A Prototype Flight-Deck Airflow Hazard Visualization System
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2004-01-01
Airflow hazards such as turbulence, vortices, or low-level wind shear can pose a threat to landing aircraft and are especially dangerous to helicopters. Because pilots usually cannot see airflow, they may be unaware of the extent of the hazard. We have developed a prototype airflow hazard visual display for use in helicopter cockpits to alleviate this problem. We report on the results of a preliminary usability study of our airflow hazard visualization system in helicopter-shipboard operations.
Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.; Long, Kurtis R.
2005-01-01
Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.
Usability Evaluation of a Flight-Deck Airflow Hazard Visualization System
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2004-01-01
Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground, such as vortices, downdrafts, low level wind shear, microbursts, or turbulence from surrounding vegetation or structures near the landing site. These hazards can be dangerous even to airliners; there have been hundreds of fatalities in the United States in the last two decades attributable to airliner encounters with microbursts and low level wind shear alone. However, helicopters are especially vulnerable to airflow hazards because they often have to operate in confined spaces and under operationally stressful conditions (such as emergency search and rescue, military or shipboard operations). Providing helicopter pilots with an augmented-reality display visualizing local airflow hazards may be of significant benefit. However, the form such a visualization might take, and whether it does indeed provide a benefit, had not been studied before our experiment. We recruited experienced military and civilian helicopter pilots for a preliminary usability study to evaluate a prototype augmented-reality visualization system. The study had two goals: first, to assess the efficacy of presenting airflow data in flight; and second, to obtain expert feedback on sample presentations of hazard indicators to refine our design choices. The study addressed the optimal way to provide critical safety information to the pilot, what level of detail to provide, whether to display specific aerodynamic causes or potential effects only, and how to safely and effectively shift the locus of attention during a high-workload task. Three-dimensional visual cues, with varying shape, color, transparency, texture, depth cueing, and use of motion, depicting regions of hazardous airflow, were developed and presented to the pilots. The study results indicated that such a visualization system could be of significant value in improving safety during critical takeoff and landing operations, and also gave clear indications of the best design choices in producing the hazard visual cues.
Dynamic wake prediction and visualization with uncertainty analysis
NASA Technical Reports Server (NTRS)
Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)
2005-01-01
A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.
Data Visualization of Invisible Airflow Hazards During Helicopter Takeoff and Landing Operations
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2004-01-01
Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground such as vortices, downdrafts, wind shear, microbursts, or other turbulence. While such hazards frequently pose problems to fixed-wing airplanes, they are especially dangerous to helicopters, which often have to operate in confined spaces and under operationally stressful conditions. We are developing flight-deck visualizations of airflow hazards during helicopter takeoff and landing operations, and are evaluating their effectiveness with usability studies. Our hope is.that this work will lead to the production of an airflow hazard detection system for pilots that will save lives.
Noise and contrast comparison of visual and infrared images of hazards as seen inside an automobile
NASA Astrophysics Data System (ADS)
Meitzler, Thomas J.; Bryk, Darryl; Sohn, Eui J.; Lane, Kimberly; Bednarz, David; Jusela, Daniel; Ebenstein, Samuel; Smith, Gregory H.; Rodin, Yelena; Rankin, James S., II; Samman, Amer M.
2000-06-01
The purpose of this experiment was to quantitatively measure driver performance for detecting potential road hazards in visual and infrared (IR) imagery of road scenes containing varying combinations of contrast and noise. This pilot test is a first step toward comparing various IR and visual sensors and displays for the purpose of an enhanced vision system to go inside the driver compartment. Visible and IR road imagery obtained was displayed on a large screen and on a PC monitor and subject response times were recorded. Based on the response time, detection probabilities were computed and compared to the known time of occurrence of a driving hazard. The goal was to see what combinations of sensor, contrast and noise enable subjects to have a higher detection probability of potential driving hazards.
Empiric determination of corrected visual acuity standards for train crews.
Schwartz, Steven H; Swanson, William H
2005-08-01
Probably the most common visual standard for employment in the transportation industry is best-corrected, high-contrast visual acuity. Because such standards were often established absent empiric linkage to job performance, it is possible that a job applicant or employee who has visual acuity less than the standard may be able to satisfactorily perform the required job activities. For the transportation system that we examined, the train crew is required to inspect visually the length of the train before and during the time it leaves the station. The purpose of the inspection is to determine if an individual is in a hazardous position with respect to the train. In this article, we determine the extent to which high-contrast visual acuity can predict performance on a simulated task. Performance at discriminating hazardous from safe conditions, as depicted in projected photographic slides, was determined as a function of visual acuity. For different levels of visual acuity, which was varied through the use of optical defocus, a subject was required to label scenes as hazardous or safe. Task performance was highly correlated with visual acuity as measured under conditions normally used for vision screenings (high-illumination and high-contrast): as the acuity decreases, performance at discriminating hazardous from safe scenes worsens. This empirically based methodology can be used to establish a corrected high-contrast visual acuity standard for safety-sensitive work in transportation that is linked to the performance of a job-critical task.
Occupational Health and the Visual Arts: An Introduction.
Hinkamp, David; McCann, Michael; Babin, Angela R
2017-09-01
Occupational hazards in the visual arts often involve hazardous materials, though hazardous equipment and hazardous work conditions can also be found. Occupational health professionals are familiar with most of these hazards and are particularly qualified to contribute clinical and preventive expertise to these issues. Articles illustrating visual arts health issues were sought and reviewed. Literature sources included medical databases, unindexed art-health publications, and popular press articles. Few medical articles examine health issues in the visuals arts directly, but exposures to pigments, solvents, and other hazards found in the visual arts are well described. The hierarchy of controls is an appropriate model for controlling hazards and promoting safer visual art workplaces. The health and safety of those working in the visual arts can benefit from the occupational health approach. Sources of further information are available.
Hazardous sign detection for safety applications in traffic monitoring
NASA Astrophysics Data System (ADS)
Benesova, Wanda; Kottman, Michal; Sidla, Oliver
2012-01-01
The transportation of hazardous goods in public streets systems can pose severe safety threats in case of accidents. One of the solutions for these problems is an automatic detection and registration of vehicles which are marked with dangerous goods signs. We present a prototype system which can detect a trained set of signs in high resolution images under real-world conditions. This paper compares two different methods for the detection: bag of visual words (BoW) procedure and our approach presented as pairs of visual words with Hough voting. The results of an extended series of experiments are provided in this paper. The experiments show that the size of visual vocabulary is crucial and can significantly affect the recognition success rate. Different code-book sizes have been evaluated for this detection task. The best result of the first method BoW was 67% successfully recognized hazardous signs, whereas the second method proposed in this paper - pairs of visual words and Hough voting - reached 94% of correctly detected signs. The experiments are designed to verify the usability of the two proposed approaches in a real-world scenario.
Improving Aviation Safety with information Visualization: A Flight Simulation Study
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.; Hearst, Marti
2005-01-01
Many aircraft accidents each year are caused by encounters with invisible airflow hazards. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real-time. With this influx of data comes the need to study how best to present it to the pilot - a cognitively overloaded user focused on a primary task other than that of information visualization. In this paper, we present the results of a usability study of an airflow hazard visualization system that significantly reduced the crash rate among experienced helicopter pilots flying a high fidelity, aerodynamically realistic fixed-base rotorcraft flight simulator into hazardous conditions. We focus on one particular aviation application, but the results may be relevant to user interfaces in other operationally stressful environments.
Effect of glaucoma on eye movement patterns and laboratory-based hazard detection ability
Black, Alex A.; Wood, Joanne M.
2017-01-01
Purpose The mechanisms underlying the elevated crash rates of older drivers with glaucoma are poorly understood. A key driving skill is timely detection of hazards; however, the hazard detection ability of drivers with glaucoma has been largely unexplored. This study assessed the eye movement patterns and visual predictors of performance on a laboratory-based hazard detection task in older drivers with glaucoma. Methods Participants included 30 older drivers with glaucoma (71±7 years; average better-eye mean deviation (MD) = −3.1±3.2 dB; average worse-eye MD = −11.9±6.2 dB) and 25 age-matched controls (72±7 years). Visual acuity, contrast sensitivity, visual fields, useful field of view (UFoV; processing speeds), and motion sensitivity were assessed. Participants completed a computerised Hazard Perception Test (HPT) while their eye movements were recorded using a desk-mounted Tobii TX300 eye-tracking system. The HPT comprises a series of real-world traffic videos recorded from the driver’s perspective; participants responded to road hazards appearing in the videos, and hazard response times were determined. Results Participants with glaucoma exhibited an average of 0.42 seconds delay in hazard response time (p = 0.001), smaller saccades (p = 0.010), and delayed first fixation on hazards (p<0.001) compared to controls. Importantly, larger saccades were associated with faster hazard responses in the glaucoma group (p = 0.004), but not in the control group (p = 0.19). Across both groups, significant visual predictors of hazard response times included motion sensitivity, UFoV, and worse-eye MD (p<0.05). Conclusions Older drivers with glaucoma had delayed hazard response times compared to controls, with associated changes in eye movement patterns. The association between larger saccades and faster hazard response time in the glaucoma group may represent a compensatory behaviour to facilitate improved performance. PMID:28570621
NASA Astrophysics Data System (ADS)
Ding, R.; He, T.
2017-12-01
With the increased popularity in mobile applications and services, there has been a growing demand for more advanced mobile technologies that utilize real-time Location Based Services (LBS) data to support natural hazard response efforts. Compared to traditional sources like the census bureau that often can only provide historical and static data, an LBS service can provide more current data to drive a real-time natural hazard response system to more accurately process and assess issues such as population density in areas impacted by a hazard. However, manually preparing or preprocessing the data to suit the needs of the particular application would be time-consuming. This research aims to implement a population heatmap visual analytics system based on real-time data for natural disaster emergency management. System comprised of a three-layered architecture, including data collection, data processing, and visual analysis layers. Real-time, location-based data meeting certain polymerization conditions are collected from multiple sources across the Internet, then processed and stored in a cloud-based data store. Parallel computing is utilized to provide fast and accurate access to the pre-processed population data based on criteria such as the disaster event and to generate a location-based population heatmap as well as other types of visual digital outputs using auxiliary analysis tools. At present, a prototype system, which geographically covers the entire region of China and combines population heat map based on data from the Earthquake Catalogs database has been developed. It Preliminary results indicate that the generation of dynamic population density heatmaps based on the prototype system has effectively supported rapid earthquake emergency rescue and evacuation efforts as well as helping responders and decision makers to evaluate and assess earthquake damage. Correlation analyses that were conducted revealed that the aggregation and movement of people depended on various factors, including earthquake occurrence time and location of epicenter. This research hopes to continue to build upon the success of the prototype system in order to improve and extend the system to support the analysis of earthquakes and other types of natural hazard events.
Robots, systems, and methods for hazard evaluation and visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.
A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximatemore » the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.« less
ERIC Educational Resources Information Center
Walsh, Janet
1982-01-01
Discusses the health hazards of working with the visual display systems of computers, in particular the eye problems associated with long-term use of video display terminals. Excerpts from and ordering information for the National Institute for Occupational Safety and Health report on such hazards are included. (JJD)
Lidar and Electro-Optics for Atmospheric Hazard Sensing and Mitigation
NASA Technical Reports Server (NTRS)
Clark, Ivan O.
2012-01-01
This paper provides an overview of the research and development efforts of the Lidar and Electro-Optics element of NASA's Aviation Safety Program. This element is seeking to improve the understanding of the atmospheric environments encountered by aviation and to provide enhanced situation awareness for atmospheric hazards. The improved understanding of atmospheric conditions is specifically to develop sensor signatures for atmospheric hazards. The current emphasis is on kinetic air hazards such as turbulence, aircraft wake vortices, mountain rotors, and windshear. Additional efforts are underway to identify and quantify the hazards arising from multi-phase atmospheric conditions including liquid and solid hydrometeors and volcanic ash. When the multi-phase conditions act as obscurants that result in reduced visual awareness, the element seeks to mitigate the hazards associated with these diminished visual environments. The overall purpose of these efforts is to enable safety improvements for air transport class and business jet class aircraft as the transition to the Next Generation Air Transportation System occurs.
Tactile Approaches for Teaching Blind and Visually-Impaired Students in the Geosciences
NASA Astrophysics Data System (ADS)
Permenter, J. L.; Runyon, C.
2003-12-01
Hearing and touch are perhaps the two most important senses for teaching visually-impaired students in any context. Classroom lectures obviously emphasize the auditory aspects of learning, while touch is often relegated to either Braille texts or raised--line drawings for illustrative figures. From the student's perspective, some lecture topics, especially in the sciences, can be a challenge to grasp without additional stimuli. Geosciences have a distinct visual component that can be lost when teaching blind or visually-impaired students, particularly in the study of geomorphology and landform change. As an example, the matters raised concerning volcanic hazards can be difficult to envision without due attention to the limitations of visually-impaired students. Here, we suggest an example of a tactile approach for introducing the study of volcanoes and the hazards associated with them. Large, visually-stimulating images of a volcanic, populated region in southern Peru are supplied for those students who have poor but extant visual acuity, while precise, clay-based models of the region complement the images for those students, as well as for students who have no visual ability whatsoever. We use a model of the terrestrial volcano El Misti and the nearby city of Arequipa, Peru, to directly reflect the volcanic morphology and hazardous aspects of the terrain. The use of computer-generated digital elevation models from remote sensing imaging systems allows accurate replication of the regional topography. Instructors are able to modify these clay models to illustrate spatial and temporal changes in the region, allowing students to better grasp potential geological and geographical transformations over time. The models spawn engaging class discussions and help with designing hazard mitigation protocols.
Automation for System Safety Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul
2009-01-01
This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.
Volcanic Gas Emissions Mapping Using a Mass Spectrometer System
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Diaz, J. Andres
2008-01-01
The visualization of hazardous gaseous emissions at volcanoes using in-situ mass spectrometry (MS) is a key step towards a better comprehension of the geophysical phenomena surrounding eruptive activity. In-Situ gas data consisting of helium, carbon dioxide, sulfur dioxide, and other gas species, were acquired with an MS system. MS and global position system (GPS) data were plotted on ground imagery, topography, and remote sensing data collected by a host of instruments during the second Costa Rica Airborne Research and Technology Applications (CARTA) mission This combination of gas and imaging data allowed 3-dimensional (3-D) visualization of the volcanic plume end the mapping of gas concentration at several volcanic structures and urban areas This combined set of data has demonstrated a better tool to assess hazardous conditions by visualizing and modeling of possible scenarios of volcanic activity. The MS system is used for in-situ measurement of three-dimensional gas concentrations at different volcanic locations with three different transportation platforms, aircraft, auto, and hand carried. The demonstration for urban contamination mapping is also presented as another possible use for the MS system.
Using Visualization in Cockpit Decision Support Systems
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2005-01-01
In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.
Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng
2018-02-02
In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.
Liao, Pin-Chao; Sun, Xinlu; Liu, Mei; Shih, Yu-Nien
2018-01-11
Navigated safety inspection based on task-specific checklists can increase the hazard detection rate, theoretically with interference from scene complexity. Visual clutter, a proxy of scene complexity, can theoretically impair visual search performance, but its impact on the effect of safety inspection performance remains to be explored for the optimization of navigated inspection. This research aims to explore whether the relationship between working memory and hazard detection rate is moderated by visual clutter. Based on a perceptive model of hazard detection, we: (a) developed a mathematical influence model for construction hazard detection; (b) designed an experiment to observe the performance of hazard detection rate with adjusted working memory under different levels of visual clutter, while using an eye-tracking device to observe participants' visual search processes; (c) utilized logistic regression to analyze the developed model under various visual clutter. The effect of a strengthened working memory on the detection rate through increased search efficiency is more apparent in high visual clutter. This study confirms the role of visual clutter in construction-navigated inspections, thus serving as a foundation for the optimization of inspection planning.
Reviewing and visualizing the interactions of natural hazards
NASA Astrophysics Data System (ADS)
Gill, Joel C.; Malamud, Bruce D.
2014-12-01
This paper presents a broad overview, characterization, and visualization of the interaction relationships between 21 natural hazards, drawn from six hazard groups (geophysical, hydrological, shallow Earth, atmospheric, biophysical, and space hazards). A synthesis is presented of the identified interaction relationships between these hazards, using an accessible visual format particularly suited to end users. Interactions considered are primarily those where a primary hazard triggers or increases the probability of secondary hazards occurring. In this paper we do the following: (i) identify, through a wide-ranging review of grey- and peer-review literature, 90 interactions; (ii) subdivide the interactions into three levels, based on how well we can characterize secondary hazards, given information about the primary hazard; (iii) determine the spatial overlap and temporal likelihood of the triggering relationships occurring; and (iv) examine the relationship between primary and secondary hazard intensities for each identified hazard interaction and group these into five possible categories. In this study we have synthesized, using accessible visualization techniques, large amounts of information drawn from many scientific disciplines. We outline the importance of constraining hazard interactions and reinforce the importance of a holistic (or multihazard) approach to natural hazard assessment. This approach allows those undertaking research into single hazards to place their work within the context of other hazards. It also communicates important aspects of hazard interactions, facilitating an effective analysis by those working on reducing and managing disaster risk within both the policy and practitioner communities.
Comparing capacity coefficient and dual task assessment of visual multitasking workload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaha, Leslie M.
Capacity coefficient analysis could offer a theoretically grounded alternative approach to subjective measures and dual task assessment of cognitive workload. Workload capacity or workload efficiency is a human information processing modeling construct defined as the amount of information that can be processed by the visual cognitive system given a specified of amount of time. In this paper, I explore the relationship between capacity coefficient analysis of workload efficiency and dual task response time measures. To capture multitasking performance, I examine how the relatively simple assumptions underlying the capacity construct generalize beyond the single visual decision making tasks. The fundamental toolsmore » for measuring workload efficiency are the integrated hazard and reverse hazard functions of response times, which are defined by log transforms of the response time distribution. These functions are used in the capacity coefficient analysis to provide a functional assessment of the amount of work completed by the cognitive system over the entire range of response times. For the study of visual multitasking, capacity coefficient analysis enables a comparison of visual information throughput as the number of tasks increases from one to two to any number of simultaneous tasks. I illustrate the use of capacity coefficients for visual multitasking on sample data from dynamic multitasking in the modified Multi-attribute Task Battery.« less
Information Extraction for System-Software Safety Analysis: Calendar Year 2008 Year-End Report
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2009-01-01
This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.
Newsome, R; Tran, N; Paoli, G M; Jaykus, L A; Tompkin, B; Miliotis, M; Ruthman, T; Hartnett, E; Busta, F F; Petersen, B; Shank, F; McEntire, J; Hotchkiss, J; Wagner, M; Schaffner, D W
2009-03-01
Through a cooperative agreement with the U.S. Food and Drug Administration, the Institute of Food Technologists developed a risk-ranking framework prototype to enable comparison of microbiological and chemical hazards in foods and to assist policy makers, risk managers, risk analysts, and others in determining the relative public health impact of specific hazard-food combinations. The prototype is a bottom-up system based on assumptions that incorporate expert opinion/insight with a number of exposure and hazard-related risk criteria variables, which are propagated forward with food intake data to produce risk-ranking determinations. The prototype produces a semi-quantitative comparative assessment of food safety hazards and the impacts of hazard control measures. For a specific hazard-food combination the prototype can produce a single metric: a final risk value expressed as annual pseudo-disability adjusted life years (pDALY). The pDALY is a harmonization of the very different dose-response relationships observed for chemicals and microbes. The prototype was developed on 2 platforms, a web-based user interface and an Analytica(R) model (Lumina Decision Systems, Los Gatos, Calif., U.S.A.). Comprising visual basic language, the web-based platform facilitates data input and allows use concurrently from multiple locations. The Analytica model facilitates visualization of the logic flow, interrelationship of input and output variables, and calculations/algorithms comprising the prototype. A variety of sortable risk-ranking reports and summary information can be generated for hazard-food pairs, showing hazard and dose-response assumptions and data, per capita consumption by population group, and annual p-DALY.
Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng
2018-01-01
In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications. PMID:29393887
'I didn't see that coming': simulated visual fields and driving hazard perception test performance.
Glen, Fiona C; Smith, Nicholas D; Jones, Lee; Crabb, David P
2016-09-01
Evidence is limited regarding specific types of visual field loss associated with unsafe driving. We use novel gaze-contingent software to examine the effect of simulated visual field loss on computer-based driving hazard detection with the specific aim of testing the impact of scotomata located to the right and left of fixation. The 'hazard perception test' is a component of the UK driving licence examination, which measures speed of detecting 15 different hazards in a series of real-life driving films. We have developed a novel eye-tracking and computer set up capable of generating a realistic gaze-contingent scotoma simulation (GazeSS) overlaid on film content. Thirty drivers with healthy vision completed three versions of the hazard perception test in a repeated measures experiment. In two versions, GazeSS simulated a scotoma in the binocular field of view to the left or right of fixation. A third version was unmodified to establish baseline performance. Participants' mean baseline hazard perception test score was 51 ± 7 (out of 75). This reduced to 46 ± 9 and 46 ± 11 when completing the task with a binocular visual field defect located to the left and right of fixation, respectively. While the main effect of simulated visual field loss on performance was statistically significant (p = 0.007), there were no average differences in the experimental conditions where a scotoma was located in the binocular visual field to the right or left of fixation. Simulated visual field loss impairs driving hazard detection on a computer-based test. There was no statistically significant difference in average performance when the simulated scotoma was located to the right or left of fixation of the binocular visual field, but certain types of hazard caused more difficulties than others. © 2016 Optometry Australia.
40 CFR 267.34 - When must personnel have access to communication equipment or an alarm system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... to an internal alarm or emergency communication device, either directly or through visual or voice... communication equipment or an alarm system? 267.34 Section 267.34 Protection of Environment ENVIRONMENTAL... have access to communication equipment or an alarm system? (a) Whenever hazardous waste is being poured...
Automatic Detection and Classification of Audio Events for Road Surveillance Applications.
Almaadeed, Noor; Asim, Muhammad; Al-Maadeed, Somaya; Bouridane, Ahmed; Beghdadi, Azeddine
2018-06-06
This work investigates the problem of detecting hazardous events on roads by designing an audio surveillance system that automatically detects perilous situations such as car crashes and tire skidding. In recent years, research has shown several visual surveillance systems that have been proposed for road monitoring to detect accidents with an aim to improve safety procedures in emergency cases. However, the visual information alone cannot detect certain events such as car crashes and tire skidding, especially under adverse and visually cluttered weather conditions such as snowfall, rain, and fog. Consequently, the incorporation of microphones and audio event detectors based on audio processing can significantly enhance the detection accuracy of such surveillance systems. This paper proposes to combine time-domain, frequency-domain, and joint time-frequency features extracted from a class of quadratic time-frequency distributions (QTFDs) to detect events on roads through audio analysis and processing. Experiments were carried out using a publicly available dataset. The experimental results conform the effectiveness of the proposed approach for detecting hazardous events on roads as demonstrated by 7% improvement of accuracy rate when compared against methods that use individual temporal and spectral features.
Using Integrated Earth and Social Science Data for Disaster Risk Assessment
NASA Astrophysics Data System (ADS)
Downs, R. R.; Chen, R. S.; Yetman, G.
2016-12-01
Society faces many different risks from both natural and technological hazards. In some cases, disaster risk managers focus on only a few risks, e.g., in regions where a single hazard such as earthquakes dominate. More often, however, disaster risk managers deal with multiple hazards that pose diverse threats to life, infrastructure, and livelihoods. From the viewpoint of scientists, hazards are often studied based on traditional disciplines such as seismology, hydrology, climatology, and epidemiology. But from the viewpoint of disaster risk managers, data are needed on all hazards in a specific region and on the exposure and vulnerability of population, infrastructure, and economic resources and activity. Such managers also need to understand how hazards, exposures, and vulnerabilities may interact, and human and environmental systems respond, to hazard events, as in the case of the Fukushima nuclear disaster that followed from the Sendai earthquake and tsunami. In this regard, geospatial tools that enable visualization and analysis of both Earth and social science data can support the use case of disaster risk managers who need to quickly assess where specific hazard events occur relative to population and critical infrastructure. Such information can help them assess the potential severity of actual or predicted hazard events, identify population centers or key infrastructure at risk, and visualize hazard dynamics, e.g., earthquakes and their aftershocks or the paths of severe storms. This can then inform efforts to mitigate risks across multiple hazards, including reducing exposure and vulnerability, strengthening system resiliency, improving disaster response mechanisms, and targeting mitigation resources to the highest or most critical risks. We report here on initial efforts to develop hazard mapping tools that draw on open web services and support simple spatial queries about population exposure. The NASA Socioeconomic Data and Applications Center (SEDAC) Hazards Mapper, a web-based mapping tool, enables users to estimate population living in areas subject to flood or tornado warnings, near recent earthquakes, or around critical infrastructure. The HazPop mobile app, implemented for iOS devices, utilizes location services to support disaster risk managers working in field conditions.
Yang, Chao-Yang; Wu, Cheng-Tse
2017-03-01
This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 63.172 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Enclosed combustion devices shall be designed and operated to reduce the organic hazardous air pollutant... non-diverting position with a car-seal or a lock-and-key type configuration. A visual inspection of...
40 CFR 63.172 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Enclosed combustion devices shall be designed and operated to reduce the organic hazardous air pollutant... non-diverting position with a car-seal or a lock-and-key type configuration. A visual inspection of...
Models Extracted from Text for System-Software Safety Analyses
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2010-01-01
This presentation describes extraction and integration of requirements information and safety information in visualizations to support early review of completeness, correctness, and consistency of lengthy and diverse system safety analyses. Software tools have been developed and extended to perform the following tasks: 1) extract model parts and safety information from text in interface requirements documents, failure modes and effects analyses and hazard reports; 2) map and integrate the information to develop system architecture models and visualizations for safety analysts; and 3) provide model output to support virtual system integration testing. This presentation illustrates the methods and products with a rocket motor initiation case.
Information Extraction for System-Software Safety Analysis: Calendar Year 2007 Year-End Report
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2008-01-01
This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis on the models to identify possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations; 4) perform discrete-time-based simulation on the models to investigate scenarios where these paths may play a role in failures and mishaps; and 5) identify resulting candidate scenarios for software integration testing. This paper describes new challenges in a NASA abort system case, and enhancements made to develop the integrated tool set.
NASA Astrophysics Data System (ADS)
Sanders, B. F.
2017-12-01
Flooding of coastal and fluvial systems are the most significant natural hazards facing society, and damages have been escalating for decades globally and in the U.S. Almost all metropolitan areas are exposed to flood risk. The threat from river flooding is especially high in India and China, and coastal cities around the world are threatened by storm surge and rising sea levels. Several trends including rising sea levels, urbanization, deforestation, and rural-to-urban population shifts will increase flood exposure in the future. Flood impacts are escalating despite advances in hazards science and extensive effort to manage risks. The fundamental issue is not that flooding is becoming more severe, even though it is in some places, but rather that societies are become more vulnerable to flood impacts. A critical factor contributing to the escalation of flood impacts is that the most vulnerable sectors of communities are left out of processes to prepare for and respond to flooding. Furthermore, the translation of knowledge about flood hazards and vulnerabilities into actionable information for communities has not been effective. In Southern and Baja California, an interdisciplinary team of researchers has partnered with stakeholders in flood vulnerable communities to co-develop flood hazard information systems designed to meet end-user needs for decision-making. The initiative leveraged the power of advanced, fine-scale hydraulic models of flooding to craft intuitive visualizations of context-sensitive scenarios. This presentation will cover the ways by which the process of flood inundation modeling served as a focal point for knowledge development, as well as the unique visualizations that populate on-line information systems accessible here: http://floodrise.uci.edu/online-flood-hazard-viewers/
Occupational concerns associated with regular use of microscope.
Jain, Garima; Shetty, Pushparaja
2014-08-01
Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. a questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11-15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15-30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.
Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi; Sanuki, Tomoyuki; Itoh, Makoto
2015-01-01
Objective To assess the driving fitness of patients with glaucoma by identifying specific areas and degrees of visual field impairment that threaten safe driving. Design Case–control study. Setting, and participants This prospective study included 36 patients with advanced glaucoma, defined as Humphrey field analyzer (HFA; 24-2 SITA standard program) measurements of mean deviation in both eyes of worse than −12 dB, and 36 age-matched and driving exposure time-matched normal subjects. All participants underwent testing in a novel driving simulator (DS) system. Participants were recruited between September 2010 and January 2012. Main outcome measures The number of collisions with simulated hazards and braking response time in 14 DS scenarios was recorded. Monocular HFA 24-2 test results from both eyes were merged to calculate the binocular integrated visual field (IVF). The position of the IVF subfields in which the collision-involved patients had lower sensitivity than the collision-uninvolved patients was compared with the track of the hazard. The cut-off value to predict an elevated risk of collisions was determined, as were its sensitivity and specificity, with the area under the receiver operating characteristic (AUROC) curve. Results Patients with advanced glaucoma were involved in a significantly higher number of collisions in the DS than the age-matched and driving exposure time-matched normal subjects (119 vs 40, respectively, p<0.0001), especially in four specific DS scenarios. In these four scenarios, IVF sensitivity was significantly lower in the collision-involved patients than in the collision-uninvolved patients in subfields on or near the track of the simulated hazard (p<0.05). The subfields with the largest AUROC curve had values ranging from 0.72 to 0.91 and were located in the paracentral visual field just below the horizontal. Conclusions Our novel DS system effectively assessed visual impairment, showing that simulators may have future potential in educating patients. PMID:25724982
NASA Astrophysics Data System (ADS)
Widodo, L.; Adianto; Sartika, D. I.
2017-12-01
PT. XYZ is a large automotive manufacturing company that manufacture, assemble as well as a car exporter. The other products are spare parts, jig and dies. PT. XYZ has long been implementing the Occupational Safety and Health Management System (OSHMS) to reduce the potential hazards that cause work accidents. However, this does not mean that OSHMS that has been implemented does not need to be upgraded and improved. This is due to the potential danger caused by work is quite high. This research was conducted in Sunter 2 Plant where its production activities have a high level of potential hazard. Based on Hazard Identification risk assessment, Risk Assessment, and Risk Control (HIRARC) found 10 potential hazards in Plant Stamping Production, consisting of 4 very high risk potential hazards (E), 5 high risk potential hazards (H), and 1 moderate risk potential hazard (M). While in Plant Casting Production found 22 potential hazards findings consist of 7 very high risk potential hazards (E), 12 high risk potential hazards (H), and 3 medium risk potential hazards (M). Based on the result of Fault Tree Analysis (FTA), the main priority is the high risk potential hazards (H) and very high risk potential hazards (E). The proposed improvement are to make the visual display of the importance of always using the correct Personal Protective Equipment (PPE), establishing good working procedures, conducting OSH training for workers on a regular basis, and continuing to conduct safety campaigns.
Camera Image Transformation and Registration for Safe Spacecraft Landing and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Jones, Brandon M.
2005-01-01
Inherent geographical hazards of Martian terrain may impede a safe landing for science exploration spacecraft. Surface visualization software for hazard detection and avoidance may accordingly be applied in vehicles such as the Mars Exploration Rover (MER) to induce an autonomous and intelligent descent upon entering the planetary atmosphere. The focus of this project is to develop an image transformation algorithm for coordinate system matching between consecutive frames of terrain imagery taken throughout descent. The methodology involves integrating computer vision and graphics techniques, including affine transformation and projective geometry of an object, with the intrinsic parameters governing spacecraft dynamic motion and camera calibration.
Method for detecting and avoiding flight hazards
NASA Astrophysics Data System (ADS)
von Viebahn, Harro; Schiefele, Jens
1997-06-01
Today's aircraft equipment comprise several independent warning and hazard avoidance systems like GPWS, TCAS or weather radar. It is the pilot's task to monitor all these systems and take the appropriate action in case of an emerging hazardous situation. The developed method for detecting and avoiding flight hazards combines all potential external threats for an aircraft into a single system. It is based on an aircraft surrounding airspace model consisting of discrete volume elements. For each element of the volume the threat probability is derived or computed from sensor output, databases, or information provided via datalink. The position of the own aircraft is predicted by utilizing a probability distribution. This approach ensures that all potential positions of the aircraft within the near future are considered while weighting the most likely flight path. A conflict detection algorithm initiates an alarm in case the threat probability exceeds a threshold. An escape manoeuvre is generated taking into account all potential hazards in the vicinity, not only the one which caused the alarm. The pilot gets a visual information about the type, the locating, and severeness o the threat. The algorithm was implemented and tested in a flight simulator environment. The current version comprises traffic, terrain and obstacle hazards avoidance functions. Its general formulation allows an easy integration of e.g. weather information or airspace restrictions.
ERIC Educational Resources Information Center
Turner, Ed; Hauser, Dan
1994-01-01
Explains how daily maintenance and design planning can reduce the potential safety hazards found in athletic-facility locker rooms. Topics include designing locker rooms for visual openness and traffic control, providing non-slip surfaces and proper drainage, installing ventilation systems that can handle the moisture produced in locker rooms,…
Occupational hazard evaluation model underground coal mine based on unascertained measurement theory
NASA Astrophysics Data System (ADS)
Deng, Quanlong; Jiang, Zhongan; Sun, Yaru; Peng, Ya
2017-05-01
In order to study how to comprehensively evaluate the influence of several occupational hazard on miners’ physical and mental health, based on unascertained measurement theory, occupational hazard evaluation indicator system was established to make quantitative and qualitative analysis. Determining every indicator weight by information entropy and estimating the occupational hazard level by credible degree recognition criteria, the evaluation model was programmed by Visual Basic, applying the evaluation model to occupational hazard comprehensive evaluation of six posts under a coal mine, and the occupational hazard degree was graded, the evaluation results are consistent with actual situation. The results show that dust and noise is most obvious among the coal mine occupational hazard factors. Excavation face support workers are most affected, secondly, heading machine drivers, coal cutter drivers, coalface move support workers, the occupational hazard degree of these four types workers is II mild level. The occupational hazard degree of ventilation workers and safety inspection workers is I level. The evaluation model could evaluate underground coal mine objectively and accurately, and can be employed to the actual engineering.
Quantifying Fall-Related Hazards in the Homes of Persons with Glaucoma.
Yonge, Andrea V; Swenor, Bonnielin K; Miller, Rhonda; Goldhammer, Victoria; West, Sheila K; Friedman, David S; Gitlin, Laura N; Ramulu, Pradeep Y
2017-04-01
To characterize fall-related hazards in the homes of persons with suspected or diagnosed glaucoma, and to determine whether those with worse visual field (VF) damage have fewer home hazards. Cross-sectional study using baseline (2013-2015) data from the ongoing Falls in Glaucoma Study (FIGS). One-hundred seventy-four of 245 (71.0%) FIGS participants agreeing to the home assessment. Participants' homes were assessed using the Home Environment Assessment for the Visually Impaired (HEAVI). A single evaluator assessed up to 127 potential hazards in 8 home regions. In the clinic, binocular contrast sensitivity (CS) and better-eye visual acuity (VA) were evaluated, and 24-2 VFs were obtained to calculate average integrated VF (IVF) sensitivity. Total number of home hazards. No significant visual or demographic differences were noted between participants who did and did not complete the home assessment (P > 0.09 for all measures). Mean age among those completing the home assessment (n = 174) was 71.1 years, and IVF sensitivity ranged from 5.6 to 33.4 dB (mean = 27.2 dB, standard deviation [SD] = 4.0 dB). The mean number of items graded per home was 85.2 (SD = 13.2), and an average of 32.7 (38.3%) were identified as hazards. IVF sensitivity, CS, and VA were not associated with total home hazards or the number of hazards in any given room (P > 0.06 for all visual measures and rooms). The bathroom contained the greatest number of hazards (mean = 7.9; 54.2% of graded items classified as hazardous), and the most common hazards identified in at least 1 room were ambient lighting <300 lux and exposed light bulbs. Only 27.9% of graded rooms had adequate lighting. IVF sensitivity, CS, and VA were not associated with home lighting levels (P > 0.18 for all), but brighter room lighting was noted in the homes of participants with higher median income (P < 0.001). Multiple home fall hazards were identified in the study population, and hazard numbers were not lower for persons with worse VF damage, suggesting that individuals with more advanced glaucoma do not adapt their homes for safety. Further work should investigate whether addressing home hazards is an effective intervention for preventing falls in this high-risk group. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
46 CFR 151.40-10 - Operational requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-10... visual high cargo temperature or high cargo pressure alarm which is discernible at the towboat. The alarm shall operate when either the pressure or the temperature exceeds the operating limits of the system...
46 CFR 151.40-10 - Operational requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-10... visual high cargo temperature or high cargo pressure alarm which is discernible at the towboat. The alarm shall operate when either the pressure or the temperature exceeds the operating limits of the system...
46 CFR 151.40-10 - Operational requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-10... visual high cargo temperature or high cargo pressure alarm which is discernible at the towboat. The alarm shall operate when either the pressure or the temperature exceeds the operating limits of the system...
46 CFR 151.40-10 - Operational requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Temperature or Pressure Control Installations § 151.40-10... visual high cargo temperature or high cargo pressure alarm which is discernible at the towboat. The alarm shall operate when either the pressure or the temperature exceeds the operating limits of the system...
Latorre, Victor R.; Watwood, Donald B.
1994-01-01
A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.
3D Building Evacuation Route Modelling and Visualization
NASA Astrophysics Data System (ADS)
Chan, W.; Armenakis, C.
2014-11-01
The most common building evacuation approach currently applied is to have evacuation routes planned prior to these emergency events. These routes are usually the shortest and most practical path from each building room to the closest exit. The problem with this approach is that it is not adaptive. It is not responsively configurable relative to the type, intensity, or location of the emergency risk. Moreover, it does not provide any information to the affected persons or to the emergency responders while not allowing for the review of simulated hazard scenarios and alternative evacuation routes. In this paper we address two main tasks. The first is the modelling of the spatial risk caused by a hazardous event leading to choosing the optimal evacuation route for a set of options. The second is to generate a 3D visual representation of the model output. A multicriteria decision making (MCDM) approach is used to model the risk aiming at finding the optimal evacuation route. This is achieved by using the analytical hierarchy process (AHP) on the criteria describing the different alternative evacuation routes. The best route is then chosen to be the alternative with the least cost. The 3D visual representation of the model displays the building, the surrounding environment, the evacuee's location, the hazard location, the risk areas and the optimal evacuation pathway to the target safety location. The work has been performed using ESRI's ArcGIS. Using the developed models, the user can input the location of the hazard and the location of the evacuee. The system then determines the optimum evacuation route and displays it in 3D.
Visual motion perception predicts driving hazard perception ability.
Lacherez, Philippe; Au, Sandra; Wood, Joanne M
2014-02-01
To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Spits, Christine; Wallace, Luke; Reinke, Karin
2017-04-20
Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential.
NASA Astrophysics Data System (ADS)
Mahmud, Ahmad Rodzi; Setiawan, Iwan; Mansor, Shattri; Shariff, Abdul Rashid Mohamed; Pradhan, Biswajeet; Nuruddin, Ahmed
2009-12-01
A study in modeling fire hazard assessment will be essential in establishing an effective forest fire management system especially in controlling and preventing peat fire. In this paper, we have used geographic information system (GIS), in combination with other geoinformation technologies such as remote sensing and computer modeling, for all aspects of wild land fire management. Identifying areas that have a high probability of burning is an important component of fire management planning. The development of spatially explicit GIS models has greatly facilitated this process by allowing managers to map and analyze variables contributing to fire occurrence across large, unique geographic units. Using the model and its associated software engine, the fire hazard map was produced. Extensive avenue programming scripts were written to provide additional capabilities in the development of these interfaces to meet the full complement of operational software considering various users requirements. The system developed not only possesses user friendly step by step operations to deliver the fire vulnerability mapping but also allows authorized users to edit, add or modify parameters whenever necessary. Results from the model can support fire hazard mapping in the forest and enhance alert system function by simulating and visualizing forest fire and helps for contingency planning.
NASA Astrophysics Data System (ADS)
Jones, Jeanne M.; Henry, Kevin; Wood, Nathan; Ng, Peter; Jamieson, Matthew
2017-12-01
The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.
Jones, Jeanne M.; Henry, Kevin; Wood, Nathan J.; Ng, Peter; Jamieson, Matthew
2017-01-01
The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.
Erikson, Li; Barnard, Patrick; O'Neill, Andrea; Wood, Nathan J.; Jones, Jeanne M.; Finzi Hart, Juliette; Vitousek, Sean; Limber, Patrick; Hayden, Maya; Fitzgibbon, Michael; Lovering, Jessica; Foxgrover, Amy C.
2018-01-01
This paper is the second of two that describes the Coastal Storm Modeling System (CoSMoS) approach for quantifying physical hazards and socio-economic hazard exposure in coastal zones affected by sea-level rise and changing coastal storms. The modelling approach, presented in Part 1, downscales atmospheric global-scale projections to local scale coastal flood impacts by deterministically computing the combined hazards of sea-level rise, waves, storm surges, astronomic tides, fluvial discharges, and changes in shoreline positions. The method is demonstrated through an application to Southern California, United States, where the shoreline is a mix of bluffs, beaches, highly managed coastal communities, and infrastructure of high economic value. Results show that inclusion of 100-year projected coastal storms will increase flooding by 9–350% (an additional average 53.0 ± 16.0 km2) in addition to a 25–500 cm sea-level rise. The greater flooding extents translate to a 55–110% increase in residential impact and a 40–90% increase in building replacement costs. To communicate hazards and ranges in socio-economic exposures to these hazards, a set of tools were collaboratively designed and tested with stakeholders and policy makers; these tools consist of two web-based mapping and analytic applications as well as virtual reality visualizations. To reach a larger audience and enhance usability of the data, outreach and engagement included workshop-style trainings for targeted end-users and innovative applications of the virtual reality visualizations.
Semi-parametric regression model for survival data: graphical visualization with R
2016-01-01
Cox proportional hazards model is a semi-parametric model that leaves its baseline hazard function unspecified. The rationale to use Cox proportional hazards model is that (I) the underlying form of hazard function is stringent and unrealistic, and (II) researchers are only interested in estimation of how the hazard changes with covariate (relative hazard). Cox regression model can be easily fit with coxph() function in survival package. Stratified Cox model may be used for covariate that violates the proportional hazards assumption. The relative importance of covariates in population can be examined with the rankhazard package in R. Hazard ratio curves for continuous covariates can be visualized using smoothHR package. This curve helps to better understand the effects that each continuous covariate has on the outcome. Population attributable fraction is a classic quantity in epidemiology to evaluate the impact of risk factor on the occurrence of event in the population. In survival analysis, the adjusted/unadjusted attributable fraction can be plotted against survival time to obtain attributable fraction function. PMID:28090517
a model based on crowsourcing for detecting natural hazards
NASA Astrophysics Data System (ADS)
Duan, J.; Ma, C.; Zhang, J.; Liu, S.; Liu, J.
2015-12-01
Remote Sensing Technology provides a new method for the detecting,early warning,mitigation and relief of natural hazards. Given the suddenness and the unpredictability of the location of natural hazards as well as the actual demands for hazards work, this article proposes an evaluation model for remote sensing detecting of natural hazards based on crowdsourcing. Firstly, using crowdsourcing model and with the help of the Internet and the power of hundreds of millions of Internet users, this evaluation model provides visual interpretation of high-resolution remote sensing images of hazards area and collects massive valuable disaster data; secondly, this evaluation model adopts the strategy of dynamic voting consistency to evaluate the disaster data provided by the crowdsourcing workers; thirdly, this evaluation model pre-estimates the disaster severity with the disaster pre-evaluation model based on regional buffers; lastly, the evaluation model actuates the corresponding expert system work according to the forecast results. The idea of this model breaks the boundaries between geographic information professionals and the public, makes the public participation and the citizen science eventually be realized, and improves the accuracy and timeliness of hazards assessment results.
Occupational risk identification using hand-held or laptop computers.
Naumanen, Paula; Savolainen, Heikki; Liesivuori, Jyrki
2008-01-01
This paper describes the Work Environment Profile (WEP) program and its use in risk identification by computer. It is installed into a hand-held computer or a laptop to be used in risk identification during work site visits. A 5-category system is used to describe the identified risks in 7 groups, i.e., accidents, biological and physical hazards, ergonomic and psychosocial load, chemicals, and information technology hazards. Each group contains several qualifying factors. These 5 categories are colour-coded at this stage to aid with visualization. Risk identification produces visual summary images the interpretation of which is facilitated by colours. The WEP program is a tool for risk assessment which is easy to learn and to use both by experts and nonprofessionals. It is especially well adapted to be used both in small and in larger enterprises. Considerable time is saved as no paper notes are needed.
Diagnostic accuracy of an ultrasonic multiple transducer cardiac imaging system
NASA Technical Reports Server (NTRS)
Popp, R. L.; Brown, O. R.; Harrison, D. C.
1975-01-01
An ultrasonic multiple-transducer imaging system for intracardiac structure visualization is developed in order to simplify visualization of the human heart in vivo without radiation hazard or invasion of the body. Results of the evaluation of the diagnostic accuracy of the devised system in a clinical setting for adult patients are presented and discussed. Criteria are presented for recognition of mitral valva prolapse, mitral stenosis, pericardial effusion, atrial septal defect, and left ventricular dyssynergy. The probable cause for false-positive and false-negative diagnoses is discussed. However, hypertrophic myopathy and congestive myopathy were unable to be detected. Since only qualitative criteria were used, it was not possible to differentiate patients with left ventricular volume overload from patients without cardiac pathology.
Latorre, V.R.; Watwood, D.B.
1994-09-27
A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.
The Critical Role of Cyberinfrastructure in Global Observations of Natural Hazards
NASA Astrophysics Data System (ADS)
Orcutt, J. A.
2005-12-01
This past year has brought grave lessons about the critical risks posed by natural hazards. The Sumatra earthquake and resultant tsunami causing as many as 300,000 deaths, and Hurricane Katrina and its destruction of the Gulf Coast in Louisiana and Mississippi with an unknown loss of life and infrastructure damage that may approach $100,000,000,000 in rebuilding costs, have been shattering experiences. The Sumatra earthquake reminds us of the tsunami threat we face in Cascadia and news about the avian flu in the orient and its potential transmission to and between humans threatens to bring a natural disaster that can dwarf either of this year's disasters. All of these phenomena have their roots in the geosciences. While the threats of terrorism have dominated political discussions globally for the past few years, the growing impact of natural hazards, including the long-term impact of a potentially changing climate, require that geoscientists develop globally distributed observing systems critically important in mitigating the societal impacts of these hazards. This is particularly important for the AGU, the largest professional geosciences organization in the world today. One of the lessons learned during the past year, however, is that accessing the data and information needed to predict and subsequently understand the impact of hazards is difficult requiring more time than can generally be afforded. For the AGU, the new Focus Group on Earth and Space Science Informatics has an important role in bringing modern methods in information technology, computer sciences, and cyberinfrastructure to the problem of providing coherent access to near-real-time data from the growing suite of Earth observations, the use of the data in model assimilation, the transformation of data to knowledge, and the visualization of the results for use by those responsible for managing the damage caused by these natural hazards. While the challenge is enormous, there is considerable promise in a number of new approaches from the Global Earth Observing System of Systems (GEOSS) to the Ocean Observatories Initiative (OOI) and a powerful suite of Earth observations from space. New grid technologies in the computer sciences, the ability to link globally distributed sites at bandwidths of 10-40 Gbps, couple sensor networks across vast spatial scales, and visualize data at 100Megapixel resolutions make the use of data and information for mitigating growing natural hazards practical.
NASA Technical Reports Server (NTRS)
Brown, Alison M.
2005-01-01
Solar System Visualization products enable scientists to compare models and measurements in new ways that enhance the scientific discovery process, enhance the information content and understanding of the science results for both science colleagues and the public, and create.visually appealing and intellectually stimulating visualization products. Missions supported include MER, MRO, and Cassini. Image products produced include pan and zoom animations of large mosaics to reveal the details of surface features and topography, animations into registered multi-resolution mosaics to provide context for microscopic images, 3D anaglyphs from left and right stereo pairs, and screen captures from video footage. Specific products include a three-part context animation of the Cassini Enceladus encounter highlighting images from 350 to 4 meter per pixel resolution; Mars Reconnaissance Orbiter screen captures illustrating various instruments during assembly and testing at the Payload Hazardous Servicing Facility at Kennedy Space Center; and an animation of Mars Exploration Rover Opportunity's 'Rub al Khali' panorama where the rover was stuck in the deep fine sand for more than a month. This task creates new visualization products that enable new science results and enhance the public's understanding of the Solar System and NASA's missions of exploration.
Spits, Christine; Wallace, Luke; Reinke, Karin
2017-01-01
Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential. PMID:28425957
Eye movements and hazard perception in active and passive driving
Mackenzie, Andrew K.; Harris, Julie M.
2015-01-01
ABSTRACT Differences in eye movement patterns are often found when comparing passive viewing paradigms to actively engaging in everyday tasks. Arguably, investigations into visuomotor control should therefore be most useful when conducted in settings that incorporate the intrinsic link between vision and action. We present a study that compares oculomotor behaviour and hazard reaction times across a simulated driving task and a comparable, but passive, video-based hazard perception task. We found that participants scanned the road less during the active driving task and fixated closer to the front of the vehicle. Participants were also slower to detect the hazards in the driving task. Our results suggest that the interactivity of simulated driving places increased demand upon the visual and attention systems than simply viewing driving movies. We offer insights into why these differences occur and explore the possible implications of such findings within the wider context of driver training and assessment. PMID:26681913
NASA Astrophysics Data System (ADS)
Santillan, M. M.-M.; Santillan, J. R.; Morales, E. M. O.
2017-09-01
We discuss in this paper the development, including the features and functionalities, of an open source web-based flood hazard information dissemination and analytical system called "Flood EViDEns". Flood EViDEns is short for "Flood Event Visualization and Damage Estimations", an application that was developed by the Caraga State University to address the needs of local disaster managers in the Caraga Region in Mindanao, Philippines in accessing timely and relevant flood hazard information before, during and after the occurrence of flood disasters at the community (i.e., barangay and household) level. The web application made use of various free/open source web mapping and visualization technologies (GeoServer, GeoDjango, OpenLayers, Bootstrap), various geospatial datasets including LiDAR-derived elevation and information products, hydro-meteorological data, and flood simulation models to visualize various scenarios of flooding and its associated damages to infrastructures. The Flood EViDEns application facilitates the release and utilization of this flood-related information through a user-friendly front end interface consisting of web map and tables. A public version of the application can be accessed at http://121.97.192.11:8082/. The application is currently expanded to cover additional sites in Mindanao, Philippines through the "Geo-informatics for the Systematic Assessment of Flood Effects and Risks for a Resilient Mindanao" or the "Geo-SAFER Mindanao" Program.
The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.
2005-12-01
The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy-to-use system for constructing SHA computations, a browser-based workflow assembly web portal has been developed. Users can compose complex SHA calculations, specifying SCEC/CME data sets as inputs to calculations, and calling SCEC/CME computational programs to process the data and the output. Knowledge-based software tools have been implemented that utilize ontological descriptions of SHA software and data can validate workflows created with this pathway assembly tool. Data visualization software developed by the collaboration supports analysis and validation of data sets. Several programs have been developed to visualize SCEC/CME data including GMT-based map making software for PSHA codes, 4D wavefield propagation visualization software based on OpenGL, and 3D Geowall-based visualization of earthquakes, faults, and seismic wave propagation. The SCEC/CME Project also helps to sponsor the SCEC UseIT Intern program. The UseIT Intern Program provides research opportunities in both Geosciences and Information Technology to undergraduate students in a variety of fields. The UseIT group has developed a 3D data visualization tool, called SCEC-VDO, as a part of this undergraduate research program.
Road landslide information management and forecasting system base on GIS.
Wang, Wei Dong; Du, Xiang Gang; Xie, Cui Ming
2009-09-01
Take account of the characters of road geological hazard and its supervision, it is very important to develop the Road Landslides Information Management and Forecasting System based on Geographic Information System (GIS). The paper presents the system objective, function, component modules and key techniques in the procedure of system development. The system, based on the spatial information and attribute information of road geological hazard, was developed and applied in Guizhou, a province of China where there are numerous and typical landslides. The manager of communication, using the system, can visually inquire all road landslides information based on regional road network or on the monitoring network of individual landslide. Furthermore, the system, integrated with mathematical prediction models and the GIS's strongpoint on spatial analyzing, can assess and predict landslide developing procedure according to the field monitoring data. Thus, it can efficiently assists the road construction or management units in making decision to control the landslides and to reduce human vulnerability.
Jiang, Jiping; Wang, Peng; Lung, Wu-seng; Guo, Liang; Li, Mei
2012-08-15
This paper presents a generic framework and decision tools of real-time risk assessment on Emergency Environmental Decision Support System for response to chemical spills in river basin. The generic "4-step-3-model" framework is able to delineate the warning area and the impact on vulnerable receptors considering four types of hazards referring to functional area, societal impact, and human health and ecology system. Decision tools including the stand-alone system and software components were implemented on GIS platform. A detailed case study on the Songhua River nitrobenzene spill illustrated the goodness of the framework and tool Spill first responders and decision makers of catchment management will benefit from the rich, visual and dynamic hazard information output from the software. Copyright © 2012 Elsevier B.V. All rights reserved.
Use of cloud computing technology in natural hazard assessment and emergency management
NASA Astrophysics Data System (ADS)
Webley, P. W.; Dehn, J.
