A Bernoulli Formulation of the Land-Use Portfolio Model
Champion, Richard A.
2008-01-01
Decision making for natural-hazards mitigation can be sketched as knowledge available in advance (a priori), knowledge available later (a posteriori), and how consequences of the mitigation decision might be viewed once future outcomes are known. Two outcomes - mitigating for a hazard event that will occur, and not mitigating for a hazard event that will not occur - can be considered narrowly correct. Two alternative outcomes - mitigating for a hazard event that will not occur, and not mitigating for a hazard event that will occur - can be considered narrowly incorrect. The dilemma facing the decision maker is that mitigation choices must be made before the event, and often must be made with imperfect statistical techniques and imperfect data.
Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method
NASA Astrophysics Data System (ADS)
Nugraha, A. L.; Awaluddin, M.; Sasmito, B.
2018-02-01
One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plesko, Catherine S; Clement, R Ryan; Weaver, Robert P
2009-01-01
The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of amore » comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.« less
Steve Ostro and the Near-Earth Asteroid Impact Hazard
NASA Astrophysics Data System (ADS)
Chapman, Clark R.
2009-09-01
The late Steve Ostro, whose scientific interests in Near-Earth Asteroids (NEAs) primarily related to his planetary radar research in the 1980s, soon became an expert on the impact hazard. He quickly realized that radar provided perspectives on close-approaching NEAs that were both very precise as well as complementary to traditional astrometry, enabling good predictions of future orbits and collision probabilities extending for centuries into the future. He also was among the few astronomers who considered the profound issues raised by this newly recognized hazard and by early suggestions of how to mitigate the hazard. With Carl Sagan, Ostro articulated the "deflection dilemma" and other potential low-probability but real dangers of mitigation technologies that might be more serious than the low-probability impact hazard itself. Yet Ostro maintained a deep interest in developing responsible mitigation technologies, in educating the public about the nature of the impact hazard, and in learning more about the population of threatening bodies, especially using the revealing techniques of delay-doppler radar mapping of NEAs and their satellites.
Techniques for development of safety-related software for surgical robots.
Varley, P
1999-12-01
Regulatory bodies require evidence that software controlling potentially hazardous devices is developed to good manufacturing practices. Effective techniques used in other industries assume long timescales and high staffing levels and can be unsuitable for use without adaptation in developing electronic healthcare devices. This paper discusses a set of techniques used in practice to develop software for a particular innovative medical product, an endoscopic camera manipulator. These techniques include identification of potential hazards and tracing their mitigating factors through the project lifecycle.
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.
2013-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for the production and use of new tsunami hazard analysis products. 4) Identify multistate collaborations and funding partners interested in these new products. Application of these new products will improve the overall safety and resilience of coastal communities exposed to tsunami hazards.
Volcanic hazards and their mitigation: progress and problems
Tilling, R.I.
1989-01-01
A review of hazards mitigation approaches and techniques indicates that significant advances have been made in hazards assessment, volcano monioring, and eruption forecasting. For example, the remarkable accuracy of the predictions of dome-building events at Mount St. Helens since June 1980 is unprecedented. Yet a predictive capability for more voluminous and explosive eruptions still has not been achieved. Studies of magma-induced seismicity and ground deformation continue to provide the most systematic and reliable data for early detection of precursors to eruptions and shallow intrusions. In addition, some other geophysical monitoring techniques and geochemical methods have been refined and are being more widely applied and tested. Comparison of the four major volcanic disasters of the 1980s (Mount St. Helens, U.S.A. (1980), El Chichon, Mexico (1982); Galunggung, Indonesia (1982); and Nevado del Ruiz, Colombia (1985)) illustrates the importance of predisaster geoscience studies, volcanic hazards assessments, volcano monitoring, contingency planning, and effective communications between scientists and authorities. -from Author
NASA Astrophysics Data System (ADS)
Matsangouras, Ioannis T.; Nastos, Panagiotis T.
2014-05-01
Natural hazards pose an increasing threat to society and new innovative techniques or methodologies are necessary to be developed, in order to enhance the risk mitigation process in nowadays. It is commonly accepted that disaster risk reduction is a vital key for future successful economic and social development. The systematic improvement accuracy of extended-range prognosis products, relating with monthly and seasonal predictability, introduced them as a new essential link in risk mitigation procedure. Aiming at decreasing the risk, this paper presents the use of seasonal and monthly forecasting process that was tested over west Greece from September to December, 2013. During that season significant severe weather events occurred, causing significant impact to the local society (severe storms/rainfalls, hail, flash floods, etc). Seasonal and monthly forecasting products from European Centre for Medium-Range Weather Forecasts (ECMWF) depicted, with probabilities stratified by terciles, areas of Greece where significant weather may occur. As atmospheric natural hazard early warning systems are able to deliver warnings up to 72 hours in advance, this study illustrates that extended-range prognosis could be introduced as a new technique in risk mitigation. Seasonal and monthly forecast products could highlight extended areas where severe weather events may occur in one month lead time. In addition, a risk mitigation procedure, that extended prognosis products are adopted, is also presented providing useful time to preparedness process at regional administration level.
Recording and cataloging hazards information, revision A
NASA Technical Reports Server (NTRS)
Stein, R. J.
1974-01-01
A data collection process is described for the purpose of discerning causation factors of accidents, and the establishment of boundaries or controls aimed at mitigating and eliminating accidents. A procedure is proposed that suggests a discipline approach to hazard identification based on energy interrelationships together with an integrated control technique which takes the form of checklists.
An Online Resource for Flight Test Safety Planning
NASA Technical Reports Server (NTRS)
Lewis, Greg
2007-01-01
A viewgraph presentation describing an online database for flight test safety techniques is shown. The topics include: 1) Goal; 2) Test Hazard Analyses; 3) Online Database Background; 4) Data Gathering; 5) NTPS Role; 6) Organizations; 7) Hazard Titles; 8) FAR Paragraphs; 9) Maneuver Name; 10) Identified Hazard; 11) Matured Hazard Titles; 12) Loss of Control Causes; 13) Mitigations; 14) Database Now Open to the Public; 15) FAR Reference Search; 16) Record Field Search; 17) Keyword Search; and 18) Results of FAR Reference Search.
Hydrothermal Liquefaction Treatment Hazard Analysis Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, Peter P.; Wagner, Katie A.
Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios receivedmore » increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.« less
Rodriguez-Paz, Jose M; Mark, Lynette J; Herzer, Kurt R; Michelson, James D; Grogan, Kelly L; Herman, Joseph; Hunt, David; Wardlow, Linda; Armour, Elwood P; Pronovost, Peter J
2009-01-01
Since the Institute of Medicine's report, To Err is Human, was published, numerous interventions have been designed and implemented to correct the defects that lead to medical errors and adverse events; however, most efforts were largely reactive. Safety, communication, team performance, and efficiency are areas of care that attract a great deal of attention, especially regarding the introduction of new technologies, techniques, and procedures. We describe a multidisciplinary process that was implemented at our hospital to identify and mitigate hazards before the introduction of a new technique: high-dose-rate intraoperative radiation therapy, (HDR-IORT). A multidisciplinary team of surgeons, anesthesiologists, radiation oncologists, physicists, nurses, hospital risk managers, and equipment specialists used a structured process that included in situ clinical simulation to uncover concerns among care providers and to prospectively identify and mitigate defects for patients who would undergo surgery using the HDR-IORT technique. We identified and corrected 20 defects in the simulated patient care process before application to actual patients. Subsequently, eight patients underwent surgery using the HDR-IORT technique with no recurrence of simulation-identified or unanticipated defects. Multiple benefits were derived from the use of this systematic process to introduce the HDR-IORT technique; namely, the safety and efficiency of care for this select patient population was optimized, and this process mitigated harmful or adverse events before the inclusion of actual patients. Further work is needed, but the process outlined in this paper can be universally applied to the introduction of any new technologies, treatments, or procedures.
ENVIRONMENTALLY-BENIGN MULTIPHASE CATALYSIS. (R826034)
Environmental concerns stemming from the use of conventional solvents and from hazardous waste generation have propelled research efforts aimed at developing benign chemical processing techniques that either eliminate or significantly mitigate pollution at the source. This pap...
Horney, Jennifer A; Nguyen, Mai; Cooper, John; Simon, Matthew; Ricchetti-Masterson, Kristen; Grabich, Shannon; Salvesen, David; Berke, Philip
2013-01-01
Rural areas of the United States are uniquely vulnerable to the impacts of natural disasters. One possible way to mitigate vulnerability to disasters in rural communities is to have a high-quality hazard mitigation plan in place. To understand the resources available for hazard mitigation planning and determine how well hazard mitigation plans in rural counties meet the needs of vulnerable populations, we surveyed the lead planning or emergency management official responsible for hazard mitigation plans in 96 rural counties in eight states in the Southeastern United States. In most counties, emergency management was responsible for implementing the county's hazard mitigation plan and the majority of counties had experienced a presidentially declared disaster in the last 5 years. Our research findings demonstrated that there were differences in subjective measures of vulnerability (as reported by survey respondents) and objective measures of vulnerability (as determined by US Census data). In addition, although few counties surveyed included outreach to vulnerable groups as a part of their hazard mitigation planning process, a majority felt that their hazard mitigation plan addressed the needs of vulnerable populations "well" or "very well." These differences could result in increased vulnerabilities in rural areas, particularly for certain vulnerable groups.
Debris flow hazards mitigation--Mechanics, prediction, and assessment
Chen, C.-L.; Major, J.J.
2007-01-01
These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
...; State/Local/Tribal Hazard Mitigation Plans AGENCY: Federal Emergency Management Agency, DHS. ACTION... . SUPPLEMENTARY INFORMATION: Collection of Information Title: State/Local/Tribal Hazard Mitigation Plans. Type of... Tribal Hazard Mitigation Plan requirements is to support the administration of FEMA Mitigation grant...
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
NASA Astrophysics Data System (ADS)
Day, S. J.; Fearnley, C. J.
2013-12-01
Large investments in the mitigation of natural hazards, using a variety of technology-based mitigation strategies, have proven to be surprisingly ineffective in some recent natural disasters. These failures reveal a need for a systematic classification of mitigation strategies; an understanding of the scientific uncertainties that affect the effectiveness of such strategies; and an understanding of how the different types of strategy within an overall mitigation system interact destructively to reduce the effectiveness of the overall mitigation system. We classify mitigation strategies into permanent, responsive and anticipatory. Permanent mitigation strategies such as flood and tsunami defenses or land use restrictions, are both costly and 'brittle': when they malfunction they can increase mortality. Such strategies critically depend on the accuracy of the estimates of expected hazard intensity in the hazard assessments that underpin their design. Responsive mitigation strategies such as tsunami and lahar warning systems rely on capacities to detect and quantify the hazard source events and to transmit warnings fast enough to enable at risk populations to decide and act effectively. Self-warning and voluntary evacuation is also usually a responsive mitigation strategy. Uncertainty in the nature and magnitude of the detected hazard source event is often the key scientific obstacle to responsive mitigation; public understanding of both the hazard and the warnings, to enable decision making, can also be a critical obstacle. Anticipatory mitigation strategies use interpretation of precursors to hazard source events and are used widely in mitigation of volcanic hazards. Their critical limitations are due to uncertainties in time, space and magnitude relationships between precursors and hazard events. Examples of destructive interaction between different mitigation strategies are provided by the Tohoku 2011 earthquake and tsunami; recent earthquakes that have impacted population centers with poor enforcement of building codes, unrealistic expectations of warning systems or failures to understand local seismic damage mechanisms; and the interaction of land use restriction strategies and responsive warning strategies around lahar-prone volcanoes. A more complete understanding of the interactions between these different types of mitigation strategy, especially the consequences for the expectations and behaviors of the populations at risk, requires models of decision-making under high levels of both uncertainty and danger. The Observation-Orientation-Decision-Action (OODA) loop model (Boyd, 1987) may be a particularly useful model. It emphasizes the importance of 'orientation' (the interpretation of observations and assessment of their significance for the observer and decision-maker), the feedback between decisions and subsequent observations and orientations, and the importance of developing mitigation strategies that are flexible and so able to respond to the occurrence of the unexpected. REFERENCE: Boyd, J.R. A Discourse on Winning and Losing [http://dnipogo.org/john-r-boyd/
Geo-electromagnetic research aids geo-hazard mitigation
NASA Astrophysics Data System (ADS)
Chiappini, M.; Carmisciano, C.; Faggioni, O.
Some 100 Earth scientists from nine different nations recently gathered in Lerici, Italy; for the Second International Workshop on Geo-Electro-Magnetism. While this was not a thematic meeting, most of the 40 papers presented focused on applications of electromagnetic methods to natural or man-made hazards such as known faults, seismically active regions, volcanoes, landslides, and environmental or civil engineering problems. Anomaly and main field studies, both field investigations and theoretical techniques, were also well represented.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
...; Hazard Mitigation Grant Program Application and Reporting AGENCY: Federal Emergency Management [email protected] . SUPPLEMENTARY INFORMATION: Collection of Information Title: Hazard Mitigation Grant... Titles and Numbers: No Form. Abstract: The Hazard Mitigation Grant Program is a post-disaster program...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.3...-related hazard mitigation programs and grants, including: (1) Issue program implementation procedures, as... governments regarding the mitigation and grants management process; (5) Review and approve State, Indian...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
...; State Administrative Plan for the Hazard Mitigation Grant Program AGENCY: Federal Emergency Management...: Collection of Information Title: State Administrative Plan for the Hazard Mitigation Grant Program. Type of... guide that details how the State will administer the Hazard Mitigation Grant Program (HMGP). An approved...
Dinitz, Laura B.
2008-01-01
With costs of natural disasters skyrocketing and populations increasingly settling in areas vulnerable to natural hazards, society is challenged to better allocate its limited risk-reduction resources. In 2000, Congress passed the Disaster Mitigation Act, amending the Robert T. Stafford Disaster Relief and Emergency Assistance Act (Robert T. Stafford Disaster Relief and Emergency Assistance Act, Pub. L. 93-288, 1988; Federal Emergency Management Agency, 2002, 2008b; Disaster Mitigation Act, 2000), mandating that State, local, and tribal communities prepare natural-hazard mitigation plans to qualify for pre-disaster mitigation grants and post-disaster aid. The Federal Emergency Management Agency (FEMA) was assigned to coordinate and implement hazard-mitigation programs, and it published information about specific mitigation-plan requirements and the mechanisms (through the Hazard Mitigation Grant Program-HMGP) for distributing funds (Federal Emergency Management Agency, 2002). FEMA requires that each community develop a mitigation strategy outlining long-term goals to reduce natural-hazard vulnerability, mitigation objectives and specific actions to reduce the impacts of natural hazards, and an implementation plan for those actions. The implementation plan should explain methods for prioritizing, implementing, and administering the actions, along with a 'cost-benefit review' justifying the prioritization. FEMA, along with the National Institute of Building Sciences (NIBS), supported the development of HAZUS ('Hazards U.S.'), a geospatial natural-hazards loss-estimation tool, to help communities quantify potential losses and to aid in the selection and prioritization of mitigation actions. HAZUS was expanded to a multiple-hazard version, HAZUS-MH, that combines population, building, and natural-hazard science and economic data and models to estimate physical damages, replacement costs, and business interruption for specific natural-hazard scenarios. HAZUS-MH currently performs analyses for earthquakes, floods, and hurricane wind. HAZUS-MH loss estimates, however, do not account for some uncertainties associated with the specific natural-hazard scenarios, such as the likelihood of occurrence within a particular time horizon or the effectiveness of alternative risk-reduction options. Because of the uncertainties involved, it is challenging to make informative decisions about how to cost-effectively reduce risk from natural-hazard events. Risk analysis is one approach that decision-makers can use to evaluate alternative risk-reduction choices when outcomes are unknown. The Land Use Portfolio Model (LUPM), developed by the U.S. Geological Survey (USGS), is a geospatial scenario-based tool that incorporates hazard-event uncertainties to support risk analysis. The LUPM offers an approach to estimate and compare risks and returns from investments in risk-reduction measures. This paper describes and demonstrates a hypothetical application of the LUPM for Ventura County, California, and examines the challenges involved in developing decision tools that provide quantitative methods to estimate losses and analyze risk from natural hazards.
Rio Soliette (haiti): AN International Initiative for Flood-Hazard Assessment and Mitigation
NASA Astrophysics Data System (ADS)
Gandolfi, S.; Castellarin, A.; Barbarella, M.; Brath, A.; Domeneghetti, A.; Brandimarte, L.; Di Baldassarre, G.
2013-01-01
Natural catastrophic events are one of most critical aspects for health and economy all around the world. However, the impact in a poor region can impact more dramatically than in others countries. Isla Hispaniola (Haiti and the Dominican Republic), one of the poorest regions of the planet, has repeatedly been hit by catastrophic natural disasters that caused incalculable human and economic losses. After the catastrophic flood event occurred in the basin of River Soliette on May 24th, 2004, the General Direction for Development and Cooperation of the Italian Department of Foreign Affairs funded an international cooperation initiative (ICI) coordinated by the University of Bologna, that involved Haitian and Dominican institutions.Main purpose of the ICI was hydrological and hydraulic analysis of the May 2004 flood event aimed at formulating a suitable and affordable flood risk mitigation plan, consisting of structural and non-structural measures. In this contest, a topographic survey was necessary to realize the hydrological model and to improve the knowledge in some areas candidates to be site for mitigation measures.To overcome the difficulties arising from the narrowness of funds, surveyors and limited time available for the survey, only GPS technique have been used, both for framing aspects (using PPP approach), and for geometrical survey of the river by means of river cross-sections and detailed surveys in two areas (RTK technique). This allowed us to reconstruct both the river geometry and the DTM's of two expansion areas (useful for design hydraulic solutions for mitigate flood-hazard risk).
NASA Astrophysics Data System (ADS)
Ahmed, Ayman A.; Diab, Maghawri S.
2018-04-01
Wadi Feiran basin is one of the most promising areas in southern Sinai (Egypt) for establishing new communities and for growth in agriculture, tourism, and industry. The present challenges against development include water runoff hazards (flash flooding), the increasing water demand, and water scarcity and contamination. These challenges could be mitigated by efficient use of runoff and rainwater through appropriate management, thereby promoting sustainable development. Strategies include the mitigation of runoff hazards and promoting the natural and artificial recharge of aquifers. This study uses a watershed modeling system, geographic information system, and classification scheme to predict the effects of various mitigation options on the basin's water resources. Rainwater-harvesting techniques could save more than 77% of the basin's runoff (by volume), which could be used for storage and aquifer recharge. A guide map is provided that shows possible locations for the proposed mitigation options in the study basin. Appropriate measures should be undertaken urgently: mitigation of groundwater contamination (including effective sewage effluent management); regular monitoring of the municipal, industrial and agricultural processes that release contaminants; rationalization and regulation of the application of agro-chemicals to farmland; and regular monitoring of contaminants in groundwater. Stringent regulations should be implemented to prevent wastewater disposal to the aquifers in the study area.
Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick
2009-01-01
Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters
Success in transmitting hazard science
NASA Astrophysics Data System (ADS)
Price, J. G.; Garside, T.
2010-12-01
Money motivates mitigation. An example of success in communicating scientific information about hazards, coupled with information about available money, is the follow-up action by local governments to actually mitigate. The Nevada Hazard Mitigation Planning Committee helps local governments prepare competitive proposals for federal funds to reduce risks from natural hazards. Composed of volunteers with expertise in emergency management, building standards, and earthquake, flood, and wildfire hazards, the committee advises the Nevada Division of Emergency Management on (1) the content of the State’s hazard mitigation plan and (2) projects that have been proposed by local governments and state agencies for funding from various post- and pre-disaster hazard mitigation programs of the Federal Emergency Management Agency. Local governments must have FEMA-approved hazard mitigation plans in place before they can receive this funding. The committee has been meeting quarterly with elected and appointed county officials, at their offices, to encourage them to update their mitigation plans and apply for this funding. We have settled on a format that includes the county’s giving the committee an overview of its infrastructure, hazards, and preparedness. The committee explains the process for applying for mitigation grants and presents the latest information that we have about earthquake hazards, including locations of nearby active faults, historical seismicity, geodetic strain, loss-estimation modeling, scenarios, and documents about what to do before, during, and after an earthquake. Much of the county-specific information is available on the web. The presentations have been well received, in part because the committee makes the effort to go to their communities, and in part because the committee is helping them attract federal funds for local mitigation of not only earthquake hazards but also floods (including canal breaches) and wildfires, the other major concerns in Nevada. Local citizens appreciate the efforts of the state officials to present the information in a public forum. The Committee’s earthquake presentations to the counties are supplemented by regular updates in the two most populous counties during quarterly meetings of the Nevada Earthquake Safety Council, generally alternating between Las Vegas and Reno. We have only 17 counties in Nevada, so we are making good progress at reaching each within a few years. The Committee is also learning from the county officials about their frustrations in dealing with the state and federal bureaucracies. Success is documented by the mitigation projects that FEMA has funded.
Playing against nature: improving earthquake hazard mitigation
NASA Astrophysics Data System (ADS)
Stein, S. A.; Stein, J.
2012-12-01
The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the uncertainties and the need to candidly assess them. It can be applied to exploring policies under various hazard scenarios and mitigating other natural hazards.ariation in total cost, the sum of expected loss and mitigation cost, as a function of mitigation level. The optimal level of mitigation, n*, minimizes the total cost. The expected loss depends on the hazard model, so the better the hazard model, the better the mitigation policy (Stein and Stein, 2012).
NASA Astrophysics Data System (ADS)
Zhao, Chao-ying; Zhang, Qin; Yang, Chengsheng; Zou, Weibao
2011-07-01
Datong is located in the north of Shanxi Province, which is famous for its old-fashioned coal-mining preservation in China. Some serious issues such as land subsidence, ground fissures, mining collapse, and earthquake hazards have occurred over this area for a long time resulting in significant damages to buildings and roads. In order to monitor and mitigate these natural man-made hazards, Short Baseline Subsets (SBAS) InSAR technique with ten Envisat ASAR data is applied to detect the surface deformation over an area of thousands of square kilometers. Then, five MODIS data are used to check the atmospheric effects on InSAR interferograms. Finally, nine nonlinear land subsidence cumulative results during September 2004 and February 2008 are obtained. Based on the deformation data, three kinds of land subsidence are clearly detected, caused by mine extraction, underground water withdrawal and construction of new economic zones, respectively. The annual mean velocity of subsidence can reach 1 to 4 cm/year in different subsidence areas. A newly designed high-speed railway (HSR) with speeds of 350 km/h will cross through the Datong hi-tech zone. Special measures should be taken for the long run of this project. In addition, another two subsidence regions need further investigation to mitigate such hazards.
Bernknopf, R.L.; Dinitz, L.B.; Rabinovici, S.J.M.; Evans, A.M.
2001-01-01
In the past, efforts to prevent catastrophic losses from natural hazards have largely been undertaken by individual property owners based on site-specific evaluations of risks to particular buildings. Public efforts to assess community vulnerability and encourage mitigation have focused on either aggregating site-specific estimates or adopting standards based upon broad assumptions about regional risks. This paper develops an alternative, intermediate-scale approach to regional risk assessment and the evaluation of community mitigation policies. Properties are grouped into types with similar land uses and levels of hazard, and hypothetical community mitigation strategies for protecting these properties are modeled like investment portfolios. The portfolios consist of investments in mitigation against the risk to a community posed by a specific natural hazard, and are defined by a community's mitigation budget and the proportion of the budget invested in locations of each type. The usefulness of this approach is demonstrated through an integrated assessment of earthquake-induced lateral-spread ground failure risk in the Watsonville, California area. Data from the magnitude 6.9 Loma Prieta earthquake of 1989 are used to model lateral-spread ground failure susceptibility. Earth science and economic data are combined and analyzed in a Geographic Information System (GIS). The portfolio model is then used to evaluate the benefits of mitigating the risk in different locations. Two mitigation policies, one that prioritizes mitigation by land use type and the other by hazard zone, are compared with a status quo policy of doing no further mitigation beyond that which already exists. The portfolio representing the hazard zone rule yields a higher expected return than the land use portfolio does: However, the hazard zone portfolio experiences a higher standard deviation. Therefore, neither portfolio is clearly preferred. The two mitigation policies both reduce expected losses and increase overall expected community wealth compared to the status quo policy.
Recent developments in machine learning applications in landslide susceptibility mapping
NASA Astrophysics Data System (ADS)
Lun, Na Kai; Liew, Mohd Shahir; Matori, Abdul Nasir; Zawawi, Noor Amila Wan Abdullah
2017-11-01
While the prediction of spatial distribution of potential landslide occurrences is a primary interest in landslide hazard mitigation, it remains a challenging task. To overcome the scarceness of complete, sufficiently detailed geomorphological attributes and environmental conditions, various machine-learning techniques are increasingly applied to effectively map landslide susceptibility for large regions. Nevertheless, limited review papers are devoted to this field, particularly on the various domain specific applications of machine learning techniques. Available literature often report relatively good predictive performance, however, papers discussing the limitations of each approaches are quite uncommon. The foremost aim of this paper is to narrow these gaps in literature and to review up-to-date machine learning and ensemble learning techniques applied in landslide susceptibility mapping. It provides new readers an introductory understanding on the subject matter and researchers a contemporary review of machine learning advancements alongside the future direction of these techniques in the landslide mitigation field.
Identification and delineation of areas flood hazard using high accuracy of DEM data
NASA Astrophysics Data System (ADS)
Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.
2018-05-01
Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.
NASA Astrophysics Data System (ADS)
Console, R.; Greco, M.; Colangelo, A.; Cioè, A.; Trivigno, L.; Chiappini, M.; Ponzo, F.
2015-12-01
Recognizing that the Italian territory is prone to disasters in connection with seismic and hydro-geological risk, it has become necessary to define novel regulations and viable solutions aimed at conveying the economical resources of the Italian Government, too often utilized for the management of post-event situations, towards prevention activities. The work synthetically presents the project developed by the CGIAM together with the INGV, and open to collaboration with other Italian and International partners. This project is aimed at the development of a National System for prevention and mitigation of the earthquakes damages, through the definition of a model that achieves the mitigation of the building collapsing risk and the consequent reduction of casualties. Such a model is based on two main issues a) a correct evaluation of risk, defined as a reliable assessment of the hazard expected at a given site and of the vulnerability of civil and industrial buildings, b) setting up of novel strategies for the safety of buildings. The hazard assessment is pursued through the application of innovative multidisciplinary geophysical methodologies and the application of a physically based earthquake simulator. The structural vulnerability of buildings is estimated by means of simplified techniques based on few representative parameters (such as different structural typologies, dynamic soil-structure interaction, etc.) and, for detailed studies, standard protocols for model updating techniques. We analyze, through numerical and experimental approaches, new solutions for the use of innovative materials, and new techniques for the reduction of seismic vulnerability of structural, non-structural and accessorial elements, including low cost type. The project activities are initially implemented on a study area in Southern Italy (Calabria) selected because of its tectonic complexity. The results are expected to be applicable for other hazardous seismic areas of Italy.
GO/NO-GO - When is medical hazard mitigation acceptable for launch?
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Polk, James D.
2005-01-01
Medical support of spaceflight missions is composed of complex tasks and decisions that dedicated to maintaining the health and performance of the crew and the completion of mission objectives. Spacecraft represent one of the most complex vehicles built by humans, and are built to very rigorous design specifications. In the course of a Flight Readiness Review (FRR) or a mission itself, the flight surgeon must be able to understand the impact of hazards and risks that may not be completely mitigated by design alone. Some hazards are not mitigated because they are never actually identified. When a hazard is identified, it must be reduced or waivered. Hazards that cannot be designed out of the vehicle or mission, are usually mitigated through other means to bring the residual risk to an acceptable level. This is possible in most engineered systems because failure modes are usually predictable and analysis can include taking these systems to failure. Medical support of space missions is complicated by the inability of flight surgeons to provide "exact" hazard and risk numbers to the NASA engineering community. Taking humans to failure is not an option. Furthermore, medical dogma is mostly comprised of "medical prevention" strategies that mitigate risk by examining the behaviour of a cohort of humans similar to astronauts. Unfortunately, this approach does not lend itself well for predicting the effect of a hazard in the unique environment of space. This presentation will discuss how Medical Operations uses an evidence-based approach to decide if hazard mitigation strategies are adequate to reduce mission risk to acceptable levels. Case studies to be discussed will include: 1. Risk of electrocution risk during EVA 2. Risk of cardiac event risk during long and short duration missions 3. Degraded cabin environmental monitoring on the ISS. Learning Objectives 1.) The audience will understand the challenges of mitigating medical risk caused by nominal and off-nominal mission events. 2.) The audience will understand the process by which medical hazards are identified and mitigated before launch. 3.) The audience will understand the roles and responsibilities of all the other flight control positions in participating in the process of reducing hazards and reducing medical risk to an acceptable level.
78 FR 15735 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-12
... 1995, this notice seeks comments concerning the Hazard Mitigation Grant Program application and... CONTACT: Cecelia Rosenberg, Chief, Grants Policy Branch, Mitigation Division, (202) 646-3321. You may.... 5170c, established the Hazard Mitigation Grant Program. Grant requirements and grants management...
NASA Astrophysics Data System (ADS)
Bibi, T.; Azahari Razak, K.; Rahman, A. Abdul; Latif, A.
2017-10-01
Landslides are an inescapable natural disaster, resulting in massive social, environmental and economic impacts all over the world. The tropical, mountainous landscape in generally all over Malaysia especially in eastern peninsula (Borneo) is highly susceptible to landslides because of heavy rainfall and tectonic disturbances. The purpose of the Landslide hazard mapping is to identify the hazardous regions for the execution of mitigation plans which can reduce the loss of life and property from future landslide incidences. Currently, the Malaysian research bodies e.g. academic institutions and government agencies are trying to develop a landslide hazard and risk database for susceptible areas to backing the prevention, mitigation, and evacuation plan. However, there is a lack of devotion towards landslide inventory mapping as an elementary input of landslide susceptibility, hazard and risk mapping. The developing techniques based on remote sensing technologies (satellite, terrestrial and airborne) are promising techniques to accelerate the production of landslide maps, shrinking the time and resources essential for their compilation and orderly updates. The aim of the study is to provide a better perception regarding the use of virtual mapping of landslides with the help of LiDAR technology. The focus of the study is spatio temporal detection and virtual mapping of landslide inventory via visualization and interpretation of very high-resolution data (VHR) in forested terrain of Mesilau river, Kundasang. However, to cope with the challenges of virtual inventory mapping on in forested terrain high resolution LiDAR derivatives are used. This study specifies that the airborne LiDAR technology can be an effective tool for mapping landslide inventories in a complex climatic and geological conditions, and a quick way of mapping regional hazards in the tropics.
Can hazard risk be communicated through a virtual experience?
Mitchell, J T
1997-09-01
Cyberspace, defined by William Gibson as a consensual hallucination, now refers to all computer-generated interactive environments. Virtual reality, one of a class of interactive cyberspaces, allows us to create and interact directly with objects not available in the everyday world. Despite successes in the entertainment and aviation industries, this technology has been called a 'solution in search of a problem'. The purpose of this commentary is to suggest such a problem: the inability to acquire experience with a hazard to motivate mitigation. Direct experience with a hazard has been demonstrated as a powerful incentive to adopt mitigation measures. While we lack the ability to summon hazard events at will in order to gain access to that experience, a virtual environment can provide an arena where potential victims are exposed to a hazard's effects. Immersion as an active participant within the hazard event through virtual reality may stimulate users to undertake mitigation steps that might otherwise remain undone. This paper details the possible direction in which virtual reality may be applied to hazards mitigation through a discussion of the technology, the role of hazard experience, the creation of a hazard stimulation and the issues constraining implementation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.2... special flood hazards, and is participating in the NFIP; or (2) A political subdivision of a State, or other authority that is designated by a political subdivision to develop and administer a mitigation...
NEOShield - A global approach to NEO Impact Threat Mitigation
NASA Astrophysics Data System (ADS)
Michel, Patrick
2015-03-01
NEOShield is a European-Union funded project coordinated by the German Aero-space Center, DLR, to address near-Earth object (NEO) impact hazard mitigation issues. The NEOShield consortium consists of 13 research institutes, universities, and industrial partners from 6 countries and includes leading US and Russian space organizations. The project is funded for a period of 3.5 years from January 2012 with a total of 5.8 million euros. The primary aim of the project is to investigate in detail promising mitigation techniques, such as the kinetic impactor, blast deflection, and the gravity tractor, and devise feasible demonstration missions. Options for an international strategy for implementation when an actual impact threat arises will also be investigated. The NEOShield work plan consists of scientific investigations into the nature of the impact hazard and the physical properties of NEOs, and technical and engineering studies of practical means of deflecting NEOs. There exist many ideas for asteroid deflection techniques, many of which would require considerable scientific and technological development. The emphasis of NEOShield is on techniques that are feasible with current technology, requiring a minimum of research and development work. NEOShield aims to provide detailed designs of feasible mitigation demonstration missions, targeting NEOs of the kind most likely to trigger the first space-based mitigation action. Most of the asteroid deflection techniques proposed to date require physical contact with the threatening object, an example being the kinetic impactor. NEOShield includes research into the mitigation-relevant physical properties of NEOs on the basis of remotely-sensed astronomical data and the results of rendezvous missions, the observational techniques required to efficiently gather mitigation-relevant data on the dynamical state and physical properties of a threatening NEO, and laboratory investigations using gas guns to fire projectiles into asteroid regolith analog materials. The gas-gun investigations enable state-of-the-art numerical models to be verified at small scales. Computer simulations at realistic NEO scales are used to investigate how NEOs with a range of properties would respond to a pulse of energy applied in a deflection attempt. The technical work includes the development of crucial technologies, such as the autonomous guidance of a kinetic impactor to a precise point on the surface of the target, and the detailed design of realistic missions for the purpose of demonstrating the applicability and feasibility of one or more of the techniques investigated. Theoretical work on the blast deflection method of mitigation is designed to probe the circumstances in which this last line of defense may be the only viable option and the issues relating to its deployment. A global response campaign roadmap will be developed based on realistic scenarios presented, for example, by the discovery of an object such as 99942 Apophis or 2011 AG5 on a threatening orbit. The work will include considerations of the timeline of orbit knowledge and impact probability development, reconnaissance observations and fly-by or rendezvous missions, the political decision to mount a mitigation attempt, and the design, development, and launch of the mitigation mission. Collaboration with colleagues outside the NEOShield Consortium involved in complementary activities (e.g. under the auspices of the UN, NASA, or ESA) is being sought in order to establish a broad international strategy. We present a brief overview of the history and planned scope of the project, and progress made to date. The NEOShield project (http://www.neoshield.net) has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under Grant Agreement no. 282703.
Physical modeling of long-wave run-up mitigation using submerged breakwaters
NASA Astrophysics Data System (ADS)
Lee, Yu-Ting; Wu, Yun-Ta; Hwung, Hwung-Hweng; Yang, Ray-Yeng
2016-04-01
Natural hazard due to tsunami inundation inland has been viewed as a crucial issue for coastal engineering community. The 2004 India Ocean tsunami and the 2011 Tohoku earthquake tsunami were caused by mega scale earthquakes that brought tremendous catastrophe in the disaster regions. It is thus of great importance to develop innovative approach to achieve the reduction and mitigation of tsunami hazards. In this study, new experiments have been carried out in a laboratory-scale to investigate the physical process of long-wave through submerged breakwaters built upon a mild slope. Solitary-wave is employed to represent the characteristic of long-wave with infinite wavelength and wave period. Our goal is twofold. First of all, through changing the positions of single breakwater and multiple breakwaters upon a mild slope, the optimal locations of breakwaters can be pointed out by means of maximum run-up reduction. Secondly, through using a state-of-the-art measuring technique Bubble Image Velocimetry, which features non-intrusive and image-based measurement, the wave kinematics in the highly aerated region due to solitary-wave shoaling, breaking and uprush can be quantitated. Therefore, the mitigation of long-wave due to the construction of submerged breakwaters built upon a mild slope can be evaluated not only for imaging run-up and run-down characteristics but also for measuring turbulent velocity fields due to breaking wave. Although we understand the most devastating tsunami hazards cannot be fully mitigated with impossibility, this study is to provide quantitated information on what kind of artificial coastal structure that can withstand which level of wave loads.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
...] Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings AGENCY... for Wind Retrofit Projects for Existing Residential Buildings. DATES: Comments must be received by... property from hazards and their effects. One such activity is the implementation of wind retrofit projects...
The price of safety: costs for mitigating and coping with Alpine hazards
NASA Astrophysics Data System (ADS)
Pfurtscheller, C.; Thieken, A. H.
2013-10-01
Due to limited public budgets and the need to economize, the analysis of costs of hazard mitigation and emergency management of natural hazards becomes increasingly important for public natural hazard and risk management. In recent years there has been a growing body of literature on the estimation of losses which supported to help to determine benefits of measures in terms of prevented losses. On the contrary, the costs of mitigation are hardly addressed. This paper thus aims to shed some light on expenses for mitigation and emergency services. For this, we analysed the annual costs of mitigation efforts in four regions/countries of the Alpine Arc: Bavaria (Germany), Tyrol (Austria), South Tyrol (Italy) and Switzerland. On the basis of PPP values (purchasing power parities), annual expenses on public safety ranged from EUR 44 per capita in the Free State of Bavaria to EUR 216 in the Autonomous Province of South Tyrol. To analyse the (variable) costs for emergency services in case of an event, we used detailed data from the 2005 floods in the Federal State of Tyrol (Austria) as well as aggregated data from the 2002 floods in Germany. The analysis revealed that multi-hazards, the occurrence and intermixture of different natural hazard processes, contribute to increasing emergency costs. Based on these findings, research gaps and recommendations for costing Alpine natural hazards are discussed.
