Science.gov

Sample records for hazardous fumes udvikling

  1. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R. ); Schmalz, H. Thermal Surveys, Inc., Rockford, IL )

    1992-01-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  2. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R.; Schmalz, H. |

    1992-11-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  3. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R.; Schmalz, H.

    1994-03-01

    Active, safe real-time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods has been developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a nontoxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principal advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principal limitation is the necessity of high tracer gas concentration to obtain strong visualizations.

  4. Occupational rhinitis due to steel welding fumes.

    PubMed

    Castano, Roberto; Suarthana, Eva

    2014-12-01

    Exposure to welding fumes is a recognized respiratory hazard. Occupational asthma but not occupational rhinitis has been documented in workers exposed to steel welding fumes. We report a 26-year-old male with work-related rhinitis symptoms as well as lower airways symptoms suggestive of occupational asthma and metal fume fever associated with exposure to steel welding fumes. The diagnosis of occupational rhinitis was confirmed by specific inhalation challenge.

  5. Low flow fume hood

    DOEpatents

    Bell, Geoffrey C.; Feustel, Helmut E.; Dickerhoff, Darryl J.

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  6. Updating Older Fume Hoods.

    ERIC Educational Resources Information Center

    Saunders, G. Thomas

    1985-01-01

    Provides information on updating older fume hoods. Areas addressed include: (1) adjustment of the hood's back baffle; (2) hood air leakage; (3) light level; (4) hood location in relation to room traffic and room air; and (5) establishing and maintaining hood performance. (JN)

  7. Immunotoxicology of arc welding fume: Worker and experimental animal studies

    PubMed Central

    Zeidler-Erdely, Patti C.; Erdely, Aaron; Antonini, James M.

    2015-01-01

    Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses. PMID:22734811

  8. Immunotoxicology of arc welding fume: worker and experimental animal studies.

    PubMed

    Zeidler-Erdely, Patti C; Erdely, Aaron; Antonini, James M

    2012-01-01

    Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses.

  9. Fume Cupboards in Schools. (Revision of Design Note 29). Building Bulletin 88.

    ERIC Educational Resources Information Center

    Tawney, David

    Regulations require hazardous gases in school science classrooms to be controlled, i.e., their levels in the air kept below the exposure limits, with fume cupboards being the most usual method. This document reviews the requirements for fume cupboards used in schools and colleges for teaching the sciences, mainly chemistry and biology, up to…

  10. The humoral immune response of mice exposed to simulated road paving-like asphalt fumes.

    PubMed

    Anderson, Stacey E; Munson, Albert E; Tomblyn, Seth; Meade, B Jean; Diotte, Nicole M

    2008-07-01

    Asphalt is a complex mixture of organic molecules, including polycyclic aromatic hydrocarbons (PAH), which have been reported to cause serious adverse health effects in humans. Workers in manufacturing and construction trades exposed to asphalt are potentially at risk for being exposed to asphalt fumes and PAHs. Epidemiological investigations have collected mounting evidence that chemicals found in asphalt fumes present carcinogenic and possibly immunotoxic hazards. Studies evaluating the immunotoxic effects of asphalt fume are limited due to the large number of variables associated with asphalt fume exposures. This work investigates the immuno-toxic effects of road paving-like asphalt fume by analyzing the in vivo IgM response to a T-dependent antigen after exposure to whole, vapor, and particulate phase road paving-like asphalt fumes and asphalt fume condensate. Systemic exposures via intraperitoneal injection of asphalt fume condensate (at 0.625 mg/kg) and the particulate phase (at 5 mg/kg) resulted in significant reductions in the specific spleen IgM response to SRBC. Pharyngeal aspiration of the asphalt fume condensate (at 5 mg/kg) also resulted in significant suppression of the IgM response to SRBC. A significant reduction in the specific spleen IgM activity was observed after inhalation exposure to whole asphalt fumes (35 mg/m(3)) and the vapor components (11 mg/m(3)). Dermal exposures to the asphalt fume condensate resulted in significant reductions in the total (at 50 mg/kg) and specific (at 250 mg/kg) spleen IgM response to SRBC. These results demonstrate that exposure to road paving-like asphalt fumes is immunosuppressive through systemic, respiratory, and dermal routes of exposure in a murine model and raise concerns regarding the potential for adverse immunological effects.

  11. Burning records caused fumes after derailment

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    A new study shows that hazardous materials may come in harmless-looking packages and that toxic chemicals are not always to blame for environmental accidents.A Conrail train derailment April 11, 1987, in Bloomfield, Pa., led to a fire, the spill of phosphorus oxychloride, and a plume of smoke and hydrogen chloride gas that acutely affected nearby residents. An investigation of the accident just completed by the Center for Hazardous Materials Research (CHMR) at the University of Pittsburgh (Pittsburgh, Pa.) found that the fumes were entirely the result of burning phonograph records. In addition, calculations based on a computer model of gas emission and dispersion showed that community exposure was probably below dangerous levels throughout the fire.

  12. 222-S LABORATORY FUME HOOD TESTING STUDY

    SciTech Connect

    RUELAS, B.H.

    2007-03-26

    The 222-S Laboratory contains 155 active fume hoods that are used to support analytical work with radioactive and/or toxic materials. The performance of a fume hood was brought into question after employees detected odors in the work area while mixing chemicals within the subject fume hood. Following the event, testing of the fume hood was conducted to assess the performance of the fume hood. Based on observations from the testing, it was deemed appropriate to conduct performance evaluations of other fume hoods within the laboratory.

