails a greater susceptibility to a variety of hazards and potential threats in daily life. This calls for a greater emphasis on universal design in public spaces to ensure confidence and safety. Visual impairment implies a need for predictability and adequate information to prepare for coping and self-efficacy. Rehabilitation professionals should be aware of the need for independence and self-reliance, the possible fear of labelling, avoidance of help-seeking or reluctance to use assistive devices. In rehabilitation after accidents or potential traumatizing events, professionals' knowledge about the needs for information, training and predictability is crucial. The possibility of social withdrawal or isolation should be considered.
The challenges of simulating wake vortex encounters and assessing separation criteria
NASA Technical Reports Server (NTRS)
Dunham, R. E.; Stuever, Robert A.; Vicroy, Dan D.
1993-01-01
During landings and take-offs, the longitudinal spacing between airplanes is in part determined by the safe separation required to avoid the trailing vortex wake of the preceding aircraft. Safe exploration of the feasibility of reducing longitudinal separation standards will require use of aircraft simulators. This paper discusses the approaches to vortex modeling, methods for modeling the aircraft/vortex interaction, some of the previous attempts of defining vortex hazard criteria, and current understanding of the development of vortex hazard criteria.
Apollo experience report: Protection against radiation
NASA Technical Reports Server (NTRS)
English, R. A.; Benson, R. E.; Bailey, J. V.; Barnes, C. M.
1973-01-01
Radiation protection problems on earth and in space are discussed. Flight through the Van Allen belts and into space beyond the geomagnetic shielding was recognized as hazardous before the advent of manned space flight. Specialized dosimetry systems were developed for use on the Apollo spacecraft, and systems for solar-particle-event warning and dose projection were devised. Radiation sources of manmade origin on board the Apollo spacecraft present additional problems. Methods applied to evaluate and control or avoid the various Apollo radiation hazards are discussed.
Assisted human reproduction--legal rights of the unborn in respect of avoidable damage.
Adam, G M
2007-06-01
The author describes various risks to the foetus arising from assisted reproduction technology (ART). These risks are examined from the legal viewpoint, especially considering the rights of the foetus as interpreted in a number of jurisdictions. He distinguishes between the avoidable and inherent risks to the foetus resulting from ART and the potential hazards of ART relevant to criminal law. The basic internationally accepted conventions on foetal rights are compared relative to decisions in a number of cases heard and decided.
Building a Healthy Environment.
ERIC Educational Resources Information Center
Simon, Elizabeth
1997-01-01
Describes how school districts, with the help of a good architect, can construct or renovate schools and avoid most environmental hazards. Issues concerning indoor air quality, asbestos, lead poisoning, ergonomics, and adverse exposure to radon and electric and magnetic fields are addressed. (GR)
A View From Below the Rover Deck
2012-08-17
The Curiosity engineering team created this cylindrical projection view from images taken by NASA Curiosity rover rear hazard avoidance cameras underneath the rover deck on Sol 0. Pictured here are the pigeon-toed wheels in their stowed position from
PRN 2008-1: Notice to Manufacturers, Producers, Formulators, and Registrants of Pesticide Products
This Notice presents EPA's guidance on optional environmental hazard label language for certain non-restricted use pesticide products intended for outdoor residential use. It clarifies language on how the user can avoid environmental contamination.
JPL-20170801-MSLf-0001-Rover POV Five Years of Curiosity on Mars
2017-08-02
Five years of images from the Mars Science Laboratory rover Curiosity's Hazard Avoidance Camera (Hazcam) were used to create this time-lapse movie. An inset map shows the rover's location in Mars' Gale Crater.
46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.
Code of Federal Regulations, 2014 CFR
2014-10-01
... submerged type designed to avoid liquid pressure against the shaft gland and are suitable for use with the... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES...
46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.
Code of Federal Regulations, 2011 CFR
2011-10-01
... submerged type designed to avoid liquid pressure against the shaft gland and are suitable for use with the... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES...
46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.
Code of Federal Regulations, 2013 CFR
2013-10-01
... submerged type designed to avoid liquid pressure against the shaft gland and are suitable for use with the... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES...
46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.
Code of Federal Regulations, 2012 CFR
2012-10-01
... submerged type designed to avoid liquid pressure against the shaft gland and are suitable for use with the... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES...
An Efficient Procedure for Microscale Synthesis of Semicarbazones
ERIC Educational Resources Information Center
Pandita, Sangeeta; Goyal, Samta; Passey, Sarita
2004-01-01
A successful microscale fusion of semicarbazones, or transformation of carbonyl compounds into semicarbazones is performed through an effective grinding system. The donning of protective attire is advised to avoid the hazardous effects of semicarbazide hydrochloride during the fusion process.
Landslide hazard rating matrix and database : vol. 1 of 2.
DOT National Transportation Integrated Search
2007-12-01
The Office of Geotechnical Engineering (OGE) of the Ohio Department of Transportation (ODOT) : recognizes the need to develop a strategy to provide timely preventive maintenance to avoid on-set of : large or catastrophic slope failures. Furthermore, ...
Health hazards of ceramic artists.
Dorevitch, S; Babin, A
2001-01-01
Ceramic artists can be exposed to many hazards including metals (such as lead), fibrogenic dusts (such as silica), heat, repetitive motion, radiation, and toxic emissions from kilns. The health risks of these exposures have not been well characterized among artists, although limited information is available from commercial potteries. Adverse health effects may be prevented by using less hazardous materials (such as lead-free glazes), improved ventilation, and proper work practices. Special precautions must be in place if children have access to the ceramics studio. The use of glazed ceramic dishes can be a risk for lead toxicity. Food should not be stored in glazed ceramics, and pregnant women should avoid daily use of ceramic mugs for drinking hot beverages.