2015-12-01
During a natural hazard event, the most up-to-date data needs to be in the hands of those on the front line. Decision support system tools can be developed to provide access to pre-made outputs to quickly assess the hazard and potential risk. However, with the ever growing availability of new satellite data as well as ground and airborne data generated in real-time there is a need to analyze the large volumes of data in an easy-to-access and effective environment. With the growth in the use of cloud computing, where the analysis and visualization system can grow with the needs of the user, then these facilities can used to provide this real-time analysis. Think of a central command center uploading the data to the cloud compute system and then those researchers in-the-field connecting to a web-based tool to view the newly acquired data. New data can be added by any user and then viewed instantly by anyone else in the organization through the cloud computing interface. This provides the ideal tool for collaborative data analysis, hazard assessment and decision making. We present the rationale for developing a cloud computing systems and illustrate how this tool can be developed for use in real-time environments. Users would have access to an interactive online image analysis tool without the need for specific remote sensing software on their local system therefore increasing their understanding of the ongoing hazard and mitigate its impact on the surrounding region.
NASA Astrophysics Data System (ADS)
van Westen, Cees; Bakker, Wim; Zhang, Kaixi; Jäger, Stefan; Assmann, Andre; Kass, Steve; Andrejchenko, Vera; Olyazadeh, Roya; Berlin, Julian; Cristal, Irina
2014-05-01
Within the framework of the EU FP7 Marie Curie Project CHANGES (www.changes-itn.eu) and the EU FP7 Copernicus project INCREO (http://www.increo-fp7.eu) a spatial decision support system is under development with the aim to analyse the effect of risk reduction planning alternatives on reducing the risk now and in the future, and support decision makers in selecting the best alternatives. The Spatial Decision Support System will be composed of a number of integrated components. The Risk Assessment component allows to carry out spatial risk analysis, with different degrees of complexity, ranging from simple exposure (overlay of hazard and assets maps) to quantitative analysis (using different hazard types, temporal scenarios and vulnerability curves) resulting into risk curves. The platform does not include a component to calculate hazard maps, and existing hazard maps are used as input data for the risk component. The second component of the SDSS is a risk reduction planning component, which forms the core of the platform. This component includes the definition of risk reduction alternatives (related to disaster response planning, risk reduction measures and spatial planning) and links back to the risk assessment module to calculate the new level of risk if the measure is implemented, and a cost-benefit (or cost-effectiveness/ Spatial Multi Criteria Evaluation) component to compare the alternatives and make decision on the optimal one. The third component of the SDSS is a temporal scenario component, which allows to define future scenarios in terms of climate change, land use change and population change, and the time periods for which these scenarios will be made. The component doesn't generate these scenarios but uses input maps for the effect of the scenarios on the hazard and assets maps. The last component is a communication and visualization component, which can compare scenarios and alternatives, not only in the form of maps, but also in other forms (risk curves, tables, graphs). The envisaged users of the platform are organizations involved in planning of risk reduction measures, and that have staff capable of visualizing and analysing spatial data at a municipal scale.
Assessing natural hazard risk using images and data
NASA Astrophysics Data System (ADS)
Mccullough, H. L.; Dunbar, P. K.; Varner, J. D.; Mungov, G.
2012-12-01
Photographs and other visual media provide valuable pre- and post-event data for natural hazard assessment. Scientific research, mitigation, and forecasting rely on visual data for risk analysis, inundation mapping and historic records. Instrumental data only reveal a portion of the whole story; photographs explicitly illustrate the physical and societal impacts from the event. Visual data is rapidly increasing as the availability of portable high resolution cameras and video recorders becomes more attainable. Incorporating these data into archives ensures a more complete historical account of events. Integrating natural hazards data, such as tsunami, earthquake and volcanic eruption events, socio-economic information, and tsunami deposits and runups along with images and photographs enhances event comprehension. Global historic databases at NOAA's National Geophysical Data Center (NGDC) consolidate these data, providing the user with easy access to a network of information. NGDC's Natural Hazards Image Database (ngdc.noaa.gov/hazardimages) was recently improved to provide a more efficient and dynamic user interface. It uses the Google Maps API and Keyhole Markup Language (KML) to provide geographic context to the images and events. Descriptive tags, or keywords, have been applied to each image, enabling easier navigation and discovery. In addition, the Natural Hazards Map Viewer (maps.ngdc.noaa.gov/viewers/hazards) provides the ability to search and browse data layers on a Mercator-projection globe with a variety of map backgrounds. This combination of features creates a simple and effective way to enhance our understanding of hazard events and risks using imagery.
Högner, N
2015-08-01
Blind and visually impaired people experience special risks and hazards in road traffic. This refers to participation as a driver, bicycle rider and pedestrian. These risks are shown by a review of international research studies and a study by the author, where 45 people with Usher syndrome were asked about their accident rates and causes as driver, bicycle rider and pedestrian. In addition, basic legal information has been worked out to demonstrate the visual conditions of people with visual impairment for participation in road traffic. The research studies show that blind and visually impaired persons are particularly exposed to experience high risks in traffic. These risks can be reduced through acquisition of skills and coping strategies such as training in orientation and mobility. People with visual impairment need special programmes which help to reduce traffic hazards. Georg Thieme Verlag KG Stuttgart · New York.
Method and system for providing autonomous control of a platform
NASA Technical Reports Server (NTRS)
Seelinger, Michael J. (Inventor); Yoder, John-David (Inventor)
2012-01-01
The present application provides a system for enabling instrument placement from distances on the order of five meters, for example, and increases accuracy of the instrument placement relative to visually-specified targets. The system provides precision control of a mobile base of a rover and onboard manipulators (e.g., robotic arms) relative to a visually-specified target using one or more sets of cameras. The system automatically compensates for wheel slippage and kinematic inaccuracy ensuring accurate placement (on the order of 2 mm, for example) of the instrument relative to the target. The system provides the ability for autonomous instrument placement by controlling both the base of the rover and the onboard manipulator using a single set of cameras. To extend the distance from which the placement can be completed to nearly five meters, target information may be transferred from navigation cameras (used for long-range) to front hazard cameras (used for positioning the manipulator).
Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance
NASA Technical Reports Server (NTRS)
Paschall, Steve; Brady, Tye; Sostaric, Ron
2009-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system design process.
Cheng, Andy S K; Ng, Terry C K; Lee, Hoe C
2011-07-01
Hazard perception is the ability to read the road and is closely related to involvement in traffic accidents. It consists of both cognitive and behavioral components. Within the cognitive component, visual attention is an important function of driving whereas driving behavior, which represents the behavioral component, can affect the hazard perception of the driver. Motorcycle riders are the most vulnerable types of road user. The primary purpose of this study was to deepen our understanding of the correlation of different subtypes of visual attention and driving violation behaviors and their effect on hazard perception between accident-free and accident-involved motorcycle riders. Sixty-three accident-free and 46 accident-involved motorcycle riders undertook four neuropsychological tests of attention (Digit Vigilance Test, Color Trails Test-1, Color Trails Test-2, and Symbol Digit Modalities Test), filled out the Chinese Motorcycle Rider Driving Violation (CMRDV) Questionnaire, and viewed a road-user-based hazard situation with an eye-tracking system to record the response latencies to potentially dangerous traffic situations. The results showed that both the divided and selective attention of accident-involved motorcycle riders were significantly inferior to those of accident-free motorcycle riders, and that accident-involved riders exhibited significantly higher driving violation behaviors and took longer to identify hazardous situations compared to their accident-free counterparts. However, the results of the regression analysis showed that aggressive driving violation CMRDV score significantly predicted hazard perception and accident involvement of motorcycle riders. Given that all participants were mature and experienced motorcycle riders, the most plausible explanation for the differences between them is their driving style (influenced by an undesirable driving attitude), rather than skill deficits per se. The present study points to the importance of conceptualizing the influence of different driving behaviors so as to enrich our understanding of the role of human factors in road accidents and consequently develop effective countermeasures to prevent traffic accidents involving motorcycles. Copyright © 2011 Elsevier Ltd. All rights reserved.
Exomars VisLoc- The Visual Localisation System for the Exomars Rover
NASA Astrophysics Data System (ADS)
Ward, R.; Hamilton, W.; Silva, N.; Pereira, V.
2016-08-01
Maintaining accurate knowledge of the current position of vehicles on the surface of Mars is a considerable problem. The lack of an orbital GPS means that the absolute position of a rover at any instant is very difficult to determine, and with that it is difficult to accurately and safely plan hazard avoidance manoeuvres.Some on-board methods of determining the evolving POSE of a rover are well known, such as using wheel odometry to keep a log of the distance travelled. However there are associated problems - wheels can slip in the martial soil providing odometry readings which can mislead navigation algorithms. One solution to this is to use a visual localisation system, which uses cameras to determine the actual rover motion from images of the terrain. By measuring movement from the terrain an independent measure of the actual movement can be obtained to a high degree of accuracy.This paper presents the progress of the project to develop a the Visual Localisation system for the ExoMars rover (VisLoc). The core algorithmm used in the system is known as OVO (Oxford Visual Odometry), developed at the Mobile Robotics Group at the University of Oxford. Over a number of projects this system has been adapted from its original purpose (navigation systems for autonomous vehicles) to be a viable system for the unique challenges associated with extra-terrestrial use.
Inayat-Hussain, Salmaan H; Fukumura, Masao; Muiz Aziz, A; Jin, Chai Meng; Jin, Low Wei; Garcia-Milian, Rolando; Vasiliou, Vasilis; Deziel, Nicole C
2018-08-01
Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases. GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects. We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide. Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives. Copyright © 2018 Elsevier Ltd. All rights reserved.
A study of riders' noise exposure on Bay Area Rapid Transit trains.
Dinno, Alexis; Powell, Cynthia; King, Margaret Mary
2011-02-01
Excessive noise exposure may present a hazard to hearing, cardiovascular, and psychosomatic health. Mass transit systems, such as the Bay Area Rapid Transit (BART) system, are potential sources of excessive noise. The purpose of this study was to characterize transit noise and riders' exposure to noise on the BART system using three dosimetry metrics. We made 268 dosimetry measurements on a convenience sample of 51 line segments. Dosimetry measures were modeled using linear and nonlinear multiple regression as functions of average velocity, tunnel enclosure, flooring, and wet weather conditions and presented visually on a map of the BART system. This study provides evidence of levels of hazardous levels of noise exposure in all three dosimetry metrics. L(eq) and L(max) measures indicate exposures well above ranges associated with increased cardiovascular and psychosomatic health risks in the published literature. L(peak) indicate acute exposures hazardous to adult hearing on about 1% of line segment rides and acute exposures hazardous to child hearing on about 2% of such rides. The noise to which passengers are exposed may be due to train-specific conditions (velocity and flooring), but also to rail conditions (velocity and tunnels). These findings may point at possible remediation (revised speed limits on longer segments and those segments enclosed by tunnels). The findings also suggest that specific rail segments could be improved for noise.
2013-10-07
from the SAGAT and designed to assess the perception and comprehension components of SA. Asking questions of the par- ticipant after each trial...hazards were no closer than 3° of visual angle from each other. This design ensured that targets and hazards could not co- occur in the same...vehicle triggered the payload task, whereby the operator performed a visual search task to identify an object, such as a ship or a car , in the payload
Detecting Traversable Area and Water Hazards for the Visually Impaired with a pRGB-D Sensor
Yang, Kailun; Wang, Kaiwei; Cheng, Ruiqi; Hu, Weijian; Huang, Xiao; Bai, Jian
2017-01-01
The use of RGB-Depth (RGB-D) sensors for assisting visually impaired people (VIP) has been widely reported as they offer portability, function-diversity and cost-effectiveness. However, polarization cues to assist traversability awareness without precautions against stepping into water areas are weak. In this paper, a polarized RGB-Depth (pRGB-D) framework is proposed to detect traversable area and water hazards simultaneously with polarization-color-depth-attitude information to enhance safety during navigation. The approach has been tested on a pRGB-D dataset, which is built for tuning parameters and evaluating the performance. Moreover, the approach has been integrated into a wearable prototype which generates a stereo sound feedback to guide visually impaired people (VIP) follow the prioritized direction to avoid obstacles and water hazards. Furthermore, a preliminary study with ten blindfolded participants suggests its effectivity and reliability. PMID:28817069
VOLCWORKS: A suite for optimization of hazards mapping
NASA Astrophysics Data System (ADS)
Delgado Granados, H.; Ramírez Guzmán, R.; Villareal Benítez, J. L.; García Sánchez, T.
2012-04-01
Making hazards maps is a process linking basic science, applied science and engineering for the benefit of the society. The methodologies for hazards maps' construction have evolved enormously together with the tools that allow the forecasting of the behavior of the materials produced by different eruptive processes. However, in spite of the development of tools and evolution of methodologies, the utility of hazards maps has not changed: prevention and mitigation of volcanic disasters. Integration of different tools for simulation of different processes for a single volcano is a challenge to be solved using software tools including processing, simulation and visualization techniques, and data structures in order to build up a suit that helps in the construction process starting from the integration of the geological data, simulations and simplification of the output to design a hazards/scenario map. Scientific visualization is a powerful tool to explore and gain insight into complex data from instruments and simulations. The workflow from data collection, quality control and preparation for simulations, to achieve visual and appropriate presentation is a process that is usually disconnected, using in most of the cases different applications for each of the needed processes, because it requires many tools that are not built for the solution of a specific problem, or were developed by research groups to solve particular tasks, but disconnected. In volcanology, due to its complexity, groups typically examine only one aspect of the phenomenon: ash dispersal, laharic flows, pyroclastic flows, lava flows, and ballistic projectile ejection, among others. However, when studying the hazards associated to the activity of a volcano, it is important to analyze all the processes comprehensively, especially for communication of results to the end users: decision makers and planners. In order to solve this problem and connect different parts of a workflow we are developing the suite VOLCWORKS, whose principle is to have a flexible-implementation architecture allowing rapid development of software to the extent specified by the needs including calculations, routines, or algorithms, both new and through redesign of available software in the volcanological community, but especially allowing to include new knowledge, models or software transferring them to software modules. The design is component-oriented platform, which allows incorporating particular solutions (routines, simulations, etc.), which can be concatenated for integration or highlighting information. The platform includes a graphical interface with capabilities for working in different visual environments that can be focused to the particular work of different types of users (researchers, lecturers, students, etc.). This platform aims to integrate simulation and visualization phases, incorporating proven tools (now isolated). VOLCWORKS can be used under different operating systems (Windows, Linux and Mac OS) and fit the context of use automatically and at runtime: in both tasks and their sequence, such as utilization of hardware resources (CPU, GPU, special monitors, etc.). The application has the ability to run on a laptop or even in a virtual reality room with access to supercomputers.
2002-10-01
To examine the relationships between baseline risk factors and sustained decrease of visual field (SDVF) and sustained decrease of visual acuity (SDVA). Cohort study of participants in the Advanced Glaucoma Intervention Study (AGIS). This multicenter study enrolled patients between 1988 and 1992 and followed them until 2001; 789 eyes of 591 patients with advanced glaucoma were randomly assigned to one of two surgical sequences, argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy (ATT) or trabeculectomy-ALT-trabeculectomy (TAT). This report is based on data from 747 eyes. Eyes were offered the next intervention in the sequence upon failure of the previous intervention. Failure was based on recurrent intraocular pressure elevation, visual field defect, and disk rim criteria. Study visits occurred every 6 months; potential follow-up ranged from 8 to 13 years. For each intervention sequence, Cox multiple regression analyses were used to examine the baseline characteristics for association with two vision outcomes: SDVF and SDVA. The magnitude of the association is measured by the hazard ratio (HR), where HR for binary variables is the relative change in the hazard (or risk) of the outcome in eyes with the factor divided by the hazard in eyes without the factor, and HR for continuous variables is the relative change in the hazard (or risk) of the outcome in eyes with a unit increase in the factor. Characteristics associated with increased SDVF risk in the ATT sequence are: less baseline visual field defect (hazard ratio [HR] = 0.86, P <.001, 95% CI = 0.82-0.90), male gender (HR = 2.23, P <.001, 1.54-3.23), and worse baseline visual acuity (HR = 0.96, P =.001, 0.94-0.98); in the TAT sequence: less baseline visual field defect (HR = 0.93, P =.001, 0.89-0.97) and diabetes (HR = 1.87, P =.007, 1.18-2.97). Characteristics associated with increased SDVA risk in both treatment sequences are better baseline acuity (ATT: HR = 1.05, P <.001, 1.02-1.09; TAT: HR = 1.06, P <.001, 1.03-1.08), older age (ATT: HR = 1.05, P =.001, 1.02-1.08; TAT: HR = 1.04, P =.002, 1.01-1.06), and less formal education (ATT: HR = 1.92, P =.001, 1.29-2.88; TAT: HR = 1.77, P =.002, 1.22-2.54). For SDVF, risk factors were better baseline visual field in both treatment sequences, male gender, and worse baseline visual acuity in the ATT sequence, and diabetes in the TAT sequence. For SDVA, risk factors in both treatment sequences were better baseline visual acuity, older age, and less formal education.
Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng
2012-07-01
Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.
NASA Astrophysics Data System (ADS)
Tost, Jordi; Ehmel, Fabian; Heidmann, Frank; Olen, Stephanie M.; Bookhagen, Bodo
2018-05-01
The assessment of natural hazards and risk has traditionally been built upon the estimation of threat maps, which are used to depict potential danger posed by a particular hazard throughout a given area. But when a hazard event strikes, infrastructure is a significant factor that can determine if the situation becomes a disaster. The vulnerability of the population in a region does not only depend on the area's local threat, but also on the geographical accessibility of the area. This makes threat maps by themselves insufficient for supporting real-time decision-making, especially for those tasks that involve the use of the road network, such as management of relief operations, aid distribution, or planning of evacuation routes, among others. To overcome this problem, this paper proposes a multidisciplinary approach divided in two parts. First, data fusion of satellite-based threat data and open infrastructure data from OpenStreetMap, introducing a threat-based routing service. Second, the visualization of this data through cartographic generalization and schematization. This emphasizes critical areas along roads in a simple way and allows users to visually evaluate the impact natural hazards may have on infrastructure. We develop and illustrate this methodology with a case study of landslide threat for an area in Colombia.
NASA Astrophysics Data System (ADS)
Auermuller, L. M.; Gatto, J.; Huch, C.
2015-12-01
The highly developed nature of New Jersey's coastline, barrier island and lagoon communities make them particularly vulnerable to storm surge, sea level rise and flooding. The impacts of Hurricane Sandy have enlightened coastal communities to these realities. Recognizing these vulnerabilities, the Jacques Cousteau National Research Reserve (JC NERR), Rutgers Center for Remote Sensing and Spatial Analysis (CRSSA), Rutgers Bloustein School and the Barnegat Bay Partnership (BBP) have developed web-based tools to assist NJ's coastal communities in visualizing and planning for future local impacts. NJFloodMapper and NJAdapt are two complementary interactive mapping websites that visualize different current and future flood hazards. These hazard layers can be combined with additional data including critical facilities, evacuation routes, socioeconomic and environmental data. Getting to Resilience is an online self-assessment tool developed to assist communities reduce vulnerability and increase preparedness by linking planning, mitigation, and adaptation. Through this interactive process communities will learn how their preparedness can yield valuable points through voluntary programs like FEMA's Community Rating System and Sustainable Jersey. The assessment process can also increase the community's understanding of where future vulnerabilities should be addressed through hazard mitigation planning. Since Superstorm Sandy, more than thirty communities in New Jersey have been provided technical assistance in assessing their risks and vulnerabilities to coastal hazards, and have begun to understand how to better plan and prepare for short and long-term changes along their shorelines.
Visible and infrared remote imaging of hazardous waste: A review
Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry
2010-01-01
One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.
29 CFR 1910.101 - Compressed gases (general requirements).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (general requirements). (a) Inspection of compressed gas cylinders. Each employer shall determine that... by visual inspection. Visual and other inspections shall be conducted as prescribed in the Hazardous... those regulations are not applicable, visual and other inspections shall be conducted in accordance with...
29 CFR 1910.101 - Compressed gases (general requirements).
Code of Federal Regulations, 2013 CFR
2013-07-01
... (general requirements). (a) Inspection of compressed gas cylinders. Each employer shall determine that... by visual inspection. Visual and other inspections shall be conducted as prescribed in the Hazardous... those regulations are not applicable, visual and other inspections shall be conducted in accordance with...
29 CFR 1910.101 - Compressed gases (general requirements).
Code of Federal Regulations, 2011 CFR
2011-07-01
... (general requirements). (a) Inspection of compressed gas cylinders. Each employer shall determine that... by visual inspection. Visual and other inspections shall be conducted as prescribed in the Hazardous... those regulations are not applicable, visual and other inspections shall be conducted in accordance with...
29 CFR 1910.101 - Compressed gases (general requirements).
Code of Federal Regulations, 2014 CFR
2014-07-01
... (general requirements). (a) Inspection of compressed gas cylinders. Each employer shall determine that... by visual inspection. Visual and other inspections shall be conducted as prescribed in the Hazardous... those regulations are not applicable, visual and other inspections shall be conducted in accordance with...
29 CFR 1910.101 - Compressed gases (general requirements).
Code of Federal Regulations, 2012 CFR
2012-07-01
... (general requirements). (a) Inspection of compressed gas cylinders. Each employer shall determine that... by visual inspection. Visual and other inspections shall be conducted as prescribed in the Hazardous... those regulations are not applicable, visual and other inspections shall be conducted in accordance with...
The effects of momentary visual disruption on hazard anticipation and awareness in driving.
Borowsky, Avinoam; Horrey, William J; Liang, Yulan; Garabet, Angela; Simmons, Lucinda; Fisher, Donald L
2015-01-01
Driver distraction is known to increase crash risk, especially when a driver glances inside the vehicle for especially long periods of time. Though it is clear that such glances increase the risk for the driver when looking inside the vehicle, it is less clear how these glances disrupt the ongoing processing of information outside the vehicle once the driver's eyes return to the road. The present study was aimed at exploring the effect of in-vehicle glances on the top-down processes that guide the detection and monitoring of hazards on the forward roadway. Using a driving simulator, 12 participants were monitored with an eye-tracking system while they navigated various hazardous scenarios. Six participants were momentarily interrupted by a visual secondary task (simulating a glance inside the vehicle) prior to the occurrence of a potential hazard and 6 were not. Eye movement analyses showed that interrupted drivers often failed to continue scanning for a potential hazard when their forward view reappeared, especially when the potential threat could not easily be localized. Additionally, drivers' self-appraisal of workload and performance of the driving task indicated that, contrary to what one might expect, drivers in the interruption condition reported workload levels lower than and performance equal to drivers in the no interruption condition. Drivers who are momentarily disrupted even for a brief duration are at risk of missing important information when they return their gaze to the forward roadway. In addition, because they are not aware of missing this information they are likely to continue engaging in in-vehicle tasks even though they are demonstrably unsafe. The implications for safety, calibration, and targeted remediation are discussed.
3D visualization of unsteady 2D airplane wake vortices
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Zheng, Z. C.
1994-01-01
Air flowing around the wing tips of an airplane forms horizontal tornado-like vortices that can be dangerous to following aircraft. The dynamics of such vortices, including ground and atmospheric effects, can be predicted by numerical simulation, allowing the safety and capacity of airports to be improved. In this paper, we introduce three-dimensional techniques for visualizing time-dependent, two-dimensional wake vortex computations, and the hazard strength of such vortices near the ground. We describe a vortex core tracing algorithm and a local tiling method to visualize the vortex evolution. The tiling method converts time-dependent, two-dimensional vortex cores into three-dimensional vortex tubes. Finally, a novel approach calculates the induced rolling moment on the following airplane at each grid point within a region near the vortex tubes and thus allows three-dimensional visualization of the hazard strength of the vortices. We also suggest ways of combining multiple visualization methods to present more information simultaneously.
Degraded visual environment image/video quality metrics
NASA Astrophysics Data System (ADS)
Baumgartner, Dustin D.; Brown, Jeremy B.; Jacobs, Eddie L.; Schachter, Bruce J.
2014-06-01
A number of image quality metrics (IQMs) and video quality metrics (VQMs) have been proposed in the literature for evaluating techniques and systems for mitigating degraded visual environments. Some require both pristine and corrupted imagery. Others require patterned target boards in the scene. None of these metrics relates well to the task of landing a helicopter in conditions such as a brownout dust cloud. We have developed and used a variety of IQMs and VQMs related to the pilot's ability to detect hazards in the scene and to maintain situational awareness. Some of these metrics can be made agnostic to sensor type. Not only are the metrics suitable for evaluating algorithm and sensor variation, they are also suitable for choosing the most cost effective solution to improve operating conditions in degraded visual environments.
Monitoring Kilauea Volcano Using Non-Telemetered Time-Lapse Camera Systems
NASA Astrophysics Data System (ADS)
Orr, T. R.; Hoblitt, R. P.
2006-12-01
Systematic visual observations are an essential component of monitoring volcanic activity. At the Hawaiian Volcano Observatory, the development and deployment of a new generation of high-resolution, non- telemetered, time-lapse camera systems provides periodic visual observations in inaccessible and hazardous environments. The camera systems combine a hand-held digital camera, programmable shutter-release, and other off-the-shelf components in a package that is inexpensive, easy to deploy, and ideal for situations in which the probability of equipment loss due to volcanic activity or theft is substantial. The camera systems have proven invaluable in correlating eruptive activity with deformation and seismic data streams. For example, in late 2005 and much of 2006, Pu`u `O`o, the active vent on Kilauea Volcano`s East Rift Zone, experienced 10--20-hour cycles of inflation and deflation that correlated with increases in seismic energy release. A time-lapse camera looking into a skylight above the main lava tube about 1 km south of the vent showed an increase in lava level---an indicator of increased lava flux---during periods of deflation, and a decrease in lava level during periods of inflation. A second time-lapse camera, with a broad view of the upper part of the active flow field, allowed us to correlate the same cyclic tilt and seismicity with lava breakouts from the tube. The breakouts were accompanied by rapid uplift and subsidence of shatter rings over the tube. The shatter rings---concentric rings of broken rock---rose and subsided by as much as 6 m in less than an hour during periods of varying flux. Time-lapse imagery also permits improved assessment of volcanic hazards, and is invaluable in illustrating the hazards to the public. In collaboration with Hawaii Volcanoes National Park, camera systems have been used to monitor the growth of lava deltas at the entry point of lava into the ocean to determine the potential for catastrophic collapse.
Intelligent video storage of visual evidences on site in fast deployment
NASA Astrophysics Data System (ADS)
Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois
2004-07-01
In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Many managers and policymakers guided by the National Environmental Policy Act process want to understand the scientific principles on which they can base fuel treatments for reducing the size and severity of wildfires. These Forest Structure and Fire Hazard fact sheets discuss how to estimate fire hazard, how to visualize fuel treatments, and how the role of...
Visual performance for trip hazard detection when using incandescent and led miner cap lamps.
Sammarco, John J; Gallagher, Sean; Reyes, Miguel
2010-04-01
Accident data for 2003-2007 indicate that slip, trip, and falls (STFs) are the second leading accident class (17.8%, n=2,441) of lost-time injuries in underground mining. Proper lighting plays a critical role in enabling miners to detect STF hazards in this environment. Often, the only lighting available to the miner is from a cap lamp worn on the miner's helmet. The focus of this research was to determine if the spectral content of light from light-emitting diode (LED) cap lamps enabled visual performance improvements for the detection of tripping hazards as compared to incandescent cap lamps that are traditionally used in underground mining. A secondary objective was to determine the effects of aging on visual performance. The visual performance of 30 subjects was quantified by measuring each subject's speed and accuracy in detecting objects positioned on the floor both in the near field, at 1.83 meters, and far field, at 3.66 meters. Near field objects were positioned at 0 degrees and +/-20 degrees off axis, while far field objects were positioned at 0 degrees and +/-10 degrees off axis. Three age groups were designated: group A consisted of subjects 18 to 25 years old, group B consisted of subjects 40 to 50 years old, and group C consisted of subjects 51 years and older. Results of the visual performance comparison for a commercially available LED, a prototype LED, and an incandescent cap lamp indicate that the location of objects on the floor, the type of cap lamp used, and subject age all had significant influences on the time required to identify potential trip hazards. The LED-based cap lamps enabled detection times that were an average of 0.96 seconds faster compared to the incandescent cap lamp. Use of the LED cap lamps resulted in average detection times that were about 13.6% faster than those recorded for the incandescent cap lamp. The visual performance differences between the commercially available LED and prototype LED cap lamp were not statistically significant. It can be inferred from this data that the spectral content from LED-based cap lamps could enable significant visual performance improvements for miners in the detection of trip hazards. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Mecham
2010-08-01
This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less
NASA Technical Reports Server (NTRS)
1971-01-01
A case study of knowledge contributions from the crew life support aspect of the manned space program is reported. The new information needed to be learned, the solutions developed, and the relation of new knowledge gained to earthly problems were investigated. Illustrations are given in the following categories: supplying atmosphere for spacecraft; providing carbon dioxide removal and recycling; providing contaminant control and removal; maintaining the body's thermal balance; protecting against the space hazards of decompression, radiation, and meteorites; minimizing fire and blast hazards; providing adequate light and conditions for adequate visual performance; providing mobility and work physiology; and providing adequate habitability.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
The software described in this fact sheet provides managers with tools for visualizing forest and fuels information. Computer-based landscape simulations can help visualize stand and landscape conditions and the effects of different management treatments and fuel changes over time. These visualizations can assist forest planning by considering a range of management...
Braking, Wheeled Vehicles. Test Operations Procedure (TOP)
2008-05-20
actuated. 2. Hydraulic System Procedure: Visually inspect the lines, hoses , master cylinder and cap. Reject the vehicle if: • Lines and... hoses are leaking, welded, cracked, chafed, flattened, insecurely mounted or have restricted sections. • Repairs to lines and hoses have been made...608 20 May 2008 D-3 HAZARDOUS CONDITION • Any brake hose or line seeps or swells under pressure. • Any brake hose is cracked to the second
Ruscio, Daniele; Ciceri, Maria Rita; Biassoni, Federica
2015-04-01
Brake Reaction Time (BRT) is an important parameter for road safety. Previous research has shown that drivers' expectations can impact RT when facing hazardous situations, but driving with advanced driver assistance systems, can change the way BRT are considered. The interaction with a collision warning system can help faster more efficient responses, but at the same time can require a monitoring task and evaluation process that may lead to automation complacency. The aims of the present study are to test in a real-life setting whether automation compliancy can be generated by a collision warning system and what component of expectancy can impact the different tasks involved in an assisted BRT process. More specifically four component of expectancy were investigated: presence/absence of anticipatory information, previous direct experience, reliability of the device, and predictability of the hazard determined by repeated use of the warning system. Results supply indication on perception time and mental elaboration of the collision warning system alerts. In particular reliable warning quickened the decision making process, misleading warnings generated automation complacency slowing visual search for hazard detection, lack of directed experienced slowed the overall response while unexpected failure of the device lead to inattentional blindness and potential pseudo-accidents with surprise obstacle intrusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0
NASA Technical Reports Server (NTRS)
Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.
2001-01-01
A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.
Image processing for hazard recognition in on-board weather radar
NASA Technical Reports Server (NTRS)
Kelly, Wallace E. (Inventor); Rand, Timothy W. (Inventor); Uckun, Serdar (Inventor); Ruokangas, Corinne C. (Inventor)
2003-01-01
A method of providing weather radar images to a user includes obtaining radar image data corresponding to a weather radar image to be displayed. The radar image data is image processed to identify a feature of the weather radar image which is potentially indicative of a hazardous weather condition. The weather radar image is displayed to the user along with a notification of the existence of the feature which is potentially indicative of the hazardous weather condition. Notification can take the form of textual information regarding the feature, including feature type and proximity information. Notification can also take the form of visually highlighting the feature, for example by forming a visual border around the feature. Other forms of notification can also be used.
Mars Exploration Rovers Landing Dispersion Analysis
NASA Technical Reports Server (NTRS)
Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.
2004-01-01
Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.
Increasing awareness and preparedness by an exhibition and studying the effect of visuals
NASA Astrophysics Data System (ADS)
Charrière, Marie; Bogaard, Thom; Malet, Jean-Philippe; Mostert, Erik
2013-04-01
Damages caused by natural hazards can be reduced not only by protection, management and intervention activities, but also by information and communication to improve awareness and preparedness of local communities and tourists. Risk communication is particularly crucial for mountainous areas, such as the Ubaye Valley (France), as they are affected by multiple hazards and are particularly sensitive to the potential effects of climate and socio-economic changes which may increase the risk associated with natural hazards significantly. An exhibition is a powerful tool to communicate with the general public. It allows1: (1) targeting specific audiences, (2) transmitting technical and scientific knowledge using a suitable language, (3) anchoring the collective memory of past events, (4) visualize and emotionalize the topic of natural hazards, (5) strengthening the communication between peers, and (6) highlighting local resources and knowledge. In addition to these theoretical advantages, an exhibition may fulfill the requirements of a community. In the Ubaye Valley (France), this tool was proposed by the stakeholders themselves to increase awareness and preparedness of the general public. To meet this demand, the exhibition was designed following three general topics: (1) the natural phenomena and their potential consequences on the elements at risk, (2) the management and protection measures (individual and collective) and (3) the evolution of events and knowledge throughout past up to the present and the anticipation of the future situations. Besides being a real risk communication practice, this exhibition will be the setting for an extensive research project studying the effect of the use of visualization tools on the awareness and preparedness of a community. A wide range of visuals (photos, videos, maps, models, animations, multimedia, etc.) will present many dimensions of locally occurring natural hazards and risk problems. The aim of the research is (1) to verify the theoretical advantages of visual communication, such as conveying strong messages and making them easy to remember2, (2) to measure the change of awareness and preparedness after being exposed to such media, and (3) to propose guidelines for further development and use of visual tools for natural hazard risk communication. To conduct this analysis, questionnaires and direct observation will be applied. The first method will allow to measure changes in knowledge and perceptions as the same questionnaire will be filled by visitors prior and after their attendance to the exhibition. Additional items of the questionnaire will deal with the opinions on the different visualization tools, i.e. fulfillment of needs and requirements of the visitors. Direct observation will be used for analyzing the relative attraction of each of the visualization tools. This research will help to determine which tool is more suitable to communicate to the community not only as a whole, but also by its sub-groups, i.e. children or adults, locals or tourists, etc.
Saur, Randi; Hansen, Marianne Bang; Jansen, Anne; Heir, Trond
2017-04-01
To explore the types of risks and hazards that visually impaired individuals face, how they manage potential threats and how reactions to traumatic events are manifested and coped with. Participants were 17 visually impaired individuals who had experienced some kind of potentially traumatic event. Two focus groups and 13 individual interviews were conducted. The participants experienced a variety of hazards and potential threats in their daily life. Fear of daily accidents was more pronounced than fear of disasters. Some participants reported avoiding help-seeking in unsafe situations due to shame at not being able to cope. The ability to be independent was highlighted. Traumatic events were re-experienced through a variety of sense modalities. Fear of labelling and avoidance of potential risks were recurring topics, and the risks of social withdrawal and isolation were addressed. Visual impairment causes a need for predictability and adequate information to increase and prepare for coping and self-efficacy. The results from this study call for greater emphasis on universal design in order to ensure safety and predictability. Fear of being labelled may inhibit people from using assistive devices and adequate coping strategies and seeking professional help in the aftermath of a trauma. Implications for Rehabilitation Visual impairment entails a greater susceptibility to a variety of hazards and potential threats in daily life. This calls for a greater emphasis on universal design in public spaces to ensure confidence and safety. Visual impairment implies a need for predictability and adequate information to prepare for coping and self-efficacy. Rehabilitation professionals should be aware of the need for independence and self-reliance, the possible fear of labelling, avoidance of help-seeking or reluctance to use assistive devices. In rehabilitation after accidents or potential traumatizing events, professionals' knowledge about the needs for information, training and predictability is crucial. The possibility of social withdrawal or isolation should be considered.
The influence of image valence on visual attention and perception of risk in drivers.
Jones, M P; Chapman, P; Bailey, K
2014-12-01
Currently there is little research into the relationship between emotion and driving in the context of advertising and distraction. Research that has looked into this also has methodological limitations that could be affecting the results rather than emotional processing (Trick et al., 2012). The current study investigated the relationship between image valence and risk perception, eye movements and physiological reactions. Participants watched hazard perception clips which had emotional images from the international affective picture system overlaid onto them. They rated how hazardous or safe they felt, whilst eye movements, galvanic skin response and heart rate were recorded. Results suggested that participants were more aware of potential hazards when a neutral image had been shown, in comparison to positive and negative valenced images; that is, participants showed higher subjective ratings of risk, larger physiological responses and marginally longer fixation durations when viewing a hazard after a neutral image, but this effect was attenuated after emotional images. It appears that emotional images reduce sensitivity to potential hazards, and we suggest that future studies could apply these findings to higher fidelity paradigms such as driving simulators. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Watson, Clifford
2010-01-01
Traditional hazard analysis techniques utilize a two-dimensional representation of the results determined by relative likelihood and severity of the residual risk. These matrices present a quick-look at the Likelihood (Y-axis) and Severity (X-axis) of the probable outcome of a hazardous event. A three-dimensional method, described herein, utilizes the traditional X and Y axes, while adding a new, third dimension, shown as the Z-axis, and referred to as the Level of Control. The elements of the Z-axis are modifications of the Hazard Elimination and Control steps (also known as the Hazard Reduction Precedence Sequence). These steps are: 1. Eliminate risk through design. 2. Substitute less risky materials for more hazardous materials. 3. Install safety devices. 4. Install caution and warning devices. 5. Develop administrative controls (to include special procedures and training.) 6. Provide protective clothing and equipment. When added to the twodimensional models, the level of control adds a visual representation of the risk associated with the hazardous condition, creating a tall-pole for the least-well-controlled failure while establishing the relative likelihood and severity of all causes and effects for an identified hazard. Computer modeling of the analytical results, using spreadsheets and threedimensional charting gives a visual confirmation of the relationship between causes and their controls
NASA Technical Reports Server (NTRS)
Watson, Clifford C.
2011-01-01
Traditional hazard analysis techniques utilize a two-dimensional representation of the results determined by relative likelihood and severity of the residual risk. These matrices present a quick-look at the Likelihood (Y-axis) and Severity (X-axis) of the probable outcome of a hazardous event. A three-dimensional method, described herein, utilizes the traditional X and Y axes, while adding a new, third dimension, shown as the Z-axis, and referred to as the Level of Control. The elements of the Z-axis are modifications of the Hazard Elimination and Control steps (also known as the Hazard Reduction Precedence Sequence). These steps are: 1. Eliminate risk through design. 2. Substitute less risky materials for more hazardous materials. 3. Install safety devices. 4. Install caution and warning devices. 5. Develop administrative controls (to include special procedures and training.) 6. Provide protective clothing and equipment. When added to the two-dimensional models, the level of control adds a visual representation of the risk associated with the hazardous condition, creating a tall-pole for the least-well-controlled failure while establishing the relative likelihood and severity of all causes and effects for an identified hazard. Computer modeling of the analytical results, using spreadsheets and three-dimensional charting gives a visual confirmation of the relationship between causes and their controls.
Risk Presentation Using the Three Dimensions of Likelihood, Severity, and Level of Control
NASA Technical Reports Server (NTRS)
Watson, Clifford
2010-01-01
Traditional hazard analysis techniques utilize a two-dimensional representation of the results determined by relative likelihood and severity of the residual risk. These matrices present a quick-look at the Likelihood (Y-axis) and Severity (X-axis) of the probable outcome of a hazardous event. A three-dimensional method, described herein, utilizes the traditional X and Y axes, while adding a new, third dimension, shown as the Z-axis, and referred to as the Level of Control. The elements of the Z-axis are modifications of the Hazard Elimination and Control steps (also known as the Hazard Reduction Precedence Sequence). These steps are: 1. Eliminate risk through design. 2. Substitute less risky materials for more hazardous materials. 3. Install safety devices. 4. Install caution and warning devices. 5. Develop administrative controls (to include special procedures and training.) 6. Provide protective clothing and equipment. When added to the two-dimensional models, the level of control adds a visual representation of the risk associated with the hazardous condition, creating a tall-pole for the leastwell-controlled failure while establishing the relative likelihood and severity of all causes and effects for an identified hazard. Computer modeling of the analytical results, using spreadsheets and three-dimensional charting gives a visual confirmation of the relationship between causes and their controls.
Digital Semaphore: Tactical Implications of QR Code Optical Signaling for Fleet Communications
2013-06-01
Emissions Control (EMCON) and Hazards of Electromagnetic Radiation to Ordnance (HERO) restrict the ability for Naval Vessels to communicate using...importance of visual communications methods is brought to light by discussing emissions control, hazards of electromagnetic radiation to ordnance , and...overview of emissions restrictions including Emissions Control (EMCON) and Hazards of Electromagnetic Radiation to Ordnance (HERO). Chapter VII is
Safe Use of Hydrogen and Hydrogen Systems
NASA Technical Reports Server (NTRS)
Maes, Miguel
2006-01-01
This is a viewgraph presentation that is a course for teaching the safe use of hydrogen. The objectives of the course are 1. To familiarize the student with H2 safety properties 2. To enable the identification, evaluations and addressing of H2 system hazards 3. To teach: a. Safe practices for, b. Design, c. Materials selection, d. H2 system operation, e. Physical principles and empirical observations on which these safe practices are based, f. How to respond to emergency situations involving H2, g How to visualize safety concepts through in-class exercises, h. Identify numerous parameters important to H2 safety.
Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis
ERIC Educational Resources Information Center
Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying
2012-01-01
This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…
Approach-avoidance pattern of visual attention in hazardous drinkers with ambivalence.
Lee, Saerom; Cho, Sungkun; Lee, Jang-Han
2014-03-01
Ambivalence toward alcohol often develops when hazardous drinkers try to quit or to control their drinking. The purpose of this study was to investigate the differences between hazardous drinkers with and without ambivalence toward alcohol in terms of their visual attention to alcohol-related pictures over time using an eye-tracker. The study included 20 hazardous drinkers with ambivalence and 21 hazardous drinkers without ambivalence. The eye movements of the participants were monitored while the participants conducted a free-viewing task in which 20 pairs of alcohol-related pictures and matched control pictures were presented. The results showed that the hazardous drinkers with ambivalence were more attentive to the alcohol-related pictures at first and were more attentive to the control pictures toward the end of the task. On the other hand, the hazardous drinkers without ambivalence were more attentive to the alcohol-related pictures from beginning to end. The findings of this study indicated that ambivalence toward alcohol resulted in the inclination to approach and then avoid alcohol in a consecutive sequence. The present results could be helpful in distinguishing hazardous drinkers who may have ambivalence toward alcohol and identifying the pattern of ambivalence more concretely. Additionally, further studies need to consider the time that is important to measure ambivalence toward alcohol. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hybrid 3D reconstruction and image-based rendering techniques for reality modeling
NASA Astrophysics Data System (ADS)
Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.
2000-12-01
This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.
Technical parameters for specifying imagery requirements
NASA Technical Reports Server (NTRS)
Coan, Paul P.; Dunnette, Sheri J.
1994-01-01
Providing visual information acquired from remote events to various operators, researchers, and practitioners has become progressively more important as the application of special skills in alien or hazardous situations increases. To provide an understanding of the technical parameters required to specify imagery, we have identified, defined, and discussed seven salient characteristics of images: spatial resolution, linearity, luminance resolution, spectral discrimination, temporal discrimination, edge definition, and signal-to-noise ratio. We then describe a generalizing imaging system and identified how various parts of the system affect the image data. To emphasize the different applications of imagery, we have constrasted the common television system with the significant parameters of a televisual imaging system for technical applications. Finally, we have established a method by which the required visual information can be specified by describing certain technical parameters which are directly related to the information content of the imagery. This method requires the user to complete a form listing all pertinent data requirements for the imagery.
Bissert, P T; Carr, J L; DuCarme, J P; Smith, A K
2016-01-01
The continuous mining machine is a key piece of equipment used in underground coal mining operations. Over the past several decades these machines have been involved in a number of mine worker fatalities. Proximity detection systems have been developed to avert hazards associated with operating continuous mining machines. Incorporating intelligent design into proximity detection systems allows workers greater freedom to position themselves to see visual cues or avoid other hazards such as haulage equipment or unsupported roof or ribs. However, intelligent systems must be as safe as conventional proximity detection systems. An evaluation of the 39 fatal accidents for which the Mine Safety and Health Administration has published fatality investigation reports was conducted to determine whether the accident may have been prevented by conventional or intelligent proximity. Multiple zone configurations for the intelligent systems were studied to determine how system performance might be affected by the zone configuration. Researchers found that 32 of the 39 fatalities, or 82 percent, may have been prevented by both conventional and intelligent proximity systems. These results indicate that, by properly configuring the zones of an intelligent proximity detection system, equivalent protection to a conventional system is possible.
NASA Astrophysics Data System (ADS)
Medina, José M.; Díaz, José A.
2006-05-01
Simple visual-reaction times (VRT) were measured for a variety of stimuli selected along red-green (L-M axis) and blue-yellow [S-(L+M) axis] directions in the isoluminant plane under different adaptation stimuli. Data were plotted in terms of the RMS cone contrast in contrast-threshold units. For each opponent system, a modified Piéron function was fitted in each experimental configuration and on all adaptation stimuli. A single function did not account for all the data, confirming the existence of separate postreceptoral adaptation mechanisms in each opponent system under suprathreshold conditions. The analysis of the VRT-hazard functions suggested that both color-opponent mechanisms present a well-defined, transient-sustained structure at marked suprathreshold conditions. The influence of signal polarity and chromatic adaptation on each color axis proves the existence of asymmetries in the integrated hazard functions, suggesting separate detection mechanisms for each pole (red, green, blue, and yellow detectors).
[Risks and health problems caused by the use of video terminals].
Tamez González, Silvia; Ortiz-Hernández, Luis; Martínez-Alcántara, Susana; Méndez-Ramírez, Ignacio
2003-01-01
To evaluate the association between video display terminal (VDT) use and health hazards, occupational risks, and psychosocial factors, in newspaper workers. A cross-sectional study was conducted in 1998 in a representative sample (n = 68) drawn from a population of 218 VDT operators in Mexico City. Data were collected using a self-administered questionnaire. Data were confirmed by performing physical examinations. The research hypothesis was that both the current and cumulative use of VDT are associated with visual, musculoskeletal system, and skin illnesses, as well as with fatigue and mental or psychosomatic disorders. Occupational health hazards were assessed (visual problems, postural risks, sedentary work, computer mouse use, excessive heat, and overcrowding), as well as psychosocial factors related to work organization (psychological demands, work control, and social support). Prevalence ratios were adjusted for confounding variables like age, sex and schooling. Women were more likely than men to have upper extremity musculoskeletal disorders (MSD), dermatitis, and seborrheic eczema. VDT use was associated with neuro-visual fatigue, upper extremity MSD, dermatitis, and seborrheic eczema. Computer mouse use and postural risks were significantly associated with health problems. Psychosocial factors were mainly associated with mental problems, psychosomatic disorders, and fatigue. Intense use of video screens has been found to cause musculoskeletal disorders of the hand. The diversification of tasks and control of labor processes itself had a protective effect against psychosomatic disorders and pathological fatigue.
HAZPAC; an interactive map of Pacific Rim natural hazards, population, and infrastructure
Bemis, B.L.; Goss, H.V.; Yurkovich, E.S.; Perron, T.J.; Howell, D.G.
2002-01-01
This is an online version of a CD-ROM publication. The text files that describe using this publication make reference to software provided on the disc. For this online version the software can be downloaded for free from Adobe Systems and Environmental Systems Research Institute, Inc. (ESRI). Welcome to HAZPAC! HAZPAC is an interactive map about natural hazard risk in the Pacific Rim region. It is intended to communicate to a broad audience the ideas of 'Crowding the Rim,' which is an international, public-private partnership that fosters collaborative solutions for regional risks. HAZPAC, which stands for 'HAZards of the PACific,' uses Geographic Information System (GIS) technology to help people visualize the socioeconomic connections and shared hazard vulnerabilities among Pacific Rim countries, as well as to explore the general nature of risk. Please refer to the 'INTRODUCTION TO HAZPAC' section of the readme file below to determine which HAZPAC project will be right for you. Once you have decided which HAZPAC project is suitable for you, please refer to the 'GETTING STARTED' sections in the readme file for some basic information that will help you begin using HAZPAC. Also, we highly recommend that you follow the Tutorial exercises in the project-specific HAZPAC User Guides. The User Guides are PDF (Portable Document Format) files that must be read with Adobe Acrobat Reader (a free copy of Acrobat Reader is available using the link near the bottom of this page).
Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J
2014-02-01
A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.
Dust: A major environmental hazard on the earth's moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiken, G.; Vaniman, D.; Lehnert, B.
1990-01-01
On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.
Christ, Sharon L; Lee, David J; Lam, Byron L; Zheng, D Diane; Arheart, Kristopher L
2008-08-01
To estimate the direct effects of self-reported visual impairment (VI) on health, disability, and mortality and to estimate the indirect effects of VI on mortality through health and disability mediators. The National Health Interview Survey (NHIS) is a population-based annual survey designed to be representative of the U.S. civilian noninstitutionalized population. The National Death Index of 135,581 NHIS adult participants, 18 years of age and older, from 1986 to 1996 provided the mortality linkage through 2002. A generalized linear structural equation model (GSEM) with latent variable was used to estimate the results of a system of equations with various outcomes. Standard errors and test statistics were corrected for weighting, clustering, and stratification. VI affects mortality, when direct adjustment was made for the covariates. Severe VI increases the hazard rate by a factor of 1.28 (95% CI: 1.07-1.53) compared with no VI, and some VI increases the hazard by a factor of 1.13 (95% CI: 1.07-1.20). VI also affects mortality indirectly through self-rated health and disability. The total effects (direct effects plus mediated effects) on the hazard of mortality of severe VI and some VI relative to no VI are hazard ratio (HR) 1.54 (95% CI: 1.28-1.86) and HR 1.23 (95% CI: 1.16-1.31), respectively. In addition to the direct link between VI and mortality, the effects of VI on general health and disability contribute to an increased risk of death. Ignoring the latter may lead to an underestimation of the substantive impact of VI on mortality.
NASA Astrophysics Data System (ADS)
Tost, Jordi; Olen, Stephanie M.; Bookhagen, Bodo; Heidmann, Frank
2017-04-01
The DIGENTI project ("DIGitaler ENtscheiderTIsch für das Naturgefahrenmanagement auf Basis von Satellitendaten und Volunteered Geographic Information") has the goal of quantifying and communicating the threat of natural hazards in the Cesar and La Guajira departments of northeast Colombia. The end-goal of the project is to provide an interactive guide for policy and decision makers, and for disaster relief coordination. Over the last years, abundant research has been done in order to analyze risk and to provide relevant information that improves effectiveness in disaster management. The communication of natural hazards risk has traditionally been built upon the estimation of hazard maps. In the context of landslides, hazard maps are used to depict potential danger from landslides and visualize the possibility of future landsliding throughout a given area. Such hazard maps provide a static snapshot of the local estimated threat in a region. However, in mountainous regions, a sufficiently large landslide in remote mountainous areas may represent a potential threat to settlements located downstream of a landslide event. The research presented here proposes an approach to visualize and interactively explore landslide risk by combining static hazard maps, hydrologic networks, and OpenStreetMap data. We estimated the potential for hillslope instabilities scenarios in the region of interest by using the TanDEM-X World DEM to calculate a suite Factor of Safety (FOS) maps. The FOS estimates the ratio of total resisting and driving forces to hillslope mass movements. By combining the World DEM with other environmental data (e.g., the Harmonized World Soil Database), we were able to create a suite of high-resolution landslide potential maps for the region of interest. The suite of FOS maps are calculated based on user-selectable parameters (e.g, total mass sliding thickness) that are not well constrained by field observations. We additionally use the TanDEM-X World DEM to calculate the hydrologic network for our study area. This allows not only to delineate the stream network, but also to calculate the area upstream of settlements located near rivers or streams that may be impacted by distal landsliding. By integrating the potential landslide hazard in the upstream area, we create a more robust threat estimate for vulnerable settlements. Disaster relief is not only affected by the physical consequences of a hazardous event, but also by the area's accessibility and mobility capability for internal displacements. We therefore also estimate the threat along roads and to other infrastructure (e.g. bridges). Decisions based on the area's road network have to be constantly taken, for instance, to send rescue teams or to coordinate humanitarian logistics. With our approach, we are able to identify critical spots along roads with high likelihood of getting damaged. Furthermore, given a particular potential landslide location and the calculation of its downstream hydrologic network, it is possible to estimate which settlements, roads or bridges may be at risk. This approach could be integrated into flooding early warning systems and into the disaster management response phase to foresee dangers and losses and plan evacuations on time.
Decision support system for emergency management of oil spill accidents in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Liubartseva, Svitlana; Coppini, Giovanni; Pinardi, Nadia; De Dominicis, Michela; Lecci, Rita; Turrisi, Giuseppe; Cretì, Sergio; Martinelli, Sara; Agostini, Paola; Marra, Palmalisa; Palermo, Francesco
2016-08-01
This paper presents an innovative web-based decision support system to facilitate emergency management in the case of oil spill accidents, called WITOIL (Where Is The Oil). The system can be applied to create a forecast of oil spill events, evaluate uncertainty of the predictions, and calculate hazards based on historical meteo-oceanographic datasets. To compute the oil transport and transformation, WITOIL uses the MEDSLIK-II oil spill model forced by operational meteo-oceanographic services. Results of the modeling are visualized through Google Maps. A special application for Android is designed to provide mobile access for competent authorities, technical and scientific institutions, and citizens.