  13. Induction of micronuclei in cultured mammalian cells by fume condensates of roofing asphalt.

    PubMed

    Qian, H W; Ong, T; Whong, W Z

    1996-05-01

    A considerable number of workers in the United States are employed in asphalt industries and are potentially exposed to asphalt fumes. The information regarding the potential carcinogenic hazards of such fumes to exposed workers is still limited. Studies have been conducted to determine the cytogenetic effects of roofing asphalt fume using cultured mammalian cells. Exponentially growing Chinese hamster lung fibroblasts (V79 cells) were exposed to different concentrations of condensates of type I and type III roofing asphalt fumes, generated at temperatures similar to actual roofing operation (316 +/- 10 degrees C). The frequencies of micronucleated cells in the treated and control cultures were determined. Additionally, immunofluorescent staining of kinetochore with human anti-kinetochore primary antibody and flouresceinated goat anti-human IgG was used to investigate the potential mechanism of micronucleus formation. The results show that both types of roofing asphalt fume condensates caused a significant increase in the frequency of micronucleated cells, and that 70% of micronucleated cells induced by asphalt fume condensates carried kinetochore-positive micronuclei. These findings indicate that both type I and type III roofing asphalt fumes are capable of causing principally cytogenetic damage by spindle apparatus alterations in cultured mammalian cells.

  14. Energy efficient laboratory fume hood

    DOEpatents

    Feustel, Helmut E.

    2000-01-01

    The present invention provides a low energy consumption fume hood that provides an adequate level of safety while reducing the amount of air exhausted from the hood. A low-flow fume hood in accordance with the present invention works on the principal of providing an air supply, preferably with low turbulence intensity, in the face of the hood. The air flow supplied displaces the volume currently present in the hood's face without significant mixing between the two volumes and with minimum injection of air from either side of the flow. This air flow provides a protective layer of clean air between the contaminated low-flow fume hood work chamber and the laboratory room. Because this protective layer of air will be free of contaminants, even temporary mixing between the air in the face of the fume hood and room air, which may result from short term pressure fluctuations or turbulence in the laboratory, will keep contaminants contained within the hood. Protection of the face of the hood by an air flow with low turbulence intensity in accordance with a preferred embodiment of the present invention largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 75% are possible without a decrease in the hood's containment performance.

  15. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  16. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    PubMed

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  17. Comparative Microscopic Study of Human and Rat Lungs After Overexposure to Welding Fume

    PubMed Central

    ANTONINI, JAMES M.; ROBERTS, JENNY R.; SCHWEGLER-BERRY, DIANE; MERCER, ROBERT R.

    2015-01-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2 mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these

  18. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    PubMed

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these

  19. Cables and fire hazards

    NASA Technical Reports Server (NTRS)

    Zanelli, C.; Philbrick, S.; Beretta, G.

    1986-01-01

    Besides describing the experiments conducted to develop a nonflammable cable, this article discusses several considerations regarding other hazards which might result from cable fires, particularly the toxicity and opacity of the fumes emitted by the burning cable. In addition, this article examines the effects of using the Oxygen Index as a gauge of quality control during manufacture.

  20. A Simple, Transparent Fume Hood

    NASA Astrophysics Data System (ADS)

    Fredericks, John

    1998-10-01

    An inexpensive transparent fume hood can be constructed from a clear-plastic two-liter soft drink bottle that is cut just above the base. A length of vacuum tubing is secured to the opening of the bottle using black electrical tape. The tubing is then connected to a water aspirator. Beakers or flasks easily fit inside the bottle, and the bottle may be secured with a clamp and ring stand for added stability. This device has been used to collect the noxious NO2 gas generated from the reaction of copper metal with nitric acid. It also may be used in the collection of other gases. It should not be used to collect gases that are not water-soluble or in experiments that involve open flames.

  1. Design for a Miniature Portable Fume Hood.

    ERIC Educational Resources Information Center

    Bailey, Ronald A.; Wait, Samuel C., Jr.

    1999-01-01

    Describes the design of undergraduate chemical laboratory fume hoods. Proves that folding the sides and top permit the hood and its duct hose to be stored in a standard 18-inch-wide laboratory cabinet. (WRM)

  2. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.

    PubMed

    Keane, Michael J; Siert, Arlen; Chen, Bean T; Stone, Samuel G

    2014-05-01

    To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g(-1) electrode) and lowest for GMAW processes such as pulsed spray (~1.5mg g(-1)) and CMT (~1mg g(-1)). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g(-1) (SMAW) to 0.08 mg g(-1) (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g(-1) (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g(-1) (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides

  3. 42 CFR 84.1146 - Lead fume test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Lead fume test for dust, fume, and mist respirators; minimum requirements. 84.1146 Section 84.1146 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  4. 42 CFR 84.1146 - Lead fume test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Lead fume test for dust, fume, and mist respirators; minimum requirements. 84.1146 Section 84.1146 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  5. Stabilization of heavy metals in MSWI fly ash using silica fume

    SciTech Connect

    Li, Xinying; Chen, Quanyuan; Zhou, Yasu; Tyrer, Mark; Yu, Yang

    2014-12-15

    Highlights: • The stabilization of heavy metals in MSWI fly ash was investigated. • The addition of silica fume effectively reduced the leaching of Pb and Cd. • The relation of solid phase transformation and leaching behavior of heavy metals was discussed. - Abstract: The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR ({sup 27}Al and {sup 29}Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.