NASA Astrophysics Data System (ADS)
This manual provides those involved in welding and brazing with effective safety procedures for use in performance of their jobs. Hazards exist in four types of general soldering and brazing processes: (1) cleaning; (2) application of flux; (3) application of heat and filler metal; and (4) residue cleaning. Most hazards during those operations can be avoided by using care, proper ventilation, protective clothing and equipment. Specific process hazards for various methods of brazing and soldering are treated. Methods to check ventilation are presented as well as a check of personal hygiene and good maintenance practices are stressed. Several emergency first aid treatments are described.
Sola, Chrystelle; Choquet, Olivier; Prodhomme, Olivier; Capdevila, Xavier; Dadure, Christophe
2014-05-01
Adverse events associated with anesthetic management of anterior mediastinal masses in pediatrics are common. To avoid an extremely hazardous general anesthesia, the use of real-time ultrasonography offers an effective alternative in high-risk cases. We report the anesthetic management including a light sedation and ultrasound guidance for regional anesthesia, surgical node biopsy, and placement of a central venous line in two children with an anterior symptomatic mediastinal mass. For pediatric patients with clinical and/or radiologic signs of airway compression, ultrasound guidance provides safety technical assistance to avoid general anesthesia and should be performed for the initial diagnostic and therapeutic procedures. © 2013 John Wiley & Sons Ltd.
Department of Housing and Urban Development, Office of Lead Hazard Control and Healthy Homes
... and Healthy Homes Office of Administration Office of Economic Development Office of Hearings and Appeals Office of ... Utilization Topic Areas Avoiding Foreclosure Buying a Home Economic Development Energy Environment Fair Lending Freedom of Information ...
Curiosity Drill in Place for Load Testing Before Drilling
2013-01-28
The percussion drill in the turret of tools at the end of the robotic arm of NASA Mars rover Curiosity has been positioned in contact with the rock surface in this image from the rover front Hazard-Avoidance Camera Hazcam.
How to Keep Your Teenage Driver Alive.
ERIC Educational Resources Information Center
Bell, Fred
1983-01-01
Ideas parents can use to instill safe driving habits in teenagers are discussed. Among them are tips for dealing with impatience and traffic congestion, avoiding rollovers, and being alert to other hazards, such as wet brakes, distractions, and driving after drinking. (PP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLonay, A.J.; Little, E.E.; Lipton, J.
1996-12-31
Natural Resource Damage Assessment (NRDA) provisions enacted under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the Oil Pollution Act (OPA) empower natural resource trustees to seek compensation for environmental injury resulting from the release of oil or hazardous substances. Under NRDA regulations promulgated under CERCLA, fish avoidance behavior is recognized as an accepted injury, and may be used to support damage claims. In support of an ongoing damage assessment, tests were conducted to determine if avoidance of ambient metals concentrations may contribute to reductions in local salmonid populations. In laboratory tests, rainbow trout (Oncorhynchus mykiss) and brownmore » trout (Salmo trutta) avoided mixtures of metals (Cd, Cu, Pb, and Zn) at concentrations that occur in impacted river reaches at a contaminated site (Clark Fork River, MT). Avoidance of metal contamination may contribute to population reductions and preclude restoration of instream populations by prohibiting movement of fish into contaminated areas of the river from uncontaminated tributaries. Laboratory avoidance tests were performed at two testing facilities. The similar avoidance responses observed at the two laboratories demonstrated the reproducibility of avoidance measures.« less
Potential primary and secondary hazards of avicides
Schafer, E.W.; Clark, Dell O.
1984-01-01
There are six chemicals or groups of chemicals that are currently registered as avicides that can be used in some or all of the U.S. Most of these chemicals, because of their diverse chemical composition and innate toxicological effects, present somewhat different primary and secondary hazards to avian and mammalian predators and scavengers. Of the chemicals reviewed, all appear to present some degree of primary hazard to non-target birds and mammals; however, PA-14, the Starlicide family of chemicals and fenthion appear to be the least hazardous when used according to use directions. 4-Aminopyridine, endrin and strychnine, because of their high acute toxicity and lack of selectivity, must be considered potentially more hazardous. With respect to secondary hazards, the ranking of chemicals changes considerably and only PA-14 appears to present a negligible hazard. The Starlicide family of chemicals presents negligible hazards to most animal species under currently registered uses, but may be potentially hazardous to cats and owls under specific use conditions. Two chemicals, 4-aminopyridine and strychnine, are potentially more hazardous to predatory and scavenger animals due to their highly toxic nature and rapid lethal effects in target species, leaving unassimilated chemical in the gastrointestinal tract. The remaining chemicals, endrin and fenthion, have been shown to possess the potential for more significant secondary poisoning; however, because of restrictive uses, most of the potential hazards have been avoided in operational use.
Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar
NASA Astrophysics Data System (ADS)
Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken
1997-02-01
On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.