Cox, Jolene A; Beanland, Vanessa; Filtness, Ashleigh J
2017-10-03
The ability to detect changing visual information is a vital component of safe driving. In addition to detecting changing visual information, drivers must also interpret its relevance to safety. Environmental changes considered to have high safety relevance will likely demand greater attention and more timely responses than those considered to have lower safety relevance. The aim of this study was to explore factors that are likely to influence perceptions of risk and safety regarding changing visual information in the driving environment. Factors explored were the environment in which the change occurs (i.e., urban vs. rural), the type of object that changes, and the driver's age, experience, and risk sensitivity. Sixty-three licensed drivers aged 18-70 years completed a hazard rating task, which required them to rate the perceived hazardousness of changing specific elements within urban and rural driving environments. Three attributes of potential hazards were systematically manipulated: the environment (urban, rural); the type of object changed (road sign, car, motorcycle, pedestrian, traffic light, animal, tree); and its inherent safety risk (low risk, high risk). Inherent safety risk was manipulated by either varying the object's placement, on/near or away from the road, or altering an infrastructure element that would require a change to driver behavior. Participants also completed two driving-related risk perception tasks, rating their relative crash risk and perceived risk of aberrant driving behaviors. Driver age was not significantly associated with hazard ratings, but individual differences in perceived risk of aberrant driving behaviors predicted hazard ratings, suggesting that general driving-related risk sensitivity plays a strong role in safety perception. In both urban and rural scenes, there were significant associations between hazard ratings and inherent safety risk, with low-risk changes perceived as consistently less hazardous than high-risk impact changes; however, the effect was larger for urban environments. There were also effects of object type, with certain objects rated as consistently more safety relevant. In urban scenes, changes involving pedestrians were rated significantly more hazardous than all other objects, and in rural scenes, changes involving animals were rated as significantly more hazardous. Notably, hazard ratings were found to be higher in urban compared with rural driving environments, even when changes were matched between environments. This study demonstrates that drivers perceive rural roads as less risky than urban roads, even when similar scenarios occur in both environments. Age did not affect hazard ratings. Instead, the findings suggest that the assessment of risk posed by hazards is influenced more by individual differences in risk sensitivity. This highlights the need for driver education to account for appraisal of hazards' risk and relevance, in addition to hazard detection, when considering factors that promote road safety.
Nondestructive Testing of Overhead Transmission LINES—NUMERICAL and Experimental Investigation
NASA Astrophysics Data System (ADS)
Kulkarni, S.; Hurlebaus, S.
2009-03-01
Overhead transmission lines are periodically inspected using both on-ground and helicopter-aided visual inspection. Factors including sun glare, cloud cover, close proximity to power lines and the rapidly changing visual circumstances make airborne inspection of power lines a particularly hazardous task. In this study, a finite element model is developed that can be used to create the theoretical dispersion curves of an overhead transmission line. The numerical results are then verified with experimental test using a non-contact and broadband laser detection technique. The methodology developed in this study can be further extended to a continuous monitoring system and be applied to other cable monitoring applications, such as bridge cable monitoring, which would otherwise put human inspectors at risk.
NASA Astrophysics Data System (ADS)
Taylor, Faith E.; Malamud, Bruce D.; Millington, James D. A.
2016-04-01
The configuration of infrastructure networks such as roads, drainage and power lines can both affect and be affected by natural hazards such as earthquakes, intense rain, wildfires and extreme temperatures. In this paper, we present and compare two methods to quantify urban topology on approximate scales of 0.0005 km2 to 10 km2 and create classifications of different 'urban textures' that relate to risk of natural hazard impact in an area. The methods we use focus on applicability in urban developing country settings, where access to high resolution and high quality data may be difficult. We use the city of Nairobi, Kenya to trial these methods. Nairobi has a population >3 million, and is a mix of informal settlements, residential and commercial development. The city and its immediate surroundings are subject to a variety of natural hazards such as floods, landslides, fires, drought, hail, heavy wind and extreme temperatures; all of these hazards can occur singly, but also have the potential for one to trigger another, thus providing a 'cascade' of hazards, or for two of the hazards to occur spatially and temporally near each other and interact. We use two measures of urban texture: (i) Street block textures, (ii) Google Earth land cover textures. Street block textures builds on the methodology of Louf and Barthelemy (2014) and uses Open Street Map data to analyse the shape, size, complexity and pattern of individual blocks of land created by fully enclosed loops of the major and minor road network of Nairobi. We find >4000 of these blocks ranging in size from approximately 0.0005 km2 to 10 km2, with approximately 5 classifications of urban texture. Google Earth land cover texture is a visual classification of homogeneous parcels of land performed in Google Earth using high-resolution airborne imagery and a qualitative criteria for each land cover type. Using the Google Earth land cover texture method, we identify >40 'urban textures' based on visual characteristics such as colour, texture, shadow and setting and have created a clear criteria for classifying an area based on its visual characteristics. These two methods for classifying urban texture in Nairobi are compared in a GIS and in the field to investigate whether there is a link between the visual appearance of an area and its network topology. From these urban textures, we may start to identify areas where (a) urban texture types may indicate a relative propensity to certain hazards and their interactions and (b) urban texture types that may increase or decrease the impact of a hazard that occurs in that area.
49 CFR 173.37 - Hazardous Materials in Flexible Bulk Containers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... an external visual inspection by the person filling the Flexible Bulk Container to ensure: (1) The... transported in cargo transport units when offered for transportation by vessel. (7) Flexible Bulk Containers... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous Materials in Flexible Bulk Containers...
49 CFR 173.37 - Hazardous Materials in Flexible Bulk Containers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... an external visual inspection by the person filling the Flexible Bulk Container to ensure: (1) The... transported in cargo transport units when offered for transportation by vessel. (7) Flexible Bulk Containers... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous Materials in Flexible Bulk Containers...
Environmental aspects of large-scale wind-power systems in the UK
NASA Astrophysics Data System (ADS)
Robson, A.
1984-11-01
Environmental issues relating to the introduction of large, MW-scale wind turbines at land-based sites in the UK are discussed. Noise, television interference, hazards to bird life, and visual effects are considered. Areas of uncertainty are identified, but enough is known from experience elsewhere in the world to enable the first UK machines to be introduced in a safe and environementally acceptable manner. Research to establish siting criteria more clearly, and significantly increase the potential wind-energy resource is mentioned. Studies of the comparative risk of energy systems are shown to be overpessimistic for UK wind turbines.
Yan, Xuedong; Zhang, Xinran; Zhang, Yuting; Li, Xiaomeng; Yang, Zhuo
2016-01-01
The intersection field of view (IFOV) indicates an extent that the visual information can be observed by drivers. It has been found that further enhancing IFOV can significantly improve emergent collision avoidance performance at intersections, such as faster brake reaction time, smaller deceleration rate, and lower traffic crash involvement risk. However, it is not known how IFOV affects drivers’ eye movements, visual attention and the relationship between visual searching and traffic safety. In this study, a driving simulation experiment was conducted to uncover the changes in drivers’ visual performance during the collision avoidance process as a function of different field of views at an intersection by using an eye tracking system. The experimental results showed that drivers’ ability in identifying the potential hazard in terms of visual searching was significantly affected by different IFOV conditions. As the IFOVs increased, drivers had longer gaze duration (GD) and more number of gazes (NG) in the intersection surrounding areas and paid more visual attention to capture critical visual information on the emerging conflict vehicle, thus leading to a better collision avoidance performance and a lower crash risk. It was also found that female drivers had a better visual performance and a lower crash rate than male drivers. From the perspective of drivers’ visual performance, the results strengthened the evidence that further increasing intersection sight distance standards should be encouraged for enhancing traffic safety. PMID:27716824
NASA Astrophysics Data System (ADS)
Takarada, S.
2012-12-01
The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in vent position, volume, eruption rate, wind directions and topography. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption predictions. The use of the next-generation system should enable the visualization of past volcanic eruptions datasets such as distributions, eruption volumes and eruption rates, on maps and diagrams using timeline and GIS technology. Similar volcanic eruptions scenarios should be easily searchable from the eruption database. Using the volcano hazard assessment system, prediction of the time and area that would be affected by volcanic eruptions at any locations near the volcano should be possible, using numerical simulations. The system should estimate volcanic hazard risks by overlaying the distributions of volcanic deposits on major roads, houses and evacuation areas using a GIS enabled systems. Probabilistic volcanic hazards maps in active volcano sites should be made based on numerous numerical simulations. The next-generation real-time hazard assessment system would be implemented with user-friendly interface, making the risk assessment system easily usable and accessible online.
Wolfger, B; Schwartzkopf-Genswein, K S; Barkema, H W; Pajor, E A; Levy, M; Orsel, K
2015-01-01
Bovine respiratory disease (BRD), which can cause substantial losses for feedlot operations, is often difficult to detect based solely on visual observations. The objectives of the current study were to determine a BRD case identification based on clinical and laboratory parameters and assess the value of feeding behavior for early detection of BRD. Auction-derived, mixed-breed beef steers (n = 213) with an average arrival weight of 294 kg were placed at a southern Alberta commercial feedlot equipped with an automated feed bunk monitoring system. Feeding behavior was recorded continuously (1-s intervals) for 5 wk after arrival and summarized into meals. Meals were defined as feeding events that were interrupted by less than 300 s nonfeeding. Meal intake (g) and meal time (min) were further summarized into daily mean, minimum, maximum, and sum and, together with frequency of meals per day, were fit into a discrete survival time analysis with a conditional log-log link. Feedlot staff visually evaluated (pen-checked) health status twice daily. Within 35 d after arrival, 76% (n = 165) of the steers had 1 or more clinical signs of BRD (reluctance to move, crusted nose, nasal or ocular discharge, drooped ears or head, and gaunt appearance). Whereas 41 blood samples could not be processed due to immediate freezing, for 124 of these steers, complete and differential blood cell count, total serum protein, plasma fibrinogen, serum concentration of haptoglobin (HP), and serum amyloid A (SAA) were determined. The disease definition for BRD was a rectal temperature ≥ 40.0°C, at least 2 clinical signs of BRD, and HP > 0.15 mg/mL. It was noteworthy that 94% of the 124 steers identified by the feedlot staff with clinical signs of BRD had HP > 0.15 mg/mL. An increase in mean meal intake, frequency, and mean inter-meal interval was associated with a decreased hazard for developing BRD 7 d before visual identification (P < 0.001). Furthermore, increased mean mealtime, frequency, and mean inter-meal interval were associated with a decreased BRD hazard up to 7 d before feedlot staff noticed clinical symptoms (P < 0.001). In conclusion, mean intake per meal as well as mean meal time and frequency of meals could be used to predict the hazard of BRD in feedlot cattle 7 d before visual detection and could be considered in commercial feedlot settings once a predictive algorithm has been developed.
NASA Astrophysics Data System (ADS)
Alloy, A.; Gonzalez Dominguez, F.; Nila Fonseca, A. L.; Ruangsirikulchai, A.; Gentle, J. N., Jr.; Cabral, E.; Pierce, S. A.
2016-12-01
Land Subsidence as a result of groundwater extraction in central Mexico's larger urban centers initiated in the 80's as a result of population and economic growth. The city of Celaya has undergone subsidence for a few decades and a consequence is the development of an active normal fault system that affects its urban infrastructure and residential areas. To facilitate its analysis and a land use decision-making process we created an online interactive map enabling users to easily obtain information associated with land subsidence. Geological and socioeconomic data of the city was collected, including fault location, population data, and other important infrastructure and structural data has been obtained from fieldwork as part of a study abroad interchange undergraduate course. The subsidence and associated faulting hazard map was created using an InSAR derived subsidence velocity map and population data from INEGI to identify hazard zones using a subsidence gradient spatial analysis approach based on a subsidence gradient and population risk matrix. This interactive map provides a simple perspective of different vulnerable urban elements. As an accessible visualization tool, it will enhance communication between scientific and socio-economic disciplines. Our project also lays the groundwork for a future expert analysis system with an open source and easily accessible Python coded, SQLite database driven website which archives fault and subsidence data along with visual damage documentation to civil structures. This database takes field notes and provides an entry form for uniform datasets, which are used to generate a JSON. Such a database is useful because it allows geoscientists to have a centralized repository and access to their observations over time. Because of the widespread presence of the subsidence phenomena throughout cities in central Mexico, the spatial analysis has been automated using the open source software R. Raster, rgeos, shapefiles, and rgdal libraries have been used to develop the script which permits to obtain the raster maps of horizontal gradient and population density. An advantage is that this analysis can be automated for periodic updates or repurposed for similar analysis in other cities, providing an easily accessible tool for land subsidence hazard assessments.
SOCIAL AND NON-SOCIAL HAZARD RESPONSE IN DRIVERS WITH AUTISM SPECTRUM DISORDER
Bishop, Haley Johnson; Biasini, Fred J.; Stavrinos, Despina
2017-01-01
Driving is a complex task that relies on manual, cognitive, visual and social skill. The social demands of driving may be challenging for individuals with Autism Spectrum Disorder (ASD) due to known social impairments. This study investigated how drivers with ASD respond to social (e.g., pedestrians) and non-social (e.g., vehicles) hazards in a driving simulator compared to typically developing drivers. Overall, participants responded faster to social hazards than non-social hazards. It was also found that drivers with typical development reacted faster to social hazards, while drivers with ASD showed no difference in reaction time to social versus non-social hazards. Future work should further investigate how social impairments in ASD may affect driving safety. PMID:28070791
The Video Display Terminal Health Hazard Debate.
ERIC Educational Resources Information Center
Clark, Carolyn A.
A study was conducted to identify the potential health hazards of visual display terminals for employees and then to develop a list of recommendations for improving the physical conditions of the workplace. Data were collected by questionnaires from 55 employees in 10 word processing departments in Topeka, Kansas. A majority of the employees…
Mazumdar, Atmadeep; Sen, Krishna Nirmalya; Lahiri, Balendra Nath
2007-01-01
The Haddon matrix is a potential tool for recognizing hazards in any operating engineering system. This paper presents a case study of operational hazards at a large construction site. The fish bone structure helps to visualize and relate the chain of events, which led to the failure of the system. The two-tier Haddon matrix approach helps to analyze the problem and subsequently prescribes preventive steps. The cybernetic approach has been undertaken to establish the relationship among event variables and to identify the ones with most potential. Those event variables in this case study, based on the cybernetic concepts like control responsiveness and controllability salience, are (a) uncontrolled swing of sheet contributing to energy, (b) slippage of sheet from anchor, (c) restricted longitudinal and transverse swing or rotation about the suspension, (d) guilt or uncertainty of the crane driver, (e) safe working practices and environment.
McCurdy, Neil J.; Griswold, William G; Lenert, Leslie A.
2005-01-01
The first moments at a disater scene are chaotic. The command center initially operates with little knowledge of hazards, geography and casualties, building up knowledge of the event slowly as information trickles in by voice radio channels. RealityFlythrough is a tele-presence system that stitches together live video feeds in real-time, using the principle of visual closure, to give command center personnel the illusion of being able to explore the scene interactively by moving smoothly between the video feeds. Using RealityFlythrough, medical, fire, law enforcement, hazardous materials, and engineering experts may be able to achieve situational awareness earlier, and better manage scarce resources. The RealityFlythrough system is composed of camera units with off-the-shelf GPS and orientation systems and a server/viewing station that offers access to images collected by the camera units in real time by position/orientation. In initial field testing using an experimental mesh 802.11 wireless network, two camera unit operators were able to create an interactive image of a simulated disaster scene in about five minutes. PMID:16779092
ERIC Educational Resources Information Center
Weisberg, Michael
Many of the findings from ergonomics research on visual display workstations are relevant to the design of interactive learning stations. This 1993 paper briefly reviews ergonomics research on visual display workstations; specifically, (1) potential health hazards from electromagnetic radiation; (2) musculoskeletal disorders; (3)vision complaints;…
Huisingh, Carrie; McGwin, Gerald; Owsley, Cynthia
2017-01-01
Background Many studies on vision and driving cessation have relied on measures of sensory function, which are insensitive to the higher order cognitive aspects of visual processing. The purpose of this study was to examine the association between traditional measures of visual sensory function and higher order visual processing skills with incident driving cessation in a population-based sample of older drivers. Methods Two thousand licensed drivers aged ≥70 were enrolled and followed-up for three years. Tests for central vision and visual processing were administered at baseline and included visual acuity, contrast sensitivity, sensitivity in the driving visual field, visual processing speed (Useful Field of View (UFOV) Subtest 2 and Trails B), and spatial ability measured by the Visual Closure Subtest of the Motor-free Visual Perception Test. Participants self-reported the month and year of driving cessation and provided a reason for cessation. Cox proportional hazards models were used to generate crude and adjusted hazard ratios with 95% confidence intervals between visual functioning characteristics and risk of driving cessation over a three-year period. Results During the study period, 164 participants stopped driving which corresponds to a cumulative incidence of 8.5%. Impaired contrast sensitivity, visual fields, visual processing speed (UFOVand Trails B), and spatial ability were significant risk factors for subsequent driving cessation after adjusting for age, gender, marital status, number of medical conditions, and miles driven. Visual acuity impairment was not associated with driving cessation. Medical problems (63%), specifically musculoskeletal and neurological problems, as well as vision problems (17%) were cited most frequently as the reason for driving cessation. Conclusion Assessment of cognitive and visual functioning can provide useful information about subsequent risk of driving cessation among older drivers. In addition, a variety of factors, not just vision, influenced the decision to stop driving and may be amenable to intervention. PMID:27353969
3D Simulation of External Flooding Events for the RISMC Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, Steven; Mandelli, Diego; Sampath, Ramprasad
2015-09-01
Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to themore » design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.« less
Remote Sensing of Martian Terrain Hazards via Visually Salient Feature Detection
NASA Astrophysics Data System (ADS)
Al-Milli, S.; Shaukat, A.; Spiteri, C.; Gao, Y.
2014-04-01
The main objective of the FASTER remote sensing system is the detection of rocks on planetary surfaces by employing models that can efficiently characterise rocks in terms of semantic descriptions. The proposed technique abates some of the algorithmic limitations of existing methods with no training requirements, lower computational complexity and greater robustness towards visual tracking applications over long-distance planetary terrains. Visual saliency models inspired from biological systems help to identify important regions (such as rocks) in the visual scene. Surface rocks are therefore completely described in terms of their local or global conspicuity pop-out characteristics. These local and global pop-out cues are (but not limited to); colour, depth, orientation, curvature, size, luminance intensity, shape, topology etc. The currently applied methods follow a purely bottom-up strategy of visual attention for selection of conspicuous regions in the visual scene without any topdown control. Furthermore the choice of models used (tested and evaluated) are relatively fast among the state-of-the-art and have very low computational load. Quantitative evaluation of these state-ofthe- art models was carried out using benchmark datasets including the Surrey Space Centre Lab Testbed, Pangu generated images, RAL Space SEEKER and CNES Mars Yard datasets. The analysis indicates that models based on visually salient information in the frequency domain (SRA, SDSR, PQFT) are the best performing ones for detecting rocks in an extra-terrestrial setting. In particular the SRA model seems to be the most optimum of the lot especially that it requires the least computational time while keeping errors competitively low. The salient objects extracted using these models can then be merged with the Digital Elevation Models (DEMs) generated from the same navigation cameras in order to be fused to the navigation map thus giving a clear indication of the rock locations.
NASA Astrophysics Data System (ADS)
Thompson, M. A.; Lindsay, J. M.; Gaillard, J.
2015-12-01
Globally, geological hazards are communicated using maps. In traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map for stakeholder and public use. However, this one-way, top-down approach to hazard communication is not necessarily effective or reliable. The messages which people take away will be dependent on the way in which they read, interpret, and understand the map, a facet of hazard communication which has been relatively unexplored. Decades of cartographic studies suggest that variables in the visual representation of data on maps, such as colour and symbology, can have a powerful effect on how people understand map content. In practice, however, there is little guidance or consistency in how hazard information is expressed and represented on maps. Accordingly, decisions are often made based on subjective preference, rather than research-backed principles. Here we present the results of a study in which we explore how hazard map design features can influence hazard map interpretation, and we propose a number of considerations for hazard map design. A series of hazard maps were generated, with each one showing the same probabilistic volcanic ashfall dataset, but using different verbal and visual variables (e.g., different colour schemes, data classifications, probabilistic formats). Following a short pilot study, these maps were used in an online survey of 110 stakeholders and scientists in New Zealand. Participants answered 30 open-ended and multiple choice questions about ashfall hazard based on the different maps. Results suggest that hazard map design can have a significant influence on the messages readers take away. For example, diverging colour schemes were associated with concepts of "risk" and decision-making more than sequential schemes, and participants made more precise estimates of hazard with isarithmic data classifications compared to binned or gradational shading. Based on such findings, we make a number of suggestions for communicating hazard using maps. Most importantly, we emphasise that multiple meanings may be taken away from a map, and this may have important implications in a crisis. We propose that engaging with map audiences in a two-way dialogue in times of peace may help prevent miscommunications in the event of a crisis.
Backscatter absorption gas imaging system
McRae, Jr., Thomas G.
1985-01-01
A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.
Backscatter absorption gas imaging system
McRae, T.G. Jr.
A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.
Laparoscopic access with a visualizing trocar.
Wolf, J S
1997-01-01
Although useful in most situations, there are several inherent disadvantages of the standard laparoscopic access techniques of Veress needle insertion and Hasson-type cannula placement. Veress needle placement may be hazardous in patients at high risk for intraabdominal adhesions and difficult in patients who are obese. The usual alternative, the Hasson-type cannula, often does not provide a good gas seal. As another option, the use of a visualizing trocar (OPTIVIEW) has proven to be effective in the initial experience at the University of Michigan. The inner trocar of the visualizing trocar is hollow except for a clear plastic conical tip with two external ridges. The trocar-cannula assembly is passed through tissue layers to enter the operative space under direct vision from a 10-mm zero-degree laparoscope placed into the trocar. Results suggest that this technique is an excellent alternative to Veress needle placement when laparoscopic access is likely to be hazardous or difficult.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Selva, Jacopo; Costa, Antonio; Sandri, Laura
2014-05-01
Probabilistic Hazard Assessment (PHA) is becoming an essential tool for risk mitigation policies, since it allows to quantify the hazard due to hazardous phenomena and, differently from the deterministic approach, it accounts for both aleatory and epistemic uncertainties. On the other hand, one of the main disadvantages of PHA methods is that their results are not easy to understand and interpret by people who are not specialist in probabilistic tools. For scientists, this leads to the issue of providing tools that can be easily used and understood by decision makers (i.e., risk managers or local authorities). The work here presented fits into the problem of simplifying the transfer between scientific knowledge and land protection policies, by providing an interface between scientists, who produce PHA's results, and decision makers, who use PHA's results for risk analyses. In this framework we present pyPHaz, an open tool developed and designed to visualize and analyze PHA results due to one or more phenomena affecting a specific area of interest. The software implementation has been fully developed with the free and open-source Python programming language and some featured Python-based libraries and modules. The pyPHaz tool allows to visualize the Hazard Curves (HC) calculated in a selected target area together with different levels of uncertainty (mean and percentiles) on maps that can be interactively created and modified by the user, thanks to a dedicated Graphical User Interface (GUI). Moreover, the tool can be used to compare the results of different PHA models and to merge them, by creating ensemble models. The pyPHaz software has been designed with the features of storing and accessing all the data through a MySQL database and of being able to read as input the XML-based standard file formats defined in the frame of GEM (Global Earthquake Model). This format model is easy to extend also to any other kind of hazard, as it will be shown in the applications here used as examples of the pyPHaz potentialities, that are focused on a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra dispersal and fallout applied to the municipality of Naples.
iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region
NASA Astrophysics Data System (ADS)
Sumi, S. J.; Ferreira, C.
2017-12-01
Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system simulations will help to develop a seamless integration with the boundary systems in the service-gap area with new insights into our scientific understanding of such complex systems. A visualization system is being developed to allow stake holders and the community to have access to the flood forecasting for their region with sufficient lead time.
Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha
2016-05-01
A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.
RiskChanges Spatial Decision Support system for the analysis of changing multi-hazard risk
NASA Astrophysics Data System (ADS)
van Westen, Cees; Zhang, Kaixi; Bakker, Wim; Andrejchenko, Vera; Berlin, Julian; Olyazadeh, Roya; Cristal, Irina
2015-04-01
Within the framework of the EU FP7 Marie Curie Project CHANGES and the EU FP7 Copernicus project INCREO a spatial decision support system was developed with the aim to analyse the effect of risk reduction planning alternatives on reducing the risk now and in the future, and support decision makers in selecting the best alternatives. Central to the SDSS are the stakeholders. The envisaged users of the system are organizations involved in planning of risk reduction measures, and that have staff capable of visualizing and analyzing spatial data at a municipal scale. The SDSS should be able to function in different countries with different legal frameworks and with organizations with different mandates. These could be subdivided into Civil protection organization with the mandate to design disaster response plans, Expert organizations with the mandate to design structural risk reduction measures (e.g. dams, dikes, check-dams etc), and planning organizations with the mandate to make land development plans. The SDSS can be used in different ways: analyzing the current level of risk, analyzing the best alternatives for risk reduction, the evaluation of the consequences of possible future scenarios to the risk levels, and the evaluation how different risk reduction alternatives will lead to risk reduction under different future scenarios. The SDSS is developed based on open source software and following open standards, for code as well as for data formats and service interfaces. Code development was based upon open source software as well. The architecture of the system is modular. The various parts of the system are loosely coupled, extensible, using standards for interoperability, flexible and web-based. The Spatial Decision Support System is composed of a number of integrated components. The Risk Assessment component allows to carry out spatial risk analysis, with different degrees of complexity, ranging from simple exposure (overlay of hazard and assets maps) to quantitative analysis (using different hazard types, temporal scenarios and vulnerability curves) resulting into risk curves. The platform does not include a component to calculate hazard maps, and existing hazard maps are used as input data for the risk component. The second component of the SDSS is a risk reduction planning component, which forms the core of the platform. This component includes the definition of risk reduction alternatives (related to disaster response planning, risk reduction measures and spatial planning) and links back to the risk assessment module to calculate the new level of risk if the measure is implemented, and a cost-benefit (or cost-effectiveness/ Spatial Multi Criteria Evaluation) component to compare the alternatives and make decision on the optimal one. The third component of the SDSS is a temporal scenario component, which allows to define future scenarios in terms of climate change, land use change and population change, and the time periods for which these scenarios will be made. The component doesn't generate these scenarios but uses input maps for the effect of the scenarios on the hazard and assets maps. The last component is a communication and visualization component, which can compare scenarios and alternatives, not only in the form of maps, but also in other forms (risk curves, tables, graphs)
T-SENSE a millimeter wave scanner for letters
NASA Astrophysics Data System (ADS)
Nüßler, Dirk; Heinen, Sven; Sprenger, Thorsten; Hübsch, Daniel; Würschmidt, Tobais
2013-10-01
Letter bombs are an increasing problem for public authorities, companies and public persons. Nowadays every big company uses in his headquarters inspection system to check the incoming correspondence. Generally x-ray systems are used to inspect complete baskets or bags of letters. This concept which works very fine in big company with a large postal center is not usable for small companies or private persons. For an office environment with a small number of letters x-ray systems are too expensive and oversized. X-ray systems visualize the wires and electric circuits inside the envelope. If a letter contains no metallic components but hazard materials or drugs, the dangerous content is invisible for the most low-cost x-ray systems. Millimeter wave imagining systems offer the potential to close this gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J.R.; O`Neill, D.C.; Barker, B.W.
1994-10-01
The research described in this report is directed toward the development of a workstation-based data management, analysis and visualization system which can be used to improve the Air Force`s capability to evaluate site specific environmental hazards. The initial prototype system described in this report is directed toward a specific application to the Massachusetts Military Reservation (formerly Otis Air Force Base) on Cape Cod, Massachusetts. This system integrates a comprehensive, on-line environmental database for the site together with a map-based graphical user interface which facilitates analyst access to the databases and analysis tools needed to characterize the subsurface geologic and hydrologicmore » environments at the site.« less
Cartograms Facilitate Communication of Climate Change Risks and Responsibilities
NASA Astrophysics Data System (ADS)
Döll, Petra
2017-12-01
Communication of climate change (CC) risks is challenging, in particular if global-scale spatially resolved quantitative information is to be conveyed. Typically, visualization of CC risks, which arise from the combination of hazard, exposure and vulnerability, is confined to showing only the hazards in the form of global thematic maps. This paper explores the potential of contiguous value-by-area cartograms, that is, distorted density-equalizing maps, for improving communication of CC risks and the countries' differentiated responsibilities for CC. Two global-scale cartogram sets visualize, as an example, groundwater-related CC risks in 0.5° grid cells, another one the correlation of (cumulative) fossil-fuel carbon dioxide emissions with the countries' population and gross domestic product. Viewers of the latter set visually recognize the lack of global equity and that the countries' wealth has been built on harmful emissions. I recommend that CC risks are communicated by bivariate gridded cartograms showing the hazard in color and population, or a combination of population and a vulnerability indicator, by distortion of grid cells. Gridded cartograms are also appropriate for visualizing the availability of natural resources to humans. For communicating complex information, sets of cartograms should be carefully designed instead of presenting single cartograms. Inclusion of a conventionally distorted map enhances the viewers' capability to take up the information represented by distortion. Empirical studies about the capability of global cartograms to convey complex information and to trigger moral emotions should be conducted, with a special focus on risk communication.
NASA Astrophysics Data System (ADS)
Sittenfeld, D.; Choi, F.; Farooque, M.; Helmuth, B.
2017-12-01
Because climate hazards present a range of potential impacts and considerations for different kinds of stakeholders, community responses to increase resilience are best considered through the inclusion of diverse, informed perspectives. The Science Center Public Forums project has created multifaceted modules to engage diverse publics in substantive deliberations around four hazards: heat waves, drought, extreme precipitation, and sea level rise. Using a suite of background materials including visualization and narrative components, each of these daylong dialogues engage varied groups of lay-participants at eight US science centers in learning about hazard vulnerabilities and tradeoffs of proposed strategies for building resilience. Participants listen to and consider the priorities and perspectives of fellow residents and stakeholders, and work together to formulate detailed resilience plans reflecting both current science and informed public values. Deliverables for the project include visualizations of hazard vulnerabilities and strategies through immersive planetarium graphics and Google Earth, stakeholder perspective narratives, and detailed background materials for each project hazard. This session will: communicate the process for developing the hazard modules with input from subject matter experts, outline the process for iterative revisions based upon findings from formative focus groups, share results generated by participants of the project's first two pilot forums, and describe plans for broader implementation. These activities and outcomes could help to increase the capacity of informal science education institutions as trusted conveners for informed community dialogue by educating residents about vulnerabilities and engaging them in critical thinking about potential policy responses to critical climate hazards while sharing usable public values and priorities with civic planners.
Vatovec, Christine
2013-01-01
Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. We report results from thirteen cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed three formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (pre-attentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared to abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: pre-attentive “incremental risk” meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals. PMID:22715919
Severtson, Dolores J; Vatovec, Christine
2012-08-01
Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. The authors report results from 13 cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed 3 formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (preattentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared with abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: preattentive "incremental risk" meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals.
SCEC Earthquake System Science Using High Performance Computing
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Jordan, T. H.; Archuleta, R.; Beroza, G.; Bielak, J.; Chen, P.; Cui, Y.; Day, S.; Deelman, E.; Graves, R. W.; Minster, J. B.; Olsen, K. B.
2008-12-01
The SCEC Community Modeling Environment (SCEC/CME) collaboration performs basic scientific research using high performance computing with the goal of developing a predictive understanding of earthquake processes and seismic hazards in California. SCEC/CME research areas including dynamic rupture modeling, wave propagation modeling, probabilistic seismic hazard analysis (PSHA), and full 3D tomography. SCEC/CME computational capabilities are organized around the development and application of robust, re- usable, well-validated simulation systems we call computational platforms. The SCEC earthquake system science research program includes a wide range of numerical modeling efforts and we continue to extend our numerical modeling codes to include more realistic physics and to run at higher and higher resolution. During this year, the SCEC/USGS OpenSHA PSHA computational platform was used to calculate PSHA hazard curves and hazard maps using the new UCERF2.0 ERF and new 2008 attenuation relationships. Three SCEC/CME modeling groups ran 1Hz ShakeOut simulations using different codes and computer systems and carefully compared the results. The DynaShake Platform was used to calculate several dynamic rupture-based source descriptions equivalent in magnitude and final surface slip to the ShakeOut 1.2 kinematic source description. A SCEC/CME modeler produced 10Hz synthetic seismograms for the ShakeOut 1.2 scenario rupture by combining 1Hz deterministic simulation results with 10Hz stochastic seismograms. SCEC/CME modelers ran an ensemble of seven ShakeOut-D simulations to investigate the variability of ground motions produced by dynamic rupture-based source descriptions. The CyberShake Platform was used to calculate more than 15 new probabilistic seismic hazard analysis (PSHA) hazard curves using full 3D waveform modeling and the new UCERF2.0 ERF. The SCEC/CME group has also produced significant computer science results this year. Large-scale SCEC/CME high performance codes were run on NSF TeraGrid sites including simulations that use the full PSC Big Ben supercomputer (4096 cores) and simulations that ran on more than 10K cores at TACC Ranger. The SCEC/CME group used scientific workflow tools and grid-computing to run more than 1.5 million jobs at NCSA for the CyberShake project. Visualizations produced by a SCEC/CME researcher of the 10Hz ShakeOut 1.2 scenario simulation data were used by USGS in ShakeOut publications and public outreach efforts. OpenSHA was ported onto an NSF supercomputer and was used to produce very high resolution hazard PSHA maps that contained more than 1.6 million hazard curves.
MATISSE: a meteorological aviation supporting system developed in a GIS environment
NASA Astrophysics Data System (ADS)
Rillo, Valeria; Mercogliano, Paola
2014-05-01
Awareness of weather conditions plays an increasing role in different societal and economic sectors, in particular the aviation one which is very sensitive to the meteorological conditions. In fact, adverse meteorological conditions are among the most important causes of accidents causing human and economic losses. For these reasons it is crucial to monitor and nowcast such events and avoid risks during all the flight phases. In this framework CIRA (Italian Aerospace Research Center) has implemented MATISSE (Meteorological AviaTIon Supporting SystEm), an ArcGIS Desktop Plug in, in order to detect and forecast meteorological aviation hazards over the main European airports, by using different sources of meteorological data (synoptic information, satellite data, numerical weather prediction models outputs). Such functionalities are realized after a preprocessing of raw data achieving more complex information, useful for the detection and the forecast of aviation hazards. After that, the data are stored in a database used by ArcGIS and further processed in order to provide maps, graphs and statistics. MATISSE presents a dockable toolbar in a GIS environment, allowing the user to easily select and visualize the desired information. In particular, the user can access to real time functionalities and visualize, on a map, the chosen meteorological hazard or variable (such as visibility conditions, cumulonimbi, wind speeds and directions, present weather, pressure, relative humidity, past weather, cloud cover, height of base of clouds, cloud type, geopotential, altimeter settings, three hour pressure change) over an airport or an area of interest (Europe, Italy). Such variables are represented in a user friendly way, by using simple icons easy to understand and reporting the risk level for aviation in order to provide pilots information about the meteorological conditions during the flight and the following hours. MATISSE, in fact, is able to handle the output of COSMO LM model (NetCDF files) and visualize such information. Moreover it is interfaced to an innovative tool based on MSG-2 satellite data, able to forecast the evolution of cumulonimbi, clouds responsible of thunderstorms, wind shear, icing and turbulence phenomena. MATISSE includes also tool for the statistical characterization of the typical weather bad conditions on the airport of interest, for example percentage of fog events on particular time windows.
Salisbury, Margaret L; Lynch, David A; van Beek, Edwin J R; Kazerooni, Ella A; Guo, Junfeng; Xia, Meng; Murray, Susan; Anstrom, Kevin J; Yow, Eric; Martinez, Fernando J; Hoffman, Eric A; Flaherty, Kevin R
2017-04-01
Adaptive multiple features method (AMFM) lung texture analysis software recognizes high-resolution computed tomography (HRCT) patterns. To evaluate AMFM and visual quantification of HRCT patterns and their relationship with disease progression in idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis in a clinical trial of prednisone, azathioprine, and N-acetylcysteine underwent HRCT at study start and finish. Proportion of lung occupied by ground glass, ground glass-reticular (GGR), honeycombing, emphysema, and normal lung densities were measured by AMFM and three radiologists, documenting baseline disease extent and postbaseline change. Disease progression includes composite mortality, hospitalization, and 10% FVC decline. Agreement between visual and AMFM measurements was moderate for GGR (Pearson's correlation r = 0.60, P < 0.0001; mean difference = -0.03 with 95% limits of agreement of -0.19 to 0.14). Baseline extent of GGR was independently associated with disease progression when adjusting for baseline Gender-Age-Physiology stage and smoking status (hazard ratio per 10% visual GGR increase = 1.98, 95% confidence interval [CI] = 1.20-3.28, P = 0.008; and hazard ratio per 10% AMFM GGR increase = 1.36, 95% CI = 1.01-1.84, P = 0.04). Postbaseline visual and AMFM GGR trajectories were correlated with postbaseline FVC trajectory (r = -0.30, 95% CI = -0.46 to -0.11, P = 0.002; and r = -0.25, 95% CI = -0.42 to -0.06, P = 0.01, respectively). More extensive baseline visual and AMFM fibrosis (as measured by GGR densities) is independently associated with elevated hazard for disease progression. Postbaseline change in AMFM-measured and visually measured GGR densities are modestly correlated with change in FVC. AMFM-measured fibrosis is an automated adjunct to existing prognostic markers and may allow for study enrichment with subjects at increased disease progression risk.
Data Model for Multi Hazard Risk Assessment Spatial Support Decision System
NASA Astrophysics Data System (ADS)
Andrejchenko, Vera; Bakker, Wim; van Westen, Cees
2014-05-01
The goal of the CHANGES Spatial Decision Support System is to support end-users in making decisions related to risk reduction measures for areas at risk from multiple hydro-meteorological hazards. The crucial parts in the design of the system are the user requirements, the data model, the data storage and management, and the relationships between the objects in the system. The implementation of the data model is carried out entirely with an open source database management system with a spatial extension. The web application is implemented using open source geospatial technologies with PostGIS as the database, Python for scripting, and Geoserver and javascript libraries for visualization and the client-side user-interface. The model can handle information from different study areas (currently, study areas from France, Romania, Italia and Poland are considered). Furthermore, the data model handles information about administrative units, projects accessible by different types of users, user-defined hazard types (floods, snow avalanches, debris flows, etc.), hazard intensity maps of different return periods, spatial probability maps, elements at risk maps (buildings, land parcels, linear features etc.), economic and population vulnerability information dependent on the hazard type and the type of the element at risk, in the form of vulnerability curves. The system has an inbuilt database of vulnerability curves, but users can also add their own ones. Included in the model is the management of a combination of different scenarios (e.g. related to climate change, land use change or population change) and alternatives (possible risk-reduction measures), as well as data-structures for saving the calculated economic or population loss or exposure per element at risk, aggregation of the loss and exposure using the administrative unit maps, and finally, producing the risk maps. The risk data can be used for cost-benefit analysis (CBA) and multi-criteria evaluation (SMCE). The data model includes data-structures for CBA and SMCE. The model is at the stage where risk and cost-benefit calculations can be stored but the remaining part is currently under development. Multi-criteria information, user management and the relation of these with the rest of the model is our next step. Having a carefully designed data model plays a crucial role in the development of the whole system for rapid development, keeping the data consistent, and in the end, support the end-user in making good decisions in risk-reduction measures related to multiple natural hazards. This work is part of the EU FP7 Marie Curie ITN "CHANGES"project (www.changes-itn.edu)
Ng, Soo Khai; Kahawita, Shyalle; Andrew, Nicholas Howard; Henderson, Tim; Craig, Jamie Evan; Landers, John
2018-05-01
It is well established from different population-based studies that visual impairment is associated with increased mortality rate. However, to our knowledge, the association of visual impairment with increased mortality rate has not been reported among indigenous Australian individuals. To assess the association between visual impairment and 10-year mortality risk among the remote indigenous Australian population. Prospective cohort study recruiting indigenous Australian individuals from 30 remote communities located within the central Australian statistical local area over a 36-month period between July 2005 and June 2008. The data were analyzed in January 2017. Visual acuity, slitlamp biomicroscopy, and fundus examination were performed on all patients at recruitment. Visual impairment was defined as a visual acuity of less than 6/12 in the better eye. Mortality rate and mortality cause were obtained at 10 years, and statistical analyses were performed. Hazard ratios for 10-year mortality with 95% confidence intervals are presented. One thousand three hundred forty-seven patients were recruited from a total target population number of 2014. The mean (SD) age was 56 (11) years, and 62% were women. The total all-cause mortality was found to be 29.3% at 10 years. This varied from 21.1% among those without visual impairment to 48.5% among those with visual impairment. After adjustment for age, sex, and the presence of diabetes and hypertension, those with visual impairment were 40% more likely to die (hazard ratio, 1.40; 95% CI, 1.16-1.70; P = .001) during the 10-year follow-up period compared with those with normal vision. Bilateral visual impairment among remote indigenous Australian individuals was associated with 40% higher 10-year mortality risk compared with those who were not visually impaired. Resource allocation toward improving visual acuity may therefore aid in closing the gap in mortality outcomes between indigenous and nonindigenous Australian individuals.
Social and Non-Social Hazard Response in Drivers with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Bishop, Haley Johnson; Biasini, Fred J.; Stavrinos, Despina
2017-01-01
Driving is a complex task that relies on manual, cognitive, visual and social skill. The social demands of driving may be challenging for individuals with Autism Spectrum Disorder (ASD) due to known social impairments. This study investigated how drivers with ASD respond to social (e.g., pedestrians) and non-social (e.g., vehicles) hazards in a…
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Sandri, Laura; Costa, Antonio; Selva, Jacopo
2014-05-01
Campi Flegrei (CF) is a large volcanic field located west of the Gulf of Naples, characterized by a wide and almost circular caldera which is partially submerged beneath the Gulf of Pozzuoli. It is known that the magma-water interaction is a key element to determine the character of submarine eruptions and their impact on the surrounding areas, but this phenomenon is still not well understood and it is rarely considered in hazard assessment. The aim of the present work is to present a preliminary study of the effect of the sea on the tephra fall hazard from CF on the municipality of Naples, by introducing a variability in the probability of tephra production according to the eruptive scale (defined on the basis of the erupted volume) and the depth of the opening submerged vents. Four different Probabilistic Volcanic Hazard Assessment (PVHA) models have been defined through the application of the model BET_VH at CF, by accounting for different modeling procedures and assumptions for the submerged part of the caldera. In particular, we take into account: 1) the effect of the sea as null, i.e. as if the water were not present; 2) the effect of the sea as a cap that totally blocks the explosivity of eruptions and consequently the tephra production; 3) an ensemble model between the two models described at the previous points 1) and 2); 4) a variable probability of tephra production depending on the depth of the submerged vent. The PVHA models are then input to pyPHaz, a tool developed and designed at INGV to visualize, analyze and merge into ensemble models PVHA's results and, potentially, any other kind of probabilistic hazard assessment, both natural and anthropic, in order to evaluate the importance of considering a variability among subaerial and submerged vents on tephra fallout hazard from CF in Naples. The analysis is preliminary and does not pretend to be exhaustive, but on one hand it represents a starting point for future works; on the other hand, it is a good case study to show the potentiality of the pyPHaz tool that, thanks to a dedicated Graphical User Interface (GUI), allows to interactively manage and visualize results of probabilistic hazards (hazard curves together with probability and hazard maps for different levels of uncertainties), and to compare or merge different hazard models producing ensemble models. This work has been developed in the framework of two Italian projects, "ByMuR (Bayesian Multi-Risk Assessment: a case study for natural risks in the city of Naples)" funded by the Italian Ministry of Education, Universities and Research (MIUR), and "V1: Probabilistic Volcanic Hazard Assessments" funded by the Italian Department of Civil Protection (DPC).
Visual Sensing for Urban Flood Monitoring
Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han
2015-01-01
With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201
A physiologically based nonhomogeneous Poisson counter model of visual identification.
Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren
2018-04-30
A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Schumann, Ronald L; Ash, Kevin D; Bowser, Gregg C
2018-02-01
Recent advancements in severe weather detection and warning dissemination technologies have reduced, but not eliminated, large-casualty tornado hazards in the United States. Research on warning cognition and behavioral response by the public has the potential to further reduce tornado-related deaths and injuries; however, less research has been conducted in this area compared to tornado research in the physical sciences. Extant research in this vein tends to bifurcate. One branch of studies derives from classic risk perception, which investigates cognitive, affective, and sociocultural factors in relation to concern and preparation for uncertain risks. Another branch focuses on psychological, social, and cultural factors implicated in warning response for rapid onset hazards, with attention paid to previous experience and message design. Few studies link risk perceptions with cognition and response as elicited by specific examples of warnings. The present study unites risk perception, cognition, and response approaches by testing the contributions of hypothesized warning response drivers in one set of path models. Warning response is approximated by perceived fear and intended protective action as reported by survey respondents when exposed to hypothetical tornado warning scenarios. This study considers the roles of hazard knowledge acquisition, information-seeking behaviors, previous experience, and sociodemographic factors while controlling for the effects of the visual warning graphic. Findings from the study indicate the primacy of a user's visual interpretation of a warning graphic in shaping tornado warning response. Results also suggest that information-seeking habits, previous tornado experience, and local disaster culture play strong influencing roles in warning response. © 2017 Society for Risk Analysis.
Using computer visualizations to help understand how forests change and develop
Brian Orland; Cenk Ursavas
2006-01-01
Probably a first question people ask when they hear about proposed forest management actions to address fire hazard or forest health concerns is "what will the forest look like"? The recent advent of powerful computer visualization tools has provided one means of answering that question. The resultant images can be a powerful tool for communicating the...
Visual Impairments, "Including Blindness." NICHCY Disability Fact Sheet #13
ERIC Educational Resources Information Center
National Dissemination Center for Children with Disabilities, 2012
2012-01-01
Vision is one of the five senses. Being able to see gives tremendous access to learning about the world around--people's faces and the subtleties of expression, what different things look like and how big they are, and the physical environments, including approaching hazards. When a child has a visual impairment, it is cause for immediate…
An Offline-Online Android Application for Hazard Event Mapping Using WebGIS Open Source Technologies
NASA Astrophysics Data System (ADS)
Olyazadeh, Roya; Jaboyedoff, Michel; Sudmeier-Rieux, Karen; Derron, Marc-Henri; Devkota, Sanjaya
2016-04-01
Nowadays, Free and Open Source Software (FOSS) plays an important role in better understanding and managing disaster risk reduction around the world. National and local government, NGOs and other stakeholders are increasingly seeking and producing data on hazards. Most of the hazard event inventories and land use mapping are based on remote sensing data, with little ground truthing, creating difficulties depending on the terrain and accessibility. Open Source WebGIS tools offer an opportunity for quicker and easier ground truthing of critical areas in order to analyse hazard patterns and triggering factors. This study presents a secure mobile-map application for hazard event mapping using Open Source WebGIS technologies such as Postgres database, Postgis, Leaflet, Cordova and Phonegap. The objectives of this prototype are: 1. An Offline-Online android mobile application with advanced Geospatial visualisation; 2. Easy Collection and storage of events information applied services; 3. Centralized data storage with accessibility by all the service (smartphone, standard web browser); 4. Improving data management by using active participation in hazard event mapping and storage. This application has been implemented as a low-cost, rapid and participatory method for recording impacts from hazard events and includes geolocation (GPS data and Internet), visualizing maps with overlay of satellite images, viewing uploaded images and events as cluster points, drawing and adding event information. The data can be recorded in offline (Android device) or online version (all browsers) and consequently uploaded through the server whenever internet is available. All the events and records can be visualized by an administrator and made public after approval. Different user levels can be defined to access the data for communicating the information. This application was tested for landslides in post-earthquake Nepal but can be used for any other type of hazards such as flood, avalanche, etc. Keywords: Offline, Online, WebGIS Open source, Android, Hazard Event Mapping
A Unique Photon Bombardment System for Space Applications
NASA Technical Reports Server (NTRS)
Klein, E. J.
1993-01-01
The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.
Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data
NASA Technical Reports Server (NTRS)
Eide, Michael C.; Mathews, Bruce
1992-01-01
Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler radar product with signal and data processing algorithms which detect realistic microburst hazards and has demonstrated those algorithms produce no false alerts (or nuisance alerts) in urban airport ground moving vehicle (GMTI) and/or clutter environments.
AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research
NASA Technical Reports Server (NTRS)
Laughter, Sean; Cox, David
2016-01-01
The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.
New Hypervelocity Terminal Intercept Guidance Systems for Deflecting/Disrupting Hazardous Asteroids
NASA Astrophysics Data System (ADS)
Lyzhoft, Joshua Richard
Computational modeling and simulations of visual and infrared (IR) sensors are investigated for a new hypervelocity terminal guidance system of intercepting small asteroids (50 to 150 meters in diameter). Computational software tools for signal-to-noise ratio estimation of visual and IR sensors, estimation of minimum and maximum ranges of target detection, and GPU (Graphics Processing Units)-accelerated simulations of the IR-based terminal intercept guidance systems are developed. Scaled polyhedron models of known objects, such as the Rosetta mission's Comet 67P/C-G, NASA's OSIRIS-REx Bennu, and asteroid 433 Eros, are utilized in developing a GPU-based simulation tool for the IR-based terminal intercept guidance systems. A parallelized-ray tracing algorithm for simulating realistic surface-to-surface shadowing of irregular-shaped asteroids or comets is developed. Polyhedron solid-angle approximation is also considered. Using these computational models, digital image processing is investigated to determine single or multiple impact locations to assess the technical feasibility of new planetary defense mission concepts of utilizing a Hypervelocity Asteroid Intercept Vehicle (HAIV) or a Multiple Kinetic-energy Interceptor Vehicle (MKIV). Study results indicate that the IR-based guidance system outperforms the visual-based system in asteroid detection and tracking. When using an IR sensor, predicting impact locations from filtered images resulted in less jittery spacecraft control accelerations than conducting missions with a visual sensor. Infrared sensors have also the possibility to detect asteroids at greater distances, and if properly used, can aid in terminal phase guidance for proper impact location determination for the MKIV system. Emerging new topics of the Minimum Orbit Intersection Distance (MOID) estimation and the Full-Two-Body Problem (F2BP) formulation are also investigated to assess a potential near-Earth object collision risk and the proximity gravity effects of an irregular-shaped binary-asteroid target on a standoff nuclear explosion mission.
NASA Technical Reports Server (NTRS)
1993-01-01
The Biomedical Optical Company of America's Eagle 475 lens absorbs 100 percent of all photowavelengths considered hazardous to eye tissue, including ultraviolet and blue light, which are considered contributors to cataract and age-related macular degeneration. The lens absorbs hazardous wavelengths, but allows a higher percentage of visually useful areas of the spectrum to pass through. Polarization blocks out irritating glint and glare and heightens visual acuity. The Eagle 475 sunglasses are the latest in a series of spinoffs that originated at the Jet Propulsion Laboratory where two scientists developed a protective, welding curtain that filtered out harmful irradiance. The result was a commercial curtain that absorbs filters and scatters light, providing protection for personnel in welding areas. Further research focused on protective industrial glasses and later on consumer products.
Cleared for the visual approach: Human factor problems in air carrier operations
NASA Technical Reports Server (NTRS)
Monan, W. P.
1983-01-01
The study described herein, a set of 353 ASRS reports of unique aviation occurrences significantly involving visual approaches was examined to identify hazards and pitfalls embedded in the visual approach procedure and to consider operational practices that might help avoid future mishaps. Analysis of the report set identified nine aspects of the visual approach procedure that appeared to be predisposing conditions for inducing or exacerbating the effects of operational errors by flight crew members or controllers. Predisposing conditions, errors, and operational consequences of the errors are discussed. In a summary, operational policies that might mitigate the problems are examined.
NASA Technical Reports Server (NTRS)
1978-01-01
NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.
NASA Astrophysics Data System (ADS)
Alconis, Jenalyn; Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo; Lester Saddi, Ivan; Mongaya, Candeze; Figueroa, Kathleen Gay
2014-05-01
In response to the slew of disasters that devastates the Philippines on a regular basis, the national government put in place a program to address this problem. The Nationwide Operational Assessment of Hazards, or Project NOAH, consolidates the diverse scientific research being done and pushes the knowledge gained to the forefront of disaster risk reduction and management. Current activities of the project include installing rain gauges and water level sensors, conducting LIDAR surveys of critical river basins, geo-hazard mapping, and running information education campaigns. Approximately 700 automated weather stations and rain gauges installed in strategic locations in the Philippines hold the groundwork for the rainfall visualization system in the Project NOAH web portal at http://noah.dost.gov.ph. The system uses near real-time data from these stations installed in critical river basins. The sensors record the amount of rainfall in a particular area as point data updated every 10 to 15 minutes. The sensor sends the data to a central server either via GSM network or satellite data transfer for redundancy. The web portal displays the sensors as a placemarks layer on a map. When a placemark is clicked, it displays a graph of the rainfall data for the past 24 hours. The rainfall data is harvested by batch determined by a one-hour time frame. The program uses linear interpolation as the methodology implemented to visually represent a near real-time rainfall map. The algorithm allows very fast processing which is essential in near real-time systems. As more sensors are installed, precision is improved. This visualized dataset enables users to quickly discern where heavy rainfall is concentrated. It has proven invaluable on numerous occasions, such as last August 2013 when intense to torrential rains brought about by the enhanced Southwest Monsoon caused massive flooding in Metro Manila. Coupled with observations from Doppler imagery and water level sensors along the Marikina River, the local officials used this information and determined that the river would overflow in a few hours. It gave them a critical lead time to evacuate residents along the floodplain and no casualties were reported after the event.
Occupational Health and the Arts.
Hinkamp, David L; McCann, Michael; Babin, Angela
2017-09-01
Work in the visual arts, performing arts, and writing can involve exposures to occupational hazards, including hazardous materials, equipment, and conditions, but few art workplaces have strong occupational health resources. Literature searches were conducted for articles that illustrate these concerns. Medical databases were searched for art-related health articles. Other sources were also reviewed, including, unindexed art-health publications, and popular press articles. Information was located that described some exposed populations, art-related hazards, and resulting disorders. Anecdotal reports were used when more complete data were not available. Health hazards in the arts are significant. Occupational health professionals are familiar with most of these concerns and understand their treatment and prevention. The occupational health approach can reduce the health hazards encountered by at-risk art workers. Additional research would benefit these efforts. Resources for further information are available.
Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Warren
2004-06-01
There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (D&D) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix andmore » by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the performance and enabling capabilities of the resulting visual servo control modules have been demonstrated on mobile robot and robot manipulator platforms.« less
Hazardous Gas Leak Analysis in the Space Shuttle
NASA Technical Reports Server (NTRS)
Barile, Ronald G.
1991-01-01
Helium tests of the main propulsion system in the Space Shuttle and on hydrogen leaks are examined. The hazardous gas detection system (HGDS) in the mobile launch pad uses mass spectrometers (MS) to monitor the shuttle environment for leaks. The mass spectrometers are fed by long tubes to sample gas from the payload bay, mid-body, aft engine compartment, and external tank. The purpose is to improve the HGDS, especially in its potential for locating cryogen leaks. Pre-existing leak data was analyzed for transient information to determine if the leak location could be pinpointed from test data. A rapid response leak detection experiment was designed, built, and tested. Large eddies and vortices were visually seen with Schlieren imaging, and they were detected in the time plots of the various instruments. The response time of the MS was found in the range of 0.05 to 0.1 sec. Pulsed concentration waves were clearly detected at 25 cycles per sec by spectral analysis of MS data. One conclusion is that the backup HGDS sampling frequency should be increased above the present rate of 1 sample per second.
Vlakveld, Willem; Romoser, Matthew R. E.; Mehranian, Hasmik; Diete, Frank; Pollatsek, Alexander; Fisher, Donald L.
2012-01-01
Young drivers (younger than 25 years of age) are overrepresented in crashes. Research suggests that a relevant cause is inadequate visual search for possible hazards that are hidden from view. The objective of this study was to develop and evaluate a low-cost, fixed-base simulator training program that would address this failure. It was hypothesized that elicited crashes in the simulator training would result in better scanning for latent hazards in scenarios that were similar to the training scenarios but situated in a different environment (near transfer), and, to a lesser degree, would result in better scanning in scenarios that had altogether different latent hazards than those contained in the training scenarios (far transfer). To test the hypotheses, 18 trained and 18 untrained young novice drivers were evaluated on an advanced driving simulator (different from the training simulator). The eye movements of both groups were measured. In near transfer scenarios, trained drivers fixated the hazardous region 84% of the time, compared with only 57% of untrained drivers. In far transfer scenarios, trained drivers fixated the hazardous region 71 % of the time, compared with only 53% of untrained drivers. The differences between trained and untrained drivers in both the near transfer scenarios and the far transfer scenarios were significant, with a large effect size in the near transfer scenarios and a medium effect size in the far transfer scenarios [respectively: U = 63.00, p(2-tailed) < .01, r = −.53, and U = 88.00, p(2-tailed)<.05,r = −.39]. PMID:23082041
Using a 3D CAD plant model to simplify process hazard reviews
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolpa, G.
A Hazard and Operability (HAZOP) review is a formal predictive procedure used to identify potential hazard and operability problems associated with certain processes and facilities. The HAZOP procedure takes place several times during the life cycle of the facility. Replacing plastic models, layout and detail drawings with a 3D CAD electronic model, provides access to process safety information and a detailed level of plant topology that approaches the visualization capability of the imagination. This paper describes the process that is used for adding the use of a 3D CAD model to flowsheets and proven computer programs for the conduct ofmore » hazard and operability reviews. Using flowsheets and study nodes as a road map for the review the need for layout and other detail drawings is all but eliminated. Using the 3D CAD model again for a post-P and ID HAZOP supports conformance to layout and safety requirements, provides superior visualization of the plant configuration and preserves the owners equity in the design. The response from the review teams are overwhelmingly in favor of this type of review over a review that uses only drawings. Over the long term the plant model serves more than just process hazards analysis. Ongoing use of the model can satisfy the required access to process safety information, OHSA documentation and other legal requirements. In this paper extensive instructions address the logic for the process hazards analysis and the preparation required to assist anyone who wishes to add the use of a 3D model to their review.« less
Environmental aspects of large-scale wind-power systems in the UK
NASA Astrophysics Data System (ADS)
Robson, A.
1983-12-01
Environmental issues relating to the introduction of large, MW-scale wind turbines at land-based sites in the U.K. are discussed. Areas of interest include noise, television interference, hazards to bird life and visual effects. A number of areas of uncertainty are identified, but enough is known from experience elsewhere in the world to enable the first U.K. machines to be introduced in a safe and environmentally acceptable manner. Research currently under way will serve to establish siting criteria more clearly, and could significantly increase the potential wind-energy resource. Certain studies of the comparative risk of energy systems are shown to be overpessimistic for U.K. wind turbines.
Evolution of vulnerability of communities facing repeated hazards
Guikema, Seth D.; Zhu, Laiyin; Igusa, Takeru
2017-01-01
The decisions that individuals make when recovering from and adapting to repeated hazards affect a region’s vulnerability in future hazards. As such, community vulnerability is not a static property but rather a dynamic property dependent on behavioral responses to repeated hazards and damage. This paper is the first of its kind to build a framework that addresses the complex interactions between repeated hazards, regional damage, mitigation decisions, and community vulnerability. The framework enables researchers and regional planners to visualize and quantify how a community could evolve over time in response to repeated hazards under various behavioral scenarios. An illustrative example using parcel-level data from Anne Arundel County, Maryland—a county that experiences fairly frequent hurricanes—is presented to illustrate the methodology and to demonstrate how the interplay between individual choices and regional vulnerability is affected by the region’s hurricane experience. PMID:28953893
40 CFR 63.7830 - What are my monitoring requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Integrated Iron and Steel... leaks. (viii) Inspect fans for wear, material buildup, and corrosion through quarterly visual...
DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.A. Ebadian, Ph.D.
1999-01-01
For certain applications, such as space servicing, undersea operations, and hazardous material handling tasks in nuclear reactors, the environments can be uncertain, complex, and hazardous. Lives may be in danger if humans were to work under these conditions. As a result, a man-machine system--a teleoperator system--has been developed to work in these types of environments. In a typical teleoperator system, the actual system operates at a remote site; the operator located away from this system usually receives visual information from a video image and/or graphical animation on the computer screen. Additional feedback, such as aural and force information, can significantlymore » enhance performance of the system. Force reflection is a type of feedback in which forces experienced by the remote manipulator are fed back to the manual controller. Various control methods have been proposed for implementation on a teleoperator system. In order to examine different control schemes, a one Degree-Of-Freedom (DOF) Force-Reflecting Manual Controller (FRMC) is constructed and integrated into a PC. The system parameters are identified and constructed as a mathematical model. The Proportional-Integral-Derivative (PID) and fuzzy logic controllers are developed and tested experimentally. Numerical simulation results obtained from the mathematical model are compared with those of experimental data for both types of controllers. In addition, the concept of a telesensation system is introduced. A telesensation system is an advanced teleoperator system that attempts to provide the operator with sensory feedback. In this context, a telesensation system integrates the use of a Virtual Reality (VR) unit, FRMC, and Graphical User Interface (GUI). The VR unit is used to provide the operator with a 3-D visual effect. Various commercial VR units are reviewed and features compared for use in a telesensation system. As for the FRMC, the conceptual design of a 3-DOF FRMC is developed in an effort to make the system portable, compact, and lightweight. A variety of design alternatives are presented and evaluated. Finally, a GUI software package is developed to interface with several teleoperation unit components. These components include an industrial robot, electric motor, encoder, force/torque sensor, and CCD camera. The software includes features such as position scaling, force scaling, and rereferencing and is intended to provide a sound basis for the development of a multi-DOF FRMC system in the future.« less
Development of a Spatial Decision Support System for Analyzing Changes in Hydro-meteorological Risk
NASA Astrophysics Data System (ADS)
van Westen, Cees
2013-04-01
In the framework of the EU FP7 Marie Curie ITN Network "CHANGES: Changing Hydro-meteorological Risks, as Analyzed by a New Generation of European Scientists (http://www.changes-itn.eu)", a spatial decision support system is under development with the aim to analyze the effect of risk reduction planning alternatives on reducing the risk now and in the future, and support decision makers in selecting the best alternatives. The SDSS is one of the main outputs of the CHANGES network, which will develop an advanced understanding of how global changes, related to environmental and climate change as well as socio-economical change, may affect the temporal and spatial patterns of hydro-meteorological hazards and associated risks in Europe; how these changes can be assessed, modeled, and incorporated in sustainable risk management strategies, focusing on spatial planning, emergency preparedness and risk communication. The CHANGES network consists of 11 full partners and 6 associate partners of which 5 private companies, representing 10 European countries. The CHANGES network has hired 12 Early Stage Researchers (ESRs) and is currently hiring 3-6 researchers more for the implementation of the SDSS. The Spatial Decision Support System will be composed of a number of integrated components. The Risk Assessment component allows to carry out spatial risk analysis, with different degrees of complexity, ranging from simple exposure (overlay of hazard and assets maps) to quantitative analysis (using different hazard types, temporal scenarios and vulnerability curves) resulting into risk curves. The platform does not include a component to calculate hazard maps, and existing hazard maps are used as input data for the risk component. The second component of the SDSS is a risk reduction planning component, which forms the core of the platform. This component includes the definition of risk reduction alternatives (related to disaster response planning, risk reduction measures and spatial planning) and links back to the risk assessment module to calculate the new level of risk if the measure is implemented, and a cost-benefit (or cost-effectiveness/ Spatial Multi Criteria Evaluation) component to compare the alternatives and make decision on the optimal one. The third component of the SDSS is a temporal scenario component, which allows to define future scenarios in terms of climate change, land use change and population change, and the time periods for which these scenarios will be made. The component doesn't generate these scenarios but uses input maps for the effect of the scenarios on the hazard and assets maps. The last component is a communication and visualization component, which can compare scenarios and alternatives, not only in the form of maps, but also in other forms (risk curves, tables, graphs). The envisaged users of the platform are organizations involved in planning of risk reduction measures, and that have staff capable of visualizing and analyzing spatial data at a municipal scale. This paper presents the main components of the SDSS and the overall design and plans for the user interface.
Fulminant Ocular Toxoplasmosis: The Hazards of Corticosteroid Monotherapy.
Oray, Merih; Ozdal, Pinar Cakar; Cebeci, Zafer; Kir, Nur; Tugal-Tutkun, Ilknur
2016-12-01
To describe fulminant toxoplasma retinochoroiditis induced by corticosteroid monotherapy. Clinical records of nine patients were reviewed. All patients (five female, four male; aged 15-64 years) had been misdiagnosed as unilateral non-infectious uveitis and given systemic and/or local corticosteroid injections elsewhere. Mean disease duration before referral was 105.6 ± 71 (45-240) days. Visual acuity at presentation was <20/200 in six eyes. Average lesion size was 6.6 disc areas in eight eyes and all four quadrants were involved in one. Toxoplasma DNA was detected in eight tested eyes. Mean duration of anti-toxoplasmic therapy was 92.5 ± 37.1 days. Three eyes developed rhegmatogenous retinal detachment. Four patients underwent pars plana vitrectomy. Final visual acuity was <20/200 in five eyes. Iatrogenic immunosuppression due to initial misdiagnosis may lead to an aggressive course and serious complications of ocular toxoplasmosis, a potentially self-limiting infection.
Exploring eye movements in patients with glaucoma when viewing a driving scene.
Crabb, David P; Smith, Nicholas D; Rauscher, Franziska G; Chisholm, Catharine M; Barbur, John L; Edgar, David F; Garway-Heath, David F
2010-03-16
Glaucoma is a progressive eye disease and a leading cause of visual disability. Automated assessment of the visual field determines the different stages in the disease process: it would be desirable to link these measurements taken in the clinic with patient's actual function, or establish if patients compensate for their restricted field of view when performing everyday tasks. Hence, this study investigated eye movements in glaucomatous patients when viewing driving scenes in a hazard perception test (HPT). The HPT is a component of the UK driving licence test consisting of a series of short film clips of various traffic scenes viewed from the driver's perspective each containing hazardous situations that require the camera car to change direction or slow down. Data from nine glaucomatous patients with binocular visual field defects and ten age-matched control subjects were considered (all experienced drivers). Each subject viewed 26 different films with eye movements simultaneously monitored by an eye tracker. Computer software was purpose written to pre-process the data, co-register it to the film clips and to quantify eye movements and point-of-regard (using a dynamic bivariate contour ellipse analysis). On average, and across all HPT films, patients exhibited different eye movement characteristics to controls making, for example, significantly more saccades (P<0.001; 95% confidence interval for mean increase: 9.2 to 22.4%). Whilst the average region of 'point-of-regard' of the patients did not differ significantly from the controls, there were revealing cases where patients failed to see a hazard in relation to their binocular visual field defect. Characteristics of eye movement patterns in patients with bilateral glaucoma can differ significantly from age-matched controls when viewing a traffic scene. Further studies of eye movements made by glaucomatous patients could provide useful information about the definition of the visual field component required for fitness to drive.
Exploring Eye Movements in Patients with Glaucoma When Viewing a Driving Scene
Crabb, David P.; Smith, Nicholas D.; Rauscher, Franziska G.; Chisholm, Catharine M.; Barbur, John L.; Edgar, David F.; Garway-Heath, David F.
2010-01-01
Background Glaucoma is a progressive eye disease and a leading cause of visual disability. Automated assessment of the visual field determines the different stages in the disease process: it would be desirable to link these measurements taken in the clinic with patient's actual function, or establish if patients compensate for their restricted field of view when performing everyday tasks. Hence, this study investigated eye movements in glaucomatous patients when viewing driving scenes in a hazard perception test (HPT). Methodology/Principal Findings The HPT is a component of the UK driving licence test consisting of a series of short film clips of various traffic scenes viewed from the driver's perspective each containing hazardous situations that require the camera car to change direction or slow down. Data from nine glaucomatous patients with binocular visual field defects and ten age-matched control subjects were considered (all experienced drivers). Each subject viewed 26 different films with eye movements simultaneously monitored by an eye tracker. Computer software was purpose written to pre-process the data, co-register it to the film clips and to quantify eye movements and point-of-regard (using a dynamic bivariate contour ellipse analysis). On average, and across all HPT films, patients exhibited different eye movement characteristics to controls making, for example, significantly more saccades (P<0.001; 95% confidence interval for mean increase: 9.2 to 22.4%). Whilst the average region of ‘point-of-regard’ of the patients did not differ significantly from the controls, there were revealing cases where patients failed to see a hazard in relation to their binocular visual field defect. Conclusions/Significance Characteristics of eye movement patterns in patients with bilateral glaucoma can differ significantly from age-matched controls when viewing a traffic scene. Further studies of eye movements made by glaucomatous patients could provide useful information about the definition of the visual field component required for fitness to drive. PMID:20300522
Anstey, Kaarin J; Horswill, Mark S; Wood, Joanne M; Hatherly, Christopher
2012-03-01
The current study evaluated part of the Multifactorial Model of Driving Safety to elucidate the relative importance of cognitive function and a limited range of standard measures of visual function in relation to the Capacity to Drive Safely. Capacity to Drive Safely was operationalized using three validated screening measures for older drivers. These included an adaptation of the well validated Useful Field of View (UFOV) and two newer measures, namely a Hazard Perception Test (HPT), and a Hazard Change Detection Task (HCDT). Community dwelling drivers (n=297) aged 65-96 were assessed using a battery of measures of cognitive and visual function. Factor analysis of these predictor variables yielded factors including Executive/Speed, Vision (measured by visual acuity and contrast sensitivity), Spatial, Visual Closure, and Working Memory. Cognitive and Vision factors explained 83-95% of age-related variance in the Capacity to Drive Safely. Spatial and Working Memory were associated with UFOV, HPT and HCDT, Executive/Speed was associated with UFOV and HCDT and Vision was associated with HPT. The Capacity to Drive Safely declines with chronological age, and this decline is associated with age-related declines in several higher order cognitive abilities involving manipulation and storage of visuospatial information under speeded conditions. There are also age-independent effects of cognitive function and vision that determine driving safety. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jabs, Douglas A.; Drye, Lea; Van Natta, Mark L.; Thorne, Jennifer E.; Holland, Gary N.
2014-01-01
Objectives Patients with the acquired immunodeficiency syndrome (AIDS) have an abnormality of retina/optic nerve function, manifested as decreased contrast sensitivity (in the absence of ocular opportunistic infections or media opacity), abnormalities on automated perimetry, and loss of retinal nerve fiber layer, even among those with good visual acuity, termed the HIV-neuroretinal disorder. The objectives of this study were to determine the prevalence, incidence, risk factors for, and outcomes of HIV-neuroretinal disorder. Design Prospective cohort study Participants 1822 patients with AIDS without ocular infections or media opacities. Methods Patients with HIV-neuroretinal disorder were identified by a contrast sensitivity < 1.50 log units in either eye in the absence of ocular opportunistic infections or media opacity. Main outcome measures Incidence of HIV-neuroretinal disorder, mortality, visual impairment (visual acuity 20/50 or worse), and blindness (20/200 or worse) on logarithmic visual acuity charts. Results Sixteen percent of participants had HIV-neuroretinal disorder at enrollment. The estimated cumulative incidence by 20 years after AIDS diagnosis was 51% (95% confidence interval [CI] 46%–55%). HIV-neuroretinal disorder was more common in women and African American persons. Risk factors for it included hepatitis C infection, low CD4+ T cells, and detectable HIV RNA in the blood. Patients with HIV neuroretinal disorder had a 70% excess mortality vs. those without it, even after adjusting for CD4+ T cells and HIV load (hazard ratio=1.7, 95% CI= 1.3–2.1, P<0.0001). Patients with HIV-neuroretinal disorder had increased risks of bilateral visual impairment (hazard ratio=6.5, 95% CI=2.6–10.6, P<0.0001) and blindness (hazard ratio=5.9, 95% CI=2.8–13.7, P=0.01) vs. those without HIV neuroretinal disorder. Conclusions HIV-neuroretinal disorder is a common finding among patients with AIDS, and it is associated with an increased mortality and an increased risk of visual impairment. Successful antiretroviral therapy decreases but does not eliminate the risk of HIV-neuroretinal disorder. PMID:25600199
Seaside, Oregon, Tsunami Pilot Study-Modernization of FEMA Flood Hazard Maps: GIS Data
Wong, Florence L.; Venturato, Angie J.; Geist, Eric L.
2006-01-01
Introduction: The Federal Emergency Management Agency (FEMA) Federal Insurance Rate Map (FIRM) guidelines do not currently exist for conducting and incorporating tsunami hazard assessments that reflect the substantial advances in tsunami research achieved in the last two decades; this conclusion is the result of two FEMA-sponsored workshops and the associated Tsunami Focused Study (Chowdhury and others, 2005). Therefore, as part of FEMA's Map Modernization Program, a Tsunami Pilot Study was carried out in the Seaside/Gearhart, Oregon, area to develop an improved Probabilistic Tsunami Hazard Analysis (PTHA) methodology and to provide recommendations for improved tsunami hazard assessment guidelines (Tsunami Pilot Study Working Group, 2006). The Seaside area was chosen because it is typical of many coastal communities in the section of the Pacific Coast from Cape Mendocino to the Strait of Juan de Fuca, and because State agencies and local stakeholders expressed considerable interest in mapping the tsunami threat to this area. The study was an interagency effort by FEMA, U.S. Geological Survey, and the National Oceanic and Atmospheric Administration (NOAA), in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. We present the spatial (geographic information system, GIS) data from the pilot study in standard GIS formats and provide files for visualization in Google Earth, a global map viewer.
Hazard recognition in mining: A psychological perspective. Information circular/1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perdue, C.W.; Kowalski, K.M.; Barrett, E.A.
1995-07-01
This U.S. Bureau of Mines report considers, from a psychological perspective, the perceptual process by which miners recognize and respond to mining hazards. It proposes that if the hazard recognition skills of miners can be improved, mining accidents may be reduced to a significant degree. Prior studies of hazard perception in mining are considered, as are relevant studies from investigations of military target identification, pilot and gunnery officer training, transportation safety, automobile operator behavior, as well as research into sensory functioning and visual information processing. A general model of hazard perception is introduced, and selected concepts from the psychology ofmore » perception that are applicable to the detection of mining hazards are reviewed. Hazard recognition is discussed as a function of the perceptual cues available to the miner as well as the cognitive resources and strategies employed by the miner. The development of expertise in resonding to hazards is related to individual differences in the experience, aptitude, and personality of the worker. Potential applications to miner safety and training are presented.« less
PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome
NASA Astrophysics Data System (ADS)
Ballmer, Maxim; Wiethoff, Tobias
2016-04-01
In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show "inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on the flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the evolution of mantle convection as well as the sustainment of a magnetic field and habitable conditions. We believe that high-quality tax-funded science visualizations should not exclusively be used for communication among scientists, but also recycled to raise the public's awareness and appreciation of the Geosciences.
PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome
NASA Astrophysics Data System (ADS)
Ballmer, M. D.; Wiethoff, T.
2014-12-01
In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show „inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's inner core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on a flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the evolution of mantle convection as well as the sustainment of a magnetic field and habitable conditions. We believe that high-quality tax-funded science visualizations should not exclusively be used for communication among scientists, but also recycled to raise the public's awareness and appreciation of the geosciences.
Muellner, Ulrich J; Vial, Flavie; Wohlfender, Franziska; Hadorn, Daniela; Reist, Martin; Muellner, Petra
2015-01-01
The reporting of outputs from health surveillance systems should be done in a near real-time and interactive manner in order to provide decision makers with powerful means to identify, assess, and manage health hazards as early and efficiently as possible. While this is currently rarely the case in veterinary public health surveillance, reporting tools do exist for the visual exploration and interactive interrogation of health data. In this work, we used tools freely available from the Google Maps and Charts library to develop a web application reporting health-related data derived from slaughterhouse surveillance and from a newly established web-based equine surveillance system in Switzerland. Both sets of tools allowed entry-level usage without or with minimal programing skills while being flexible enough to cater for more complex scenarios for users with greater programing skills. In particular, interfaces linking statistical softwares and Google tools provide additional analytical functionality (such as algorithms for the detection of unusually high case occurrences) for inclusion in the reporting process. We show that such powerful approaches could improve timely dissemination and communication of technical information to decision makers and other stakeholders and could foster the early-warning capacity of animal health surveillance systems.
NASA Astrophysics Data System (ADS)
Rakas, J.; Nikolic, M.; Bauranov, A.
2017-12-01
Lightning storms are a serious hazard that can cause damage to vital human infrastructure. In aviation, lightning strikes cause outages to air traffic control equipment and facilities that result in major disruptions in the network, causing delays and financial costs measured in the millions of dollars. Failure of critical systems, such as Visual Navigational Aids (Visual NAVAIDS), are particularly dangerous since NAVAIDS are an essential part of landing procedures. Precision instrument approach, an operation utilized during the poor visibility conditions, utilizes several of these systems, and their failure leads to holding patterns and ultimately diversions to other airports. These disruptions lead to both ground and airborne delay. Accurate prediction of these outages and their costs is a key prerequisite for successful investment planning. The air traffic management and control sector need accurate information to successfully plan maintenance and develop a more robust system under the threat of increasing lightning rates. To analyze the issue, we couple the Remote Monitoring and Logging System (RMLS) database and the Aviation System Performance Metrics (ASPM) databases to identify lightning-induced outages, and connect them with weather conditions, demand and landing runway to calculate the total delays induced by the outages, as well as the number of cancellations and diversions. The costs are then determined by calculating direct costs to aircraft operators and costs of passengers' time for delays, cancellations and diversions. The results indicate that 1) not all NAVAIDS are created equal, and 2) outside conditions matter. The cost of an outage depends on the importance of the failed system and the conditions that prevailed before, during and after the failure. The outage that occurs during high demand and poor weather conditions is more likely to result in more delays and higher costs.
Agent-based Modeling with MATSim for Hazards Evacuation Planning
NASA Astrophysics Data System (ADS)
Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.
2015-12-01
Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.
Inspection of Pole-Like Structures Using a Visual-Inertial Aided VTOL Platform with Shared Autonomy
Sa, Inkyu; Hrabar, Stefan; Corke, Peter
2015-01-01
This paper presents an algorithm and a system for vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures such as light and power distribution poles is a difficult task that is time-consuming, dangerous and expensive. Recently, micro VTOL platforms (i.e., quad-, hexa- and octa-rotors) have been rapidly gaining interest in research, military and even public domains. The unmanned, low-cost and VTOL properties of these platforms make them ideal for situations where inspection would otherwise be time-consuming and/or hazardous to humans. There are, however, challenges involved with developing such an inspection system, for example flying in close proximity to a target while maintaining a fixed stand-off distance from it, being immune to wind gusts and exchanging useful information with the remote user. To overcome these challenges, we require accurate and high-update rate state estimation and high performance controllers to be implemented onboard the vehicle. Ease of control and a live video feed are required for the human operator. We demonstrate a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. Two approaches are presented: Position-Based Visual Servoing (PBVS) using an Extended Kalman Filter (EKF) and estimator-free Image-Based Visual Servoing (IBVS). Both use monocular visual, inertia, and sonar data, allowing the approaches to be applied for indoor or GPS-impaired environments. We extensively compare the performances of PBVS and IBVS in terms of accuracy, robustness and computational costs. Results from simulations and indoor/outdoor (day and night) flight experiments demonstrate the system is able to successfully inspect and circumnavigate a vertical pole. PMID:26340631
Schofield, Andrew J; Curzon-Jones, Benjamin; Hollands, Mark A
2017-02-01
Falls on stairs are a major hazard for older adults. Visual decline in normal ageing can affect step-climbing ability, altering gait and reducing toe clearance. Here we show that a loss of fine-grained visual information associated with age can affect the perception of surface undulations in patterned surfaces. We go on to show that such cues affect the limb trajectories of young adults, but due to their lack of sensitivity, not that of older adults. Interestingly neither the perceived height of a step nor conscious awareness is altered by our visual manipulation, but stepping behaviour is, suggesting that the influence of shape perception on stepping behaviour is via the unconscious, action-centred, dorsal visual pathway.
Rocky Mountain Research Station USDA Forest Service
2005-01-01
The Guide to Fuel Treatments analyzes a range of potential silvicultural thinnings and surface fuel treatments for 25 representative dry-forest stands in the Western United States. The guide provides quantitative guidelines and visualization for treatment based on scientific principles identified for reducing potential crown fires. This fact sheet identifies the...
A prototype web-GIS application for risk analysis of natural hazards in Switzerland
NASA Astrophysics Data System (ADS)
Aye, Zar Chi; Nicolet, Pierrick; Jaboyedoff, Michel; Derron, Marc-Henri; Gerber, Christian; Lévy, Sebastien
2016-04-01
Following changes in the system of Swiss subsidy in January 2008, the Swiss cantons and the Federal Office for the Environment (FOEN) were forced to prioritize different natural hazard protection projects based on their cost-effectiveness, as a response to limited financial resources (Bründl et al., 2009). For this purpose, applications such as EconoMe (OFEV, 2016) and Valdorisk (DGE, 2016) were developed for risk evaluation and prioritization of mitigation projects. These tools serve as a useful decision-making instrument to the community of practitioners and responsible authorities for natural hazard risk management in Switzerland. However, there are several aspects which could be improved, in particular, the integration and visualization of spatial information interactively through a web-GIS interface for better risk planning and evaluation. Therefore, in this study, we aim to develop an interactive web-GIS application based on the risk concepts applied in Switzerland. The purpose of this tool is to provide a rapid evaluation of risk before and after protection measures, and to test the efficiency of measures by using a simplified cost-benefit analysis within the context of different protection projects. This application allows to integrate different layers which are necessary to calculate risk, in particular, hazard intensity (vector) maps for different scenarios (such as 30, 100 and 300 years of return periods based on Swiss guidelines), exposed objects (such as buildings) and vulnerability information of these objects. Based on provided information and additional parameters, risk is calculated automatically and results are visualized within the web-GIS interface of the application. The users can modify these input information and parameters to create different risk scenarios. Based on the resultant risk scenarios, the users can propose and visualize (preliminary) risk reduction measures before realizing the actual design and dimensions of such protective measures in the area. After designing measures, the users can re-calculate risk by updating hazard intensity and object layers. This is achieved by manual editing of shape (vector) layers in the web-GIS interface interactively. Within the application, a cost-benefit analysis tool is also integrated to support the decision-making process for the selection of different protection measures. Finally, the resultant risk information (vector layers and data) can be exported in the form of shapefiles and excel sheets. A prototype application is realized using open-source geospatial software and technologies. Boundless framework with its client-side SDK environment is applied for the rapid prototyping. Free and open source components such as PostGIS spatial database, GeoServer and GeoWebCache, GeoExt and OpenLayers are used for the development of the platform. This developed prototype is demonstrated with a case study area located in Les Diablerets, Switzerland. This research work is carried out within a project funded by the Canton of Vaud, Switzerland. References: Bründl, M., Romang, H. E., Bischof, N., and Rheinberger, C. M.: The risk concept and its application in natural hazard risk management in Switzerland, Nat. Hazards Earth Syst. Sci., 9, 801-813, 2009. DGE: Valdorisk - Direction Générale de l'Environnement, www.vd.ch, accessed 9 January 2016, 2016. OFEV: EconoMe - Office fédéral de l'environnement, www.econome.admin.ch, accessed 9 January 2016, 2016.
Ovis: A Framework for Visual Analysis of Ocean Forecast Ensembles.
Höllt, Thomas; Magdy, Ahmed; Zhan, Peng; Chen, Guoning; Gopalakrishnan, Ganesh; Hoteit, Ibrahim; Hansen, Charles D; Hadwiger, Markus
2014-08-01
We present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations of the sea surface height that is used in ocean forecasting. The position of eddies can be derived directly from the sea surface height and our visualization approach enables their interactive exploration and analysis.The behavior of eddies is important in different application settings of which we present two in this paper. First, we show an application for interactive planning of placement as well as operation of off-shore structures using real-world ensemble simulation data of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by eddies, and the oil and gas industry relies on ocean forecasts for efficient operations. We enable analysis of the spatial domain, as well as the temporal evolution, for planning the placement and operation of structures.Eddies are also important for marine life. They transport water over large distances and with it also heat and other physical properties as well as biological organisms. In the second application we present the usefulness of our tool, which could be used for planning the paths of autonomous underwater vehicles, so called gliders, for marine scientists to study simulation data of the largely unexplored Red Sea.
Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust.
Reis, Haley; Reis, Cesar; Sharip, Akbar; Reis, Wenes; Zhao, Yong; Sinclair, Ryan; Beeson, Lawrence
2018-05-01
Exposure to diesel exhaust (DE) from vehicles and industry is hazardous and affects proper function of organ systems. DE can interfere with normal physiology after acute and chronic exposure to particulate matter (PM). Exposure leads to potential systemic disease processes in the central nervous, visual, hematopoietic, respiratory, cardiovascular, and renal systems. In this review, we give an overview of the epidemiological evidence supporting the harmful effects of diesel exhaust, and the numerous animal studies conducted to investigate the specific pathophysiological mechanisms behind DE exposure. Additionally, this review includes a summary of studies that used biomarkers as an indication of biological plausibility, and also studies evaluating new technology diesel exhaust (NTDE) and its systemic effects. Lastly, this review includes new approaches to improving DE emissions, and emphasizes the importance of ongoing study in this field of environmental health. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluating optical hazards from plasma arc cutting.
Glassford, Eric; Burr, Gregory
2018-01-01
The Health Hazard Evaluation Program of the National Institute for Occupational Safety and Health evaluated a steel building materials manufacturer. The employer requested the evaluation because of concerns about optical radiation hazards from a plasma arc cutting system and the need to clarify eye protection requirements for plasma operators, other employees, and visitors. The strength of the ultraviolet radiation, visible radiation (light), and infrared radiation generated by the plasma arc cutter was measured at various distances from the source and at different operating amperages. Investigators also observed employees performing the plasma arc cutting. Optical radiation above safe levels for the unprotected eyes in the ultraviolet-C, ultraviolet-B, and visible light ranges were found during plasma arc cutting. In contrast, infrared and ultraviolet-A radiation levels during plasma arc cutting were similar to background levels. The highest non-ionizing radiation exposures occurred when no welding curtains were used. A plasma arc welding curtain in place did not eliminate optical radiation hazards to the plasma arc operator or to nearby employees. In most instances, the measured intensities for visible light, UV-C, and UV-B resulted in welding shade lens numbers that were lower than those stipulated in the OSHA Filter Lenses for Protection Against Radiant Energy table in 29 CFR 1910.133(a)(5). [1] Investigators recommended using a welding curtain that enclosed the plasma arc, posting optical radiation warning signs in the plasma arc cutter area, installing audible or visual warning cues when the plasma arc cutter was operating, and using welding shades that covered the plasma arc cutter operator's face to protect skin from ultraviolet radiation hazards.
The Medical Hazards of Flame-Suppressant Atmospheres
1991-04-19
the external and middle earcavities. Graph B shows inward distension of the may need to be interrupted or slowed to eardrum produced by higher...experiments were performed by mental function, muscular coordination, military scientists (see ACKNOW- night vision, visual contrast sensitivity, LEDGEMENTS) in...task of muscular posure to change any of the visual coordination was slightly function tests (Luria & Knight, degraded during the first 4 h of 1987). the
Spatiotemporal Visualization of Tsunami Waves Using Kml on Google Earth
NASA Astrophysics Data System (ADS)
Mohammadi, H.; Delavar, M. R.; Sharifi, M. A.; Pirooz, M. D.
2017-09-01
Disaster risk is a function of hazard and vulnerability. Risk is defined as the expected losses, including lives, personal injuries, property damages, and economic disruptions, due to a particular hazard for a given area and time period. Risk assessment is one of the key elements of a natural disaster management strategy as it allows for better disaster mitigation and preparation. It provides input for informed decision making, and increases risk awareness among decision makers and other stakeholders. Virtual globes such as Google Earth can be used as a visualization tool. Proper spatiotemporal graphical representations of the concerned risk significantly reduces the amount of effort to visualize the impact of the risk and improves the efficiency of the decision-making process to mitigate the impact of the risk. The spatiotemporal visualization of tsunami waves for disaster management process is an attractive topic in geosciences to assist investigation of areas at tsunami risk. In this paper, a method for coupling virtual globes with tsunami wave arrival time models is presented. In this process we have shown 2D+Time of tsunami waves for propagation and inundation of tsunami waves, both coastal line deformation, and the flooded areas. In addition, the worst case scenario of tsunami on Chabahar port derived from tsunami modelling is also presented using KML on google earth.
32 CFR 644.520 - Contaminated industrial property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hazardous materials reasonably possible to detect either by present state-of-the-art methodology or by a visual inspection. (5) Recommendation as to whether the land or structures may be used for any purpose...
32 CFR 644.520 - Contaminated industrial property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hazardous materials reasonably possible to detect either by present state-of-the-art methodology or by a visual inspection. (5) Recommendation as to whether the land or structures may be used for any purpose...
32 CFR 644.520 - Contaminated industrial property.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hazardous materials reasonably possible to detect either by present state-of-the-art methodology or by a visual inspection. (5) Recommendation as to whether the land or structures may be used for any purpose...
Testing the impact on natural risks' awareness of visual communication through an exhibition
NASA Astrophysics Data System (ADS)
Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik
2014-05-01
The need to communicate about natural disasters in order to improve the awareness of communities at risk is not a matter for debate anymore. However, communication can be implemented using different media and tools, and their effectiveness may be difficult to grasp. Current research on the topic is usually focused on assessing whether communication practices meet users' needs, whereas impact assessment is mostly left out. It can be explained by difficulties arising from (1) the definition of the impact to measure, i.e. awareness, and the appropriate indicators to measure it and its variations, and (2) the implementation of a research design that allows assessing these impacts without bias. This research aims at both developing a methodology to measure risk awareness and to use it for testing the effectiveness of visual communication. The testing was conducted in the Ubaye Valley in France, an alpine area affected by multiple hazards, from December 2013 to mid-February 2014. The setting consisted of an exhibition in the public library of the main town, Barcelonnette. The main natural hazards of the study case (i.e. landslides, avalanches, flooding, debris flows and earthquakes), as well as structural and non-structural measures were presented to the general public using local examples of hazards events and mitigation. Various visualization tools were used: videos, Google earth map, interactive timeline, objects, mock-ups, technical devices as well as posters with pictures, drawings and graphs. In order to assess the effects of the exhibition on risk awareness, several groups of children and adults were submitted to a research design, consisting of 1) a pre-test, 2) the visit of the exhibition and 3) a post-test similar to the pre-test. Close-ended questions addressed the awareness indicators according to the literature, i.e. worry level, previous experiences with natural hazards events, exposure to awareness raising, ability to mitigate/respond/prepare, attitude to risk and demographics. In addition, the post-test included several satisfaction questions concerning the visual tools displayed in the exhibition. A statistical analysis of the changes between the pre- and post- tests allows to verify whether the exhibition has an impact on risk awareness or not. In order to deduce the attractiveness of each visual tool independently, the visitors' paths are tracked using RFID (Radio Frequency Identification) technique, from which their time spent around certain visuals can be assessed. These results also help to analyze the changes in risk awareness measured by the pre-test/post-test design. Direct observation of visitors' reactions and behaviors completed the methodology. This research hence helps to assess which visual tools are more suitable to communicate such topics not only to a community as a whole, but also to its sub-categories (e.g. adults vs. children, people with experience of natural disasters vs. people without). Moreover, it provides methodological improvements concerning effectiveness research in the field of risk communication. The first results of this research will be presented and discussed.
Environmental Assessment for Perimeter Security Lighting at Fort MacArthur, California
2007-07-01
transportation, visual resources, cultural resources, socioeconomics, environmental justice, hazardous materials and waste and safety . The environmental...Materials and Wastes 53 3.13 Safety 56 4.0 Environmental Consequences 57 4.1 Air Quality 57 4.2 Noise 58 4.3 Land Use 60 4.4 Geological Resources 61...Socioeconomics 70 4.11 Environmental Justice and Protection of Children 71 4.12 Hazardous Materials and Wastes 73 4.13 Safety 74 5.0 Cumulative
BYMUR software: a free and open source tool for quantifying and visualizing multi-risk analyses
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Selva, Jacopo
2013-04-01
The BYMUR software aims to provide an easy-to-use open source tool for both computing multi-risk and managing/visualizing/comparing all the inputs (e.g. hazard, fragilities and exposure) as well as the corresponding results (e.g. risk curves, risk indexes). For all inputs, a complete management of inter-model epistemic uncertainty is considered. The BYMUR software will be one of the final products provided by the homonymous ByMuR project (http://bymur.bo.ingv.it/) funded by Italian Ministry of Education, Universities and Research (MIUR), focused to (i) provide a quantitative and objective general method for a comprehensive long-term multi-risk analysis in a given area, accounting for inter-model epistemic uncertainty through Bayesian methodologies, and (ii) apply the methodology to seismic, volcanic and tsunami risks in Naples (Italy). More specifically, the BYMUR software will be able to separately account for the probabilistic hazard assessment of different kind of hazardous phenomena, the relative (time-dependent/independent) vulnerabilities and exposure data, and their possible (predefined) interactions: the software will analyze these inputs and will use them to estimate both single- and multi- risk associated to a specific target area. In addition, it will be possible to connect the software to further tools (e.g., a full hazard analysis), allowing a dynamic I/O of results. The use of Python programming language guarantees that the final software will be open source and platform independent. Moreover, thanks to the integration of some most popular and rich-featured Python scientific modules (Numpy, Matplotlib, Scipy) with the wxPython graphical user toolkit, the final tool will be equipped with a comprehensive Graphical User Interface (GUI) able to control and visualize (in the form of tables, maps and/or plots) any stage of the multi-risk analysis. The additional features of importing/exporting data in MySQL databases and/or standard XML formats (for instance, the global standards defined in the frame of GEM project for seismic hazard and risk) will grant the interoperability with other FOSS software and tools and, at the same time, to be on hand of the geo-scientific community. An already available example of connection is represented by the BET_VH(**) tool, which probabilistic volcanic hazard outputs will be used as input for BYMUR. Finally, the prototype version of BYMUR will be used for the case study of the municipality of Naples, by considering three different natural hazards (volcanic eruptions, earthquakes and tsunamis) and by assessing the consequent long-term risk evaluation. (**)BET_VH (Bayesian Event Tree for Volcanic Hazard) is probabilistic tool for long-term volcanic hazard assessment, recently re-designed and adjusted to be run on the Vhub cyber-infrastructure, a free web-based collaborative tool in volcanology research (see http://vhub.org/resources/betvh).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
... and hazardous wastes; public services and utilities; socioeconomics; environmental justice; visual... Regulations (40 CFR Parts 1500 through 1508) implementing the procedural requirements of the National...
NASA Astrophysics Data System (ADS)
Parham, M.; Day, S. J.; Teeuw, R. M.; Solana, C.; Sensky, T.
2014-12-01
This project aims to study the development of understanding of natural hazards (and of hazard mitigation) from the age of 11 to the age of 15 in secondary school children from 5 geographically and socially different schools on Dominica, through repeated interviews with the students and their teachers. These interviews will be coupled with a structured course of hazard education in the Geography syllabus; the students not taking Geography will form a control group. To avoid distortion of our results arising from the developing verbalization and literacy skills of the students over the 5 years of the project, we have adapted the PRISM tool used in clinical practice to assess patient perceptions of illness and treatment (Buchi & Sensky, 1999). This novel measure is essentially non-verbal, and uses spatial positions of moveable markers ("object" markers) on a board, relative to a fixed marker that represents the subject's "self", as a visual metaphor for the importance of the object to the subject. The subjects also explain their reasons for placing the markers as they have, to provide additional qualitative information. The PRISM method thus produces data on the perceptions measured on the board that can be subjected to statistical analysis, and also succinct qualitative data about each subject. Our study will gather data on participants' perceptions of different natural hazards, different sources of information about these, and organizations or individuals to whom they would go for help in a disaster, and investigate how these vary with geographical and social factors. To illustrate the method, which is generalisable, we present results from our initial interviews of the cohort of 11 year olds whom we will follow through their secondary school education.Büchi, S., & Sensky, T. (1999). PRISM: Pictorial Representation of Illness and Self Measure: a brief nonverbal measure of illness impact and therapeutic aid in psychosomatic medicine. Psychosomatics, 40(4), 314-320.
NASA Astrophysics Data System (ADS)
Parham, Martin; Day, Simon; Teeuw, Richard; Solana, Carmen; Sensky, Tom
2015-04-01
This project aims to study the development of understanding of natural hazards (and of hazard mitigation) from the age of 11 to the age of 15 in secondary school children from 5 geographically and socially different schools on Dominica, through repeated interviews with the students and their teachers. These interviews will be coupled with a structured course of hazard education in the Geography syllabus; the students not taking Geography will form a control group. To avoid distortion of our results arising from the developing verbalization and literacy skills of the students over the 5 years of the project, we have adapted the PRISM tool used in clinical practice to assess patient perceptions of illness and treatment (Buchi & Sensky, 1999). This novel measure is essentially non-verbal, and uses spatial positions of moveable markers ("object" markers) on a board, relative to a fixed marker that represents the subject's "self", as a visual metaphor for the importance of the object to the subject. The subjects also explain their reasons for placing the markers as they have, to provide additional qualitative information. The PRISM method thus produces data on the perceptions measured on the board that can be subjected to statistical analysis, and also succinct qualitative data about each subject. Our study will gather data on participants' perceptions of different natural hazards, different sources of information about these, and organizations or individuals to whom they would go for help in a disaster, and investigate how these vary with geographical and social factors. To illustrate the method, which is generalisable, we present results from our initial interviews of the cohort of 11 year olds whom we will follow through their secondary school education. Büchi, S., & Sensky, T. (1999). PRISM: Pictorial Representation of Illness and Self Measure: a brief nonverbal measure of illness impact and therapeutic aid in psychosomatic medicine. Psychosomatics, 40(4), 314-320.
NASA Astrophysics Data System (ADS)
Carr, B. B.; Vaughan, R. G.
2017-12-01
The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial systems, and can be used to monitor thermal areas on a variety of spatial and temporal scales.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Sandri, Laura; Rouwet, Dmitri; Caudron, Corentin; Marzocchi, Warner; Suparjan
2016-07-01
Although most of volcanic hazard studies focus on magmatic eruptions, volcanic hazardous events can also occur when no migration of magma can be recognized. Examples are tectonic and hydrothermal unrest that may lead to phreatic eruptions. Recent events (e.g., Ontake eruption on September 2014) have demonstrated that phreatic eruptions are still hard to forecast, despite being potentially very hazardous. For these reasons, it is of paramount importance to identify indicators that define the condition of nonmagmatic unrest, in particular for hydrothermal systems. Often, this type of unrest is driven by movement of fluids, requiring alternative monitoring setups, beyond the classical seismic-geodetic-geochemical architectures. Here we present a new version of the probabilistic BET (Bayesian Event Tree) model, specifically developed to include the forecasting of nonmagmatic unrest and related hazards. The structure of the new event tree differs from the previous schemes by adding a specific branch to detail nonmagmatic unrest outcomes. A further goal of this work consists in providing a user-friendly, open-access, and straightforward tool to handle the probabilistic forecast and visualize the results as possible support during a volcanic crisis. The new event tree and tool are here applied to Kawah Ijen stratovolcano, Indonesia, as exemplificative application. In particular, the tool is set on the basis of monitoring data for the learning period 2000-2010, and is then blindly applied to the test period 2010-2012, during which significant unrest phases occurred.
Temporal expectancy in the context of a theory of visual attention.
Vangkilde, Signe; Petersen, Anders; Bundesen, Claus
2013-10-19
Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue-stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s(-1)) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations.
NASA Astrophysics Data System (ADS)
Thomopoulos, Stelios C. A.; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Dimitros, Kostantinos; Margonis, Christos; Thanos, Giorgos Konstantinos; Skroumpelou, Katerina
2016-05-01
AF3 (Advanced Forest Fire Fighting2) is a European FP7 research project that intends to improve the efficiency of current fire-fighting operations and the protection of human lives, the environment and property by developing innovative technologies to ensure the integration between existing and new systems. To reach this objective, the AF3 project focuses on innovative active and passive countermeasures, early detection and monitoring, integrated crisis management and advanced public information channels. OCULUS Fire is the innovative control and command system developed within AF3 as a monitoring, GIS and Knowledge Extraction System and Visualization Tool. OCULUS Fire includes (a) an interface for real-time updating and reconstructing of maps to enable rerouting based on estimated hazards and risks, (b) processing of GIS dynamic re-construction and mission re-routing, based on the fusion of airborne, satellite, ground and ancillary geolocation data, (c) visualization components for the C2 monitoring system, displaying and managing information arriving from a variety of sources and (d) mission and situational awareness module for OCULUS Fire ground monitoring system being part of an Integrated Crisis Management Information System for ground and ancillary sensors. OCULUS Fire will also process and visualise information from public information channels, social media and also mobile applications by helpful citizens and volunteers. Social networking, community building and crowdsourcing features will enable a higher reliability and less false alarm rates when using such data in the context of safety and security applications.
An Evaluation of detectable warning surfaces for sidewalk curb ramps.
DOT National Transportation Integrated Search
1995-01-01
The 1991 Americans with Disabilities Act Accessibility Guidelines required the installation of a detectable warning surface (raised truncated domes) on sidewalk curb ramps to alert visually impaired people to potential hazards. Although this requirem...
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Hall, Jeffery L.; Kulczycki, Eric A.; Cameron, Jonathan M.; Morfopoulos, Arin C.; Clouse, Daniel S.; Montgomery, James F.; Ansar, Adnan I.; Machuzak, Richard J.
2009-01-01
An architecture for autonomous operation of an aerobot (i.e., a robotic blimp) to be used in scientific exploration of planets and moons in the Solar system with an atmosphere (such as Titan and Venus) is undergoing development. This architecture is also applicable to autonomous airships that could be flown in the terrestrial atmosphere for scientific exploration, military reconnaissance and surveillance, and as radio-communication relay stations in disaster areas. The architecture was conceived to satisfy requirements to perform the following functions: a) Vehicle safing, that is, ensuring the integrity of the aerobot during its entire mission, including during extended communication blackouts. b) Accurate and robust autonomous flight control during operation in diverse modes, including launch, deployment of scientific instruments, long traverses, hovering or station-keeping, and maneuvers for touch-and-go surface sampling. c) Mapping and self-localization in the absence of a global positioning system. d) Advanced recognition of hazards and targets in conjunction with tracking of, and visual servoing toward, targets, all to enable the aerobot to detect and avoid atmospheric and topographic hazards and to identify, home in on, and hover over predefined terrain features or other targets of scientific interest. The architecture is an integrated combination of systems for accurate and robust vehicle and flight trajectory control; estimation of the state of the aerobot; perception-based detection and avoidance of hazards; monitoring of the integrity and functionality ("health") of the aerobot; reflexive safing actions; multi-modal localization and mapping; autonomous planning and execution of scientific observations; and long-range planning and monitoring of the mission of the aerobot. The prototype JPL aerobot (see figure) has been tested extensively in various areas in the California Mojave desert.
Designsafe-Ci a Cyberinfrastructure for Natural Hazard Simulation and Data
NASA Astrophysics Data System (ADS)
Dawson, C.; Rathje, E.; Stanzione, D.; Padgett, J.; Pinelli, J. P.
2017-12-01
DesignSafe is the web-based research platform of the Natural Hazards Engineering Research Infrastructure (NHERI) network that provides the computational tools needed to manage and analyze critical data for natural hazards research, with wind and storm surge related hazards being a primary focus. One of the simulation tools under DesignSafe is the Advanced Circulation (ADCIRC) model, a coastal ocean model used in storm surge analysis. ADCIRC is an unstructured, finite element model with high resolution capabilities for studying storm surge impacts, and has long been used in storm surge hind-casting and forecasting. In this talk, we will demonstrate the use of ADCIRC within the DesignSafe platform and its use for forecasting Hurricane Harvey. We will also demonstrate how to analyze, visualize and archive critical storm surge related data within DesignSafe.
Sun, Xinlu; Chong, Heap-Yih; Liao, Pin-Chao
2018-06-25
Navigated inspection seeks to improve hazard identification (HI) accuracy. With tight inspection schedule, HI also requires efficiency. However, lacking quantification of HI efficiency, navigated inspection strategies cannot be comprehensively assessed. This work aims to determine inspection efficiency in navigated safety inspection, controlling for the HI accuracy. Based on a cognitive method of the random search model (RSM), an experiment was conducted to observe the HI efficiency in navigation, for a variety of visual clutter (VC) scenarios, while using eye-tracking devices to record the search process and analyze the search performance. The results show that the RSM is an appropriate instrument, and VC serves as a hazard classifier for navigation inspection in improving inspection efficiency. This suggests a new and effective solution for addressing the low accuracy and efficiency of manual inspection through navigated inspection involving VC and the RSM. It also provides insights into the inspectors' safety inspection ability.
Amines as occupational hazards for visual disturbance
JANG, Jae-Kil
2015-01-01
Various amines, such as triethylamine and N,N-dimethylethylamine, have been reported to cause glaucopsia in workers employed in epoxy, foundry, and polyurethane foam industries. This symptom has been related to corneal edema and vesicular collection of fluid within the corneal subepithelial cells. Exposure to amine vapors for 30 min to several hours leads to blurring of vision, a blue-grey appearance of objects, and halos around lights, that are probably reversible. Concentration-effect relationships have been established. The visual disturbance is considered a nuisance, as it could cause onsite accidents, impair work efficiency, and create difficulties in driving back home. Occupational exposure limits have been established for some amines, but there is shortage of criteria. Volatility factors, such as vapor pressure, should be considered in industrial settings to prevent human ocular risks, while trying to reduce levels of hazardous amines in the atmosphere. PMID:26538000
Age-related changes in perception of movement in driving scenes.
Lacherez, Philippe; Turner, Laura; Lester, Robert; Burns, Zoe; Wood, Joanne M
2014-07-01
Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Participants included 61 regular drivers (age range 22-87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of motion sensitivity. The locus of the processing deficits appears to lie in first-order, rather than second-order motion pathways. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Development of Inspection and Investigation Techniques to Prepare Debris Flow in Urban Areas
NASA Astrophysics Data System (ADS)
Seong, Joo-Hyun; Jung, Min-Hyeong; Park, Kyung-Han; An, Jai-Wook; Kim, Jiseong
2017-04-01
Due to the urban development, various facilities are located in mountainous areas near the city, and the damage to the occurrence of the debris flow is increasing in the urban area. However, quantitative inspection and investigation techniques are not sufficient for preparing debris flow in the urban area around the world. Therefore, in this study, we developed the debris flow inspection and investigation techniques, which are suitable for urban characteristics, regarding the soil hazard prevention and restoration in urban area. First, the inspection and investigation system is divided into the daily occurrence and the occurrence of the soil hazard event, and the inspection / investigation flow chart were developed based on the kind of inspection and correspondence required for each situation. The types of inspections applied in this study were determined as daily inspection, regular inspections, special emergency inspection, damage emergency inspection and In-depth safety inspection. The management agency, term of inspection, objects to be inspected, and contents of inspection work were presented according to type of each inspection. The daily inspection routinely checks for signs of collapse and conditions of facilities in urban areas which show vulnerability for soil hazard and that are conducted from the management agency. In the case of regular inspection, an expert for soil hazards regularly conducts detailed visual surveys on mountainous areas, steep slopes, prevention facilities and adjacent facilities in vulnerable areas. On the other hand, it was decided that the emergency inspection is carried out in the event of the occurrence of vulnerable element or soil hazards. Acknowledgement This study was conducted with the research iund support by the constructiontechnology research project of the Ministry of Land, Infrastructure and Transport (project number 16SCIP-B069989-04)
The NHERI RAPID Facility: Enabling the Next-Generation of Natural Hazards Reconnaissance
NASA Astrophysics Data System (ADS)
Wartman, J.; Berman, J.; Olsen, M. J.; Irish, J. L.; Miles, S.; Gurley, K.; Lowes, L.; Bostrom, A.