Studies in geophysics: Active tectonics
NASA Technical Reports Server (NTRS)
1986-01-01
Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.
Seismic hazard, risk, and design for South America
Petersen, Mark D.; Harmsen, Stephen; Jaiswal, Kishor; Rukstales, Kenneth S.; Luco, Nicolas; Haller, Kathleen; Mueller, Charles; Shumway, Allison
2018-01-01
We calculate seismic hazard, risk, and design criteria across South America using the latest data, models, and methods to support public officials, scientists, and engineers in earthquake risk mitigation efforts. Updated continental scale seismic hazard models are based on a new seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground‐motion models. Resulting probabilistic seismic hazard maps show peak ground acceleration, modified Mercalli intensity, and spectral accelerations at 0.2 and 1 s periods for 2%, 10%, and 50% probabilities of exceedance in 50 yrs. Ground shaking soil amplification at each site is calculated by considering uniform soil that is applied in modern building codes or by applying site‐specific factors based on VS30">VS30 shear‐wave velocities determined through a simple topographic proxy technique. We use these hazard models in conjunction with the Prompt Assessment of Global Earthquakes for Response (PAGER) model to calculate economic and casualty risk. Risk is computed by incorporating the new hazard values amplified by soil, PAGER fragility/vulnerability equations, and LandScan 2012 estimates of population exposure. We also calculate building design values using the guidelines established in the building code provisions. Resulting hazard and associated risk is high along the northern and western coasts of South America, reaching damaging levels of ground shaking in Chile, western Argentina, western Bolivia, Peru, Ecuador, Colombia, Venezuela, and in localized areas distributed across the rest of the continent where historical earthquakes have occurred. Constructing buildings and other structures to account for strong shaking in these regions of high hazard and risk should mitigate losses and reduce casualties from effects of future earthquake strong ground shaking. National models should be developed by scientists and engineers in each country using the best available science.
A fast-paced delivery of approaches developed in EPA partnerships to enable effective inclusion of environmental and social resilience into hazard mitigation planning. This presentation will cover a broad spectrum, from 1) EPA’s role in mitigation, 2) what a Regional Resil...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
... Mitigation Grant Program Application and Reporting AGENCY: Federal Emergency Management Agency, DHS. ACTION... Hazard Mitigation Grant Program application and reporting requirements. DATES: Comments must be submitted... . [[Page 3913
Lumia, Margaret E.; Gentile, Charles; Gochfeld, Michael; Efthimion, Philip; Robson, Mark
2015-01-01
This study evaluates a new decontamination technique for the mitigation and abatement of hazardous particulates. The traditional decontamination methods used to clean facilities and equipment are time-consuming, prolonging workers' exposure time, may generate airborne hazards, and can be expensive. The use of removable thin film coating as a decontamination technique for surface contamination proved to be a more efficient method of decontamination. This method was tested at three different sites on different hazardous metals. One application of the coating reduced the levels of these metals 90% and had an average reduction of one magnitude. The paired t-tests that were performed for each metal demonstrated that there was a statistically significant reduction of the metal after the use of the coating: lead (p = 0.03), beryllium (p = 0.05), aluminum (p = 0.006), iron (p = 0.0001), and copper (p = 0.004). The Kendall tau-b correlation coefficient demonstrates that there was a positive correlation between the initial levels of contamination and the removal efficiency for all the samples taken from different locations on the floor for each of the three sites. This new decontamination technique worked efficiently, requiring only one application, which decreased exposure time and did not generate any airborne dust. PMID:19437305
Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies
Larsen, M.C.
2008-01-01
Rainfall-triggered landslides are part of a natural process of hillslope erosion that can result in catastrophic loss of life and extensive property damage in mountainous, densely populated areas. As global population expansion on or near steep hillslopes continues, the human and economic costs associated with landslides will increase. Landslide hazard mitigation strategies generally involve hazard assessment mapping, warning systems, control structures, and regional landslide planning and policy development. To be sustainable, hazard mitigation requires that management of natural resources is closely connected to local economic and social interests. A successful strategy is dependent on a combination of multi-disciplinary scientific and engineering approaches, and the political will to take action at the local community to national scale.
NASA Astrophysics Data System (ADS)
Rose, W. I.; Bluth, G. J.; Gierke, J. S.; Gross, E.
2005-12-01
Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety and, eventually, economic development, they lack the resources required to advance the development and practice of remote sensing. Both developed and developing countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development, and this common commitment creates a solid foundation upon which to build an integrated education and research project. This will prepare students for careers in science and engineering through their efforts to solve a suite of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. This project makes two important advances: (1) We intend to develop the first formal linkage among geoscience agencies from four Pacific Latin American countries (Guatemala, El Salvador, Nicaragua and Ecuador), focusing on the collaborative development of remote sensing tools for hazard mitigation and water resource development; (2) We will build a new educational system of applied research and engineering, using two existing educational programs at Michigan Tech: a new Peace Corp/Master's International (PC/MI) program in Natural Hazards which features a 2-year field assignment, and an "Enterprise" program for undergraduates, which gives teams of geoengineering students the opportunity to work for three years in a business-like setting to solve real-world problems This project will involve 1-2 post-doctoral researchers, 3 Ph.D., 9 PC/MI, and roughly 20 undergraduate students each year.
A critical analysis of hazard resilience measures within sustainability assessment frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Elizabeth C., E-mail: echiso1@lsu.edu; Sattler, Meredith, E-mail: msattler@lsu.edu; Friedland, Carol J., E-mail: friedland@lsu.edu
Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site,more » community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs.« less
Geological hazard monitoring system in Georgia
NASA Astrophysics Data System (ADS)
Gaprindashvili, George
2017-04-01
Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.
Analyzing costs of space debris mitigation methods
NASA Astrophysics Data System (ADS)
Wiedemann, C.; Krag, H.; Bendisch, J.; Sdunnus, H.
2004-01-01
The steadily increasing number of space objects poses a considerable hazard to all kinds of spacecraft. To reduce the risks to future space missions different debris mitigation measures and spacecraft protection techniques have been investigated during the last years. However, the economic efficiency has not been considered yet in this context. Current studies have the objective to evaluate the mission costs due to space debris in a business as usual (no mitigation) scenario compared to the missions costs considering debris mitigation. The aim is an estimation of the time until the investment in debris mitigation will lead to an effective reduction of mission costs. This paper presents the results of investigations on the key issues of cost estimation for spacecraft and the influence of debris mitigation and shielding on cost. Mitigation strategies like the reduction of orbital lifetime and de- or re-orbit of non-operational satellites are methods to control the space debris environment. These methods result in an increase of costs. In a first step the overall costs of different types of unmanned satellites are analyzed. A selected cost model is simplified and generalized for an application on all operational satellites. In a next step the influence of space debris on cost is treated, if the implementation of mitigation strategies is considered.
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
NASA Astrophysics Data System (ADS)
Schoessow, F. S.; Li, Y.; Howe, P. D.
2016-12-01
Extreme heat events are the deadliest natural hazard in the United States and are expected to increase in both severity and frequency in the coming years due to the effects of climate change. The risks of climate change and weather-related events such as heat waves to a population can be more comprehensively assessed by coupling the traditional examination of natural hazards using remote sensing and geospatial analysis techniques with human vulnerability factors and individual perceptions of hazards. By analyzing remote-sensed and empirical survey data alongside national hazards advisories, this study endeavors to establish a nationally-representative baseline quantifying the spatiotemporal variation of individual heat vulnerabilities at multiple scales and between disparate population groups affected by their unique socioenvironmental factors. This is of immediate academic interest because the study of heat waves risk perceptions remains relatively unexplored - despite the intensification of extreme heat events. The use of "human sensors", georeferenced & timestamped individual response data, provides invaluable contextualized data at a high spatial resolution, which will enable policy-makers to more effectively implement targeted strategies for risk prevention, mitigation, and communication. As climate change risks are further defined, this cognizance will help identify vulnerable populations and enhance national hazard preparedness and recovery frameworks.
Applying the Land Use Portfolio Model with Hazus to analyse risk from natural hazard events
Dinitz, Laura B.; Taketa, Richard A.
2013-01-01
This paper describes and demonstrates the integration of two geospatial decision-support systems for natural-hazard risk assessment and management. Hazus is a risk-assessment tool developed by the Federal Emergency Management Agency to identify risks and estimate the severity of risk from natural hazards. The Land Use Portfolio Model (LUPM) is a risk-management tool developed by the U.S. Geological Survey to evaluate plans or actions intended to reduce risk from natural hazards. We analysed three mitigation policies for one earthquake scenario in the San Francisco Bay area to demonstrate the added value of using Hazus and the LUPM together. The demonstration showed that Hazus loss estimates can be input to the LUPM to obtain estimates of losses avoided through mitigation, rates of return on mitigation investment, and measures of uncertainty. Together, they offer a more comprehensive approach to help with decisions for reducing risk from natural hazards.
Improving tsunami resiliency: California's Tsunami Policy Working Group
Real, Charles R.; Johnson, Laurie; Jones, Lucile M.; Ross, Stephanie L.; Kontar, Y.A.; Santiago-Fandiño, V.; Takahashi, T.
2014-01-01
California has established a Tsunami Policy Working Group to facilitate development of policy recommendations for tsunami hazard mitigation. The Tsunami Policy Working Group brings together government and industry specialists from diverse fields including tsunami, seismic, and flood hazards, local and regional planning, structural engineering, natural hazard policy, and coastal engineering. The group is acting on findings from two parallel efforts: The USGS SAFRR Tsunami Scenario project, a comprehensive impact analysis of a large credible tsunami originating from an M 9.1 earthquake in the Aleutian Islands Subduction Zone striking California’s coastline, and the State’s Tsunami Preparedness and Hazard Mitigation Program. The unique dual-track approach provides a comprehensive assessment of vulnerability and risk within which the policy group can identify gaps and issues in current tsunami hazard mitigation and risk reduction, make recommendations that will help eliminate these impediments, and provide advice that will assist development and implementation of effective tsunami hazard risk communication products to improve community resiliency.
Performance evaluation of a semi-active cladding connection for multi-hazard mitigation
NASA Astrophysics Data System (ADS)
Gong, Yongqiang; Cao, Liang; Micheli, Laura; Laflamme, Simon; Quiel, Spencer; Ricles, James
2018-03-01
A novel semi-active damping device termed Variable Friction Cladding Connection (VFCC) has been previously proposed to leverage cladding systems for the mitigation of natural and man-made hazards. The VFCC is a semi-active friction damper that connects cladding elements to the structural system. The friction force is generated by sliding plates and varied using an actuator through a system of adjustable toggles. The dynamics of the device has been previously characterized in a laboratory environment. In this paper, the performance of the VFCC at mitigating non-simultaneous multi-hazard excitations that includes wind and seismic loads is investigated on a simulated benchmark building. Simulations consider the robustness with respect to some uncertainties, including the wear of the friction surfaces and sensor failure. The performance of the VFCC is compared against other connection strategies including traditional stiffness, passive viscous, and passive friction elements. Results show that the VFCC is robust and capable of outperforming passive systems for the mitigation of multiple hazards.
Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies
NASA Technical Reports Server (NTRS)
2010-01-01
The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.11 Mitigation. (a) Purpose. The purpose of... substantial improvement in a floodway, and no new construction in a coastal high hazard area, except for: (i... a coastal high hazard area unless it is elevated on adequately anchored pilings or columns, and...
Code of Federal Regulations, 2011 CFR
2011-10-01
... GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.11 Mitigation. (a) Purpose. The purpose of... substantial improvement in a floodway, and no new construction in a coastal high hazard area, except for: (i... a coastal high hazard area unless it is elevated on adequately anchored pilings or columns, and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.11 Mitigation. (a) Purpose. The purpose of... substantial improvement in a floodway, and no new construction in a coastal high hazard area, except for: (i... a coastal high hazard area unless it is elevated on adequately anchored pilings or columns, and...
The hidden costs of coastal hazards: Implications for risk assessment and mitigation
Kunreuther, H.; Platt, R.; Baruch, S.; Bernknopf, R.L.; Buckley, M.; Burkett, V.; Conrad, D.; Davidson, T.; Deutsch, K.; Geis, D.; Jannereth, M.; Knap, A.; Lane, H.; Ljung, G.; McCauley, M.; Mileti, D.; Miller, T.; Morrow, B.; Meyers, J.; Pielke, R.; Pratt, A.; Tripp, J.
2000-01-01
Society has limited hazard mitigation dollars to invest. Which actions will be most cost effective, considering the true range of impacts and costs incurred? In 1997, the H. John Heinz III Center for Science, Economics and the Environment began a two-year study with a panel of experts to help develop new strategies to identify and reduce the costs of weather-related hazards associated with rapidly increasing coastal development activities.The Hidden Costs of Coastal Hazards presents the panel's findings, offering the first in-depth study that considers the costs of coastal hazards to natural resources, social institutions, business, and the built environment. Using Hurricane Hugo, which struck South Carolina in 1989, as a case study, it provides for the first time information on the full range of economic costs caused by a major coastal hazard event. The book:describes and examines unreported, undocumented, and hidden costs such as losses due to business interruption, reduction in property values, interruption of social services, psychological trauma, damage to natural systems, and othersexamines the concepts of risk and vulnerability, and discusses conventional approaches to risk assessment and the emerging area of vulnerability assessmentrecommends a comprehensive framework for developing and implementing mitigation strategiesdocuments the human impact of Hurricane Hugo and provides insight from those who lived through it.The Hidden Costs of Coastal Hazards takes a structured approach to the problem of coastal hazards, offering a new framework for community-based hazard mitigation along with specific recommendations for implementation. Decisionmakers -- both policymakers and planners -- who are interested in coastal hazard issues will find the book a unique source of new information and insight, as will private-sector decisionmakers including lenders, investors, developers, and insurers of coastal property.
Landscape Hazards in Yukon Communities: Geological Mapping for Climate Change Adaptation Planning
NASA Astrophysics Data System (ADS)
Kennedy, K.; Kinnear, L.
2010-12-01
Climate change is considered to be a significant challenge for northern communities where the effects of increased temperature and climate variability are beginning to affect infrastructure and livelihoods (Arctic Climate Impact Assessment, 2004). Planning for and adapting to ongoing and future changes in climate will require the identification and characterization of social, economic, cultural, political and biophysical vulnerabilities. This pilot project addresses physical landscape vulnerabilities in two communities in the Yukon Territory through community-scale landscape hazard mapping and focused investigations of community permafrost conditions. Landscape hazards are identified by combining pre-existing data from public utilities and private-sector consultants with new geophysical techniques (ground penetrating radar and electrical resistivity), shallow drilling, surficial geological mapping, and permafrost characterization. Existing landscape vulnerabilities are evaluated based on their potential for hazard (low, medium or high) under current climate conditions, as well as under future climate scenarios. Detailed hazard maps and landscape characterizations for both communities will contribute to overall adaptation plans and allow for informed development, planning and mitigation of potentially threatening hazards in and around the communities.
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2010 CFR
2010-10-01
... resources to reducing the effects of natural hazards. (b) Planning process. An effective planning process is... mitigation as well as to development in hazard-prone areas; a discussion of State funding capabilities for... identified. (iv) Identification of current and potential sources of Federal, State, local, or private funding...
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2013 CFR
2013-10-01
... resources to reducing the effects of natural hazards. (b) Planning process. An effective planning process is... mitigation as well as to development in hazard-prone areas; a discussion of State funding capabilities for... identified. (iv) Identification of current and potential sources of Federal, State, local, or private funding...
78 FR 64522 - Pennsylvania; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... provided under the Stafford Act for Hazard Mitigation will be limited to 75 percent of the total eligible... eligible to apply for assistance under the Hazard Mitigation Grant Program. The following Catalog of... declaration of a major disaster for the Commonwealth of Pennsylvania (FEMA-4149-DR), dated October 1, 2013...
78 FR 14806 - Louisiana; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... Stafford Act for Public Assistance and Hazard Mitigation will be limited to 75 percent of the total... eligible to apply for assistance under the Hazard Mitigation Grant Program. (The following Catalog of... declaration of a major disaster for the State of Louisiana (FEMA-4102-DR), dated February 22, 2013, and...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
NASA Astrophysics Data System (ADS)
Thomas, E. A.
2012-12-01
Worldwide, the toll of disaster damage caused by foreseeable natural hazards is growing, despite the fact that science is increasingly able to quantify the risk and foresee the likely location of natural events (NCDC 2012; NHC 2010). Those events can cause disastrous consequences if human built infrastructure is not properly designed for both the current state and future events (IBHS, 2012). Our existing approaches are not working at reducing the mounting toll of disasters which follow foreseeable natural events. Rather, even if the climate were not changing, current land use decisions coupled with development, engineering, design, and construction practices are significantly contributing to further increasing an unsustainable toll from disasters (Pielke, Gratz et al. 2007). Safe and proper construction practices developed to reduce flood losses (e.g. Design for Flooding, Watson, Adams et al., 2010) are all too often thought of as a zero sum situation where the community wins and the developer loses. In reality, the United States and the rest of the world often can find win-win solutions based on sound economics, law, ethics, and environmental sustainability that will benefit communities, developers, and natural hazard risk mitigation practitioners. While such solutions are being implemented in a fragmentary manner throughout the United States, communities implementing these solutions are increasingly working together in peer networks, such as the Natural Hazard Mitigation Association (NHMA)'s Resilient Neighbors Network. Examples include the Urban Drainage and Flood Control District that covers the metropolitan Denver area and recent work in Tulsa, Oklahoma. This presentation will set forth the scientific, ethical, and legal basis of higher development standards which, when combined with good negotiations techniques, can significantly decrease the terrible misery from wildfires, tornadoes, floods, and other natural disasters. Communities clearly have the legal right to implement safe design standards (Thomas, Riley Medlock 2008); yet all too often do not (NOAA, 2010). The required negotiations techniques must include outreach even to those who believe the topics of climate change and sustainability are some sort of plot against property rights and the free enterprise system. The presentation will also challenge the scientific community to support reasoned efforts to better prepare society for the even greater challenges posed by climate variability, uncertainty, and change: to work with practitioners who seek to build a safe and sustainable future to identify gaps in scientific knowledge and help develop workable solutions at the local level. Edward A. Thomas Esq. President Natural Hazard Mitigation Association
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan approval..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance with... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Gianassi, S; Bisin, S; Bindi, B; Spitaleri, I; Bambi, F
2010-01-01
The collection and handling of hematopoietic stem cells (HSCs) must meet high quality requirements. An integrated Quality Risk Management can help to identify and contain potential risks related to HSC production. Risk analysis techniques allow one to "weigh" identified hazards, considering the seriousness of their effects, frequency, and detectability, seeking to prevent the most harmful hazards. The Hazard Analysis Critical Point, recognized as the most appropriate technique to identify risks associated with physical, chemical, and biological hazards for cellular products, consists of classifying finished product specifications and limits of acceptability, identifying all off-specifications, defining activities that can cause them, and finally establishing both a monitoring system for each Critical Control Point and corrective actions for deviations. The severity of possible effects on patients, as well as the occurrence and detectability of critical parameters, are measured on quantitative scales (Risk Priority Number [RPN]). Risk analysis was performed with this technique on manipulation process of HPC performed at our blood center. The data analysis showed that hazards with higher values of RPN with greater impact on the process are loss of dose and tracking; technical skills of operators and manual transcription of data were the most critical parameters. Problems related to operator skills are handled by defining targeted training programs, while other critical parameters can be mitigated with the use of continuous control systems. The blood center management software was completed by a labeling system with forms designed to be in compliance with standards in force and by starting implementation of a cryopreservation management module. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
West, Leanne; Gimmestad, Gary; Smith, William; Kireev, Stanislav; Cornman, Larry B.; Schaffner, Philip R.; Tsoucalas, George
2008-01-01
The Forward-Looking Interferometer (FLI) is a new instrument concept for obtaining measurements of potential weather hazards to alert flight crews. The FLI concept is based on high-resolution Infrared (IR) Fourier Transform Spectrometry (FTS) technologies that have been developed for satellite remote sensing, and which have also been applied to the detection of aerosols and gases for other purposes. It is being evaluated for multiple hazards including clear air turbulence (CAT), volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing, during all phases of flight. Previous sensitivity and characterization studies addressed the phenomenology that supports detection and mitigation by the FLI. Techniques for determining the range, and hence warning time, were demonstrated for several of the hazards, and a table of research instrument parameters was developed for investigating all of the hazards discussed above. This work supports the feasibility of detecting multiple hazards with an FLI multi-hazard airborne sensor, and for producing enhanced IR images in reduced visibility conditions; however, further research must be performed to develop a means to estimate the intensities of the hazards posed to an aircraft and to develop robust algorithms to relate sensor measurables to hazard levels. In addition, validation tests need to be performed with a prototype system.
An extended stochastic method for seismic hazard estimation
NASA Astrophysics Data System (ADS)
Abd el-aal, A. K.; El-Eraki, M. A.; Mostafa, S. I.
2015-12-01
In this contribution, we developed an extended stochastic technique for seismic hazard assessment purposes. This technique depends on the hypothesis of stochastic technique of Boore (2003) "Simulation of ground motion using the stochastic method. Appl. Geophy. 160:635-676". The essential characteristics of extended stochastic technique are to obtain and simulate ground motion in order to minimize future earthquake consequences. The first step of this technique is defining the seismic sources which mostly affect the study area. Then, the maximum expected magnitude is defined for each of these seismic sources. It is followed by estimating the ground motion using an empirical attenuation relationship. Finally, the site amplification is implemented in calculating the peak ground acceleration (PGA) at each site of interest. We tested and applied this developed technique at Cairo, Suez, Port Said, Ismailia, Zagazig and Damietta cities to predict the ground motion. Also, it is applied at Cairo, Zagazig and Damietta cities to estimate the maximum peak ground acceleration at actual soil conditions. In addition, 0.5, 1, 5, 10 and 20 % damping median response spectra are estimated using the extended stochastic simulation technique. The calculated highest acceleration values at bedrock conditions are found at Suez city with a value of 44 cm s-2. However, these acceleration values decrease towards the north of the study area to reach 14.1 cm s-2 at Damietta city. This comes in agreement with the results of previous studies of seismic hazards in northern Egypt and is found to be comparable. This work can be used for seismic risk mitigation and earthquake engineering purposes.
Seismic Risk Mitigation of Historical Minarets Using SMA Wire Dampers
NASA Astrophysics Data System (ADS)
El-Attar, Adel G.; Saleh, Ahmed M.; El-Habbal, Islam R.
2008-07-01
This paper presents the results of a research program sponsored by the European Commission through project WIND-CHIME (Wide Range Non-INtrusive Devices toward Conservation of HIstorical Monuments in the MEditerranean Area), in which the possibility of using advanced seismic protection technologies to preserve historical monuments in the Mediterranean area is investigated. In the current research, two outstanding Egyptian Mamluk-Style minarets, are investigated. The first is the southern minaret of Al-Sultaniya (1340 A.D, 739 Hijri Date (H.D.)), the second is the minaret of Qusun minaret (1337 A.D, 736 H.D.), both located within the city of Cairo. Based on previous studies on the minarets by the authors, a seismic retrofit technique is proposed. The technique utilizes shape memory alloy (SMA) wires as dampers for the upper, more flexible, parts of the minarets in addition to vertical pre-stressing of the lower parts found to be prone to tensile cracking under ground excitation. The effectiveness of the proposed technique is numerically evaluated via nonlinear transient dynamic analyses. The results indicate the effectiveness of the technique in mitigating the seismic hazard, demonstrated by the effective reduction in stresses and in dynamic response.
Robert L. Ryan; Mark B. Wamsley
2006-01-01
We surveyed residents of fire-prone areas of the Central Pine Barrens of Long Island, New York, and the Plymouth Pine Barrens in Massachusetts to learn how they perceived wildland fire risk and management techniques for reducing fire hazard. We found that residents considered the fire threat to their own property to be relatively low in spite of first-hand experience...
Mapping flood hazards under uncertainty through probabilistic flood inundation maps
NASA Astrophysics Data System (ADS)
Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.
2017-12-01
Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.
Land-Use Portfolio Modeler, Version 1.0
Taketa, Richard; Hong, Makiko
2010-01-01
Natural hazards pose significant threats to the public safety and economic health of many communities throughout the world. Community leaders and decision-makers continually face the challenges of planning and allocating limited resources to invest in protecting their communities against catastrophic losses from natural-hazard events. Public efforts to assess community vulnerability and encourage loss-reduction measures through mitigation often focused on either aggregating site-specific estimates or adopting standards based upon broad assumptions about regional risks. The site-specific method usually provided the most accurate estimates, but was prohibitively expensive, whereas regional risk assessments were often too general to be of practical use. Policy makers lacked a systematic and quantitative method for conducting a regional-scale risk assessment of natural hazards. In response, Bernknopf and others developed the portfolio model, an intermediate-scale approach to assessing natural-hazard risks and mitigation policy alternatives. The basis for the portfolio-model approach was inspired by financial portfolio theory, which prescribes a method of optimizing return on investment while reducing risk by diversifying investments in different security types. In this context, a security type represents a unique combination of features and hazard-risk level, while financial return is defined as the reduction in losses resulting from an investment in mitigation of chosen securities. Features are selected for mitigation and are modeled like investment portfolios. Earth-science and economic data for the features are combined and processed in order to analyze each of the portfolios, which are then used to evaluate the benefits of mitigating the risk in selected locations. Ultimately, the decision maker seeks to choose a portfolio representing a mitigation policy that maximizes the expected return-on-investment, while minimizing the uncertainty associated with that return-on-investment. The portfolio model, now known as the Land-Use Portfolio Model (LUPM), provided the framework for the development of the Land-Use Portfolio Modeler, Version 1.0 software (LUPM v1.0). The software provides a geographic information system (GIS)-based modeling tool for evaluating alternative risk-reduction mitigation strategies for specific natural-hazard events. The modeler uses information about a specific natural-hazard event and the features exposed to that event within the targeted study region to derive a measure of a given mitigation strategy`s effectiveness. Harnessing the spatial capabilities of a GIS enables the tool to provide a rich, interactive mapping environment in which users can create, analyze, visualize, and compare different
Hu, Maochuan; Sayama, Takahiro; Zhang, Xingqi; Tanaka, Kenji; Takara, Kaoru; Yang, Hong
2017-05-15
Low impact development (LID) has attracted growing attention as an important approach for urban flood mitigation. Most studies evaluating LID performance for mitigating floods focus on the changes of peak flow and runoff volume. This paper assessed the performance of LID practices for mitigating flood inundation hazards as retrofitting technologies in an urbanized watershed in Nanjing, China. The findings indicate that LID practices are effective for flood inundation mitigation at the watershed scale, and especially for reducing inundated areas with a high flood hazard risk. Various scenarios of LID implementation levels can reduce total inundated areas by 2%-17% and areas with a high flood hazard level by 6%-80%. Permeable pavement shows better performance than rainwater harvesting against mitigating urban waterlogging. The most efficient scenario is combined rainwater harvesting on rooftops with a cistern capacity of 78.5 mm and permeable pavement installed on 75% of non-busy roads and other impervious surfaces. Inundation modeling is an effective approach to obtaining the information necessary to guide decision-making for designing LID practices at watershed scales. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gierke, J. S.; Rose, W. I.; Waite, G. P.; Palma, J. L.; Gross, E. L.
2008-12-01
Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety, they often lack resources for advancing the development and practice of remote sensing. All countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development. With National Science Foundation support from the Partnerships in International Research and Education program, we are developing a new educational system of applied research and engineering for advancing collaborative linkages among agencies and institutions in Pacific Latin American countries (to date: Guatemala, El Salvador, Nicaragua, Costa Rica, Panama, and Ecuador) in the development of remote sensing tools for hazard mitigation and water resources management. The project aims to prepare students for careers in science and engineering through their efforts to solve suites of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. The ultimate goal of integrating research with education is to encourage cross-disciplinary, creative, and critical thinking in problem solving and foster the ability to deal with uncertainty in analyzing problems and designing appropriate solutions. In addition to traditional approaches for graduate and undergraduate research, we have built new educational systems of applied research and engineering: (1) the Peace Corp/Master's International program in Natural Hazards which features a 2-year field assignment during service in the U.S. Peace Corps, (2) the Michigan Tech Enterprise program for undergraduates, which gives teams of students from different disciplines the opportunity to work for three years in a business-like setting to solve real-world problems, and (3) a unique university exchange program in natural hazards (E-Haz). Advancements in research have been made, for example, in using thermal remote sensing methods for studying vent and eruptive processes, and in fusing RADARSAT with ASTER imagery to delineate lineaments in volcanic terrains for siting water wells. While these and other advancements are developed in conjunction with our foreign counterparts, the impacts of this work can be broadened through more comprehensive dissemination activities. Towards this end, we are in the planning phase of a Pan American workshop on applications of remote sensing techniques for natural hazards and water resources management. The workshop will be at least two weeks, sometime in July/August 2009, and involve 30-40 participants, with balanced participation from the U.S. and Latin America. In addition to fundamental aspects of remote sensing and digital image processing, the workshop topics will be presented in the context of new developments for studying volcanic processes and hazards and for characterizing groundwater systems.
Volcanic ash hazards and aviation risk: Chapter 4
Guffanti, Marianne C.; Tupper, Andrew C.
2015-01-01
The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.
NASA Astrophysics Data System (ADS)
Osland, Anna Christine
Hazardous liquid and natural gas transmission pipelines have received limited attention by planning scholars even though local development decisions can have broad consequences if a rupture occurs. In this dissertation, I evaluated the implications of land-use planning for reducing risk to transmission pipeline hazards in North Carolina via three investigations. First, using a survey of planning directors in jurisdictions with transmission pipeline hazards, I investigated the land use planning tools used to mitigate pipeline hazards and the factors associated with tool adoption. Planning scholars have documented the difficulty of inducing planning in hazardous areas, yet there remain gaps in knowledge about the factors associated with tool adoption. Despite the risks associated with pipeline ruptures, I found most localities use few mitigation tools, and the adoption of regulatory and informational tools appear to be influenced by divergent factors. Whereas risk perception, commitment, capacity, and community context were associated with total tool and information tool use, only risk perception and capacity factors were associated with regulatory tool use. Second, using interviews of emergency managers and planning directors, I examined the role of agency collaboration for building mitigation capacity. Scholars have highlighted the potential of technical collaboration, yet less research has investigated how inter-agency collaboration shapes mitigation capacity. I identify three categories of technical collaboration, discuss how collaborative spillovers can occur from one planning area to another, and challenge the notion that all technical collaborations result in equal mitigation outcomes. Third, I evaluated characteristics of the population near pipelines to address equity concerns. Surprisingly, I did not find broad support for differences in exposure of vulnerable populations. Nonetheless, my analyses uncovered statistically significant clusters of vulnerable groups within the hazard area. Interestingly, development closer to pipelines was newer than areas farther away, illustrating the failure of land-use planning to reduce development encroachment. Collectively, these results highlight the potential of land-use planning to keep people and development from encroaching on pipeline hazards. While this study indicates that planners in many areas address pipeline hazards, it also illustrates how changes to local practices can further reduce risks to human health, homeland security, and the environment.
NASA Technical Reports Server (NTRS)
Kelly, Michael J.
2013-01-01
The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.
Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States
Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar
2012-01-01
Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...
A burning problem: social dynamics of disaster risk reduction through wildfire mitigation
Susan Charnley; Melissa R. Poe; Alan A. Ager; Thomas A. Spies; Emily K. Platt; Keith A. Olsen
2015-01-01
Disasters result from hazards affecting vulnerable people. Most disasters research by anthropologists focuses on vulnerability; this article focuses on natural hazards. We use the case of wildfire mitigation on United States Forest Service lands in the northwestern United States to examine social, political, and economic variables at multiple scales that influence fire...
Land subsidence susceptibility and hazard mapping: the case of Amyntaio Basin, Greece
NASA Astrophysics Data System (ADS)
Tzampoglou, P.; Loupasakis, C.
2017-09-01
Landslide susceptibility and hazard mapping has been applying for more than 20 years succeeding the assessment of the landslide risk and the mitigation the phenomena. On the contrary, equivalent maps aiming to study and mitigate land subsidence phenomena caused by the overexploitation of the aquifers are absent from the international literature. The current study focuses at the Amyntaio basin, located in West Macedonia at Florina prefecture. As proved by numerous studies the wider area has been severely affected by the overexploitation of the aquifers, caused by the mining and the agricultural activities. The intensive ground water level drop has triggered extensive land subsidence phenomena, especially at the perimeter of the open pit coal mine operating at the site, causing damages to settlements and infrastructure. The land subsidence susceptibility and risk maps were produced by applying the semi-quantitative WLC (Weighted Linear Combination) method, especially calibrated for this particular catastrophic event. The results were evaluated by using detailed field mapping data referring to the spatial distribution of the surface ruptures caused by the subsidence. The high correlation between the produced maps and the field mapping data, have proved the great value of the maps and of the applied technique on the management and the mitigation of the phenomena. Obviously, these maps can be safely used by decision-making authorities for the future urban safety development.
NASA Astrophysics Data System (ADS)
Fuchs, S.; Serrhini, K.; Dorner, W.
2009-12-01
In order to mitigate flood hazards and to minimise associated losses, technical protection measures have been additionally and increasingly supplemented by non-technical mitigation, i.e. land-use planning activities. This is commonly done by creating maps which indicate such areas by different cartographic symbols, such as colour, size, shape, and typography. Hazard and risk mapping is the accepted procedure when communicating potential threats to stakeholders, and is therefore required in the European Member States in order to meet the demands of the European Flood Risk Directive. However, available information is sparse concerning the impact of such maps on different stakeholders, i.e., specialists in flood risk management, politicians, and affected citizens. The lack of information stems from a traditional approach to map production which does not take into account specific end-user needs. In order to overcome this information shortage the current study used a circular approach such that feed-back mechanisms originating from different perception patterns of the end user would be considered. Different sets of small-scale as well as large-scale risk maps were presented to different groups of test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented communication of cartographic information. Therefore, the method of eye tracking was applied using a video-oculography technique. This resulted in a suggestion for a map template which fulfils the requirement to serve as an efficient communication tool for specialists and practitioners in hazard and risk mapping as well as for laypersons. Taking the results of this study will enable public authorities who are responsible for flood mitigation to (1) improve their flood risk maps, (2) enhance flood risk awareness, and therefore (3) create more disaster-resilient communities.
Hazards mapping using local and scientific knowledge. A case in rural Mexico
NASA Astrophysics Data System (ADS)
Solis, B.; Bocco, G.
2016-12-01
Natural hazards in rural areas in developing countries usually affect poor peasants and their infrastructure. This poses a problem of social vulnerability that coupled to the risk may cause severe hazards. Research oriented to prevention and adaptation is crucial. Other studies have proved that local knowledge and peasant's perception on hazards is a valuable tool to tackle prevention and mitigation. In the valley of Huahua river, at the Pacific coast of Mexico, landslides have directly affected rural roads hampering communication between villages. In addition some of their deposits have changed the morphology of river channels, resulting in flooding and avalanches threatening rural life and assets. At least 21 landslides are still active in the area. In this research the leading questions are: how do people perceive landslides hazard? What is the knowledge possessed by villagers facing such hazards? Could scientific and local knowledge be coupled in a hybrid format to formulate an adequate hazards map? The investigation used ethnographic techniques (participant observation, semi-structured and structured interviews, and participatory mapping) and multivariate statistical approaches based on empirical data. We will present the preliminary results, based principally on interview data and a first hazard zoning of the lower valley of the Huahua River. Our results suggest that the approach can be used in this and similar areas in developing countries.
Social Uptake of Scientific Understanding of Seismic Hazard in Sumatra and Cascadia
NASA Astrophysics Data System (ADS)
Shannon, R.; McCloskey, J.; Guyer, C.; McDowell, S.; Steacy, S.
2007-12-01
The importance of science within hazard mitigation cannot be underestimated. Robust mitigation polices rely strongly on a sound understanding of the science underlying potential natural disasters and the transference of that knowledge from the scientific community to the general public via governments and policy makers. We aim to investigate how and why the public's knowledge, perceptions, response, adjustments and values towards science have changed throughout two decades of research conducted in areas along and adjacent to the Sumatran and Cascadia subduction zones. We will focus on two countries subject to the same potential hazard, but which encompass starkly contrasting political, economic, social and environmental settings. The transfer of scientific knowledge into the public/ social arena is a complex process, the success of which is reflected in a community's ability to withstand large scale devastating events. Although no one could have foreseen the magnitude of the 2004 Boxing Day tsunami, the social devastation generated underscored the stark absence of mitigation measures in the nations most heavily affected. It furthermore emphasized the need for the design and implementation of disaster preparedness measures. Survey of existing literature has already established timelines for major events and public policy changes in the case study areas. Clear evidence exists of the link between scientific knowledge and its subsequent translation into public policy, particularly in the Cascadia context. The initiation of the National Tsunami Hazard Mitigation Program following the Cape Mendocino earthquake in 1992 embodies this link. Despite a series of environmental disasters with recorded widespread fatalities dating back to the mid 1900s and a heightened impetus for scientific research into tsunami/ earthquake hazard following the 2004 Boxing Day tsunami, the translation of science into the public realm is not widely obvious in the Sumatran context. This research aims to further investigate how the enhanced understanding of earthquake and tsunami hazards is being used to direct hazard mitigation strategies and enables direct comparison with the scientific and public policy developments in Cascadia.