NASA Astrophysics Data System (ADS)
Falakh, Fajrul; Setiani, Onny
2018-02-01
Water Treatment Plant (WTP) is an important infrastructure to ensure human health and the environment. In its development, aspects of environmental safety and health are of concern. This paper case study was conducted at the Water Treatment Plant Company in Semarang, Central Java, Indonesia. Hazard identification and risk assessment is one part of the occupational safety and health program at the risk management stage. The purpose of this study was to identify potential hazards using hazard identification methods and risk assessment methods. Risk assessment is done using criteria of severity and probability of accident. The results obtained from this risk assessment are 22 potential hazards present in the water purification process. Extreme categories that exist in the risk assessment are leakage of chlorine and industrial fires. Chlorine and fire leakage gets the highest value because its impact threatens many things, such as industrial disasters that could endanger human life and the environment. Control measures undertaken to avoid potential hazards are to apply the use of personal protective equipment, but management will also be better managed in accordance with hazard control hazards, occupational safety and health programs such as issuing work permits, emergency response training is required, Very useful in overcoming potential hazards that have been determined.
Evaluating Alternatives for Drinking Water at Deployed Locations
2006-03-01
Tucker and Sands, 1999; Beering , 2002). 1986 Plutonium was found in the New York city drinking water system. Though the concentrations were...based approach called Hazard Analysis and Critical Control Point ( HACCP ). This approach holds that avoidance is practical and effective where other
NASA Astrophysics Data System (ADS)
Witte, L.
2014-06-01
To support landing site assessments for HDA-capable flight systems and to facilitate trade studies between the potential HDA architectures versus the yielded probability of safe landing a stochastic landing dispersion model has been developed.
Hazardous Glaciers In Switzerland: A Statistical Analysis of Inventory Data
NASA Astrophysics Data System (ADS)
Raymond, M.; Funk, M.; Wegmann, M.
Because of the recent increase in both occupation and economical activities in high mountain areas, a systematic overview of potential hazard zones of glaciers is needed to avoid the constuction of settlements and infrastructures in endangered areas in fu- ture. Historical informations about glacier disasters show that catastrophic events can happen repeatedly for the same causes and with the same dramatic consequences. Past catastrophic events are not only useful to identify potentially dangerous glaciers, but represent an indication of the kind of glacier hazards to expect for any given glacier. An inventory containing all known events having caused damages in the past has been compiled for Switzerland. Three different types of glacier hazards are distinguished , e.g. ice avalanches, glacier floods and glacier length changes.Hazardous glaciers have been identified in the alpine cantons of Bern, Grison, Uri, Vaud and Valais so far. The inventory data were analysed in terms of periodicity of different types of events as well as of damage occured.
Owens, Gina P; Held, Philip; Blackburn, Laura; Auerbach, John S; Clark, Allison A; Herrera, Catherine J; Cook, Jerome; Stuart, Gregory L
2014-05-01
Veterans (N = 133) who were seeking treatment in either the Posttraumatic Stress Program or Substance Use Disorders Program at a Veterans Affairs Medical Center (VAMC) and, based on self-report of symptoms, met clinical norms for posttraumatic stress disorder (PTSD) or hazardous substance use (HSU) completed a survey related to relationship conflict behaviors, attachment styles, and depression severity. Participants were grouped into one of three categories on the basis of clinical norm criteria: PTSD only, HSU only, and PTSD + HSU. Participants completed the PTSD Checklist-Military, Experiences in Close Relationships Scale-Short Form, Center for Epidemiologic Studies-Depression scale, Alcohol Use Disorders Identification Test, Drug Use Disorders Identification Test, and Psychological Aggression and Physical Violence subscales of the Conflict Tactics Scale. Most participants were male and Caucasian. Significant differences were found between groups on depression, avoidant attachment, psychological aggression perpetration and victimization, and physical violence perpetration and victimization. Post hoc analyses revealed that the PTSD + HSU group had significantly higher levels of depression, avoidant attachment, and psychological aggression than the HSU only group. The PTSD + HSU group had significantly higher levels of physical violence than did the PTSD only group, but both groups had similar mean scores on all other variables. Potential treatment implications are discussed.
[Recommendations for the prevention of organic foreign bodies aspiration].
Rodríguez, Hugo; Cuestas, Giselle; Gregori, Darío; Lorenzoni, Giulia; Tortosa, Susana; Rodríguez D'Aquila, Máximo; Rodríguez D'Aquila, Juan A; Carrera, Sandra; Passali, Desiderio
2017-10-01
Foreign body aspiration remains a common and potentially serious pediatric problem. Most aspirated foreign bodies are food. The education of parents and caregivers about choking hazards and how to avoid them is critical to reduce the incidence of these events. The pediatricians play a key role in promoting injury prevention. We indicate the main characteristics of hazardous food and we present recommendations on age-appropriate meals, adequate forms of food preparation and behavioral rules at mealtimes in order to reduce food choking. Sociedad Argentina de Pediatría.
Does microbial resistance to biocides create a hazard to food hygiene?
Meyer, Bernhard
2006-12-01
Numerous reports are available on microbial resistance to antibiotics as well as to biocides. Instances of cross-resistance between these substance groups have been reported. Resistance, which is a genetically determined phenomenon, has to be distinguished from phenotypic adaptation processes, which are not hereditary. Adaptation can be avoided by rigorous cleaning and disinfection, avoiding concentrations of disinfectants below the microbicidal concentration. Resistance phenomena have to be divided into intrinsic and acquired resistance. Intrinsic resistance is the naturally greater resistance of certain microbial species compared to others. The term acquired resistance is used if certain strains of a microbial species differ significantly in their susceptibility to biocides compared to the average of this species. An overview of existing reports of resistance to different biocidal substances is given. In most of these reports, resistance is defined as an elevated minimum inhibitory concentration. The relevance of these data for disinfection processes, where microbicidal concentrations are applied, is discussed. Rotational use of different types of disinfectants, to avoid development of resistance, has been discussed controversially. Because of the unspecific mechanism of action of biocides, and the lack of scientific evidence for its need, rotational use of disinfectants is not recommended. In conclusion the risk of hazards in food production and processing caused by resistance to biocides is regarded as low.