  6. Genotoxic effects of bitumen fumes in Big Blue transgenic rat lung.

    PubMed

    Bottin, Marie Claire; Gate, Laurent; Rihn, Bertrand; Micillino, Jean Claude; Nathalie, Monhoven; Martin, Aurélie; Nunge, Hervé; Morel, Georges; Wrobel, Richard; Ayi-Fanou, Lucie; Champmartin, Catherine; Keith, Gérard; Binet, Stéphane

    2006-04-11

    Road paving workers are exposed to bitumen fumes (CAS No. 8052-42-4), a complex mixture of volatile compounds and particles containing carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons. However, epidemiological and experimental animal studies failed to draw unambiguous conclusions concerning their toxicity. In order to gain better insights on their genotoxic potential, we used an experimental design able to generate bitumen fumes at road paving temperature (temperature: 170 degrees C, total particulate matter: 100mg/m3) and perform a nose-only exposure of Big Blue transgenic rodents 6h/day for five consecutive days. The mutagenic properties of bitumen fumes were determined by analyzing the mutation frequency and spectrum of the neutral reporter gene cII inserted into the rodent genome. We previously observed in mouse lung, that bitumen fumes did not induce an increase of cII mutants, a modification of the mutation spectrum, nor the formation of DNA adducts. Since DNA adducts were found in the lungs of rats exposed to asphalt fumes in similar conditions, we decided to carry out an analogous experiment with Big Blue rats. A DNA adduct was detected 3 and 30 days after the end of treatment suggesting that these genetic alterations were quite steady. Thirty days after exposure, the cII mutant frequency was similar in control and exposed rats. In addition, a slight but not significant modification of the mutation spectrum associated with an increase of G:C to T:A and A:T to C:G transversions was noticeable in the treated animals. Then, these data failed to demonstrate a pulmonary mutagenic potential for bitumen fumes generated at road paving temperature in our experimental conditions despite the presence of a DNA adduct. These results may provide information concerning the pulmonary mechanism of action of this aerosol and may contribute to the occupational health hazard assessment.

  7. Diesel exhaust, diesel fumes, and laryngeal cancer.

    PubMed

    Muscat, J E; Wynder, E L

    1995-03-01

    A hospital-based, case-control study of 235 male patients with laryngeal cancer and 205 male control patients was conducted to determine the effects of exposure to diesel engine exhaust and diesel fumes and the risk of laryngeal cancer. All patients were interviewed directly in the hospital with a standardized questionnaire that gathered information on smoking habits, alcohol consumption, employment history, and occupational exposures. Occupations that involve substantial exposure to diesel engine exhaust include mainly truck drivers, as well as mine workers, firefighters, and railroad workers. The odds ratio for laryngeal cancer associated with these occupations was 0.96 (95% confidence interval, 0.5 to 1.8). The odds ratio for self-reported exposure to diesel exhaust was 1.47 (95% confidence interval, 0.5 to 4.1). An elevated risk was found for self-reported exposure to diesel fumes (odds ratio, 6.4; 95% confidence interval, 1.8 to 22.6). No association was observed between jobs that entail exposure to diesel fumes, such as automobile mechanics, and the risk of laryngeal cancer. These results show that diesel engine exhaust is unrelated to laryngeal cancer risk. The different findings for self-reported diesel fumes and occupations that involve exposure to diesel fumes could reflect a recall bias.

  8. Indoor air pollution of coal fumes as a risk factor of stroke, Shanghai

    SciTech Connect

    Zhang, Z.F.; Yu, S.Z.; Zhou, G.D.

    1988-08-01

    A cohort of 957 male persons in Shanghai has been followed up for 12 years after they entered a screening program for coronary heart disease and stroke. During the period of study, 24 of the subjects who had no previous history of heart disease and stroke died from stroke. Risk factors for stroke were analyzed by the Cox proportional hazards model. Coal fumes were found to be an independent risk factor for stroke in addition to diastolic blood pressure, age, and cigarette smoking.

  9. Asphalt fume dermal carcinogenicity potential: I. dermal carcinogenicity evaluation of asphalt (bitumen) fume condensates.

    PubMed

    Clark, Charles R; Burnett, Donald M; Parker, Craig M; Arp, Earl W; Swanson, Mark S; Minsavage, Gary D; Kriech, Anthony J; Osborn, Linda V; Freeman, James J; Barter, Robert A; Newton, Paul E; Beazley, Shelley L; Stewart, Christopher W

    2011-10-01

    Asphalt (bitumen) fume condensates collected from the headspace above paving and Type III built up roofing asphalt (BURA) tanks were evaluated in two-year dermal carcinogenicity assays in male C3H/HeNCrl mice. A third sample was generated from the BURA using a NIOSH laboratory generation method. Similar to earlier NIOSH studies, the BURA fume condensates were applied dermally in mineral oil twice per week; the paving sample was applied 7 days/week for a total weekly dose of 50 mg/wk in both studies. A single benign papilloma was observed in a group of 80 mice exposed to paving fume condensate at the end of the two-year study and only mild skin irritation was observed. The lab generated BURA fume condensate resulted in statistically significant (P<0.0001) increases in squamous cell carcinomas (35 animals or 55% of animals at risk). The field-matched BURA condensate showed a weaker but significant (P=0.0063) increase (8 carcinomas or 13% of animals) and a longer average latency (90 weeks vs. 76 for the lab fume). Significant irritation was observed in both BURA condensates. It is concluded that the paving fume condensate was not carcinogenic under the test conditions and that the field-matched BURA fume condensate produced a weak tumor response compared to the lab generated sample.

  10. Elevated serum zinc levels in metal fume fever

    SciTech Connect

    Noel, N.E.; Ruthman, J.C.

    1988-11-01

    Metal fume fever is not an uncommon syndrome among welders following exposure to oxidized metal fumes (usually zinc). The relationship of serum zinc level to the acute phase of this illness is not known. Two cases of metal fume fever, associated with elevated serum zinc levels, are presented. Further studies are necessary to determine the diagnostic usefulness of serum zinc levels in metal fume fever.