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard Determination...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6 Eligibility... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Detection of Hazardous Cavities Below a Road Using Combined Geophysical Methods
NASA Astrophysics Data System (ADS)
De Giorgi, L.; Leucci, G.
2014-07-01
Assessment of the risk arising from near-surface natural hazard is a crucial step in safeguarding the security of the roads in karst areas. It helps authorities and other related parties to apply suitable procedures for ground treatment, mitigate potential natural hazards and minimize human and economic losses. Karstic terrains in the Salento Peninsula (Apulia region—South Italy) is a major challenge to engineering constructions and roads due to extensive occurrence of cavities and/or sinkholes that cause ground subsidence and both roads and building collapse. Cavities are air/sediment-filled underground voids, commonly developed in calcarenite sedimentary rocks by the infiltration of rainwater into the ground, opening up, over a long period of time, holes and tunnels. Mitigation of natural hazards can best be achieved through careful geoscientific studies. Traditionally, engineers use destructive probing techniques for the detection of cavities across regular grids or random distances. Such probing is insufficient on its own to provide confidence that cavities will not be encountered. Frequency of probing and depth of investigation may become more expensive. Besides, probing is intrusive, non-continuous, slow, expensive and cannot provide a complete lateral picture of the subsurface geology. Near-surface cavities usually can be easily detected by surface geophysical methods. Traditional and recently developed measuring techniques in seismic, geoelectrics and georadar are suitable for economical investigation of hazardous, potentially collapsing cavities. The presented research focused on an integrated geophysical survey that was carried out in a near-coast road located at Porto Cesareo, a small village a few kilometers south west of Lecce (south Italy). The roads in this area are intensively affected by dangerous surface cracks that cause structural instability. The survey aimed to image the shallow subsurface structures, including karstic features, and evaluate their extent, as they may cause rock instability and lead to cracking of the road. Seismic refraction tomography and ground-penetrating radar surveys were carried out along several parallel traverses extending about 100 m on the cracked road. The acquired data were processed and interpreted integrally to elucidate the shallow structural setting of the site. Integrated interpretation led to the delineation of hazard zones rich with karstic features in the area. Most of these karstic features are associated with vertical and subvertical linear features and cavities. These features are the main reason of the rock instability that resulted in potentially dangerous cracking of road.
Gori, Paula L.
1993-01-01
INTERACTIVE WORKSHOPS: ESSENTIAL ELEMENTS OF THE EARTHQUAKE HAZARDS RESEARCH AND REDUCTION PROGRAM IN THE WASATCH FRONT, UTAH: Interactive workshops provided the forum and stimulus necessary to foster collaboration among the participants in the multidisciplinary, 5-yr program of earthquake hazards reduction in the Wasatch Front, Utah. The workshop process validated well-documented social science theories on the importance of interpersonal interaction, including interaction between researchers and users of research to increase the probability that research will be relevant to the user's needs and, therefore, more readily used. REDUCING EARTHQUAKE HAZARDS IN UTAH: THE CRUCIAL CONNECTION BETWEEN RESEARCHERS AND PRACTITIONERS: Complex scientific and engineering studies must be translated for and transferred to nontechnical personnel for use in reducing earthquake hazards in Utah. The three elements needed for effective translation, likelihood of occurrence, location, and severity of potential hazards, and the three elements needed for effective transfer, delivery, assistance, and encouragement, are described and illustrated for Utah. The importance of evaluating and revising earthquake hazard reduction programs and their components is emphasized. More than 30 evaluations of various natural hazard reduction programs and techniques are introduced. This report was prepared for research managers, funding sources, and evaluators of the Utah earthquake hazard reduction program who are concerned about effectiveness. An overview of the Utah program is provided for those researchers, engineers, planners, and decisionmakers, both public and private, who are committed to reducing human casualties, property damage, and interruptions of socioeconomic systems. PUBLIC PERCEPTIONS OF THE IMPLEMENTATION OF EARTHQUAKE MITIGATION POLICIES ALONG THE WASATCH FRONT IN UTAH: The earthquake hazard potential along the Wasatch Front in Utah has been well defined by a number of scientific and engineering studies. Translated earthquake hazard maps have also been developed to identify areas that are particularly vulnerable to various causes of damage such as ground shaking, surface rupturing, and liquefaction. The implementation of earthquake hazard reduction plans are now under way in various communities in Utah. The results of a survey presented in this paper indicate that technical public officials (planners and building officials) have an understanding of the earthquake hazards and how to mitigate the risks. Although the survey shows that the general public has a slightly lower concern about the potential for economic losses, they recognize the potential problems and can support a number of earthquake mitigation measures. The study suggests that many community groups along the Wasatch Front, including volunteer groups, business groups, and elected and appointed officials, are ready for action-oriented educational programs. These programs could lead to a significant reduction in the risks associated with earthquake hazards. A DATA BASE DESIGNED FOR URBAN SEISMIC HAZARDS STUDIES: A computerized data base has been designed for use in urban seismic hazards studies conducted by the U.S. Geological Survey. The design includes file structures for 16 linked data sets, which contain geological, geophysical, and seismological data used in preparing relative ground response maps of large urban areas. The data base is organized along relational data base principles. A prototype urban hazards data base has been created for evaluation in two urban areas currently under investigation: the Wasatch Front region of Utah and the Puget Sound area of Washington. The initial implementation of the urban hazards data base was accomplished on a microcomputer using dBASE III Plus software and transferred to minicomputers and a work station. A MAPPING OF GROUND-SHAKING INTENSITIES FOR SALT LAKE COUNTY, UTAH: This paper documents the development of maps showing a
Hazardous material transportation and the security externality : what should be done?
DOT National Transportation Integrated Search
2013-04-01
This project examined the safety and security externalities which exists in the : transportation of hazardous materials (particularly Toxic Inhalant Hazards) and : identified alterative mitigation strategies. The combination of terrorist attack...
NASA Astrophysics Data System (ADS)
Moser, M.
2009-04-01
The catchment Gadeinerbach in the District of Lungau/Salzburg/Austria is prone to debris flows. Large debris flow events dates back from the years 1934 and 1953. In the upper catchment large mass movements represent debris sources. A field study shows the debris potential and the catchment looks like a "sleeping torrential giant". To carry out mitigation measures a detailed risk management concept, based on a risk assessment in combination of historical analysis, field study and numerical modeling on the alluvial fan was conducted. Human activities have partly altered the surface of the alluvial fan Gadeinerbach but nevertheless some important hazard indicators could be found. With the hazard indicators and photo analysis from the large debris flow event 1934 the catchment character could be pointed out. With the help of these historical data sets (hazard indicators, sediment and debris amount...) it is possible to calibrate the provided numerical models and to win useful knowledge over the pro and cons and their application. The results were used to simulate the design event and furthermore to derive mitigation measures. Therefore the most effective protection against debris with a reduction of the high energy level to a lower level under particular energy change in combination with a debris/bedload deposition place has been carried out. Expert opinion, the study of historical data and a field work is in addition to numerical simulation techniques very necessary for the work in the field of natural hazard management.
Digging Our Own Holes: Institutional Perspectives on Seismic Hazards
NASA Astrophysics Data System (ADS)
Stein, S.; Tomasello, J.
2005-12-01
It has been observed that there are no true students of the earth; instead, we each dig our own holes and sit in them. A similar situation arises in attempts to assess the hazards of earthquakes and other natural disasters and to develop strategies to mitigate them. Ideally, we would like to look at the interests of society as a whole and develop strategies that best balance hazard mitigation with alternative uses of resources. Doing so, however, is difficult for several reasons. First, estimating seismic hazards requires assumptions about the size, recurrence, and shaking from future earthquakes, none of which are well known. Second, we have to chose a definition of seismic hazard, which is even more arbitrary and at least as significant about future earthquakes. Third, mitigating the risks involves economic and policy issues as well as the scientific one of estimating the hazard itself and the engineering one of designing safe structures. As a result, different public and private organizations with different institutional perspectives naturally adopt different approaches. Most organizations have a single focus. For example, those focusing on economic development tend to discount hazards, whereas emergency management groups tend to accentuate them. Organizations with quasi-regulatory duties (BSSC, FEMA, USGS) focus on reducing losses in future earthquakes without considering the cost of mitigation measures or how this use of resources should be balanced with alternative uses of resources that could mitigate other losses. Some organizations, however, must confront these tradeoffs directly because they allocate resources internally. Hence hospitals implicitly trade off more earthquake resistant construction with treating uninsured patients, highway departments balance stronger bridges with other safety improvements, and schools balance safer buildings with after school programs. These choices are complicated by the fact that such infrastructure typically has longer life than normal commercial or residential buildings, and the direct and indirect losses resulting from their failure can be much larger. Hence the issue is balancing mitigating large losses in infrequent disasters with smaller but steady losses that may over time be greater. Finally, there has been little investigation of the benefits of mitigation regulations on the private sector relative to their consequences, which may significantly increase building costs, require seismic retrofits, and cause difficulties in securing loans and insurance. Possible outcomes include reduced economic activity (firms don't build or build elsewhere), job loss (or reduced growth), and the resulting reduction in tax revenue and thus public services. Given these complexities, organizations should be encouraged to examine broader societal issues beyond their institutional perspectives, and significant efforts should be made to develop a more integrated approach.
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL) programs... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
Institutionalizing fire safety in making land use and development decisions
Marie-Annette Johnson; Marc Mullenix
1995-01-01
Because of three major wildland fires in the past 5 years along the Front Range of the Boulder County area in Colorado, current and potential residents should be told of steps that can reduce the risks of these fire hazards. The Wildfire Hazard Identification and Mitigation System (WHIMS) is used by the county and city to assist in the identification and mitigation of...
Severtson, Dolores
2013-01-01
To test a theoretical explanation of how attributes of mapped environmental health hazards influence health-related behavioral intentions and how beliefs and emotion mediate the influences of attributes, 24 maps were developed that varied by four attributes of a residential drinking water hazard: level, proximity, prevalence, and density. In a factorial design, student participants (N=446) answered questions for a subset of maps. Hazard level and proximity had the largest influences on intentions to test water and mitigate exposure. Belief in the problem’s seriousness mediated attributes’ influence on intention to test drinking water, and perceived susceptibility mediated the influence of attributes on intention to mitigate risk. Maps with carefully illustrated attributes of hazards may promote appropriate health-related risk beliefs, intentions, and behavior. PMID:23533022
Hazards on Hazards, Ensuring Spacecraft Safety While Sampling Asteroid Surface Materials
NASA Astrophysics Data System (ADS)
Johnson, C. A.; DellaGiustina, D. N.
2016-12-01
The near-Earth object Bennu is a carbonaceous asteroid that is a remnant from the earliest stages of the solar-system formation. It is also a potentially hazardous asteroid with a relatively high probability of impacting Earth late in the 22nd century. While the primary focus of the NASA funded OSIRIS-REx mission is the return of pristine organic material from the asteroid's surface, information about Bennu's physical and chemical properties gleaned throughout operations will be critical for a possible future impact mitigation mission. In order to ensure a regolith sample can be successfully acquired, the sample site and surrounding area must be thoroughly assessed for any potential hazards to the spacecraft. The OSIRIS-REx Image Processing Working Group has been tasked with generating global and site-specific hazard maps using mosaics and a trio of feature identification techniques. These techniques include expert-lead manual classification, internet-based amateur classification using the citizen science platform CosmoQuest, and automated classification using machine learning and computer vision tools. Because proximity operations around Bennu do not begin until the end of 2018, we have an opportunity to test the performance of our software on analogue surfaces of other asteroids from previous NASA and other space agencies missions. The entire pipeline from image processing and mosaicking to hazard identification, analysis and mapping will be performed on asteroids of varying size, shape and surface morphology. As a result, upon arrival at Bennu, we will have the software and processes in place to quickly and confidently produce the hazard maps needed to ensure the success of our mission.
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... receive the reduced cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... receive the reduced cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.2... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... receive the reduced cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... receive the reduced cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Natural Hazards of the Space Environment
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Kross, Dennis A. (Technical Monitor)
2000-01-01
Spacecraft in Low Earth Orbit (LEO) are subject to numerous environmental hazards. Here I'll briefly discuss three environment factors that pose acute threats to the survival of spacecraft systems and crew: atmospheric drag, impacts by meteoroids and orbital debris, and ionizing radiation. Atmospheric drag continuously opposes the orbital motion of a satellite, causing the orbit to decay. This decay will lead to reentry if not countered by reboost maneuvers. Orbital debris is a by-product of man's activities in space, and consists of objects ranging in size from miniscule paint chips to spent rocket stages and dead satellites. Ionizing radiation experienced in LEO has several components: geomagnetically trapped protons and electrons (Van Allen belts); energetic solar particles; galactic cosmic rays; and albedo neutrons. These particles can have several types of prompt harmful effects on equipment and crew, from single-event upsets, latchup, and burnout of electronics, to lethal doses to crew.All three types of prompt threat show some dependence on the solar activity cycle. Atmospheric drag mitigation and large debris avoidance require propulsive maneuvers. M/OD and ionizing radiation require some form of shielding for crew and sensitive equipment. Limiting exposure time is a mitigation technique for ionizing radiation and meteor streams.
Induced seismicity and carbon storage: Risk assessment and mitigation strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Joshua A.; Foxall, William; Bachmann, Corinne
Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO 2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO 2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO 2 injection and fluid injection from other applications that have induced significant events—e.g.more » geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO 2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO 2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk assessment and mitigation approach. A phased approach to risk management is then introduced. The basic goal of the phased approach is to constantly adapt site operations to current conditions and available characterization data. The remainder of the report then focuses in detail on different components of the monitoring, risk assessment, and mitigation strategies. Issues in current seismic risk assessment methods that must be modified to address induce seismicity are highlighted. The report then concludes with several specific recommendations for operators and regulatory authorities to consider when selecting, permitting, and operating a storage project.« less
Preparing for Euro 2012: developing a hazard risk assessment.
Wong, Evan G; Razek, Tarek; Luhovy, Artem; Mogilevkina, Irina; Prudnikov, Yuriy; Klimovitskiy, Fedor; Yutovets, Yuriy; Khwaja, Kosar A; Deckelbaum, Dan L
2015-04-01
Risk assessment is a vital step in the disaster-preparedness continuum as it is the foundation of subsequent phases, including mitigation, response, and recovery. To develop a risk assessment tool geared specifically towards the Union of European Football Associations (UEFA) Euro 2012. In partnership with the Donetsk National Medical University, Donetsk Research and Development Institute of Traumatology and Orthopedics, Donetsk Regional Public Health Administration, and the Ministry of Emergency of Ukraine, a table-based tool was created, which, based on historical evidence, identifies relevant potential threats, evaluates their impacts and likelihoods on graded scales based on previous available data, identifies potential mitigating shortcomings, and recommends further mitigation measures. This risk assessment tool has been applied in the vulnerability-assessment-phase of the UEFA Euro 2012. Twenty-three sub-types of potential hazards were identified and analyzed. Ten specific hazards were recognized as likely to very likely to occur, including natural disasters, bombing and blast events, road traffic collisions, and disorderly conduct. Preventative measures, such as increased stadium security and zero tolerance for impaired driving, were recommended. Mitigating factors were suggested, including clear, incident-specific preparedness plans and enhanced inter-agency communication. This hazard risk assessment tool is a simple aid in vulnerability assessment, essential for disaster preparedness and response, and may be applied broadly to future international events.
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
NASA Technical Reports Server (NTRS)
Kelly, Michael J.
2013-01-01
The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
A Summary of Research and Progress on Carbon Monoxide Exposure Control Solutions on Houseboats
Hall, Ronald M.; Earnest, G. Scott; Hammond, Duane R.; Dunn, Kevin H.; Garcia, Alberto
2015-01-01
Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used. PMID:24568306
A summary of research and progress on carbon monoxide exposure control solutions on houseboats.
Hall, Ronald M; Earnest, G Scott; Hammond, Duane R; Dunn, Kevin H; Garcia, Alberto
2014-01-01
Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used.
NASA Astrophysics Data System (ADS)
Gochis, E. E.; Lechner, H. N.; Brill, K. A.; Lerner, G.; Ramos, E.
2014-12-01
Graduate students at Michigan Technological University developed the "Landslides!" activity to engage middle & high school students participating in summer engineering programs in a hands-on exploration of geologic engineering and STEM (Science, Technology, Engineering and Math) principles. The inquiry-based lesson plan is aligned to Next Generation Science Standards and is appropriate for 6th-12th grade classrooms. During the activity students focus on the factors contributing to landslide development and engineering practices used to mitigate hazards of slope stability hazards. Students begin by comparing different soil types and by developing predictions of how sediment type may contribute to differences in slope stability. Working in groups, students then build tabletop hill-slope models from the various materials in order to engage in evidence-based reasoning and test their predictions by adding groundwater until each group's modeled slope fails. Lastly students elaborate on their understanding of landslides by designing 'engineering solutions' to mitigate the hazards observed in each model. Post-evaluations from students demonstrate that they enjoyed the hands-on nature of the activity and the application of engineering principles to mitigate a modeled natural hazard.
A public health hazard mitigation planning process.
Griffith, Jennifer M; Kay Carpender, S; Crouch, Jill Artzberger; Quiram, Barbara J
2014-01-01
The Texas A&M Health Science Center School of Rural Public Health, a member of the Training and Education Collaborative System Preparedness and Emergency Response Learning Center (TECS-PERLC), has long-standing partnerships with 2 Health Service Regions (Regions) in Texas. TECS-PERLC was contracted by these Regions to address 2 challenges identified in meeting requirements outlined by the Risk-Based Funding Project. First, within Metropolitan Statistical Areas, there is not a formal authoritative structure. Second, preexisting tools and processes did not adequately satisfy requirements to assess public health, medical, and mental health needs and link mitigation strategies to the Public Health Preparedness Capabilities, which provide guidance to prepare for, respond to, and recover from public health incidents. TECS-PERLC, with its partners, developed a framework to interpret and apply results from the Texas Public Health Risk Assessment Tool (TxPHRAT). The 3-phase community engagement-based TxPHRAT Mitigation Planning Process (Mitigation Planning Process) and associated tools facilitated the development of mitigation plans. Tools included (1) profiles interpreting TxPHRAT results and identifying, ranking, and prioritizing hazards and capability gaps; (2) a catalog of intervention strategies and activities linked to hazards and capabilities; and (3) a template to plan, evaluate, and report mitigation planning efforts. The Mitigation Planning Process provided a framework for Regions to successfully address all funding requirements. TECS-PERLC developed more than 60 profiles, cataloged and linked 195 intervention strategies, and developed a template resulting in 20 submitted mitigation plans. A public health-focused, community engagement-based mitigation planning process was developed by TECS-PERLC and successfully implemented by the Regions. The outcomes met all requirements and reinforce the effectiveness of academic practice partnerships and importance of community engagement in mitigation planning. Additional funding has been approved to expand the Mitigation Planning Process to all counties in Texas with local health departments.
NASA Astrophysics Data System (ADS)
Komendantova, Nadejda; Patt, Anthony
2013-04-01
In December 2004, a multiple hazards event devastated the Tamil Nadu province of India. The Sumatra -Andaman earthquake with a magnitude of Mw=9.1-9.3 caused the Indian Ocean tsunami with wave heights up to 30 m, and flooding that reached up to two kilometers inland in some locations. More than 7,790 persons were killed in the province of Tamil Nadu, with 206 in its capital Chennai. The time lag between the earthquake and the tsunami's arrival in India was over an hour, therefore, if a suitable early warning system existed, a proper means of communicating the warning and shelters existing for people would exist, than while this would not have prevented the destruction of infrastructure, several thousands of human lives would have been saved. India has over forty years of experience in the construction of cyclone shelters. With additional efforts and investment, these shelters could be adapted to other types of hazards such as tsunamis and flooding, as well as the construction of new multi-hazard cyclone shelters (MPCS). It would therefore be possible to mitigate one hazard such as cyclones by the construction of a network of shelters while at the same time adapting these shelters to also deal with, for example, tsunamis, with some additional investment. In this historical case, the failure to consider multiple hazards caused significant human losses. The current paper investigates the patterns of the national decision-making process with regards to multiple hazards mitigation measures and how the presence of behavioral and cognitive biases influenced the perceptions of the probabilities of multiple hazards and the choices made for their mitigation by the national decision-makers. Our methodology was based on the analysis of existing reports from national and international organizations as well as available scientific literature on behavioral economics and natural hazards. The results identified several biases in the national decision-making process when the construction of cyclone shelters was being undertaken. The availability heuristics caused a perception of low probability of tsunami following an earthquake, as the last large similar event happened over a hundred years ago. Another led to a situation when decisions were taken on the basis of experience and not statistical evidence, namely, experience showed that the so-called "Ring of Fire" generates underground earthquakes and tsunamis in the Pacific Ocean. This knowledge made decision-makers to neglect the numerical estimations about probability of underground earthquake in the Indian Ocean even though seismologists were warning about probability of a large underground earthquake in the Indian Ocean. The bounded rationality bias led to misperception of signals from the early warning center in the Pacific Ocean. The resulting limited concern resulted in risk mitigation measures that considered cyclone risks, but much less about tsunami. Under loss aversion considerations, the decision-makers perceived the losses connected with the necessary additional investment as being greater than benefits from mitigating a less probable hazard.
Wood, Nathan J.; Good, James W.
2004-01-01
AbstractEarthquakes and tsunamis pose significant threats to Pacific Northwest coastal port and harbor communities. Developing holistic mitigation and preparedness strategies to reduce the potential for loss of life and property damage requires community-wide vulnerability assessments that transcend traditional site-specific analyses. The ability of a geographic information system (GIS) to integrate natural, socioeconomic, and hazards information makes it an ideal assessment tool to support community hazard planning efforts. This article summarizes how GIS was used to assess the vulnerability of an Oregon port and harbor community to earthquake and tsunami hazards, as part of a larger risk-reduction planning initiative. The primary purposes of the GIS were to highlight community vulnerability issues and to identify areas that both are susceptible to hazards and contain valued port and harbor community resources. Results of the GIS analyses can help decision makers with limited mitigation resources set priorities for increasing community resiliency to natural hazards.
Severtson, Dolores J
2013-08-01
To test a theoretical explanation of how attributes of mapped environmental health hazards influence health-related behavioral intentions and how beliefs and emotion mediate the influences of attributes, 24 maps were developed that varied by four attributes of a residential drinking water hazard: level, proximity, prevalence, and density. In a factorial design, student participants (N = 446) answered questions about a subset of maps. Hazard level and proximity had the largest influences on intentions to test water and mitigate exposure. Belief in the problem's seriousness mediated attributes' influence on intention to test drinking water, and perceived susceptibility mediated the influence of attributes on intention to mitigate risk. Maps with carefully illustrated attributes of hazards may promote appropriate health-related risk beliefs, intentions, and behavior. Copyright © 2013 Wiley Periodicals, Inc.
A probabilistic tsunami hazard assessment for Indonesia
NASA Astrophysics Data System (ADS)
Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.
2014-11-01
Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
NASA Astrophysics Data System (ADS)
Bernard, E. N.; Behn, R. R.; Hebenstreit, G. T.; Gonzalez, F. I.; Krumpe, P.; Lander, J. F.; Lorca, E.; McManamon, P. M.; Milburn, H. B.
Rapid onset natural hazards have claimed more than 2.8 million lives worldwide in the past 20 years. This category includes such events as earthquakes, landslides, hurricanes, tornados, floods, volcanic eruptions, wildfires, and tsunamis. Effective hazard mitigation is particularly difficult in such cases, since the time available to issue warnings can be very short or even nonexistent. This paper presents the concept of a local warning system that exploits and integrates the existing technologies of risk evaluation, environmental measurement, and telecommunications. We describe Project THRUST, a successful implementation of this general, systematic approach to tsunamis. The general approach includes pre-event emergency planning, real-time hazard assessment, and rapid warning via satellite communication links.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helms, J.
2017-02-10
The US energy sector is vulnerable to multiple hazards including both natural disasters and malicious attacks from an intelligent adversary. The question that utility owners, operators and regulators face is how to prioritize their investments to mitigate the risks from a hazard that can have the most impact on the asset of interest. In order to be able to understand their risk landscape and develop a prioritized mitigation strategy, they must quantify risk in a consistent way across all hazards their asset is facing. Without being able to quantitatively measure risk, it is not possible to defensibly prioritize security investmentsmore » or evaluate trade-offs between security and functionality. Development of a methodology that will consistently measure and quantify risk across different hazards is needed.« less
Failure Modes and Effects Analysis (FMEA): A Bibliography
NASA Technical Reports Server (NTRS)
2000-01-01
Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.
NASA Astrophysics Data System (ADS)
Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara
2010-05-01
Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta Valley, NW-Italy), for preventing and recovering measures; 3) geological and geomorphological controlling factors of seismicity, to provide microzonation maps and scenarios for co-seismic response of instable zones (Dronero, NW- Italian Alps); 4) earthquake effects on ground and infrastructures, in order to register early assessment for awareness situations and for compile damage inventories (Asti-Alessandria seismic events, 2000, 2001, 2003). The research results has been able to substantiate early warning models by structuring geodatabases on natural disasters, and to support humanitarian relief and disaster management activities by creating and testing SRG2, a mobile-GIS application for field-data collection on natural hazards and risks.
NASA Astrophysics Data System (ADS)
Ko, Bokyun; Yun, Sung-Hyo
2016-04-01
Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS-NH-2015-81] through the Natural Hazard Mitigation Research Group funded by Ministry of Public Safety and Security of Korean government.
Tinoco, Maria Auxiliadora Cannarozzo; Nodari, Christine Tessele; Pereira, Kimberllyn Rosa da Silva
2016-09-19
This study aimed to assess the environmental and social vulnerability and identify critical highway stretches for accidents involving transportation of hazardous products on the BR-101 highway between the cities of Osório and Torres in Rio Grande do Sul State, Brazil. The study's approach consisted of a multiple-criteria analysis combining highway safety analysis and environmental and social vulnerability analysis in the occurrence of accidents with hazardous products, plus cartographic analysis techniques. Thirty-eight kilometers of the highway showed high vulnerability, of which 8 kilometers with critical vulnerability, associated with bridges over rivers, water uptake points, a tunnel, environmental preservation areas, and an urban area. These stretches should be prioritized when developing action plans for accident mitigation and development of public policies for this highway. This proved to be an unprecedented approach when compared to existing studies and a potentially useful tool for decision-making in emergency operations.
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
Climate change beliefs and hazard mitigation behaviors: Homeowners and wildfire risk
Hannah Brenkert-Smith; James R. Meldrum; Patricia A. Champ
2015-01-01
Downscaled climate models provide projections of how climate change may exacerbate the local impacts of natural hazards. The extent to which people facing exacerbated hazard conditions understand or respond to climate-related changes to local hazards has been largely overlooked. In this article, we examine the relationships among climate change beliefs, environmental...
Linear Aerospike SR-71 Experiment (LASRE): Aerospace Propulsion Hazard Mitigation Systems
NASA Technical Reports Server (NTRS)
Mizukami, Masashi; Corpening, Griffin P.; Ray, Ronald J.; Hass, Neal; Ennix, Kimberly A.; Lazaroff, Scott M.
1998-01-01
A major hazard posed by the propulsion system of hypersonic and space vehicles is the possibility of fire or explosion in the vehicle environment. The hazard is mitigated by minimizing or detecting, in the vehicle environment, the three ingredients essential to producing fire: fuel, oxidizer, and an ignition source. The Linear Aerospike SR-71 Experiment (LASRE) consisted of a linear aerospike rocket engine integrated into one-half of an X-33-like lifting body shape, carried on top of an SR-71 aircraft. Gaseous hydrogen and liquid oxygen were used as propellants. Although LASRE is a one-of-a-kind experimental system, it must be rated for piloted flight, so this test presented a unique challenge. To help meet safety requirements, the following propulsion hazard mitigation systems were incorporated into the experiment: pod inert purge, oxygen sensors, a hydrogen leak detection algorithm, hydrogen sensors, fire detection and pod temperature thermocouples, water misting, and control room displays. These systems are described, and their development discussed. Analyses, ground test, and flight test results are presented, as are findings and lessons learned.
A web-based tool for ranking landslide mitigation measures
NASA Astrophysics Data System (ADS)
Lacasse, S.; Vaciago, G.; Choi, Y. J.; Kalsnes, B.
2012-04-01
As part of the research done in the European project SafeLand "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies", a compendium of structural and non-structural mitigation measures for different landslide types in Europe was prepared, and the measures were assembled into a web-based "toolbox". Emphasis was placed on providing a rational and flexible framework applicable to existing and future mitigation measures. The purpose of web-based toolbox is to assist decision-making and to guide the user in the choice of the most appropriate mitigation measures. The mitigation measures were classified into three categories, describing whether the mitigation measures addressed the landslide hazard, the vulnerability or the elements at risk themselves. The measures considered include structural measures reducing hazard and non-structural mitigation measures, reducing either the hazard or the consequences (or vulnerability and exposure of elements at risk). The structural measures include surface protection and control of surface erosion; measures modifying the slope geometry and/or mass distribution; measures modifying surface water regime - surface drainage; measures mo¬difying groundwater regime - deep drainage; measured modifying the mechanical charac¬teristics of unstable mass; transfer of loads to more competent strata; retaining structures (to modify slope geometry and/or to transfer stress to compe¬tent layer); deviating the path of landslide debris; dissipating the energy of debris flows; and arresting and containing landslide debris or rock fall. The non-structural mitigation measures, reducing either the hazard or the consequences: early warning systems; restricting or discouraging construction activities; increasing resistance or coping capacity of elements at risk; relocation of elements at risk; sharing of risk through insurance. The measures are described in the toolbox with fact sheets providing a brief description, guidance on design, schematic details, practical examples and references for each mitigation measure. Each of the measures was given a score on its ability and applicability for different types of landslides and boundary conditions, and a decision support matrix was established. The web-based toolbox organizes the information in the compendium and provides an algorithm to rank the measures on the basis of the decision support matrix, and on the basis of the risk level estimated at the site. The toolbox includes a description of the case under study and offers a simplified option for estimating the hazard and risk levels of the slide at hand. The user selects the mitigation measures to be included in the assessment. The toolbox then ranks, with built-in assessment factors and weights and/or with user-defined ranking values and criteria, the mitigation measures included in the analysis. The toolbox includes data management, e.g. saving data half-way in an analysis, returning to an earlier case, looking up prepared examples or looking up information on mitigation measures. The toolbox also generates a report and has user-forum and help features. The presentation will give an overview of the mitigation measures considered and examples of the use of the toolbox, and will take the attendees through the application of the toolbox.
Weary, David J.
2015-01-01
Rocks with potential for karst formation are found in all 50 states. Damage due to karst subsidence and sinkhole collapse is a natural hazard of national scope. Repair of damage to buildings, highways, and other infrastructure represents a significant national cost. Sparse and incomplete data show that the average cost of karst-related damages in the United States over the last 15 years is estimated to be at least $300,000,000 per year and the actual total is probably much higher. This estimate is lower than the estimated annual costs for other natural hazards; flooding, hurricanes and cyclonic storms, tornadoes, landslides, earthquakes, or wildfires, all of which average over $1 billion per year. Very few state organizations track karst subsidence and sinkhole damage mitigation costs; none occurs at the Federal level. Many states discuss the karst hazard in their State hazard mitigation plans, but seldom include detailed reports of subsidence incidents or their mitigation costs. Most State highway departments do not differentiate karst subsidence or sinkhole collapse from other road repair costs. Amassing of these data would raise the estimated annual cost considerably. Information from insurance organizations about sinkhole damage claims and payouts is also not readily available. Currently there is no agency with a mandate for developing such data. If a more realistic estimate could be made, it would illuminate the national scope of this hazard and make comparison with costs of other natural hazards more realistic.
Chemical Safety Alert: Fire Hazard from Carbon Adsorption Deodorizing Systems
Activated carbon systems used to adsorb vapors for odor control may pose a fire hazard when used for certain types of substances, such as crude sulfate turpentine. Facilities should take precautions and proper procedures to avoid or mitigate these hazards.
Screening guide for rapid assessment of liquefaction hazard at highway bridge sites
DOT National Transportation Integrated Search
1998-06-16
As an aid to seismic hazard assessment, this report provides a "screening guide" for systematic evaluation of liquefactin hazard at bridge sites and a guide for prioritizing sites for further investigation or mitigation. The guide presents a systemat...
Use of Space Technology in Flood Mitigation (Western Province, Zambia)
NASA Astrophysics Data System (ADS)
Mulando, A.
2001-05-01
Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.
Earthquake Hazard Mitigation Using a Systems Analysis Approach to Risk Assessment
NASA Astrophysics Data System (ADS)
Legg, M.; Eguchi, R. T.
2015-12-01
The earthquake hazard mitigation goal is to reduce losses due to severe natural events. The first step is to conduct a Seismic Risk Assessment consisting of 1) hazard estimation, 2) vulnerability analysis, 3) exposure compilation. Seismic hazards include ground deformation, shaking, and inundation. The hazard estimation may be probabilistic or deterministic. Probabilistic Seismic Hazard Assessment (PSHA) is generally applied to site-specific Risk assessments, but may involve large areas as in a National Seismic Hazard Mapping program. Deterministic hazard assessments are needed for geographically distributed exposure such as lifelines (infrastructure), but may be important for large communities. Vulnerability evaluation includes quantification of fragility for construction or components including personnel. Exposure represents the existing or planned construction, facilities, infrastructure, and population in the affected area. Risk (expected loss) is the product of the quantified hazard, vulnerability (damage algorithm), and exposure which may be used to prepare emergency response plans, retrofit existing construction, or use community planning to avoid hazards. The risk estimate provides data needed to acquire earthquake insurance to assist with effective recovery following a severe event. Earthquake Scenarios used in Deterministic Risk Assessments provide detailed information on where hazards may be most severe, what system components are most susceptible to failure, and to evaluate the combined effects of a severe earthquake to the whole system or community. Casualties (injuries and death) have been the primary factor in defining building codes for seismic-resistant construction. Economic losses may be equally significant factors that can influence proactive hazard mitigation. Large urban earthquakes may produce catastrophic losses due to a cascading of effects often missed in PSHA. Economic collapse may ensue if damaged workplaces, disruption of utilities, and resultant loss of income produces widespread default on payments. With increased computational power and more complete inventories of exposure, Monte Carlo methods may provide more accurate estimation of severe losses and the opportunity to increase resilience of vulnerable systems and communities.
NASA Technical Reports Server (NTRS)
Dastoor, M. N.; Evans, D. L.
1996-01-01
The paper will review the application of NASA developed remote sensing technology towards the monitoring and mitigation of natural hazards. The overview will be followed by recent data on three specific natural hazard applications.
NASA Astrophysics Data System (ADS)
Hussein, Alaa; Rozenheck, Oshri; Entrena Utrilla, Carlos Manuel
2016-09-01
Throughout recorded history, hundreds of Earth impacts have been reported, with some catastrophic localized consequences. Based on the International Space University (ISU) Planetary Defense project named READI, we address the impact event problem by giving recommendations for the development of a planetary defense program. This paper reviews the current detection and tracking techniques and gives a set of recommendations for a better preparation to shield Earth from asteroid and cometary impacts. We also extend the use of current deflection techniques and propose a new compilation of those to deflect medium-sized potentially hazardous objects (PHOs). Using an array of techniques from high-energy lasers to defensive missiles, we present a set of protective layers to defend our planet. The paper focused on threats with a short warning period from discovery to impact with Earth, within few years.
The influence of hazard models on GIS-based regional risk assessments and mitigation policies
Bernknopf, R.L.; Rabinovici, S.J.M.; Wood, N.J.; Dinitz, L.B.
2006-01-01
Geographic information systems (GIS) are important tools for understanding and communicating the spatial distribution of risks associated with natural hazards in regional economies. We present a GIS-based decision support system (DSS) for assessing community vulnerability to natural hazards and evaluating potential mitigation policy outcomes. The Land Use Portfolio Modeler (LUPM) integrates earth science and socioeconomic information to predict the economic impacts of loss-reduction strategies. However, the potential use of such systems in decision making may be limited when multiple but conflicting interpretations of the hazard are available. To explore this problem, we conduct a policy comparison using the LUPM to test the sensitivity of three available assessments of earthquake-induced lateral-spread ground failure susceptibility in a coastal California community. We find that the uncertainty regarding the interpretation of the science inputs can influence the development and implementation of natural hazard management policies. Copyright ?? 2006 Inderscience Enterprises Ltd.
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation
Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura
2014-01-01
The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.
Ferrario, Filippo; Beck, Michael W; Storlazzi, Curt D; Micheli, Fiorenza; Shepard, Christine C; Airoldi, Laura
2014-05-13
The world's coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation
Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura
2014-01-01
The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.