The Radioactive Contamination of Food Following Nuclear Attack
Massey, E. E.
1967-01-01
The relative radiation hazards from early and delayed fallout following a nuclear attack have been reviewed. It is indicated that the hazard to life from whole-body gamma irradiation from early fallout far outweighs the hazard from radioactive contamination of food. Nevertheless, because of the possible effects of iodine-131, the consumption by infants of fresh milk from animals which have ingested contaminated fodder should be avoided if possible during the first few weeks after attack. During the same period, water from covered supplies should be used in preference to that from open reservoirs. It is more important, however, to alleviate hunger and thirst in both man and animal than to prevent the temporary ingestion of food which may be contaminated by fallout. PMID:6071130
Chemical Hygiene and Safety Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkner, K.
The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through trainingmore » and the Plan will serve as a the framework and reference guide for that training.« less
Lessons Learned From the Children’s Environmental Exposure Research Study
Resnik, David B.; Wing, Steven
2007-01-01
We examined 5 different ethical concerns about the Children’s Environmental Exposure Research Study and make some recommendations for future studies of exposure to hazardous environmental agents in the home. Researchers should seek community consultation and participation; make participants aware of all the risks associated with the research, including hazards discovered in the home and uncertainties about the risks of agents under investigation; and take steps to ensure that their studies will not have unfair representation of the poor or people of color. Researchers should also avoid even the appearance of a financial conflict of interest in studies that are likely to be controversial and make it clear to all parties that studies will not intentionally expose subjects to hazardous environmental agents. PMID:17267718
Lessons learned from the Children's Environmental Exposure Research Study.
Resnik, David B; Wing, Steven
2007-03-01
We examined 5 different ethical concerns about the Children's Environmental Exposure Research Study and make some recommendations for future studies of exposure to hazardous environmental agents in the home. Researchers should seek community consultation and participation; make participants aware of all the risks associated with the research, including hazards discovered in the home and uncertainties about the risks of agents under investigation; and take steps to ensure that their studies will not have unfair representation of the poor or people of color. Researchers should also avoid even the appearance of a financial conflict of interest in studies that are likely to be controversial and make it clear to all parties that studies will not intentionally expose subjects to hazardous environmental agents.
Analysis of Alerting System Failures in Commercial Aviation Accidents
NASA Technical Reports Server (NTRS)
Mumaw, Randall J.
2017-01-01
The role of an alerting system is to make the system operator (e.g., pilot) aware of an impending hazard or unsafe state so the hazard can be avoided or managed successfully. A review of 46 commercial aviation accidents (between 1998 and 2014) revealed that, in the vast majority of events, either the hazard was not alerted or relevant hazard alerting occurred but failed to aid the flight crew sufficiently. For this set of events, alerting system failures were placed in one of five phases: Detection, Understanding, Action Selection, Prioritization, and Execution. This study also reviewed the evolution of alerting system schemes in commercial aviation, which revealed naive assumptions about pilot reliability in monitoring flight path parameters; specifically, pilot monitoring was assumed to be more effective than it actually is. Examples are provided of the types of alerting system failures that have occurred, and recommendations are provided for alerting system improvements.
Project of Near-Real-Time Generation of ShakeMaps and a New Hazard Map in Austria
NASA Astrophysics Data System (ADS)
Jia, Yan; Weginger, Stefan; Horn, Nikolaus; Hausmann, Helmut; Lenhardt, Wolfgang
2016-04-01
Target-orientated prevention and effective crisis management can reduce or avoid damage and save lives in case of a strong earthquake. To achieve this goal, a project for automatic generated ShakeMaps (maps of ground motion and shaking intensity) and updating the Austrian hazard map was started at ZAMG (Zentralanstalt für Meteorologie und Geodynamik) in 2015. The first goal of the project is set for a near-real-time generation of ShakeMaps following strong earthquakes in Austria to provide rapid, accurate and official information to support the governmental crisis management. Using newly developed methods and software by SHARE (Seismic Hazard Harmonization in Europe) and GEM (Global Earthquake Model), which allows a transnational analysis at European level, a new generation of Austrian hazard maps will be ultimately calculated. More information and a status of our project will be given by this presentation.
49 CFR 195.210 - Pipeline location.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Pipeline location. 195.210 Section 195.210 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.210 Pipeline location. (a) Pipeline right-of-way must be selected to avoid, as...
Chi, Feng; Zhou, Jun; Zhang, Qi; Wang, Yong; Huang, Panling
2017-01-01
The vibration control of a construction vehicle must be carried out in order to meet the aims of sustainable environmental development and to avoid the potential human health hazards. In this paper, based on market feedback, the driver seat vibration of a type of wheel loader in the left and right direction, is found to be significant over a certain speed range. In order to find abnormal vibration components, the order tracking technique (OTT) and transmission path analysis (TPA) were used to analyze the vibration sources of the wheel loader. Through this analysis, it can be seen that the abnormal vibration comes from the interaction between the tire tread and the road, and this is because the vibration was amplified by the cab mount, which was eventually transmitted to the cab seat. Finally, the seat vibration amplitudes were decreased by up to 50.8%, after implementing the vibration reduction strategy. PMID:28282849
Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review
NASA Astrophysics Data System (ADS)
Sharman, Robert D.; Trier, S. B.