2017-12-01
The NHERI post-disaster, rapid response research (or "RAPID") facility, headquartered at the University of Washington (UW), is a collaboration between UW, Oregon State University, Virginia Tech, and the University of Florida. The RAPID facility will enable natural hazard researchers to conduct next-generation quick response research through reliable acquisition and community sharing of high-quality, post-disaster data sets that will enable characterization of civil infrastructure performance under natural hazard loads, evaluation of the effectiveness of current and previous design methodologies, understanding of socio-economic dynamics, calibration of computational models used to predict civil infrastructure component and system response, and development of solutions for resilient communities. The facility will provide investigators with the hardware, software and support services needed to collect, process and assess perishable interdisciplinary data following extreme natural hazard events. Support to the natural hazards research community will be provided through training and educational activities, field deployment services, and by promoting public engagement with science and engineering. Specifically, the RAPID facility is undertaking the following strategic activities: (1) acquiring, maintaining, and operating state-of-the-art data collection equipment; (2) developing and supporting mobile applications to support interdisciplinary field reconnaissance; (3) providing advisory services and basic logistics support for research missions; (4) facilitating the systematic archiving, processing and visualization of acquired data in DesignSafe-CI; (5) training a broad user base through workshops and other activities; and (6) engaging the public through citizen science, as well as through community outreach and education. The facility commenced operations in September 2016 and will begin field deployments beginning in September 2018. This poster will provide an overview of the vision for the RAPID facility, the equipment that will be available for use, the facility's operations, and opportunities for user training and facility use.
Assessment of Rip-Current Hazards Using Alongshore Topographic Anisotropy at Bondi Beach, Australia
NASA Astrophysics Data System (ADS)
Hartman, K.; Trimble, S. M.; Bishop, M. P.; Houser, C.
2016-12-01
Rip currents are a relatively high-velocity flow of water away from the beach common in coastal environments. As beach morphology adapts to sediment fluxes and wave climate, it is essential to be able to assess rip-current hazard conditions. Furthermore, it is essential to be able to characterize the scale-dependent bathymetric morphology that governs the extent and magnitude of a rip current. Consequently, our primary objective is to assess the alongshore distribution of topographic anisotropy, in order to identify rip-current hazard locations. Specifically, we utilized multi-band satellite imagery to generate a bathymetric digital elevation model (DEM) for Bondi Beach Australia, and collected field data to support our analysis. Scale-dependent spatial analysis of the DEM was conducted to assess the directional dependence of topographic relief, the magnitude of topographic anisotropy, and the degree of anisotropic symmetry. We displayed anisotropy parameters as images and false-color composites to visualize morphological conditions associated with rip channels. Our preliminary results indicate that rip channels generally have a higher anisotropy index and orthogonal orientation compared to dissipative or reflective beach anisotropy and orientation. Scale-dependent variations in anisotropy can be used to assess the spatial extent of rip currents. Furthermore, well-defined rip channels exhibit positive symmetry, while variations in the distribution of symmetry reflect sediment-flux variations alongshore. These results clearly reveal that a well-developed rip channel can be identified and assessed using topographic anisotropy, as scale-dependent anisotropy patterns are unique when compared to the surrounding bathymetry and terrain. In this way, it is possible to evaluate the alongshore distribution of rip currents. Alongshore topographic anisotropy data will be extremely important as input into hazard assessment studies and the development of hazard decision support systems.
Driving on the surface of Mars with the rover sequencing and visualization program
NASA Technical Reports Server (NTRS)
Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.
2005-01-01
Operating a rover on Mars is not possible using teleoperations due to the distance involved and the bandwith limitations. To operate these rovers requires sophisticated tools to make operators knowledgeable of the terrain, hazards, features of interest, and rover state and limitations, and to support building command sequences and rehearsing expected operations. This paper discusses how the Rover Sequencing and Visualization program and a small set of associated tools support this requirement.
Marrie, Ruth Ann; Cutter, Gary; Tyry, Tuula
2011-12-01
Visual comorbidities are common in multiple sclerosis (MS) but the impact of visual comorbidities on visual disability is unknown. We assessed the impact of visual and vascular comorbidities on severity of visual disability in MS. In 2006, we queried participants of the North American Research Committee on Multiple Sclerosis (NARCOMS) about cataracts, glaucoma, uveitis, hypertension, hypercholesterolemia, heart disease, diabetes and peripheral vascular disease. We assessed visual disability using the Vision subscale of Performance Scales. Using Cox regression, we investigated whether visual or vascular comorbidities affected the time between MS symptom onset and the development of mild, moderate and severe visual disability. Of 8983 respondents, 1415 (15.9%) reported a visual comorbidity while 4745 (52.8%) reported a vascular comorbidity. The median (interquartile range) visual score was 1 (0-2). In a multivariable Cox model the risk of mild visual disability was higher among participants with vascular (hazard ratio [HR] 1.45; 95% confidence interval [CI]: 1.39-1.51) and visual comorbidities (HR 1.47; 95% CI: 1.37-1.59). Vascular and visual comorbidities were similarly associated with increased risks of moderate and severe visual disability. Visual and vascular comorbidities are associated with progression of visual disability in MS. Clinicians hearing reports of worsening visual symptoms in MS patients should consider visual comorbidities as contributing factors. Further study of these issues using objective, systematic neuro-ophthalmologic evaluations is warranted.
Evaluation of P-Listed Pharmaceutical Residues in Empty ...
Under the Resource Conservation and Recovery Act (RCRA), some pharmaceuticals are considered acute hazardous wastes because their sole active pharmaceutical ingredients are P-listed commercial chemical products (40 CFR 261.33). Hospitals and other healthcare facilities have struggled with RCRA's empty container requirements when it comes to disposing of visually empty warfarin and nicotine containers, and this issue is in need of investigation. For example, nicotine gums, patches and lozenges are hazardous wastes because nicotine and its salts are listed as P075, and Coumadin (also known as warfarin) is hazardous because warfarin and its salts are listed as P001 (when warfarin is present at concentrations greater than 0.3%). Therefore, when unused nicotine-based smoking cessation products (e.g., patches, gum and lozenges) and Coumadin are discarded, they are acute hazardous wastes and must be managed in accordance with all applicable RCRA regulations. Furthermore, due to additional management requirements for P-listed wastes, any acute hazardous water residues remaining in containers (and therefore the container itself) must be managed as hazardous unless the container has been rendered
Lights and siren: a review of emergency vehicle warning systems.
De Lorenzo, R A; Eilers, M A
1991-12-01
Emergency medical services providers routinely respond to emergencies using lights and siren. This practice is not without risk of collision. Audible and visual warning devices and vehicle markings are integral to efficient negotiation of traffic and reduction of collision risk. An understanding of warning system characteristics is necessary to implement appropriate guidelines for prehospital transportation systems. The pertinent literature on emergency vehicle warning systems is reviewed, with emphasis on potential health hazards associated with these techniques. Important findings inferred from the literature are 1) red flashing lights alone may not be as effective as other color combinations, 2) there are no data to support a seizure risk with strobe lights, 3) lime-yellow is probably superior to traditional emergency vehicle colors, 4) the siren is an extremely limited warning device, and 5) exposure to siren noise can cause hearing loss. Emergency physicians must ensure that emergency medical services transportation systems consider the pertinent literature on emergency vehicle warning systems.
Vision Tests For Medical Surveillance Or To Insure Job Fitness
NASA Astrophysics Data System (ADS)
Wolbarsht, M. L.; Landers, M. B.
1986-05-01
The rationale for designing screening type eye examinations to document visual capabilities for specific jobs or changes in visual function following exposure to specific ocular hazards is discussed. Possible applications to clinical situations are also discussed. Specific tests meeting requirements of definite end point quantification, ease of administration, and reproducibility are given for contrast (glare) sensitivity, distortions in macular imaging (Amsler grid), and color vision. The selection is aetailed for tne individual test combinations of various populations such as automobile uriver license applicants, visual display operators, and persons exposed to lasers, including military as well as non-military installers and repairers of optical fibers for communications.
Navigation, behaviors, and control modes in an autonomous vehicle
NASA Astrophysics Data System (ADS)
Byler, Eric A.
1995-01-01
An Intelligent Mobile Sensing System (IMSS) has been developed for the automated inspection of radioactive and hazardous waste storage containers in warehouse facilities at Department of Energy sites. A 2D space of control modes was used that provides a combined view of reactive and planning approaches wherein a 2D situation space is defined by dimensions representing the predictability of the agent's task environment and the constraint imposed by its goals. In this sense selection of appropriate systems for planning, navigation, and control depends on the problem at hand. The IMSS vehicle navigation system is based on a combination of feature based motion, landmark sightings, and an a priori logical map of the mockup storage facility. Motion for the inspection activities are composed of different interactions of several available control modes, several obstacle avoidance modes, and several feature identification modes. Features used to drive these behaviors are both visual and acoustic.
NASA Astrophysics Data System (ADS)
Wright, R.; Pilger, E.; Flynn, L. P.; Harris, A. J.
2006-12-01
Volcanic eruptions and wildfires are natural hazards that are truly global in their geographic scope, as well as being temporally very dynamic. As such, satellite remote sensing lends itself to their effective detection and monitoring. The results of such mapping can be communicated in the form of traditional static maps. However, most hazards have strong time-dependent forcing mechanisms (in the case of biomass burning, climate) and the dynamism of these geophysical phenomena requires a suitable method for their presentation. Here, we present visualizations of the amount of thermal energy radiated by all of Earth's sub-aerially erupting volcanoes, wildfires and industrial heat sources over a seven year period. These visualizations condense the results obtained from the near-real-time analysis of over 1.2 million MODIS (Moderate Resolution Imaging Spectro-radiometer) images, acquired from NASA's Terra and Aqua platforms. In the accompanying poster we will describe a) the raw data, b) how these data can be used to derive higher-order geophysical parameters, and c) how the visualization of these derived products adds scientific value to the raw data. The visualizations reveal spatio-temporal trends in fire radiated energy (and by proxy, biomass combustion rates and carbon emissions into the atmosphere), which are indiscernible in the static data set. Most notable are differences in biomass combustion between the North American and Eurasian Boreal forests. We also give examples relating to the development of lava flow-fields at Mount Etna (Italy) and Kilauea (USA), as well as variations in heat output from Iraqi oil fields, that span the onset of the 2003 Persian Gulf War. The raw data used to generate these visualizations are routinely made available via the Internet, as portable ASCII files. They can therefore be easily integrated with image datasets, by other researchers, to create their own visualizations.
The Use of LANCE Imagery Products to Investigate Hazards and Disasters
NASA Astrophysics Data System (ADS)
Schmaltz, J. E.; Teague, M.; Conover, H.; Regner, K.; Masuoka, E.; Vollmer, B. E.; Durbin, P.; Murphy, K. J.; Boller, R. A.; Davies, D.; Ilavajhala, S.; Thompson, C. K.; Bingham, A.; Rao, S.
2011-12-01
The NASA/GSFC Land Atmospheres Near-real time Capability for EOS (LANCE) has endeavored to integrate a variety of products from the Terra, Aqua, and Aura missions to assist in meeting the needs of the applications user community. This community has a need for imagery products to support the investigation of a wide variety of phenomena including hazards and disasters. The Evjafjallajokull eruption, the tsunamis/flood in Japan, and the Gulf of Mexico oil spill are recent examples of applications benefiting from the timely and synoptic view afforded by LANCE data. Working with the instrument science teams and the applications community, LANCE has identified 14 applications categories and the LANCE products that will support their investigation. The categories are: Smoke Plumes, Ash Plumes, Dust Storms, Pollution, Severe Storms, Shipping hazards, Fishery hazards, Land Transportation, Fires, Floods, Drought, Vegetation, Agriculture, and Oil Spills. Forty products from AMSR-E, MODIS, AIRS, and OMI have been identified to support analyses and investigations of these phenomena. In each case multiple products from two or more instruments are available which gives a more complete picture of the evolving hazard or disaster. All Level 2 (L2) products are available within 2.5 hours of observation at the spacecraft and the daily L3 products are updated incrementally as new data become available. LANCE provides user access to imagery using two systems: a Web Mapping Service (WMS) and a Google Earth-based interface known as the State of the Earth (SOTE). The latter has resulted from a partnership between LANCE and the Physical Oceanography Distributed Active Archive Center (PO DAAC). When the user selects one of the 14 categories, the relevant products are established within the WMS (http://lance2.modaps.eosdis.nasa.gov/wms/). For each application, population density data are available for densities in excess of 100 people/sqkm with user-defined opacity. These data are provided by the EOSDIS Socio-Economic Data and Applications Center (SEDAC). Certain users may not want to be constrained by the pre-defined categories and related products and all 40 products may be added as potential overlays. The most recent 10 days of near-real time data are available through the WMS. The SOTE provides an interface to the products grouped in the same fashion as the WMS. The SOTE servers stream imagery and data in the OGC KML format and these feeds can be visualized through the Google Earth browser plug-in. SOTE provides visualization through a virtual globe environment by allowing users to interact with the globe via zooming, rotating, and tilting.
A Study on Attention Guidance to Driver by Subliminal Visual Information
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Honda, Hirohiko
This paper presents a new warning method for increasing drivers' sensitivity for recognizing hazardous factors in the driving environment. The method is based on a subliminal effect. The results of many experiments performed by three dimensional head-mounted display shows that the response time for detecting a flashing mark tended to decrease when a subliminal mark was shown in advance. Priming effects are observed in subliminal visual information. This paper also proposes a scenario for implementing this method in real vehicles.
1980-06-01
Controlling Office) I5. SECURITY CLASS. (of this report) Unclassified 15a. DECL ASSI FICATION/DOWN GRADING SCHEDULE 16 . DISTRIBUTION STATEMENT (of this...pose hazards to human life or property . The assessment of the general conditions of the dam is based upon available data and visual inspections...human life or property . The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed in- vestigation
High-beam intensity, visual performance and safety-related impacts.
DOT National Transportation Integrated Search
2015-10-01
It has been understood for many years that driving above certain speeds at night while using low beam : headlights can result in insufficient visibility to respond to hazards on the road. As new vehicle : headlighting technologies emerge, the practic...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... as part of a production shift. If hazardous conditions are found during the visual exam, then a log... be tested every seven days and that CO, smoke, or methane sensors be calibrated, every 31 days...
Trajectory-Based Performance Assessment for Aviation Weather Information
NASA Technical Reports Server (NTRS)
Vigeant-Langlois, Laurence; Hansman, R. John, Jr.
2003-01-01
Based on an analysis of aviation decision-makers' time-related weather information needs, an abstraction of the aviation weather decision task was developed, that involves 4-D intersection testing between aircraft trajectory hypertubes and hazardous weather hypervolumes. The framework builds on the hypothesis that hazardous meteorological fields can be simplified using discrete boundaries of surrogate threat attributes. The abstractions developed in the framework may be useful in studying how to improve the performance of weather forecasts from the trajectory-centric perspective, as well as for developing useful visualization techniques of weather information.
PLANETarium - Visualizing Earth Sciences in the Planetarium
NASA Astrophysics Data System (ADS)
Ballmer, M. D.; Wiethoff, T.; Kraupe, T. W.
2013-12-01
In the past decade, projection systems in most planetariums, traditional sites of outreach and public education, have advanced from instruments that can visualize the motion of stars as beam spots moving over spherical projection areas to systems that are able to display multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education. A few documentaries on e.g. climate change or volcanic eruptions have been brought to planetariums, but are taking little advantage of the true potential of the medium, as mostly based on standard two-dimensional videos and cartoon-style animations. Along these lines, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100,000,000 per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to directly show visualizations of scientific datasets or models, originally designed for basic research. Such visualizations in solid-Earth, as well as athmospheric and ocean sciences, are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., surface temperature, gravity, magnetic field), or horizontal slices of seismic-tomography images and of spherical computer simulations (e.g., climate evolution, mantle flow or ocean currents) requires almost no rendering at all. Three-dimensional Cartesian datasets or models can be rendered using standard methods. With the appropriate audio support, present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly more informative as revealing the complexity and beauty of our planet. In addition to e.g. climate change and natural hazards, themes of interest may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the generation and sustainment of the magnetic field as well as of habitable conditions in the atmosphere and oceans. We believe that high-quality tax-funded science visualizations should not exclusively be used to facilitate communication amoung scientists, but also be directly recycled to raise the public's awareness and appreciation of geosciences.
The Knowledge Capsules: Very Short Films on Earth Science for Mainstream Audiences
NASA Astrophysics Data System (ADS)
Kerlow, Isaac
2015-04-01
The Knowledge Capsules are outreach and communication videos that present practical science research to mainstream audiences and take viewers on a journey into different aspects of Earth science and natural hazards. The innovative shorts are the result of an interdisciplinary development and production process. They include a combination of interviews, visualizations of scientific research, and documentation of fieldwork. They encapsulate research insights about volcanoes, tsunamis, and climate change in Southeast Asia. These short films were actively distributed free-of-charge during 2012-2014 and all of them are available online. The paper provides an overview of the motivations, process and accomplished results. Our approach for producing the Knowledge Capsules includes: an engaging mix of information and a fresh delivery style, a style suitable for a primary audience of non-scientists, a simple but experientially rich production style, Diagrams and animations based on the scientists' visuals, and a running time between five and twenty minutes. The completed Knowledge Capsules include: "Coastal Science" on Coastal Hazards, "The Ratu River Expedition" on Structural Geology, "Forensic Volcano Petrology by Fidel Costa, Volcano Petrology, "A Tale of Two Tsunamis" on Tsunami Stratigraphy, "Unlocking Climate Secrets" on Marine Geochemistry, and "Earth Girl 2: A Casual Strategy Game to Prepare for the Tsunami" on Natural Hazards and Science Outreach.
Temporal expectancy in the context of a theory of visual attention
Vangkilde, Signe; Petersen, Anders; Bundesen, Claus
2013-01-01
Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue–stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s−1) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations. PMID:24018716
Visual risk factors for falls in older people.
Lord, Stephen R
2006-09-01
Poor vision reduces postural stability and significantly increases the risk of falls and fractures in older people. Most studies have found that poor visual acuity increases the risk of falls. However, studies that have included multiple visual measures have found that reduced contrast sensitivity and depth perception are the most important visual risk factors for falls. Multifocal glasses may add to this risk because their near-vision lenses impair distance contrast sensitivity and depth perception in the lower visual field. This reduces the ability of an older person to detect environmental hazards. There is now evidence that maximising vision through cataract surgery is an effective strategy for preventing falls. Further randomised controlled trials are required to determine whether individual strategies (such as restriction of use of multifocal glasses) or multi-strategy visual improvement interventions can significantly reduce falls in older people. Public health initiatives are required to raise awareness in older people and their carers of the importance of regular eye examinations and use of appropriate prescription glasses.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon... hazardous waste management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude... and recordkeeping requirements. 40 CFR Part 261 Environmental protection, Hazardous waste, Solid waste...
ROBOTIC CRAWLER PROVIDES RADIOLOGICAL PROTECTION IN HAZARDOUS ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAM, J.E.
2002-01-31
A robotic crawler was deployed into the process cells at the 224-T Building to perform cell characterization. The most significant hazard was the potential for criticality upon introduction of a moderating material. Due to the unknown fissile inventory in the cells and the potential moderation affects of a person, manned entry was considered too high of a risk, and a robotic crawler was determined to be the best option for the initial characterization. The robotic crawler provided maneuverability, allowing access to areas in the cells where debris was found. It provided visual inspection in areas with little light, using amore » low lux pan and tilt camera system. Also, it provided fissile inventory measurements using a non-destructive assay (NDA) detector. The NDA detector supplied real-time data to maintain criticality control. Other technologies used during the cell characterization were water-cooled suits and a thin water resistant synthetic anti-contamination coverall, used for heat stress reduction. Also, an aluminum framed shelter provided a weather barrier, allowing work to continue under conditions which would have stopped work without it.« less
Warning Alert HITL Experiment Results
NASA Technical Reports Server (NTRS)
Monk, Kevin J.; Ferm, Lisa; Roberts, Zach
2018-01-01
Minimum Operational Performance Standards (MOPS) are being developed to support the integration of Unmanned Aircraft Systems (UAS) in the National Airspace (NAS). Input from subject matter experts and multiple research studies have informed display requirements for Detect-and-Avoid (DAA) systems aimed at supporting timely and appropriate pilot responses to collision hazards. Phase 1 DAA MOPS alerting is designed to inform pilots if an avoidance maneuver is necessary; the two highest alert levels - caution and warning - indicate how soon pilot action is required and whether there is adequate time to coordinate with the air traffic controller (ATC). Additional empirical support is needed to clarify the extent to which warning-level alerting impacts DAA task performance. The present study explores the differential effects of the auditory and visual cues provided by the DAA Warning alert, and performance implications compared to caution-only alerting are discussed.
Plaque Brachytherapy for Uveal Melanoma: A Vision Prognostication Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Niloufer; Khan, Mohammad K.; Bena, James
Purpose: To generate a vision prognostication model after plaque brachytherapy for uveal melanoma. Methods and Materials: All patients with primary single ciliary body or choroidal melanoma treated with iodine-125 or ruthenium-106 plaque brachytherapy between January 1, 2005, and June 30, 2010, were included. The primary endpoint was loss of visual acuity. Only patients with initial visual acuity better than or equal to 20/50 were used to evaluate visual acuity worse than 20/50 at the end of the study, and only patients with initial visual acuity better than or equal to 20/200 were used to evaluate visual acuity worse than 20/200more » at the end of the study. Factors analyzed were sex, age, cataracts, diabetes, tumor size (basal dimension and apical height), tumor location, and radiation dose to the tumor apex, fovea, and optic disc. Univariate and multivariable Cox proportional hazards were used to determine the influence of baseline patient factors on vision loss. Kaplan-Meier curves (log rank analysis) were used to estimate freedom from vision loss. Results: Of 189 patients, 92% (174) were alive as of February 1, 2011. At presentation, visual acuity was better than or equal to 20/50 and better than or equal to 20/200 in 108 and 173 patients, respectively. Of these patients, 44.4% (48) had post-treatment visual acuity of worse than 20/50 and 25.4% (44) had post-treatment visual acuity worse than 20/200. By multivariable analysis, increased age (hazard ratio [HR] of 1.01 [1.00-1.03], P=.05), increase in tumor height (HR of 1.35 [1.22-1.48], P<.001), and a greater total dose to the fovea (HR of 1.01 [1.00-1.01], P<.001) were predictive of vision loss. This information was used to develop a nomogram predictive of vision loss. Conclusions: By providing a means to predict vision loss at 3 years after treatment, our vision prognostication model can be an important tool for patient selection and treatment counseling.« less
Building Better Volcanic Hazard Maps Through Scientific and Stakeholder Collaboration
NASA Astrophysics Data System (ADS)
Thompson, M. A.; Lindsay, J. M.; Calder, E.
2015-12-01
All across the world information about natural hazards such as volcanic eruptions, earthquakes and tsunami is shared and communicated using maps that show which locations are potentially exposed to hazards of varying intensities. Unlike earthquakes and tsunami, which typically produce one dominant hazardous phenomenon (ground shaking and inundation, respectively) volcanic eruptions can produce a wide variety of phenomena that range from near-vent (e.g. pyroclastic flows, ground shaking) to distal (e.g. volcanic ash, inundation via tsunami), and that vary in intensity depending on the type and location of the volcano. This complexity poses challenges in depicting volcanic hazard on a map, and to date there has been no consistent approach, with a wide range of hazard maps produced and little evaluation of their relative efficacy. Moreover, in traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map that is then presented to stakeholders. This one-way, top-down approach to hazard communication does not necessarily translate into effective hazard education, or, as tragically demonstrated by Nevado del Ruiz, Columbia in 1985, its use in risk mitigation by civil authorities. Furthermore, messages taken away from a hazard map can be strongly influenced by its visual design. Thus, hazard maps are more likely to be useful, usable and used if relevant stakeholders are engaged during the hazard map process to ensure a) the map is designed in a relevant way and b) the map takes into account how users interpret and read different map features and designs. The IAVCEI Commission on Volcanic Hazards and Risk has recently launched a Hazard Mapping Working Group to collate some of these experiences in graphically depicting volcanic hazard from around the world, including Latin America and the Caribbean, with the aim of preparing some Considerations for Producing Volcanic Hazard Maps that may help map makers in the future.
[Health Risk Assessment of Drinking Water Quality in Tianjin Based on GIS].
Fu, Gang; Zeng, Qiang; Zhao, Liang; Zhang, Yue; Feng, Bao-jia; Wang, Rui; Zhang, Lei; Wang, Yang; Hou, Chang-chun
2015-12-01
This study intends to assess the potential health hazards of drinking water quality and explore the application of geographic information system( GIS) in drinking water safety in Tianjin. Eight hundred and fifty water samples from 401 sampling points in Tianjin were measured according to the national drinking water standards. The risk assessment was conducted using the environmental health risk assessment model recommended by US EAP, and GIS was combined to explore the information visualization and risk factors simultaneously. The results showed that the health risks of carcinogens, non-carcinogens were 3.83 x 10⁻⁵, 5.62 x 10⁻⁹ and 3.83 x 10⁻⁵ for total health risk respectively. The rank of health risk was carcinogen > non-carcinogen. The rank of carcinogens health risk was urban > new area > rural area, chromium (VI) > cadmium > arsenic > trichlormethane > carbon tetrachloride. The rank of non-carcinogens health risk was rural area > new area > urban, fluoride > cyanide > lead > nitrate. The total health risk level of drinking water in Tianjin was lower than that of ICRP recommended level (5.0 x 10⁻⁵), while was between US EPA recommended level (1.0 x 10⁻⁴-1.0 x 10⁻⁶). It was at an acceptable level and would not cause obvious health hazards. The main health risks of drinking water came from carcinogens. More attentions should be paid to chromium (VI) for carcinogens and fluoride for non-carcinogens. GIS can accomplish information visualization of drinking water risk assessment and further explore of risk factors.
Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation
Yang, Kailun; Wang, Kaiwei; Romera, Eduardo; Hu, Weijian; Sun, Dongming; Sun, Junwei; Cheng, Ruiqi; Chen, Tianxue; López, Elena
2018-01-01
Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework. PMID:29748508
Visual Sample Plan Version 7.0 User's Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzke, Brett D.; Newburn, Lisa LN; Hathaway, John E.
2014-03-01
User's guide for VSP 7.0 This user's guide describes Visual Sample Plan (VSP) Version 7.0 and provides instructions for using the software. VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to risk decisions have the required confidence and performance. VSP Version 7.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. It also provides data quality assessment and statistical analysis functions to support evaluation of the data and determine whether the data support decisions regarding sites suspected of contamination.more » The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (XP, Vista, Windows 7, and Windows 8). Designed primarily for project managers and users without expertise in statistics, VSP is applicable to two- and three-dimensional populations to be sampled (e.g., rooms and buildings, surface soil, a defined layer of subsurface soil, water bodies, and other similar applications) for studies of environmental quality. VSP is also applicable for designing sampling plans for assessing chem/rad/bio threat and hazard identification within rooms and buildings, and for designing geophysical surveys for unexploded ordnance (UXO) identification.« less
Vertical Field of View Reference Point Study for Flight Path Control and Hazard Avoidance
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Rudisill, Marianne; Kramer, Lynda J.; Busquets, Anthony M.
2002-01-01
Researchers within the eXternal Visibility System (XVS) element of the High-Speed Research (HSR) program developed and evaluated display concepts that will provide the flight crew of the proposed High-Speed Civil Transport (HSCT) with integrated imagery and symbology to permit path control and hazard avoidance functions while maintaining required situation awareness. The challenge of the XVS program is to develop concepts that would permit a no-nose-droop configuration of an HSCT and expanded low visibility HSCT operational capabilities. This study was one of a series of experiments exploring the 'design space' restrictions for physical placement of an XVS display. The primary experimental issues here was 'conformality' of the forward display vertical position with respect to the side window in simulated flight. 'Conformality' refers to the case such that the horizon and objects appear in the same relative positions when viewed through the forward windows or display and the side windows. This study quantified the effects of visual conformality on pilot flight path control and hazard avoidance performance. Here, conformality related to the positioning and relationship of the artificial horizon line and associated symbology presented on the forward display and the horizon and associated ground, horizon, and sky textures as they would appear in the real view through a window presented in the side window display. No significant performance consequences were found for the non-conformal conditions.
NASA Astrophysics Data System (ADS)
Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.
2015-04-01
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b) and makes use of LAMI (Limited Area Model Italy) rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult, and it provides different outputs. When switching among different views, the system is able to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a basic data view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain gauges can be displayed and constantly compared with rainfall thresholds. To better account for the variability of the geomorphological and meteorological settings encountered in Tuscany, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of more than 300 rain gauges, it allows for the monitoring of each alert zone separately so that warnings can be issued independently. An important feature of the warning system is that the visualization of the thresholds in the WebGIS interface may vary in time depending on when the starting time of the rainfall event is set. The starting time of the rainfall event is considered as a variable by the early warning system: whenever new rainfall data are available, a recursive algorithm identifies the starting time for which the rainfall path is closest to or overcomes the threshold. This is considered the most hazardous condition, and it is displayed by the WebGIS interface. The early warning system is used to forecast and monitor the landslide hazard in the whole region, providing specific alert levels for 25 distinct alert zones. In addition, the system can be used to gather, analyze, display, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.
40 CFR 63.7740 - What are my monitoring requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries Continuous...) Inspect fans for wear, material buildup, and corrosion through quarterly visual inspections, vibration... more automated conveyor and pallet cooling lines and automated shakeout lines at a new iron and steel...
VISUAL INSPECTION AND AHERA CLEARANCE AT ASBESTOS ABATEMENT SITES
Asbestos abatement carried out in schools is subject to regulations under the Asbestos Hazard Emergency Response Act (AHERA) of 1986. The AHERA rule (40 CFR Part 763) specifies a bifactorial process for determining when an asbestos abatement site is clean enough for the primary ...
40 CFR 63.7830 - What are my monitoring requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... equivalent means. (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to....7830 Section 63.7830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED...
40 CFR 63.7830 - What are my monitoring requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... equivalent means. (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to...? 63.7830 Section 63.7830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...
40 CFR 63.7830 - What are my monitoring requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... equivalent means. (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to...? 63.7830 Section 63.7830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...
Advanced integrated enhanced vision systems
NASA Astrophysics Data System (ADS)
Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha
2003-09-01
In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.
Software System Architecture Modeling Methodology for Naval Gun Weapon Systems
2010-12-01
Weapon System HAR Hazard Action Report HERO Hazards of Electromagnetic Radiation to Ordnance IOC Initial Operational Capability... radiation to ordnance ; and combinations therein. Equipment, systems, or procedures and processes whose malfunction would hazard the safe manufacturing...NDI Non-Development Item OPEVAL Operational Evaluation ORDALTS Ordnance Alterations O&SHA Operating and Support Hazard Analysis PDA
14 CFR 417.413 - Hazard areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... controls during public access. A launch operator must establish procedural controls that prevent hazardous... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard controls... devices or other restraints on system actuation switches or other controls to eliminate the possibility of...
14 CFR 417.413 - Hazard areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... controls during public access. A launch operator must establish procedural controls that prevent hazardous... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard controls... devices or other restraints on system actuation switches or other controls to eliminate the possibility of...
14 CFR 417.413 - Hazard areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controls during public access. A launch operator must establish procedural controls that prevent hazardous... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard controls... devices or other restraints on system actuation switches or other controls to eliminate the possibility of...
Flum, Marian R; Siqueira, Carlos Eduardo; DeCaro, Anthony; Redway, Scott
2010-11-01
Photovoice, a photographic participatory action research methodology was used in a workplace setting to assess hazards that were creating extremely high injury and incidents rates for university custodians and to promote the conditions to eliminate or reduce those hazards. University custodians participated in a Photovoice project to identify, categorize, and prioritize occupational hazards and to discuss and propose solutions to these problems. Results were presented to management and to all custodians for further discussion. The effort was led by a worker-based union-sponsored participatory evaluation team in partnership with a university researcher. Visual depiction of hazardous tasks and exposures among custodians and management focused primarily on improper or unsafe equipment, awkward postures, lifting hazards, and electrical hazards. The process of taking pictures and presenting them created an ongoing discussion among workers and management regarding the need for change and for process improvements, and resulted in greater interest and activity regarding occupational health among the workers. In a follow-up evaluation 1-year later, a number of hazards identified through Photovoice had been corrected. Injury rates for custodians had decreased from 39% to 26%. Photovoice can be an important tool, not just for identifying occupational hazards, but also empowering workers to be more active around health and safety and may facilitate important changes in the workplace. © 2010 Wiley-Liss, Inc.
Sturdivant, Emily; Lentz, Erika; Thieler, E. Robert; Farris, Amy; Weber, Kathryn; Remsen, David P.; Miner, Simon; Henderson, Rachel
2017-01-01
The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM) from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a) determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b) map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a) geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b) land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm) have little influence on the classification accuracy.
NASA Astrophysics Data System (ADS)
Chen, R. S.; MacManus, K.; Vinay, S.; Yetman, G.
2016-12-01
The Socioeconomic Data and Applications Center (SEDAC), one of 12 Distributed Active Archive Centers (DAACs) in the NASA Earth Observing System Data and Information System (EOSDIS), has developed a variety of operational spatial data services aimed at providing online access, visualization, and analytic functions for geospatial socioeconomic and environmental data. These services include: open web services that implement Open Geospatial Consortium (OGC) specifications such as Web Map Service (WMS), Web Feature Service (WFS), and Web Coverage Service (WCS); spatial query services that support Web Processing Service (WPS) and Representation State Transfer (REST); and web map clients and a mobile app that utilize SEDAC and other open web services. These services may be accessed from a variety of external map clients and visualization tools such as NASA's WorldView, NOAA's Climate Explorer, and ArcGIS Online. More than 200 data layers related to population, settlements, infrastructure, agriculture, environmental pollution, land use, health, hazards, climate change and other aspects of sustainable development are available through WMS, WFS, and/or WCS. Version 2 of the SEDAC Population Estimation Service (PES) supports spatial queries through WPS and REST in the form of a user-defined polygon or circle. The PES returns an estimate of the population residing in the defined area for a specific year (2000, 2005, 2010, 2015, or 2020) based on SEDAC's Gridded Population of the World version 4 (GPWv4) dataset, together with measures of accuracy. The SEDAC Hazards Mapper and the recently released HazPop iOS mobile app enable users to easily submit spatial queries to the PES and see the results. SEDAC has developed an operational virtualized backend infrastructure to manage these services and support their continual improvement as standards change, new data and services become available, and user needs evolve. An ongoing challenge is to improve the reliability and performance of the infrastructure, in conjunction with external services, to meet both research and operational needs.
76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...
Both human-health risk assessments of adverse effects from chronic, environmental exposures to neurotoxics and clinical practice are in need of objective indicators sensitive to the early stages of disruption in neurologic function; risk assessment for the purposes of hazard iden...
2003-08-01
hazardous for intrabeam viewing, control measures center on eliminating this possibility (e.g., meteorology, dentistry , guidance/ navigation, and...recovery after pulsed light. Ergonomics . Nov 1973; 16(6): 759-64. 3. Nakagawara VB, Montgomery RW, and Wood KJ. Aviation accidents and incidents
Artificial vision support system (AVS(2)) for improved prosthetic vision.
Fink, Wolfgang; Tarbell, Mark A
2014-11-01
State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS(2)) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS(2), using efficient image processing modules, modifies the captured video stream in real time, enhancing 'present but hidden' objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their 'field-of-view', thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS(2) is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators.
Model-Driven Development of Safety Architectures
NASA Technical Reports Server (NTRS)
Denney, Ewen; Pai, Ganesh; Whiteside, Iain
2017-01-01
We describe the use of model-driven development for safety assurance of a pioneering NASA flight operation involving a fleet of small unmanned aircraft systems (sUAS) flying beyond visual line of sight. The central idea is to develop a safety architecture that provides the basis for risk assessment and visualization within a safety case, the formal justification of acceptable safety required by the aviation regulatory authority. A safety architecture is composed from a collection of bow tie diagrams (BTDs), a practical approach to manage safety risk by linking the identified hazards to the appropriate mitigation measures. The safety justification for a given unmanned aircraft system (UAS) operation can have many related BTDs. In practice, however, each BTD is independently developed, which poses challenges with respect to incremental development, maintaining consistency across different safety artifacts when changes occur, and in extracting and presenting stakeholder specific information relevant for decision making. We show how a safety architecture reconciles the various BTDs of a system, and, collectively, provide an overarching picture of system safety, by considering them as views of a unified model. We also show how it enables model-driven development of BTDs, replete with validations, transformations, and a range of views. Our approach, which we have implemented in our toolset, AdvoCATE, is illustrated with a running example drawn from a real UAS safety case. The models and some of the innovations described here were instrumental in successfully obtaining regulatory flight approval.
Landing Hazard Avoidance Display
NASA Technical Reports Server (NTRS)
Abernathy, Michael Franklin (Inventor); Hirsh, Robert L. (Inventor)
2016-01-01
Landing hazard avoidance displays can provide rapidly understood visual indications of where it is safe to land a vehicle and where it is unsafe to land a vehicle. Color coded maps can indicate zones in two dimensions relative to the vehicles position where it is safe to land. The map can be simply green (safe) and red (unsafe) areas with an indication of scale or can be a color coding of another map such as a surface map. The color coding can be determined in real time based on topological measurements and safety criteria to thereby adapt to dynamic, unknown, or partially known environments.
Integrated Geo Hazard Management System in Cloud Computing Technology
NASA Astrophysics Data System (ADS)
Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.
2016-11-01
Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.
NASA Astrophysics Data System (ADS)
Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.
2014-10-01
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b), makes use of LAMI rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain-gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult and it provides different outputs. Switching among different views, the system is able to focus both on monitoring of real time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a very straightforward view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain-gauges can be displayed and constantly compared with rainfall thresholds. To better account for the high spatial variability of the physical features, which affects the relationship between rainfall and landslides, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of 332 rain gauges, it allows monitoring each alert zone separately and warnings can be issued independently from an alert zone to another. An important feature of the warning system is the use of thresholds that may vary in time adapting at the conditions of the rainfall path recorded by the rain-gauges. Depending on when the starting time of the rainfall event is set, the comparison with the threshold may produce different outcomes. Therefore, a recursive algorithm was developed to check and compare with the thresholds all possible starting times, highlighting the worst scenario and showing in the WebGIS interface at what time and how much the rainfall path has exceeded or will exceed the most critical threshold. Besides forecasting and monitoring the hazard scenario over the whole region with hazard levels differentiated for 25 distinct alert zones, the system can be used to gather, analyze, visualize, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.
NASA Astrophysics Data System (ADS)
Baruffini, Mirko
2010-05-01
Due to the topographical conditions in Switzerland, the highways and the railway lines are frequently exposed to natural hazards as rockfalls, debris flows, landslides, avalanches and others. With the rising incidence of those natural hazards, protection measures become an important political issue. However, they are costly, and maximal protection is most probably not economically feasible. Furthermore risks are distributed in space and time. Consequently, important decision problems to the public sector decision makers are derived. This asks for a high level of surveillance and preservation along the transalpine lines. Efficient protection alternatives can be obtained consequently considering the concept of integral risk management. Risk analysis, as the central part of risk management, has become gradually a generally accepted approach for the assessment of current and future scenarios (Loat & Zimmermann 2004). The procedure aims at risk reduction which can be reached by conventional mitigation on one hand and the implementation of land-use planning on the other hand: a combination of active and passive mitigation measures is applied to prevent damage to buildings, people and infrastructures. With a Geographical Information System adapted to run with a tool developed to manage Risk analysis it is possible to survey the data in time and space, obtaining an important system for managing natural risks. As a framework, we adopt the Swiss system for risk analysis of gravitational natural hazards (BUWAL 1999). It offers a complete framework for the analysis and assessment of risks due to natural hazards, ranging from hazard assessment for gravitational natural hazards, such as landslides, collapses, rockfalls, floodings, debris flows and avalanches, to vulnerability assessment and risk analysis, and the integration into land use planning at the cantonal and municipality level. The scheme is limited to the direct consequences of natural hazards. Thus, we develop a system which integrates the procedures for a complete risk analysis in a Geographic Information System (GIS) toolbox, in order to be applied to our testbed, the Alps-crossing corridor of St. Gotthard. The simulation environment is developed within ArcObjects, the development platform for ArcGIS. The topic of ArcObjects usually emerges when users realize that programming ArcObjects can actually reduce the amount of repetitive work, streamline the workflow, and even produce functionalities that are not easily available in ArcGIS. We have adopted Visual Basic for Applications (VBA) for programming ArcObjects. Because VBA is already embedded within ArcMap and ArcCatalog, it is convenient for ArcGIS users to program ArcObjects in VBA. Our tool visualises the obtained data by an analysis of historical data (aerial photo imagery, field surveys, documentation of past events) or an environmental modeling (estimations of the area affected by a given event), and event such as route number and route position and thematic maps. As a result of this step the record appears in WebGIS. The user can select a specific area to overview previous hazards in the region. After performing the analysis, a double click on the visualised infrastructures opens the corresponding results. The constantly updated risk maps show all sites that require more protection against natural hazards. The final goal of our work is to offer a versatile tool for risk analysis which can be applied to different situations. Today our GIS application mainly centralises the documentation of natural hazards. Additionally the system offers information about natural hazard at the Gotthard line. It is very flexible and can be used as a simple program to model the expansion of natural hazards, as a program of quantitatively estimate risks or as a detailed analysis at a municipality level. The tool is extensible and can be expanded with additional modules. The initial results of the experimental case study show how useful a GIS-based system can be for effective and efficient disaster response management. In the coming years our GIS application will be a data base containing all information needed for the evaluation of risk sites along the Gotthard line. Our GIS application can help the technical management to decide about protection measures because of, in addition to the visualisation, tools for spatial data analysis will be available. REFERENCES Bründl M. (Ed.) 2009 : Risikokonzept für Naturgefahren - Leitfaden. Nationale Plattform für Naturgefahren PLANAT, Bern. 416 S. BUWAL 1999: Risikoanalyse bei gravitativen Naturgefahren - Methode, Fallbeispiele und Daten (Risk analyses for gravitational natural hazards). Bundesamt für Umwelt, Wald und Landschaft (BUWAL). Umwelt-Materialen Nr. 107, 1-244. Loat, R. & Zimmermann, M. 2004: La gestion des risques en Suisse (Risk Management in Switzerland). In: Veyret, Y., Garry, G., Meschinet de Richemont, N. & Armand Colin (eds) 2002: Colloque Arche de la Défense 22-24 octobre 2002, dans Risques naturels et aménagement en Europe, 108-120. Maggi R. et al, 2009: Evaluation of the optimal resilience for vulnerable infrastructure networks. An interdisciplinary pilot study on the transalpine transportation corridors, NRP 54 "Sustainable Development of the Built Environment", Projekt Nr. 405 440, Final Scientific Report, Lugano
Clarkson, D McG
2006-02-21
An assessment is provided of protection factors afforded for retinal thermal hazard and blue light photochemical hazard for a range of filters used with intense pulsed light sources (IPLs). A characteristic IPL spectrum based on black body radiation at 5000 K with a low cut filter at 515 nm was identified as suitable for such estimations. Specific filters assessed included types with idealized transmission properties and also a range of types whose transmission characteristics were measured by means of a Bentham DMc150 spectroradiometer. Predicted behaviour based on these spectra is outlined which describes both the effectiveness of protection and the level of luminous transmittance afforded. The analysis showed it was possible to describe a figure of merit for a particular filter material relating the degree of protection provided and corresponding value of luminous transmittance. This consideration is important for providing users of IPL equipment with safety eyewear with adequate level of visual transmittance.
NASA Astrophysics Data System (ADS)
McG Clarkson, D.
2006-02-01
An assessment is provided of protection factors afforded for retinal thermal hazard and blue light photochemical hazard for a range of filters used with intense pulsed light sources (IPLs). A characteristic IPL spectrum based on black body radiation at 5000 K with a low cut filter at 515 nm was identified as suitable for such estimations. Specific filters assessed included types with idealized transmission properties and also a range of types whose transmission characteristics were measured by means of a Bentham DMc150 spectroradiometer. Predicted behaviour based on these spectra is outlined which describes both the effectiveness of protection and the level of luminous transmittance afforded. The analysis showed it was possible to describe a figure of merit for a particular filter material relating the degree of protection provided and corresponding value of luminous transmittance. This consideration is important for providing users of IPL equipment with safety eyewear with adequate level of visual transmittance.
Climate Engine - Monitoring Drought with Google Earth Engine
NASA Astrophysics Data System (ADS)
Hegewisch, K.; Daudert, B.; Morton, C.; McEvoy, D.; Huntington, J. L.; Abatzoglou, J. T.
2016-12-01
Drought has adverse effects on society through reduced water availability and agricultural production and increased wildfire risk. An abundance of remotely sensed imagery and climate data are being collected in near-real time that can provide place-based monitoring and early warning of drought and related hazards. However, in an era of increasing wealth of earth observations, tools that quickly access, compute, and visualize archives, and provide answers at relevant scales to better inform decision-making are lacking. We have developed ClimateEngine.org, a web application that uses Google's Earth Engine platform to enable users to quickly compute and visualize real-time observations. A suite of drought indices allow us to monitor and track drought from local (30-meters) to regional scales and contextualize current droughts within the historical record. Climate Engine is currently being used by U.S. federal agencies and researchers to develop baseline conditions and impact assessments related to agricultural, ecological, and hydrological drought. Climate Engine is also working with the Famine Early Warning Systems Network (FEWS NET) to expedite monitoring agricultural drought over broad areas at risk of food insecurity globally.
Evaluation of Different Speech and Touch Interfaces to In-Vehicle Music Retrieval Systems
Garay-Vega, L.; Pradhan, A. K.; Weinberg, G.; Schmidt-Nielsen, B.; Harsham, B.; Shen, Y.; Divekar, G.; Romoser, M.; Knodler, M.; Fisher, D. L.
2010-01-01
In-vehicle music retrieval systems are becoming more and more popular. Previous studies have shown that they pose a real hazard to drivers when the interface is a tactile one which requires multiple entries and a combination of manual control and visual feedback. Voice interfaces exist as an alternative. Such interfaces can require either multiple or single conversational turns. In this study, each of 17 participants between the ages of 18 and 30 years old was asked to use three different music-retrieval systems (one with a multiple entry touch interface, the iPod™, one with a multiple turn voice interface, interface B, and one with a single turn voice interface, interface C) while driving through a virtual world. Measures of secondary task performance, eye behavior, vehicle control, and workload were recorded. When compared with the touch interface, the voice interfaces reduced the total time drivers spent with their eyes off the forward roadway, especially in prolonged glances, as well as both the total number of glances away from the forward roadway and the perceived workload. Furthermore, when compared with driving without a secondary task, both voice interfaces did not significantly impact hazard anticipation, the frequency of long glances away from the forward roadway, or vehicle control. The multiple turn voice interface (B) significantly increased both the time it took drivers to complete the task and the workload. The implications for interface design and safety are discussed. PMID:20380920
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-04
...-R05-RCRA-2010-0843; SW-FRL-9221-2] Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... hazardous wastes. The Agency has tentatively decided to grant the petition based on an evaluation of waste...
A Visualization Tool for Integrating Research Results at an Underground Mine
NASA Astrophysics Data System (ADS)
Boltz, S.; Macdonald, B. D.; Orr, T.; Johnson, W.; Benton, D. J.
2016-12-01
Researchers with the National Institute for Occupational Safety and Health are conducting research at a deep, underground metal mine in Idaho to develop improvements in ground control technologies that reduce the effects of dynamic loading on mine workings, thereby decreasing the risk to miners. This research is multifaceted and includes: photogrammetry, microseismic monitoring, geotechnical instrumentation, and numerical modeling. When managing research involving such a wide range of data, understanding how the data relate to each other and to the mining activity quickly becomes a daunting task. In an effort to combine this diverse research data into a single, easy-to-use system, a three-dimensional visualization tool was developed. The tool was created using the Unity3d video gaming engine and includes the mine development entries, production stopes, important geologic structures, and user-input research data. The tool provides the user with a first-person, interactive experience where they are able to walk through the mine as well as navigate the rock mass surrounding the mine to view and interpret the imported data in the context of the mine and as a function of time. The tool was developed using data from a single mine; however, it is intended to be a generic tool that can be easily extended to other mines. For example, a similar visualization tool is being developed for an underground coal mine in Colorado. The ultimate goal is for NIOSH researchers and mine personnel to be able to use the visualization tool to identify trends that may not otherwise be apparent when viewing the data separately. This presentation highlights the features and capabilities of the mine visualization tool and explains how it may be used to more effectively interpret data and reduce the risk of ground fall hazards to underground miners.
Effects of age and auditory and visual dual tasks on closed-road driving performance.
Chaparro, Alex; Wood, Joanne M; Carberry, Trent
2005-08-01
This study investigated how driving performance of young and old participants is affected by visual and auditory secondary tasks on a closed driving course. Twenty-eight participants comprising two age groups (younger, mean age = 27.3 years; older, mean age = 69.2 years) drove around a 5.1-km closed-road circuit under both single and dual task conditions. Measures of driving performance included detection and identification of road signs, detection and avoidance of large low-contrast road hazards, gap judgment, lane keeping, and time to complete the course. The dual task required participants to verbally report the sums of pairs of single-digit numbers presented through either a computer speaker (auditorily) or a dashboard-mounted monitor (visually) while driving. Participants also completed a vision and cognitive screening battery, including LogMAR visual acuity, Pelli-Robson letter contrast sensitivity, the Trails test, and the Digit Symbol Substitution (DSS) test. Drivers reported significantly fewer signs, hit more road hazards, misjudged more gaps, and increased their time to complete the course under the dual task (visual and auditory) conditions compared with the single task condition. The older participants also reported significantly fewer road signs and drove significantly more slowly than the younger participants, and this was exacerbated for the visual dual task condition. The results of the regression analysis revealed that cognitive aging (measured by the DSS and Trails test) rather than chronologic age was a better predictor of the declines seen in driving performance under dual task conditions. An overall z score was calculated, which took into account both driving and the secondary task (summing) performance under the two dual task conditions. Performance was significantly worse for the auditory dual task compared with the visual dual task, and the older participants performed significantly worse than the young subjects. These findings demonstrate that multitasking had a significant detrimental impact on driving performance and that cognitive aging was the best predictor of the declines seen in driving performance under dual task conditions. These results have implications for use of mobile phones or in-vehicle navigational devices while driving, especially for older adults.
DOT National Transportation Integrated Search
2013-02-01
The scanning skills of a vehicle operator represent a key : parameter for hazard perception and effective vehicle operation. : Overriding ones sight distance, or not looking far : enough ahead down the roadway, may not leave a motorcycle : rider e...
2009-07-01
Breaks in the internal wires of reusable electrosurgical active electrode cables can increase the risk of injuries and surgical fires. Careful visual and manual inspection during reprocessing and immediately before use, coupled with periodic replacement, can help limit the risk.
A Study of the Integration of Military Personnel into the Fort Gordon Occupational Health Program.
1980-05-01
manpower data should be readily available to determine resource requirements. The other limiting factors which could bear on the problem include both...physical examinations and appropriate eyeglasses are provided based on both visual and safety requirements. Hazard inven- tories in areas jointly worked by
Emmons, Erik D; Farrell, Mikella E; Holthoff, Ellen L; Tripathi, Ashish; Green, Norman; Moon, Raphael P; Guicheteau, Jason A; Christesen, Steven D; Pellegrino, Paul M; Fountain, Augustus W
2012-06-01
The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (β-phase). We report the polymorphic shifts observed between α- and β-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
...-2011-0392; FRL-9476-6] RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and... Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management...-0392. (4) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System...
Bundle Data Approach at GES DISC Targeting Natural Hazards
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Shen, Suhung; Kempler, Steven J.
2015-01-01
Severe natural phenomena such as hurricane, volcano, blizzard, flood and drought have the potential to cause immeasurable property damages, great socioeconomic impact, and tragic loss of human life. From searching to assessing the Big, i.e., massive and heterogeneous scientific data (particularly, satellite and model products) in order to investigate those natural hazards, it has, however, become a daunting task for Earth scientists and applications researchers, especially during recent decades. The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has served Big Earth science data, and the pertinent valuable information and services to the aforementioned users of diverse communities for years. In order to help and guide our users to online readily (i.e., with a minimum effort) acquire their requested data from our enormous resource at GES DISC for studying their targeted hazard event, we have thus initiated a Bundle Data approach in 2014, first targeting the hurricane event topic. We have recently worked on new topics such as volcano and blizzard. The bundle data of a specific hazard event is basically a sophisticated integrated data package consisting of a series of proper datasets containing a group of relevant (knowledge--based) data variables readily accessible to users via a system-prearranged table linking those data variables to the proper datasets (URLs). This online approach has been developed by utilizing a few existing data services such as Mirador as search engine; Giovanni for visualization; and OPeNDAP for data access, etc. The online Data Cookbook site at GES DISC is the current host for the bundle data. We are now also planning on developing an Automated Virtual Collection Framework that shall eventually accommodate the bundle data, as well as further improve our management in Big Data.
"Bundle Data" Approach at GES DISC Targeting Natural Hazards
NASA Astrophysics Data System (ADS)
Shie, C. L.; Shen, S.; Kempler, S. J.
2015-12-01
Severe natural phenomena such as hurricane, volcano, blizzard, flood and drought have the potential to cause immeasurable property damages, great socioeconomic impact, and tragic loss of human life. From searching to assessing the "Big", i.e., massive and heterogeneous scientific data (particularly, satellite and model products) in order to investigate those natural hazards, it has, however, become a daunting task for Earth scientists and applications researchers, especially during recent decades. The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has served "Big" Earth science data, and the pertinent valuable information and services to the aforementioned users of diverse communities for years. In order to help and guide our users to online readily (i.e., with a minimum effort) acquire their requested data from our enormous resource at GES DISC for studying their targeted hazard/event, we have thus initiated a "Bundle Data" approach in 2014, first targeting the hurricane event/topic. We have recently worked on new topics such as volcano and blizzard. The "bundle data" of a specific hazard/event is basically a sophisticated integrated data package consisting of a series of proper datasets containing a group of relevant ("knowledge-based") data variables readily accessible to users via a system-prearranged table linking those data variables to the proper datasets (URLs). This online approach has been developed by utilizing a few existing data services such as Mirador as search engine; Giovanni for visualization; and OPeNDAP for data access, etc. The online "Data Cookbook" site at GES DISC is the current host for the "bundle data". We are now also planning on developing an "Automated Virtual Collection Framework" that shall eventually accommodate the "bundle data", as well as further improve our management in "Big Data".