Patterns of Risk Using an Integrated Spatial Multi-Hazard Model (PRISM Model)
Multi-hazard risk assessment has long centered on small scale needs, whereby a single community or group of communities’ exposures are assessed to determine potential mitigation strategies. While this approach has advanced the understanding of hazard interactions, it is li...
Hazard Mitigation Assistance Programs Available to Water and Wastewater Utilities
You can prevent damage to your utility before it occurs. Utilities can implement mitigation projects to better withstand a natural disaster, minimize damage and rapidly recover from disruptions to service.
Lidar and Electro-Optics for Atmospheric Hazard Sensing and Mitigation
NASA Technical Reports Server (NTRS)
Clark, Ivan O.
2012-01-01
This paper provides an overview of the research and development efforts of the Lidar and Electro-Optics element of NASA's Aviation Safety Program. This element is seeking to improve the understanding of the atmospheric environments encountered by aviation and to provide enhanced situation awareness for atmospheric hazards. The improved understanding of atmospheric conditions is specifically to develop sensor signatures for atmospheric hazards. The current emphasis is on kinetic air hazards such as turbulence, aircraft wake vortices, mountain rotors, and windshear. Additional efforts are underway to identify and quantify the hazards arising from multi-phase atmospheric conditions including liquid and solid hydrometeors and volcanic ash. When the multi-phase conditions act as obscurants that result in reduced visual awareness, the element seeks to mitigate the hazards associated with these diminished visual environments. The overall purpose of these efforts is to enable safety improvements for air transport class and business jet class aircraft as the transition to the Next Generation Air Transportation System occurs.
Dunbar, Paula K.; Weaver, Craig S.
2015-01-01
The first U.S. Tsunami Hazard Assessment (Dunbar and Weaver, 2008) was prepared at the request of the National Tsunami Hazard Mitigation Program (NTHMP). The NTHMP is a partnership formed between federal and state agencies to reduce the impact of tsunamis through hazard assessment, warning guidance, and mitigation. The assessment was conducted in response to a 2005 joint report by the Sub-Committee on Disaster Reduction and the U.S. Group on Earth Observations entitled Tsunami Risk Reduction for the United States: A Framework for Action. The first specific action called for in the Framework was to “develop standardized and coordinated tsunami hazard and risk assessments for all coastal regions of the United States and its territories.” Since the first assessment, there have been a number of very significant tsunamis, including the 2009 Samoa, 2010 Chile, and 2011 Japan tsunamis. As a result, the NTHMP requested an update of the U.S. tsunami hazard assessment.
Sun, Chao; Feng, Wenquan; Du, Songlin
2018-01-01
As multipath is one of the dominating error sources for high accuracy Global Navigation Satellite System (GNSS) applications, multipath mitigation approaches are employed to minimize this hazardous error in receivers. Binary offset carrier modulation (BOC), as a modernized signal structure, is adopted to achieve significant enhancement. However, because of its multi-peak autocorrelation function, conventional multipath mitigation techniques for binary phase shift keying (BPSK) signal would not be optimal. Currently, non-parametric and parametric approaches have been studied specifically aiming at multipath mitigation for BOC signals. Non-parametric techniques, such as Code Correlation Reference Waveforms (CCRW), usually have good feasibility with simple structures, but suffer from low universal applicability for different BOC signals. Parametric approaches can thoroughly eliminate multipath error by estimating multipath parameters. The problems with this category are at the high computation complexity and vulnerability to the noise. To tackle the problem, we present a practical parametric multipath estimation method in the frequency domain for BOC signals. The received signal is transferred to the frequency domain to separate out the multipath channel transfer function for multipath parameter estimation. During this process, we take the operations of segmentation and averaging to reduce both noise effect and computational load. The performance of the proposed method is evaluated and compared with the previous work in three scenarios. Results indicate that the proposed averaging-Fast Fourier Transform (averaging-FFT) method achieves good robustness in severe multipath environments with lower computational load for both low-order and high-order BOC signals. PMID:29495589
NASA Astrophysics Data System (ADS)
Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.
2015-08-01
The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk
Opinion: The use of natural hazard modeling for decision making under uncertainty
David E. Calkin; Mike Mentis
2015-01-01
Decision making to mitigate the effects of natural hazards is a complex undertaking fraught with uncertainty. Models to describe risks associated with natural hazards have proliferated in recent years. Concurrently, there is a growing body of work focused on developing best practices for natural hazard modeling and to create structured evaluation criteria for complex...
NASA Astrophysics Data System (ADS)
Bird, Deanne K.; Gisladottir, Gudrun; Dominey-Howes, Dale
2010-01-01
This paper examines the relationship between volcanic risk and the tourism sector in southern Iceland and the complex challenge emergency management officials face in developing effective volcanic risk mitigation strategies. An early warning system and emergency response procedures were developed for communities surrounding Katla, the volcano underlying the Mýrdalsjökull ice cap. However, prior to and during the 2007 tourist season these mitigation efforts were not effectively communicated to stakeholders located in the tourist destination of Þórsmörk despite its location within the hazard zone of Katla. The hazard zone represents the potential extent of a catastrophic jökulhlaup (glacial outburst flood). Furthermore, volcanic risk mitigation efforts in Þórsmörk were based solely on information derived from physical investigations of volcanic hazards. They did not consider the human dimension of risk. In order to address this gap and provide support to current risk mitigation efforts, questionnaire surveys were used to investigate tourists' and tourism employees' hazard knowledge, risk perception, adoption of personal preparedness measures, predicted behaviour if faced with a Katla eruption and views on education. Results indicate that tourists lack hazard knowledge and they do not adopt preparedness measures to deal with the consequences of an eruption. Despite a high level of risk perception, tourism employees lack knowledge about the early warning system and emergency response procedures. Results show that tourists are positive about receiving information concerning Katla and its hazards and therefore, the reticence of tourism employees with respect to disseminating hazard information is unjustified. In order to improve the tourism sector's collective capacity to positively respond during a future eruption, recommendations are made to ensure adequate dissemination of hazard, risk and emergency response information. Most importantly education campaigns should focus on: (a) increasing tourists' knowledge of Katla, jökulhlaup and other volcanic hazards and (b) increasing tourist and employee awareness of the early warning and information system and appropriate behavioural response if a warning is issued. Further, tourism employees should be required to participate in emergency training and evacuation exercises annually. These efforts are timely given that Katla is expected to erupt in the near future and international tourism is an expanding industry in Þórsmörk.
Communicating Volcanic Hazards in the North Pacific
NASA Astrophysics Data System (ADS)
Dehn, J.; Webley, P.; Cunningham, K. W.
2014-12-01
For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2011 CFR
2011-10-01
... reduce risks from natural hazards and serves as a guide for State decision makers as they commit resources to reducing the effects of natural hazards. (b) Planning process. An effective planning process is... risk assessments must characterize and analyze natural hazards and risks to provide a statewide...
Wicked Problems in Natural Hazard Assessment and Mitigation
NASA Astrophysics Data System (ADS)
Stein, S.; Steckler, M. S.; Rundle, J. B.; Dixon, T. H.
2017-12-01
Social scientists have defined "wicked" problems that are "messy, ill-defined, more complex than we fully grasp, and open to multiple interpretations based on one's point of view... No solution to a wicked problem is permanent or wholly satisfying, which leaves every solution open to easy polemical attack." These contrast with "tame" problems in which necessary information is available and solutions - even if difficult and expensive - are straightforward to identify and execute. Updating the U.S.'s aging infrastructure is a tame problem, because what is wrong and how to fix it are clear. In contrast, addressing climate change is a wicked problem because its effects are uncertain and the best strategies to address them are unclear. An analogous approach can be taken to natural hazard problems. In tame problems, we have a good model of the process, good information about past events, and data implying that the model should predict future events. In such cases, we can make a reasonable assessment of the hazard that can be used to develop mitigation strategies. Earthquake hazard mitigation for San Francisco is a relatively tame problem. We understand how the earthquakes result from known plate motions, have information about past earthquakes, and have geodetic data implying that future similar earthquakes will occur. As a result, it is straightforward to develop and implement mitigation strategies. However, in many cases, hazard assessment and mitigation is a wicked problem. How should we prepare for a great earthquake on plate boundaries where tectonics favor such events but we have no evidence that they have occurred and hence how large they may be or how often to expect them? How should we assess the hazard within plates, for example in the New Madrid seismic zone, where large earthquakes have occurred but we do not understand their causes and geodetic data show no strain accumulating? How can we assess the hazard and make sensible policy when the recurrence of earthquakes, floods, or hurricanes seems to be changing with time or is expected to do so due to human activity? A starting approach might be to assess what we know, what we don't know, what we think, and what can be done that might improve this situation. We should draw on what is known in other areas of risk assessment including social science, meteorology, engineering, and economics.
44 CFR 201.6 - Local Mitigation Plans.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...
44 CFR 201.6 - Local Mitigation Plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...
44 CFR 201.6 - Local Mitigation Plans.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...
A knowledge integration approach to flood vulnerability
NASA Astrophysics Data System (ADS)
Mazzorana, Bruno; Fuchs, Sven
2014-05-01
Understanding, qualifying and quantifying vulnerability is an essential need for implementing effective and efficient flood risk mitigation strategies; in particular if possible synergies between different mitigation alternatives, such as active and passive measures, should be achieved. In order to combine different risk management options it is necessary to take an interdisciplinary approach to vulnerability reduction, and as a result the affected society may be willing to accept a certain degree of self-responsibility. However, due to differing mono-disciplinary approaches and regional foci undertaken until now, different aspects of vulnerability to natural hazards in general and to floods in particular remain uncovered and as a result the developed management options remain sub-optimal. Taking an even more fundamental viewpoint, the empirical vulnerability functions used in risk assessment specifically fail to capture physical principles of the damage-generating mechanisms to the build environment. The aim of this paper is to partially close this gap by discussing a balanced knowledge integration approach which can be used to resolve the multidisciplinary disorder in flood vulnerability research. Modelling techniques such as mathematical-physical modelling of the flood hazard impact to and response from the building envelope affected, and formative scenario analyses of possible consequences in terms of damage and loss are used in synergy to provide an enhanced understanding of vulnerability and to render the derived knowledge into interdisciplinary mitigation strategies. The outlined formal procedure allows for a convincing knowledge alignment of quantified, but partial, information about vulnerability as a result of the application of physical and engineering notions and valuable, but often underspecified, qualitative argumentation strings emerging from the adopted socio-economic viewpoint.
Hydrogen Hazards Assessment Protocol (HHAP): Approach and Methodology
NASA Technical Reports Server (NTRS)
Woods, Stephen
2009-01-01
This viewgraph presentation reviews the approach and methodology to develop a assessment protocol for hydrogen hazards. Included in the presentation are the reasons to perform hazards assessment, the types of hazard assessments that exist, an analysis of hydrogen hazards, specific information about the Hydrogen Hazards Assessment Protocol (HHAP). The assessment is specifically tailored for hydrogen behavior. The end product of the assesment is a compilation of hazard, mitigations and associated factors to facilitate decision making and achieve the best practice.
Natural hazard modeling and uncertainty analysis [Chapter 2
Matthew Thompson; Jord J. Warmink
2017-01-01
Modeling can play a critical role in assessing and mitigating risks posed by natural hazards. These modeling efforts generally aim to characterize the occurrence, intensity, and potential consequences of natural hazards. Uncertainties surrounding the modeling process can have important implications for the development, application, evaluation, and interpretation of...
Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards
NASA Astrophysics Data System (ADS)
Kerlow, I.
2017-12-01
Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.
David Butry; Geoffrey Donovan
2008-01-01
Climate change, increased wildland fuels, and residential development patterns in fire-prone areas all combine to make wildfire risk mitigation an important public policy issue. One approach to wildfire risk mitigation is to encourage homeowners to use fire-resistant building materials and to create defensible spaces around their homes. We develop a theoretical model...
NASA Astrophysics Data System (ADS)
Hales, T. C.; Cashman, K. V.
2006-12-01
Geological hazard mitigation is a complicated process that involves both detailed scientific research and negotiations between community members with competing interests in the solution. Geological hazards classes based around traditional lecture methods have difficulty conveying the decision-making processes that go into these negotiations. To address this deficiency, we have spent five years developing and testing a role- playing exercise based on mitigation of a dam outburst hazard on Ruapehu volcano, New Zealand. In our exercise, students are asked to undertake one of five different roles and decide the best way to mitigate the hazard. Over the course of their discussion students are challenged to reach a consensus decision despite the presence of strongly opposed positions. Key to the success of the exercise are (1) the presence of a facilitator and recorder for each meeting, (2) the provision of unique information for each interested party, and (3) the division of the class into multiple meeting groups, such that everyone is required to participate and individual groups can evolve to different conclusions. The exercise can be completed in a single hour and twenty minute classroom session that is divided into four parts: an introduction, a meeting between members of the same interested party to discuss strategy, a meeting between different interested parties, and a debriefing session. This framework can be readily translated to any classroom hazard problem. In our experience, students have responded positively to the use of role-playing to supplement lectures.
NASA Astrophysics Data System (ADS)
Fleming, K. M.; Zschau, J.; Gasparini, P.; Modaressi, H.; Matrix Consortium
2011-12-01
Scientists, engineers, civil protection and disaster managers typically treat natural hazards and risks individually. This leads to the situation where the frequent causal relationships between the different hazards and risks, e.g., earthquakes and volcanos, or floods and landslides, are ignored. Such an oversight may potentially lead to inefficient mitigation planning. As part of their efforts to confront this issue, the European Union, under its FP7 program, is supporting the New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe or MATRIX project. The focus of MATRIX is on natural hazards, in particular earthquakes, landslides, volcanos, wild fires, storms and fluvial and coastal flooding. MATRIX will endeavour to develop methods and tools to tackle multi-type natural hazards and risks within a common framework, focusing on methodologies that are suited to the European context. The work will involve an assessment of current single-type hazard and risk assessment methodologies, including a comparison and quantification of uncertainties and harmonization of single-type methods, examining the consequence of cascade effects within a multi-hazard environment, time-dependent vulnerability, decision making and support for multi-hazard mitigation and adaption, and a series of test cases. Three test sites are being used to assess the methods developed within the project (Naples, Cologne, and the French West Indies), as well as a "virtual city" based on a comprehensive IT platform that will allow scenarios not represented by the test cases to be examined. In addition, a comprehensive dissemination program that will involve national platforms for disaster management, as well as various outreach activities, will be undertaken. The MATRIX consortium consists of ten research institutions (nine European and one Canadian), an end-user (i.e., one of the European national platforms for disaster reduction) and a partner from industry.
A~probabilistic tsunami hazard assessment for Indonesia
NASA Astrophysics Data System (ADS)
Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.
2014-05-01
Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.
Impact Hazard Monitoring: Theory and Implementation
NASA Astrophysics Data System (ADS)
Farnocchia, Davide
2015-08-01
Impact monitoring is a crucial component of the mitigation or elimination of the hazard posed by asteroid impacts. Once an asteroid is discovered, it is important to achieve an early detection and an accurate assessment of the risk posed by future Earth encounters. Here we review the most standard impact monitoring techniques. Linear methods are the fastest approach but their applicability regime is limited because of the chaotic dynamics of near-Earth asteroids, whose orbits are often scattered by planetary encounters. Among nonlinear methods, Monte Carlo algorithms are the most reliable ones. However, the large number of near-Earth asteroids and the computational load required to detect low probability impact events make Monte Carlo approaches impractical in the framework of monitoring all near-Earth asteroids. In the last 15 years, the Line of Variations (LOV) method has been the most successful technique as it strikes a remarkable compromise between computational efficiency and the capability of detecting low probability events deep in the nonlinear regime. As a matter of fact, the LOV method is the engine of JPL’s Sentry and University of Pisa’s NEODyS, which the two fully automated impact monitoring systems that routinely search for potential impactors among known near-Earth asteroids. We also present some more recent techniques developed to deal with the new challenges arising in the impact hazard assessment problem. In particular, we describe how to use keyhole maps to go beyond strongly scattering encounters and push forward in time the impact prediction horizon. In these cases asteroids usually have a very well constrained orbit and we often need to account for the action of nongravitational perturbations, especially the Yarkovsky effect. Finally, we discuss the short-term hazard assessment problem for newly discovered asteroids, when only a short observed arc is available. The limited amount of observational data generally leads to severe degeneracies in the orbit estimation process. We overcome these degeneracies by employing ranging techniques, which scan the poorly constrained space of topocentric range and range rate.
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.
2013-12-01
Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of multiple observation geometries in change detection procedures. Additionally, it will be shown how SAR-based hazard information can be integrated with data from optical satellites, thermal sensors, webcams and models to create near-real time volcano hazard information. We will introduce a prototype monitoring system that integrates SAR-based hazard information into the near real-time volcano hazard monitoring system of the Alaska Volcano Observatory. This prototype system was applied to historic eruptions of the volcanoes Okmok and Augustine, both located in the North Pacific. We will show that for these historic eruptions, the addition of SAR data lead to a significant improvement in activity detection and eruption monitoring, and improved the accuracy and timeliness of eruption alerts.
Herzer, Kurt R; Mirrer, Meredith; Xie, Yanjun; Steppan, Jochen; Li, Matthew; Jung, Clinton; Cover, Renee; Doyle, Peter A; Mark, Lynette J
2012-08-01
Since 1999, hospitals have made substantial commitments to health care quality and patient safety through individual initiatives of executive leadership involvement in quality, investments in safety culture, education and training for medical students and residents in quality and safety, the creation of patient safety committees, and implementation of patient safety reporting systems. At the Weinberg Surgical Suite at The Johns Hopkins Hospital (Baltimore), a 16-operating-room inpatient/outpatient cancer center, a patient safety reporting process was developed to maximize the usefulness of the reports and the long-term sustainability of quality improvements arising from them. A six-phase framework was created incorporating UHC's Patient Safety Net (PSN): Identify, report, analyze, mitigate, reward, and follow up. Unique features of this process included a multidisciplinary team to review reports, mitigate hazards, educate and empower providers, recognize the identifying/reporting individuals or groups with "Good Catch" awards, and follow up to determine if quality improvements were sustained over time. Good Catch awards have been given in recognition of 29 patient safety hazards identified since 2008; in each of these cases, an initiative was developed to mitigate the original hazard. Twenty-five (86%) of the associated quality improvements have been sustained. Two Good Catch award-winning projects--vials of heparin with an unusually high concentration of the drug that posed a potential overdose hazard and a rapid infusion device that resisted practitioner control--are described in detail. A multidisciplinary team's analysis and mitigation of hazards identified in a patient safety reporting process entailed positive recognition with a Good Catch award, education of practitioners, and long-term follow-up.
Wright, Timothy J; Agrawal, Ravi; Samuel, Siby; Wang, Yuhua; Zilberstein, Shlomo; Fisher, Donald L
2018-07-01
During conditional automated driving, a transition from the automated driving suite to manual control requires the driver to take over control at a moment's notice. Thus, it is critical that a driver be made situationally aware as quickly as possible in those conditions where he or she may not be paying full attention. Recent research suggests that specific cues about upcoming hazards (e.g., "crosswalk ahead") can increase the drivers' situation awareness during these safety-critical take-over situations when compared with a general cue ("take over control"). The current study examines whether this increased situation awareness which occurs as a result of more specific cues translates into improved hazard mitigation performance within the same limited time window. Fifty-seven drivers were randomly assigned to one of five between-subjects conditions (one control condition and four experimental auditory cue conditions) that varied in the specificity of information provided about an upcoming hazard. The four experimental conditions included a period of conditional automated driving where the driver was engaged in a driving-irrelevant task and looked away from the forward roadway prior to a take-over request. Drivers in the fifth condition had no cue and drove manually throughout. The same six simulator scenarios were used in all five conditions to evaluate how well the driver mitigated a hazard. The average velocity, standard deviation of velocity, and average absolute acceleration were recorded along with the glance behaviors of drivers. In general, during the 4s prior to a latent hazard (following the alerting cues in the automated driving conditions), the more likely a driver was to glance towards a latent hazard, the more likely the driver was to reduce his or her speed. Moreover, analyses focusing solely on hazard mitigation behavior revealed patterns that mirrored the glance behavior results. Specifically, drivers that were presented with cues that described the environments in which hazards were likely to occur were more likely to demonstrate vehicle behaviors that were consistent with speed reductions (lower velocity, higher speed variability, and higher absolute acceleration) than were drivers who were presented general cues or cues about the identity of the upcoming hazards. Even in as little as 4s prior to a potential hazard, cues that inform the driver of the environment in which the hazard is likely to occur increase the likelihood that the driver mitigates the crash compared with drivers who are provided general information or threat identity information. Copyright © 2017 Elsevier Ltd. All rights reserved.
New Orleans After Hurricane Katrina: An Unnatural Disaster?
NASA Astrophysics Data System (ADS)
McNamara, D.; Werner, B.; Kelso, A.
2005-12-01
Motivated by destruction in New Orleans following hurricane Katrina, we use a numerical model to explore how natural processes, economic development, hazard mitigation measures and policy decisions intertwine to produce long periods of quiescence punctuated by disasters of increasing magnitude. Physical, economic and policy dynamics are modeled on a grid representing the subsiding Mississippi Delta region surrounding New Orleans. Water flow and resulting sediment erosion and deposition are simulated in response to prescribed river floods and storms. Economic development operates on a limited number of commodities and services such as agricultural products, oil and chemical industries and port services, with investment and employment responding to both local conditions and global constraints. Development permitting, artificial levee construction and pumping are implemented by policy agents who weigh predicted economic benefits (tax revenue), mitigation costs and potential hazards. Economic risk is reduced by a combination of private insurance, federal flood insurance and disaster relief. With this model, we simulate the initiation and growth of New Orleans coupled with an increasing level of protection from a series of flooding events. Hazard mitigation filters out small magnitude events, but terrain and hydrological modifications amplify the impact of large events. In our model, "natural disasters" are the inevitable outcome of the mismatch between policy based on short-time-scale economic calculations and stochastic forcing by infrequent, high-magnitude flooding events. A comparison of the hazard mitigation response to river- and hurricane-induced flooding will be discussed. Supported by NSF Geology and Paleontology and the Andrew W Mellon Foundation.
NASA Astrophysics Data System (ADS)
Kauahikaua, J. P.; Poland, M. P.
2011-12-01
When Thomas Jaggar, Jr., founded the Hawaiian Volcano Observatory in 1912, he wanted to "keep and publish careful records, invite the whole world of science to co-operate, and interest the business man." After studying the disastrous volcanic eruption at Martinique and Naples and the destructive earthquakes at Messina and the Caribbean Ocean, he saw observatories with these goals as a way to understand and mitigate these hazards. Owing to frequent eruptions, ease of access, and continuous record of activity (since January 17, 1912), Kilauea Volcano has been the focus for volcanological study by government, academic, and international investigators. New volcano monitoring techniques have been developed and tested on Hawaiian volcanoes and exported worldwide. HVO has served as a training ground for several generations of volcanologists; many have contributed to volcano research and hazards mitigation around the world. In the coming years, HVO and the scientific community will benefit from recent upgrades in our monitoring network. HVO had the first regional seismic network in the US and it will be fully digital; continuous GPS, tilt, gravity, and strain data already complement the seismic data; an array of infrared and visual cameras simultaneously track geologic surface changes. Scientifically, HVO scientists and their colleagues are making great advances in understanding explosive basaltic eruptions, volcanic gas emission and dispersion and its hazards, and lava flow mechanics with these advanced instruments. Activity at Hawaiian volcanoes continues to provide unparalleled opportunities for research and education, made all the more valuable by HVO's scientific legacy.
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Statman, Joseph
2013-01-01
This work includes a simplified analysis of the radiated near to mid-field from JPL/NASA Deep Space Network (DSN) reflector antennas and uses an averaging technique over the main beam region and beyond for complying with FAA regulations in specific aviation environments. The work identifies areas that require special attention, including the implications of the very narrow beam of the DSN transmitters. The paper derives the maximum averaged power densities allowed and identifies zones where mitigation measures are required.
NASA Astrophysics Data System (ADS)
Tseng, Chih-Ming; Chen, Yie-Ruey; Wu, Szu-Mi
2018-03-01
This study focused on landslides in a catchment with mountain roads that were caused by Nanmadol (2011) and Kong-rey (2013) typhoons. Image interpretation techniques were employed to for satellite images captured before and after the typhoons to derive the surface changes. A multivariate hazard evaluation method was adopted to establish a landslide susceptibility assessment model. The evaluation of landslide locations and relationship between landslide and predisposing factors is preparatory for assessing and mapping landslide susceptibility. The results can serve as a reference for preventing and mitigating slope disasters on mountain roads.
Tsunami mitigation - redistribution of energy
NASA Astrophysics Data System (ADS)
Kadri, Usama
2017-04-01
Tsunamis are water waves caused by the displacement of a large volume of water, in the deep ocean or a large lake, following an earthquake, landslide, underwater explosion, meteorite impacts, or other violent geological events. On the coastline, the resulting waves evolve from unnoticeable to devastating, reaching heights of tens of meters and causing destruction of property and loss of life. Over 225,000 people were killed in the 2004 Indian Ocean tsunami alone. For many decades, scientists have been studying tsunami, and progress has been widely reported in connection with the causes (1), forecasting (2), and recovery (3). However, none of the studies ratifies the approach of a direct mitigation of tsunamis, with the exception of mitigation using submarine barriers (e.g. see Ref. (4)). In an attempt to open a discussion on direct mitigation, I examine the feasibility of redistributing the total energy of a very long surface ocean (gravity) wave over a larger space through nonlinear resonant interaction with two finely tuned acoustic-gravity waves (see Refs. (5-8)). Theoretically, while the energy input in the acoustic-gravity waves required for an effective interaction is comparable to that in a tsunami (i.e. impractically large), employing the proposed mitigation technique the initial tsunami amplitude could be reduced substantially resulting in a much milder impact at the coastline. Moreover, such a technique would allow for the harnessing of the tsunami's own energy. Practically, this mitigation technique requires the design of highly accurate acoustic-gravity wave frequency transmitters or modulators, which is a rather challenging ongoing engineering problem. References 1. E. Bryant, 2014. Tsunami: the underrated hazard. Springer, doi:10.1007/978-3-319- 06133-7. 2. V. V. Titov, F. I. Gonza`lez, E. N. Bernard, M. C. Eble, H. O. Mofjeld, J. C. Newman, A. J. Venturato, 2005. Real-Time Tsunami Forecasting: Challenges and Solutions. Nat. Hazards 35:41-58, doi:10.1007/1-4020-3607-8 3 3. E. Check, 2005. Natural disasters: Roots of recovery. Nature 438, 910-911, doi:10.1038/438910a. 4. A. M. Fridman, L. S. Alperovich, L. Shemer, L. Pustil'nik, D. Shtivelman, A. G. Marchuk, D. Liberzon, 2010. Tsunami wave suppression using submarine barriers. Phys. Usp. 53 809-816, doi:10.3367/UFNe.0180.201008d.0843. 5. U. Kadri, M. Stiassnie, 2013. Generation of an acoustic-gravity wave by two gravity waves, and their mutual interaction. J. Fluid Mech. 735, R6, doi:10.1017/jfm.2013.539. 6. U. Kadri, 2015. Wave motion in a heavy compressible fluid: revisited. European Journal of Mechanics - B/Fluids, 49(A), 50-57, doi:10.1016/j.euromechflu.2014.07.008 7. U. Kadri, T.R. Akylas, 2016. On resonant triad interactions of acoustic-gravity waves. J. Fluid Mech., 788, R1(12 pages), doi:10.1017/jfm.2015.721. 8. U. Kadri, 2016. Triad resonance between a surface-gravity wave and two high frequency hydro-acoustic waves. Eur. J. Mech. B/Fluid, 55(1), 157-161, doi:10.1016/j.euromechflu.2015.09.008.
Herzer, Kurt R.; Mirrer, Meredith; Xie, Yanjun; Steppan, Jochen; Li, Matthew; Jung, Clinton; Cover, Renee; Doyle, Peter A.; Mark, Lynette J.
2014-01-01
Background Since 1999, hospitals have made substantial commitments to healthcare quality and patient safety through individual initiatives of executive leadership involvement in quality, investments in safety culture, education and training for medical students and residents in quality and safety, the creation of patient safety committees, and implementation of patient safety reporting systems. Cohesive quality and safety approaches have become comprehensive programs to identify and mitigate hazards that could harm patients. This article moves to the next level with an intense refocusing of attention on one of the individual components of a comprehensive program--the patient safety reporting system—with a goal of maximized usefulness of the reports and long-term sustainability of quality improvements arising from them. Methods A six-phase framework was developed to deal with patient safety hazards: identify, report, analyze, mitigate, reward, and follow up. Unique features of this process included a multidisciplinary team to review reports, mitigate hazards, educate and empower providers, recognize the identifying/reporting individuals or groups with “Good Catch” awards, and follow up to determine if quality improvements were sustained over time. Results To date, 29 patient safety hazards have gone through this process with “Good Catch” awards being granted at our institution. These awards were presented at various times over the past 4 years since the process began in 2008. Follow-up revealed that 86% of the associated quality improvements have been sustained over time since the awards were given. We present the details of two of these “Good Catch” awards: vials of heparin with an unusually high concentration of the drug that posed a potential overdose hazard and a rapid infusion device that resisted practitioner control. Conclusion A multidisciplinary team's analysis and mitigation of hazards identified in a patient safety reporting system, positive recognition with a “Good Catch” award, education of practitioners, and long-term follow-up resulted in an outcome of sustained quality improvement initiatives. PMID:22946251
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
Mitigation of Debris Flow Damage--Â A Case Study of Debris Flow Damage
NASA Astrophysics Data System (ADS)
Lin, J. C.; Jen, C. H.
Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.
From tsunami hazard assessment to risk management in Guadeloupe (F.W.I.)
NASA Astrophysics Data System (ADS)
Zahibo, Narcisse; Dudon, Bernard; Krien, Yann; Arnaud, Gaël; Mercado, Aurelio; Roger, Jean
2017-04-01
The Caribbean region is prone to numerous natural hazards such as earthquakes, landslides, storm surges, tsunamis, coastal erosion or hurricanes. All these threats may cause great human and economic losses and are thus of prime interest for applied research. One of the main challenges for the scientific community is to conduct state-of-the-art research to assess hazards and share the results with coastal planners and decision makers so that they can regulate land use and develop mitigation strategies. We present here the results of a scientific collaborative project between Guadeloupe and Porto Rico which aimed at bringing a decision-making support to the authorities regarding tsunami hazards. This project led us to build a database of potential extreme events, and to study their impacts on Guadeloupe to investigate storm surge and tsunami hazards. The results were used by local authorities to develop safeguarding and mitigation measures in coastal areas. This project is thus a good example to demonstrate the benefit of inter Caribbean scientific collaboration for natural risks management.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... Property Act for airport purposes (``Subject Airports''), to conduct Wildlife Hazard Site Visits (WHSVs) or... of land under the Surplus Property Act for airport purposes to identify and mitigate wildlife hazards.... These airports are typically smaller and have less air traffic, more piston-powered aircraft, and...
Wildfire risk and hazard: procedures for the first approximation
David E. Calkin; Alan A. Ager; Julie Gilbertson-Day
2010-01-01
This report was designed to meet three broad goals: (1) evaluate wildfire hazard on Federal lands; (2) develop information useful in prioritizing where fuels treatments and mitigation measures might be proposed to address significant fire hazard and risk; and (3) develop risk-based performance measures to document the effectiveness of fire management programs. The...
Addressee Errors in ATC Communications: The Call Sign Problem
NASA Technical Reports Server (NTRS)
Monan, W. P.
1983-01-01
Communication errors involving aircraft call signs were portrayed in reports of 462 hazardous incidents voluntarily submitted to the ASRS during an approximate four-year period. These errors resulted in confusion, disorder, and uncoordinated traffic conditions and produced the following types of operational anomalies: altitude deviations, wrong-way headings, aborted takeoffs, go arounds, runway incursions, missed crossing altitude restrictions, descents toward high terrain, and traffic conflicts in flight and on the ground. Analysis of the report set resulted in identification of five categories of errors involving call signs: (1) faulty radio usage techniques, (2) call sign loss or smearing due to frequency congestion, (3) confusion resulting from similar sounding call signs, (4) airmen misses of call signs leading to failures to acknowledge or readback, and (5) controller failures regarding confirmation of acknowledgements or readbacks. These error categories are described in detail and several associated hazard mitigating measures that might be aken are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruthi, Y. A., E-mail: ymjournal2014@gmail.com; Das, N. Lakshmana, E-mail: nldas9@gmail.com; Ramprasad, S., E-mail: ramprasadsurakala@gmail.com
The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders.more » This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk.« less
Fundamentals of Digital Engineering: Designing for Reliability
NASA Technical Reports Server (NTRS)
Katz, R.; Day, John H. (Technical Monitor)
2001-01-01
The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/arbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques. worst-case analysis, the use of timing analyzer and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... Emergency Management Agency (FEMA) may provide funding to eligible applicants for eligible, feasible, and... from hazards and their effects. One such activity is the construction and installation of safe rooms to...
Analysis and recommendations on protecting waterways from encroachment.
DOT National Transportation Integrated Search
2010-08-01
The purpose of this project was to investigate and determine hazards to navigation (encroachments) in the Texas : Portion of the Gulf Intracoastal Waterway (GIWW) that originate from shore, and to make recommendations for : mitigating these hazards i...
Flood- and drought-related natural hazards activities of the U.S. Geological Survey in New England
Lombard, Pamela J.
2016-03-23
Tools for natural hazard assessment and mitigation • Light detection and ranging (lidar) remote sensing technology • StreamStats Web-based tool for streamflow statistics • Flood inundation mapper
Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project
NASA Technical Reports Server (NTRS)
Colantonio, Ron
2011-01-01
Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena
Improved satellite-based emergency alerting system
NASA Astrophysics Data System (ADS)
Bernard, E. N.; Milburn, H. B.
1991-12-01
Rapid-onset natural hazards have claimed more than 2.8 million lives worldwide in the past 20 years. This category includes such events as earthquakes, landslides, hurricanes, tornadoes, floods, volcanic eruptions, wildfires, and tsunamis. Effective hazard mitigation is particularly difficult in such cases, since the time available to issue warnings can be very short or even nonexistent. A general approach to mitigate the effects of these disasters was demonstrated in 1988 that included preevent emergency planning, real-time hazard assessment, and rapid warning via satellite communication links. This article reports on improvements in this satellite-based emergency alerting communication system that have reduced the response time from 87 to 17 sec and expanded the broadcast coverage from 40 percent to 62 percent of the earth's surface.
A global response roadmap to the asteroid impact threat: The NEOShield perspective
NASA Astrophysics Data System (ADS)
Perna, D.; Barucci, M. A.; Drube, L.; Falke, A.; Fulchignoni, M.; Harris, A. W.; Harris, A. W.; Kanuchova, Z.
2015-12-01
Besides being of great scientific interest, near-Earth objects represent a well-founded threat to life on our planet. Nonetheless, up to now there has been no concerted international plan on how to deal with the impact threat, and how to prepare and implement mitigation measures. The NEOShield project is funded by the European Commission to address such issues, to investigate the feasibility of techniques to prevent a potentially catastrophic impact on Earth by an asteroid or a comet, and to develop detailed designs of appropriate space missions to test deflection techniques. In this work we present and discuss the scientific and strategic aspects of the asteroid impact threat, highlighting the necessary steps so as to be ready to react to future hazardous objects.
Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrove, Cameron
For synthetic aperture radars radio frequency interference from sources external to the radar system and techniques to mitigate the interference can degrade the quality of the image products. Usually the radar system designer will try to balance the amount of mitigation for an acceptable amount of interference to optimize the image quality. This dissertation examines the effect of interference mitigation upon coherent data products of fine resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. New metricsmore » are applied to evaluate multiple mitigation techniques for image quality and average coherence. The underlying mechanism for interference mitigation techniques that affect coherence is revealed.« less
NASA Astrophysics Data System (ADS)
Aswathanarayana, U.
2001-05-01
The proneness of a country or region to a given natural hazard depends upon its geographical location, physiography, geological and structural setting, landuse/landcover situation, and biophysical and socioeconomic environments (e.g. cyclones and floods in Bangladesh, earthquakes in Turkey, drought in Sub-Saharan Africa). While the natural hazards themselves cannot be prevented, it is possible to mitigate their adverse effects, by a knowledge-based, environmentally-sustainable approach, involving the stakeholder communities: (i) by being prepared: on the basis of the understanding of the land conditions which are prone to a given hazard and the processes which could culminate in damage to life and property (e.g. planting of dense-rooted vegetation belts to protect against landslides in the earthquake-prone areas), (ii) by avoiding improper anthropogenic activities that may exacerbate a hazard (e.g. deforestation accentuating the floods and droughts), and (iii) by putting a hazard to a beneficial use, where possible (groundwater recharging of flood waters), etc. Mitigation strategies need to be custom-made for each country/region by integrating the biophysical and socioeconomic components. The proposed paradigm is illustrated in respect of Extreme Weather Events (EWEs), which is based on the adoption of three approaches: (i) Typology approach, involving the interpretation of remotely sensed data, to predict (say) temporal and spatial distribution of precipitation, (ii) "black box" approach, whereby the potential environmental consequences of an EWE are projected on the basis of previously known case histories, and (iii) Information Technology approach, to translate advanced technical information in the form of "virtual" do-it-yourself steps understandable to lay public.