2018-03-01
Thunderstorms are known to produce turbulence. Such turbulence is commonly referred to as convectively induced turbulence or CIT, and can be hazardous to aviation. Although this turbulence can occur both within and outside the convection, out-of-cloud CIT is particularly hazardous, since it occurs in clear air and cannot be seen by eye or onboard radar. Furthermore, due to its small scale and its ties to the underlying convection, it is very difficult to forecast. Guidelines for out-of-cloud CIT avoidance are available, but they are oversimplified and can be misleading. In the search for more appropriate and physically based avoidance guidelines, considerable research has been conducted in recent years on the nature of the phenomenon, and in particular, its connection to gravity waves generated by the convection. This paper reviews the advances in our understanding of out-of-cloud CIT and its relation to convective gravity waves, and provides several detailed examples of observed cases to elucidate some of the underlying dynamics.
Chi, Feng; Zhou, Jun; Zhang, Qi; Wang, Yong; Huang, Panling
2017-03-08
The vibration control of a construction vehicle must be carried out in order to meet the aims of sustainable environmental development and to avoid the potential human health hazards. In this paper, based on market feedback, the driver seat vibration of a type of wheel loader in the left and right direction, is found to be significant over a certain speed range. In order to find abnormal vibration components, the order tracking technique (OTT) and transmission path analysis (TPA) were used to analyze the vibration sources of the wheel loader. Through this analysis, it can be seen that the abnormal vibration comes from the interaction between the tire tread and the road, and this is because the vibration was amplified by the cab mount, which was eventually transmitted to the cab seat. Finally, the seat vibration amplitudes were decreased by up to 50.8%, after implementing the vibration reduction strategy.
Young, Angela H; Crundall, David; Chapman, Peter
2017-04-01
Commentary driving typically involves being trained in how to produce a verbal running commentary about what you can see, what you are doing, what might happen and what action you will take to avoid potential hazards, while driving. Although video-based commentary training has been associated with subsequent hazard perception improvements, it can have a negative impact on hazard perception when a live commentary is produced at test (Young, Chapman, & Crundall, 2014). In the current study we use balanced training and testing blocks to isolate the effects of commentary exposure, production of a commentary with and without practice, and learning from earlier self-generation of commentary on behavioural and eye movement measures. Importantly, both commentary exposed and unexposed groups gave hazard perception responses during the commentary video, ensuring that the unexposed control group remained engaged in the procedure throughout. Results show that producing a live commentary is detrimental to concurrent hazard perception, even after practice, and does not enhance any later effect of commentary exposure. Although commentary exposure led to an initial increase in the accuracy of hazard perception responses, this effect was limited to the first occasion of testing, and showed no later benefits relative to engaged hazard exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Integration of Weather Avoidance and Traffic Separation
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.
2011-01-01
This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction
Tai, Bee-Choo; Grundy, Richard G; Machin, David
2010-04-01
In trials designed to delay or avoid irradiation among children with malignant brain tumor, although irradiation after disease progression is an important event, patients who have disease progression may decline radiotherapy (RT), or those without disease progression may opt for elective RT. To accurately describe the cumulative need for RT in such instances, it is crucial to account for these distinct events and to evaluate how each contributes to the delay or advancement of irradiation via a competing risks analysis. We describe the summary of competing events in such trials using competing risks methods based on cumulative incidence functions and Gray's test. The results obtained are contrasted with standard survival methods based on Kaplan-Meier curves, cause-specific hazard functions and log-rank test. The Kaplan-Meier method overestimates all event-specific rates. The cause-specific hazard analysis showed reduction in hazards for all events (A: RT after progression; B: no RT after progression; C: elective RT) among children with ependymoma. For event A, a higher cumulative incidence was reported for ependymoma. Although Gray's test failed to detect any difference (p = 0.331) between histologic subtypes, the log-rank test suggested marginal evidence (p = 0.057). Similarly, for event C, the log-rank test found stronger evidence of reduction in hazard among those with ependymoma (p = 0.005) as compared with Gray's test (p = 0.086). To evaluate treatment differences, failing to account for competing risks using appropriate methodology may lead to incorrect interpretations.
Up-Close Look at 'Bread-Basket'
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Mars Exploration Rover Spirit took this image with its front hazard-avoidance camera on sol 175 (June 30, 2004). It captures the instrument deployment device in perfect position as the rover uses its microscopic imager to get an up-close look at the rock target 'Bread-Basket.'ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE
The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...
Pötschger, Ulrike; Heinzl, Harald; Valsecchi, Maria Grazia; Mittlböck, Martina
2018-01-19
Investigating the impact of a time-dependent intervention on the probability of long-term survival is statistically challenging. A typical example is stem-cell transplantation performed after successful donor identification from registered donors. Here, a suggested simple analysis based on the exogenous donor availability status according to registered donors would allow the estimation and comparison of survival probabilities. As donor search is usually ceased after a patient's event, donor availability status is incompletely observed, so that this simple comparison is not possible and the waiting time to donor identification needs to be addressed in the analysis to avoid bias. It is methodologically unclear, how to directly address cumulative long-term treatment effects without relying on proportional hazards while avoiding waiting time bias. The pseudo-value regression technique is able to handle the first two issues; a novel generalisation of this technique also avoids waiting time bias. Inverse-probability-of-censoring weighting is used to account for the partly unobserved exogenous covariate donor availability. Simulation studies demonstrate unbiasedness and satisfying coverage probabilities of the new method. A real data example demonstrates that study results based on generalised pseudo-values have a clear medical interpretation which supports the clinical decision making process. The proposed generalisation of the pseudo-value regression technique enables to compare survival probabilities between two independent groups where group membership becomes known over time and remains partly unknown. Hence, cumulative long-term treatment effects are directly addressed without relying on proportional hazards while avoiding waiting time bias.