An offline-online Web-GIS Android application for fast data acquisition of landslide hazard and risk
NASA Astrophysics Data System (ADS)
Olyazadeh, Roya; Sudmeier-Rieux, Karen; Jaboyedoff, Michel; Derron, Marc-Henri; Devkota, Sanjaya
2017-04-01
Regional landslide assessments and mapping have been effectively pursued by research institutions, national and local governments, non-governmental organizations (NGOs), and different stakeholders for some time, and a wide range of methodologies and technologies have consequently been proposed. Land-use mapping and hazard event inventories are mostly created by remote-sensing data, subject to difficulties, such as accessibility and terrain, which need to be overcome. Likewise, landslide data acquisition for the field navigation can magnify the accuracy of databases and analysis. Open-source Web and mobile GIS tools can be used for improved ground-truthing of critical areas to improve the analysis of hazard patterns and triggering factors. This paper reviews the implementation and selected results of a secure mobile-map application called ROOMA (Rapid Offline-Online Mapping Application) for the rapid data collection of landslide hazard and risk. This prototype assists the quick creation of landslide inventory maps (LIMs) by collecting information on the type, feature, volume, date, and patterns of landslides using open-source Web-GIS technologies such as Leaflet maps, Cordova, GeoServer, PostgreSQL as the real DBMS (database management system), and PostGIS as its plug-in for spatial database management. This application comprises Leaflet maps coupled with satellite images as a base layer, drawing tools, geolocation (using GPS and the Internet), photo mapping, and event clustering. All the features and information are recorded into a GeoJSON text file in an offline version (Android) and subsequently uploaded to the online mode (using all browsers) with the availability of Internet. Finally, the events can be accessed and edited after approval by an administrator and then be visualized by the general public.
Improving Situational Awareness for First Responders via Mobile Computing
NASA Technical Reports Server (NTRS)
Betts, Bradley J.; Mah, Robert W.; Papasin, Richard; Del Mundo, Rommel; McIntosh, Dawn M.; Jorgensen, Charles
2005-01-01
This project looks to improve first responder situational awareness using tools and techniques of mobile computing. The prototype system combines wireless communication, real-time location determination, digital imaging, and three-dimensional graphics. Responder locations are tracked in an outdoor environment via GPS and uploaded to a central server via GPRS or an 802.11 network. Responders can also wirelessly share digital images and text reports, both with other responders and with the incident commander. A pre-built three dimensional graphics model of a particular emergency scene is used to visualize responder and report locations. Responders have a choice of information end points, ranging from programmable cellular phones to tablet computers. The system also employs location-aware computing to make responders aware of particular hazards as they approach them. The prototype was developed in conjunction with the NASA Ames Disaster Assistance and Rescue Team and has undergone field testing during responder exercise at NASA Ames.
Improving Situational Awareness for First Responders via Mobile Computing
NASA Technical Reports Server (NTRS)
Betts, Bradley J.; Mah, Robert W.; Papasin, Richard; Del Mundo, Rommel; McIntosh, Dawn M.; Jorgensen, Charles
2006-01-01
This project looks to improve first responder incident command, and an appropriately managed flow of situational awareness using mobile computing techniques. The prototype system combines wireless communication, real-time location determination, digital imaging, and three-dimensional graphics. Responder locations are tracked in an outdoor environment via GPS and uploaded to a central server via GPRS or an 802. II network. Responders can also wireless share digital images and text reports, both with other responders and with the incident commander. A pre-built three dimensional graphics model of the emergency scene is used to visualize responder and report locations. Responders have a choice of information end points, ranging from programmable cellular phones to tablet computers. The system also employs location-aware computing to make responders aware of particular hazards as they approach them. The prototype was developed in conjunction with the NASA Ames Disaster Assistance and Rescue Team and has undergone field testing during responder exercises at NASA Ames.
Tropical Cyclone Ita Off-Shore Queensland, Australia
2014-04-11
Residents of the northeast coast of Queensland, Australia are facing high winds, dangerous tides and very heavy rain between Cape Melville and Cooktown. These hazards will migrate southward for the next few days as the center of the storm remains close to the coast. This image was taken by the Suomi NPP satellite's VIIRS instrument around 0335Z on April11, 2014. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Edquist, Jessica; Rudin-Brown, Christina M; Lenné, Michael G
2012-03-01
On-street parking is associated with elevated crash risk. It is not known how drivers' mental workload and behaviour in the presence of on-street parking contributes to, or fails to reduce, this increased crash risk. On-street parking tends to co-exist with visually complex streetscapes that may affect workload and crash risk in their own right. The present paper reports results from a driving simulator study examining the effects of on-street parking and road environment visual complexity on driver behaviour and surrogate measures of crash risk. Twenty-nine participants drove a simulated urban commercial and arterial route. Compared to sections with no parking bays or empty parking bays, in the presence of occupied parking bays drivers lowered their speed and shifted their lateral position towards roadway centre to compensate for the higher mental workload they reported experiencing. However, this compensation was not sufficient to reduce drivers' reaction time on a safety-relevant peripheral detection task or to an unexpected pedestrian hazard. Compared to the urban road environments, the less visually complex arterial road environment was associated with speeds that were closer to the posted limit, lower speed variability and lower workload ratings. These results support theoretical positions that proffer workload as a mediating variable of speed choice. However, drivers in this study did not modify their speed sufficiently to maintain safe hazard response times in complex environments with on-street parking. This inadequate speed compensation is likely to affect real world crash risk. Copyright © 2011 Elsevier Ltd. All rights reserved.
Prediction of functional loss in glaucoma from progressive optic disc damage.
Medeiros, Felipe A; Alencar, Luciana M; Zangwill, Linda M; Bowd, Christopher; Sample, Pamela A; Weinreb, Robert N
2009-10-01
To evaluate the ability of progressive optic disc damage detected by assessment of longitudinal stereophotographs to predict future development of functional loss in those with suspected glaucoma. The study included 639 eyes of 407 patients with suspected glaucoma followed up for an average of 8.0 years with annual standard automated perimetry visual field and optic disc stereophotographs. All patients had normal and reliable standard automated perimetry results at baseline. Conversion to glaucoma was defined as development of 3 consecutive abnormal visual fields during follow-up. Presence of progressive optic disc damage was evaluated by grading longitudinally acquired simultaneous stereophotographs. Other predictive factors included age, intraocular pressure, central corneal thickness, pattern standard deviation, and baseline stereophotograph grading. Hazard ratios for predicting visual field loss were obtained by extended Cox models, with optic disc progression as a time-dependent covariate. Predictive accuracy was evaluated using a modified R(2) index. Progressive optic disc damage had a hazard ratio of 25.8 (95% confidence interval, 16.0-41.7) and was the most important risk factor for development of visual field loss with an R(2) of 79%. The R(2)s for other predictive factors ranged from 6% to 26%. Presence of progressive optic disc damage on stereophotographs was a highly predictive factor for future development of functional loss in glaucoma. These findings suggest the importance of careful monitoring of the optic disc appearance and a potential role for longitudinal assessment of the optic disc as an end point in clinical trials and as a reference for evaluation of diagnostic tests in glaucoma.
Zhao, Yang; Shi, Jianxin; Fan, Limin; Yang, Jun; Hu, Dingzhong; Zhao, Heng
2016-02-01
In 2014, the International Association for the Study of Lung Cancer (IASLC)/International Thymic Malignancies Interest Group (ITMIG) launched a worldwide Tumor Node Metastasis (TNM) staging proposal for the next edition of thymic tumours. The objective of the current study was to evaluate the proposed new staging system specific to the thymic well-differentiated neuroendocrine carcinoma (TWDNC). From November 2003 to July 2014, 61 consecutive patients were enrolled in this study with pathologically confirmed TWDNC in Shanghai Chest Hospital. Clinical and pathological data were retrospectively reviewed. Survival analysis was performed using the Kaplan-Meier and log-rank tests. Validity evaluation was addressed by Cox proportional hazards regression model, after adjusting for potential confounders and visually assessing the distinction of curves generated based on the staging system of Masaoka-Koga and the proposed TNM ones. Thymic carcinoids made up 4% of total thymic tumours in our institution. The 5-year overall survival (OS) rate and the disease-free survival (DFS) rate were 72 and 41%, respectively. Neither Masaoka-Koga staging system nor the proposed TNM system showed ordered appropriateness visually in survival curves and the prognostic demarcation between stages was poor on both OS and DFS. The IASLC/ITMIG suggested that the TNM and Masaoka-Koga staging systems fail to predict the clinical course of TWDNC patients. Collaborative effort is needed in the future staging validation as ITMIG recommended. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Visual and cognitive predictors of driving safety in Parkinson's disease patients
Amick, M.M.; Grace, J.; Ott, B.R.
2012-01-01
This study assessed the clinical utility of contrast sensitivity (CS) relative to attention, executive function, and visuospatial abilities for predicting driving safety in participants with Parkinson's disease (PD). Twenty-five, non-demented PD patients completed measures of contrast sensitivity, visuospatial skills, executive functions, and attention. All PD participants also underwent a formal on-road driving evaluation. Of the 25 participants, 11 received a marginal or unsafe rating on the road test. Poorer driving performance was associated with worse performance on measures of CS, visuospatial constructions, set shifting, and attention. While impaired driving was associated with a range of cognitive and visual abilities, only a composite measure of executive functioning and visuospatial abilities, and not CS or attentional skills, predicted driving performance. These findings suggest that neuropsychological tests, which are multifactorial in nature and require visual perception and visual spatial judgments are the most useful screening measures for hazardous driving in PD patients. PMID:17851032
Visual and cognitive predictors of driving safety in Parkinson's disease patients.
Amick, M M; Grace, J; Ott, B R
2007-11-01
This study assessed the clinical utility of contrast sensitivity (CS) relative to attention, executive function, and visuospatial abilities for predicting driving safety in participants with Parkinson's disease (PD). Twenty-five, non-demented PD patients completed measures of contrast sensitivity, visuospatial skills, executive functions, and attention. All PD participants also underwent a formal on-road driving evaluation. Of the 25 participants, 11 received a marginal or unsafe rating on the road test. Poorer driving performance was associated with worse performance on measures of CS, visuospatial constructions, set shifting, and attention. While impaired driving was associated with a range of cognitive and visual abilities, only a composite measure of executive functioning and visuospatial abilities, and not CS or attentional skills, predicted driving performance. These findings suggest that neuropsychological tests, which are multifactorial in nature and require visual perception and visual spatial judgments are the most useful screening measures for hazardous driving in PD patients.
A Hybrid-Cloud Science Data System Enabling Advanced Rapid Imaging & Analysis for Monitoring Hazards
NASA Astrophysics Data System (ADS)
Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Moore, A. W.; Fielding, E. J.; Radulescu, C.; Sacco, G.; Stough, T. M.; Mattmann, C. A.; Cervelli, P. F.; Poland, M. P.; Cruz, J.
2012-12-01
Volcanic eruptions, landslides, and levee failures are some examples of hazards that can be more accurately forecasted with sufficient monitoring of precursory ground deformation, such as the high-resolution measurements from GPS and InSAR. In addition, coherence and reflectivity change maps can be used to detect surface change due to lava flows, mudslides, tornadoes, floods, and other natural and man-made disasters. However, it is difficult for many volcano observatories and other monitoring agencies to process GPS and InSAR products in an automated scenario needed for continual monitoring of events. Additionally, numerous interoperability barriers exist in multi-sensor observation data access, preparation, and fusion to create actionable products. Combining high spatial resolution InSAR products with high temporal resolution GPS products--and automating this data preparation & processing across global-scale areas of interests--present an untapped science and monitoring opportunity. The global coverage offered by satellite-based SAR observations, and the rapidly expanding GPS networks, can provide orders of magnitude more data on these hazardous events if we have a data system that can efficiently and effectively analyze the voluminous raw data, and provide users the tools to access data from their regions of interest. Currently, combined GPS & InSAR time series are primarily generated for specific research applications, and are not implemented to run on large-scale continuous data sets and delivered to decision-making communities. We are developing an advanced service-oriented architecture for hazard monitoring leveraging NASA-funded algorithms and data management to enable both science and decision-making communities to monitor areas of interests via seamless data preparation, processing, and distribution. Our objectives: * Enable high-volume and low-latency automatic generation of NASA Solid Earth science data products (InSAR and GPS) to support hazards monitoring. * Facilitate NASA-USGS collaborations to share NASA InSAR and GPS data products, which are difficult to process in high-volume and low-latency, for decision-support. * Enable interoperable discovery, access, and sharing of NASA observations and derived actionable products, and between the observation and decision-making communities. * Enable their improved understanding through visualization, mining, and cross-agency sharing. Existing InSAR & GPS processing packages and other software are integrated for generating geodetic decision support monitoring products. We employ semantic and cloud-based data management and processing techniques for handling large data volumes, reducing end product latency, codifying data system information with semantics, and deploying interoperable services for actionable products to decision-making communities.
Slimak, K M
1978-12-01
The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables.
PRoViScout: a planetary scouting rover demonstrator
NASA Astrophysics Data System (ADS)
Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos
2012-01-01
Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telesca, D.R.
A control technology survey was conducted at the coal gasification facility of the Caterpillar Tractor Company (SIC-5161), in York, Pennsylvania on August 18, 1980 and May 7, 1981, in conjunction with an industrial hygiene characterization study. Potential hazards included coal dust, noise, fire, carbon-monoxide (630080) (CO), polynuclear aromatics, hydrogen sulfide (7783064), phenols, and flammable and explosive gases. Preemployment physicals were given to employees including complete medical histories, physical examinations, and skin examination. Examinations were given annually for the first 5 years and semiannually thereafter. The most hazardous activities were poking, cleaning, inspection of process equipment, and equipment maintenance. Coal dustmore » emissions were effectively reduced by enclosure and venting. Venturi steam injectors in the gasifier pokeholes prevented gas emissions during poking. Ash dust was controlled by removal and handling while it was wet. An audible and visual alarm was used for CO monitoring. The ventilation system in the building effectively prevented accumulation of gases. The author recommends separate lockers for contaminated and clean clothing; a clean area for eating; escape pack respirators located in the rectifier room, control room, and coal bunker; and supplied air respirators in dangerous areas. Disposal of off gas from the feeding system should be addressed.« less
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Sandri, Laura; Anne Thompson, Mary
2015-06-01
PyBetVH is a completely new, free, open-source and cross-platform software implementation of the Bayesian Event Tree for Volcanic Hazard (BET_VH), a tool for estimating the probability of any magmatic hazardous phenomenon occurring in a selected time frame, accounting for all the uncertainties. New capabilities of this implementation include the ability to calculate hazard curves which describe the distribution of the exceedance probability as a function of intensity (e.g., tephra load) on a grid of points covering the target area. The computed hazard curves are (i) absolute (accounting for the probability of eruption in a given time frame, and for all the possible vent locations and eruptive sizes) and (ii) Bayesian (computed at different percentiles, in order to quantify the epistemic uncertainty). Such curves allow representation of the full information contained in the probabilistic volcanic hazard assessment (PVHA) and are well suited to become a main input to quantitative risk analyses. PyBetVH allows for interactive visualization of both the computed hazard curves, and the corresponding Bayesian hazard/probability maps. PyBetVH is designed to minimize the efforts of end users, making PVHA results accessible to people who may be less experienced in probabilistic methodologies, e.g. decision makers. The broad compatibility of Python language has also allowed PyBetVH to be installed on the VHub cyber-infrastructure, where it can be run online or downloaded at no cost. PyBetVH can be used to assess any type of magmatic hazard from any volcano. Here we illustrate how to perform a PVHA through PyBetVH using the example of analyzing tephra fallout from the Okataina Volcanic Centre (OVC), New Zealand, and highlight the range of outputs that the tool can generate.
Paukatong, K V; Kunawasen, S
2001-01-01
Nham is a traditional Thai fermented pork sausage. The major ingredients of Nham are ground pork meat and shredded pork rind. Nham has been reported to be contaminated with Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes. Therefore, it is a potential cause of foodborne diseases for consumers. A Hazard Analysis and Critical Control Points (HACCP) generic model has been developed for the Nham process. Nham processing plants were observed and a generic flow diagram of Nham processes was constructed. Hazard analysis was then conducted. Other than microbial hazards, the pathogens previously found in Nham, sodium nitrite and metal were identified as chemical and physical hazards in this product, respectively. Four steps in the Nham process have been identified as critical control points. These steps are the weighing of the nitrite compound, stuffing, fermentation, and labeling. The chemical hazard of nitrite must be controlled during the weighing step. The critical limit of nitrite levels in the Nham mixture has been set at 100-200 ppm. This level is high enough to control Clostridium botulinum but does not cause chemical hazards to the consumer. The physical hazard from metal clips could be prevented by visual inspection of every Nham product during stuffing. The microbiological hazard in Nham could be reduced in the fermentation process. The critical limit of the pH of Nham was set at lower than 4.6. Since this product is not cooked during processing, finally, educating the consumer, by providing information on the label such as "safe if cooked before consumption", could be an alternative way to prevent the microbiological hazards of this product.
Early identification systems for emerging foodborne hazards.
Marvin, H J P; Kleter, G A; Prandini, A; Dekkers, S; Bolton, D J
2009-05-01
This paper provides a non-exhausting overview of early warning systems for emerging foodborne hazards that are operating in the various places in the world. Special attention is given to endpoint-focussed early warning systems (i.e. ECDC, ISIS and GPHIN) and hazard-focussed early warning systems (i.e. FVO, RASFF and OIE) and their merit to successfully identify a food safety problem in an early stage is discussed. Besides these early warning systems which are based on monitoring of either disease symptoms or hazards, also early warning systems and/or activities that intend to predict the occurrence of a food safety hazard in its very beginning of development or before that are described. Examples are trend analysis, horizon scanning, early warning systems for mycotoxins in maize and/or wheat and information exchange networks (e.g. OIE and GIEWS). Furthermore, recent initiatives that aim to develop predictive early warning systems based on the holistic principle are discussed. The assumption of the researchers applying this principle is that developments outside the food production chain that are either directly or indirectly related to the development of a particular food safety hazard may also provide valuable information to predict the development of this hazard.
A Virtual Tour of the 1868 Hayward Earthquake in Google EarthTM
NASA Astrophysics Data System (ADS)
Lackey, H. G.; Blair, J. L.; Boatwright, J.; Brocher, T.
2007-12-01
The 1868 Hayward earthquake has been overshadowed by the subsequent 1906 San Francisco earthquake that destroyed much of San Francisco. Nonetheless, a modern recurrence of the 1868 earthquake would cause widespread damage to the densely populated Bay Area, particularly in the east Bay communities that have grown up virtually on top of the Hayward fault. Our concern is heightened by paleoseismic studies suggesting that the recurrence interval for the past five earthquakes on the southern Hayward fault is 140 to 170 years. Our objective is to build an educational web site that illustrates the cause and effect of the 1868 earthquake drawing on scientific and historic information. We will use Google EarthTM software to visually illustrate complex scientific concepts in a way that is understandable to a non-scientific audience. This web site will lead the viewer from a regional summary of the plate tectonics and faulting system of western North America, to more specific information about the 1868 Hayward earthquake itself. Text and Google EarthTM layers will include modeled shaking of the earthquake, relocations of historic photographs, reconstruction of damaged buildings as 3-D models, and additional scientific data that may come from the many scientific studies conducted for the 140th anniversary of the event. Earthquake engineering concerns will be stressed, including population density, vulnerable infrastructure, and lifelines. We will also present detailed maps of the Hayward fault, measurements of fault creep, and geologic evidence of its recurrence. Understanding the science behind earthquake hazards is an important step in preparing for the next significant earthquake. We hope to communicate to the public and students of all ages, through visualizations, not only the cause and effect of the 1868 earthquake, but also modern seismic hazards of the San Francisco Bay region.
A complete electrical shock hazard classification system and its application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Lloyd; Cartelli, Laura; Graham, Nicole
Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less
A complete electrical shock hazard classification system and its application
Gordon, Lloyd; Cartelli, Laura; Graham, Nicole
2018-02-08
Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less
Development of an Unmanned Aircraft Systems Program: ACUASI
NASA Astrophysics Data System (ADS)
Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.
2017-12-01
The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) has developed a comprehensive program that incorporates pilots, flight/mission planners, geoscientists, university undergraduate and graduate students, and engineers together as one. We lead and support unmanned aircraft system (UAS) missions for geoscience research, emergency response, humanitarian needs, engineering design, and policy development. We are the University of Alaska's UAS research program, lead the Federal Aviation Administration (FAA) Pan-Pacific UAS Test Range Complex (PPUTRC) with Hawaii, Oregon, and Mississippi and in 2015 became a core member of the FAA Center of Excellence for UAS Research, managed by Mississippi State University. ACUASI's suite of aircraft include small hand-launched/vertical take-off and landing assets for short-term rapid deployment to large fixed-wing gas powered systems that provide multiple hours of flight time. We have extensive experience in Arctic and sub-Arctic environments and will present on how we have used our aircraft and payloads in numerous missions that include beyond visual line of sight flights, mapping the river ice-hazard in Alaska during spring break-up, and providing UAS-based observations for local Alaskans to navigate through the changing ice shelf of Northern Alaska. Several sensor developments of interest in the near future include building payloads for thermal infrared mapping at high spatial resolutions, combining forward and nadir looking cameras on the same UAS aircraft for topographic mapping, and using neutral density and narrow band filters to map very high temperature thermally active hazards, such as forest fires and volcanic eruptions. The ACUASI team working together provide us the experience, tools, capabilities, and personnel to build and maintain a world class research center for unmanned aircraft systems as well as support both real-time operations and geoscience research.
NASA Astrophysics Data System (ADS)
Chidburee, P.; Mills, J. P.; Miller, P. E.; Fieber, K. D.
2016-06-01
Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM) pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i) the development of an Android mobile application; (ii) the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii) performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan) and a web-based system (Autodesk 123D Catch). Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard at a local-scale.
Bowers, Alex R.; Tant, Mark; Peli, Eli
2012-01-01
Aims. Homonymous hemianopia (HH), a severe visual consequence of stroke, causes difficulties in detecting obstacles on the nonseeing (blind) side. We conducted a pilot study to evaluate the effects of oblique peripheral prisms, a novel development in optical treatments for HH, on detection of unexpected hazards when driving. Methods. Twelve people with complete HH (median 49 years, range 29–68) completed road tests with sham oblique prism glasses (SP) and real oblique prism glasses (RP). A masked evaluator rated driving performance along the 25 km routes on busy streets in Ghent, Belgium. Results. The proportion of satisfactory responses to unexpected hazards on the blind side was higher in the RP than the SP drive (80% versus 30%; P = 0.001), but similar for unexpected hazards on the seeing side. Conclusions. These pilot data suggest that oblique peripheral prisms may improve responses of people with HH to blindside hazards when driving and provide the basis for a future, larger-sample clinical trial. Testing responses to unexpected hazards in areas of heavy vehicle and pedestrian traffic appears promising as a real-world outcome measure for future evaluations of HH rehabilitation interventions aimed at improving detection when driving. PMID:23316415
Pressure Systems Energy Release Protection (Gas Pressurized Systems)
NASA Technical Reports Server (NTRS)
Brown, S. J. (Editor)
1986-01-01
A survey of studies into hazards associated with closed or pressurized system rupture and preliminary guidelines for the performance design of primary, secondary, and protective receptors of these hazards are provided. The hazards discussed in the survey are: blast, fragments, ground motion, heat radiation, biological, and chemical. Performance guidelines for receptors are limited to pressurized systems that contain inert gas. The performance guidelines for protection against the remaining unaddressed degenerative hazards are to be covered in another study.
14 CFR 417.409 - System hazard controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., or system must account for static and dynamic loads, environmental stresses, and expected wear; (3... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false System hazard controls. 417.409 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.409 System hazard controls. (a) General...
1993-04-01
34 in the remainder of this "• IPS. Ensure that system safety, Section refer to the DoD format paragraph health hazards, and environmental for the...hazardous materials is controlled in the manner which protects human health and the environment at the least cost. Hazardous Material Control and Management...of hazardous materials is controlled in a manner which protects human health and the environment at the least cost. Hazardous Material Control and
Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey).
Karsli, F; Atasoy, M; Yalcin, A; Reis, S; Demir, O; Gokceoglu, C
2009-09-01
Various natural hazards such as landslides, avalanches, floods and debris flows can result in enormous property damages and human casualties in Eastern Black Sea region of Turkey. Mountainous topographic character and high frequency of heavy rain are the main factors for landslide occurrence in Ardesen, Rize. For this reason, the main target of the present study is to evaluate the landslide hazards using a sequence of historical aerial photographs in Ardesen (Rize), Turkey, by Photogrammetry and Geographical Information System (GIS). Landslide locations in the study area were identified by interpretation of aerial photographs dated in 1973 and 2002, and by field surveys. In the study, the selected factors conditioning landslides are lithology, slope gradient, slope aspect, vegetation cover, land class, climate, rainfall and proximity to roads. These factors were considered as effective on the occurrence of landslides. The areas under landslide threat were analyzed and mapped considering the landslide conditioning factors. Some of the conditioning factors were investigated and estimated by employing visual interpretation of aerial photos and topographic data. The results showed that the slope, lithology, terrain roughness, proximity to roads, and the cover type played important roles on landslide occurrence. The results also showed that degree of landslides was affected by the number of houses constructed in the region. As a consequence, the method employed in the study provides important benefits for landslide hazard mitigation efforts, because a combination of both photogrammetric techniques and GIS is presented.
Health hazard evaluation report HETA 91-124-2192, U. S. Park Police, Washington, DC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echt, A.; Klein, M.; Reh, C.M.
1992-03-01
In response to a request from the U.S. Park Police (SIC-9221), Washington, D.C., a study was undertaken of possible hazardous exposures to lead (7439921) at a new indoor firing range. Air sampling revealed that for students using the range during training, the 8 hour time weighted average (TWA) exposures ranged from 4.4 micrograms/cubic meter (microg/cu m) to 116.4 microg/cu m of airborne lead, with a mean of 32.5 microg/cu m. For range officers, the TWA exposures ranged from 0.15 to 52.6 microg/cu m, mean 16.1 microg/cu m. Area samples ranged from 0.15 to 2291.1 microg/cu m. During qualification shooting, themore » 8 hour TWA exposures for students ranged from 1.0 to 103.8 microg/cu m, with a mean of 26.3 microg/cu m. For range officers, the 8 hour TWA exposures ranged from 9.7 to 39.8 microg/cu m, mean 18.0 microg/cu m. A smoke machine was used to visualize the air patterns in the firing range. It was found that contaminated air could be pulled from downrange to behind the shooting line. The authors conclude that overexposure to lead occurred during use of the firing range, due to deficiencies in the range ventilation system. The authors recommend specific measures to lessen the hazardous exposures.« less
NASA Astrophysics Data System (ADS)
Török, Ákos; Barsi, Árpád; Görög, Péter; Lovas, Tamás; Bögöly, Gyula; Czinder, Balázs; Vásárhelyi, Balázs; Molnár, Bence; József Somogyi, Árpád
2017-04-01
Nearly vertical rhyolite tuff cliff faces are located in NE-Hungary representing rock fall hazard in the touristic region of Sirok. Larger blocks of the cliff have fallen in recent years menacing tourists and human lives. The rhyolite tuff, that forms the Castle Hill was formed during Miocene volcanism and comprises of brecciated lapilli tuffs and tuffs with intercalating ignimbritic horizons. The paper focuses on the 3D mapping of cliff faces and modeling of rock fall hazard. The topography and 3D model of the cliff was obtained by using GNSS supported terrestrial laser scanner and UAV. With imaging techniques of UAV a Triangulated Irregular Network (TIN) model was developed that contained triangles with 5-10 cm side lengths. GNSS supported terrestrial laser scanning allowed the observation with a resolution 1-5 cm of point spacing. The point clouds were further processed and with the combination of laser scanner and UAV data a 3D model of the studied cliff faces were obtained. Geological parameters for rock fall analyses included both field observations and laboratory tests. The lithotypes were identified on the field and were sampled for rock mechanical laboratory analyses. Joint- and fault system was mapped and visualized by using Rocscience Dip. EN test methods were used to obtain the density properties of various lithotypes of rhyolite tuff. Other standardized EN tests included ultrasonic pulse velocity, water absorption, indirect tensile strength (Brasilian), uniaxial compressive strength and modulus of elasticity of air dry and of water saturated samples. GSI values were denoted based on filed observations and rock mass properties. The stability analyses of cliff faces were made by using 2D FEM software (Phase 2). Cross sections were evaluated and global factor of safety was also calculated. The modeled displacements were in the order of few centimeters; however several locations were pinpointed where wedge failure and planar slip surfaces were identified as major cliff stability hazards. These were associated with the major joint systems dissecting cliff faces. This research have proved that the combined methods of field surveying, imaging techniques, data processing and FEM modelling with rock mechanical laboratory analyses allowed the identification of major rock fall hazards even at areas which are difficult to access.
NASA Technical Reports Server (NTRS)
1989-01-01
Biomedical Optical Company of America's (BOCA) suntiger lenses, similar in principle to natural filters in the eyes of hawks and eagles, bar 99 percent of potentially harmful wavelengths, while allowing visually useful colors of light (red, orange, green) to pass through. They also improve visual acuity, night vision and haze or fog visibility. The lenses evolved from work done by James B. Stephens and Dr. Charles G. Miller of the Jet Propulsion Laboratory. They developed a formula and produced a commercial welding curtain that absorbs, filters, and scatters light. This research led to protective glasses now used by dentists, workers in hazardous environments, CRT operators and skiers.
75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-24
... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection...
Intelligent seismic risk mitigation system on structure building
NASA Astrophysics Data System (ADS)
Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.
2018-01-01
Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.
Fantinati, Anna; Ossato, Andrea; Bianco, Sara; Canazza, Isabella; De Giorgio, Fabio; Trapella, Claudio; Marti, Matteo
2017-05-01
Among novel psychoactive substances notified to EMCDDA and Europol were 1-cyclohexyl-x-methoxybenzene stereoisomers (ortho, meta, and para). These substances share some structural characteristics with phencyclidine and tramadol. Nowadays, no information on the pharmacological and toxicological effects evoked by 1-cyclohexyl-x-methoxybenzene are reported. The aim of this study was to investigate the effect evoked by each one stereoisomer on visual stimulation, body temperature, acute thermal pain, and motor activity in mice. Mice were evaluated in behavioral tests carried out in a consecutive manner according to the following time scheme: observation of visual placing response, measures of core body temperature, determination of acute thermal pain, and stimulated motor activity. All three stereoisomers dose-dependent inhibit visual placing response (rank order: meta > ortho > para), induce hyperthermia at lower and hypothermia at higher doses (meta > ortho > para) and cause analgesia to thermal stimuli (para > meta = ortho), while they do not alter motor activity. For the first time, this study demonstrates that systemic administration of 1-cyclohexyl-x-methoxybenzene compounds markedly inhibit visual response, promote analgesia, and induce core temperature alterations in mice. This data, although obtained in animal model, suggest their possible hazard for human health (i.e., hyperthermia and sensorimotor alterations). In particular, these novel psychoactive substances may have a negative impact in many daily activities, greatly increasing the risk factors for workplace accidents and traffic injuries. Copyright © 2017 John Wiley & Sons, Ltd.
U.S. Geological Survey: A synopsis of Three-dimensional Modeling
Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.
2011-01-01
The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.
The Art in Visualizing Natural Landscapes from Space
NASA Astrophysics Data System (ADS)
Webley, P. W.; Shipman, J. S.; Adams, T.
2017-12-01
Satellite remote sensing data can capture the changing Earth at cm resolution, across hundreds of spectral channels, and multiple times per hour. There is an art in combining these datasets together to fully capture the beauty of our planet. The resulting artistic piece can be further transformed by building in an accompanying musical score, allowing for a deeper emotional connection with the public. We make use of visible, near, middle and long wave infrared and radar data as well as different remote sensing techniques to uniquely capture our changing landscape in the spaceborne data. We will generate visually compelling imagery and videos that represent hazardous events from dust storms to landslides and from volcanic eruptions to forest fires. We will demonstrate how specific features of the Earth's landscape can be emphasized through the use of different datasets and color combinations and how, by adding a musical score, we can directly connect with the viewer and heighten their experience. We will also discuss our process to integrate the different aspects of our project together and how it could be developed to capture the beauty of other planets across the solar system using spaceborne imagery and data. Bringing together experts in art installations, composing musical scores, and remote sensing image visualization can lead to new and exciting artistic representations of geoscience data. The resulting product demonstrates there is an art to visualizing remote sensing data to capture the beauty of our planet and that incorporating a musical score can take us all to new places and emotions to enhance our experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peek, Dennis W.
The approach was to perform a document search, supplemented by a visual site inspection, to identify potential environmental contamination associated with the property. Factors evaluated included hazardous substances; petroleum products and derivatives; environmental restoration sites; areas of concern; storage tanks; oil/water separators; grease traps; wash racks; waste tanks; pesticides; military munitions/ordnance; medical or bio-hazardous waste; radioactive waste; solid/municipal waste; indoor air quality; groundwater; wastewater treatment, collection, and disposal/discharge; drinking water quality; utilities; asbestos; polychlorinated biphenyls (PCBs); radon; lead-based paint; cultural resources; floodplains; and natural/biological resources.
Analysis of Visual Cues for an Electronic Bulletin Board.
ERIC Educational Resources Information Center
Ruberg, Laurie F.; And Others
This paper reports on a study examining what critical information in the Hazardous Materials Information eXchange (HMIX), a national electronic bulletin board sponsored by the U.S. Department of Transportation and the Federal Emergency Management Agency, is of value to local government officials who have a need for the information. HMIX has two…
7 CFR 632.15 - Eligible uses and treatment of reclaimed lands.
Code of Federal Regulations, 2010 CFR
2010-01-01
... water that may be offered for contract under one ownership is 320 acres for the life of the program. (d... feasible to achieve: (1) Protection of life, property, and elimination of public health and safety hazards... water quality, visual quality, recreation resources, fish and wildlife habitat, and erosion and sediment...
7 CFR 632.15 - Eligible uses and treatment of reclaimed lands.
Code of Federal Regulations, 2011 CFR
2011-01-01
... water that may be offered for contract under one ownership is 320 acres for the life of the program. (d... feasible to achieve: (1) Protection of life, property, and elimination of public health and safety hazards... water quality, visual quality, recreation resources, fish and wildlife habitat, and erosion and sediment...
7 CFR 632.15 - Eligible uses and treatment of reclaimed lands.
Code of Federal Regulations, 2012 CFR
2012-01-01
... water that may be offered for contract under one ownership is 320 acres for the life of the program. (d... feasible to achieve: (1) Protection of life, property, and elimination of public health and safety hazards... water quality, visual quality, recreation resources, fish and wildlife habitat, and erosion and sediment...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
..., visual effects, noise, vibration, cultural resources, air quality, open space, farmland, hazardous... is also available to review at the following locations: 1. State Transportation Library of Massachusetts 10 Park Plaza, 2nd Floor, Boston, MA. 2. Russell Memorial Library, 88 Main Street, Acushnet, MA. 3...
Hazards of Colour Coding in Visual Approach Slope Indicators,
1981-12-01
the glideslope. The central spot (the ’ meatball ’) is displaced above or below the datum lights when the pilot views from above or below the...undershoot is increasing or decreasing, the step changes in intensity may also be evident as a form of flash coding. Colour coding of the ’ meatball " in
46 CFR 108.187 - Ventilation for brush type electric motors in classified spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for brush type electric motors in classified... Ventilation for brush type electric motors in classified spaces. Ventilation for brush type electric motors in... Electrical Equipment in Hazardous Locations”, except audible and visual alarms may be used if shutting down...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-29
... comment. To avoid duplication, please use only one of these four methods. All comments received will be... Sec. 180.205(f) (visual inspection) to permit the shot blasting \\d\\ of cylinders to remove surface... conducted by an authorized facility in accordance with Sec. 180.212. \\d\\ Shot blasting aluminum cylinders...
Bowie, Paul; Price, Julie; Hepworth, Neil; Dinwoodie, Mark; McKay, John
2015-11-27
To analyse a medical protection organisation's database to identify hazards related to general practice systems for ordering laboratory tests, managing test results and communicating test result outcomes to patients. To integrate these data with other published evidence sources to inform design of a systems-based conceptual model of related hazards. A retrospective database analysis. General practices in the UK and Ireland. 778 UK and Ireland general practices participating in a medical protection organisation's clinical risk self-assessment (CRSA) programme from January 2008 to December 2014. Proportion of practices with system risks; categorisation of identified hazards; most frequently occurring hazards; development of a conceptual model of hazards; and potential impacts on health, well-being and organisational performance. CRSA visits were undertaken to 778 UK and Ireland general practices of which a range of systems hazards were recorded across the laboratory test ordering and results management systems in 647 practices (83.2%). A total of 45 discrete hazard categories were identified with a mean of 3.6 per practice (SD=1.94). The most frequently occurring hazard was the inadequate process for matching test requests and results received (n=350, 54.1%). Of the 1604 instances where hazards were recorded, the most frequent was at the 'postanalytical test stage' (n=702, 43.8%), followed closely by 'communication outcomes issues' (n=628, 39.1%). Based on arguably the largest data set currently available on the subject matter, our study findings shed new light on the scale and nature of hazards related to test results handling systems, which can inform future efforts to research and improve the design and reliability of these systems. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Helicopter flights with night-vision goggles: Human factors aspects
NASA Technical Reports Server (NTRS)
Brickner, Michael S.
1989-01-01
Night-vision goggles (NVGs) and, in particular, the advanced, helmet-mounted Aviators Night-Vision-Imaging System (ANVIS) allows helicopter pilots to perform low-level flight at night. It consists of light intensifier tubes which amplify low-intensity ambient illumination (star and moon light) and an optical system which together produce a bright image of the scene. However, these NVGs do not turn night into day, and, while they may often provide significant advantages over unaided night flight, they may also result in visual fatigue, high workload, and safety hazards. These problems reflect both system limitations and human-factors issues. A brief description of the technical characteristics of NVGs and of human night-vision capabilities is followed by a description and analysis of specific perceptual problems which occur with the use of NVGs in flight. Some of the issues addressed include: limitations imposed by a restricted field of view; problems related to binocular rivalry; the consequences of inappropriate focusing of the eye; the effects of ambient illumination levels and of various types of terrain on image quality; difficulties in distance and slope estimation; effects of dazzling; and visual fatigue and superimposed symbology. These issues are described and analyzed in terms of their possible consequences on helicopter pilot performance. The additional influence of individual differences among pilots is emphasized. Thermal imaging systems (forward looking infrared (FLIR)) are described briefly and compared to light intensifier systems (NVGs). Many of the phenomena which are described are not readily understood. More research is required to better understand the human-factors problems created by the use of NVGs and other night-vision aids, to enhance system design, and to improve training methods and simulation techniques.
Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, Kwan S.
Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less
Software for occupational health and safety risk analysis based on a fuzzy model.
Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan
2012-01-01
Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.
NASA Astrophysics Data System (ADS)
Ishida, Keiichi
2018-05-01
This paper aims to show capability of the Orderable Matrix of Jacques Bertin which is a visualization method of data analyze and/or a method to recognize data. That matrix can show the data by replacing numbers to visual element. As an example, using a set of data regarding natural hazard rankings for certain metropolitan cities in the world, this paper describes how the Orderable Matrix handles the data set and show characteristic factors of this data to understand it. Not only to see a kind of risk ranking of cities, the Orderable Matrix shows how differently danger concerned cities ones and others are. Furthermore, we will see that the visualized data by Orderable Matrix allows us to see the characteristics of the data set comprehensively and instantaneously.
Current food chain information provides insufficient information for modern meat inspection of pigs.
Felin, Elina; Jukola, Elias; Raulo, Saara; Heinonen, Jaakko; Fredriksson-Ahomaa, Maria
2016-05-01
Meat inspection now incorporates a more risk-based approach for protecting human health against meat-borne biological hazards. Official post-mortem meat inspection of pigs has shifted to visual meat inspection. The official veterinarian decides on additional post-mortem inspection procedures, such as incisions and palpations. The decision is based on declarations in the food chain information (FCI), ante-mortem inspection and post-mortem inspection. However, a smooth slaughter and inspection process is essential. Therefore, one should be able to assess prior to slaughter which pigs are suitable for visual meat inspection only, and which need more profound inspection procedures. This study evaluates the usability of the FCI provided by pig producers and considered the possibility for risk ranking of incoming slaughter batches according to the previous meat inspection data and the current FCI. Eighty-five slaughter batches comprising 8954 fattening pigs were randomly selected at a slaughterhouse that receives animals from across Finland. The mortality rate, the FCI and the meat inspection results for each batch were obtained. The current FCI alone provided insufficient and inaccurate information for risk ranking purposes for meat inspection. The partial condemnation rate for a batch was best predicted by the partial condemnation rate calculated for all the pigs sent for slaughter from the same holding in the previous year (p<0.001) and by prior information on cough declared in the current FCI (p=0.02) statement. Training and information to producers are needed to make the FCI reporting procedures more accurate. Historical meat inspection data on pigs slaughtered from the same holdings and well-chosen symptoms/signs for reporting, should be included in the FCI to facilitate the allocation of pigs for visual inspection. The introduced simple scoring system can be easily used for additional information for directing batches to appropriate meat inspection procedures. To control the main biological public health hazards related to pork, serological surveillance should be done and the information obtained from analyses should be used as part of the FCI. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Yi-Jen; Hsu, Teh-Fu; Huang, Ben-Shian; Tsai, Hsiao-Wen; Chang, Yen-Hou; Wang, Peng-Hui
2017-06-01
According to 3 randomized trials, the levonorgestrel-releasing intrauterine system significantly reduced recurrent endometriosis-related pelvic pain at postoperative year 1. Only a few studies have evaluated the long-term effectiveness of the device for preventing endometrioma recurrence, and the effects of a levonorgestrel-releasing intrauterine system as a maintenance therapy remain unclear. The objective of the study was to evaluate whether a maintenance levonorgestrel-releasing intrauterine system is effective for preventing postoperative endometrioma recurrence. From May 2011 through March 2012, a randomized controlled trial including 80 patients with endometriomas undergoing laparoscopic cystectomy followed by six cycles of gonadotropin-releasing hormone agonist treatment was conducted. After surgery, the patients were randomized to groups that did or did not receive a levonorgestrel-releasing intrauterine system (intervention group, n = 40, vs control group, n = 40). The primary outcome was endometrioma recurrence 30 months after surgery. The secondary outcomes included dysmenorrhea, CA125 levels, noncyclic pelvic pain, and side effects. Endometrioma recurrence at 30 months did not significantly differ between the 2 groups (the intervention group, 10 of 40, 25% vs the control group 15 of 40, 37.5%; hazard ratio, 0.60, 95% confidence interval, 0.27-1.33, P = .209). The intervention group exhibited a lower dysmenorrhea recurrence rate, with an estimated hazard ratio of 0.32 (95% confidence interval, 0.12-0.83, P = .019). Over a 30 month follow-up, the intervention group exhibited a greater reduction in dysmenorrhea as assessed with a visual analog scale score (mean ± SD, 60.8 ± 25.5 vs 38.7 ± 25.9, P < .001, 95% confidence interval, 10.7-33.5), noncyclic pelvic pain visual analog scale score (39.1 ± 10.9 vs 30.1 ± 14.7, P = .014, 95% confidence interval, 1.9-16.1), and CA125 (median [interquartile range], -32.1 [-59.1 to 14.9], vs -15.6 [-33.0 to 5.0], P = .001) compared with the control group. The number-needed-to-treat benefit for dysmenorrhea recurrence at 30 months was 5. The number of recurrent cases requiring further surgical or hormone treatment in the intervention group (1 of 40, 2.5%, 95% confidence interval, -2.3% to 7.3%) was significantly lower than that in the control group (8 of 40, 20%, 95% confidence interval, 7.6-32.4%; P = .031). Long-term maintenance therapy using a levonorgestrel-releasing intrauterine system is not effective for preventing endometrioma recurrence. Copyright © 2017 Elsevier Inc. All rights reserved.
Results from Evaluations of Gridded CrIS/ATMS Visualization for Operational Forecasting
NASA Astrophysics Data System (ADS)
Stevens, E.; Zavodsky, B.; Dostalek, J.; Berndt, E.; Hoese, D.; White, K.; Bowlan, M.; Gambacorta, A.; Wheeler, A.; Haisley, C.; Smith, N.
2017-12-01
For forecast challenges which require diagnosis of the three-dimensional atmosphere, current observations, such as radiosondes, may not offer enough information. Satellite data can help fill the spatial and temporal gaps between soundings. In particular, temperature and moisture retrievals from the NOAA-Unique Combined Atmospheric Processing System (NUCAPS), which combines infrared soundings from the Cross-track Infrared Sounder (CrIS) with the Advanced Technology Microwave Sounder (ATMS) to retrieve profiles of temperature and moisture. NUCAPS retrievals are available in a wide swath with approximately 45-km spatial resolution at nadir and a local Equator crossing time of 1:30 A.M./P.M. enabling three-dimensional observations at asynoptic times. This abstract focuses on evaluation of a new visualization for NUCAPS within the operational National Weather Service Advanced Weather Interactive Processing System (AWIPS) decision support system that allows these data to be viewed in gridded horizontal maps or vertical cross sections. Two testbed evaluations have occurred in 2017: a Cold Air Aloft (CAA) evaluation at the Alaska Center Weather Service Unit and a Convective Potential evaluation at the NOAA Hazardous Weather Testbed. For CAA, at high latitudes during the winter months, the air at altitudes used by passenger and cargo aircraft can reach temperatures cold enough (-65°C) to begin to freeze jet fuel, and Gridded NUCAPS visualization was shown to help fill in the spatial and temporal gaps in data-sparse areas across the Alaskan airspace by identifying the 3D spatial extent of cold air features. For convective potential, understanding the vertical distribution of temperature and moisture is also very important for forecasting the potential for convection related to severe weather such as lightning, large hail, and tornadoes. The Gridded NUCAPS visualization was shown to aid forecasters in understanding temperature and moisture characteristics at critical levels for determining cap strength and instability. In both cases, when the products are used in conjunction with numerical output to reinforce confidence in model products or provide an alternative observation if forecasters are not sure the model is properly representing the atmosphere.
One exhibition, many goals. Combining scientific research and risk communication
NASA Astrophysics Data System (ADS)
Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik
2015-04-01
How effective is visual communication to increase awareness of natural hazards and risks? To answer this research question, we developed a research design that was at the same time an experimental setting and an actual communication effort. Throughout the full length of the 2-years project held in the Ubaye valley (southeastern France), we collaborated with local and regional stakeholders (politicians and technicians). During a consultation phase, the communication context was determined, the audience of the project was defined and finally the testing activity-communication effort was determined. We were offered the opportunity to design an exhibition for the local public library. In a consultation phase that corresponded to the design of the exhibition, the stakeholders contributed to its content as well as helping with the funding of the exhibition. Finally, during the experimentation phase, the stakeholders participated in advertising the activity, gathering of participants and designing the scientific survey. In order to assess the effects of the exhibition on risk awareness, several groups of children, teenagers and adults were submitted to a research design, consisting of 1) a pre-test, 2) the visit of the exhibition and 3) a post-test similar to the pre-test. In addition, the children answered a second post-test 3 months after the visit. Close ended questions addressed the awareness indicators mentioned in the literature, i.e. worry level, previous experiences with natural hazards events, exposure to awareness raising, ability to mitigate/respond/prepare, attitude to risk, and demographics. In addition, the post-test included several satisfaction questions concerning the visual tools displayed in the exhibition. A statistical analysis of the changes between the pre- and post- tests (paired t-test, Wilcoxon signed-rank test and bootstrapping) allowed to verify whether the exhibition had an impact on risk awareness or not. In order to deduce which variable influenced the observed changes, an ordinal regression was performed. In addition, to deduce the attractiveness of each visual tool independently, the visitors' paths were tracked using RFID (Radio Frequency Identification) technique, from which their time spent around certain visuals could be assessed. While the process of creating an exhibition as a real communication effort and a testing activity will be discussed, the results of the experiment will be presented. In particular, we will show for which natural hazard the most awareness changes were measured and with which factors they are assessed. Moreover, the attractiveness of each visual tools will be presented.
Structured Light-Based Hazard Detection For Planetary Surface Navigation
NASA Technical Reports Server (NTRS)
Nefian, Ara; Wong, Uland Y.; Dille, Michael; Bouyssounouse, Xavier; Edwards, Laurence; To, Vinh; Deans, Matthew; Fong, Terry
2017-01-01
This paper describes a structured light-based sensor for hazard avoidance in planetary environments. The system presented here can also be used in terrestrial applications constrained by reduced onboard power and computational complexity and low illumination conditions. The sensor is on a calibrated camera and laser dot projector system. The onboard hazard avoidance system determines the position of the projected dots in the image and through a triangulation process detects potential hazards. The paper presents the design parameters for this sensor and describes the image based solution for hazard avoidance. The system presented here was tested extensively in day and night conditions in Lunar analogue environments. The current system achieves over 97 detection rate with 1.7 false alarms over 2000 images.
14 CFR 417.409 - System hazard controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...
14 CFR 417.409 - System hazard controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...
14 CFR 417.409 - System hazard controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...
14 CFR 417.409 - System hazard controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...
JPSS Data Product Applications for Monitoring Severe Weather and Environmental Hazards
NASA Astrophysics Data System (ADS)
Liu, X.; Zhou, L.; Divakarla, M. G.; Atkins, T.
2016-12-01
The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA's) next-generation polar-orbiting operational environmental satellite system. The Suomi National Polar-orbiting Partnership (S-NPP) is the first satellite in the JPSS series. One of the JPSS supported key mission areas is to reduce the loss of life from high-impact weather events while improving efficient economies through environmental information. Combining with the sensors on other polar and geostationary satellite platforms, JPSS observations provided much enhanced capabilities for the Nation's essential products and services, including forecasting severe weather like hurricanes, potential tornadic outbreaks, and blizzards days in advance, and assessing environmental hazards such as droughts, floods, forest fires, poor air quality and harmful coastal waters. Sensor and Environmental Data Records (SDRs/EDRs) derived from S-NPP and follow-on JPSS satellites provide critical data for environmental assessments, forecasts and warnings. This paper demonstrates the use of S-NPP science data products towards analysis events of severe weather and environmental hazards, such as Paraguay Flooding, Hurricane Iselle, the record-breaking winter storm system that impacted the US East Coast area early this year, and Fort McMurray wildfire. A brief description of these examples and a detailed discussion of the winter storm event are presented in this paper. VIIRS (Visible Infrared Imaging Radiometer Suite) and ATMS (Advanced Technology Microwave Sounder) SDR/EDR products collected from multiple days of S-NPP observations are analyzed to study the progression of the winter storm and illustrate how JPSS products captured the storm system. The products used for this study included VIIRS day/night band (DNB) and true color images, ocean turbidity images, snow cover fraction, and the multi-sensor snowfall rates. Quantitative evaluation of the ATMS derived snowfall rates with the radar estimates revealed good agreement. Use of STAR JPSS product monitoring and visualization tools to evaluate these events, and applications of these tools for anomaly detection, mitigation, and science maintenance of the long-term stability of the data products is also presented in this paper.
Shams, Tanzila; Auchus, Alexander P; Oparil, Suzanne; Wright, Clinton B; Wright, Jackson; Furlan, Anthony J; Sila, Cathy A; Davis, Barry R; Pressel, Sara; Yamal, Jose-Miguel; Einhorn, Paula T; Lerner, Alan J
2017-11-01
The visual analogue scale is a self-reported, validated tool to measure quality of life (QoL). Our purpose was to determine whether baseline QoL predicted strokes in the ALLHAT study (Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial) and evaluate determinants of poststroke change in QoL. In the ALLHAT study, among the 33 357 patients randomized to treatment arms, 1525 experienced strokes; 1202 (79%) strokes were nonfatal. This study cohort includes 32 318 (97%) subjects who completed the baseline visual analogue scale QoL estimate. QoL was measured on a visual analogue scale and adjusted using a Torrance transformation (transformed QoL [TQoL]). Kaplan-Meier curves and adjusted proportional hazards analyses were used to estimate the effect of TQoL on the risk of stroke, on a continuous scale (0-1) and by quartiles (≤0.81, >0.81≤0.89, >0.89≤0.95, >0.95). We analyzed the change from baseline to first poststroke TQoL using adjusted linear regression. After adjusting for multiple stroke risk factors, the hazard ratio for stroke events for baseline TQoL was 0.93 (95% confidence interval, 0.89-0.98) per 0.1 U increase. The lowest baseline TQoL quartile had a 20% increased stroke risk (hazard ratio=1.20 [95% confidence interval, 1.00-1.44]) compared with the reference highest quartile TQoL. Poststroke TQoL change was significant within all treatment groups ( P ≤0.001). Multivariate regression analysis revealed that baseline TQoL was the strongest predictor of poststroke TQoL with similar results for the untransformed QoL. The lowest baseline TQoL quartile had a 20% higher stroke risk than the highest quartile. Baseline TQoL was the only factor that predicted poststroke change in TQoL. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00000542. © 2017 American Heart Association, Inc.
Using hazard functions to assess changes in processing capacity in an attentional cuing paradigm.