PERSONNEL PROTECTION THROUGH RECONNAISSANCE ROBOTICS AT SUPERFUND REMEDIAL SITES
Investigation, mitigation, and clean-up of hazardous materials at Superfund sites normally require on-site workers to perform hazardous and sometimes potentially dangerous functions. uch functions include site surveys and the reconnaissance for airborne and buried toxic environme...
DEMONSTRATION OF AUTONOMOUS AIR MONITORING THROUGH ROBOTICS
Hazardous and/or tedious functions are often performed by on-site workers during investigation, mitigation and clean-up of hazardous substances. These functions include site surveys, sampling and analysis, excavation, and treatment and preparation of wastes for shipment to chemic...
2010-01-01
Planning Chapters Chapter 5 provides DSCA planning factors for response to all hazard events. Chapter 6 is a review of safety and operational/composite...risk management processes. Chapters 7 through 11 contain the Concepts of Operation (CONOPS) and details five natural hazards /disasters and the...Restoring critical public services and facilities through temporary measures • Identifying hazard mitigation opportunities 3.3.1.5 Rehabilitation
Examination of Icing Induced Loss of Control and Its Mitigations
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.
2010-01-01
Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed
Inter-model analysis of tsunami-induced coastal currents
NASA Astrophysics Data System (ADS)
Lynett, Patrick J.; Gately, Kara; Wilson, Rick; Montoya, Luis; Arcas, Diego; Aytore, Betul; Bai, Yefei; Bricker, Jeremy D.; Castro, Manuel J.; Cheung, Kwok Fai; David, C. Gabriel; Dogan, Gozde Guney; Escalante, Cipriano; González-Vida, José Manuel; Grilli, Stephan T.; Heitmann, Troy W.; Horrillo, Juan; Kânoğlu, Utku; Kian, Rozita; Kirby, James T.; Li, Wenwen; Macías, Jorge; Nicolsky, Dmitry J.; Ortega, Sergio; Pampell-Manis, Alyssa; Park, Yong Sung; Roeber, Volker; Sharghivand, Naeimeh; Shelby, Michael; Shi, Fengyan; Tehranirad, Babak; Tolkova, Elena; Thio, Hong Kie; Velioğlu, Deniz; Yalçıner, Ahmet Cevdet; Yamazaki, Yoshiki; Zaytsev, Andrey; Zhang, Y. J.
2017-06-01
To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program organized a benchmarking workshop to evaluate the numerical modeling of tsunami currents. Thirteen teams of international researchers, using a set of tsunami models currently utilized for hazard mitigation studies, presented results for a series of benchmarking problems; these results are summarized in this paper. Comparisons focus on physical situations where the currents are shear and separation driven, and are thus de-coupled from the incident tsunami waveform. In general, we find that models of increasing physical complexity provide better accuracy, and that low-order three-dimensional models are superior to high-order two-dimensional models. Inside separation zones and in areas strongly affected by eddies, the magnitude of both model-data errors and inter-model differences can be the same as the magnitude of the mean flow. Thus, we make arguments for the need of an ensemble modeling approach for areas affected by large-scale turbulent eddies, where deterministic simulation may be misleading. As a result of the analyses presented herein, we expect that tsunami modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts.
Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas
Gutierrez, F.; Cooper, A.H.; Johnson, K.S.
2008-01-01
Sinkholes usually have a higher probability of occurrence and a greater genetic diversity in evaporite terrains than in carbonate karst areas. This is because evaporites have a higher solubility and, commonly, a lower mechanical strength. Subsidence damage resulting from evaporite dissolution generates substantial losses throughout the world, but the causes are only well understood in a few areas. To deal with these hazards, a phased approach is needed for sinkhole identification, investigation, prediction, and mitigation. Identification techniques include field surveys and geomorphological mapping combined with accounts from local people and historical sources. Detailed sinkhole maps can be constructed from sequential historical maps, recent topographical maps, and digital elevation models (DEMs) complemented with building-damage surveying, remote sensing, and high-resolution geodetic surveys. On a more detailed level, information from exposed paleosubsidence features (paleokarst), speleological explorations, geophysical investigations, trenching, dating techniques, and boreholes may help in investigating dissolution and subsidence features. Information on the hydrogeological pathways including caves, springs, and swallow holes are particularly important especially when corroborated by tracer tests. These diverse data sources make a valuable database-the karst inventory. From this dataset, sinkhole susceptibility zonations (relative probability) may be produced based on the spatial distribution of the features and good knowledge of the local geology. Sinkhole distribution can be investigated by spatial distribution analysis techniques including studies of preferential elongation, alignment, and nearest neighbor analysis. More objective susceptibility models may be obtained by analyzing the statistical relationships between the known sinkholes and the conditioning factors. Chronological information on sinkhole formation is required to estimate the probability of occurrence of sinkholes (number of sinkholes/km2 year). Such spatial and temporal predictions, frequently derived from limited records and based on the assumption that past sinkhole activity may be extrapolated to the future, are non-corroborated hypotheses. Validation methods allow us to assess the predictive capability of the susceptibility maps and to transform them into probability maps. Avoiding the most hazardous areas by preventive planning is the safest strategy for development in sinkhole-prone areas. Corrective measures could be applied to reduce the dissolution activity and subsidence processes. A more practical solution for safe development is to reduce the vulnerability of the structures by using subsidence-proof designs. ?? 2007 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Baytiyeh, Hoda; Naja, Mohamad K.
2014-09-01
Due to the high market demands for professional engineers in the Arab oil-producing countries, the appetite of Middle Eastern students for high-paying jobs and challenging careers in engineering has sharply increased. As a result, engineering programmes are providing opportunities for more students to enrol on engineering courses through lenient admission policies that do not compromise academic standards. This strategy has generated an influx of students who must be carefully educated to enhance their professional knowledge and social capital to assist in future earthquake-disaster risk-reduction efforts. However, the majority of Middle Eastern engineering students are unaware of the valuable acquired engineering skills and knowledge in building the resilience of their communities to earthquake disasters. As the majority of the countries in the Middle East are exposed to seismic hazards and are vulnerable to destructive earthquakes, engineers have become indispensable assets and the first line of defence against earthquake threats. This article highlights the contributions of some of the engineering innovations in advancing technologies and techniques for effective disaster mitigation and it calls for the incorporation of earthquake-disaster-mitigation education into academic engineering programmes in the Eastern Mediterranean region.
Earthquake and Volcanic Hazard Mitigation and Capacity Building in Sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Ayele, A.
2012-04-01
The East African Rift System (EARS) is a classic example of active continental rifting, and a natural laboratory setting to study initiation and early stage evolution of continental rifts. The EARS is at different stages of development that varies from relatively matured rift (16 mm/yr) in the Afar to a weakly extended Okavango Delta in the south with predicted opening velocity < 3 mm/yr. Recent studies in the region helped researchers to highlight the length and timescales of magmatism and faulting, the partitioning of strain between faulting and magmatism, and their implications for the development of along-axis segmentation. Although the human resource and instrument coverage is sparse in the continent, our understanding of rift processes and deep structure has improved in the last decade after the advent of space geodesy and broadband seismology. The recent major earthquakes, volcanic eruptions and mega dike intrusions that occurred along the EARS attracted several earth scientist teams across the globe. However, most African countries traversed by the rift do not have the full capacity to monitor and mitigate earthquake and volcanic hazards. Few monitoring facilities exist in some countries, and the data acquisition is rarely available in real-time for mitigation purpose. Many sub-Saharan Africa governments are currently focused on achieving the millennium development goals with massive infrastructure development scheme and urbanization while impending natural hazards of such nature are severely overlooked. Collaborations with overseas researchers and other joint efforts by the international community are opportunities to be used by African institutions to best utilize limited resources and to mitigate earthquake and volcano hazards.
49 CFR 192.935 - What additional preventive and mitigative measures must an operator take?
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.935 What additional preventive and mitigative...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
Kirkpatrick, Jeffrey S; Howard, Jacqueline M; Reed, David A
2002-04-08
As part of comprehensive joint medical surveillance measures outlined by the Department of Defense, the US Army Center for Health Promotion and Preventive Medicine (USACHPPM) is beginning to assess environmental health threats to continental US military installations. A common theme in comprehensive joint medical surveillance, in support of Force Health Protection, is the identification and assessment of potential environmental health hazards, and the evaluation and documentation of actual exposures in both a continental US and outside a continental US setting. For the continental US assessments, the USACHPPM has utilized the US Environmental Protection Agency (EPA) database for risk management plans in accordance with Public Law 106-40, and the toxic release inventory database, in a state-of the art geographic information systems based program, termed the Consequence Assessment and Management Tool Set, or CATS, for assessing homeland industrial chemical hazards outside the military gates. As an example, the US EPA toxic release inventory and risk management plans databases are queried to determine the types and locations of industries surrounding a continental US military installation. Contaminants of concern are then ranked with respect to known toxicological and physical hazards, where they are then subject to applicable downwind hazard simulations using applicable meteorological and climatological data sets. The composite downwind hazard areas are mapped in relation to emergency response planning guidelines (ERPG), which were developed by the American Industrial Hygiene Association to assist emergency response personnel planning for catastrophic chemical releases. In addition, other geographic referenced data such as transportation routes, satellite imagery and population data are included in the operational, equipment, and morale risk assessment and management process. These techniques have been developed to assist military medical planners and operations personnel in determining the industrial hazards, vulnerability assessments and health risk assessments to continental United States military installations. These techniques and procedures support the Department of Defense Force Protection measures, which provides awareness of a terrorism threat, appropriate measures to prevent terrorist attacks and mitigate terrorism's effects in the event that preventive measures are ineffective.
Developing a Near Real-time System for Earthquake Slip Distribution Inversion
NASA Astrophysics Data System (ADS)
Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen
2016-04-01
Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.
New Science Applications Within the U.S. National Tsunami Hazard Mitigation Program
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.; Forson, C. K.; Horrillo, J. J.; Nicolsky, D.
2017-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a collaborative State and Federal program which supports consistent and cost effective tsunami preparedness and mitigation activities at a community level. The NTHMP is developing a new five-year Strategic Plan based on the 2017 Tsunami Warning, Education, and Research Act as well as recommendations the 2017 NTHMP External Review Panel. Many NTHMP activities are based on the best available scientific methods through the NTHMP Mapping and Modeling Subcommittee (MMS). The primary activities for the MMS member States are to characterize significant tsunami sources, numerically model those sources, and create tsunami inundation maps for evacuation planning. This work remains a focus for many unmapped coastlines. With the lessons learned from the 2004 Indian Ocean and 2011 Tohoku Japan tsunamis, where both immediate risks and long-term recovery issues where recognized, the NTHMP MMS is expanding efforts into other areas that address community resilience. Tsunami evacuation modeling based on both pedestrian and vehicular modes of transportation are being developed by NTHMP States. Products include tools for the public to create personal evacuation maps. New tsunami response planning tools are being developed for both maritime and coastal communities. Maritime planning includes tsunami current-hazard maps for in-harbor and offshore response activities. Multi-tiered tsunami evacuation plans are being developed in some states to address local- versus distant-source tsunamis, as well as real-time evacuation plans, or "playbooks," for distant-source tsunamis forecasted to be less than the worst-case flood event. Products to assist community mitigation and recovery are being developed at a State level. Harbor Improvement Reports, which evaluate the impacts of currents, sediment, and debris on harbor infrastructure, include direct mitigation activities for Local Hazard Mitigation Plans. Building code updates in the five Pacific states will include new sections on tsunami load analysis of structures, and require Tsunami Design Zones based on probabilistic analyses. Guidance for community recovery planning has also been initiated. These new projects are being piloted by some States and will help create guidance for other States in the future.
Advanced Environmental Monitoring and Control Program: Strategic Plan
NASA Technical Reports Server (NTRS)
Schmidt, Gregory
1996-01-01
Human missions in space, from short-duration shuttle missions lasting no more than several days to the medium-to-long-duration missions planned for the International Space Station, face a number of hazards that must be understood and mitigated for the mission to be carried out safely. Among these hazards are those posed by the internal environment of the spacecraft itself; through outgassing of toxic vapors from plastics and other items, failures or off-nominal operations of spacecraft environmental control systems, accidental exposure to hazardous compounds used in experiments: all present potential hazards that while small, may accumulate and pose a danger to crew health. The first step toward mitigating the dangers of these hazards is understanding the internal environment of the spacecraft and the compounds contained within it. Future spacecraft will have integrated networks of redundant sensors which will not only inform the crew of hazards, but will pinpoint the problem location and, through analysis by intelligent systems, recommend and even implement a course of action to stop the problem. This strategic plan details strategies to determine NASA's requirements for environmental monitoring and control systems for future spacecraft, and goals and objectives for a program to answer these needs.
New techniques on oil spill modelling applied in the Eastern Mediterranean sea
NASA Astrophysics Data System (ADS)
Zodiatis, George; Kokinou, Eleni; Alves, Tiago; Lardner, Robin
2016-04-01
Small or large oil spills resulting from accidents on oil and gas platforms or due to the maritime traffic comprise a major environmental threat for all marine and coastal systems, and they are responsible for huge economic losses concerning the human infrastructures and the tourism. This work aims at presenting the integration of oil-spill model, bathymetric, meteorological, oceanographic, geomorphological and geological data to assess the impact of oil spills in maritime regions such as bays, as well as in the open sea, carried out in the Eastern Mediterranean Sea within the frame of NEREIDs, MEDESS-4MS and RAOP-Med EU projects. The MEDSLIK oil spill predictions are successfully combined with bathymetric analyses, the shoreline susceptibility and hazard mapping to predict the oil slick trajectories and the extend of the coastal areas affected. Based on MEDSLIK results, oil spill spreading and dispersion scenarios are produced both for non-mitigated and mitigated oil spills. MEDSLIK model considers three response combating methods of floating oil spills: a) mechanical recovery using skimmers or similar mechanisms; b) destruction by fire, c) use of dispersants or other bio-chemical means and deployment of booms. Shoreline susceptibility map can be compiled for the study areas based on the Environmental Susceptibility Index. The ESI classification considers a range of values between 1 and 9, with level 1 (ESI 1) representing areas of low susceptibility, impermeable to oil spilt during accidents, such as linear shorelines with rocky cliffs. In contrast, ESI 9 shores are highly vulnerable, and often coincide with natural reserves and special protected areas. Additionally, hazard maps of the maritime and coastal areas, possibly exposed to the danger on an oil spill, evaluate and categorize the hazard in levels from low to very high. This is important because a) Prior to an oil spill accident, hazard and shoreline susceptibility maps are made available to design preparedness and prevention plans in an effective way, b) After an oil spill accident, oil spill predictions can be combined with hazard maps to provide information on the oil spill dispersion and their impacts. This way, prevention plans can be directly modified at any time after the accident.
78 FR 43899 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
..., ``Flood Insurance.'') Dated: July 2, 2013. Roy E. Wright, Deputy Associate Administrator for Mitigation...] Changes in Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: New or modified Base (1% annual-chance) Flood Elevations (BFEs), base flood depths...
Dutto, M; Di Domenico, D; Rubbiani, M
2018-01-01
Rodent control operations represent an important tool for the prevention and management of infestations, in outdoor environments, by synanthropic rodents (Rattus rattus and R. norvegicus), which are a source of economic and environmental damage with significant sanitary implications. Although the use of anticoagulants is safer to humans and pets compared to the use of acute poisoning substances, an intrinsic hazard of the active ingredients exists, i.e. the possible poisoning of non-target organisms (e.g., children, pets and wildlife) following exposure. The risks arising from the use of anticoagulants for rodent control operations in anthropic contexts can therefore only be mitigated by a proper selection of the active ingredient, bait formulation and administration techniques, since an active ingredient with selective action towards non-target species does not currently exist on the market. This document lists practical proposals aimed at reducing the possibility of toxic exposure to anticoagulant rodenticides and mitigate the toxicological risk of human baits and non-target species.
The Wenchuan, China M8.0 Earthquake: A Lesson and Implication for Seismic Hazard Mitigation
NASA Astrophysics Data System (ADS)
Wang, Z.
2008-12-01
The Wenchuan, China M8.0 earthquake caused great damage and huge casualty. 69,197 people were killed, 374,176 people were injured, and 18,341 people are still missing. The estimated direct economic loss is about 126 billion U.S. dollar. The Wenchuan earthquake again demonstrated that earthquake does not kill people, but the built environments and induced hazards, landslides in particular, do. Therefore, it is critical to strengthen the built environments, such buildings and bridges, and to mitigate the induced hazards in order to avoid such disaster. As a part of the so-called North-South Seismic Zone in China, the Wenchuan earthquake occurred along the Longmen Shan thrust belt which forms a boundary between the Qinghai-Tibet Plateau and the Sichuan basin, and there is a long history (~4,000 years) of seismicity in the area. The historical records show that the area experienced high intensity (i.e., greater than IX) in the past several thousand years. In other words, the area is well-known to have high seismic hazard because of its tectonic setting and seismicity. However, only intensity VII (0.1 to 0.15g PGA) has been considered for seismic design for the built environments in the area. This was one of the main reasons that so many building collapses, particularly the school buildings, during the Wenchuan earthquake. It is clear that the seismic design (i.e., the design ground motion or intensity) is not adequate in the Wenchuan earthquake stricken area. A lesson can be learned from the Wenchuan earthquake on the seismic hazard and risk assessment. A lesson can also be learned from this earthquake on seismic hazard mitigation and/or seismic risk reduction.
Research and Evaluations of the Health Aspects of Disasters, Part IX: Risk-Reduction Framework.
Birnbaum, Marvin L; Daily, Elaine K; O'Rourke, Ann P; Loretti, Alessandro
2016-06-01
A disaster is a failure of resilience to an event. Mitigating the risks that a hazard will progress into a destructive event, or increasing the resilience of a society-at-risk, requires careful analysis, planning, and execution. The Disaster Logic Model (DLM) is used to define the value (effects, costs, and outcome(s)), impacts, and benefits of interventions directed at risk reduction. A Risk-Reduction Framework, based on the DLM, details the processes involved in hazard mitigation and/or capacity-building interventions to augment the resilience of a community or to decrease the risk that a secondary event will develop. This Framework provides the structure to systematically undertake and evaluate risk-reduction interventions. It applies to all interventions aimed at hazard mitigation and/or increasing the absorbing, buffering, or response capacities of a community-at-risk for a primary or secondary event that could result in a disaster. The Framework utilizes the structure provided by the DLM and consists of 14 steps: (1) hazards and risks identification; (2) historical perspectives and predictions; (3) selection of hazard(s) to address; (4) selection of appropriate indicators; (5) identification of current resilience standards and benchmarks; (6) assessment of the current resilience status; (7) identification of resilience needs; (8) strategic planning; (9) selection of an appropriate intervention; (10) operational planning; (11) implementation; (12) assessments of outputs; (13) synthesis; and (14) feedback. Each of these steps is a transformation process that is described in detail. Emphasis is placed on the role of Coordination and Control during planning, implementation of risk-reduction/capacity building interventions, and evaluation. Birnbaum ML , Daily EK , O'Rourke AP , Loretti A . Research and evaluations of the health aspects of disasters, part IX: Risk-Reduction Framework. Prehosp Disaster Med. 2016;31(3):309-325.
Fluor Daniel Hanford implementation plan for DOE Order 5480.28, Natural phenomena hazards mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrads, T.J.
1997-09-12
Natural phenomena hazards (NPH) are unexpected acts of nature that pose a threat or danger to workers, the public, or the environment. Earthquakes, extreme winds (hurricane and tornado), snow, flooding, volcanic ashfall, and lightning strikes are examples of NPH that could occur at the Hanford Site. U.S. Department of Energy (DOE) policy requires facilities to be designed, constructed, and operated in a manner that protects workers, the public, and the environment from hazards caused by natural phenomena. DOE Order 5480.28, Natural Phenomena Hazards Mitigation, includes rigorous new natural phenomena criteria for the design of new DOE facilities, as well asmore » for the evaluation and, if necessary, upgrade of existing DOE facilities. The Order was transmitted to Westinghouse Hanford Company in 1993 for compliance and is also identified in the Project Hanford Management Contract, Section J, Appendix C. Criteria and requirements of DOE Order 5480.28 are included in five standards, the last of which, DOE-STD-1023, was released in fiscal year 1996. Because the Order was released before all of its required standards were released, enforcement of the Order was waived pending release of the last standard and determination of an in-force date by DOE Richland Operations Office (DOE-RL). Agreement also was reached between the Management and Operations Contractor and DOE-RL that the Order would become enforceable for new structures, systems, and components (SSCS) 60 days following issue of a new order-based design criteria in HNF-PRO-97, Engineering Design and Evaluation. The order also requires that commitments addressing existing SSCs be included in an implementation plan that is to be issued 1 year following the release of the last standard. Subsequently, WHC-SP-1175, Westinghouse Hanford Company Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, Rev. 0, was issued in November 1996, and this document, HNF-SP-1175, Fluor Daniel Hanford Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, is Rev. 1 of that plan.« less
Analyzing costs of space debris mitigation methods
NASA Astrophysics Data System (ADS)
Wiedemann, C.; Krag, H.; Bendisch, J.; Sdunnus, H.
The steadily increasing number of space objects poses a considerable hazard to all kinds of spacecraft. To reduce the risks to future space missions different debris mitigation measures and spacecraft protection techniques have been investigated during the last years. However, the economic efficiency has not been considered yet in this context. This economical background is not always clear to satellite operators and the space industry. Current studies have the objective to evaluate the mission costs due to space debris in a business as usual (no mitigation) scenario compared to the missions costs considering debris mitigation. The aim i an estimation of thes time until the investment in debris mitigation will lead to an effective reduction of mission costs. This paper presents the results of investigations on the key problems of cost estimation for spacecraft and the influence of debris mitigation and shielding on cost. The shielding of a satellite can be an effective method to protect the spacecraft against debris impact. Mitigation strategies like the reduction of orbital lifetime and de- or re-orbit of non-operational satellites are methods to control the space debris environment. These methods result in an increase of costs. In a first step the overall costs of different types of unmanned satellites are analyzed. The key problem is, that it is not possible to provide a simple cost model that can be applied to all types of satellites. Unmanned spacecraft differ very much in mission, complexity of design, payload and operational lifetime. It is important to classify relevant cost parameters and investigate their influence on the respective mission. The theory of empirical cost estimation and existing cost models are discussed. A selected cost model is simplified and generalized for an application on all operational satellites. In a next step the influence of space debris on cost is treated, if the implementation of mitigation strategies is considered.
42 CFR 93.408 - Mitigating and aggravating factors in HHS administrative actions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Mitigating and aggravating factors in HHS administrative actions. 93.408 Section 93.408 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH ASSESSMENTS AND HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES...
42 CFR 93.408 - Mitigating and aggravating factors in HHS administrative actions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Mitigating and aggravating factors in HHS administrative actions. 93.408 Section 93.408 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH ASSESSMENTS AND HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES...
42 CFR 93.408 - Mitigating and aggravating factors in HHS administrative actions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Mitigating and aggravating factors in HHS administrative actions. 93.408 Section 93.408 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH ASSESSMENTS AND HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES...
42 CFR 93.408 - Mitigating and aggravating factors in HHS administrative actions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Mitigating and aggravating factors in HHS administrative actions. 93.408 Section 93.408 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH ASSESSMENTS AND HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES...
76 FR 61070 - Disaster Assistance; Hazard Mitigation Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... systems from the list of eligible project types; and modified language relating to general, allowable open... types of projects. The project-type listing is not all-inclusive. FEMA published a Notice of Proposed... mitigation project types can be difficult to show using FEMA's conventional benefit/cost calculation...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
...) FEMA has established the FEMA Mitigation Best Practices success story process to collect and..., FEMA can translate hazard data into useable information for community risk management. The stories... Practices Portfolio (formerly known as FEMA Mitigation Success Story Database). Type of Information...
75 FR 6215 - Agency Information Collection Activity
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
.... SUPPLEMENTARY INFORMATION: I. Abstract During FY10, the Volcano Hazards Program (VHP) will provide funding under the American Recovery and Reinvestment Act (ARRA) for improvement of the volcano and other monitoring systems and other monitoring- related activities that contribute to mitigation of volcano hazards. This...
DOT National Transportation Integrated Search
2012-11-01
New methods are proposed for mitigating risk in hazardous materials (hazmat) transportation, based on Conditional : Value-at-Risk (CVaR) measure, on time-dependent vehicular networks. While the CVaR risk measure has been : popularly used in financial...
NASA Technical Reports Server (NTRS)
Ranaudo, Richard J.; Martos, Borja; Norton, Bill W.; Gingras, David R.; Barnhart, Billy P.; Ratvasky, Thomas P.; Morelli, Eugene
2011-01-01
The utility of the Icing Contamination Envelope Protection (ICEPro) system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). ICEPro provides real time envelope protection cues and alerting messages on pilot displays. The pilots participating in this test were divided into two groups; a control group using baseline displays without ICEPro, and an experimental group using ICEPro driven display cueing. Each group flew identical precision approach and missed approach procedures with a simulated failure case icing condition. Pilot performance, workload, and survey questionnaires were collected for both groups of pilots. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their situation awareness of a hazardous aircraft state.
Flood Hazard and Risk Analysis in Urban Area
NASA Astrophysics Data System (ADS)
Huang, Chen-Jia; Hsu, Ming-hsi; Teng, Wei-Hsien; Lin, Tsung-Hsien
2017-04-01
Typhoons always induce heavy rainfall during summer and autumn seasons in Taiwan. Extreme weather in recent years often causes severe flooding which result in serious losses of life and property. With the rapid industrial and commercial development, people care about not only the quality of life, but also the safety of life and property. So the impact of life and property due to disaster is the most serious problem concerned by the residents. For the mitigation of the disaster impact, the flood hazard and risk analysis play an important role for the disaster prevention and mitigation. In this study, the vulnerability of Kaohsiung city was evaluated by statistics of social development factor. The hazard factors of Kaohsiung city was calculated by simulated flood depth of six different return periods and four typhoon events which result in serious flooding in Kaohsiung city. The flood risk can be obtained by means of the flood hazard and social vulnerability. The analysis results provide authority to strengthen disaster preparedness and to set up more resources in high risk areas.
NASA Astrophysics Data System (ADS)
García-Rodríguez, M. J.; Malpica, J. A.; Benito, B.
2009-04-01
In recent years, interest in landslide hazard assessment studies has increased substantially. They are appropriate for evaluation and mitigation plan development in landslide-prone areas. There are several techniques available for landslide hazard research at a regional scale. Generally, they can be classified in two groups: qualitative and quantitative methods. Most of qualitative methods tend to be subjective, since they depend on expert opinions and represent hazard levels in descriptive terms. On the other hand, quantitative methods are objective and they are commonly used due to the correlation between the instability factors and the location of the landslides. Within this group, statistical approaches and new heuristic techniques based on artificial intelligence (artificial neural network (ANN), fuzzy logic, etc.) provide rigorous analysis to assess landslide hazard over large regions. However, they depend on qualitative and quantitative data, scale, types of movements and characteristic factors used. We analysed and compared an approach for assessing earthquake-triggered landslides hazard using logistic regression (LR) and artificial neural networks (ANN) with a back-propagation learning algorithm. One application has been developed in El Salvador, a country of Central America where the earthquake-triggered landslides are usual phenomena. In a first phase, we analysed the susceptibility and hazard associated to the seismic scenario of the 2001 January 13th earthquake. We calibrated the models using data from the landslide inventory for this scenario. These analyses require input variables representing physical parameters to contribute to the initiation of slope instability, for example, slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness, while the occurrence or non-occurrence of landslides is considered as dependent variable. The results of the landslide susceptibility analysis are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone with an adjustment of 95.1 % for ANN model and 89.4% for LR model. In addition, we make a comparative analysis of both techniques using the Receiver Operating Characteristic (ROC) curve, a graphical plot of the sensitivity vs. (1 - specificity) for a binary classifier system in function of its discrimination threshold, and calculating the Area Under the ROC (AUROC) value for each model. Finally, the previous models are used for the developing a new probabilistic landslide hazard map for future events. They are obtained combining the expected triggering factor (calculated earthquake ground motion) for a return period of 475 years with the susceptibility map.
Protection of agriculture against drought in Slovenia based on vulnerability and risk assessment
NASA Astrophysics Data System (ADS)
Dovžak, M.; Stanič, S.; Bergant, K.; Gregorič, G.
2012-04-01
Past and recent extreme events, like earthquakes, extreme droughts, heat waves, flash floods and volcanic eruptions continuously remind us that natural hazards are an integral component of the global environment. Despite rapid improvement of detection techniques many of these events evade long-term or even mid-term prediction and can thus have disastrous impacts on affected communities and environment. Effective mitigation and preparedness strategies will be possible to develop only after gaining the understanding on how and where such hazards may occur, what causes them, what circumstances increase their severity, and what their impacts may be and their study has the recent years emerged as under the common title of natural hazard management. The first step in natural risk management is risk identification, which includes hazard analysis and monitoring, vulnerability analysis and determination of the risk level. The presented research focuses on drought, which is at the present already the most widespread as well as still unpredictable natural hazard. Its primary aim was to assess the frequency and the consequences of droughts in Slovenia based on drought events in the past, to develop methodology for drought vulnerability and risk assessment that can be applied in Slovenia and wider in South-Eastern Europe, to prepare maps of drought risk and crop vulnerability and to guidelines to reduce the vulnerability of the crops. Using the amounts of plant available water in the soil, slope inclination, solar radiation, land use and irrigation infrastructure data sets as inputs, we obtained vulnerability maps for Slovenia using GIS-based multi-criteria decision analysis with a weighted linear combination of the input parameters. The weight configuration was optimized by comparing the modelled crop damage to the assessed actual damage, which was available for the extensive drought case in 2006. Drought risk was obtained quantitatively as a function of hazard and vulnerability and presented in the same way as the vulnerability, as a GIS-based map. Risk maps show geographic regions in Slovenia where droughts pose a major threat to the agriculture and together with the vulnerability maps provide the basis for drought management, in particular for the appropriate mitigation and response actions in specific regions. The developed methodology is expected to be applied to the entire region of South-Eastern Europe within the initiative of the Drought Management Centre for Southeastern Europe.
David J. Ganz; David S. Saah; Matthew A. Wilson; Austin Troy
2007-01-01
This study provides a framework for assessing the social and environmental benefits and public education outcomes associated with the U.S. Department of the Interior, Bureau of Land Managementâs Community Assistance and Hazardous Fuel Programs in California. Evaluations of fire hazard mitigation programs tend to focus primarily on the number of acres treated and...
Decision-support systems for natural-hazards and land-management issues
Dinitz, Laura; Forney, William; Byrd, Kristin
2012-01-01
Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.
Threat and error management for anesthesiologists: a predictive risk taxonomy
Ruskin, Keith J.; Stiegler, Marjorie P.; Park, Kellie; Guffey, Patrick; Kurup, Viji; Chidester, Thomas
2015-01-01
Purpose of review Patient care in the operating room is a dynamic interaction that requires cooperation among team members and reliance upon sophisticated technology. Most human factors research in medicine has been focused on analyzing errors and implementing system-wide changes to prevent them from recurring. We describe a set of techniques that has been used successfully by the aviation industry to analyze errors and adverse events and explain how these techniques can be applied to patient care. Recent findings Threat and error management (TEM) describes adverse events in terms of risks or challenges that are present in an operational environment (threats) and the actions of specific personnel that potentiate or exacerbate those threats (errors). TEM is a technique widely used in aviation, and can be adapted for the use in a medical setting to predict high-risk situations and prevent errors in the perioperative period. A threat taxonomy is a novel way of classifying and predicting the hazards that can occur in the operating room. TEM can be used to identify error-producing situations, analyze adverse events, and design training scenarios. Summary TEM offers a multifaceted strategy for identifying hazards, reducing errors, and training physicians. A threat taxonomy may improve analysis of critical events with subsequent development of specific interventions, and may also serve as a framework for training programs in risk mitigation. PMID:24113268
NASA Astrophysics Data System (ADS)
Plesko, Catherine; Weaver, R. P.; Korycansky, D. G.; Huebner, W. F.
2010-10-01
The asteroid and comet impact hazard is now part of public consciousness, as demonstrated by movies, Super Bowl commercials, and popular news stories. However, there is a popular misconception that hazard mitigation is a solved problem. Many people think, `we'll just nuke it.’ There are, however, significant scientific questions remaining in the hazard mitigation problem. Before we can say with certainty that an explosive yield Y at height of burst h will produce a momentum change in or dispersion of a potentially hazardous object (PHO), we need to quantify how and where energy is deposited into the rubble pile or conglomerate that may make up the PHO. We then need to understand how shock waves propagate through the system, what causes them to disrupt, and how long gravitationally bound fragments take to recombine. Here we present numerical models of energy deposition from an energy source into various materials that are known PHO constituents, and rigid body dynamics models of the recombination of disrupted objects. In the energy deposition models, we explore the effects of porosity and standoff distance as well as that of composition. In the dynamical models, we explore the effects of fragment size and velocity distributions on the time it takes for gravitationally bound fragments to recombine. Initial models indicate that this recombination time is relatively short, as little as 24 hours for a 1 km sized PHO composed of 1000 meter-scale self-gravitating fragments with an initial velocity field of v/r = 0.001 1/s.
Report #2006-P-00023, May 2, 2006. After Hurricane Katrina, EPA was the agency with lead responsibility to prevent, minimize, or mitigate threats to public health and the environment caused by hazardous materials and oil spills in inland zones.
44 CFR 201.7 - Tribal Mitigation Plans.
Code of Federal Regulations, 2010 CFR
2010-10-01
... events. (ii) A description of the Indian tribal government's vulnerability to the hazards described in... its impact on the tribe. The plan should describe vulnerability in terms of: (A) The types and numbers... or avoid long-term vulnerabilities to the identified hazards. (ii) A section that identifies and...
24 CFR 51.205 - Mitigating measures.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) An existing permanent fire resistant structure of adequate size and strength will shield the proposed..., or in between the potential hazard and the proposed project. (d) The structure and outdoor areas used... potential hazard (e.g., the project is of masonry and steel or reinforced concrete and steel construction). ...
24 CFR 51.205 - Mitigating measures.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) An existing permanent fire resistant structure of adequate size and strength will shield the proposed..., or in between the potential hazard and the proposed project. (d) The structure and outdoor areas used... potential hazard (e.g., the project is of masonry and steel or reinforced concrete and steel construction). ...
24 CFR 51.205 - Mitigating measures.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) An existing permanent fire resistant structure of adequate size and strength will shield the proposed..., or in between the potential hazard and the proposed project. (d) The structure and outdoor areas used... potential hazard (e.g., the project is of masonry and steel or reinforced concrete and steel construction). ...
24 CFR 51.205 - Mitigating measures.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) An existing permanent fire resistant structure of adequate size and strength will shield the proposed..., or in between the potential hazard and the proposed project. (d) The structure and outdoor areas used... potential hazard (e.g., the project is of masonry and steel or reinforced concrete and steel construction). ...
24 CFR 51.205 - Mitigating measures.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) An existing permanent fire resistant structure of adequate size and strength will shield the proposed..., or in between the potential hazard and the proposed project. (d) The structure and outdoor areas used... potential hazard (e.g., the project is of masonry and steel or reinforced concrete and steel construction). ...
NASA Astrophysics Data System (ADS)
Rahamana, S. Abdul; Aruchamy, S.; Jegankumar, R.
2014-12-01
Landslides are one of the critical natural phenomena that frequently lead to serious problems in hilly area, resulting to loss of human life and property, as well as causing severe damage to natural resources. The local geology with high degree of slope coupled with high intensity of rainfall along with unplanned human activities of the study area causes many landslides in this region. The present study area is more attracted by tourist throughout the year, so this area must be considered for preventive measures. Geospatial based Multicriteria decision analysis (MCDA) technique is increasingly used for landslide vulnerability and hazard zonation mapping. It enables the integration of different data layers with different levels of uncertainty. In this present study, it is used analytic hierarchy process (AHP) method to prepare landslide hazard zones of the Coonoor and Ooty, part of Kallar watershed, The Nilgiris, Tamil Nadu. The study was carried out using remote sensing data, field surveys and geographic information system (GIS) tools. The ten factors that influence landslide occurrence, such as elevation, slope aspect, slope angle, drainage density, lineament density, soil, precipitation, land use/land cover (LULC), distance from road and NDVI were considered. These factors layers were extracted from the various related spatial data's. These factors were evaluated, and then, the individual factor weight and class weight were assigned to each of the related factors. The Landslide Hazard Zone Index (LHZI) was calculated using Multicriteria decision analysis (MCDA) the technique based on the assigned weight and the rating is given by the Analytical Hierarchy Process (AHP) method. The final cumulative map of the study area was categorized into four hazard zones and classified as zone I to IV. There are 3.56% of the area comes under the hazard zone IV fallowed by 48.19% of the area comes under zone III, 43.63 % of the area in zone II and 4.61% of the area comes hazard zone I. Further resulted hazard zone map and landuse/landcover map are overlaid to check the hazard status, and existing inventory of known landslides within the present study area was compared with the resulting vulnerable and hazard zone maps. The landslide hazard zonation map is useful for landslide hazard prevention, mitigation, and improvement to society, and proper planning for land use and construction in the future.
Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Robert L.; Ross, Steven B.
2011-09-15
The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).
On civil engineering disasters and their mitigation
NASA Astrophysics Data System (ADS)
Xie, Lili; Qu, Zhe
2018-01-01
Civil engineering works such as buildings and infrastructure are the carriers of human civilization. They are, however, also the origins of various types of disasters, which are referred to in this paper as civil engineering disasters. This paper presents the concept of civil engineering disasters, their characteristics, classification, causes, and mitigation technologies. Civil engineering disasters are caused primarily by civil engineering defects, which are usually attributed to improper selection of construction site, hazard assessment, design and construction, occupancy, and maintenance. From this viewpoint, many so-called natural disasters such as earthquakes, strong winds, floods, landslides, and debris flows are substantially due to civil engineering defects rather than the actual natural hazards. Civil engineering disasters occur frequently and globally and are the most closely related to human beings among all disasters. This paper emphasizes that such disasters can be mitigated mainly through civil engineering measures, and outlines the related objectives and scientific and technological challenges.
How much do hazard mitigation plans cost? An analysis of federal grant data.
Jackman, Andrea M; Beruvides, Mario G
2013-01-01
Under the Disaster Mitigation Act of 2000 and Federal Emergency Management Agency's subsequent Interim Final Rule, the requirement was placed on local governments to author and gain approval for a Hazard Mitigation Plan (HMP) for the areas under their jurisdiction. Low completion percentages for HMPs--less than one-third of eligible governments--were found by an analysis conducted 3 years after the final deadline for the aforementioned legislation took place. Follow-up studies showed little improvement at 5 and 8 years after the deadline. It was hypothesized that the cost of a HMP is a significant factor in determining whether or not a plan is completed. A study was conducted using Boolean Matrix Analysis methods to determine what, if any, characteristics of a certain community will most influence the cost of a HMP. The frequency of natural hazards experienced by the planning area, the number of jurisdictions participating in the HMEP, the population, and population density were found to significantly affect cost. These variables were used in a regression analysis to determine their predictive power for cost. It was found that along with two interaction terms, the variables explain approximately half the variation in HMP cost.
Evaluating the effects of local floodplain management policies on property owner behavior
NASA Astrophysics Data System (ADS)
Bollens, Scott A.; Kaiser, Edward J.; Burby, Raymond J.
1988-05-01
Floodplain management programs have been adopted by more than 85% of local governments in the nation with designated flood hazard areas. Yet, there has been little evaluation of the influence of floodplain policies on private sector decisions. This article examines the degree to which riverine floodplain management affects purchase and mitigation decisions made by owners of developed floodplain property in ten selected cities in the United States. We find that the stringency of such policies does not lessen floodplain property buying because of the overriding importance of site amenity factors. Indeed, flood protection measures incorporated into development projects appear to add to the attractiveness of floodplain location by increasing the perceived safety from the hazard. Property owner responses to the flood hazard after occupancy involve political action more often than individual on-site mitigation. Floodplain programs only minimally encourage on-site mitigation by the owner because most owners have not experienced a flood and many are unaware of the flood threat. It is suggested that floodplain programs will be more effective in meeting their objectives if they are directed at intervention points earlier in the land conversion process.
Modeling and mitigating natural hazards: Stationarity is immortal!
NASA Astrophysics Data System (ADS)
Montanari, Alberto; Koutsoyiannis, Demetris
2014-12-01
Environmental change is a reason of relevant concern as it is occurring at an unprecedented pace and might increase natural hazards. Moreover, it is deemed to imply a reduced representativity of past experience and data on extreme hydroclimatic events. The latter concern has been epitomized by the statement that "stationarity is dead." Setting up policies for mitigating natural hazards, including those triggered by floods and droughts, is an urgent priority in many countries, which implies practical activities of management, engineering design, and construction. These latter necessarily need to be properly informed, and therefore, the research question on the value of past data is extremely important. We herein argue that there are mechanisms in hydrological systems that are time invariant, which may need to be interpreted through data inference. In particular, hydrological predictions are based on assumptions which should include stationarity. In fact, any hydrological model, including deterministic and nonstationary approaches, is affected by uncertainty and therefore should include a random component that is stationary. Given that an unnecessary resort to nonstationarity may imply a reduction of predictive capabilities, a pragmatic approach, based on the exploitation of past experience and data is a necessary prerequisite for setting up mitigation policies for environmental risk.
Changing pattern of landslide risk in Europe - The SafeLand project
NASA Astrophysics Data System (ADS)
Nadim, F.; Kalsnes, B.
2012-04-01
The need to protect people and property with a changing pattern of landslide hazard and risk caused by climate change and changes in demography, and the reality for societies in Europe to live with the risk associated with natural hazards, were the motives for the project SafeLand: "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies." SafeLand is a large, integrating research project under the European Commission's 7th Framework Programme (FP7). The project started on 1 May 2009 and will end on 30 April 2012. It involves 27 partners from 12 European countries, and has international collaborators and advisers from China, India, USA, Japan and Hong Kong. SafeLand also involves 25 End-Users from 11 countries. SafeLand is coordinated by the International Centre for Geohazards (ICG) at Norwegian Geotechnical Institute in Norway. Further information on the SafeLand project can be found at its web site http://safeland-fp7.eu/. Main results achieved in SafeLand include: - Various guidelines related to landslide triggering processes and run-out modelling. - Development and testing of several empirical methods for predicting the characteristics of threshold rainfall events for triggering of precipitation-induced landslides, and development of an empirical model for assessing the changes in landslide frequency (hazard) as a function of changes in the demography and population density. - Guideline for landslide susceptibility, hazard and risk assessment and zoning. - New methodologies for physical and societal vulnerability assessment. - Identification of landslide hazard and risk hotspots for Europe. The results show clearly where areas with the largest landslide risk are located in Europe and the objective approach allows a ranking of the countries by exposed area and population. - Different regional and local climate model simulations over selected regions of Europe at spatial resolutions of 10x10 km and 2.8x2.8 km. These simulations were used to perform an extreme value analysis for trends in heavy precipitation events, and subsequent effects on landslide hazard and risk trends. - Guidelines for use of remote sensing techniques, monitoring and early warning systems. - Development of a prototype web-based "toolbox" of innovative and technically appropriate prevention and mitigation measures. The toolbox does a preliminary assessment and ranking of up to 60 structural and non-structural landslide risk mitigation options. - Case histories and "hotspots" of European Land¬slides have been collected and documented. Data for close to fifty potential case study sites have been compiled and summarized. Most of the case study sites are located in Europe (Italy, France, Norway, Switzerland, Austria, Andorra, and Romania); but they also include one site in Canada and one in India. Almost every type of landslide and every type of movement is represented in these sites. - Research on stakeholder workshops and participatory processes to involve the population exposed to landslide risk in the decision-making process for choosing the most appropriate risk mitigation measure(s).
Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feas...
Making the decision to mitigate risk
Ingrid M. Martin; Holly Wise Bender; Carol Raish
2007-01-01
Why individuals choose to mitigate, downplay, or ignore risk has been a topic of much research over the past 25 years for natural- and human-created risks, such as earthquakes, flooding, smoking, contraceptive use, and alcohol consumption. Wildfire has been a relatively recent focus in the natural hazard literature, perhaps a result of several years of catastrophic...
2013-06-01
water quality or increase storm water runoff. Adherence to all applicable local , state and federal laws regarding storm water mitigates any direct...during construction will mitigate any hazard. 7 .1.4 Water Resources: 7.1.4.1 Storm Water: New construction has the potential to degrade storm
2013-08-07
water quality or increase storm water runoff. Adherence to all applicable local , state and federal laws regarding storm water mitigates any direct...during construction will mitigate any hazard. 7 .1.4 Water Resources: 7.1.4.1 Storm Water: New construction has the potential to degrade storm
Fisher, P; O'Connor, C E; Morriss, G
2008-07-01
Development of p-aminopropiophenone (PAPP) as a toxicant for pest predator management in New Zealand and Australia prompted investigation of its toxicity to potential nontarget species. Acute oral toxicity of PAPP in brushtail possums (Trichosurus vulpecula), dama wallabies (Macropus eugenii), and Mallards (Anas platyrhynchos) was estimated in pen trials, carried out between February 2000 and September 2001. The susceptibility of possums (LD50>or=500 mg kg(-1)) and wallabies (LD50 89 mg kg(-1)) to PAPP was low in comparison to noncarnivorous placental mammal species, but ducks (LD50 38 mg kg(-1)) were more susceptible than other bird species. These results suggest that the nontarget hazard to possums and wallabies from PAPP bait applied for pest predator control would be low. However, future development of PAPP as a vertebrate pest control agent should include rigorous assessments of the hazard posed by bait formulations to bird species and provision for delivery techniques that could mitigate exposure of nontarget birds.
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
DOT National Transportation Integrated Search
2018-02-01
The incidence of icefall is one of the most underrepresented and likely underappreciated of all the natural hazards. Falling pieces of ice are subject to melting and sublimation, and evidence of such events may be gone in a matter of days or even hou...
Mitigating flood exposure: Reducing disaster risk and trauma signature.
Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval
2013-01-01
Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city's worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods . We applied the "trauma signature analysis" (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results . Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion . In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation.
Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval
2013-01-01
Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985
Dust: A major environmental hazard on the earth's moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiken, G.; Vaniman, D.; Lehnert, B.
1990-01-01
On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.
Lin Receives 2010 Natural Hazards Focus Group Award for Graduate Research
NASA Astrophysics Data System (ADS)
2010-11-01
Ning Lin has been awarded the Natural Hazards Focus Group Award for Graduate Research, given annually to a recent Ph.D. recipient for outstanding contributions to natural hazards research. Lin's thesis is entitled “Multi-hazard risk analysis related to hurricanes.” She is scheduled to present an invited talk in the Extreme Natural Events: Modeling, Prediction, and Mitigation session (NH20) during the 2010 AGU Fall Meeting, held 13-17 December in San Francisco, Calif. Lin will be formally presented with the award at the Natural Hazards focus group reception on 14 December 2010.
Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Robert L.; Ross, Steven B.; Sullivan, Robin S.
2010-09-24
The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the Hanford 200 Areas, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. The review includes all natural phenomena hazards with the exception of seismic/earthquake hazards, which are being addressed under a separate effort. It was determined that existing non-seismic NPH assessments are consistent with current design methodology and site specific data.
Planning Tools For Seismic Risk Mitigation. Rules And Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Paoli, Rosa Grazia
2008-07-08
Recently, Italian urban planning research in the field of seismic risk mitigation are renewing. In particular, it promotes strategies that integrate urban rehabilitation and aseismic objectives, and also politicizes that are directed to revitalizes urban systems, coupling physical renewal and socio-economic development.In Italy the first law concerning planning for seismic mitigation dates back 1974, the law n. 64 'Regulation for buildings with particular rules for the seismic areas' where the rules for buildings in seismic areas concerning also the local hazard. This law, in fact, forced the municipalities to acquire, during the formation of the plans, a preventive opinion ofmore » compatibility between planning conditions and geomorphology conditions of the territory. From this date the conviction that the seismic risk must be considered inside the territorial planning especially in terms of strategies of mitigation has been strengthened.The town planners have started to take an interest in seismic risk in the [80]s when the Irpinia's earthquake took place. The researches developed after this earthquake have established that the principal cause of the collapse of buildings are due to from the wrong location of urban settlements (on slopes or crowns) After Irpinia's earthquake the first researches on seismic risk mitigation, in particular on the aspects related to the hazards and to the urban vulnerability were made.« less
Mitigation of indirect environmental effects of GM crops
Pidgeon, J.D; May, M.J; Perry, J.N; Poppy, G.M
2007-01-01
Currently, the UK has no procedure for the approval of novel agricultural practices that is based on environmental risk management principles. Here, we make a first application of the ‘bow-tie’ risk management approach in agriculture, for assessment of land use changes, in a case study of the introduction of genetically modified herbicide tolerant (GMHT) sugar beet. There are agronomic and economic benefits, but indirect environmental harm from increased weed control is a hazard. The Farm Scale Evaluation (FSE) trials demonstrated reduced broad-leaved weed biomass and seed production at the field scale. The simplest mitigation measure is to leave a proportion of rows unsprayed in each GMHT crop field. Our calculations, based on FSE data, show that a maximum of 2% of field area left unsprayed is required to mitigate weed seed production and 4% to mitigate weed biomass production. Tilled margin effects could simply be mitigated by increasing the margin width from 0.5 to 1.5 m. Such changes are cheap and simple to implement in farming practices. This case study demonstrates the usefulness of the bow-tie risk management approach and the transparency with which hazards can be addressed. If adopted generally, it would help to enable agriculture to adopt new practices with due environmental precaution. PMID:17439853
Waveguide Modulator for Interference Tolerant Functional Near Infrared Spectrometer (fNIRS)
NASA Technical Reports Server (NTRS)
Walton, Joanne; Tin, Padetha; Mackey, Jeffrey
2017-01-01
Many crew-related errors in aviation and astronautics are caused by hazardous cognitive states including overstress, disengagement, high fatigue and ineffective crew coordination. Safety can be improved by monitoring and predicting these cognitive states in a non-intrusive manner and designing mitigation strategies. Measuring hemoglobin concentration changes in the brain with functional Near Infrared Spectroscopy is a promising technique for monitoring cognitive state and optimizing human performance during both space and aviation operations. A compact, wearable fNIRS system would provide an innovative early warning system during long duration missions to detect and prevent vigilance decrements in pilots and astronauts. This effort focused on developing a waveguide modulator for use in a fNIRS system.
Volcanic monitoring techniques applied to controlled fragmentation experiments
NASA Astrophysics Data System (ADS)
Kueppers, Ulrich; Alatorre-Ibarguengoitia, Miguel; Hort, Matthias; Kremers, Simon; Meier, Kristina; Scharff, Lea; Scheu, Bettina; Taddeucci, Jacopo; Dingwell, Donald B.
2010-05-01
A rapidly growing number of people is threatened by natural hazards such as volcanic eruptions, earthquakes, floods, or storms. Volcanic eruptions not only have an impact on their direct neighbourhood but may also affect aviation, infrastructure and climate, regionally as well as globally. In respect to several other natural threats, volcanoes exhibit the advantage of a usually known location of the pending threat, allowing the deployment of sophisticated monitoring networks. Such networks deliver information about volcanic systems and the correct interpretation of monitoring data is a viable key to a successful hazard mitigation strategy. Today a large number of volcanoes is equipped with a variety of scientific instruments that help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of the processes behind recorded signals or a solid interpretation of the state of a volcano is poor. Experimental volcanology is a chief source of mechanistic understanding of volcanic systems. Here, we bring volcanic monitoring and experimental volcanology together in a campaign of well-monitored, field-based, experimental volcanology. We present results from a multi-parametric combination of well-controlled experiments and several tools commonly used for monitoring active volcanoes. We performed rapid decompression experiments with natural rock samples from Colima volcano (Mexico) to simulate explosive volcanic eruptions. We used 2 sample varieties of approx. 25 and 35 vol.% open porosity. Sample size was 60 mm height and 25 mm and 60 mm diameter, respectively. Applied pressure ranges from 4 to 18 MPa. The pressurised volume above the samples ranges from 60 - 170 cm³. The experiments have been thoroughly monitored with 1) Doppler-Radar, 2) High-speed and video camera, 3) acoustic and infrasonic sensors, 4) pressure transducers, and 5) electrically conducting wires to shed light on fragmentation, ejection, and ejection speed of volcanic pyroclasts. Although the involved volumes of pressurised sample and gas were small, we were able to record the experimental eruption. Thereby, we could validate in parallel the applicability of two independent methods (1 and 2) currently used to estimate the ejection velocity of erupted pyroclasts, an essential factor in ballistic hazard evaluation and eruption energy estimation. Additionally, infrasound measurements could be correlated with autoclave volume and applied pressure. We are positive that this link of experimental volcanology and monitoring techniques will profoundly enlarge our understanding of the behaviour of active volcanoes in general. If applied to a single volcano, a more refined knowledge of the state of the art will allow an adequate hazard assessment and risk mitigation.
75 FR 29569 - Recovery Policy RP9526.1, Hazard Mitigation Funding Under Section 406 (Stafford Act)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
... docket ID FEMA-2010-0031 and on FEMA's Web site at http://www.fema.gov . You may also view a hard copy of... mitigation discretionary funding available under Section 406 of the Robert T. Stafford Disaster Relief and... the Federal investment in public infrastructure and ultimately help build disaster-resistant...
Mitigating the Risk of Environmental Hazards in Mexico
2011-10-28
consultant reports, country data, media reports, medical studies, government websites, environmental data, and Congressional testimony. iv... medications , immunizations, or personal protective equipment). DoD Instruction Number 6490.03, dated August 2006, states the objective is “to...complexity, with the potential for tragic medical outcomes in the absence of a risk mitigation strategy. 8 EXPOSURES DURING PAST DEPLOYMENTS
Progress in NTHMP Hazard Assessment
Gonzalez, F.I.; Titov, V.V.; Mofjeld, H.O.; Venturato, A.J.; Simmons, R.S.; Hansen, R.; Combellick, Rodney; Eisner, R.K.; Hoirup, D.F.; Yanagi, B.S.; Yong, S.; Darienzo, M.; Priest, G.R.; Crawford, G.L.; Walsh, T.J.
2005-01-01
The Hazard Assessment component of the U.S. National Tsunami Hazard Mitigation Program has completed 22 modeling efforts covering 113 coastal communities with an estimated population of 1.2 million residents that are at risk. Twenty-three evacuation maps have also been completed. Important improvements in organizational structure have been made with the addition of two State geotechnical agency representatives to Steering Group membership, and progress has been made on other improvements suggested by program reviewers. ?? Springer 2005.
How predictable is the behaviour of torrential processes: two case studies of the summer 2012
NASA Astrophysics Data System (ADS)
Huebl, Johannes; Eisl, Julia; Janu, Stefan; Hanspeter, Pussnig
2013-04-01
Debris flow hazards play an important role in the Austrian Alps since many villages are located on alluvial fans. Most of the mitigation Measures as well as Hazard Zone Maps are designed by engineers of previous generations, who know quite a lot about the torrential behaviour from their experience. But speaking in terms of recurrence intervals of 100 years or even more, human memory is restricted. On the other hand numerical modelling is a fast growing task in dealing with natural hazards. Scenarios of torrential hazards can be defined and accordant deposition pattern, flow depths and velocities are calculated. But of course, errors in the input data must lead to fatal errors in the results, consequently threaten human life in possible affected areas. Thus the need for data collection of exceptional events can help to reproduce the reality in a quite high grade, indeed, but unexpected events are still an issue and pose a challenge to engineers. In summer 2012 two debris flow events occurred in Austria with quite different behaviours, from triggering mechanism and flow behaviour through to deposition: Thunderstorms or long lasting rainfall, slope failures with subsequent channel blockage and dike breaching or linear erosion, one or more debris flows, one huge debris flow surge or a series of debris flow surges, sediments without clay or cohesive material, near channel deposition or outspread deposits. Both debris flows have been unexpected in their dimension, although mitigation measures and hazard maps exist. Both events were documented accurately, first to try to understand the torrential process occurred, second to identify the most fitting mitigation measures, ranging from permanent structures to temporary warning systems.
The Relation of Hazard Awareness to Adoption of Approved Mitigation Measures.
ERIC Educational Resources Information Center
Saarinen, Thomas F.
The relationship between an individual's or community's awareness of natural hazards and subsequent behavior change is examined in this review of research. The document is presented in seven sections. Following Section I, the introduction, Section II discusses the role of experience in behavior change. Section III examines the role of education…
Reducing commercial fishing deck hazards with engineering solutions for winch design.
Lincoln, Jennifer M; Lucas, Devin L; McKibbin, Robert W; Woodward, Chelsea C; Bevan, John E
2008-01-01
The majority (67%) of hospitalized injuries among Alaska commercial fishermen are associated with deck machinery. This paper describes the "Prevention Through Design" process to mitigate one serious machinery entanglement hazard posed by a capstan deck winch. After observing that the capstan winch provides no entanglement protection and the hydraulic controls are usually out of reach of the entangled person, NIOSH personnel met with fishermen and winch manufacturers to discuss various design solutions to mitigate these hazards. An emergency-stop ("e-stop") system was developed that incorporated a momentary contact button that when pushed, switches a safety-relay that de-energizes the solenoid of an electro-hydraulic valve stopping the rotating winch. The vessel owners that had the e-stop installed enthusiastically recommend it to other fishermen. NIOSH entered into a Proprietary Technology Licensing Agreement with a company to develop the system for commercial use. This is an example of a practical engineering control that effectively protects workers from a hazardous piece of equipment by preventing injuries due to entanglement. This solution could reduce these types of debilitating injuries and fatalities in this industry.
Mock Certification Basis for an Unmanned Rotorcraft for Precision Agricultural Spraying
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Neogi, Natasha A.; Verstynen, Harry A.; Buelow, Barry; McCormick, G. Frank
2015-01-01
This technical report presents the results of a case study using a hazard-based approach to develop preliminary design and performance criteria for an unmanned agricultural rotorcraft requiring airworthiness certification. This case study is one of the first in the public domain to examine design and performance criteria for an unmanned aircraft system (UAS) in tandem with its concept of operations. The case study results are intended to support development of airworthiness standards that could form a minimum safety baseline for midsize unmanned rotorcraft performing precision agricultural spraying operations under beyond visual line-of-sight conditions in a rural environment. This study investigates the applicability of current methods, processes, and standards for assuring airworthiness of conventionally piloted (manned) aircraft to assuring the airworthiness of UAS. The study started with the development of a detailed concept of operations for precision agricultural spraying with an unmanned rotorcraft (pp. 5-18). The concept of operations in conjunction with a specimen unmanned rotorcraft were used to develop an operational context and a list of relevant hazards (p. 22). Minimum design and performance requirements necessary to mitigate the hazards provide the foundation of a proposed (or mock) type certification basis. A type certification basis specifies the applicable standards an applicant must show compliance with to receive regulatory approval. A detailed analysis of the current airworthiness regulations for normal-category rotorcraft (14 Code of Federal Regulations, Part 27) was performed. Each Part 27 regulation was evaluated to determine whether it mitigated one of the relevant hazards for the specimen UAS. Those regulations that did were included in the initial core of the type certification basis (pp. 26-31) as written or with some simple modifications. Those regulations that did not mitigate a recognized hazard were excluded from the certification basis. The remaining regulations were applicable in intent, but the text could not be easily tailored. Those regulations were addressed in separate issue papers. Exploiting established regulations avoids the difficult task of generating and interpreting novel requirements, through the use of acceptable, standardized language. The rationale for the disposition of the regulations was assessed and captured (pp. 58-115). The core basis was then augmented by generating additional requirements (pp. 38-47) to mitigate hazards for an unmanned sprayer that are not covered in Part 27.
The Puerto Rico Component of the National Tsunami Hazard and Mitigation Program Pr-Nthmp
NASA Astrophysics Data System (ADS)
Huerfano Moreno, V. A.; Hincapie-Cardenas, C. M.
2014-12-01
Tsunami hazard assessment, detection, warning, education and outreach efforts are intended to reduce losses to life and property. The Puerto Rico Seismic Network (PRSN) is participating in an effort with local and federal agencies, to developing tsunami hazard risk reduction strategies under the National Tsunami Hazards and Mitigation Program (NTHMP). This grant supports the TsunamiReady program which is the base of the tsunami preparedness and mitigation in PR. The Caribbean region has a documented history of damaging tsunamis that have affected coastal areas. The seismic water waves originating in the prominent fault systems around PR are considered to be a near-field hazard for Puerto Rico and the Virgin islands (PR/VI) because they can reach coastal areas within a few minutes after the earthquake. Sources for local, regional and tele tsunamis have been identified and modeled and tsunami evacuation maps were prepared for PR. These maps were generated in three phases: First, hypothetical tsunami scenarios on the basis of the parameters of potential underwater earthquakes were developed. Secondly, each of these scenarios was simulated. The third step was to determine the worst case scenario (MOM). The run-ups were drawn on GIS referenced maps and aerial photographs. These products are being used by emergency managers to educate the public and develop mitigation strategies. Online maps and related evacuation products are available to the public via the PR-TDST (PR Tsunami Decision Support Tool). Currently all the 44 coastal municipalities were recognized as TsunamiReady by the US NWS. The main goal of the program is to declare Puerto Rico as TsunamiReady, including two cities that are not coastal but could be affected by tsunamis. Based on these evacuation maps, tsunami signs were installed, vulnerability profiles were created, communication systems to receive and disseminate tsunami messages were installed in each TWFP, and tsunami response plans were approved. Also, the existing tsunami protocol and criteria in the PR/VI was updated. This paper describes the PR-NTHMP project, including the real time earthquake and tsunami monitoring as well as the specific protocols used to broadcast tsunami messages. The paper highlights tsunami hazards assessment, detection, warning, education and outreach in Puerto Rico.
Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA)
Diefenbach, Angela K.; Wood, Nathan J.; Ewert, John W.
2015-01-01
Understanding how communities are vulnerable to lahar hazards provides critical input for effective design and implementation of volcano hazard preparedness and mitigation strategies. Past vulnerability assessments have focused largely on hazards posed by a single volcano, even though communities and officials in many parts of the world must plan for and contend with hazards associated with multiple volcanoes. To better understand community vulnerability in regions with multiple volcanic threats, we characterize and compare variations in community exposure to lahar hazards associated with five active volcanoes in Washington State, USA—Mount Baker, Glacier Peak, Mount Rainier, Mount Adams and Mount St. Helens—each having the potential to generate catastrophic lahars that could strike communities tens of kilometers downstream. We use geospatial datasets that represent various population indicators (e.g., land cover, residents, employees, tourists) along with mapped lahar-hazard boundaries at each volcano to determine the distributions of populations within communities that occupy lahar-prone areas. We estimate that Washington lahar-hazard zones collectively contain 191,555 residents, 108,719 employees, 433 public venues that attract visitors, and 354 dependent-care facilities that house individuals that will need assistance to evacuate. We find that population exposure varies considerably across the State both in type (e.g., residential, tourist, employee) and distribution of people (e.g., urban to rural). We develop composite lahar-exposure indices to identify communities most at-risk and communities throughout the State who share common issues of vulnerability to lahar-hazards. We find that although lahars are a regional hazard that will impact communities in different ways there are commonalities in community exposure across multiple volcanoes. Results will aid emergency managers, local officials, and the public in educating at-risk populations and developing preparedness, mitigation, and recovery plans within and across communities.
Seismic Hazard Legislation in California: Challenges and Changes
NASA Astrophysics Data System (ADS)
Testa, S. M.
2015-12-01
Seismic hazards in California are legislatively controlled by three specific Acts: the Field Act of 1933; the Alquist-Priolo Earthquake Fault Zoning Act (AP) of 1975; and the Seismic Hazards Mapping Act (SHMA) of 1980. The Field Act recognized the need for earthquake resistant construction for California schools and banned unreinforced masonry buildings, and imposed structural design under seismic conditions. The AP requires the California Geological Survey (CGS) to delineate "active fault zones" for general planning and mitigation by various state and local agencies. Under the AP, surface and near-surface faults are presumed active (about 11,000 years before present) unless proven otherwise; and can only be mitigated by avoidance (setback zones). The SHMA requires that earthquake-induced landslides, liquefaction zones, high ground accelerations, tsunamis and seiches similarly be demarcated on CGS-issued maps. Experience over the past ~45 years and related technological advances now show that more than ~95 percent of seismically induced damage and loss of life stems from high ground accelerations, from related ground deformation and from catastrophic structural failure, often far beyond State-mapped AP zones. The SHMA therefore enables the engineering community to mitigate natural hazards from a holistic standpoint that considers protection of public health, safety and welfare. In conformance with the SHMA, structural design and related planning and building codes focus on acceptable risk for natural hazards with a typical recurrence of ~100 yrs to a few thousand years. This contrasts with the current AP "total avoidance" for surface-fault rupture that may have occurred within the last 11,000 years. Accordingly, avoidance may be reasonable for well expressed surface faults in high-density urban areas or where relative fault activity is uncertain. However, in the interest of overall public, health and safety, and for consistency with the SHMA and current professional standards-of-practice, we now propose changes to the AP and related regulations, including consideration for permitting construction near or across surface or near-surface faults that are geologically reasonably well characterized and amenable to structural mitigation.
Application of systems and control theory-based hazard analysis to radiation oncology.
Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G
2016-03-01
Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve safety and prevent accidents and warrants further investigation.
Geoethics: the responsibility of geoscientists in making society more aware of natural hazards
NASA Astrophysics Data System (ADS)
Peppoloni, S.; Matteucci, R.; Piacente, S.; Wasowski, J.
2012-04-01
The damage due to geological hazards, with frequent loss of human lives, is not entirely avoidable, but can be greatly reduced through the correct land use that respects the natural processes, through prevention and mitigation efforts, through an effective and correct information to the population. Often not responsible behaviors by politicians, as well as the need for heavy investments and the lack of information make difficult the solution of problems and slow the path to a proper management of the environment, the only way to provide a significant mitigation of damages of the geological disasters. In many countries (including Italy) the importance of the Geoscientists's role is not yet sufficiently recognized, despite it is evident the necessity of a greater attention to geological problems by policy makers and public opinion, as well as a more adequate information about natural risks to the society. The commitment to ensure prevention and mitigation of geological hazards must be considered an ethical value and duty for those who possess the appropriate knowledge and skills. Within the above context, Geoscientists have a key role to play as experts in analyzing and managing the territory's vulnerability: they must take responsibility to share and communicate their knowledge more effectively with all private and public stakeholders involved, paying attention to providing balanced information about risks and addressing inevitable uncertainties in natural hazard mapping, assessment, warning, and forecasting. But Geoscientists need to be more aware of their ethical responsibility, of their social duty to serve the society, care about and protect territory, and to facilitate the desirable shift from a culture of emergency to a culture of prevention. The search for balance between short-term economic issues and wider social impacts from natural hazards is an increasingly urgent need. Geoethics must be central to society's responses to natural hazard threats.
Application of multi-agent coordination methods to the design of space debris mitigation tours
NASA Astrophysics Data System (ADS)
Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby
2016-04-01
The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.
NASA Technical Reports Server (NTRS)
Stone, Henry W.; Edmonds, Gary O.
1995-01-01
Remotely controlled mobile robot used to locate, characterize, identify, and eventually mitigate incidents involving hazardous-materials spills/releases. Possesses number of innovative features, allowing it to perform mission-critical functions such as opening and unlocking doors and sensing for hazardous materials. Provides safe means for locating and identifying spills and eliminates risks of injury associated with use of manned entry teams. Current version of vehicle, called HAZBOT III, also features unique mechanical and electrical design enabling vehicle to operate safely within combustible atmosphere.
Volcanic hazards in Central America
Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.
2006-01-01
This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.
Some Open Issues on Rockfall Hazard Analysis in Fractured Rock Mass: Problems and Prospects
NASA Astrophysics Data System (ADS)
Ferrero, Anna Maria; Migliazza, Maria Rita; Pirulli, Marina; Umili, Gessica
2016-09-01
Risk is part of every sector of engineering design. It is a consequence of the uncertainties connected with the cognitive boundaries and with the natural variability of the relevant variables. In soil and rock engineering, in particular, uncertainties are linked to geometrical and mechanical aspects and the model used for the problem schematization. While the uncertainties due to the cognitive gaps could be filled by improving the quality of numerical codes and measuring instruments, nothing can be done to remove the randomness of natural variables, except defining their variability with stochastic approaches. Probabilistic analyses represent a useful tool to run parametric analyses and to identify the more significant aspects of a given phenomenon: They can be used for a rational quantification and mitigation of risk. The connection between the cognitive level and the probability of failure is at the base of the determination of hazard, which is often quantified through the assignment of safety factors. But these factors suffer from conceptual limits, which can be only overcome by adopting mathematical techniques with sound bases, not so used up to now (Einstein et al. in rock mechanics in civil and environmental engineering, CRC Press, London, 3-13, 2010; Brown in J Rock Mech Geotech Eng 4(3):193-204, 2012). The present paper describes the problems and the more reliable techniques used to quantify the uncertainties that characterize the large number of parameters that are involved in rock slope hazard assessment through a real case specifically related to rockfall. Limits of the existing approaches and future developments of the research are also provided.
Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants
Patra, Amlan K.
2016-01-01
Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents recent developments and critical analysis on different measurements and dietary mitigation of enteric CH4 emissions technologies. PMID:27243027
Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants.
Patra, Amlan K
2016-01-01
Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents recent developments and critical analysis on different measurements and dietary mitigation of enteric CH4 emissions technologies.
Mitigation Systems for Confined Blast Loading - Crew Protection in Armored Vehicles
2009-04-01
Effects of Tungsten Alloy Property Variations on Penetrator Performance for Spaced Armors.” Advances in Powder Metallurgy and Particulate Materials...Table 8.1. Cylinder properties for confined field test. ............................................... 93 Table 8.2. FEM snapshot of the confined...persons or property . Blast mitigation should reduce the overpressure, impulse, fragments, projectile, thermal and toxic hazards that occur during an
Sarah M. McCaffrey; Melanie Stidham; Eric Toman; Bruce Shindler
2011-01-01
In recent years, altered forest conditions, climate change, and the increasing numbers of homes built in fire prone areas has meant that wildfires are affecting more people. An important part of minimizing the potential negative impacts of wildfire is engaging homeowners in mitigating the fire hazard on their land. It is therefore important to understand what makes...
Stakeholder understandings of wildfire mitigation: A case of shared and contested meanings
Joseph G. Champ; Jeffrey J. Brooks; Daniel R. Williams
2012-01-01
This article identifies and compares meanings of wildfire risk mitigation for stakeholders in the Front Range of Colorado, USA. We examine the case of a collaborative partnership sponsored by government agencies and directed to decrease hazardous fuels in interface areas. Data were collected by way of key informant interviews and focus groups. The analysis is guided by...
Wade E. Martin; Ingrid M. Martin; Brian Kent
2009-01-01
An important policy question receiving considerable attention concerns the risk perception-risk mitigation process that guides how individuals choose to address natural hazard risks. This question is considered in the context of wildfire. We analyze the factors that influence risk reduction behaviors by homeowners living in the wildland-urban interface. The factors...
THERMAL EVALUATION OF CONTAMINATED LIQUID ONTO CELL FLOORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
NOEMAIL), J
2009-05-04
For the Salt Disposition Integration Project (SDIP), postulated events in the new Salt Waste Processing Facility (SWPF) can result in spilling liquids that contain Cs-137 and organics onto cell floors. The parameters of concern are the maximum temperature of the fluid following a spill and the time required for the maximum fluid temperature to be reached. Control volume models of the various process cells have been developed using standard conduction and natural convection relationships. The calculations are performed using the Mathcad modeling software. The results are being used in Consolidated Hazards Analysis Planning (CHAP) to determine the controls that maymore » be needed to mitigate the potential impact of liquids containing Cs-137 and flammable organics that spill onto cell floors. Model development techniques and the ease of making model changes within the Mathcad environment are discussed. The results indicate that certain fluid spills result in overheating of the fluid, but the times to reach steady-state are several hundred hours. The long times allow time for spill clean up without the use of expensive mitigation controls.« less
Risk assessment of debris flow hazards in natural slope
NASA Astrophysics Data System (ADS)
Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin
2016-04-01
The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)
Mechanical restoration of California mixed-conifer forests: does it matter which trees are cut?
Jessica Miesel; Ralph Boerner; Carl Skinner
2009-01-01
The montane ecosystems of northern California have been subjected to repeated manipulation and active fire suppression for over a century, resulting in changes in community structure that contribute to increased wildfire hazard. Ecosystem restoration via reduction of stand density for wildfire hazard mitigation has received substantial attention in recent years;...
Wildfire risk management on a landscape with public and private ownership: Who pays for protection?
Gwenlyn Busby; Heidi J. Albers
2010-01-01
Wildfire, like many natural hazards, affects large landscapes with many landowners and the risk individual owners face depends on both individual and collective protective actions. In this study, we develop a spatially explicit game theoretic model to examine the strategic interaction between landowners' hazard mitigation decisions on a landscape with public and...
Flooding is a major natural hazard which every year impacts different regions across the world. Between 2000 and 2008, various types of natural hazards, mainly floods have affected the largest number of people worldwide, averaging 99 million people per year (WDR, 2010). In the U...
Space Human Factors: Research to Application
NASA Technical Reports Server (NTRS)
Woolford, Barbara
2008-01-01
Human Factors has been instrumental in preventing potential on-orbit hazards and increasing overall crew safety. Poor performance & operational learning curves on-orbit are mitigated. Human-centered design is applied to optimize design and minimize potentially hazardous conditions, especially with larger crew sizes and habitat constraints. Lunar and Mars requirements and design developments are enhanced, based on ISS Lessons Learned.
The wicked problem of earthquake hazard in developing countries: the example of Bangladesh
NASA Astrophysics Data System (ADS)
Steckler, M. S.; Akhter, S. H.; Stein, S.; Seeber, L.