  11. Combustion fume structure and dynamics. Final report

    SciTech Connect

    Flagan, R.C.

    1995-06-29

    An investigation of the fundamental physical processes that govern the structures of fume particles that are produced from the vapor phase in a wide range of high temperature systems has been conducted. The key objective of this study has been to develop models of the evolution of fine particles of refractory materials that are produced from the vapor phase, with particular emphasis on those processes that govern the evolution of ash fumes produced from volatilized mineral matter during coal combustion. To accomplish this goal, the study has included investigations of a number of fundamental aspects of pyrogenous fumes: Structural characterization of agglomerate particles in terms of fractal structure parameters; the relationship between the structures of agglomerate particles and the aerodynamic drag forces they experience; coagulation kinetics of fractal-like particles; sintering of aerosol agglomerates past the early stage of neck formation and incorporating the simultaneous influences of several transport mechanisms.

  12. 42 CFR 84.1146 - Lead fume test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High... minutes each at a continuous airflow rate of 32 liters per minute. (b) The relative humidity in the...

  13. 42 CFR 84.1146 - Lead fume test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High... minutes each at a continuous airflow rate of 32 liters per minute. (b) The relative humidity in the...

  14. 42 CFR 84.1146 - Lead fume test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High... minutes each at a continuous airflow rate of 32 liters per minute. (b) The relative humidity in the...

  15. Persistence of Change: Fume Hood Campaign Lessons

    ERIC Educational Resources Information Center

    Feder, Elah; Robinson, Jennifer; Wakefield, Sarah

    2012-01-01

    Purpose: Sustainability initiatives typically operate for a limited time period, but it is often unclear whether they have lasting effects. The purpose of this paper is to examine a laboratory fume hood campaign, in order to identify factors that might contribute or detract from long-term change persistence. Design/methodology/approach: The…

  16. Bronchial reactions to exposure to welding fumes.

    PubMed Central

    Contreras, G R; Chan-Yeung, M

    1997-01-01

    OBJECTIVES: To study the airway response and its mechanism to welding fumes in six welders with respiratory symptoms. METHODS: Methacholine and welding challenge tests were carried out. The concentration of welding fumes during the exposure test was measured. On two subjects who developed bronchoconstricition to welding challenge, additional tests were carried out including prick, patch, and inhalation challenges with metal salt solutions. RESULTS: Three subjects developed immediate bronchial reaction to exposure to welding fume; one to mild steel and stainless steel welding, another to mild steel and galvanised welding, and one only to galvanised welding. They all had a moderate to pronounced degree of non-specific bronchial hyperresponsiveness. The concentration of fumes during welding tests, particularly to galvanised welding, was high. An inhalation challenge test with zinc chloride salt solution in two subjects who reacted to galvanised welding was negative. Prick and patch tests with zinc chloride were also negative. CONCLUSION: The airway response to welding in these subjects is non-specific and is due to irritation rather than to sensitisation. PMID:9538358

  17. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    PubMed Central

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  18. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    PubMed

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training.

  19. Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices

    PubMed Central

    Volckens, John

    2014-01-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892

  20. Rapid detection of transition metals in welding fumes using paper-based analytical devices.

    PubMed

    Cate, David M; Nanthasurasak, Pavisara; Riwkulkajorn, Pornpak; L'Orange, Christian; Henry, Charles S; Volckens, John

    2014-05-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments.

  1. Retrofitting Laboratory Fume Hoods With Face Velocity Monitors at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Wagner, Ingrid E.; Bold, Margaret D.; Diamond, David B.; Kall, Phillip M.

    1997-01-01

    Extensive use and reliance on laboratory fume hoods exist at LeRC for the control of chemical hazards (nearly 175 fume hoods). Flow-measuring devices are necessary to continually monitor hood performance. The flow-measuring device should he tied into an energy management control system to detect problems at a central location without relying on the users to convey information of a problem. Compatibility concerns and limitations should always be considered when choosing the most effective flow-measuring device for a particular situation. Good practice on initial hood design and placement will provide a system for which a flow-measuring device may be used to its full potential and effectiveness.

  2. Methemoglobinemia secondary to automobile exhaust fumes

    SciTech Connect

    Laney, R.F.; Hoffman, R.S. )

    1992-09-01

    Methemoglobinemia is an uncommon cause of cyanosis. A 28-year-old male presented to the emergency department cyanotic and short of breath after exposure to noxious automobile fumes. He did not improve with the administration of 100% oxygen therapy. The initial arterial blood gas with cooximetry was: pH of 7.38, PaCO2 of 43 mm Hg, PaO2 of 118 mm Hg, measured oxygen saturation of 70%, and a methemoglobin level of 24.8%. Methylene blue was given (2 mg/kg intravenously) and the patient's symptoms resolved. On the following day he was discharged home without complication. A comprehensive review of the literature revealed no reported cases of methemoglobinemia secondary to accidental exposure to exhaust fumes.17 references.