Secondhand smoke avoidance by preteens living with smokers: To leave or stay?
Ding, Ding; Wahlgren, Dennis R.; Liles, Sandy; Jones, Jennifer A.; Hughes, Suzanne C.; Hovell, Melbourne F.
2010-01-01
Introduction Secondhand smoke (SHS) is hazardous to children’s health. Designing interventions to reduce exposure requires understanding children’s behavior in the presence of smokers, yet little is known about this behavior. Purpose To determine whether children’s avoidance of SHS is associated with lower exposure and to explore predictors of avoidance based on a behavioral ecological model. Method Preteens aged 8–13 (N=358) living with a smoker identified their primary source of SHS exposure, and reported whether they left (avoided exposure) or stayed the last time they were exposed to that person’s smoke. The SHS avoidance measure was validated by examining associations with SHS exposure. Multivariable Logistic Regression was used to determine predictors of SHS avoidance. Results Based on urine cotinine and reported exposure, preteens who left the presence of SHS had lower exposure than those who stayed. Preteens were more likely to leave SHS if they were less physically mature, had not tried smoking, had a firm commitment not to smoke, did not assist family smoking, had family/friends who discouraged breathing SHS, or had friends who disliked smoking. Discussion Most SHS exposure reduction interventions have targeted changes in smokers’ behavior. Reductions can also be achieved by changing exposed nonsmokers’ behavior, such as avoiding the exposure. Future studies should measure young people’s SHS avoidance and test interventions to increase their avoidance practices. PMID:20634003
Morrongiello, Barbara A; McArthur, Brae Anne; Goodman, Samantha; Bell, Melissa
2015-01-01
This study compared boys' with girls' hazard-directed behaviors at home when the mother was present and absent from the room. Videos were coded for how children reacted to a contrived burn hazard ('Gadget'), maternal verbalizations to children about the hazard, and children's compliance with directives to avoid the hazard. Children's behavioral attributes (risk-taking tendency, inhibitory control) and maternal permissive parenting style were also measured. Boys engaged in more hazard-directed behaviors when the mother was present than absent, whereas girls' risk behaviors did not vary with caregiver presence and was comparable with how boys behaved when the parent was absent. Mothers emphasized reactive communications, and boys received significantly more of these than girls. Permissiveness was associated with fewer statements explaining about safety. Children high in inhibitory control showed fewer hazard-directed behaviors and greater compliance with parent communications, whereas those high in risk-taking propensity showed more hazard-directed behaviors and less compliance. The hazard-directed behaviors of boys and girls vary with caregiver context, with boys reacting to parent presence with increased risk taking. Depending on child attributes, different supervision patterns are needed to keep young children safe in the presence of home hazards. © The Author 2014. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Side View of 'Endurance Crater'
NASA Technical Reports Server (NTRS)
2004-01-01
This picture from the rear hazard-avoidance camera on NASA's Mars Exploration Rover Opportunity shows a side view of 'Endurance Crater.' Opportunity took the image on sol 188 (Aug. 4, 2004), before transmitting it and other data to the European Space Agency's Mars Express orbiter. The orbiter then relayed the data to Earth.Onboard Flow Sensing For Downwash Detection and Avoidance On Small Quadrotor Helicopters
2015-01-01
onboard computers, one for flight stabilization and a Linux computer for sensor integration and control calculations . The Linux computer runs Robot...Hirokawa, D. Kubo , S. Suzuki, J. Meguro, and T. Suzuki. Small uav for immediate hazard map generation. In AIAA Infotech@Aerospace Conf, May 2007. 8F
Code of Federal Regulations, 2013 CFR
2013-07-01
... avoid carrying loads over people. (vii) The operator shall test the brakes each time a load approaching... base supported by ropes attached to corner posts or other parts of the structure. The base is at a... safety hazard: (i) All control mechanisms: Inspect daily for adjustment, wear, and lubrication. (ii) All...
Code of Federal Regulations, 2012 CFR
2012-07-01
... avoid carrying loads over people. (vii) The operator shall test the brakes each time a load approaching... base supported by ropes attached to corner posts or other parts of the structure. The base is at a... safety hazard: (i) All control mechanisms: Inspect daily for adjustment, wear, and lubrication. (ii) All...
Code of Federal Regulations, 2014 CFR
2014-07-01
... avoid carrying loads over people. (vii) The operator shall test the brakes each time a load approaching... base supported by ropes attached to corner posts or other parts of the structure. The base is at a... safety hazard: (i) All control mechanisms: Inspect daily for adjustment, wear, and lubrication. (ii) All...
Code of Federal Regulations, 2011 CFR
2011-07-01
... avoid carrying loads over people. (vii) The operator shall test the brakes each time a load approaching... base supported by ropes attached to corner posts or other parts of the structure. The base is at a... safety hazard: (i) All control mechanisms: Inspect daily for adjustment, wear, and lubrication. (ii) All...
48 CFR 52.222-41 - Service Contract Act of 1965.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subcontractor which are unsanitary, hazardous, or dangerous to the health or safety of the service employees. The Contractor or subcontractor shall comply with the safety and health standards applied under 29 CFR... avoid serious impairment of the conduct of Government business. (1) Apprentices, student-learners, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... your comment. Electronic files should avoid the use of special characters, any form of encryption, and....epa.gov/epawaste/nonhaz/industrial/special/fossil/ccr-rule/index.htm . SUPPLEMENTARY INFORMATION: I... Integrity Surface Impoundment Assessments at: http://www.epa.gov/wastes/nonhaz/industrial.special/fossil...