2017-12-01
Many developing nations in earthquake-prone areas confront a tough problem: how much of their limited resources to use mitigating earthquake hazards? This decision is difficult because it is unclear when an infrequent major earthquake may happen, how big it could be, and how much harm it may cause. This issue faces nations with profound immediate needs and ongoing rapid urbanization. Earthquake hazard mitigation in Bangladesh is a wicked problem. It is the world's most densely populated nation, with 160 million people in an area the size of Iowa. Complex geology and sparse data make assessing a possibly-large earthquake hazard difficult. Hence it is hard to decide how much of the limited resources available should be used for earthquake hazard mitigation, given other more immediate needs. Per capita GDP is $1200, so Bangladesh is committed to economic growth and resources are needed to address many critical challenges and hazards. In their subtropical environment, rural Bangladeshis traditionally relied on modest mud or bamboo homes. Their rapidly growing, crowded capital, Dhaka, is filled with multistory concrete buildings likely to be vulnerable to earthquakes. The risk is compounded by the potential collapse of services and accessibility after a major temblor. However, extensive construction as the population shifts from rural to urban provides opportunity for earthquake-risk reduction. While this situation seems daunting, it is not hopeless. Robust risk management is practical, even for developing nations. It involves recognizing uncertainties and developing policies that should give a reasonable outcome for a range of the possible hazard and loss scenarios. Over decades, Bangladesh has achieved a thousandfold reduction in risk from tropical cyclones by building shelters and setting up a warning system. Similar efforts are underway for earthquakes. Smart investments can be very effective, even if modest. Hence, we suggest strategies consistent with high uncertainty and limited resources. The most crucial steps are enforcing building codes and public education on earthquake risk reduction. Requiring moderate investments that increases building costs by 5-10% can substantially improve safety and is a cost effective strategy. Over time, natural building turnover will make communities more resilient.
Plume Impingement to the Lunar Surface: A Challenging Problem for DSMC
NASA Technical Reports Server (NTRS)
Lumpkin, Forrest; Marichalar, Jermiah; Piplica, Anthony
2007-01-01
The President's Vision for Space Exploration calls for the return of human exploration of the Moon. The plans are ambitious and call for the creation of a lunar outpost. Lunar Landers will therefore be required to land near predeployed hardware, and the dust storm created by the Lunar Lander's plume impingement to the lunar surface presents a hazard. Knowledge of the number density, size distribution, and velocity of the grains in the dust cloud entrained into the flow is needing to develop mitigation strategies. An initial step to acquire such knowledge is simulating the associated plume impingement flow field. The following paper presents results from a loosely coupled continuum flow solver/Direct Simulation Monte Carlo (DSMC) technique for simulating the plume impingement of the Apollo Lunar module on the lunar surface. These cases were chosen for initial study to allow for comparison with available Apollo video. The relatively high engine thrust and the desire to simulate interesting cases near touchdown result in flow that is nearly entirely continuum. The DSMC region of the flow field was simulated using NASA's DSMC Analysis Code (DAC) and must begin upstream of the impingement shock for the loosely coupled technique to succeed. It was therefore impossible to achieve mean free path resolution with a reasonable number of molecules (say 100 million) as is shown. In order to mitigate accuracy and performance issues when using such large cells, advanced techniques such as collision limiting and nearest neighbor collisions were employed. The final paper will assess the benefits and shortcomings of such techniques. In addition, the effects of plume orientation, plume altitude, and lunar topography, such as craters, on the flow field, the surface pressure distribution, and the surface shear stress distribution are presented.
Monitoring and characterizing natural hazards with satellite InSAR imagery
Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel
2010-01-01
Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.
NASA Astrophysics Data System (ADS)
Liu, D. L.; Li, Y.
2015-11-01
Evaluating social vulnerability is a crucial issue in risk and disaster management. In this study, a household social vulnerability index (HSVI) to flood hazards was developed and used to assess the social vulnerability of rural households in western mountainous regions of Henan province, China. Eight key indicators were indentified through interactive discussions with multidisciplinary specialists and local farmers, and their weights were determined using principle component analysis (PCA). The results showed that (1) the ratio of perennial working in other places, hazard-related training and illiteracy ratio (15+) were the most dominant factors to social vulnerability. (2) The numbers of high, moderate and low vulnerable households were 14, 64 and 16, respectively, which accounted for 14.9, 68.1, and 17.0 % of the total interviewed rural households, respectively. (3) The correlation coefficient between household social vulnerability scores and casualties in a storm flood in July 2010 was significant at 0.05 significance level (r = 0.248), which indicated that the selected indicators and their weights were valid. (4) Some mitigation strategies to reduce the household social vulnerability to flood hazards were proposed based on the assessment results. The results provide useful information for rural households and local governments to prepare, mitigate and response to flood hazards.
36 CFR 254.7 - Assumption of costs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... surveys; appraisals; mineral examinations; timber cruises; title searches; title curative actions; cultural resource surveys and mitigation; hazardous substance surveys and controls; removal of encumbrances...
36 CFR 254.7 - Assumption of costs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... surveys; appraisals; mineral examinations; timber cruises; title searches; title curative actions; cultural resource surveys and mitigation; hazardous substance surveys and controls; removal of encumbrances...
36 CFR 254.7 - Assumption of costs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... surveys; appraisals; mineral examinations; timber cruises; title searches; title curative actions; cultural resource surveys and mitigation; hazardous substance surveys and controls; removal of encumbrances...
36 CFR 254.7 - Assumption of costs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... surveys; appraisals; mineral examinations; timber cruises; title searches; title curative actions; cultural resource surveys and mitigation; hazardous substance surveys and controls; removal of encumbrances...
36 CFR 254.7 - Assumption of costs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... surveys; appraisals; mineral examinations; timber cruises; title searches; title curative actions; cultural resource surveys and mitigation; hazardous substance surveys and controls; removal of encumbrances...
Control of submersible vortex flows
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Donaldson, C. D.
1990-01-01
Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.
Flicker Detection, Measurement and Means of Mitigation: A Review
NASA Astrophysics Data System (ADS)
Virulkar, V. B.; Aware, M. V.
2014-04-01
The voltage fluctuations caused by rapid industrial load change have been a major concern for supply utilities, regulatory agencies and customers. This paper gives a general review about how to examine/assess voltage flicker and methods followed in measuring the flickers due to rapid changing loads and means for its mitigation. It discusses the effects on utilities conditions, compensators response time and compensator capacity of flicker mitigation. A comparison between conventional mitigation techniques and the state-of-art mitigation techniques are carried out. It is shown in many cases that the state-of-art solution provides higher performance compared with conventional mitigation techniques. However, the choice of most suitable solution depends on characteristics of the supply at the point of connection, the requirement of the load and economics.
Social and ethical perspectives of landslide risk mitigation measures
NASA Astrophysics Data System (ADS)
Kalsnes, Bjørn; Vangelsten, Bjørn V.
2015-04-01
Landslide risk may be mitigated by use of a wide range of measures. Mitigation and prevention options may include (1) structural measures to reduce the frequency, severity or exposure to the hazard, (2) non-structural measures, such as land-use planning and early warning systems, to reduce the hazard frequency and consequences, and (3) measures to pool and transfer the risks. In a given situation the appropriate system of mitigation measures may be a combination of various types of measures, both structural and non-structural. In the process of choosing mitigation measures for a given landslide risk situation, the role of the geoscientist is normally to propose possible mitigation measures on basis of the risk level and technical feasibility. Social and ethical perspectives are often neglected in this process. However, awareness of the need to consider social as well as ethical issues in the design and management of mitigating landslide risk is rising. There is a growing understanding that technical experts acting alone cannot determine what will be considered the appropriate set of mitigation and prevention measures. Issues such as environment versus development, questions of acceptable risk, who bears the risks and benefits, and who makes the decisions, also need to be addressed. Policymakers and stakeholders engaged in solving environmental risk problems are increasingly recognising that traditional expert-based decision-making processes are insufficient. This paper analyse the process of choosing appropriate mitigation measures to mitigate landslide risk from a social and ethical perspective, considering technical, cultural, economical, environmental and political elements. The paper focus on stakeholder involvement in the decision making process, and shows how making strategies for risk communication is a key for a successful process. The study is supported by case study examples from Norway and Italy. In the Italian case study, three different risk mitigation options was presented to the local community. The options were based on a thorough stakeholder involvement process ending up in three different views on how to deal with the landslide risk situation: i) protect lives and properties (hierarchical) ; ii) careful stewardship of the mountains (egalitarian); and iii) rational individual choice (individualist).
Numerical and probabilistic analysis of asteroid and comet impact hazard mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plesko, Catherine S; Weaver, Robert P; Huebner, Walter F
2010-09-09
The possibility of asteroid and comet impacts on Earth has received significant recent media and scientific attention. Still, there are many outstanding questions about the correct response once a potentially hazardous object (PHO) is found. Nuclear munitions are often suggested as a deflection mechanism because they have a high internal energy per unit launch mass. However, major uncertainties remain about the use of nuclear munitions for hazard mitigation. There are large uncertainties in a PHO's physical response to a strong deflection or dispersion impulse like that delivered by nuclear munitions. Objects smaller than 100 m may be solid, and objectsmore » at all sizes may be 'rubble piles' with large porosities and little strength. Objects with these different properties would respond very differently, so the effects of object properties must be accounted for. Recent ground-based observations and missions to asteroids and comets have improved the planetary science community's understanding of these objects. Computational power and simulation capabilities have improved such that it is possible to numerically model the hazard mitigation problem from first principles. Before we know that explosive yield Y at height h or depth -h from the target surface will produce a momentum change in or dispersion of a PHO, we must quantify energy deposition into the system of particles that make up the PHO. Here we present the initial results of a parameter study in which we model the efficiency of energy deposition from a stand-off nuclear burst onto targets made of PHO constituent materials.« less
Multi-satellite Mission in China for Monitoring Natural Hazards (Invited)
NASA Astrophysics Data System (ADS)
Guo, H.
2013-12-01
The impacts of natural hazards are continuing to increase around the world, and mitigation of the damages caused by natural hazards like floods, droughts, earthquakes, and cyclones has been a global challenge. Current evidence demonstrates there are many kinds of technologies for natural hazard management, but space technology is recognized as one of the most effective means. After 30 years of development, China has become an important member of the global remote sensing community. China has successfully developed an Earth observation system consisting of meteorological satellites, resources satellites, ocean satellites, environment and disaster monitoring satellites, micro-satellites, navigation satellites, and manned spacecraft. In this presentation, a short overview of China's Earth observation satellite missions will be presented. Specifically, the Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) will be introduced and discussed. SSCEDMF is a follow-up '4+4' satellite constellation including four optical satellites and four radar satellites, meant to improve disaster management capability in China. At the current stage, two optical satellites and an s-band synthetic aperture radar satellite have successfully launched. Disasters are a global issue that no country can address individually, requiring sharing and collaboration. China has benefited greatly from international collaboration in disaster mitigation, and has actively worked with international partners. To share our experience in dealing with the risk of disasters, some achievements and progress in space technology applications for disaster management will be introduced. In addition, collaborative activities with IRDR, the UN-SPIDER Beijing Office, and the CAS-TWAS Centre of Excellence on Space Technology for Disaster Mitigation (STDM) will be described.
Earthquake and volcano hazard notices: An economic evaluation of changes in risk perceptions
Bernknopf, R.L.; Brookshire, D.S.; Thayer, M.A.
1990-01-01
Earthquake and volcano hazard notices were issued for the Mammoth Lakes, California area by the U.S. Geological Survey under the authority granted by the Disaster Relief Act of 1974. The effects on investment, recretion visitation, and risk perceptionsare explored. The hazard notices did not affect recreation visitation, although investment was affected. A perceived loss in the market value of homes was documented. Risk perceptions were altered for property owners. Communication of the probability of an event over time would enhance hazard notices as a policy instrument and would mitigate unnecessary market perturbations. ?? 1990.
43 CFR 2201.1-3 - Assumption of costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... surveys, appraisals, mineral examinations, timber cruises, title searches, title curative actions, cultural resource surveys and mitigation, hazardous substance surveys and controls, removal of encumbrances...
43 CFR 2201.1-3 - Assumption of costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... surveys, appraisals, mineral examinations, timber cruises, title searches, title curative actions, cultural resource surveys and mitigation, hazardous substance surveys and controls, removal of encumbrances...
36 CFR 254.14 - Exchange agreement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... limited to, land surveys, appraisals, mineral examinations, timber cruises, title searches, title curative actions, cultural resource surveys and mitigation, hazardous substance surveys and controls, removal of...
43 CFR 2201.1-3 - Assumption of costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... surveys, appraisals, mineral examinations, timber cruises, title searches, title curative actions, cultural resource surveys and mitigation, hazardous substance surveys and controls, removal of encumbrances...
43 CFR 2201.1-3 - Assumption of costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... surveys, appraisals, mineral examinations, timber cruises, title searches, title curative actions, cultural resource surveys and mitigation, hazardous substance surveys and controls, removal of encumbrances...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Administrator for review and approval. The Administrator shall make the final base flood elevation determination...
44 CFR 68.1 - Purpose of part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Insurance Administrator's base flood elevation determinations, whether proposed pursuant to section 1363(e...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Administrator for review and approval. The Administrator shall make the final base flood elevation determination...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Administrator for review and approval. The Administrator shall make the final base flood elevation determination...
44 CFR 68.1 - Purpose of part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Insurance Administrator's base flood elevation determinations, whether proposed pursuant to section 1363(e...
44 CFR 68.1 - Purpose of part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Insurance Administrator's base flood elevation determinations, whether proposed pursuant to section 1363(e...
NASA Technical Reports Server (NTRS)
Fletcher, Rose
2010-01-01
The 28-foot storm surge from Hurricane Katrina pushed inland along bays and rivers for a distance of 12 miles in some areas, contributing to the damage or destruction of about half of the fleet of boats in coastal Mississippi. Most of those boats had sought refuge in back bays and along rivers. Some boats were spared damage because the owners chose their mooring site well. Gulf mariners need a spatial analysis tool that provides guidance on the safest places to anchor their boats during future hurricanes. This product would support NOAA s mission to minimize the effects of coastal hazards through awareness, education, and mitigation strategies and could be incorporated in the Coastal Risk Atlas decision support tool.
New Approaches to Tsunami Hazard Mitigation Demonstrated in Oregon
NASA Astrophysics Data System (ADS)
Priest, G. R.; Rizzo, A.; Madin, I.; Lyles Smith, R.; Stimely, L.
2012-12-01
Oregon Department of Geology and Mineral Industries and Oregon Emergency Management collaborated over the last four years to increase tsunami preparedness for residents and visitors to the Oregon coast. Utilizing support from the National Tsunami Hazards Mitigation Program (NTHMP), new approaches to outreach and tsunami hazard assessment were developed and then applied. Hazard assessment was approached by first doing two pilot studies aimed at calibrating theoretical models to direct observations of tsunami inundation gleaned from the historical and prehistoric (paleoseismic/paleotsunami) data. The results of these studies were then submitted to peer-reviewed journals and translated into 1:10,000-12,000-scale inundation maps. The inundation maps utilize a powerful new tsunami model, SELFE, developed by Joseph Zhang at the Oregon Health & Science University. SELFE uses unstructured computational grids and parallel processing technique to achieve fast accurate simulation of tsunami interactions with fine-scale coastal morphology. The inundation maps were simplified into tsunami evacuation zones accessed as map brochures and an interactive mapping portal at http://www.oregongeology.org/tsuclearinghouse/. Unique in the world are new evacuation maps that show separate evacuation zones for distant versus locally generated tsunamis. The brochure maps explain that evacuation time is four hours or more for distant tsunamis but 15-20 minutes for local tsunamis that are invariably accompanied by strong ground shaking. Since distant tsunamis occur much more frequently than local tsunamis, the two-zone maps avoid needless over evacuation (and expense) caused by one-zone maps. Inundation mapping for the entire Oregon coast will be complete by ~2014. Educational outreach was accomplished first by doing a pilot study to measure effectiveness of various approaches using before and after polling and then applying the most effective methods. In descending order, the most effective methods were: (1) door-to-door (person-to-person) education, (2) evacuation drills, (3) outreach to K-12 schools, (4) media events, and (5) workshops targeted to key audiences (lodging facilities, teachers, and local officials). Community organizers were hired to apply these five methods to clusters of small communities, measuring performance by before and after polling. Organizers were encouraged to approach the top priority, person-to-person education, by developing Community Emergency Response Teams (CERT) or CERT-like organizations in each community, thereby leaving behind a functioning volunteer-based group that will continue the outreach program and build long term resiliency. One of the most effective person-to-person educational tools was the Map Your Neighborhood program that brings people together so they can sketch the basic layout of their neighborhoods to depict key earthquake and tsunami hazards and mitigation solutions. The various person-to-person volunteer efforts and supporting outreach activities are knitting communities together and creating a permanent culture of tsunami and earthquake preparedness. All major Oregon coastal population centers will have been covered by this intensive outreach program by ~2014.
The Economics of NASA Mission Cost Reserves
NASA Technical Reports Server (NTRS)
Whitley, Sally; Shinn, Stephen
2012-01-01
Increases in NASA mission costs have led to analysis of the causes and magnitude of historical mission overruns as well as mitigation and prevention attempts. This paper hypothesizes that one cause is that the availability of reserves may reduce incentives to control costs. We draw a comparison to the insurance concept of moral hazard, and we use actuarial techniques to better understand the increase in mission costs due to the availability of reserves. NASA's CADRe database provided the data against which we tested our hypothesis and discovered that there is correlation between the amount of available reserves and project overruns, particularly for mission hardware cost increases. We address the question of how to prevent reserves from increasing mission spending without increasing cost risk to projects.
Loss of Control Prevention and Recovery: Onboard Guidance, Control, and Systems Technologies
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
2012-01-01
Loss of control (LOC) is one of the largest contributors to fatal aircraft accidents worldwide. LOC accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. These LOC hazards include vehicle impairment conditions, external disturbances; vehicle upset conditions, and inappropriate crew actions or responses. Hence, there is no single intervention strategy to prevent these accidents. NASA previously defined a comprehensive research and technology development approach for reducing LOC accidents and an associated integrated system concept. Onboard technologies for improved situation awareness, guidance, and control for LOC prevention and recovery are needed as part of this approach. Such systems should include: LOC hazards effects detection and mitigation; upset detection, prevention and recovery; and mitigation of combined hazards. NASA is conducting research in each of these areas. This paper provides an overview of this research, including the near-term LOC focus and associated analysis, as well as preliminary flight system architecture.
44 CFR 68.9 - Admissible evidence.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING... base flood elevations of any other community, such determination, decision, or finding of fact shall...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Judge who are qualified in the technical field of flood elevation determinations. The Judge shall...
44 CFR 68.9 - Admissible evidence.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING... base flood elevations of any other community, such determination, decision, or finding of fact shall...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Judge who are qualified in the technical field of flood elevation determinations. The Judge shall...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Judge who are qualified in the technical field of flood elevation determinations. The Judge shall...
Limiting the immediate and subsequent hazards associated with wildfires
DeGraff, Jerome V.; Cannon, Susan H.; Parise, Mario
2013-01-01
Similarly, our capability to limit impacts from post-fire debris flows is improving. Empirical models for estimating the probability of debris-flow occurrence, the volume of such an event, and mapping the inundated area, linked with improved definitions of the rainfall conditions that trigger debris flows, can be used to provide critical information for post-fire hazard mitigation and emergency-response planning.
AGU:Comments Requested on Natural Hazards Position Statement
NASA Astrophysics Data System (ADS)
2004-11-01
Natural hazards (earthquakes, floods, hurricanes, landslides, meteors, space weather, tornadoes, volcanoes, and other geophysical phenomena) are an integral component of our dynamic planet. These can have disastrous effects on vulnerable communities and ecosystems. By understanding how and where hazards occur, what causes them, and what circumstances increase their severity, we can develop effective strategies to reduce their impact. In practice, mitigating hazards requires addressing issues such as real-time monitoring and prediction, emergency preparedness, public education and awareness, post-disaster recovery, engineering, construction practices, land use, and building codes. Coordinated approaches involving scientists, engineers, policy makers, builders, lenders, insurers, news media, educators, relief organizations, and the public are therefore essential to reducing the adverse effects of natural hazards.
Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.
2012-02-01
In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heatmore » released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70°C. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 °C lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.« less
Washington Tsunami Hazard Mitigation Program
NASA Astrophysics Data System (ADS)
Walsh, T. J.; Schelling, J.
2012-12-01
Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth...
44 CFR 68.3 - Right to administrative hearings.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... Insurance Administrator's flood elevation determination established pursuant to § 67.8 of this subchapter...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth...
Nationwide high-resolution mapping of hazards in the Philippines (Plinius Medal Lecture)
NASA Astrophysics Data System (ADS)
Lagmay, Alfredo Mahar Francisco A.
2015-04-01
The Philippines being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Situated in a region where severe weather and geophysical unrest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. Recently, the Philippines put in place a responsive program called the Nationwide Operational Assessment of Hazards (NOAH) for disaster prevention and mitigation. The efforts of Project NOAH are an offshoot of lessons learned from previous disasters that have inflicted massive loss of lives and costly damage to property. Several components of the NOAH program focus on mapping of landslide, riverine flood and storm surge inundation hazards. By simulating hazards phenomena over IFSAR- and LiDAR-derived digital terrain models (DTMs) using high-performance computers, multi-hazards maps of 1:10,000 scale, have been produced and disseminated to local government units through a variety of platforms. These detailed village-level (barangay-level) maps are useful to identify safe evacuation sites, planning emergency access routes and prepositioning of search and rescue and relief supplies during times of crises. They are also essential for long-term development planning of communities. In the past two years, NOAH was instrumental in providing timely, site-specific, and understandable hazards information to the public, considered as best practice in disaster risk reduction management (DRR). The use of advanced science and technology in the country's disaster prevention efforts is imperative to successfully mitigate the adverse impacts of natural hazards and should be a continuous quest - to find the best products, put forth in the forefront of battle against disasters.
A UAV System for Observing Volcanoes and Natural Hazards
NASA Astrophysics Data System (ADS)
Saggiani, G.; Persiani, F.; Ceruti, A.; Tortora, P.; Troiani, E.; Giuletti, F.; Amici, S.; Buongiorno, M.; Distefano, G.; Bentini, G.; Bianconi, M.; Cerutti, A.; Nubile, A.; Sugliani, S.; Chiarini, M.; Pennestri, G.; Petrini, S.; Pieri, D.
2007-12-01
Fixed or rotary wing manned aircraft are currently the most commonly used platforms for airborne reconnaissance in response to natural hazards, such as volcanic eruptions, oil spills, wild fires, earthquakes. Such flights are very often undertaken in hazardous flying conditions (e.g., turbulence, downdrafts, reduced visibility, close proximity to dangerous terrain) and can be expensive. To mitigate these two fundamental issues-- safety and cost--we are exploring the use of small (less than 100kg), relatively inexpensive, but effective, unmanned aerial vehicles (UAVs) for this purpose. As an operational test, in 2004 we flew a small autonomous UAV in the airspace above and around Stromboli Volcano. Based in part on this experience, we are adapting the RAVEN UAV system for such natural hazard surveillance missions. RAVEN has a 50km range, with a 3.5m wingspan, main fuselage length of 4.60m, and maximum weight of 56kg. It has autonomous flight capability and a ground control Station for the mission planning and control. It will carry a variety of imaging devices, including a visible camera, and an IR camera. It will also carry an experimental Fourier micro-interferometer based on MOEMS technology, (developed by IMM Institute of CNR), to detect atmospheric trace gases. Such flexible, capable, and easy-to-deploy UAV systems may significantly shorten the time necessary to characterize the nature and scale of the natural hazard threats if used from the outset of, and systematically during, natural hazard events. When appropriately utilized, such UAVs can provide a powerful new hazard mitigation and documentation tool for civil protection hazard responders. This research was carried out under the auspices of the Italian government, and, in part, under contract to NASA at the Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil
2015-04-01
Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center
NASA Astrophysics Data System (ADS)
Tapales, B. J. M.; Mendoza, J.; Uichanco, C.; Lagmay, A. M. F. A.; Moises, M. A.; Delmendo, P.; Tingin, N. E.
2014-12-01
Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center
NASA Astrophysics Data System (ADS)
Mahar Francisco Lagmay, Alfredo
2016-04-01
The Philippines, being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Natural hazards inflict loss of lives and costly damage to property in the country. In 2011, after tropical storm Washi devastated cities in southern Philippines, the Department of Science and Technology put in place a responsive program to warn and give communities hours-in-advance lead-time to prepare for imminent hazards and use advanced science and technology to enhance geohazard maps for more effective disaster prevention and mitigation. Since its launch, there have been many success stories on the use of Project NOAH, which after Typhoon Haiyan was integrated into the Pre-Disaster Risk Assessment (PDRA) system of the National Disaster Risk Reduction and Management Council (NDRRMC), the government agency tasked to prepare for, and respond to, natural calamities. Learning from past disasters, NDRRMC now issues warnings, through scientific advise from DOST-Project NOAH and PAGASA (Philippine Weather Bureau) that are hazards-specific, area-focused and time-bound. Severe weather events in 2015 generated dangerous hazard phenomena such as widespread floods and massive debris flows, which if not for timely, accessible and understandable warnings, could have turned into disasters. We call these events as "disasters that did not happen". The innovative warning system of the Philippine government has so far proven effective in addressing the impacts of hydrometeorological hazards and can be employed elsewhere in the world.
Disseminating near-real-time hazards information and flood maps in the Philippines through Web-GIS.
A Lagmay, Alfredo Mahar Francisco; Racoma, Bernard Alan; Aracan, Ken Adrian; Alconis-Ayco, Jenalyn; Saddi, Ivan Lester
2017-09-01
The Philippines being a locus of tropical cyclones, tsunamis, earthquakes and volcanic eruptions, is a hotbed of disasters. These natural hazards inflict loss of lives and costly damage to property. Situated in a region where climate and geophysical tempest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. In 2012, the Philippines launched a responsive program for disaster prevention and mitigation called the Nationwide Operational Assessment of Hazards (Project NOAH), specifically for government warning agencies to be able to provide a 6hr lead-time warning to vulnerable communities against impending floods and to use advanced technology to enhance current geo-hazard vulnerability maps. To disseminate such critical information to as wide an audience as possible, a Web-GIS using mashups of freely available source codes and application program interface (APIs) was developed and can be found in the URLs http://noah.dost.gov.ph and http://noah.up.edu.ph/. This Web-GIS tool is now heavily used by local government units in the Philippines in their disaster prevention and mitigation efforts and can be replicated in countries that have a proactive approach to address the impacts of natural hazards but lack sufficient funds. Copyright © 2017. Published by Elsevier B.V.
75 FR 65501 - Minnesota; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... adversely affected by this major disaster: Blue Earth, Cottonwood, Dodge, Faribault, Freeborn, Goodhue...--Public Assistance (Presidentially Declared Disasters); 97.039, Hazard Mitigation Grant.) W. Craig Fugate...
44 CFR 201.7 - Tribal Mitigation Plans.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of existing and future buildings, infrastructure, and critical facilities located in the identified... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. (iii...
44 CFR 68.5 - Establishment of a docket.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE... docket shall include, for each appeal, copies of all materials contained in the flood elevation...
44 CFR 68.5 - Establishment of a docket.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE... docket shall include, for each appeal, copies of all materials contained in the flood elevation...
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood...
44 CFR 68.5 - Establishment of a docket.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE... docket shall include, for each appeal, copies of all materials contained in the flood elevation...
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood elevation...
Fade Mitigation Techniques at Ka-Band
NASA Technical Reports Server (NTRS)
Dissanayake, Asoka (Editor)
1996-01-01
Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.
A toolbox to visualise benefits resulting from flood hazard mitigation
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Thaler, Thomas; Heiser, Micha
2017-04-01
In order to visualize the benefits resulting from technical mitigation, a toolbox was developed within an open-source environment that allows for an assessment of gains and losses for buildings exposed to flood hazards. Starting with different scenarios showing the changes in flood magnitude with respect to the considered management options, the computation was based on the amount and value of buildings exposed as well as their vulnerability, following the general concept of risk assessment. As a result, beneficiaries of risk reduction may be identified and - more general - also different mitigation options may be strategically evaluated with respect to the height of risk reduction for different elements exposed. As such, multiple management options can be ranked according to their costs and benefits, and in order of priority. A relational database composed from different modules was created in order to mirror the requirements of an open source application and to allow for future dynamics in the data availability as well as the spatiotemporal dynamics of this data (Fuchs et al. 2013). An economic module was used to compute the monetary value of buildings exposed using (a) the building footprint, (b) the information of the building cadaster such as building type, number of storeys and utilisation, and (c) regionally averaged construction costs. An exposition module was applied to connect the spatial GIS information (X and Y coordinates) of elements at risk to the hazard information in order to achieve information on exposure. An impact module linked this information to vulnerability functions (Totschnig and Fuchs 2013; Papathoma-Köhle et al. 2015) in order to achieve the monetary level of risk for every building exposed. These values were finally computed before and after the implementation of mitigation measure in order to show gains and losses, and visualised. The results can be exported in terms of spread sheets for further computation. References Fuchs S, Keiler M, Sokratov SA, Shnyparkov A (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Natural Hazards 68 (3):1217-1241 Papathoma-Köhle M, Zischg A, Fuchs S, Glade T, Keiler M (2015) Loss estimation for landslides in mountain areas - An integrated toolbox for vulnerability assessment and damage documentation. Environmental Modelling and Software 63:156-169 Totschnig R, Fuchs S (2013) Mountain torrents: quantifying vulnerability and assessing uncertainties. Engineering Geology 155:31-44
Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity
NASA Astrophysics Data System (ADS)
Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.
2014-09-01
As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.
NASA Astrophysics Data System (ADS)
Brown, M. E.; Funk, C. C.
2005-12-01
Climatic hazards such as droughts and floods often result in a decline in food production in economically vulnerable pre-industrial economies such as those in Africa. Early warning systems (EWS) have been developed to identify slow onset disasters such famine and epidemic disease that may result from hazardous environmental conditions. These conditions often precede food crises by many months, thus effective monitoring via satellite and in situ observations can allow for successful mitigation activities. Accurate forecasts of NDVI could increase monitoring lead times and allow for effective institutional planning of intervention, making early warning earlier. This paper presents a simple empirical max-to-min model for making 1 to 4 month NDVI projections. These statistical projections are based on parameterized satellite rainfall estimates (RFE) and relative humidity demand (RHD). A heuristic example in central Zimbabwe introduces the RFE growth and RHD loss terms. A quasi-global, one month ahead, 1 degree study then demonstrates reasonable accuracies in many semi-arid regions. In Africa, a 0.1 degree cross-validated skill assessment quantifies the technique's applicability at 1 to 4 month forecast intervals. These results suggest that useful projections can be made over many semi-arid, food insecure regions of Africa, with plausible extensions to drought prone areas of Asia, Australia and South America.
NASA Astrophysics Data System (ADS)
Cronin, S. J.
2017-12-01
The National Science Challenges are initiatives to address the most important public science issues that face New Zealand with long-term funding and the combined strength of a coordinated science-sector behind them. Eleven major topics are tackled, across our human, natural and built environments. In the "Resilience Challenge" we address New Zealand's natural hazards. Alongside severe metrological threats, New Zealand also faces one of the highest levels of earthquake and volcanic hazard in the world. Resilience is a hotly discussed concept, here, we take the view: Resilience encapsulates the features of a system to anticipate threats, acknowledge there will be impacts (no matter how prepared we are), quickly pick up the pieces, as well as learn and adapt from the experience to better absorb and rebound from future shocks. Our research must encompass innovation in building and lifelines engineering, planning and regulation, emergency management practice, alongside understanding how our natural hazard systems work, how we monitor them and how our communities/governance/industries can be influenced and encouraged (e.g., via economic incentives) to develop and implement resilience practice. This is a complex interwoven mix of areas and is best addressed through case-study areas where researchers and the users of the research can jointly identify problems and co-develop science solutions. I will highlight some of the strengths and weaknesses of this coordinated approach to an all-hazard, all-country problem, using the example of the Resilience Challenge approach after its first two and a half years of operation. Key issues include balancing investment into high-profile (and often high consequence), but rare hazards against the frequent "monthly" hazards that collectively occupy regional and local governance. Also, it is clear that despite increasingly sophisticated hazard and hazard mitigation knowledge being generated in engineering and social areas, a range of policy, economic and knowledge barriers to adoption often lead to hazard mitigation practice lagging far behind its potential.
2009-09-23
hawthorn, buffaloberry and snowberry also are found in the area. In wetland areas, predominant species include Typha sp., smartweed, wild millet, cord...does not straddle the airfield flight line fence. This location will require wetland mitigation for 0.03 wetlands determined to be jurisdictional by... wetlands construction or restoration at either a wetland mitigation bank or a suitable location on base. A formal mitigation plan will be developed
Using Integrated Earth and Social Science Data for Disaster Risk Assessment
NASA Astrophysics Data System (ADS)
Downs, R. R.; Chen, R. S.; Yetman, G.
2016-12-01
Society faces many different risks from both natural and technological hazards. In some cases, disaster risk managers focus on only a few risks, e.g., in regions where a single hazard such as earthquakes dominate. More often, however, disaster risk managers deal with multiple hazards that pose diverse threats to life, infrastructure, and livelihoods. From the viewpoint of scientists, hazards are often studied based on traditional disciplines such as seismology, hydrology, climatology, and epidemiology. But from the viewpoint of disaster risk managers, data are needed on all hazards in a specific region and on the exposure and vulnerability of population, infrastructure, and economic resources and activity. Such managers also need to understand how hazards, exposures, and vulnerabilities may interact, and human and environmental systems respond, to hazard events, as in the case of the Fukushima nuclear disaster that followed from the Sendai earthquake and tsunami. In this regard, geospatial tools that enable visualization and analysis of both Earth and social science data can support the use case of disaster risk managers who need to quickly assess where specific hazard events occur relative to population and critical infrastructure. Such information can help them assess the potential severity of actual or predicted hazard events, identify population centers or key infrastructure at risk, and visualize hazard dynamics, e.g., earthquakes and their aftershocks or the paths of severe storms. This can then inform efforts to mitigate risks across multiple hazards, including reducing exposure and vulnerability, strengthening system resiliency, improving disaster response mechanisms, and targeting mitigation resources to the highest or most critical risks. We report here on initial efforts to develop hazard mapping tools that draw on open web services and support simple spatial queries about population exposure. The NASA Socioeconomic Data and Applications Center (SEDAC) Hazards Mapper, a web-based mapping tool, enables users to estimate population living in areas subject to flood or tornado warnings, near recent earthquakes, or around critical infrastructure. The HazPop mobile app, implemented for iOS devices, utilizes location services to support disaster risk managers working in field conditions.
The Brave New World of Real-time GPS for Hazards Mitigation
NASA Astrophysics Data System (ADS)
Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.
2015-12-01
Over 600 continuously-operating, real-time telemetered GPS receivers operate throughout California, Oregon, Washington and Alaska. These receivers straddle active crustal faults, volcanoes and landslides, the magnitude-9 Cascadia and northeastern Alaskan subduction zones and their attendant tsunamigenic regions along the Pacific coast. Around the circum-Pacific, there are hundreds more and the number is growing steadily as real-time networks proliferate. Despite offering the potential for sub-cm positioning accuracy in real-time useful for a broad array of hazards mitigation, these GPS stations are only now being incorporated into routine seismic, tsunami, volcanic, land-slide, space-weather, or meterologic monitoring. We will discuss NASA's READI (Real-time Earthquake Analysis for DIsasters) initiative. This effort is focussed on developing all aspects of real-time GPS for hazards mitigation, from establishing international data-sharing agreements to improving basic positioning algorithms. READI's long-term goal is to expand real-time GPS monitoring throughout the circum-Pacific as overseas data become freely available, so that it may be adopted by NOAA, USGS and other operational agencies responsible for natural hazards monitoring. Currently ~100 stations are being jointly processed by CWU and Scripps Inst. of Oceanography for algorithm comparison and downstream merging purposes. The resultant solution streams include point-position estimates in a global reference frame every second with centimeter accuracy, ionospheric total electron content and tropospheric zenith water content. These solutions are freely available to third-party agencies over several streaming protocols to enable their incorporation and use in hazards monitoring. This number will ramp up to ~400 stations over the next year. We will also discuss technical efforts underway to develop a variety of downstream applications of the real-time position streams, including the ability to broadcast solutions to thousands of users in real time, earthquake finite-fault and tsunami excitation estimations, and several user interfaces, both stand-alone client and browser-based, that allow interaction with both real-time position streams and their derived products.
NASA Astrophysics Data System (ADS)
Stein, S. A.; Kley, J.; Hindle, D.; Friedrich, A. M.