  3. Methemoglobinemia induced by automobile exhaust fumes.

    PubMed

    Suyama, Hidemichi; Morikawa, Shingo; Noma-Tanaka, Shoko; Adachi, Hiroshi; Kawano, Yasunobu; Kaneko, Kotaro; Ishihara, Shin

    2005-01-01

    Although methemoglobinemia is an uncommon disorder, it should always be considered in the differential diagnosis of cyanosis. Major causes of acquired methemoglobinemia are nitrates, aniline, and analgesics, though rare cases have been reported to have been caused by automobile exhaust fumes. A 24-year-old man had inhaled a large amount of automobile exhaust fumes, intending to commit suicide. He had become unconscious, with dilated pupils and symptoms of cyanosis. Arterial hemoglobin oxygen saturation (Sp(O2)) was 86%, with a methemoglobin level of 44.3% and a carboxyhemoglobin level of 0%, while electrolytes, blood urea nitrogen, creatine, and glucose measurement results were normal. He was treated with methylene blue 250 mg (approximately 4 mg/kg) through a nasogastric tube. Four hours after the treatment, because the methemoglobin level was slightly above normal (2.2%), we added 180 mg of methylene blue. The results of final arterial blood gas analysis were a methemoglobin level of 0.4% and a carboxyhemoglobin level of 0.8%. He recovered uneventfully and returned home by himself the next day. To summarize, we successfully treated, with methylene blue given through a nasogastric tube, a young man who had developed severe methemoglobinemia from inhaling automobile exhaust fumes.

  4. Characterisation of fume from hyperbaric welding operations

    NASA Astrophysics Data System (ADS)

    Ross, John A. S.; Semple, Sean; Duffin, Rodger; Kelly, Frank; Seldmann, Joerg; Raab, Andrea

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  5. Acute Cadmium Fume Poisoning: Five Cases with one Death from Renal Necrosis

    PubMed Central

    Beton, D. C.; Andrews, G. S.; Davies, H. J.; Howells, Leonard; Smith, G. F.

    1966-01-01

    This paper describes the accidental poisoning of five workers by cadmium fume. The men were dismantling a frame of girders in a confined space by cutting bolts with an oxyacetylene burner. They were unaware at the time that the bolts were cadmium-plated or that this presented a serious industrial hazard. The paper sets out to give an appreciation of acute cadmium poisoning, the characteristics and uses of cadmium, and a review of the literature. The clinical picture of these cases is described, with the pathology of the fatal case which showed severe pulmonary oedema, alveolar metaplasia of the lung, and bilateral cortical necrosis of the kidneys. The lungs contained 0·25 g. cadmium oxide (CdO) per 100 g. wet specimen. An attempted estimation of the fatal dose of CdO fume is made. From the post-mortem findings, using an assumption that 11% of inhaled CdO will be retained in the lungs, approximately 51·7 mg. CdO fume must have been inhaled by the fatal case. As he worked for five hours with a probable ventilatory rate of 20 l./min. the concentration of CdO in the air breathed would be of the order of 8·6 mg./m.3. An estimation of the dose from a study of the working conditions proved unsatisfactory due to certain variables listed in the text. Images PMID:5928153

  6. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W

    2011-07-01

    Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol

  7. Identification of sulfur fumed Pinelliae Rhizoma using an electronic nose

    PubMed Central

    Zhou, Xia; Wan, Jun; Chu, Liang; Liu, Wengang; Jing, Yafeng; Wu, Chunjie

    2014-01-01

    Background: Pinelliae Rhizoma is a commonly used Chinese herb which will change brown during the natural drying process. However, sulfur fumed Pinelliae Rhizoma will get a better appearance than naturally dried one. Sulfur fumed Pinelliae Rhizoma is potentially toxical due to sulfur dioxide and sulfites formed during the fuming procedures. The odor components in sulfur fumed Pinelliae Rhizoma is complex. At present, there is no analytical method available to determine sulfur fumed Pinelliae Rhizoma simply and rapidly. To ensure medication safety, it is highly desirable to have an effective and simple method to identify sulfur fumed Pinelliae Rhizoma. Materials and Methods: This paper presents a novel approach using an electronic nose based on metal oxide sensors to identify whether Pinelliae Rhizoma was fumed with sulfur, and to predict the fuming degree of Pinelliae Rhizoma. Multivariate statistical methods such as principal components analysis (PCA), discriminant factorial analysis (DFA) and partial least squares (PLS) were used for data analyzing and identification. The use of the electronic nose to discriminate between different fuming degrees Pinelliae Rhizoma and naturally dried Pinelliae Rhizoma was demonstrated. Results: The electronic nose was also successfully applied to identify unknown samples including sulfur fumed samples and naturally dried samples, high recognition value was obtained. Quantitative analysis of fuming degree of Pinelliae Rhizoma was also demonstrated. The method developed is simple and fast, which provides a new quality control method of Chinese herbs from the aspect of odor. Conclusion: It has shown that this electronic nose based metal oxide sensor is sensitive to sulfur and sulfides. We suggest that it can serve as a supportive method to detect residual sulfur and sulfides. PMID:24914293

  8. A Low-Cost, Effective, Fumes Exhaust System.

    ERIC Educational Resources Information Center

    Jacobs, C. O.

    1979-01-01

    Discusses the importance of avoiding welding fumes. The sources of these fumes are presented in a table. Criticizes currently used ventilation systems and reviews the Occupational Safety and Health Act requirements. Describes a low-cost exhaust system developed for agricultural mechanics laboratories. (LRA)

  9. Analysis of silica fume produced by zircon desilication.

    PubMed

    Phillips, D N; Carter, J

    2003-07-27

    Novel chemical methods have been developed to allow for the determination of the components of silica fume produced by zircon desilication. Hitherto, no methods have been described for the analysis of this material. The amorphous silica is first removed by treatment with sodium hydroxide. The residue from the hydroxide treatment may then be subjected to a suite of reagents to determine the zircon, the total zirconia, the monoclinic zirconia and the tetragonal zirconia content of the fume. The zircon content of the fume is determined by treatment of the hydroxide residue with concentrated hydrofluoric acid (HF). The total zirconia content of the fume is determined by digestion of the hydroxide residue with fuming sulphuric acid (oleum), while the relative amounts of monoclinic and tetragonal zirconia may be found by treatment of the hydroxide residue with 10%w/v HF, which attacks the less stable tetragonal phase. Both X-ray diffraction and particle size analysis were used to validate the steps in the analytical procedure. An explanation of the presence of tetragonal zirconia in the fume is proposed. A greater understanding of the composition of the fume led to the installation of a separator in the company's production line to remove the zircon. Australian Fused Materials (AFM) now produces a vastly superior grade of fume marketed under the code SF-98.