Safe Leadership in OE; Part 1: Aspects of Safety.
ERIC Educational Resources Information Center
Peart, J. Richard
1991-01-01
Analyzes present trends in accidents occurring among groups engaged in outdoor or environmental education in England and Wales. Assesses the causes of the accidents and the qualifications of the group leaders. Provides statistics and examples of several incidents. Emphasizes the need for expert leadership to avoid hazards. Contains several tables…
40 CFR 1612.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... litigants; (4) Avoid spending the time and money of the United States for private purposes; and (5) To... requesting material for use in legal proceedings (including administrative proceedings) in which the Chemical Safety and Hazard Investigation Board (CSB) is not a party, and procedures to be followed by the employee...
Electrostatic hazards of charging of bedclothes and ignition in medical facilities.
Endo, Yuta; Ohsawa, Atsushi; Yamaguma, Mizuki
2018-02-26
We investigated the charge generated on bedclothes (cotton and polyester) during bedding exchange with different humidities and the ignitability of an alcohol-based hand sanitizer (72.3 mass% ethanol) due to static spark with different temperatures to identify the hazards of electrostatic shocks and ignitions occurring previously in medical facilities. The results indicated that charging of the polyester bedclothes may induce a human body potential of over about 10 kV, resulting in shocks even at a relative humidity of 50%, and a human body potential of higher than about 8 kV can cause a risk for the ignition of the hand sanitizer. The grounding of human bodies via footwear and flooring, therefore, is essential to avoid such hazards (or to reduce such risks).
NASA Technical Reports Server (NTRS)
2004-01-01
This animation shows the path the Mars Exploration Rover Spirit traveled during its 24-meter (78.7-foot) autonomous drive across the bumpy terrain at Gusev Crater, Mars, on the 39th day, or sol, of its mission. The colored data are from the rover's hazard-avoidance camera and have been reconstructed to show the topography of the land. Red areas indicate extremely hazardous terrain, and green patches denote safe, smooth ground. At the end of its drive, Spirit decided it was safer to back up then go forward. The rover is now positioned directly in front of its target, a rock dubbed Stone Council.
NASA Astrophysics Data System (ADS)
Thompson, N. A.; Ruck, H. W.
1984-04-01
The Air Force is interested in identifying potentially hazardous tasks and prevention of accidents. This effort proposes four methods for determining safety training priorities for job tasks in three enlisted specialties. These methods can be used to design training aimed at avoiding loss of people, time, materials, and money associated with on-the-job accidents. Job tasks performed by airmen were measured using task and job factor ratings. Combining accident reports and job inventories, subject-matter experts identified tasks associated with accidents over a 3-year period. Applying correlational, multiple regression, and cost-benefit analysis, four methods were developed for ordering hazardous tasks to determine safety training priorities.
Path planning and execution monitoring for a planetary rover
NASA Technical Reports Server (NTRS)
Gat, Erann; Slack, Marc G.; Miller, David P.; Firby, R. James
1990-01-01
A path planner and an execution monitoring planner that will enable the rover to navigate to its various destinations safely and correctly while detecting and avoiding hazards are described. An overview of the complete architecture is given. Implementation and testbeds are described. The robot can detect unforseen obstacles and take appropriate action. This includes having the rover back away from the hazard and mark the area as untraversable in the in the rover's internal map. The experiments have consisted of paths roughly 20 m in length. The architecture works with a large variety of rover configurations with different kinematic constraints.
The distinction between risk and hazard: understanding and use in stakeholder communication.
Scheer, Dirk; Benighaus, Christina; Benighaus, Ludger; Renn, Ortwin; Gold, Stefan; Röder, Bettina; Böl, Gaby-Fleur
2014-07-01
A major issue in all risk communication efforts is the distinction between the terms "risk" and "hazard." The potential to harm a target such as human health or the environment is normally defined as a hazard, whereas risk also encompasses the probability of exposure and the extent of damage. What can be observed again and again in risk communication processes are misunderstandings and communication gaps related to these crucial terms. We asked a sample of 53 experts from public authorities, business and industry, and environmental and consumer organizations in Germany to outline their understanding and use of these terms using both the methods of expert interviews and focus groups. The empirical study made clear that the terms risk and hazard are perceived and used very differently in risk communication depending on the perspective of the stakeholders. Several factors can be identified, such as responsibility for hazard avoidance, economic interest, or a watchdog role. Thus, communication gaps can be reduced to a four-fold problem matrix comprising a semantic, conceptual, strategic, and control problem. The empirical study made clear that risks and hazards are perceived very differently depending on the stakeholders' perspective. Their own worldviews played a major role in their specific use of the two terms hazards and risks in communication. © 2014 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Odbert, H. M.; Aspinall, W.; Phillips, J.; Jenkins, S.; Wilson, T. M.; Scourse, E.; Sheldrake, T.; Tucker, P.; Nakeshree, K.; Bernardara, P.; Fish, K.