2014-12-01
Defending society against natural hazards is a high-stakes game of chance against nature, involving tough decisions. How should a developing nation allocate its budget between building schools for towns without ones or making existing schools earthquake-resistant? Does it make more sense to build levees to protect against floods, or to prevent development in the areas at risk? Would more lives be saved by making hospitals earthquake-resistant, or using the funds for patient care? These topics are challenging because they are far from normal experience, in that they involve rare events and large sums. To help students in natural hazard classes conceptualize them, we pose tough and thought-provoking questions about complex issues involved and explore them together via lectures, videos, field trips, and in-class and homework questions. We discuss analogous examples from the students' experiences, drawing on a new book "Playing Against Nature, Integrating Science and Economics to Mitigate Natural Hazards in an Uncertain World". Asking whether they wear bicycle helmets and why or why not shows the cultural perception of risk. Individual students' responses vary, and the overall results vary dramatically between the US, UK, and Germany. Challenges in hazard assessment in an uncertain world are illustrated by asking German students whether they buy a ticket on public transportation - accepting a known cost - or "ride black" - not paying but risking a heavy fine if caught. We explore the challenge of balancing mitigation costs and benefits via the question "If you were a student in Los Angeles, how much more would you pay in rent each month to live in an earthquake-safe building?" Students learn that interdisciplinary thinking is needed, and that due to both uncertainties and sociocultural factors, no unique or right strategies exist for a particular community, much the less all communities. However, we can seek robust policies that give sensible results given uncertainties.
Ethical questions in landslide management and risk reduction in Norway
NASA Astrophysics Data System (ADS)
Taurisano, A.; Lyche, E.; Thakur, V.; Wiig, T.; Øvrelid, K.; Devoli, G.
2012-04-01
The loss of lives caused by landslides in Norway is smaller than in other countries due to the low population density in exposed areas. However, annual economic losses from damage to properties and infrastructures are vast. Yet nationally coordinated efforts to manage and reduce landslide and snow avalanche risk are a recent challenge, having started only in the last decade. Since 2009, this has been a task of the Norwegian Water Resources and Energy Directorate (NVE) under the Ministry of Petroleum and Energy. Ongoing work includes collection of landslide data, production of susceptibility and hazard maps, planning of mitigation measures along with monitoring and early warning systems, assistance to areal planning, providing expertise in emergencies and disseminating information to the public. These activities are realized in collaboration with the Norwegian Geological Survey (NGU), the Meteorological Institute, the Road and Railway authorities, universities and private consultant companies. As the total need for risk mitigating initiatives is by far larger than the annual budget, priority assessment is crucial. This brings about a number of ethical questions. 1. Susceptibility maps have been produced for the whole country and provide a first indication of areas with potential landslide or snow avalanche hazard, i.e. areas where special attention and expert assessments are needed before development. Areas where no potential hazard is shown can in practice be developed without further studies, which call for relatively conservative susceptibility maps. However, conservative maps are problematic as they too often increase both cost and duration of building projects beyond the reasonable. 2. Areas where hazard maps or risk mitigation initiatives will be funded are chosen by means of cost-benefits analyses which are often uncertain. How to estimate the benefits if the real probability for damage can only be judged on a very subjective level but not really calculated? As a result, we may use large amounts of money to mitigate the risk for a few houses with a yearly probability of damage of 1/300 and not do anything for an isolated farm with a yearly probability of damage larger than 1/50. 3. Is it ethical to stop the plan to construct a pedestrian and a cycling way or a new road crossing exposed to potential landslide hazard, when the delay or disapproval of the implementation of the plan itself involves a severe consequence than the actual landslide hazard? 4. Most fatalities from natural hazards in Norway happen because of snow avalanches in recreational activities. On the one hand, this suggests that one should use a large share of the annual budget to prevent this type of accident, where there are most lives to spare. On the other hand, one could argue that the voluntary exposure to hazard shouldn't be given too much priority at the expense of buildings and public infrastructures. 5. More generally, how ethical is it to use large amounts of money to manage hazards that has a remote probability to occur or that will not cause human losses or property damage, instead of for example strengthening other social demands?
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2014 CFR
2014-10-01
... State owned or operated buildings, infrastructure, and critical facilities located in the identified... vulnerable to damage and loss associated with hazard events. State owned or operated critical facilities...
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
... State owned or operated buildings, infrastructure, and critical facilities located in the identified... vulnerable to damage and loss associated with hazard events. State owned or operated critical facilities...
24 CFR 55.20 - Decision making process.
Code of Federal Regulations, 2012 CFR
2012-04-01
... appropriate local printed news medium, and must be sent to federal, state, and local public agencies... technological alternatives, hazard reduction methods and related mitigation costs, and environmental impacts. (d...
24 CFR 55.20 - Decision making process.
Code of Federal Regulations, 2013 CFR
2013-04-01
... appropriate local printed news medium, and must be sent to federal, state, and local public agencies... technological alternatives, hazard reduction methods and related mitigation costs, and environmental impacts. (d...
44 CFR 61.8 - Applicability of risk premium rates.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE... flood insurance made available for: (a) Any structure, the construction or substantial improvement of...
44 CFR 61.8 - Applicability of risk premium rates.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE... flood insurance made available for: (a) Any structure, the construction or substantial improvement of...
44 CFR 61.8 - Applicability of risk premium rates.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE... flood insurance made available for: (a) Any structure, the construction or substantial improvement of...
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-10-20
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation.
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-01-01
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation. PMID:29053608
NASA Astrophysics Data System (ADS)
Alam, A. L.; Hespiantoro, S.; Dyar, D.; Balzer, D.; Kuhn, D.; Torizin, J.; Fuchs, M.; Kastl, S.; Anhorn, J.
2017-02-01
The Indonesian archipelago is prone to various geological hazards on an almost day to day basis. In order to mitigate disaster risk and reduce losses, the government uses its unique setup of ministerial training institutions. The Centre for Development of Human Resources in Geology, Mineral and Coal offers different level of technical training to local governments in order to provide them with the necessary means to understand geological hazards, mitigate risks, and hence close the gap between local and national governments. One key factor has been the continuous incorporation of new scientific knowledge into their training curricula. The paper presents benefits and challenges of this science-practice nexus using the standardised landslide survey as one example where mobile technology has been introduced to the training just recently.
Nicole M. Vaillant; Elizabeth D. Reinhardt
2017-01-01
The National Cohesive Wildland Fire Management Strategy recognizes that wildfire is a necessary natural process in many ecosystems and strives to reduce conflicts between fire-prone landscapes and people. In an effort to mitigate potential negative wildfire impacts proactively, the Forest Service fuels program reduces wildland fuels. As part of an internal program...
Patrick H. Brose; Dale Wade
2002-01-01
The 1998 wildfires in Florida sparked a serious debate about the accumulation of hazardous forest fuels and the merits of prescribed fire and alternatives for mitigating that problem. One such alternative is application of understory herbicides and anecdotal evidence suggests they may either exacerbate or lessen the fuel accumulation problem. In 1998, a study was...
WE-G-BRA-06: Application of Systems and Control Theory-Based Hazard Analysis to Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlicki, T; Samost, A; Leveson, N
Purpose: The process of delivering radiation occurs in a complex socio-technical system heavily reliant on human operators. Furthermore, both humans and software are notoriously challenging to account for in traditional hazard analysis models. High reliability industries such as aviation have approached this problem through using hazard analysis techniques grounded in systems and control theory. The purpose of this work is to apply the Systems Theoretic Accident Model Processes (STAMP) hazard model to radiotherapy. In particular, the System-Theoretic Process Analysis (STPA) approach is used to perform a hazard analysis of a proposed on-line adaptive cranial radiosurgery procedure that omits the CTmore » Simulation step and uses only CBCT for planning, localization, and treatment. Methods: The STPA procedure first requires the definition of high-level accidents and hazards leading to those accidents. From there, hierarchical control structures were created followed by the identification and description of control actions for each control structure. Utilizing these control structures, unsafe states of each control action were created. Scenarios contributing to unsafe control action states were then identified and translated into system requirements to constrain process behavior within safe boundaries. Results: Ten control structures were created for this new CBCT-only process which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Twenty three control actions were identified that contributed to over 80 unsafe states of those control actions resulting in over 220 failure scenarios. Conclusion: The interaction of people, hardware, and software are highlighted through the STPA approach. STPA provides a hierarchical model for understanding the role of management decisions in impacting system safety so that a process design requirement can be traced back to the hazard and accident that it is intended to mitigate. Varian Medical Systems, Inc.« less
The regional geological hazard forecast based on rainfall and WebGIS in Hubei, China
NASA Astrophysics Data System (ADS)
Zheng, Guizhou; Chao, Yi; Xu, Hongwen
2008-10-01
Various disasters have been a serious threat to human and are increasing over time. The reduction and prevention of hazard is the largest problem faced by local governments. The study of disasters has drawn more and more attention mainly due to increasing awareness of the socio-economic impact of disasters. Hubei province, one of the highest economic developing provinces in China, suffered big economic losses from geo-hazards in recent years due to frequent geo-hazard events with the estimated damage of approximately 3000 million RMB. It is therefore important to establish an efficient way to mitigate potential damage and reduce losses of property and life derived from disasters. This paper presents the procedure of setting up a regional geological hazard forecast and information releasing system of Hubei province with the combination of advanced techniques such as World Wide Web (WWW), database online and ASP based on WEBGIS platform (MAPGIS-IMS) and rainfall information. A Web-based interface was developed using a three-tiered architecture based on client-server technology in this system. The study focused on the upload of the rainfall data, the definition of rainfall threshold values, the creation of geological disaster warning map and the forecast of geohazard relating to the rainfall. Its purposes are to contribute to the management of mass individual and regional geological disaster spatial data, help to forecast the conditional probabilities of occurrence of various disasters that might be posed by the rainfall, and release forecasting information of Hubei province timely via the internet throughout all levels of government, the private and nonprofit sectors, and the academic community. This system has worked efficiently and stably in the internet environment which is strongly connected with meteorological observatory. Environment Station of Hubei Province are making increased use of our Web-tool to assist in the decision-making process to analyze geo-hazard in Hubei Province. It would be more helpful to present the geo-hazard information for Hubei administrator.
Cloudy with a Chance of Solar Flares: The Sun as a Natural Hazard
NASA Technical Reports Server (NTRS)
Pellish, Jonathan
2017-01-01
Space weather is a naturally occurring phenomenon that represents a quantifiable risk to space- and ground-based infrastructure as well as society at large. Space weather hazards include permanent and correctable faults in computer systems, Global Positioning System (GPS) and high-frequency communication disturbances, increased airline passenger and astronaut radiation exposure, and electric grid disruption. From the National Space Weather Strategy, published by the Office of Science and Technology Policy in October 2015, space weather refers to the dynamic conditions of the space environment that arise from emissions from the Sun, which include solar flares, solar energetic particles, and coronal mass ejections. These emissions can interact with Earth and its surrounding space, including the Earth's magnetic field, potentially disrupting technologies and infrastructures. Space weather is measured using a range of space- and ground-based platforms that directly monitor the Sun, the Earth's magnetic field, the conditions in interplanetary space and impacts at Earth's surface, like neutron ground-level enhancement. The NASA Goddard Space Flight Center's Space Weather Research Center and their international collaborators in government, industry, and academia are working towards improved techniques for predicting space weather as part of the strategy and action plan to better quantify and mitigate space weather hazards. In addition to accurately measuring and predicting space weather, we also need to continue developing more advanced techniques for evaluating space weather impacts on space- and ground-based infrastructure. Within the Earth's atmosphere, elevated neutron flux driven by atmosphere-particle interactions from space weather is a primary risk source. Ground-based neutron sources form an essential foundation for quantifying space weather impacts in a variety of systems.
SAFRR Tsunami Scenarios and USGS-NTHMP Collaboration
NASA Astrophysics Data System (ADS)
Ross, S.; Wood, N. J.; Cox, D. A.; Jones, L.; Cheung, K. F.; Chock, G.; Gately, K.; Jones, J. L.; Lynett, P. J.; Miller, K.; Nicolsky, D.; Richards, K.; Wein, A. M.; Wilson, R. I.
2015-12-01
Hazard scenarios provide emergency managers and others with information to help them prepare for future disasters. The SAFRR Tsunami Scenario, published in 2013, modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. It presented the modeled inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. It provided the basis for many exercises involving, among others, NOAA, the State of Washington, several counties in California, and the National Institutes of Health. The scenario led to improvements in the warning protocol for southern California and highlighted issues that led to ongoing work on harbor and marina safety. Building on the lessons learned in the SAFRR Tsunami Scenario, another tsunami scenario is being developed with impacts to Hawaii and to the source region in Alaska, focusing on the evacuation issues of remote communities with primarily shore parallel roads, and also on the effects of port closures. Community exposure studies in Hawaii (Ratliff et al., USGS-SIR, 2015) provided background for selecting these foci. One complicated and important aspect of any hazard scenario is defining the source event. The USGS is building collaborations with the National Tsunami Hazard Mitigation Program (NTHMP) to consider issues involved in developing a standardized set of tsunami sources to support hazard mitigation work. Other key USGS-NTHMP collaborations involve population vulnerability and evacuation modeling.
Smokey comes of age: Unmanned aerial systems for fire management
Twidwell, Dirac; Allen, Craig R.; Detweiler, Carrick; Higgins, James; Laney, Christian; Elbaum, Sebastian
2016-01-01
During the past century, fire management has focused on techniques both to protect human communities from catastrophic wildfire and to maintain fire-dependent ecological systems. However, despite a large and increasing allocation of resources and personnel to achieve these goals, fire management objectives at regional to global scales are not being met. Current fire management techniques are clearly inadequate for the challenges faced by fire managers, and technological innovations are needed. Advances in unmanned aerial systems (UAS) technology provide opportunities for innovation in fire management and science. In many countries, fire management organizations are beginning to explore the potential of UAS for monitoring fires. We have taken the next step and developed a prototype that can precisely ignite fires as part of wildfire suppression tactics or prescribed fires (fire intentionally ignited within predetermined conditions to reduce hazardous fuels, improve habitat, or mitigate for large wildfires). We discuss the potential for these technologies to benefit fire management activities, while acknowledging the sizeable sociopolitical barriers that prevent their immediate broad application.
Gregg, Chris E.; Houghton, Bruce F.; Paton, Douglas; Swanson, D.A.; Lachman, R.; Bonk, W.J.
2008-01-01
On average, 72% of respondents favored the construction of earthen barriers to hold back or divert lava and protect Kapoho, but far fewer agreed with the military's use of bombs (14%) to protect Kapoho. In contrast, about one-third of respondents conditionally agreed with the use of bombs. It is suggested that local participation in the bombing strategy may explain the increased conditional acceptance of bombs as a mitigation tool, although this can not be conclusively demonstrated. Belief in Pele and being of Hawaiian ethnicity did not reduce support for the use of barriers, but did reduce support for bombs in both bombing scenarios. The disparity in levels of acceptance of barriers versus bombing and of one bombing strategy versus another suggests that historically public attitudes toward lava flow hazard mitigation strategies were complex. A modern comparative study is needed before the next damaging eruption to inform debates and decisions about whether or not to interfere with the flow of lava. Recent changes in the current eruption of Kīlauea make this a timely topic.
44 CFR 80.21 - Closeout requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program PROPERTY ACQUISITION AND... restriction language to meet the requirements of this part; (b) A photo of each property site after project...
44 CFR 201.7 - Tribal Mitigation Plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
... buildings, infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate... particular emphasis on new and existing buildings and infrastructure. (iii) An action plan describing how the...
44 CFR 80.21 - Closeout requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program PROPERTY ACQUISITION AND... restriction language to meet the requirements of this part; (b) A photo of each property site after project...
44 CFR 80.21 - Closeout requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program PROPERTY ACQUISITION AND... restriction language to meet the requirements of this part; (b) A photo of each property site after project...
44 CFR 80.21 - Closeout requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program PROPERTY ACQUISITION AND... restriction language to meet the requirements of this part; (b) A photo of each property site after project...
44 CFR 80.21 - Closeout requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program PROPERTY ACQUISITION AND... restriction language to meet the requirements of this part; (b) A photo of each property site after project...
44 CFR 70.9 - Review of proposed projects.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program PROCEDURE FOR... submitted to the FEMA Regional Office servicing the community's geographic area or to the FEMA Headquarters...
44 CFR 62.21 - Claims adjustment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program SALE OF INSURANCE AND ADJUSTMENT OF CLAIMS Claims Adjustment, Claims Appeals, and Judicial Review § 62.21 Claims adjustment. (a) In...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth in part 59 of...
44 CFR 68.6 - Time and place of hearing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE... sent by the Flood Insurance Docket Clerk by registered or certified mail, return receipt requested, to...
44 CFR 68.6 - Time and place of hearing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE... sent by the Flood Insurance Docket Clerk by registered or certified mail, return receipt requested, to...
44 CFR 68.6 - Time and place of hearing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE... sent by the Flood Insurance Docket Clerk by registered or certified mail, return receipt requested, to...
Geo hazard studies and their policy implications in Nicaragua
NASA Astrophysics Data System (ADS)
Strauch, W.
2007-05-01
Nicaragua, situated at the Central American Subduction zone and placed in the trajectory of tropical storms and hurricanes, is a frequent showplace of natural disasters which have multiplied the negative effects of a long term socioeconomic crisis leaving Nicaragua currently as the second poorest country of the Americas. In the last years, multiple efforts were undertaken to prevent or mitigate the affectation of the natural phenomena to the country. National and local authorities have become more involved in disaster prevention policy and international cooperation boosted funding for disaster prevention and mitigation measures in the country. The National Geosciences Institution (INETER) in cooperation with foreign partners developed a national monitoring and early warning system on geological and hydro-meteorological phenomena. Geological and risk mapping projects were conducted by INETER and international partners. Universities, NGO´s, International Technical Assistance, and foreign scientific groups cooperated to capacitate Nicaraguan geoscientists and to improve higher education on disaster prevention up to the master degree. Funded by a World Bank loan, coordinated by the National System for Disaster Prevention, Mitigation and Attention (SINAPRED) and scientifically supervised by INETER, multidisciplinary hazard and vulnerability studies were carried out between 2003 and 2005 with emphasis on seismic hazard. These GIS based works provided proposals for land use policies on a local level in 30 municipalities and seismic vulnerability and risk information for each single building in Managua, Capital of Nicaragua. Another large multidisciplinary project produced high resolution air photos, elaborated 1:50,000 vectorized topographic maps, and a digital elevation model for Western Nicaragua. These data, integrated in GIS, were used to assess: 1) Seismic Hazard for Metropolitan Managua; 2) Tsunami hazard for the Pacific coast; 3) Volcano hazard for Telica-Cerro Negro and El Hoyo volcanoes; and 4) Flood hazard map of Maravilla river. This study was realized between 2004 and 2006, through technical cooperation of Japan International Cooperation Agency with INETER, upon the request of the Government of Nicaragua. The results of the mapping and investigations are fed in a National GIS on Geohazards maintained by INETER and developed in the frame of a regional cooperation project with BGR, Germany, and other international institutions. Many maps, project reports and GIS coverage are made available on INETER´s Website to the general public. (www.ineter.gob.ni/geofisica/geofisica.html ).
76 FR 36141 - Minnesota; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... major disaster: Big Stone, Blue Earth, Brown, Carver, Chippewa, Clay, Grant, Lac qui Parle, Le Sueur..., Hazard Mitigation Grant. Dated: June 14, 2011. W. Craig Fugate, Administrator, Federal Emergency...
75 FR 23792 - Minnesota; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Minnesota have been designated as adversely affected by this major disaster: Big Stone, Blue Earth, Brown....039, Hazard Mitigation Grant. W. Craig Fugate, Administrator, Federal Emergency Management Agency. [FR...
44 CFR 67.12 - Appeal to District Court.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.12 Appeal to District Court. (a) An appellant aggrieved by the...
44 CFR 67.12 - Appeal to District Court.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.12 Appeal to District Court. (a) An appellant aggrieved by the...
44 CFR 61.1 - Purpose of part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.1 Purpose of part. This part describes the types of properties eligible for flood insurance coverage...
44 CFR 61.1 - Purpose of part.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.1 Purpose of part. This part describes the types of properties eligible for flood insurance coverage...
44 CFR 61.1 - Purpose of part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.1 Purpose of part. This part describes the types of properties eligible for flood insurance coverage...
44 CFR 61.1 - Purpose of part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.1 Purpose of part. This part describes the types of properties eligible for flood insurance coverage...
44 CFR 61.1 - Purpose of part.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.1 Purpose of part. This part describes the types of properties eligible for flood insurance coverage...
2003-09-12
wetlands for preliminary treatment of sediment, oil, and grease prior to discharging into the Rouge River. While mitigating storm water quality and...land uses. While Alternative 2 and 3 have similar habitat enhancement features, Alternative 2 has much more measurable storm water quality benefits...sediment, oil, and grease prior to discharging into the Rouge River. While mitigating storm water quality and quantity impacts, this alternative
Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation
NASA Astrophysics Data System (ADS)
Borga, M.; Creutin, J. D.
Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two issues are examined: advantages and caveats of using radar rainfall estimates in operational flash flood forecasting, methodological problems as- sociated to the use of hydrological models for distributed flash flood forecasting with rainfall input estimated from radar.
NASA Astrophysics Data System (ADS)
Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil
2017-01-01
Disruptions to transportation networks by natural hazard events cause direct losses (e.g. by physical damage) and indirect socio-economic losses via travel delays and decreased transportation efficiency. The severity and spatial distribution of these losses varies according to user travel demands and which links, nodes or infrastructure assets are physically disrupted. Increasing transport network resilience, for example by targeted mitigation strategies, requires the identification of the critical network segments which if disrupted would incur undesirable or unacceptable socio-economic impacts. Here, these impacts are assessed on a national road transportation network by coupling hazard data with a transport network model. This process is illustrated using a case study of landslide hazards on the road network of Scotland. A set of possible landslide-prone road segments is generated using landslide susceptibility data. The results indicate that at least 152 road segments are susceptible to landslides, which could cause indirect economic losses exceeding £35 k for each day of closure. In addition, previous estimates for historic landslide events might be significant underestimates. For example, the estimated losses for the 2007 A83 ‘Rest and Be Thankful’ landslide are £80 k day-1, totalling £1.2 million over a 15 day closure, and are ˜60% greater than previous estimates. The spatial distribution of impact to road users is communicated in terms of ‘extended hazard impact footprints’. These footprints reveal previously unknown exposed communities and unanticipated spatial patterns of severe disruption. Beyond cost-benefit analyses for landslide mitigation efforts, the approach implemented is applicable to other natural hazards (e.g. flooding), combinations of hazards, or even other network disruption events.
Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-01
The Department of Energy (DOE) has issued an Order 420.1 which establishes policy for its facilities in the event of natural phenomena hazards (NPH) along with associated NPH mitigation requirements. This DOE Standard gives design and evaluation criteria for NPH effects as guidance for implementing the NPH mitigation requirements of DOE Order 420.1 and the associated implementation Guides. These are intended to be consistent design and evaluation criteria for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of these criteria is to assure that DOE facilities can withstand the effects of natural phenomena suchmore » as earthquakes, extreme winds, tornadoes, and flooding. These criteria apply to the design of new facilities and the evaluation of existing facilities. They may also be used for modification and upgrading of existing facilities as appropriate. The design and evaluation criteria presented herein control the level of conservatism introduced in the design/evaluation process such that earthquake, wind, and flood hazards are treated on a consistent basis. These criteria also employ a graded approach to ensure that the level of conservatism and rigor in design/evaluation is appropriate for facility characteristics such as importance, hazards to people on and off site, and threat to the environment. For each natural phenomena hazard covered, these criteria consist of the following: Performance Categories and target performance goals as specified in the DOE Order 420.1 NPH Implementation Guide, and DOE-STD-1 021; specified probability levels from which natural phenomena hazard loading on structures, equipment, and systems is developed; and design and evaluation procedures to evaluate response to NPH loads and criteria to assess whether or not computed response is permissible.« less
Towards a Proactive Risk Mitigation Strategy at La Fossa Volcano, Vulcano Island
NASA Astrophysics Data System (ADS)
Biass, S.; Gregg, C. E.; Frischknecht, C.; Falcone, J. L.; Lestuzzi, P.; di Traglia, F.; Rosi, M.; Bonadonna, C.
2014-12-01
A comprehensive risk assessment framework was built to develop proactive risk reduction measures for Vulcano Island, Italy. This framework includes identification of eruption scenarios; probabilistic hazard assessment, quantification of hazard impacts on the built environment, accessibility assessment on the island and risk perception study. Vulcano, a 21 km2 island with two primary communities host to 900 permanent residents and up to 10,000 visitors during summer, shows a strong dependency on the mainland for basic needs (water, energy) and relies on a ~2 month tourism season for its economy. The recent stratigraphy reveals a dominance of vulcanian and subplinian eruptions, producing a range of hazards acting at different time scales. We developed new methods to probabilistically quantify the hazard related to ballistics, lahars and tephra for all eruption styles. We also elaborated field- and GIS- based methods to assess the physical vulnerability of the built environment and created dynamic models of accessibility. Results outline the difference of hazard between short and long-lasting eruptions. A subplinian eruption has a 50% probability of impacting ~30% of the buildings within days after the eruption, but the year-long damage resulting from a long-lasting vulcanian eruption is similar if tephra is not removed from rooftops. Similarly, a subplinian eruption results in a volume of 7x105 m3 of material potentially remobilized into lahars soon after the eruption. Similar volumes are expected for a vulcanian activity over years, increasing the hazard of small lahars. Preferential lahar paths affect critical infrastructures lacking redundancy, such as the road network, communications systems, the island's only gas station, and access to the island's two evacuation ports. Such results from hazard, physical and systemic vulnerability help establish proactive volcanic risk mitigation strategies and may be applicable in other island settings.
Arias, Juan Pablo; Bronfman, Nicolás C; Cisternas, Pamela C; Repetto, Paula B
2017-01-01
Researchers have previously reported that hazard proximity can influence risk perception among individuals exposed to potential hazards. Understanding this relationship among coastline communities at risk of flood events caused by storms and/or tsunamis, is important because hazard proximity, should be recognized when planning and implementing preparation and mitigation actions against these events. Yet, we are not aware of studies that have examined this relationship among coastline inhabitants facing the risk of a tsunami. Consequently, the aim of this study was to examine the relationship between hazard proximity and perceived risk from tsunamis among coastline inhabitants. Participants were 487 residents of the coastal city of Iquique, Chile. They completed a survey during the spring of 2013 that assessed their perceived risk from several natural and non-natural hazards. We found that hazard proximity maintains a negative relationship with the perception of tsunami risk among coastline inhabitants. While this result confirms the general trend obtained in previous studies, this one is conclusive and significant. In contradiction with previous findings, we found that participants from the highest socioeconomic status reported the highest levels of risk perception. This finding can be explained by the fact that most participants from the highest socioeconomic status live closer to the coastline areas, so their risk perception reflects the place where they live, that is in a tsunami inundation zone. Once again, hazard proximity proved to be a determinant factor of risk perception. Our findings have important implications for the development of plans and programs for tsunami preparedness and mitigation. These indicate that individuals do use environmental cues to evaluate their own risk and can potentially make correct choices when having or not to evacuate. Also suggest that preparedness should incorporate how hazard proximity is recognized by individuals and communities at risk.
Arias, Juan Pablo; Bronfman, Nicolás C.; Cisternas, Pamela C.; Repetto, Paula B.
2017-01-01
Researchers have previously reported that hazard proximity can influence risk perception among individuals exposed to potential hazards. Understanding this relationship among coastline communities at risk of flood events caused by storms and/or tsunamis, is important because hazard proximity, should be recognized when planning and implementing preparation and mitigation actions against these events. Yet, we are not aware of studies that have examined this relationship among coastline inhabitants facing the risk of a tsunami. Consequently, the aim of this study was to examine the relationship between hazard proximity and perceived risk from tsunamis among coastline inhabitants. Participants were 487 residents of the coastal city of Iquique, Chile. They completed a survey during the spring of 2013 that assessed their perceived risk from several natural and non-natural hazards. We found that hazard proximity maintains a negative relationship with the perception of tsunami risk among coastline inhabitants. While this result confirms the general trend obtained in previous studies, this one is conclusive and significant. In contradiction with previous findings, we found that participants from the highest socioeconomic status reported the highest levels of risk perception. This finding can be explained by the fact that most participants from the highest socioeconomic status live closer to the coastline areas, so their risk perception reflects the place where they live, that is in a tsunami inundation zone. Once again, hazard proximity proved to be a determinant factor of risk perception. Our findings have important implications for the development of plans and programs for tsunami preparedness and mitigation. These indicate that individuals do use environmental cues to evaluate their own risk and can potentially make correct choices when having or not to evacuate. Also suggest that preparedness should incorporate how hazard proximity is recognized by individuals and communities at risk. PMID:29088230
Degraded visual environment image/video quality metrics
NASA Astrophysics Data System (ADS)
Baumgartner, Dustin D.; Brown, Jeremy B.; Jacobs, Eddie L.; Schachter, Bruce J.
2014-06-01
A number of image quality metrics (IQMs) and video quality metrics (VQMs) have been proposed in the literature for evaluating techniques and systems for mitigating degraded visual environments. Some require both pristine and corrupted imagery. Others require patterned target boards in the scene. None of these metrics relates well to the task of landing a helicopter in conditions such as a brownout dust cloud. We have developed and used a variety of IQMs and VQMs related to the pilot's ability to detect hazards in the scene and to maintain situational awareness. Some of these metrics can be made agnostic to sensor type. Not only are the metrics suitable for evaluating algorithm and sensor variation, they are also suitable for choosing the most cost effective solution to improve operating conditions in degraded visual environments.
Stability of volcanic ash aggregates and break-up processes.
Mueller, Sebastian B; Kueppers, Ulrich; Ametsbichler, Jonathan; Cimarelli, Corrado; Merrison, Jonathan P; Poret, Matthieu; Wadsworth, Fabian B; Dingwell, Donald B
2017-08-07
Numerical modeling of ash plume dispersal is an important tool for forecasting and mitigating potential hazards from volcanic ash erupted during explosive volcanism. Recent tephra dispersal models have been expanded to account for dynamic ash aggregation processes. However, there are very few studies on rates of disaggregation during transport. It follows that current models regard ash aggregation as irrevocable and may therefore overestimate aggregation-enhanced sedimentation. In this experimental study, we use industrial granulation techniques to artificially produce aggregates. We subject these to impact tests and evaluate their resistance to break-up processes. We find a dependence of aggregate stability on primary particle size distribution and solid particle binder concentration. We posit that our findings could be combined with eruption source parameters and implemented in future tephra dispersal models.
Slope Hazard and Risk Assessment in the Tropics: Malaysia' Experience
NASA Astrophysics Data System (ADS)
Mohamad, Zakaria; Azahari Razak, Khamarrul; Ahmad, Ferdaus; Manap, Mohamad Abdul; Ramli, Zamri; Ahmad, Azhari; Mohamed, Zainab
2015-04-01
The increasing number of geological hazards in Malaysia has often resulted in casualties and extensive devastation with high mitigation cost. Given the destructive capacity and high frequency of disaster, Malaysia has taken a step forward to address the multi-scale landslide risk reduction emphasizing pre-disaster action rather than post-disaster reaction. Slope hazard and risk assessment in a quantitative manner at regional and national scales remains challenging in Malaysia. This paper presents the comprehensive methodology framework and operational needs driven by modern and advanced geospatial technology to address the aforementioned issues in the tropics. The Slope Hazard and Risk Mapping, the first national project in Malaysia utilizing the multi-sensor LIDAR has been critically implemented with the support of multi- and trans-disciplinary partners. The methodological model has been formulated and evaluated given the complexity of risk scenarios in this knowledge driven project. Instability slope problems in the urban, mountainous and tectonic landscape are amongst them, and their spatial information is of crucial for regional landslide assessment. We develop standard procedures with optimal parameterization for susceptibility, hazard and risk assessment in the selected regions. Remarkably, we are aiming at producing an utmost complete landslide inventory in both space and time. With the updated reliable terrain and landscape models, the landslide conditioning factor maps can be accurately derived depending on the landslide types and failure mechanisms which crucial for hazard and risk assessment. We also aim to improve the generation of elements at risk for landslide and promote integrated approaches for a better disaster risk analysis. As a result, a new tool, notably multi-sensor LIDAR technology is a very promising tool for an old geological problem and its derivative data for hazard and risk analysis is an effective preventive measure in Malaysia. Geological, morphological, and physical factors coupled with anthropogenic activities made the spatiotemporal prediction of possible slope failures very challenging. Changing climate and land-use-and-land-cover required a dynamic geo-system approach for assessing multi-hazard in Malaysia and it is still a great challenge to be dealt with. We also critically discussed the capability, limitation and future direction of geo-information tools particularly the active sensors for systematically providing the spatial input towards landslide hazard and possible risk. The cost-and-benefit of developed methods compared to traditional mapping techniques is also elaborated. This paper put forth the critical and practical framework ranging from updating landslide inventory to mitigating landslide risk as an attempt to support the establishment of a comprehensive landslide risk management in Malaysia. The advancement of multistage processing sequence based on airborne-, and ground-based laser remote sensing technology coupling with the sophisticated satellite positioning system, advanced geographical information system and expert knowledge leading to a better understanding of the landslide processes and their dynamics in time and space. Given the state-of-the-art of multi-sensor-LIDAR and complexity of tropical environment, this first landslide project carried out at the national scale provides a better indication and recommendation on the use of modern and advanced mapping technology for assessing tropical landslide geomorphology in an objective, reproducible and quantitative manner.
Hydrocode Models of Mitigation of a 170-Meter-Diameter Asteroid Using Energetic Techniques
NASA Astrophysics Data System (ADS)
Plesko, C. S.; Gisler, G. R.; Heberling, T.; Nouanesengsy, B.; Patchett, J.; Sagert, I.; Tarnowsky, T. J.; Weaver, R.
2017-12-01
Binary asteroid 65803 Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART) mission. The smaller member of the binary pair, S/2003 (65803) Didymos B, is approximately 170 meters in diameter. Didymos A is spectrally similar to H-LL ordinary chondrites and asteroids Eros and Itokawa, so we assume Didymos B is similar. We also assume it to be a rubble pile aggregate of material from Didymos A, and take further guidance on material properties from the AIM Didymos Reference Model V. 10 (P. Michel et al., 2015). We are modeling deflection attempts by kinetic impactor and nuclear stand-off burst against a hypothetical solo Didymos B asteroid as part of the NASA-NNSA inter-agency collaboration on impact hazard mitigation. The collaboration agreed on model initial conditions at our February 2017 Technical Interchange Meeting. The kinetic impactor is a 63.5 cm-diameter aluminum impactor striking at 10 km/s. We model the stand-off nuclear burst according to procedures described in Barbee et al. (Acta A. 2017) and Dearborn et al. (in press). We will present our model predictions and their implications for planetary defense mission design space.
Physical characterization of the near-Earth object population
NASA Astrophysics Data System (ADS)
Ieva, S.; Dotto, E.; Mazzotta Epifani, E.; Perna, D.; Perozzi, E.; Micheli, M.
2017-08-01
The Near-Earth Object (NEO) population, being the remnants of the building blocks that originally formed our solar system, allows us to understand the initial conditions that were present in the protosolar nebula. Its investigation can provide crucial information on the origin and early evolution of the solar system, and shed light on the delivery of water and organic-rich material to the early Earth. Furthermore, the possible impact of NEOs poses a serious hazard to our planet. There is an urgent need to undertake a comprehensive physical characterization of the NEO population, particularly for the ones with the higher likelihood of catastrophic impact with the Earth. One of the main aims of the NEOShield-2 project (2015-2017), financed by the European Commission in the framework of the HORIZON 2020 program, is to undertake an extensive observational campaign and provide a physical and compositional characterization for a large number of NEOs in the < 300 m size range, retrieving in particular their mitigation-relevant properties (size, shape, albedo, diameter, composition, internal structure, ...) in order to design impact mitigation missions and assess the consequences of an impact on Earth. We carried out visible photometric measurements for a sample of 158 uncharacterized NEOs. We also made use of visible and near-infrared spectroscopy to assess NEO composition and perform a mineralogical analysis. We found that carbonaceous C-complex asteroids deserve a special attention, since their physical structure ( e.g., primitive nature, porosity) and their orbital parameters (mainly the inclination) make at the moment challenging the design of a successful mitigation strategy. Indeed, the most advanced mitigation technique (the kinetic impactor) is less effective on these bodies, and the high inclination of some possible impactors require a launch vehicle capability beyond the one currently available.
40 CFR 156.70 - Precautionary statements for human hazards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... mitigate the effect. The precautionary paragraph must be immediately preceded by the appropriate signal... clothing. Wear goggles or face shield and rubber gloves when handling. Harmful or fatal if swallowed...
40 CFR 156.70 - Precautionary statements for human hazards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... mitigate the effect. The precautionary paragraph must be immediately preceded by the appropriate signal... clothing. Wear goggles or face shield and rubber gloves when handling. Harmful or fatal if swallowed...
40 CFR 156.70 - Precautionary statements for human hazards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... mitigate the effect. The precautionary paragraph must be immediately preceded by the appropriate signal... clothing. Wear goggles or face shield and rubber gloves when handling. Harmful or fatal if swallowed...
44 CFR 68.10 - Burden of proof.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES § 68.10 Burden of proof. The burden shall be on appellant(s) to prove that the flood elevation...
44 CFR 63.9 - Sale while claim pending.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.9 Sale while claim...
44 CFR 68.10 - Burden of proof.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES § 68.10 Burden of proof. The burden shall be on appellant(s) to prove that the flood elevation...
44 CFR 63.9 - Sale while claim pending.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.9 Sale while claim...
44 CFR 68.10 - Burden of proof.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES § 68.10 Burden of proof. The burden shall be on appellant(s) to prove that the flood elevation...