  10. 13. View of interior, north wall featuring fume hood, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of interior, north wall featuring fume hood, facing north (Note: B/W scale on fume hood is in 1/2 ft increments) - Nevada Test Site, Reactor Maintenance & Disassembly Complex, Junior Hot Cell, Jackass Flats, Area 25, South of intersection of Roads F & G, Mercury, Nye County, NV

  11. Development of a flow-injection fluorescence method for estimation of total polycyclic aromatic compounds in asphalt fumes.

    PubMed

    Neumeister, Charles E; Olsen, Larry D; Dollberg, Donald D

    2003-01-01

    Traditionally, measurements of specific polycyclic aromatic compounds (PACs) have been attempted as an estimate of asphalt fume exposure. However, asphalt fumes contain numerous alkyl substituted PACs, including PACs containing heteroatoms of nitrogen, oxygen, and sulfur. Many of these compounds coelute precluding the resolution of the individual compounds resulting in ambiguous data. Moreover, many researchers believe that some observed health hazards are associated with PACs overall and not just a few select PACs. Therefore, NIOSH method 5800 was developed to evaluate total PACs as a chemical class in asphalt fumes. Asphalt fume samples were collected on a poly(tetrafluoroethylene) filter backed by an XAD-2 sorbent tube. The samples were extracted with hexane; then, a cyano-solid-phase-extraction column was used to remove the polar compounds while the aliphatic and aromatic compounds were eluted with hexane. An equal volume of dimethyl sulfoxide (DMSO) was added to the hexane extract, causing the aromatic compounds to partition into the DMSO, thus isolating the PACs. The PACs were then analyzed for fluorescence using a flow-injection method with two fluorescence detectors. Wavelength settings for the first detector (254-nm excitation, 370-nm emission) emphasized the 2- to 4-ring PACs that may cause eye and respiratory tract irritation. Wavelength settings of the second detector (254-nm excitation, 400-nm emission) emphasized the 4- and higher-ring PACs that are often mutagenic and possibly carcinogenic.

  12. Hazardous fluid leak detector

    DOEpatents

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  13. [Analysis on oil fume particles in catering industry cooking emission].

    PubMed

    Tan, De-Sheng; Kuang, Yuan-Cheng; Liu, Xin; Dai, Fei-Hong

    2012-06-01

    By measuring the particulate matter of oil fume which is over 10 microm or below 10 microm separately and using microradiography and Electrical Low Pressure Impactor (ELPI), it is found out the distributing characteristic of oil fume particles in catering industry cooking emission. The result shows that the diameter of the oil fume particles which was sedimentated in the kitchen is between 10-400 microm, the concentration peak value is between 10-100 microm. The diameter of oil fume aerosol is mostly smaller than 1 microm, while the concentration peak value is between 0.063-0.109 microm. In addition, the mass concentration peak value is between 6.560-9.990 microm. Through the analysis to the physical characteristics of oil fume from catering industry cooking emissions, the eigenvalue of the oil fume has been found and the feature matter for monitoring the oil fume has been discovered to provide a reasonable standard for controlling and monitoring the catering industry cooking emission.

  14. Bitumen fume-induced gene expression profile in rat lung

    SciTech Connect

    Gate, Laurent . E-mail: laurent.gate@inrs.fr; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Herve; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stephane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 {sup o}C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  15. Bitumen fume-induced gene expression profile in rat lung.

    PubMed

    Gate, Laurent; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Hervé; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stéphane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 degrees C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  16. Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping

    PubMed Central

    Sun, Bingbing; Pokhrel, Suman; Dunphy, Darren R.; Zhang, Haiyuan; Ji, Zhaoxia; Wang, Xiang; Wang, Meiying; Liao, Yu-Pei; Chang, Chong Hyun; Dong, Juyao; Li, Ruibin; Mädler, Lutz; Brinker, C. Jeffrey; Nel, André E.; Xia, Tian

    2015-01-01

    The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe (GRAS) for use in food products by the Food and Drug Administration (FDA). However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and “string-of-pearl-like” aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium (Ti) and aluminum (Al) doping (0–7%), using flame spray pyrolysis (FSP). Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone marrow-derived macrophages (BMDMs). Ti- and to a lesser extent Al-doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances. PMID:26200133

  17. Hazardous materials incidents in military aircraft.

    PubMed

    Voge, V M; Tolan, G

    1993-07-01

    We evaluated 10 years of reported hazardous cargo incident information from the U.S. Air Force and Naval Safety Centers. In this first of two papers describing the hazardous cargo problems reported by the two services, we describe types of aircraft and types of hazardous cargo involved in incidents not causing aircraft mishaps. Normally, hazardous cargo must be manifested as such and no passengers are allowed on such flights. Unauthorized hazardous cargo was found on military aircraft carrying passengers. The most common problem was fuel spills or fumes. The most frequent cause of a hazardous cargo incident was improper manifest of same. Improvements are recommended for the incompatible or inconsistent hazardous cargo incident reporting systems, in order to improve prevention of hazardous cargo incidents.