Wenger, Michael J; Gibson, Bradley S
2004-08-01
Processing capacity--defined as the relative ability to perform mental work in a unit of time--is a critical construct in cognitive psychology and is central to theories of visual attention. The unambiguous use of the construct, experimentally and theoretically, has been hindered by both conceptual confusions and the use of measures that are at best only coarsely mapped to the construct. However, more than 25 years ago, J. T. Townsend and F. G. Ashby (1978) suggested that the hazard function on the response time (RT) distribution offered a number of conceptual advantages as a measure of capacity. The present study suggests that a set of statistical techniques, well-known outside the cognitive and perceptual literatures, offers the ability to perform hypothesis tests on RT-distribution hazard functions. These techniques are introduced, and their use is illustrated in application to data from the contingent attentional capture paradigm.
Guide for Oxygen Hazards Analyses on Components and Systems
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Dees, Jesse; Poe, Robert F.
1996-01-01
Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite at lower temperatures in an oxygen-enriched environment than in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Many metals burn violently in an oxygen-enriched environment when ignited. Lubricants, tapes, gaskets, fuels, and solvents can increase the possibility of ignition in oxygen systems. However, these hazards do not preclude the use of oxygen. Oxygen may be safely used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. These ignition and combustion hazards necessitate a proper oxygen hazards analysis before introducing a material or component into oxygen service. The objective of this test plan is to describe the White Sands Test Facility oxygen hazards analysis to be performed on components and systems before oxygen is introduced and is recommended before implementing the oxygen component qualification procedure. The plan describes the NASA Johnson Space Center White Sands Test Facility method consistent with the ASTM documents for analyzing the hazards of components and systems exposed to an oxygen-enriched environment. The oxygen hazards analysis is a useful tool for oxygen-system designers, system engineers, and facility managers. Problem areas can be pinpointed before oxygen is introduced into the system, preventing damage to hardware and possible injury or loss of life.
NASA Astrophysics Data System (ADS)
Wang, X.; Liu, H.; Yao, K.; Wei, Y.
2018-04-01
It is a complicated process to analyze the cause of geological hazard. Through the analysis function of GIS software, 250 landslides were randomly selected from 395 landslide hazards in the study area, superimposed with the types of landforms, annual rainfall and vegetation coverage respectively. It used box dimension method of fractal dimension theory to study the fractal characteristics of spatial distribution of landslide disasters in Dachuan district, and analyse the statistical results. Research findings showed that the The fractal dimension of the landslides in the Dachuan area is 0.9114, the correlation coefficient is 0.9627, and it has high autocorrelation. Zoning statistics according to various natural factors, the fractal dimension between landslide hazard points and deep hill, middle hill area is strong as well as the area whose average annual rainfall is 1050 mm-1250 mm and vegetation coverage is 30 %-60 %. Superposition of the potential hazard distribution map of single influence factors to get the potential hazard zoning of landslides in the area. Verifying the potential hazard zoning map of the potential landslides with 145 remaining disaster points, among them, there are 74 landslide hazard points in high risk area, accounting for 51.03 % of the total. There are 59 landslides in the middle risk area, accounting for 40.69 % of the total, and 12 in the low risk area, accounting for 8.28 % of the total. The matching degree of the verifying result and the potential hazard zoning is high. Therefore, the fractal dimension value divided the degree of geological disaster susceptibility can be described the influence degree of each influence factor to geological disaster point more intuitively, it also can divide potential disaster risk areas and provide visual data support for effective management of geological disasters.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Distribution Systems, Gas Transmission and Gathering Systems, and Hazardous Liquid Systems AGENCY: Pipeline and.... SUMMARY: This notice advises owners and operators of gas pipeline facilities and hazardous liquid pipeline...
2016-01-01
Warning beacons are critical for the safety of transportation, construction, and utility workers. These devices need to produce sufficient luminous intensity to be visible without creating glare to drivers. Published standards for the photometric performance of warning beacons do not address their performance in conditions of reduced visibility such as fog. Under such conditions light emitted in directions other than toward approaching drivers can create scattered light that makes workers and other hazards less visible. Simulations of visibility of hazards under varying conditions of fog density, forward vehicle lighting, warning beacon luminous intensity, and intensity distribution were performed to assess their impacts on visual performance by drivers. Each of these factors can influence the ability of drivers to detect and identify workers and hazards along the roadway in work zones. Based on the results, it would be reasonable to specify maximum limits on the luminous intensity of warning beacons in directions that are unlikely to be seen by drivers along the roadway, limits which are not included in published performance specifications. PMID:27314058
Age-Related Sensory Impairments and Risk of Cognitive Impairment
Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.
2016-01-01
Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of < 24 or history of dementia or Alzheimer’s disease. Hearing impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of < 1.55 log units in the better eye and olfactory impairment was a San Diego Odor Identification Test score of < 6. Results Hearing, visual, and olfactory impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845
Remote-controlled pan, tilt, zoom cameras at Kilauea and Mauna Loa Volcanoes, Hawai'i
Hoblitt, Richard P.; Orr, Tim R.; Castella, Frederic; Cervelli, Peter F.
2008-01-01
Lists of important volcano-monitoring disciplines usually include seismology, geodesy, and gas geochemistry. Visual monitoring - the essence of volcanology - is usually not mentioned. Yet, observations of the outward appearance of a volcano provide data that is equally as important as that provided by the other disciplines. The eye was almost certainly the first volcano monitoring-tool used by early man. Early volcanology was mostly descriptive and was based on careful visual observations of volcanoes. There is still no substitute for the eye of an experienced volcanologist. Today, scientific instruments replace or augment our senses as monitoring tools because instruments are faster and more sensitive, work tirelessly day and night, keep better records, operate in hazardous environments, do not generate lawsuits when damaged or destroyed, and in most cases are cheaper. Furthermore, instruments are capable of detecting phenomena that are outside the reach of our senses. The human eye is now augmented by the camera. Sequences of timed images provide a record of visual phenomena that occur on and above the surface of volcanoes. Photographic monitoring is a fundamental monitoring tool; image sequences can often provide the basis for interpreting other data streams. Monitoring data are most useful when they are generated and are available for analysis in real-time or near real-time. This report describes the current (as of 2006) system for real-time photograph acquisition and transmission from remote sites on Kilauea and Mauna Loa volcanoes to the U.S. Geological Survey Hawaiian Volcano Observatory (HVO). It also describes how the photographs are archived and analyzed. In addition to providing system documentation for HVO, we hope that the report will prove useful as a practical guide to the construction of a high-bandwidth network for the telemetry of real-time data from remote locations.
Portable medical status system. [potential hazards in the use of the telecare system
NASA Technical Reports Server (NTRS)
Lindsey, O. C.
1976-01-01
The hazards inherent in the Portable Medical Status System are identified, and the measures taken to reduce them to an acceptable level are described. Identification of these hazards is a prerequisite to use of the system on humans in the earth environment. One hazard which is insufficiently controlled and which is considered a constraint to use on humans is the level of current possible in the electrodes for the EEG (electroencephalograph) circuitry. It exceeds the maximum specified. A number of procedural and design recommendations for enhancement of safety are made.
Lee, D H; Mehta, M D
2003-06-01
Effective risk communication in transfusion medicine is important for health-care consumers, but understanding the numerical magnitude of risks can be difficult. The objective of this study was to determine the effect of a visual risk communication tool on the knowledge and perception of transfusion risk. Laypeople were randomly assigned to receive transfusion risk information with either a written or a visual presentation format for communicating and comparing the probabilities of transfusion risks relative to other hazards. Knowledge of transfusion risk was ascertained with a multiple-choice quiz and risk perception was ascertained by psychometric scaling and principal components analysis. Two-hundred subjects were recruited and randomly assigned. Risk communication with both written and visual presentation formats increased knowledge of transfusion risk and decreased the perceived dread and severity of transfusion risk. Neither format changed the perceived knowledge and control of transfusion risk, nor the perceived benefit of transfusion. No differences in knowledge or risk perception outcomes were detected between the groups randomly assigned to written or visual presentation formats. Risk communication that incorporates risk comparisons in either written or visual presentation formats can improve knowledge and reduce the perception of transfusion risk in laypeople.
Visualizing Volcanic Clouds in the Atmosphere and Their Impact on Air Traffic.
Gunther, Tobias; Schulze, Maik; Friederici, Anke; Theisel, Holger
2016-01-01
Volcanic eruptions are not only hazardous in the direct vicinity of a volcano, but they also affect the climate and air travel for great distances. This article sheds light on the Grímsvötn, Puyehue-Cordón Caulle, and Nabro eruptions in 2011. The authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of Nabro's sulfate aerosol into the stratosphere. The results here were developed for the 2014 IEEE Scientific Visualization Contest, which centers around the fusion of multiple satellite data modalities to reconstruct and assess the movement of volcanic ash and sulfate aerosol emissions. Using data from three volcanic eruptions that occurred in the span of approximately three weeks, the authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of sulfate aerosol into the stratosphere. This video provides animations of the reconstructed ash clouds. https://youtu.be/D9DvJ5AvZAs.
Learn about the Hazardous Waste Electronic Manifest System (e-Manifest)
This webpage provides information on EPA's work toward developing a hazardous waste electronic manifest system. Information on the Hazardous Waste Electronic Manifest Establishment Act, progress on the project and frequent questions are available.
The rockfall hazard rating system.
DOT National Transportation Integrated Search
1991-11-01
The development and dissemination of the Rockfall Hazard Rating System (RHRS) is complete. RHRS is intended to be a proactive tool that will allow transportation agencies to address rationally their rockfall hazards instead of simply reacting to rock...
IFKIS a basis for organizational measures in avalanche risk management
NASA Astrophysics Data System (ADS)
Bründl, M.; Etter, H.-J.; Klingler, Ch.; Steiniger, M.; Rhyner, J.; Ammann, W.
2003-04-01
The avalanche winter 1999 in Switzerland showed that the combination of protection measures like avalanche barriers, hazard zone mapping, artificial avalanche release and organisational measures (closure of roads, evacuation etc.) proved to perform well. However, education as well as information and communication between the involved organizations proved to be a weak link in the crisis management. In the first part of the project IFKIS we developed a modular education and training course program for security responsibles of settlements and roads. In the second part an information system was developed which improves on the one hand the information fluxes between the national center for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local forecasters. On the other hand the communication between the avalanche security services in the communities can be enhanced. During the last two years an information system based on Internet technology has been developed for this purpose. This system allows the transmission of measured data and observations to a central database at SLF and visualization of the data for different users. It also provides the possibility to exchange information on organizational measures like closure of roads, artificial avalanche release etc. on a local and regional scale. This improves the information fluxes and the coordination of safety-measures because all users, although at different places, are on the same information level. Inconsistent safety-measures can be avoided and information and communication concerning avalanche safety becomes much more transparent for all persons involved in hazard management. The training program as well the concept for the information-system are important basics for an efficient avalanche risk management but also for other natural processes and catastrophes.
International Space Station Instmments Collect Imagery of Natural Disasters
NASA Technical Reports Server (NTRS)
Evans, C. A.; Stefanov, W. L.
2013-01-01
A new focus for utilization of the International Space Station (ISS) is conducting basic and applied research that directly benefits Earth's citizenry. In the Earth Sciences, one such activity is collecting remotely sensed imagery of disaster areas and making those data immediately available through the USGS Hazards Data Distribution System, especially in response to activations of the International Charter for Space and Major Disasters (known informally as the "International Disaster Charter", or IDC). The ISS, together with other NASA orbital sensor assets, responds to IDC activations following notification by the USGS. Most of the activations are due to natural hazard events, including large floods, impacts of tropical systems, major fires, and volcanic eruptions and earthquakes. Through the ISS Program Science Office, we coordinate with ISS instrument teams for image acquisition using several imaging systems. As of 1 August 2013, we have successfully contributed imagery data in support of 14 Disaster Charter Activations, including regions in both Haiti and the east coast of the US impacted by Hurricane Sandy; flooding events in Russia, Mozambique, India, Germany and western Africa; and forest fires in Algeria and Ecuador. ISS-based sensors contributing data include the Hyperspectral Imager for the Coastal Ocean (HICO), the ISERV (ISS SERVIR Environmental Research and Visualization System) Pathfinder camera mounted in the US Window Observational Research Facility (WORF), the ISS Agricultural Camera (ISSAC), formerly operating from the WORF, and high resolution handheld camera photography collected by crew members (Crew Earth Observations). When orbital parameters and operations support data collection, ISS-based imagery adds to the resources available to disaster response teams and contributes to the publicdomain record of these events for later analyses.
Social Inequality and Visual Impairment in Older People.
Whillans, Jennifer; Nazroo, James
2018-03-02
Visual impairment is the leading cause of age-related disability, but the social patterning of loss of vision in older people has received little attention. This study's objective was to assess the association between social position and onset of visual impairment, to empirically evidence health inequalities in later life. Visual impairment was measured in 2 ways: self-reporting fair vision or worse (moderate) and self-reporting poor vision or blindness (severe). Correspondingly, 2 samples were drawn from the English Longitudinal Study on Ageing (ELSA). First, 7,483 respondents who had good vision or better at Wave 1; second, 8,487 respondents who had fair vision or better at Wave 1. Survival techniques were used. Cox proportional hazards models showed wealth and subjective social status (SSS) were significant risk factors associated with the onset of visual impairment. The risk of onset of moderate visual impairment was significantly higher for the lowest and second lowest wealth quintiles, whereas the risk of onset of severe visual impairment was significantly higher for the lowest, second, and even middle wealth quintiles, compared with the highest wealth quintile. Independently, lower SSS was associated with increased risk of onset of visual impairment (both measures), particularly so for those placing themselves on the lowest rungs of the social ladder. The high costs of visual impairment are disproportionately felt by the worst off elderly. Both low wealth and low SSS significantly increase the risk of onset of visual impairment.
Guide for Hydrogen Hazards Analysis on Components and Systems
NASA Technical Reports Server (NTRS)
Beeson, Harold; Woods, Stephen
2003-01-01
The physical and combustion properties of hydrogen give rise to hazards that must be considered when designing and operating a hydrogen system. One of the major concerns in the use of hydrogen is that of fire or detonation because of hydrogen's wide flammability range, low ignition energy, and flame speed. Other concerns include the contact and interaction of hydrogen with materials, such as the hydrogen embrittlement of materials and the formation of hydrogen hydrides. The low temperature of liquid and slush hydrogen bring other concerns related to material compatibility and pressure control; this is especially important when dissimilar, adjoining materials are involved. The potential hazards arising from these properties and design features necessitate a proper hydrogen hazards analysis before introducing a material, component, or system into hydrogen service. The objective of this guide is to describe the NASA Johnson Space Center White Sands Test Facility hydrogen hazards analysis method that should be performed before hydrogen is used in components and/or systems. The method is consistent with standard practices for analyzing hazards. It is recommended that this analysis be made before implementing a hydrogen component qualification procedure. A hydrogen hazards analysis is a useful tool for hydrogen-system designers, system and safety engineers, and facility managers. A hydrogen hazards analysis can identify problem areas before hydrogen is introduced into a system-preventing damage to hardware, delay or loss of mission or objective, and possible injury or loss of life.
Hazard Analysis Guidelines for Transit Projects
DOT National Transportation Integrated Search
2000-01-01
These hazard analysis guidelines discuss safety critical systems and subsystems, types of hazard analyses, when hazard analyses should be performed, and the hazard analysis philosophy. These guidelines are published by FTA to assist the transit indus...
Azman, Aida Rasyidah; Mahat, Naji Arafat; Abdul Wahab, Roswanira; Abdul Razak, Fazira Ilyana; Hamzah, Hafezul Helmi
2018-05-25
Waterways are popular locations for the disposition of criminal evidence because the recovery of latent fingerprints from such evidence is difficult. Currently, small particle reagent is a method often used to visualize latent fingerprints containing carcinogenic and hazardous compounds. This study proposes an eco-friendly, safranin-tinted Candida rugosa lipase (triacylglycerol ester hydrolysis EC 3.1.1.3) with functionalized carbon nanotubes (CRL-MWCNTS/GA/SAF) as an alternative reagent to the small particle reagent. The CRL-MWCNTS/GA/SAF reagent was compared with the small particle reagent to visualize groomed, full fingerprints deposited on stainless steel knives which were immersed in a natural outdoor pond for 30 days. The quality of visualized fingerprints using the new reagent was similar (modified-Centre for Applied Science and Technology grade: 4; p > 0.05) to small particle reagent, even after 15 days of immersion. Despite the slight decrease in quality of visualized fingerprints using the CRL-MWCNTS/GA/SAF on the last three immersion periods, the fingerprints remained forensically identifiable (modified-Centre for Applied Science and Technology grade: 3). The possible chemical interactions that enabled successful visualization is also discussed. Thus, this novel reagent may provide a relatively greener alternative for the visualization of latent fingerprints on immersed non-porous objects.
ERIC Educational Resources Information Center
Kotch, Jonathan; Guthrie, Christine
Smart Start (North Carolina) playground improvement grants were awarded to cover playground safety assessment, planning and evaluation, quality enhancements (such as fencing, surfacing, and new equipment), and safety programs. Visual inspections were conducted of the safety of child care home and center playgrounds after Smart Start-sponsored…
ERIC Educational Resources Information Center
Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.
2008-01-01
The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and…
Code of Federal Regulations, 2010 CFR
2010-07-01
... FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product... no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background and visual inspections, as determined by the methods specified in § 61.245(c). (3) The provisions of...
Accident analysis and control options in support of the sludge water system safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEY, B.E.
A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less
Comparative hazard evaluation of near-infrared diode lasers.
Marshall, W J
1994-05-01
Hazard evaluation methods from various laser protection standards differ when applied to extended-source, near-infrared lasers. By way of example, various hazard analyses are applied to laser training systems, which incorporate diode lasers, specifically those that assist in training military or law enforcement personnel in the proper use of weapons by simulating actual firing by the substitution of a beam of near-infrared energy for bullets. A correct hazard evaluation of these lasers is necessary since simulators are designed to be directed toward personnel during normal use. The differences among laser standards are most apparent when determining the hazard class of a laser. Hazard classification is based on a comparison of the potential exposures with the maximum permissible exposures in the 1986 and 1993 versions of the American National Standard for the Safe Use of Lasers, Z136.1, and the accessible emission limits of the federal laser product performance standard. Necessary safety design features of a particular system depend on the hazard class. The ANSI Z136.1-1993 standard provides a simpler and more accurate hazard assessment of low-power, near-infrared, diode laser systems than the 1986 ANSI standard. Although a specific system is evaluated, the techniques described can be readily applied to other near-infrared lasers or laser training systems.
Sleepiness induced by sleep-debt enhanced amygdala activity for subliminal signals of fear.
Motomura, Yuki; Kitamura, Shingo; Oba, Kentaro; Terasawa, Yuri; Enomoto, Minori; Katayose, Yasuko; Hida, Akiko; Moriguchi, Yoshiya; Higuchi, Shigekazu; Mishima, Kazuo
2014-08-19
Emotional information is frequently processed below the level of consciousness, where subcortical regions of the brain are thought to play an important role. In the absence of conscious visual experience, patients with visual cortex damage discriminate the valence of emotional expression. Even in healthy individuals, a subliminal mechanism can be utilized to compensate for a functional decline in visual cognition of various causes such as strong sleepiness. In this study, sleep deprivation was simulated in healthy individuals to investigate functional alterations in the subliminal processing of emotional information caused by reduced conscious visual cognition and attention due to an increase in subjective sleepiness. Fourteen healthy adult men participated in a within-subject crossover study consisting of a 5-day session of sleep debt (SD, 4-h sleep) and a 5-day session of sleep control (SC, 8-h sleep). On the last day of each session, participants performed an emotional face-viewing task that included backward masking of nonconscious presentations during magnetic resonance scanning. Finally, data from eleven participants who were unaware of nonconscious face presentations were analyzed. In fear contrasts, subjective sleepiness was significantly positively correlated with activity in the amygdala, ventromedial prefrontal cortex, hippocampus, and insular cortex, and was significantly negatively correlated with the secondary and tertiary visual areas and the fusiform face area. In fear-neutral contrasts, subjective sleepiness was significantly positively correlated with activity of the bilateral amygdala. Further, changes in subjective sleepiness (the difference between the SC and SD sessions) were correlated with both changes in amygdala activity and functional connectivity between the amygdala and superior colliculus in response to subliminal fearful faces. Sleepiness induced functional decline in the brain areas involved in conscious visual cognition of facial expressions, but also enhanced subliminal emotional processing via superior colliculus as represented by activity in the amygdala. These findings suggest that an evolutionally old and auxiliary subliminal hazard perception system is activated as a compensatory mechanism when conscious visual cognition is impaired. In addition, enhancement of subliminal emotional processing might cause involuntary emotional instability during sleep debt through changes in emotional response to or emotional evaluation of external stimuli.
National information network and database system of hazardous waste management in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Hongchang
1996-12-31
Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less
Schreiber, Stefanie; Landau, Susan M; Fero, Allison; Schreiber, Frank; Jagust, William J
2015-10-01
The applicability of β-amyloid peptide (Aβ) positron emission tomography (PET) as a biomarker in clinical settings to aid in selection of individuals at preclinical and prodromal Alzheimer disease (AD) will depend on the practicality of PET image analysis. In this context, visual-based Aβ PET assessment seems to be the most feasible approach. To determine the agreement between visual and quantitative Aβ PET analysis and to assess the ability of both techniques to predict conversion from mild cognitive impairment (MCI) to AD. A longitudinal study was conducted among the Alzheimer's Disease Neuroimaging Initiative (ADNI) sites in the United States and Canada during a 1.6-year mean follow-up period. The study was performed from September 21, 2010, to August 11, 2014; data analysis was conducted from September 21, 2014, to May 26, 2015. Participants included 401 individuals with MCI receiving care at a specialty clinic (219 [54.6%] men; mean [SD] age, 71.6 [7.5] years; 16.2 [2.7] years of education). All participants were studied with florbetapir F 18 [18F] PET. The standardized uptake value ratio (SUVR) positivity threshold was 1.11, and one reader rated all images, with a subset of 125 scans rated by a second reader. Sensitivity and specificity of positive and negative [18F] florbetapir PET categorization, which was estimated with cerebrospinal fluid Aβ1-42 as the reference standard. Risk for conversion to AD was assessed using Cox proportional hazards regression models. The frequency of Aβ positivity was 48.9% (196 patients; visual analysis), 55.1% (221 patients; SUVR), and 64.8% (166 patients; cerebrospinal fluid), yielding substantial agreement between visual and SUVR data (κ = 0.74) and between all methods (Fleiss κ = 0.71). For approximately 10% of the 401 participants in whom visual and SUVR data disagreed, interrater reliability was moderate (κ = 0.44), but it was very high if visual and quantitative results agreed (κ = 0.92). Visual analysis had a lower sensitivity (79% vs 85%) but higher specificity (96% vs 90%), respectively, compared with SUVR. The conversion rate was 15.2% within a mean of 1.6 years, and a positive [18F] florbetapir baseline scan was associated with a 6.91-fold (SUVR) or 11.38-fold (visual) greater hazard for AD conversion, which changed only modestly after covariate adjustment for apolipoprotein ε4, concurrent fludeoxyglucose F 18 PET scan, and baseline cognitive status. Visual and SUVR Aβ PET analysis may be equivalently used to determine Aβ status for individuals with MCI participating in clinical trials, and both approaches add significant value for clinical course prognostication.
How Clean Are Hotel Rooms? Part I: Visual Observations vs. Microbiological Contamination.
Almanza, Barbara A; Kirsch, Katie; Kline, Sheryl Fried; Sirsat, Sujata; Stroia, Olivia; Choi, Jin Kyung; Neal, Jay
2015-01-01
Current evidence of hotel room cleanliness is based on observation rather than empirically based microbial assessment. The purpose of the study described here was to determine if observation provides an accurate indicator of cleanliness. Results demonstrated that visual assessment did not accurately predict microbial contamination. Although testing standards have not yet been established for hotel rooms and will be evaluated in Part II of the authors' study, potential microbial hazards included the sponge and mop (housekeeping cart), toilet, bathroom floor, bathroom sink, and light switch. Hotel managers should increase cleaning in key areas to reduce guest exposure to harmful bacteria.
40 CFR 260.42 - Notification requirement for hazardous secondary materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...
40 CFR 260.42 - Notification requirement for hazardous secondary materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...
40 CFR 260.42 - Notification requirement for hazardous secondary materials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...
40 CFR 260.42 - Notification requirement for hazardous secondary materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; Zhang, Xin; Xie, Jun
2015-03-10
This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method;more » Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.« less
Interactive exploration of coastal restoration modeling in virtual environments
NASA Astrophysics Data System (ADS)
Gerndt, Andreas; Miller, Robert; Su, Simon; Meselhe, Ehab; Cruz-Neira, Carolina
2009-02-01
Over the last decades, Louisiana has lost a substantial part of its coastal region to the Gulf of Mexico. The goal of the project depicted in this paper is to investigate the complex ecological and geophysical system not only to find solutions to reverse this development but also to protect the southern landscape of Louisiana for disastrous impacts of natural hazards like hurricanes. This paper sets a focus on the interactive data handling of the Chenier Plain which is only one scenario of the overall project. The challenge addressed is the interactive exploration of large-scale time-depending 2D simulation results and of terrain data with a high resolution that is available for this region. Besides data preparation, efficient visualization approaches optimized for the usage in virtual environments are presented. These are embedded in a complex framework for scientific visualization of time-dependent large-scale datasets. To provide a straightforward interface for rapid application development, a software layer called VRFlowVis has been developed. Several architectural aspects to encapsulate complex virtual reality aspects like multi-pipe vs. cluster-based rendering are discussed. Moreover, the distributed post-processing architecture is investigated to prove its efficiency for the geophysical domain. Runtime measurements conclude this paper.
System safety management lessons learned from the US Army acquisition process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piatt, J.A.
1989-05-01
The Assistant Secretary of the Army for Research, Development and Acquisition directed the Army Safety Center to provide an audit of the causes of accidents and safety of use restrictions on recently fielded systems by tracking residual hazards back through the acquisition process. The objective was to develop lessons learned'' that could be applied to the acquisition process to minimize mishaps in fielded systems. System safety management lessons learned are defined as Army practices or policies, derived from past successes and failures, that are expected to be effective in eliminating or reducing specific systemic causes of residual hazards. They aremore » broadly applicable and supportive of the Army structure and acquisition objectives. Pacific Northwest Laboratory (PNL) was given the task of conducting an independent, objective appraisal of the Army's system safety program in the context of the Army materiel acquisition process by focusing on four fielded systems which are products of that process. These systems included the Apache helicopter, the Bradley Fighting Vehicle (BFV), the Tube Launched, Optically Tracked, Wire Guided (TOW) Missile and the High Mobility Multipurpose Wheeled Vehicle (HMMWV). The objective of this study was to develop system safety management lessons learned associated with the acquisition process. The first step was to identify residual hazards associated with the selected systems. Since it was impossible to track all residual hazards through the acquisition process, certain well-known, high visibility hazards were selected for detailed tracking. These residual hazards illustrate a variety of systemic problems. Systemic or process causes were identified for each residual hazard and analyzed to determine why they exist. System safety management lessons learned were developed to address related systemic causal factors. 29 refs., 5 figs.« less
Rockfall Hazard Process Assessment : Final Project Report
DOT National Transportation Integrated Search
2017-10-01
After a decade of using the Rockfall Hazard Rating System (RHRS), the Montana Department of Transportation (MDT) sought a reassessment of their rockfall hazard evaluation process. Their prior system was a slightly modified version of the RHRS and was...
Hazardous Waste Manifest System
EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.
Hazardous Materials Information System (HMIS) Data Quality Review
DOT National Transportation Integrated Search
1997-05-01
The Hazardous Materials Information System (HMIS) is used to manage data required for the use, transportation, storage and disposal of hazardous material by the US Government. In response to concerns expressed by some users, DORO was tasked to conduc...
48 CFR 235.070 - Indemnification against unusually hazardous risks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Indemnification against unusually hazardous risks. 235.070 Section 235.070 Federal Acquisition Regulations System DEFENSE... DEVELOPMENT CONTRACTING 235.070 Indemnification against unusually hazardous risks. ...
Comparing headphone and speaker effects on simulated driving.
Nelson, T M; Nilsson, T H
1990-12-01
Twelve persons drove for three hours in an automobile simulator while listening to music at sound level 63dB over stereo headphones during one session and from a dashboard speaker during another session. They were required to steer a mountain highway, maintain a certain indicated speed, shift gears, and respond to occasional hazards. Steering and speed control were dependent on visual cues. The need to shift and the hazards were indicated by sound and vibration effects. With the headphones, the driver's average reaction time for the most complex task presented--shifting gears--was about one-third second longer than with the speaker. The use of headphones did not delay the development of subjective fatigue.
NASA Astrophysics Data System (ADS)
Geertsema, Marten
2016-04-01
The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.
Analysis of On-board Hazard Detection and Avoidance for Safe Lunar Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Huertas, Andres; Werner, Robert A.; Montgomery, James F.
2008-01-01
Landing hazard detection and avoidance technology is being pursued within NASA to improve landing safety and increase access to sites of interest on the lunar surface. The performance of a hazard detection and avoidance system depends on properties of the terrain, sensor performance, algorithm design, vehicle characteristics and the overall all guidance navigation and control architecture. This paper analyzes the size of the region that must be imaged, sensor performance parameters and the impact of trajectory angle on hazard detection performance. The analysis shows that vehicle hazard tolerance is the driving parameter for hazard detection system design.
Chang, Y S; Chang, C C; Chen, Y H; Chen, W S; Chen, J H
2017-10-01
Objectives Patients with systemic lupus erythematosus are considered vulnerable to infective endocarditis and prophylactic antibiotics are recommended before an invasive dental procedure. However, the evidence is insufficient. This nationwide population-based study evaluated the risk and related factors of infective endocarditis in systemic lupus erythematosus. Methods We identified 12,102 systemic lupus erythematosus patients from the National Health Insurance research-oriented database, and compared the incidence rate of infective endocarditis with that among 48,408 non-systemic lupus erythematosus controls. A Cox multivariable proportional hazards model was employed to evaluate the risk of infective endocarditis in the systemic lupus erythematosus cohort. Results After a mean follow-up of more than six years, the systemic lupus erythematosus cohort had a significantly higher incidence rate of infective endocarditis (42.58 vs 4.32 per 100,000 person-years, incidence rate ratio = 9.86, p < 0.001) than that of the control cohort. By contrast, the older systemic lupus erythematosus cohort had lower risk (adjusted hazard ratio 11.64) than that of the younger-than-60-years systemic lupus erythematosus cohort (adjusted hazard ratio 15.82). Cox multivariate proportional hazards analysis revealed heart disease (hazard ratio = 5.71, p < 0.001), chronic kidney disease (hazard ratio = 2.98, p = 0.034), receiving a dental procedure within 30 days (hazard ratio = 36.80, p < 0.001), and intravenous steroid therapy within 30 days (hazard ratio = 39.59, p < 0.001) were independent risk factors for infective endocarditis in systemic lupus erythematosus patients. Conclusions A higher risk of infective endocarditis was observed in systemic lupus erythematosus patients. Risk factors for infective endocarditis in the systemic lupus erythematosus cohort included heart disease, chronic kidney disease, steroid pulse therapy within 30 days, and a recent invasive dental procedure within 30 days.
NASA Astrophysics Data System (ADS)
Muhammad, Ario; Goda, Katsuichiro
2018-03-01
This study investigates the impact of model complexity in source characterization and digital elevation model (DEM) resolution on the accuracy of tsunami hazard assessment and fatality estimation through a case study in Padang, Indonesia. Two types of earthquake source models, i.e. complex and uniform slip models, are adopted by considering three resolutions of DEMs, i.e. 150 m, 50 m, and 10 m. For each of the three grid resolutions, 300 complex source models are generated using new statistical prediction models of earthquake source parameters developed from extensive finite-fault models of past subduction earthquakes, whilst 100 uniform slip models are constructed with variable fault geometry without slip heterogeneity. The results highlight that significant changes to tsunami hazard and fatality estimates are observed with regard to earthquake source complexity and grid resolution. Coarse resolution (i.e. 150 m) leads to inaccurate tsunami hazard prediction and fatality estimation, whilst 50-m and 10-m resolutions produce similar results. However, velocity and momentum flux are sensitive to the grid resolution and hence, at least 10-m grid resolution needs to be implemented when considering flow-based parameters for tsunami hazard and risk assessments. In addition, the results indicate that the tsunami hazard parameters and fatality number are more sensitive to the complexity of earthquake source characterization than the grid resolution. Thus, the uniform models are not recommended for probabilistic tsunami hazard and risk assessments. Finally, the findings confirm that uncertainties of tsunami hazard level and fatality in terms of depth, velocity and momentum flux can be captured and visualized through the complex source modeling approach. From tsunami risk management perspectives, this indeed creates big data, which are useful for making effective and robust decisions.
A new modeling and inference approach for the Systolic Blood Pressure Intervention Trial outcomes.
Yang, Song; Ambrosius, Walter T; Fine, Lawrence J; Bress, Adam P; Cushman, William C; Raj, Dominic S; Rehman, Shakaib; Tamariz, Leonardo
2018-06-01
Background/aims In clinical trials with time-to-event outcomes, usually the significance tests and confidence intervals are based on a proportional hazards model. Thus, the temporal pattern of the treatment effect is not directly considered. This could be problematic if the proportional hazards assumption is violated, as such violation could impact both interim and final estimates of the treatment effect. Methods We describe the application of inference procedures developed recently in the literature for time-to-event outcomes when the treatment effect may or may not be time-dependent. The inference procedures are based on a new model which contains the proportional hazards model as a sub-model. The temporal pattern of the treatment effect can then be expressed and displayed. The average hazard ratio is used as the summary measure of the treatment effect. The test of the null hypothesis uses adaptive weights that often lead to improvement in power over the log-rank test. Results Without needing to assume proportional hazards, the new approach yields results consistent with previously published findings in the Systolic Blood Pressure Intervention Trial. It provides a visual display of the time course of the treatment effect. At four of the five scheduled interim looks, the new approach yields smaller p values than the log-rank test. The average hazard ratio and its confidence interval indicates a treatment effect nearly a year earlier than a restricted mean survival time-based approach. Conclusion When the hazards are proportional between the comparison groups, the new methods yield results very close to the traditional approaches. When the proportional hazards assumption is violated, the new methods continue to be applicable and can potentially be more sensitive to departure from the null hypothesis.
NASA Astrophysics Data System (ADS)
Perley, M. M.; Guo, J.
2016-12-01
India's National School Safety Program (NSSP) aims to assess all government schools in earthquake prone regions of the country. To supplement the Mizoram State Government's recent survey of 141 government schools, we screened an additional 16 private and 4 government schools for structural vulnerabilities due to earthquakes, as well as landslide hazards, in Mizoram's capital of Aizawl. We developed a geomorphologically derived landslide susceptibility matrix, which was cross-checked with Aizawl Municipal Corporation's landslide hazard map (provided by Lettis Consultants International), to determine the geologic hazards at each school. Our research indicates that only 7% of the 22 assessed school buildings are located within low landslide hazard zones; 64% of the school buildings, with approximately 9,500 students, are located within very high or high landslide hazard zones. Rapid Visual Screening (RVS) was used to determine the structural earthquake vulnerability of each school building. RVS is an initial vulnerability assessment procedure used to inventory and rank buildings that may be hazardous during an earthquake. Our study indicates that all of the 22 assessed school buildings have a damageability rating of Grade 3 or higher on the 5-grade EMS scale, suggesting a significant vulnerability and potential for damage in buildings, ranging from widespread cracking of columns and beam column joints to collapse. Additionally, 86% of the schools we visited had reinforced concrete buildings constructed before Aizawl's building regulations were passed in 2007, which can be assumed to lack appropriate seismic reinforcement. Using our findings, we will give recommendations to the Government of Mizoram to prevent unnecessary loss of life by minimizing each school's landslide risk and ensuring schools are earthquake-resistant.
Geological hazard monitoring system in Georgia
NASA Astrophysics Data System (ADS)
Gaprindashvili, George
2017-04-01
Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.
An integrated knowledge system for the Space Shuttle hazardous gas detection system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie; Cegielski, Eric; Overbey, Glenn
1993-01-01
A computer-based integrated Knowledge-Based System, the Intelligent Hypertext Manual (IHM), was developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at NASA Marshall Space Flight Center (MSFC). The IHM stores HGDS related knowledge and presents it in an interactive and intuitive manner. This manual is a combination of hypertext and an expert system which store experts' knowledge and experience in hazardous gas detection and analysis. The IHM's purpose is to provide HGDS personnel with the capabilities of: locating applicable documentation related to procedures, constraints, and previous fault histories; assisting in the training of personnel; enhancing the interpretation of real time data; and recognizing and identifying possible faults in the Space Shuttle sub-systems related to hazardous gas detection.
KML-Based Access and Visualization of High Resolution LiDAR Topography
NASA Astrophysics Data System (ADS)
Crosby, C. J.; Blair, J. L.; Nandigam, V.; Memon, A.; Baru, C.; Arrowsmith, J. R.
2008-12-01
Over the past decade, there has been dramatic growth in the acquisition of LiDAR (Light Detection And Ranging) high-resolution topographic data for earth science studies. Capable of providing digital elevation models (DEMs) more than an order of magnitude higher resolution than those currently available, LiDAR data allow earth scientists to study the processes that contribute to landscape evolution at resolutions not previously possible yet essential for their appropriate representation. These datasets also have significant implications for earth science education and outreach because they provide an accurate representation of landforms and geologic hazards. Unfortunately, the massive volume of data produced by LiDAR mapping technology can be a barrier to their use. To make these data available to a larger user community, we have been exploring the use of Keyhole Markup Language (KML) and Google Earth to provide access to LiDAR data products and visualizations. LiDAR digital elevation models are typically delivered in a tiled format that lends itself well to a KML-based distribution system. For LiDAR datasets hosted in the GEON OpenTopography Portal (www.opentopography.org) we have developed KML files that show the extent of available LiDAR DEMs and provide direct access to the data products. Users interact with these KML files to explore the extent of the available data and are able to select DEMs that correspond to their area of interest. Selection of a tile loads a download that the user can then save locally for analysis in their software of choice. The GEON topography system also has tools available that allow users to generate custom DEMs from LiDAR point cloud data. This system is powerful because it enables users to access massive volumes of raw LiDAR data and to produce DEM products that are optimized to their science applications. We have developed a web service that converts the custom DEM models produced by the system to a hillshade that is delivered to the user as a KML groundoverlay. The KML product enables users to quickly and easily visualize the DEMs in Google Earth. By combining internet-based LiDAR data processing with KML visualization products, users are able to execute computationally intensive data sub-setting, processing and visualization without having local access to computing resources, GIS software, or data processing expertise. Finally, GEON has partnered with the US Geological Survey to generate region-dependant network linked KML visualizations for large volumes of LiDAR derived hillshades of the Northern San Andreas fault system. These data, acquired by the NSF-funded GeoEarthScope project, offer an unprecedented look at active faults in the northern portion of the San Andreas system. Through the region-dependant network linked KML, users can seamlessly access 1 meter hillshades (both 315 and 45 degree sun angles) for the full 1400 square kilometer dataset, without downloading huge volumes of data. This type of data access has great utility for users ranging from earthquake scientists to K-12 educators who wish to introduce cutting edge real world data into their earth science lessons.
Chemical Safety Alert: Fire Hazard from Carbon Adsorption Deodorizing Systems
Activated carbon systems used to adsorb vapors for odor control may pose a fire hazard when used for certain types of substances, such as crude sulfate turpentine. Facilities should take precautions and proper procedures to avoid or mitigate these hazards.
48 CFR 250.104-3 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Special procedures for unusually hazardous or nuclear risks. 250.104-3 Section 250.104-3 Federal Acquisition Regulations System... unusually hazardous or nuclear risks. ...
48 CFR 250.104-3 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Special procedures for unusually hazardous or nuclear risks. 250.104-3 Section 250.104-3 Federal Acquisition Regulations System... unusually hazardous or nuclear risks. ...
48 CFR 250.104-3 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Special procedures for unusually hazardous or nuclear risks. 250.104-3 Section 250.104-3 Federal Acquisition Regulations System... unusually hazardous or nuclear risks. ...
48 CFR 250.104-3 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Special procedures for unusually hazardous or nuclear risks. 250.104-3 Section 250.104-3 Federal Acquisition Regulations System... unusually hazardous or nuclear risks. ...
48 CFR 250.104-3 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Special procedures for unusually hazardous or nuclear risks. 250.104-3 Section 250.104-3 Federal Acquisition Regulations System... unusually hazardous or nuclear risks. ...
NASA Astrophysics Data System (ADS)
Moreira, Francisco; Silva, Nuno
2016-08-01
Safety systems require accident avoidance. This is covered by application standards, processes, techniques and tools that support the identification, analysis, elimination or reduction to an acceptable level of system risks and hazards. Ideally, a safety system should be free of hazards. However, both industry and academia have been struggling to ensure appropriate risk and hazard analysis, especially in what concerns completeness of the hazards, formalization, and timely analysis in order to influence the specifications and the implementation. Such analysis is also important when considering a change to an existing system. The Common Safety Method for Risk Evaluation and Assessment (CSM- RA) is a mandatory procedure whenever any significant change is proposed to the railway system in a European Member State. This paper provides insights on the fundamentals of CSM-RA based and complemented with Hazard Analysis. When and how to apply them, and the relation and similarities of these processes with industry standards and the system life cycles is highlighted. Finally, the paper shows how CSM-RA can be the basis of a change management process, guiding the identification and management of the hazards helping ensuring the similar safety level as the initial system. This paper will show how the CSM-RA principles can be used in other domains particularly for space system evolution.
Electromagnetic Radiation Hazards Testing for Non-Ionizing Radio Frequency Transmitting Equipment
2012-12-19
Hazards of Electromagnetic Radiation to Ordnance (HERO), Personnel (HERP), and Fuel (HERF) protection guidance for intentional non-ionizing Radio...HERO Hazards of Electromagnetic Radiation to Ordnance HERP Hazards of Electromagnetic Radiation to Personnel IEEE Institute of Electrical and...Systems Command Technical Manual, Electromagnetic Radiation Hazards ( Hazards to Ordnance ), 1 July 2008.
Web Application for Coastal Area Planning through Analysis of Landslide and Soil Consumption
NASA Astrophysics Data System (ADS)
Panizzoni, Giulio; Debiasi, Alberto; Eccher, Matteo; De Amicis, Raffaele
2016-04-01
Global warming and rapid climatic changes are producing dramatic effects on coastal area of Mediterranean countries. Italian coastal areas are one of the most urbanized zones of the south western Europe and the extensive use of soil is causing a consistent impact on the hydrogeological context. Moreover, soil consumption combined with extreme meteorological events, facilitates the occurrence of hazardous landslide events. Environmental policy makers and data managers in territorial planning need to face such emergency situation with appropriate tools. We present an application service with the aim of advising user through environmental analysis of Landslide and Soil Consumption impact. This service wants also to improve the sharing of environmental harmonized datasets/metadata across different organizations and the creation of a collaborative environment where the stakeholders and environmental experts can share their data and work cooperatively. We developed a set of processing services providing functionalities to assess impact of landslide on territory and impact of land take and soil sealing. Among others, the service is able to evaluate environmental impacts of landslide events on Cultural Heritage sites. We have also designed a 3D WebGL client customized to execute the processing services and visualize their outputs. It provides high usability in terms of navigation and data visualization. In this way the service provides not only a Spatial Data Infrastructure to access and visualize data but a complete Decision Support Systems for a more effective environmental planning of coastal area.
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
NASA Astrophysics Data System (ADS)
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
Hassanshahi, Amin; Shafeie, Seyed Ali; Fatemi, Iman; Hassanshahi, Elham; Allahtavakoli, Mohammad; Shabani, Mohammad; Roohbakhsh, Ali; Shamsizadeh, Ali
2017-06-01
Wireless internet (Wi-Fi) electromagnetic waves (2.45 GHz) have widespread usage almost everywhere, especially in our homes. Considering the recent reports about some hazardous effects of Wi-Fi signals on the nervous system, this study aimed to investigate the effect of 2.4 GHz Wi-Fi radiation on multisensory integration in rats. This experimental study was done on 80 male Wistar rats that were allocated into exposure and sham groups. Wi-Fi exposure to 2.4 GHz microwaves [in Service Set Identifier mode (23.6 dBm and 3% for power and duty cycle, respectively)] was done for 30 days (12 h/day). Cross-modal visual-tactile object recognition (CMOR) task was performed by four variations of spontaneous object recognition (SOR) test including standard SOR, tactile SOR, visual SOR, and CMOR tests. A discrimination ratio was calculated to assess the preference of animal to the novel object. The expression levels of M1 and GAT1 mRNA in the hippocampus were assessed by quantitative real-time RT-PCR. Results demonstrated that rats in Wi-Fi exposure groups could not discriminate significantly between the novel and familiar objects in any of the standard SOR, tactile SOR, visual SOR, and CMOR tests. The expression of M1 receptors increased following Wi-Fi exposure. In conclusion, results of this study showed that chronic exposure to Wi-Fi electromagnetic waves might impair both unimodal and cross-modal encoding of information.
NASA Astrophysics Data System (ADS)
Nave, Rosella; Isaia, Roberto; Sandri, Laura; Cristiani, Chiara
2016-04-01
In the communication chain between scientists and decision makers (end users), scientific outputs, as maps, are a fundamental source of information on hazards zoning and the related at risk areas definition. Anyway the relationship between volcanic phenomena, their probability and potential impact can be complex and the geospatial information not easily decoded or understood by not experts even if decision makers. Focusing on volcanic hazard the goal of MED SUV WP6 Task 3 is to improve the communication efficacy of scientific outputs, to contribute in filling the gap between scientists and decision-makers. Campi Flegrei caldera, in Neapolitan area has been chosen as the pilot research area where to apply an evaluation/validation procedure to provide a robust evaluation of the volcanic maps and its validation resulting from end users response. The selected sample involved are decision makers and officials from Campanian Region Civil Protection and municipalities included in Campi Flegrei RED ZONE, the area exposed to risk from to pyroclastic currents hazard. Semi-structured interviews, with a sample of decision makers and civil protection officials have been conducted to acquire both quantitative and qualitative data. The tested maps have been: the official Campi Flegrei Caldera RED ZONE map, three maps produced by overlapping the Red Zone limit on Orthophoto, DTM and Contour map, as well as other maps included a probabilistic one, showing volcanological data used to border the Red Zone. The outcomes' analysis have assessed level of respondents' understanding of content as displayed, and their needs in representing the complex information embedded in volcanic hazard. The final output has been the development of a leaflet as "guidelines" that can support decision makers and officials in understanding volcanic hazard and risk maps, and also in using them as a communication tool in information program for the population at risk. The same evaluation /validation process has been applied also on the scientific output of MED-SUV WP6, as a tool for the short-term probabilistic volcanic hazard assessment. For the Campi Flegrei volcanic system, the expected tool has been implemented to compute hazard curves, hazard maps and probability maps for tephra fallout on a target grid covering the Campania region. This allows the end user to visualize the hazard from tephra fallout and its uncertainty. The response of end-users to such products will help to determine to what extent end-users understand them, find them useful, and match their requirements. In order to involve also Etna area in WP6 TASK 3 activities, a questionnaire developed in the VUELCO project (Volcanic Unrest in Europe and Latin America) has been proposed to Sicily Civil Protection officials having decision-making responsibility in case of volcanic unrest at Etna and Stromboli, to survey their opinions and requirements also in case of volcanic unrest
Predictive Sea State Estimation for Automated Ride Control and Handling - PSSEARCH
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.; Howard, Andrew B.; Aghazarian, Hrand; Rankin, Arturo L.
2012-01-01
PSSEARCH provides predictive sea state estimation, coupled with closed-loop feedback control for automated ride control. It enables a manned or unmanned watercraft to determine the 3D map and sea state conditions in its vicinity in real time. Adaptive path-planning/ replanning software and a control surface management system will then use this information to choose the best settings and heading relative to the seas for the watercraft. PSSEARCH looks ahead and anticipates potential impact of waves on the boat and is used in a tight control loop to adjust trim tabs, course, and throttle settings. The software uses sensory inputs including IMU (Inertial Measurement Unit), stereo, radar, etc. to determine the sea state and wave conditions (wave height, frequency, wave direction) in the vicinity of a rapidly moving boat. This information can then be used to plot a safe path through the oncoming waves. The main issues in determining a safe path for sea surface navigation are: (1) deriving a 3D map of the surrounding environment, (2) extracting hazards and sea state surface state from the imaging sensors/map, and (3) planning a path and control surface settings that avoid the hazards, accomplish the mission navigation goals, and mitigate crew injuries from excessive heave, pitch, and roll accelerations while taking into account the dynamics of the sea surface state. The first part is solved using a wide baseline stereo system, where 3D structure is determined from two calibrated pairs of visual imagers. Once the 3D map is derived, anything above the sea surface is classified as a potential hazard and a surface analysis gives a static snapshot of the waves. Dynamics of the wave features are obtained from a frequency analysis of motion vectors derived from the orientation of the waves during a sequence of inputs. Fusion of the dynamic wave patterns with the 3D maps and the IMU outputs is used for efficient safe path planning.
Using Hazard Functions to Assess Changes in Processing Capacity in an Attentional Cuing Paradigm
ERIC Educational Resources Information Center
Wenger, Michael J.; Gibson, Bradley S.
2004-01-01
Processing capacity-defined as the relative ability to perform mental work in a unit of time-is a critical construct in cognitive psychology and is central to theories of visual attention. The unambiguous use of the construct, experimentally and theoretically, has been hindered by both conceptual confusions and the use of measures that are at best…
ERIC Educational Resources Information Center
Frost, Joe L.; And Others
Three brochures for parents are presented. The first lists potential playground hazards and suggestions for improving playgrounds. The second describes benefits of the multiage classroom, comparing such a classroom with a traditional, single-grade class. The third brochure describes verbal, logical, visual, musical, and physical learning styles…
High Peak Power Microwaves: A Health Hazard
1993-12-01
activity and/or neural transmission"I4 1. For example, we I have reported electromagnetically induced effects, such as corneal endothelial lesions...increased permeability of the iris vasculature, altered retinal electrophysiologic activity (visual function), and histopathological changesr. The...level"]. The electromagnetic environment can also alter the drug’s action, as has been demonstrated with the anticholinesterase drug, physostigmineM
Window flaw detection by backscatter lighting
NASA Technical Reports Server (NTRS)
Crockett, L. K.; Minton, F. R.
1978-01-01
Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.
NIOSH received a request for a health hazard evaluation at a water-damaged school in New Orleans, Louisiana. Employees submitted the request because of concerns about exposure to mold in their school building. We administered a work history and health symptom questionnaire. We al...
Near field ice detection using infrared based optical imaging technology
NASA Astrophysics Data System (ADS)
Abdel-Moati, Hazem; Morris, Jonathan; Zeng, Yousheng; Corie, Martin Wesley; Yanni, Victor Garas
2018-02-01
If not detected and characterized, icebergs can potentially pose a hazard to oil and gas exploration, development and production operations in arctic environments as well as commercial shipping channels. In general, very large bergs are tracked and predicted using models or satellite imagery. Small and medium bergs are detectable using conventional marine radar. As icebergs decay they shed bergy bits and growlers, which are much smaller and more difficult to detect. Their low profile above the water surface, in addition to occasional relatively high seas, makes them invisible to conventional marine radar. Visual inspection is the most common method used to detect bergy bits and growlers, but the effectiveness of visual inspections is reduced by operator fatigue and low light conditions. The potential hazard from bergy bits and growlers is further increased by short detection range (<1 km). As such, there is a need for robust and autonomous near-field detection of such smaller icebergs. This paper presents a review of iceberg detection technology and explores applications for infrared imagers in the field. Preliminary experiments are performed and recommendations are made for future work, including a proposed imager design which would be suited for near field ice detection.
Space vehicle propulsion systems: Environmental space hazards
NASA Technical Reports Server (NTRS)
Disimile, P. J.; Bahr, G. K.
1990-01-01
The hazards that exist in geolunar space which may degrade, disrupt, or terminate the performance of space-based LOX/LH2 rocket engines are evaluated. Accordingly, a summary of the open literature pertaining to the geolunar space hazards is provided. Approximately 350 citations and about 200 documents and abstracts were reviewed; the documents selected give current and quantitative detail. The methodology was to categorize the various space hazards in relation to their importance in specified regions of geolunar space. Additionally, the effect of the various space hazards in relation to spacecraft and their systems were investigated. It was found that further investigation of the literature would be required to assess the effects of these hazards on propulsion systems per se; in particular, possible degrading effects on exterior nozzle structure, directional gimbals, and internal combustion chamber integrity and geometry.
Mock Certification Basis for an Unmanned Rotorcraft for Precision Agricultural Spraying
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Neogi, Natasha A.; Verstynen, Harry A.; Buelow, Barry; McCormick, G. Frank
2015-01-01
This technical report presents the results of a case study using a hazard-based approach to develop preliminary design and performance criteria for an unmanned agricultural rotorcraft requiring airworthiness certification. This case study is one of the first in the public domain to examine design and performance criteria for an unmanned aircraft system (UAS) in tandem with its concept of operations. The case study results are intended to support development of airworthiness standards that could form a minimum safety baseline for midsize unmanned rotorcraft performing precision agricultural spraying operations under beyond visual line-of-sight conditions in a rural environment. This study investigates the applicability of current methods, processes, and standards for assuring airworthiness of conventionally piloted (manned) aircraft to assuring the airworthiness of UAS. The study started with the development of a detailed concept of operations for precision agricultural spraying with an unmanned rotorcraft (pp. 5-18). The concept of operations in conjunction with a specimen unmanned rotorcraft were used to develop an operational context and a list of relevant hazards (p. 22). Minimum design and performance requirements necessary to mitigate the hazards provide the foundation of a proposed (or mock) type certification basis. A type certification basis specifies the applicable standards an applicant must show compliance with to receive regulatory approval. A detailed analysis of the current airworthiness regulations for normal-category rotorcraft (14 Code of Federal Regulations, Part 27) was performed. Each Part 27 regulation was evaluated to determine whether it mitigated one of the relevant hazards for the specimen UAS. Those regulations that did were included in the initial core of the type certification basis (pp. 26-31) as written or with some simple modifications. Those regulations that did not mitigate a recognized hazard were excluded from the certification basis. The remaining regulations were applicable in intent, but the text could not be easily tailored. Those regulations were addressed in separate issue papers. Exploiting established regulations avoids the difficult task of generating and interpreting novel requirements, through the use of acceptable, standardized language. The rationale for the disposition of the regulations was assessed and captured (pp. 58-115). The core basis was then augmented by generating additional requirements (pp. 38-47) to mitigate hazards for an unmanned sprayer that are not covered in Part 27.
Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management
NASA Technical Reports Server (NTRS)
2005-01-01
This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).
The Association of Visual Impairment With Clinical Outcomes in Hemodialysis Patients.
Hong, Yu Ah; Kim, Suk Young; Kim, Su-Hyun; Kim, Young Ok; Jin, Dong Chan; Song, Ho Chul; Choi, Euy Jin; Kim, Yong-Lim; Kim, Yon-Su; Kang, Shin-Wook; Kim, Nam-Ho; Yang, Chul Woo; Kim, Yong Kyun
2016-05-01
Visual impairment limits people's ability to perform daily tasks and affects their quality of life. We evaluated the impact of visual impairment on clinical outcomes in hemodialysis (HD) patients.HD patients were selected from the Clinical Research Center registry a prospective cohort study on dialysis patients in Korea. Visual impairment was defined as difficulty in daily life due to decreased visual acuity or blindness. The primary outcome was all-cause mortality and the secondary outcomes were cardiovascular and infection-related hospitalization.A total of 3250 patients were included. Seven hundred thirty (22.5%) of the enrolled patients had visual impairment. The median follow-up period was 30 months. The Kaplan-Meier curve and log-rank test showed that all-cause mortality rates (P < 0.001) as well as cardiovascular and infection-related hospitalization rates (P < 0.001 and P < 0.001) were significantly higher in patients with visual impairment than in patients without visual impairment. In the multivariable analysis, visual impairment had significant predictive power for all-cause mortality (Hazard ratio [HR], 1.77, 95% confidence interval [CI], 1.21-2.61, P = 0.004) and cardiovascular hospitalization (HR 1.45 [1.00-1.90], P = 0.008) after adjusting for confounding variables. Of these 3250 patients, 634 patients from each group were matched by propensity scores. In the propensity score matched analysis, patients with visual impairment had independently significant associations with increased all-cause mortality (HR 1.69 [1.12-2.54], P = 0.01) and cardiovascular hospitalization (HR 1.48 [1.08-2.02], P = 0.01) compared with patients without visual impairment after adjustment for confounding variables.Our data demonstrated that visual impairment was an independent risk factor for clinical adverse outcomes in HD patients.
An Introduction to Hazardous Material Management.
ERIC Educational Resources Information Center
Reinhardt, Peter A.; And Others
1987-01-01
Colleges must have a system to safely control the ordering, delivery, transport, storage, and use of hazardous material. Information on hazardous material management is excerpted from "Managing Hazardous Waste at Educational Institutions. (MLW)
40 CFR 264.190 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264... use tank systems for storing or treating hazardous waste except as otherwise provided in paragraphs (a... treat hazardous waste which contains no free liquids and are situated inside a building with an...
78 FR 6402 - Pipeline Safety: Accident and Incident Notification Time Limit
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No.... SUMMARY: Owners and operators of gas and hazardous liquid pipeline systems and liquefied natural gas (LNG... operators of gas and hazardous liquids pipeline systems and LNG facilities that, ``at the earliest...
Development of a Probabilistic Tsunami Hazard Analysis in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka
2006-07-01
It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present anmore » example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)« less
SCEC-VDO: A New 3-Dimensional Visualization and Movie Making Software for Earth Science Data
NASA Astrophysics Data System (ADS)
Milner, K. R.; Sanskriti, F.; Yu, J.; Callaghan, S.; Maechling, P. J.; Jordan, T. H.
2016-12-01
Researchers and undergraduate interns at the Southern California Earthquake Center (SCEC) have created a new 3-dimensional (3D) visualization software tool called SCEC Virtual Display of Objects (SCEC-VDO). SCEC-VDO is written in Java and uses the Visualization Toolkit (VTK) backend to render 3D content. SCEC-VDO offers advantages over existing 3D visualization software for viewing georeferenced data beneath the Earth's surface. Many popular visualization packages, such as Google Earth, restrict the user to views of the Earth from above, obstructing views of geological features such as faults and earthquake hypocenters at depth. SCEC-VDO allows the user to view data both above and below the Earth's surface at any angle. It includes tools for viewing global earthquakes from the U.S. Geological Survey, faults from the SCEC Community Fault Model, and results from the latest SCEC models of earthquake hazards in California including UCERF3 and RSQSim. Its object-oriented plugin architecture allows for the easy integration of new regional and global datasets, regardless of the science domain. SCEC-VDO also features rich animation capabilities, allowing users to build a timeline with keyframes of camera position and displayed data. The software is built with the concept of statefulness, allowing for reproducibility and collaboration using an xml file. A prior version of SCEC-VDO, which began development in 2005 under the SCEC Undergraduate Studies in Earthquake Information Technology internship, used the now unsupported Java3D library. Replacing Java3D with the widely supported and actively developed VTK libraries not only ensures that SCEC-VDO can continue to function for years to come, but allows for the export of 3D scenes to web viewers and popular software such as Paraview. SCEC-VDO runs on all recent 64-bit Windows, Mac OS X, and Linux systems with Java 8 or later. More information, including downloads, tutorials, and example movies created fully within SCEC-VDO is available here: http://scecvdo.usc.edu
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
..., levee system, vessels and tows from destruction, loss or injury due to hazards associated with rising... the general public, levee system, vessels and tows from the hazards associated with rising flood water... system, vessels and tows from destruction, loss or injury due to the hazards associated with rising flood...
Recovery of postural equilibrium control following spaceflight
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.
1992-01-01
Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.
Resilience to Interacting multi-natural hazards
NASA Astrophysics Data System (ADS)
Zhuo, Lu; Han, Dawei
2016-04-01
Conventional analyses of hazard assessment tend to focus on individual hazards in isolation. However, many parts of the world are usually affected by multiple natural hazards with the potential for interacting relationships. The understanding of such interactions, their impacts and the related uncertainties, are an important and topical area of research. Interacting multi-hazards may appear in different forms, including 1) CASCADING HAZARDS (a primary hazard triggering one or more secondary hazards such as an earthquake triggering landslides which may block river channels with dammed lakes and ensued floods), 2) CONCURRING HAZARDS (two or more primary hazards coinciding to trigger or exacerbate secondary hazards such as an earthquake and a rainfall event simultaneously creating landslides), and 3) ALTERING HAZARDS (a primary hazard increasing the probability of a secondary hazard occurring such as major earthquakes disturbing soil/rock materials by violent ground shaking which alter the regional patterns of landslides and debris flows in the subsequent years to come). All three types of interacting multi-hazards may occur in natural hazard prone regions, so it is important that research on hazard resilience should cover all of them. In the past decades, great progresses have been made in tackling disaster risk around the world. However, there are still many challenging issues to be solved, and the disasters over recent years have clearly demonstrated the inadequate resilience in our highly interconnected and interdependent systems. We have identified the following weaknesses and knowledge gaps in the current disaster risk management: 1) although our understanding in individual hazards has been greatly improved, there is a lack of sound knowledge about mechanisms and processes of interacting multi-hazards. Therefore, the resultant multi-hazard risk is often significantly underestimated with severe consequences. It is also poorly understood about the spatial and temporal changes in hazards and vulnerability during successive hazards; 2) hazard monitoring, forecasting and early warning systems have not fully utilised the domain knowledge of physical processes and the statistical information of the observations; 3) uncertainties have not been well recognised in the current risk management practice, and ignorance of uncertainties could lead to major threat to the society and poor consideration with inefficient or unsustainable preferences of options; 4) there is increasing recognition that the so called 'natural' disasters are not just the consequences of nature-related processes alone, but are attributable to various social, economic, historical, political and cultural causes. However, despite this recognition, the current hazard and risk assessments are fragmented with a weakness in holistically combining quantitative and qualitative information from a variety of sources; 5) successful disaster risk management must be relevant and useful to all stakeholders involved. Efforts should enable the essential common purpose, collective learning and entrepreneurial collaborations that underpin effective and efficient resilience. Therefore, there is an urgent need for the systems thinking framework and decision support system tools in adequate scenario assessment and resilience development from a harmonised and transdisciplinary perspective. It is important that the aforementioned issues should be tackled with a joint effort from a multidisciplinary team in social science, natural science, engineering and systems.
NASA Astrophysics Data System (ADS)
Li, Deying; Yin, Kunlong; Gao, Huaxi; Liu, Changchun
2009-10-01
Although the project of the Three Gorges Dam across the Yangtze River in China can utilize this huge potential source of hydroelectric power, and eliminate the loss of life and damage by flood, it also causes environmental problems due to the big rise and fluctuation of the water, such as geo-hazards. In order to prevent and predict geo-hazards, the establishment of prediction system of geo-hazards is very necessary. In order to implement functions of hazard prediction of regional and urban geo-hazard, single geo-hazard prediction, prediction of landslide surge and risk evaluation, logical layers of the system consist of data capturing layer, data manipulation and processing layer, analysis and application layer, and information publication layer. Due to the existence of multi-source spatial data, the research on the multi-source transformation and fusion data should be carried on in the paper. Its applicability of the system was testified on the spatial prediction of landslide hazard through spatial analysis of GIS in which information value method have been applied aims to identify susceptible areas that are possible to future landslide, on the basis of historical record of past landslide, terrain parameter, geology, rainfall and anthropogenic activity. Detailed discussion was carried out on spatial distribution characteristics of landslide hazard in the new town of Badong. These results can be used for risk evaluation. The system can be implemented as an early-warning and emergency management tool by the relevant authorities of the Three Gorges Reservoir in the future.
Bioinspired engineering of exploration systems for NASA and DoD
NASA Technical Reports Server (NTRS)
Thakoor, Sarita; Chahl, Javaan; Srinivasan, M. V.; Young, L.; Werblin, Frank; Hine, Butler; Zornetzer, Steven
2002-01-01
A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers.
[Review of visual display system in flight simulator].
Xie, Guang-hui; Wei, Shao-ning
2003-06-01
Visual display system is the key part and plays a very important role in flight simulators and flight training devices. The developing history of visual display system is recalled and the principle and characters of some visual display systems including collimated display systems and back-projected collimated display systems are described. The future directions of visual display systems are analyzed.
Aquatic Toxicity Screening of an ACWA Secondary Waste, GB-Hydrolysate
2009-01-01
Toxicity Comparison for GB-hydrolysates, Acetone, and Malathion Using O’Bryan and Ross Chemical Scoring System for Hazard and Exposure Identification ...hydrolysates, Acetone, and Malathion Using O’Bryan and Ross Chemical Scoring System for Hazard and Exposure Identification (5) and the U.S. Fish and...WWTF) or a TSDF. The toxicity results were ranked using the Chemical Scoring System for Hazard and Exposure Identification (5). This system is
Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik
2011-03-01
Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Chemical Hazard Response Information System (CHRIS) is designed to provide timely information essential for proper decision-making by responsible Coast Guard personnel and others during emergencies involving the water transport of hazardous chemicals. A secondary purpose is the provision of certain basic non-emergency-related information to support the Coast Guard in its efforts to achieve improved levels of safety in the bulk shipment of hazardous chemicals. CHRIS consists of four reference guides or manuals, a regional contingency plan, a hazard-assessment computer system (HACS), and an organizational entity located at Coast Guard headquarters. The four manuals contain chemical data, hazard-assessment methods, andmore » response guides. Regional data for the entire coastline are included in the Coastal Regional Contingency Plans. The headquarters staff operates the hazard-assessment computer system and provides technical assistance on request by field personnel during emergencies. In addition, it is responsible for periodic update and maintenance of CHRIS. A brief description of each component of CHRIS and its relation to this manual - the Hazard-Assessment Handbook - is provided.« less
Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.
Yang, Yongxiang; Pijnenborg, Marc J A; Reuter, Markus A; Verwoerd, Joep
2005-01-01
Hazardous wastes have complex physical forms and chemical compositions and are normally incinerated in rotary kilns for safe disposal and energy recovery. In the rotary kiln, the multifeed stream and wide variation of thermal, physical, and chemical properties of the wastes cause the incineration system to be highly heterogeneous, with severe temperature fluctuations and unsteady combustion chemistry. Incomplete combustion is often the consequence, and the process is difficult to control. In this article, modeling of the waste combustion is described by using computational fluid dynamics (CFD). Through CFD simulation, gas flow and mixing, turbulent combustion, and heat transfer inside the incinerator were predicted and visualized. As the first step, the waste in various forms was modeled to a hydrocarbon-based virtual fuel mixture. The combustion of the simplified waste was then simulated with a seven-gas combustion model within a CFD framework. Comparison was made with previous global three-gas combustion model with which no chemical behavior can be derived. The distribution of temperature and chemical species has been investigated. The waste combustion model was validated with temperature measurements. Various operating conditions and the influence on the incineration performance were then simulated. Through this research, a better process understanding and potential optimization of the design were attained.
NASA Astrophysics Data System (ADS)
Girach, Khalid; Bouazza-Marouf, K.; Kerr, David; Hewit, Jim
1994-11-01
The paper describes the investigations carried out to implement a line of sight control and communication link for a mobile robot vehicle for use in structured nuclear semi-hazardous environments. Line of sight free space optical laser communication links for remote teleoperation have important applications in hazardous environments. They have certain advantages over radio/microwave links and umbilical control such as greater protection against generation of and susceptance to electro-magnetic fields. The cable-less environment provides increased integrity and mechanical freedom to the mobile robot. However, to maintain the communication link, continuous point and tracking is required between the base station and the mobile vehicle. This paper presents a novel two ended optical tracking system utilizing the communication laser beams and photodetectors. The mobile robot is a six wheel drive vehicle with a manipulator arm which can operate in a variety of terrain. The operator obtains visual feedback information from cameras placed on the vehicle. From this information, the speed and direction of the vehicle can be controlled from a joystick panel. We describe the investigations carried out for the communication of analogue video and digital data signals over the laser link for speed and direction control.
Land-Use Portfolio Modeler, Version 1.0
Taketa, Richard; Hong, Makiko
2010-01-01
Natural hazards pose significant threats to the public safety and economic health of many communities throughout the world. Community leaders and decision-makers continually face the challenges of planning and allocating limited resources to invest in protecting their communities against catastrophic losses from natural-hazard events. Public efforts to assess community vulnerability and encourage loss-reduction measures through mitigation often focused on either aggregating site-specific estimates or adopting standards based upon broad assumptions about regional risks. The site-specific method usually provided the most accurate estimates, but was prohibitively expensive, whereas regional risk assessments were often too general to be of practical use. Policy makers lacked a systematic and quantitative method for conducting a regional-scale risk assessment of natural hazards. In response, Bernknopf and others developed the portfolio model, an intermediate-scale approach to assessing natural-hazard risks and mitigation policy alternatives. The basis for the portfolio-model approach was inspired by financial portfolio theory, which prescribes a method of optimizing return on investment while reducing risk by diversifying investments in different security types. In this context, a security type represents a unique combination of features and hazard-risk level, while financial return is defined as the reduction in losses resulting from an investment in mitigation of chosen securities. Features are selected for mitigation and are modeled like investment portfolios. Earth-science and economic data for the features are combined and processed in order to analyze each of the portfolios, which are then used to evaluate the benefits of mitigating the risk in selected locations. Ultimately, the decision maker seeks to choose a portfolio representing a mitigation policy that maximizes the expected return-on-investment, while minimizing the uncertainty associated with that return-on-investment. The portfolio model, now known as the Land-Use Portfolio Model (LUPM), provided the framework for the development of the Land-Use Portfolio Modeler, Version 1.0 software (LUPM v1.0). The software provides a geographic information system (GIS)-based modeling tool for evaluating alternative risk-reduction mitigation strategies for specific natural-hazard events. The modeler uses information about a specific natural-hazard event and the features exposed to that event within the targeted study region to derive a measure of a given mitigation strategy`s effectiveness. Harnessing the spatial capabilities of a GIS enables the tool to provide a rich, interactive mapping environment in which users can create, analyze, visualize, and compare different
48 CFR 1328.305 - Overseas workers' compensation and war-hazard insurance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Overseas workers' compensation and war-hazard insurance. 1328.305 Section 1328.305 Federal Acquisition Regulations System... workers' compensation and war-hazard insurance. The designee authorized to recommend a waiver to the...
48 CFR 1850.403 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Special procedures for unusually hazardous or nuclear risks. 1850.403 Section 1850.403 Federal Acquisition Regulations System... Residual Powers 1850.403 Special procedures for unusually hazardous or nuclear risks. ...
48 CFR 1850.403 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Special procedures for unusually hazardous or nuclear risks. 1850.403 Section 1850.403 Federal Acquisition Regulations System... Residual Powers 1850.403 Special procedures for unusually hazardous or nuclear risks. ...
Age and visual impairment decrease driving performance as measured on a closed-road circuit.
Wood, Joanne M
2002-01-01
In this study the effects of visual impairment and age on driving were investigated and related to visual function. Participants were 139 licensed drivers (young, middle-aged, and older participants with normal vision, and older participants with ocular disease). Driving performance was assessed during the daytime on a closed-road driving circuit. Visual performance was assessed using a vision testing battery. Age and visual impairment had a significant detrimental effect on recognition tasks (detection and recognition of signs and hazards), time to complete driving tasks (overall course time, reversing, and maneuvering), maneuvering ability, divided attention, and an overall driving performance index. All vision measures were significantly affected by group membership. A combination of motion sensitivity, useful field of view (UFOV), Pelli-Robson letter contrast sensitivity, and dynamic acuity could predict 50% of the variance in overall driving scores. These results indicate that older drivers with either normal vision or visual impairment had poorer driving performance compared with younger or middle-aged drivers with normal vision. The inclusion of tests such as motion sensitivity and the UFOV significantly improve the predictive power of vision tests for driving performance. Although such measures may not be practical for widespread screening, their application in selected cases should be considered.
Case study of visualizing global user download patterns using Google Earth and NASA World Wind
NASA Astrophysics Data System (ADS)
Zong, Ziliang; Job, Joshua; Zhang, Xuesong; Nijim, Mais; Qin, Xiao
2012-01-01
Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASA World Wind. We illustrate our methods by visualizing over 170,000 global download requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the "hot spot" areas of research. Most importantly, our methods demonstrate an easy way to geo-visualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).
Kempen, John H.; Altaweel, Michael M.; Holbrook, Janet T.; Jabs, Douglas A.; Louis, Thomas A.; Sugar, Elizabeth A.; Thorne, Jennifer E.
2011-01-01
Objective To compare the relative effectiveness of systemic corticosteroids plus immunosuppression when indicated (systemic therapy) versus fluocinolone acetonide implant (implant therapy) for non-infectious intermediate, posterior or panuveitis (uveitis). Design Randomized controlled parallel superiority trial. Participants Patients with active/recently active uveitis. Methods Participants were randomized (allocation ratio 1:1) to systemic or implant therapy at 23 centers (three countries). Implant-assigned participants with bilateral uveitis were assigned to have each eye that warranted study treatment implanted. Treatment-outcome associations were analyzed by assigned treatment for all eyes with uveitis. Main Outcome Measures Masked examiners measured the primary outcome: change in best-corrected visual acuity from baseline. Secondary outcomes included patient-reported quality of life (QoL), ophthalmologist-graded uveitis activity, and local and systemic complications of uveitis or therapy. Reading Center graders and glaucoma specialists assessing ocular complications were masked. Participants, ophthalmologists, and coordinators were unmasked. Results Among 255 patients randomized to implant and systemic therapy (479 eyes with uveitis), evaluating changes from baseline to 24 months, the implant and systemic therapy groups respectively had +6.0 vs. +3.2 letters' improvement in visual acuity (p=0.16, 95% confidence interval on difference in improvement between groups: −1.2 to +6.7 letters, positive values favoring implant), +11.4 vs. +6.8 units' vision-related QoL improvement (p=0.043), +0.02 vs. −0.02 change in EuroQol-EQ5D health utility (p=0.060), and 12% vs. 29% had active uveitis (p=0.001). Over 24 months, implant-assigned eyes had a higher risk of cataract surgery (80%, hazard ratio (HR) = 3.3, p<0.0001), treatment for elevated intraocular pressure (61%, HR=4.2, p<0.0001), and glaucoma (17%, HR = 4.2, p=0.0008). Systemic-assigned patients had more prescription-requiring infections (0.60 vs. 0.36/person-year, p=0.034), without notable long-term consequences; systemic adverse outcomes otherwise were unusual in both groups, with minimal differences between groups. Conclusion In each treatment group, mean visual acuity improved over 24 months, with neither approach superior to a degree detectable with the study's power. Therefore, the specific advantages and disadvantages identified should dictate selection between the alternative treatments in consideration of individual patients' particular circumstances. Systemic therapy with aggressive use of corticosteroid-sparing immunosuppression was well-tolerated, suggesting that this approach is reasonably safe for local and systemic inflammatory disorders. PMID:21840602
NASA Astrophysics Data System (ADS)
Massabo, Marco; Molini, Luca; Kostic, Bojan; Campanella, Paolo; Stevanovic, Slavimir
2015-04-01
Disaster risk reduction has long been recognized for its role in mitigating the negative environmental, social and economic impacts of natural hazards. Flood Early Warning System is a disaster risk reduction measure based on the capacities of institutions to observe and predict extreme hydro-meteorological events and to disseminate timely and meaningful warning information; it is furthermore based on the capacities of individuals, communities and organizations to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss. An operational definition of an Early Warning System has been suggested by ISDR - UN Office for DRR [15 January 2009]: "EWS is the set of capacities needed to generate and disseminate timely and meaningful warning information to enable individuals, communities and organizations threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss.". ISDR continues by commenting that a people-centered early warning system necessarily comprises four key elements: 1-knowledge of the risks; 2-monitoring, analysis and forecasting of the hazards; 3-communication or dissemination of alerts and warnings; and 4- local capabilities to respond to the warnings received." The technological platform DEWETRA supports the strengthening of the first three key elements of EWS suggested by ISDR definition, hence to improve the capacities to build real-time risk scenarios and to inform and warn the population in advance The technological platform DEWETRA has been implemented for the Republic of Serbia. DEWETRA is a real time-integrate system that supports decision makers for risk forecasting and monitoring and for distributing warnings to end-user and to the general public. The system is based on the rapid availability of different data that helps to establish up-to-date and reliable risk scenarios. The integration of all relevant data for risk management significantly increases the value of available information and the level of knowledge of forecasters and disaster managers. Different data, forecast and monitoring products, which are generated by different national and international institution and organizations, can be visualized and processed in real-time within the platform. DEWETRA is a web application ensuring the capillary distribution of information among institutions. The system is used as an infrastructure for exchanging and sharing data, procedures, models and expertise among the Sector of Emergency Management (SEM), the Republic Hydro-Meteorological Service of Serbia (RHMSS) and the Serbian Public Water Companies (PWCs): Serbia Waters, Vojvodina Waters and Belgrade Waters.
Guo, Xuezhen; Claassen, G D H; Oude Lansink, A G J M; Saatkamp, H W
2014-06-01
Economic analysis of hazard surveillance in livestock production chains is essential for surveillance organizations (such as food safety authorities) when making scientifically based decisions on optimization of resource allocation. To enable this, quantitative decision support tools are required at two levels of analysis: (1) single-hazard surveillance system and (2) surveillance portfolio. This paper addresses the first level by presenting a conceptual approach for the economic analysis of single-hazard surveillance systems. The concept includes objective and subjective aspects of single-hazard surveillance system analysis: (1) a simulation part to derive an efficient set of surveillance setups based on the technical surveillance performance parameters (TSPPs) and the corresponding surveillance costs, i.e., objective analysis, and (2) a multi-criteria decision making model to evaluate the impacts of the hazard surveillance, i.e., subjective analysis. The conceptual approach was checked for (1) conceptual validity and (2) data validity. Issues regarding the practical use of the approach, particularly the data requirement, were discussed. We concluded that the conceptual approach is scientifically credible for economic analysis of single-hazard surveillance systems and that the practicability of the approach depends on data availability. Copyright © 2014 Elsevier B.V. All rights reserved.
Landslide hazards and systems analysis: A Central European perspective
NASA Astrophysics Data System (ADS)
Klose, Martin; Damm, Bodo; Kreuzer, Thomas
2016-04-01
Part of the problem with assessing landslide hazards is to understand the variable settings in which they occur. There is growing consensus that hazard assessments require integrated approaches that take account of the coupled human-environment system. Here we provide a synthesis of societal exposure and vulnerability to landslide hazards, review innovative approaches to hazard identification, and lay a focus on hazard assessment, while presenting the results of historical case studies and a landslide time series for Germany. The findings add to a growing body of literature that recognizes societal exposure and vulnerability as a complex system of hazard interactions that evolves over time as a function of social change and development. We therefore propose to expand hazard assessments by the framework and concepts of systems analysis (e.g., Liu et al., 2007) Results so far have been promising in ways that illustrate the importance of feedbacks, thresholds, surprises, and time lags in the evolution of landslide hazard and risk. In densely populated areas of Central Europe, landslides often occur in urbanized landscapes or on engineered slopes that had been transformed or created intentionally by human activity, sometimes even centuries ago. The example of Germany enables to correlate the causes and effects of recent landslides with the historical transition of urbanization to urban sprawl, ongoing demographic change, and some chronic problems of industrialized countries today, including ageing infrastructures or rising government debts. In large parts of rural Germany, the combination of ageing infrastructures, population loss, and increasing budget deficits starts to erode historical resilience gains, which brings especially small communities to a tipping point in their efforts to risk reduction. While struggling with budget deficits and demographic change, these communities are required to maintain ageing infrastructures that are particularly vulnerable to landslides. Along with a large number of small, but costly landslide events and widespread insidious damages, the interplay of these societal trends determines landslide hazard and risk in Germany or elsewhere in Central Europe (e.g., Houlihan, 1994; Klose et al., 2015). The case studies presented here help to better understand human-environment interactions in the hazard context. Although there has been substantial progress in assessing landslide hazards, integrated approaches with an interdisciplinary focus are still exceptional. The scope of historical datasets available for hazard assessments, however, covers the whole range of natural and social systems interacting with hazards, their influences on overall system vulnerability, and the feedbacks, time lags, and couplings among these systems. In combination with methods from the natural and social sciences, systems analysis supports hazard assessments across disciplinary boundaries to take a broader look at landslide hazards as is usually done. References Houlihan, B., 1994. Europe's ageing infrastructure: Politics, finance and the environment. Utilities Policy 4, 243-252. Liu, J., Dietz, T., Carpenter, S.R., Alberti, M., Folke, C., Moran, E., Pell, A.N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C.L., Schneider, S.H., Taylor, W.W., 2007. Complexity of Coupled Human and Natural Systems. Science 317, 1513-1516. Klose, M., Damm, B., Maurischat, P., 2015. Landslide impacts in Germany: A historical and socioeconomic perspective. Landslides, doi:10.1007/s10346-015-0643-9.
The Development of a Tri-Service Notification System for Type 1 Medical Materiel Complaints.
1992-09-01
Hazardous Food and Nonprescription Drug Recall System ...... ............... .... 24 Chapter Summary ..... ............... .... 27 III. Methodology...examination of an existing DOD notification process for hazardous food and nonprescription drugs. It must be emphasized that the process being investigated in...notification process for defective medical materiel has not been accomplished. Hazardous Food and Nonprescription Drug Recall System In examining the DoD
Estimating Bird / Aircraft Collision Probabilities and Risk Utilizing Spatial Poisson Processes
2012-06-10
Operations (1995-2011) ........................................... 2 Table 2 DeVault Top 15 Relative Hazard Score...dedicated bird radar (Dokter, et al. 2011). The WRS-88D is used in the Avian Hazard Advisory System which is described later in this paper. Advisory...Avian Hazard Advisory System (AHAS) is an online, near real-time, geographic information system (GIS) used for bird strike risk flight planning across
Decision-support systems for natural-hazards and land-management issues
Dinitz, Laura; Forney, William; Byrd, Kristin
2012-01-01
Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.
NASA Technical Reports Server (NTRS)
Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.
2015-01-01
The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g., missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.
NASA Technical Reports Server (NTRS)
Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.
2015-01-01
The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g. missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.
48 CFR 228.305 - Overseas workers' compensation and war-hazard insurance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Overseas workers' compensation and war-hazard insurance. 228.305 Section 228.305 Federal Acquisition Regulations System DEFENSE... Insurance 228.305 Overseas workers' compensation and war-hazard insurance. (d) When submitting requests for...
48 CFR 2928.305 - Overseas workers' compensation and war hazard insurance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Overseas workers' compensation and war hazard insurance. 2928.305 Section 2928.305 Federal Acquisition Regulations System...' compensation and war hazard insurance. The authority of the Agency Head to recommend to the Secretary of Labor...
77 FR 55371 - System Safety Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
...-based rule and FRA seeks comments on all aspects of the proposed rule. An SSP would be implemented by a... SSP would be the risk-based hazard management program and risk-based hazard analysis. A properly implemented risk-based hazard management program and risk-based hazard analysis would identify the hazards and...
Modeling and Hazard Analysis Using STPA
NASA Astrophysics Data System (ADS)
Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka
2010-09-01
A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis and following the NASA standards for safety-critical systems, the results of our experimental application of STPA can be compared with these more traditional safety engineering approaches in terms of the problems identified and the resources required to use it.
NASA Astrophysics Data System (ADS)
Boron, Sergiusz
2017-06-01
Operational safety of electrical machines and equipment depends, inter alia, on the hazards resulting from their use and on the scope of applied protective measures. The use of insufficient protection against existing hazards leads to reduced operational safety, particularly under fault conditions. On the other hand, excessive (in relation to existing hazards) level of protection may compromise the reliability of power supply. This paper analyses the explosion hazard created by earth faults in longwall power supply systems and evaluates existing protection equipment from the viewpoint of its protective performance, particularly in the context of explosion hazards, and also assesses its effect on the reliability of power supply.
Dust Hazard Management in the Outer Solar System
NASA Technical Reports Server (NTRS)
Seal, David A.
2012-01-01
Most robotic missions to the outer solar system must grapple with the hazards posed by the dusty rings of the gas giants. Early assessments of these hazards led simply to ring avoidance due to insufficient data and high uncertainties on the dust population present in such rings. Recent approaches, principal among them the Cassini dust hazard management strategy, provide useful results from detailed modeling of spacecraft vulnerabilities and dust hazard regions, which along with the range of mission trajectories are used to to assess the risks posed by each passage through a zone of potential hazard. This paper shows the general approach used to implement the analysis for Cassini, with recommendations for future outer planet missions.
Mobile machine hazardous working zone warning system
Schiffbauer, William H.; Ganoe, Carl W.
1999-01-01
A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.
Mobile machine hazardous working zone warning system
Schiffbauer, W.H.; Ganoe, C.W.
1999-08-17
A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.
Global early warning systems for natural hazards: systematic and people-centred.
Basher, Reid
2006-08-15
To be effective, early warning systems for natural hazards need to have not only a sound scientific and technical basis, but also a strong focus on the people exposed to risk, and with a systems approach that incorporates all of the relevant factors in that risk, whether arising from the natural hazards or social vulnerabilities, and from short-term or long-term processes. Disasters are increasing in number and severity and international institutional frameworks to reduce disasters are being strengthened under United Nations oversight. Since the Indian Ocean tsunami of 26 December 2004, there has been a surge of interest in developing early warning systems to cater to the needs of all countries and all hazards.
NASA Astrophysics Data System (ADS)
Qi, Peng; Du, Mei
2018-06-01
China's southeast coastal areas frequently suffer from storm surge due to the attack of tropical cyclones (TCs) every year. Hazards induced by TCs are complex, such as strong wind, huge waves, storm surge, heavy rain, floods, and so on. The atmospheric and oceanic hazards cause serious disasters and substantial economic losses. This paper, from the perspective of hazard group, sets up a multi-factor evaluation method for the risk assessment of TC hazards using historical extreme data of concerned atmospheric and oceanic elements. Based on the natural hazard dynamic process, the multi-factor indicator system is composed of nine natural hazard factors representing intensity and frequency, respectively. Contributing to the indicator system, in order of importance, are maximum wind speed by TCs, attack frequency of TCs, maximum surge height, maximum wave height, frequency of gusts ≥ Scale 8, rainstorm intensity, maximum tidal range, rainstorm frequency, then sea-level rising rate. The first four factors are the most important, whose weights exceed 10% in the indicator system. With normalization processing, all the single-hazard factors are superposed by multiplying their weights to generate a superposed TC hazard. The multi-factor evaluation indicator method was applied to the risk assessment of typhoon-induced atmospheric and oceanic hazard group in typhoon-prone southeast coastal cities of China.
Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems
NASA Astrophysics Data System (ADS)
Kwag, Shinyoung
Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.
The Cellular Automata for modelling of spreading of lava flow on the earth surface
NASA Astrophysics Data System (ADS)
Jarna, A.
2012-12-01
Volcanic risk assessment is a very important scientific, political and economic issue in densely populated areas close to active volcanoes. Development of effective tools for early prediction of a potential volcanic hazard and management of crises are paramount. However, to this date volcanic hazard maps represent the most appropriate way to illustrate the geographical area that can potentially be affected by a volcanic event. Volcanic hazard maps are usually produced by mapping out old volcanic deposits, however dynamic lava flow simulation gaining popularity and can give crucial information to corroborate other methodologies. The methodology which is used here for the generation of volcanic hazard maps is based on numerical simulation of eruptive processes by the principle of Cellular Automata (CA). The python script is integrated into ArcToolbox in ArcMap (ESRI) and the user can select several input and output parameters which influence surface morphology, size and shape of the flow, flow thickness, flow velocity and length of lava flows. Once the input parameters are selected, the software computes and generates hazard maps on the fly. The results can be exported to Google Maps (.klm format) to visualize the results of the computation. For validation of the simulation code are used data from a real lava flow. Comparison of the simulation results with real lava flows mapped out from satellite images will be presented.
The Role and Quality of Software Safety in the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Layman, Lucas; Basili, Victor R.; Zelkowitz, Marvin V.
2010-01-01
In this study, we examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Obtaining an accurate, program-wide picture of software safety risk is difficult across multiple, independently-developing systems. We leverage one source of safety information, hazard analysis, to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. The goal of this research is two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to quantify the level of risk presented by software in the hazard analysis. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. To quantify the importance of software, we collected metrics based on the number of software-related causes and controls of hazardous conditions. To quantify the level of risk presented by software, we created a metric scheme to measure the specificity of these software causes. We found that from 49-70% of hazardous conditions in the three systems could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. Furthermore, 10-12% of all controls were software-based. There is potential for inaccuracy in these counts, however, as software causes are not consistently scoped, and the presence of software in a cause or control is not always clear. The application of our software specificity metrics also identified risks in the hazard reporting process. In particular, we found a number of traceability risks in the hazard reports may impede verification of software and system safety.
Earthquake Hazard Mitigation Using a Systems Analysis Approach to Risk Assessment
NASA Astrophysics Data System (ADS)
Legg, M.; Eguchi, R. T.
2015-12-01
The earthquake hazard mitigation goal is to reduce losses due to severe natural events. The first step is to conduct a Seismic Risk Assessment consisting of 1) hazard estimation, 2) vulnerability analysis, 3) exposure compilation. Seismic hazards include ground deformation, shaking, and inundation. The hazard estimation may be probabilistic or deterministic. Probabilistic Seismic Hazard Assessment (PSHA) is generally applied to site-specific Risk assessments, but may involve large areas as in a National Seismic Hazard Mapping program. Deterministic hazard assessments are needed for geographically distributed exposure such as lifelines (infrastructure), but may be important for large communities. Vulnerability evaluation includes quantification of fragility for construction or components including personnel. Exposure represents the existing or planned construction, facilities, infrastructure, and population in the affected area. Risk (expected loss) is the product of the quantified hazard, vulnerability (damage algorithm), and exposure which may be used to prepare emergency response plans, retrofit existing construction, or use community planning to avoid hazards. The risk estimate provides data needed to acquire earthquake insurance to assist with effective recovery following a severe event. Earthquake Scenarios used in Deterministic Risk Assessments provide detailed information on where hazards may be most severe, what system components are most susceptible to failure, and to evaluate the combined effects of a severe earthquake to the whole system or community. Casualties (injuries and death) have been the primary factor in defining building codes for seismic-resistant construction. Economic losses may be equally significant factors that can influence proactive hazard mitigation. Large urban earthquakes may produce catastrophic losses due to a cascading of effects often missed in PSHA. Economic collapse may ensue if damaged workplaces, disruption of utilities, and resultant loss of income produces widespread default on payments. With increased computational power and more complete inventories of exposure, Monte Carlo methods may provide more accurate estimation of severe losses and the opportunity to increase resilience of vulnerable systems and communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
The Interactive Computer-Enhanced Remote Viewing System (ICERVS) is a software tool for complex three-dimensional (3-D) visualization and modeling. Its primary purpose is to facilitate the use of robotic and telerobotic systems in remote and/or hazardous environments, where spatial information is provided by 3-D mapping sensors. ICERVS provides a robust, interactive system for viewing sensor data in 3-D and combines this with interactive geometric modeling capabilities that allow an operator to construct CAD models to match the remote environment. Part I of this report traces the development of ICERVS through three evolutionary phases: (1) development of first-generation software to render orthogonalmore » view displays and wireframe models; (2) expansion of this software to include interactive viewpoint control, surface-shaded graphics, material (scalar and nonscalar) property data, cut/slice planes, color and visibility mapping, and generalized object models; (3) demonstration of ICERVS as a tool for the remediation of underground storage tanks (USTs) and the dismantlement of contaminated processing facilities. Part II of this report details the software design of ICERVS, with particular emphasis on its object-oriented architecture and user interface.« less
NASA Astrophysics Data System (ADS)
Calamaio, C. L.; Walker, J.; Beck, J. M.; Graves, S. J.; Johnson, C.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are working closely with the Madison County Emergency Management Agency (EMA), GeoHuntsville's UAS Working Group, and the NOAA UAS Program Office, to conduct a series of practical demonstrations testing the use of small unmanned aerial systems (sUAS) for emergency response activities in Madison County, Alabama. These exercises demonstrate the use of UAS to detect and visualize hazards in affected areas via the delivery of aerial imagery and associated data products to law enforcement first responders in a variety of different scenarios, for example, search and rescue, tornado track mapping, damage assessment, and situational awareness/containment during active shooter incidents. In addition to showcasing the use of UAS as a tool for emergency services, these pilot exercises provide the opportunity to engage the appropriate stakeholders from several communities including first responders, geospatial intelligence, active members of the unmanned systems industry, and academia. This presentation will showcase the challenges associated with delivering quality data products for emergency services in a timely manner as well as the related challenges in integrating the technology into local emergency management.
Tourism hazard potentials in Mount Merapi: how to deal with the risk
NASA Astrophysics Data System (ADS)
Muthiah, J.; Muntasib, E. K. S. H.; Meilani, R.
2018-05-01
Mount Merapi as one of the most popular natural tourism destination in Indonesia, indicated as disaster prone area. Hazard management is required to ensure visitors safety. Hazard identification and mapping are prerequisite in developing proper hazard management recommendation. This study aimed to map hazard potentials’ geographical positions obtained with geographical positioning system and to identify the hazard management being implemented. Data collection was carried out in Mei – June 2017 through observation and interview. Hiking trail and Lava tour area was selected as the study site, since the sites are the main areas for tourism activities in Mount Merapi. The type of hazards found in the area included lava, tephra, eruption cloud, ash, earthquake, land slide, extreme weather, slope and loose rock. Early warning system had been developed in this area, however the mechanism to regulate tourism activities still had to be improved. Local tourism entrepreneurs should be involved in the network of early warning system stakeholders to ensure tourist safety, and their capacity should be improved in order to be able to perform the measures needed for handling accident and disaster occurrences. Interpretive media explaining hazard potentials may be used to improve visitors’ awareness and ability to cope with the risk.
NASA Astrophysics Data System (ADS)
Di Felice, P.; Spadoni, M.
2013-04-01
MAHA is a database-centred software system for the storage and visualization of subsoil data used for the production of seismic microzonation maps in Italy. The application was implemented using open source software in order to grant its maximum diffusion and customization. A conceptual model of the subsoil, jointly developed by the Italian National Research Council and the National Department of Civil Protection, inspired the structure of the underlying database, consisting of 15 tables, 3 of which of spatial nature to accommodate geo-referenced data associated to points, lines and polygons. A web-GIS interface acts as a bridge between the user and the database, drives the input of geo-referenced data and enables the users to formulate different types of spatial queries. A series of forms designed "ad hoc" and enriched with combo boxes provide guided procedures to maximize the fluency of data entry and to reduce the possibility of erroneous typing. One of these procedures helps to transform the descriptions of the geological units (granular materials), given in technical paper documents by using a conversational style, into standardized numeric codes. Summary reports, produced in the pdf format, can be generated through decoding and graphic display of the parameters previously entered in the database. MAHA was approved by the national commission for seismic microzonation established by the Italian Prime Minister and, in the next years, it is expected to significantly support the entire process of map production in the urban areas more exposed to seismic hazard.
Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Sperotto, Anna; Glade, Thomas; Marcomini, Antonio
2016-03-01
This paper presents a review of existing multi-risk assessment concepts and tools applied by organisations and projects providing the basis for the development of a multi-risk methodology in a climate change perspective. Relevant initiatives were developed for the assessment of multiple natural hazards (e.g. floods, storm surges, droughts) affecting the same area in a defined timeframe (e.g. year, season, decade). Major research efforts were focused on the identification and aggregation of multiple hazard types (e.g. independent, correlated, cascading hazards) by means of quantitative and semi-quantitative approaches. Moreover, several methodologies aim to assess the vulnerability of multiple targets to specific natural hazards by means of vulnerability functions and indicators at the regional and local scale. The overall results of the review show that multi-risk approaches do not consider the effects of climate change and mostly rely on the analysis of static vulnerability (i.e. no time-dependent vulnerabilities, no changes among exposed elements). A relevant challenge is therefore to develop comprehensive formal approaches for the assessment of different climate-induced hazards and risks, including dynamic exposure and vulnerability. This requires the selection and aggregation of suitable hazard and vulnerability metrics to make a synthesis of information about multiple climate impacts, the spatial analysis and ranking of risks, including their visualization and communication to end-users. To face these issues, climate impact assessors should develop cross-sectorial collaborations among different expertise (e.g. modellers, natural scientists, economists) integrating information on climate change scenarios with sectorial climate impact assessment, towards the development of a comprehensive multi-risk assessment process. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kjellgren, S.
2013-07-01
In response to the EU Floods Directive (2007/60/EC), flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address - in research as well as in practice - since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.
Study of alternate methods of disposal of propellants and gases at KSC
NASA Technical Reports Server (NTRS)
Moore, W. I.
1970-01-01
A comprehensive study was conducted at KSC launch support facilities to determine the nature and extent of potential hazards from propellant and gas releases to the environment. The results of the study, alternate methods for reducing or eliminating the hazards, and recommendations pertaining to these alternatives are presented. The operational modes of the propellant or hazardous gas systems considered include: system charging, system standby, system operation, and post-test operations. The results are outlined on an area-by-area basis.
Analysis of Alerting System Failures in Commercial Aviation Accidents
NASA Technical Reports Server (NTRS)
Mumaw, Randall J.
2017-01-01
The role of an alerting system is to make the system operator (e.g., pilot) aware of an impending hazard or unsafe state so the hazard can be avoided or managed successfully. A review of 46 commercial aviation accidents (between 1998 and 2014) revealed that, in the vast majority of events, either the hazard was not alerted or relevant hazard alerting occurred but failed to aid the flight crew sufficiently. For this set of events, alerting system failures were placed in one of five phases: Detection, Understanding, Action Selection, Prioritization, and Execution. This study also reviewed the evolution of alerting system schemes in commercial aviation, which revealed naive assumptions about pilot reliability in monitoring flight path parameters; specifically, pilot monitoring was assumed to be more effective than it actually is. Examples are provided of the types of alerting system failures that have occurred, and recommendations are provided for alerting system improvements.
Automated Mixed Traffic Vehicle (AMTV) technology and safety study
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Peng, T. K. C.; Vivian, H. C.; Wang, P. K.
1978-01-01
Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard.
48 CFR 1450.104-3 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Special procedures for unusually hazardous or nuclear risks. 1450.104-3 Section 1450.104-3 Federal Acquisition Regulations System... Extraordinary Contractual Actions 1450.104-3 Special procedures for unusually hazardous or nuclear risks. The CO...
48 CFR 1450.104-3 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Special procedures for unusually hazardous or nuclear risks. 1450.104-3 Section 1450.104-3 Federal Acquisition Regulations System... Extraordinary Contractual Actions 1450.104-3 Special procedures for unusually hazardous or nuclear risks. The CO...
48 CFR 1450.104-3 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Special procedures for unusually hazardous or nuclear risks. 1450.104-3 Section 1450.104-3 Federal Acquisition Regulations System... Extraordinary Contractual Actions 1450.104-3 Special procedures for unusually hazardous or nuclear risks. The CO...
48 CFR 1450.104-3 - Special procedures for unusually hazardous or nuclear risks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Special procedures for unusually hazardous or nuclear risks. 1450.104-3 Section 1450.104-3 Federal Acquisition Regulations System... Extraordinary Contractual Actions 1450.104-3 Special procedures for unusually hazardous or nuclear risks. The CO...
Toxic Remediation System And Method
Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.
1996-07-23
What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.
WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kumar
2000-06-21
The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less
Report on the "Shakedown" test of Oregon's rockfall hazard rating system.
DOT National Transportation Integrated Search
1989-04-01
Oregon Rockfall Hazard Rating System (RHRS) was field tested at over 50 locations statewide to determine where clarification and improvements to the system were needed. Field use of the system demonstrated many areas where refinements were valuable. ...
Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)
NASA Astrophysics Data System (ADS)
Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.
2013-12-01
The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that satellite-based flow estimates are a useful source of dynamical surface water information in data-scarce regions and that they could be used for model calibration and data assimilation purposes in near-time hydrologic forecast applications (Hirpa et al. 2013). More recent efforts during this year's monsoon season are optimally combining these different independent sources of river forecast information along with archived flood inundation imagery of the Dartmouth Flood Observatory to improve the visualization and overall skill of the ongoing CFAB ensemble weather forecast-based flood forecasting system within the unique context of the ongoing flood forecasting efforts for Bangladesh.
Application of systems and control theory-based hazard analysis to radiation oncology.
Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G
2016-03-01
Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve safety and prevent accidents and warrants further investigation.
Cross Reference Index for Bioenvironmental Engineer and Military Public Health Offices
1992-03-01
Food Recall AFR 161-42 DOD Hazardous Food and Nonprescription Drug Recall System Insects and Mite Pests in Food AGR-HB-655 Insects and Mite Pests in Food...Solution, 11 Hazard Communication, 12 Hazardous Energy Control, 21, 22 Hazardous Food Recall Program, 9 Hazardous Waste, 11, 26 Hazardous Materials...34Institutional Meat Purchase Specification" NAMPS "National Association of Meat Purveyor’s" DPSC Support DOD 4155.6 Subsistence Inspection Manual Hazardous
Flood damage in Italy: towards an assessment model of reconstruction costs
NASA Astrophysics Data System (ADS)
Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto
2016-04-01
Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy. The final objective will be to analyse how the loss prospective can change when mitigation measures, including actions to reduce the flood hazard and strategies to prevent potential consequences, are implemented. Flood impacts and the corresponding value of mitigation measures will be assessed by means of a cost-benefit analysis in accordance with the EU Floods Directive.
Self-contained clothing system provides protection against hazardous environments
NASA Technical Reports Server (NTRS)
1966-01-01
Self-contained clothing system protects personnel against hazardous environments. The clothing has an environmental control system and a complete protection envelope consisting of an outer garment, inner garment, underwear, boots, gloves, and helmet.
Hamilton, Kristen R; Sinha, Rajita; Potenza, Marc N
2012-06-01
Hazardous drinking is characterized by decisions to engage in excessive or risky patterns of alcohol consumption. Levels of impulsivity and behavioral approach and inhibition may differ in hazardous drinkers and nonhazardous drinkers. A comparison of the relative levels of dimensions of impulsivity and behavioral inhibition and approach in adult men and women hazardous and nonhazardous drinkers may inform treatment and prevention efforts. In the present research, 466 men and women from a community sample were administered the Alcohol Use Disorders Identification Test (AUDIT), the Behavioral Inhibition System/Behavioral Approach System (BIS/BAS) scale, and the Barratt Impulsiveness Scale, version 11 (BIS-11). Relations among the dimensions of these constructs were examined using multivariate analysis of covariance (MANCOVA), with age and race as covariates. There were main effects of hazardous drinking on all 3 dimensions of impulsivity, the behavioral inhibition system, and the behavioral activation system Reward Responsiveness, and Fun-Seeking components, with hazardous drinkers scoring higher than nonhazardous drinkers. This research provides a better understanding of the manner in which impulsivity and behavioral inhibition and approach tendencies relate to hazardous alcohol use in men and women. The present results have implications for alcohol-related prevention and treatment strategies for adult men and women. Copyright © 2012 by the Research Society on Alcoholism.
Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration
Lohumi, Santosh; Lee, Hoonsoo; Kim, Moon S.; Qin, Jianwei; Kandpal, Lalit Mohan; Bae, Hyungjin; Rahman, Anisur
2018-01-01
The potential adulteration of foodstuffs has led to increasing concern regarding food safety and security, in particular for powdered food products where cheap ground materials or hazardous chemicals can be added to increase the quantity of powder or to obtain the desired aesthetic quality. Due to the resulting potential health threat to consumers, the development of a fast, label-free, and non-invasive technique for the detection of adulteration over a wide range of food products is necessary. We therefore report the development of a rapid Raman hyperspectral imaging technique for the detection of food adulteration and for authenticity analysis. The Raman hyperspectral imaging system comprises of a custom designed laser illumination system, sensing module, and a software interface. Laser illumination system generates a 785 nm laser line of high power, and the Gaussian like intensity distribution of laser beam is shaped by incorporating an engineered diffuser. The sensing module utilize Rayleigh filters, imaging spectrometer, and detector for collection of the Raman scattering signals along the laser line. A custom-built software to acquire Raman hyperspectral images which also facilitate the real time visualization of Raman chemical images of scanned samples. The developed system was employed for the simultaneous detection of Sudan dye and Congo red dye adulteration in paprika powder, and benzoyl peroxide and alloxan monohydrate adulteration in wheat flour at six different concentrations (w/w) from 0.05 to 1%. The collected Raman imaging data of the adulterated samples were analyzed to visualize and detect the adulterant concentrations by generating a binary image for each individual adulterant material. The results obtained based on the Raman chemical images of adulterants showed a strong correlation (R>0.98) between added and pixel based calculated concentration of adulterant materials. This developed Raman imaging system thus, can be considered as a powerful analytical technique for the quality and authenticity analysis of food products. PMID:29708973
Lohumi, Santosh; Lee, Hoonsoo; Kim, Moon S; Qin, Jianwei; Kandpal, Lalit Mohan; Bae, Hyungjin; Rahman, Anisur; Cho, Byoung-Kwan
2018-01-01
The potential adulteration of foodstuffs has led to increasing concern regarding food safety and security, in particular for powdered food products where cheap ground materials or hazardous chemicals can be added to increase the quantity of powder or to obtain the desired aesthetic quality. Due to the resulting potential health threat to consumers, the development of a fast, label-free, and non-invasive technique for the detection of adulteration over a wide range of food products is necessary. We therefore report the development of a rapid Raman hyperspectral imaging technique for the detection of food adulteration and for authenticity analysis. The Raman hyperspectral imaging system comprises of a custom designed laser illumination system, sensing module, and a software interface. Laser illumination system generates a 785 nm laser line of high power, and the Gaussian like intensity distribution of laser beam is shaped by incorporating an engineered diffuser. The sensing module utilize Rayleigh filters, imaging spectrometer, and detector for collection of the Raman scattering signals along the laser line. A custom-built software to acquire Raman hyperspectral images which also facilitate the real time visualization of Raman chemical images of scanned samples. The developed system was employed for the simultaneous detection of Sudan dye and Congo red dye adulteration in paprika powder, and benzoyl peroxide and alloxan monohydrate adulteration in wheat flour at six different concentrations (w/w) from 0.05 to 1%. The collected Raman imaging data of the adulterated samples were analyzed to visualize and detect the adulterant concentrations by generating a binary image for each individual adulterant material. The results obtained based on the Raman chemical images of adulterants showed a strong correlation (R>0.98) between added and pixel based calculated concentration of adulterant materials. This developed Raman imaging system thus, can be considered as a powerful analytical technique for the quality and authenticity analysis of food products.
Systems Measures of Water Distribution System Resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Katherine A.; Murray, Regan; Walker, La Tonya Nicole
2015-01-01
Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements tomore » water distribution system modeling tools.« less
APPLICATION OF A GEOGRAPHIC INFORMATION SYSTEM FOR A CONTAINMENT SYSTEM LEAK DETECTION
The use of physical and hydraulic containment systems for the isolation of contaminated ground water associated with hazardous waste sites has increased during the last decade. Existing methodologies for monitoring and evaluating leakage from hazardous waste containment systems ...
47 CFR 87.483 - Audio visual warning systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Audio visual warning systems. 87.483 Section 87... AVIATION SERVICES Stations in the Radiodetermination Service § 87.483 Audio visual warning systems. An audio visual warning system (AVWS) is a radar-based obstacle avoidance system. AVWS activates...