2015-12-01
Societies rely on critical services such as power, water, transport networks and manufacturing. Infrastructure may be sited to minimise exposure to natural hazards but not all can be avoided. The probability of long-range transport of a volcanic plume to a site is comparable to other external hazards that must be considered to satisfy safety assessments. Recent advances in numerical models of plume dispersion and stochastic modelling provide a formalized and transparent approach to probabilistic assessment of hazard distribution. To understand the risks to critical infrastructure far from volcanic sources, it is necessary to quantify their vulnerability to different hazard stressors. However, infrastructure assets (e.g. power plantsand operational facilities) are typically complex systems in themselves, with interdependent components that may differ in susceptibility to hazard impact. Usually, such complexity means that risk either cannot be estimated formally or that unsatisfactory simplifying assumptions are prerequisite to building a tractable risk model. We present a new approach to quantifying risk by bridging expertise of physical hazard modellers and infrastructure engineers. We use a joint expert judgment approach to determine hazard model inputs and constrain associated uncertainties. Model outputs are chosen on the basis of engineering or operational concerns. The procedure facilitates an interface between physical scientists, with expertise in volcanic hazards, and infrastructure engineers, with insight into vulnerability to hazards. The result is a joined-up approach to estimating risk from low-probability hazards to critical infrastructure. We describe our methodology and show preliminary results for vulnerability to volcanic hazards at a typical UK industrial facility. We discuss our findings in the context of developing bespoke assessment of hazards from distant sources in collaboration with key infrastructure stakeholders.
The contribution of attention in virtual moped riding training of teenagers.
Tagliabue, Mariaelena; Da Pos, Osvaldo; Spoto, Andrea; Vidotto, Giulio
2013-08-01
Riding a moped, like many other everyday activities, is a complex behavior in which attention plays a crucial role. This study aims to investigate the role of attention in enhancing the skills required to ride a moped simulator. Two experiments were conducted with 207 and 60 students (14-15 years old), respectively, using a moped simulator to ride on 12 different tracks. The assignment was to ride safely and avoid hazards. In experiment 1, we divided the hazard scenes of the tracks on the basis of the fact that a shift in attention was required to escape the danger. We showed that during the riding training, when no attentional shift was required, the ability to avoid hazards was constantly higher. In experiment 2, participants were asked to cope with the same basic experimental setting but with an additional attentive task. The results showed that they performed in such a way that not only did the attentive task not impair their performance, but it also produced an improvement in the ability to shift attentional focus, preserving performance efficiency. On the basis of these data, it can be claimed that, primarily, attentional shift plays a prominent role in accounting for accident circumstances. Secondarily, it can be claimed that attentional training contributes to improved processing efficiency so as to prevent mishaps. Copyright © 2013 Elsevier Ltd. All rights reserved.
18 CFR 380.12 - Environmental reports for Natural Gas Act applications.
Code of Federal Regulations, 2012 CFR
2012-04-01
... how the project would be located or designed to avoid or minimize adverse effects to the resources or... route or site and the reasons for rejecting it. Provide comparative tables showing the differences in... affect reliability, and what procedures and design features have been used to reduce potential hazards...
18 CFR 380.12 - Environmental reports for Natural Gas Act applications.
Code of Federal Regulations, 2013 CFR
2013-04-01
... how the project would be located or designed to avoid or minimize adverse effects to the resources or... route or site and the reasons for rejecting it. Provide comparative tables showing the differences in... affect reliability, and what procedures and design features have been used to reduce potential hazards...
18 CFR 380.12 - Environmental reports for Natural Gas Act applications.
Code of Federal Regulations, 2014 CFR
2014-04-01
... how the project would be located or designed to avoid or minimize adverse effects to the resources or... route or site and the reasons for rejecting it. Provide comparative tables showing the differences in... affect reliability, and what procedures and design features have been used to reduce potential hazards...
18 CFR 380.12 - Environmental reports for Natural Gas Act applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... how the project would be located or designed to avoid or minimize adverse effects to the resources or... route or site and the reasons for rejecting it. Provide comparative tables showing the differences in... affect reliability, and what procedures and design features have been used to reduce potential hazards...
18 CFR 380.12 - Environmental reports for Natural Gas Act applications.
Code of Federal Regulations, 2011 CFR
2011-04-01
... how the project would be located or designed to avoid or minimize adverse effects to the resources or... route or site and the reasons for rejecting it. Provide comparative tables showing the differences in... affect reliability, and what procedures and design features have been used to reduce potential hazards...
2004-01-10
This frame from an animation flips back and forth between images taken before and after deployment of the Mars Exploration Rover Spirit's bogie, a part of the rover's suspension system that extends the wheel base. These images were taken by Spirit's hazard avoidance camera. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA05040
ERIC Educational Resources Information Center
Aronson, Susan S.
1990-01-01
Discusses the need for child care providers to be sure children in their care who are between the ages of 15 months and 5 years have had Haemophilus influenzae type b (Hib) vaccine. Urges child care center staff to avoid use of bean bag infant cushions and to inform parents about the hazards posed by the cushions. (DR)
16 CFR § 1404.1 - Scope, application, and effective date.
Code of Federal Regulations, 2013 CFR
2013-01-01
... SAFETY ACT REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope... insulation to notify (1) prospective purchasers of such products at the time of original purchase and (2) the... avoid the fire hazard that exists where cellulose insulation is installed too close to the sides or over...
Seeking and Avoiding Information in a Risky World
ERIC Educational Resources Information Center
Choo, Chun Wei
2017-01-01
Introduction: In an era where collective action is necessary to confront societal level risks such as climate change and food safety, we need to better understand how people are motivated to seek risk information that would lead them to make choices and behavioural changes to mitigate those hazards. Method: We selectively review the research in…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial- Commercial-Institutional, and... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any...