  18. In vitro RPM fibrogenic potential assay of welding fumes.

    PubMed Central

    Stern, R M; Pigott, G H

    1983-01-01

    The fibrogenic potential of 11 different welding fumes and metallic aerosols, considered to be reference standard surrogates for the commonly used welding technologies and applications responsible for 70% of welders exposure, is screened by using the rat peritoneal macrophage (RPM) in vitro bioassay. Only one class of fumes, that from the manual metal are welding of stainless steel, shows distinct fibrogenic potential. This fume, however, is not common to more than four or five of the heretofore 90 cases of pulmonary fibrosis reported among welders. Thus, although insoluble Cr(VI) is probably the active fibrogen in stainless steel fumes, an etiological factor common to all fibrogenic welding exposures must be sought; it is tentatively proposed to be NO chi, a potent experimental in vivo fibrogen copiously produced by certain welding processes and ubiquitous at low concentrations in the welding environment. PMID:6641657

  19. Smoke-Free Public Housing Cuts Secondhand Fumes

    MedlinePlus

    ... gov/news/fullstory_163493.html Smoke-Free Public Housing Cuts Secondhand Fumes Nicotine levels down by almost ... Secondhand smoke exposure has dropped dramatically among public housing residents in Philadelphia since the introduction of a ...

  20. 4. INTERIOR VIEW OF CHEMISTRY LAB LOOKING SOUTHEAST; NOTE FUME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR VIEW OF CHEMISTRY LAB LOOKING SOUTHEAST; NOTE FUME EXHAUST HOOD AT LEFT & ORIGINAL CEILING FIXTURE - Fort McCoy, Building No. T-1033, North side of South Tenth Avenue, Block 10, Sparta, Monroe County, WI

  1. 10. LOOKING SOUTH IN BOP SHOP AT FUME HOOD AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. LOOKING SOUTH IN BOP SHOP AT FUME HOOD AND SPARE OXYGEN LANCES ON THE SERVICE FLOOR OF THE FURNACE AISLE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  2. Peripheral neuropathy following intentional inhalation of naphtha fumes.

    PubMed Central

    Tenenbein, M; deGroot, W; Rajani, K R

    1984-01-01

    Two adolescent native Canadians who presented with peripheral neuropathy secondary to the abuse of volatile hydrocarbons are described. They were initially thought to have been sniffing leaded gasoline fumes, but public health investigation revealed that they had been sniffing naphtha fumes. Naphtha contains a significant amount of n-hexane, a known inducer of neuropathy. Nerve conduction studies and nerve biopsy confirmed the diagnosis of naphtha abuse. These cases emphasize the need to specifically identify the formulation of hydrocarbons being abused. PMID:6093978

  3. Decreasing biotoxicity of fume particles produced in welding process.

    PubMed

    Yu, Kuei-Min; Topham, Nathan; Wang, Jun; Kalivoda, Mark; Tseng, Yiider; Wu, Chang-Yu; Lee, Wen-Jhy; Cho, Kuk

    2011-01-30

    Welding fumes contain heavy metals, such as chromium, manganese, and nickel, which cause respiratory diseases and cancer. In this study, a SiO(2) precursor was evaluated as an additive to the shielding gas in an arc welding process to reduce the biotoxicity caused by welding fume particles. Transmission electron micrographic images show that SiO(2) coats on the surface of welding fume particles and promotes particle agglomeration. Energy dispersive X-ray spectroscopy further shows that the relative amount of silicon in these SiO(2)-coated agglomerates is higher than in baseline agglomerates. In addition, Escherichia coli (E. coli) exposed to different concentrations of pure SiO(2) particles generated from the arc welding process exhibits similar responses, suggesting that SiO(2) does not contribute to welding fume particle toxicity. The trend of E. coli growth in different concentrations of baseline welding fume particle shows the most significant inhibition occurs in higher exposure concentrations. The 50% lethal logarithmic concentrations for E. coli in arc welding particles of baseline, 2%, and 4.2% SiO(2) precursor additives were 823, 1605, and 1800 mg/L, respectively. Taken together, these results suggest that using SiO(2) precursors as an additive to arc welding shielding gas can effectively reduce the biotoxicity of welding fume.

  4. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for...

  5. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for...

  6. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for...

  7. Numerical analysis of fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Zeniya, Tasuku; Yamamoto, Kentaro; Tanaka, Manabu; Nakata, Kazuhiro; Murphy, Anthony B.; Yamamoto, Eri; Yamazaki, Kei; Suzuki, Keiichi

    2010-11-01

    In order to clarify the fume formation mechanism in arc welding, a quantitative investigation based on the knowledge of interaction among the electrode, arc and weld pool is indispensable. A fume formation model consisting of a heterogeneous condensation model, a homogeneous nucleation model and a coagulation model has been developed and coupled with the GTA or GMA welding model. A series of processes from evaporation of metal vapour to fume formation from the metal vapour was totally investigated by employing this simulation model. The aim of this paper is to visualize the fume formation process and clarify the fume formation mechanism theoretically through a numerical analysis. Furthermore, the reliability of the simulation model was also evaluated through a comparison of the simulation result with the experimental result. As a result, it was found that the size of the secondary particles consisting of small particles with a size of several tens of nanometres reached 300 nm at maximum and the secondary particle was in a U-shaped chain form in helium GTA welding. Furthermore, it was also clarified that most part of the fume was produced in the downstream region of the arc originating from the metal vapour evaporated mainly from the droplet in argon GMA welding. The fume was constituted by particles with a size of several tens of nanometres and had similar characteristics to that of GTA welding. On the other hand, if the metal transfer becomes unstable and the metal vapour near the droplet diffuses directly towards the surroundings of the arc not getting into the plasma flow, the size of the particles reaches several hundred nanometres.

  8. Reactions Involved in Fingerprint Development Using the Cyanoacrylate - Fuming Method

    SciTech Connect

    Lewis, L.A.

    2001-07-30

    The Learning Objective is to present the basic chemistry research findings to the forensic community regarding development of latent fingerprints using the cyanoacrylate fuming method. Chemical processes involved in the development of latent fingerprints using the cyanoacrylate fuming method have been studied, and will be presented. Two major types of latent prints have been investigated--clean (eccrine) and oily (sebaceous) prints. Scanning electron microscopy (SEM) was used as a tool for determining the morphology of the polymer developed separately on clean and oily prints after cyanoacrylate fuming. A correlation between the chemical composition of an aged latent fingerprint, prior to development, and the quality of a developed fingerprint was observed in the morphology. The moisture in the print prior to fuming was found to be a critical factor for the development of a useful latent print. In addition, the amount of time required to develop a high quality latent print was found to be minimal. The cyanoacrylate polymerization process is extremely rapid. When heat is used to accelerate the fuming process, typically a period of 2 minutes is required to develop the print. The optimum development time is dependent upon the concentration of cyanoacrylate vapors within the enclosure.

  9. Using fume silica as heavy metals' stabilizer for high alkali and porous MSWI baghouse ash.

    PubMed

    Huang, Wu-Jang; Huang, Hung-Shao

    2008-03-21

    In this study, we have proved that heavy metals in high porous and alkali baghouse ash could be fixed effectively by fume silica powder alone, or with the incorporation of colloidal aluminum oxide (CAO). The optimum amount is about 100g of fume silica per kilogram of baghouse ash. Results have indicated that fume silica has a better fixation efficiency of lead in high porous baghouse ash. In addition, the reaction mechanism of fume silica is also discussed.

  10. Health-hazard evaluation report HETA 85-043-1760, American Crystal Sugar Company, Hillsboro, North Dakota

    SciTech Connect

    Boiano, J.M.; Almaguer, D.

    1986-12-01

    In response to a request from management of the American Crystal Sugar Company (ACSCO) and the American Federation of Grain Millers International Union, employee exposures to welding fumes during facility maintenance and to airborne contaminants during beet processing were determined at a sugar-beet mill owned by ACSCO. Exposures exceeding the most stringent environmental criteria were found for calcium carbonate and carbon monoxide in lime kiln workers and sugar dust in sugar bin workers. Beet pulp dust was considered a potential hazard based on its content of crystalline silica. Welding produced excessive exposures to total welding fumes, hexavalent chromium, nickel, iron-oxide, and calcium-oxide. Chromium and nickel posed potential cancer risks. The authors conclude that workers were overexposed to calcium carbonate, carbon monoxide, sugar dust, total welding fumes, hexavalent chromium, iron oxide, nickel, and calcium oxide fumes at this facility. The authors recommend dust containment, ventilation, respiratory protection, and correction of slipping hazards.

  11. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  12. 2. In the foreground is the fan which removed fumes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. In the foreground is the fan which removed fumes from the galvanizing area in building #8. In the background are the waste treatment tanks for the acids and alkali used in the zinc-electro-plating process. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  13. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type.

    PubMed

    Keane, Michael; Stone, Samuel; Chen, Bean; Slaven, James; Schwegler-Berry, Diane; Antonini, James

    2009-02-01

    Occupational exposure to welding fumes is a known health hazard. To isolate elements in stainless steel welding fumes with high potential for adverse health outcomes, fumes were generated using a robotic gas metal arc system, using four shield gases of varying oxygen content. The objective was to measure Cr(VI) concentrations in a broad spectrum of gas metal arc welding processes, and identify processes of exceptionally high or low Cr(VI) content. The gases used were 95% Ar/5% O(2), 98% Ar/2% O(2), 95% Ar/5%CO(2), and 75% He/25% Ar. The welder was operated in axial spray mode (Ar/O(2), Ar/CO(2)), short-circuit (SC) mode (Ar/CO(2) low voltage and He/Ar), and pulsed axial-spray mode (98% Ar/2% O(2)). Results indicate large differences in Cr(VI) in the fumes, with Ar/O(2) (Pulsed)>Ar/O(2)>Ar/CO(2)>Ar/CO(2) (SC)>He/Ar; values were 3000+/-300, 2800+/-85, 2600+/-120, 1400+/-190, and 320+/-290 ppm respectively (means +/- standard errors for 2 runs and 3 replicates per run). Respective rates of Cr(VI) generation were 1.5, 3.2, 4.4, 1.3, and 0.46 microg/min; generation rates were also calculated in terms of microg Cr(VI) per metre of wire used. The generation rates of Cr(VI) increased with increasing O(3) concentrations. Particle size measurements indicated similar distributions, but somewhat higher >0.6 microm fractions for the short-circuit mode samples. Fumes were also sampled into 2 selected size ranges, a microspatter fraction (>or=0.6 microm) and a fine (<0.6 microm) fraction; analysis indicated that Cr(VI) is primarily associated with particles <0.6 microm. The conclusion of the study is that Cr(VI) concentrations vary significantly with welding type and shield gas type, and this presents an opportunity to tailor welding practices to lessen Cr(VI) exposures in workplaces by selecting low Cr(VI)-generating processes. Short-circuit processes generated less Cr(VI) than axial-spray methods, and inert gas shielding gave lower Cr(VI) content than shielding with active

  14. Department of Defense Federal Hazard Communication Training Program, Trainer’s Guide

    DTIC Science & Technology

    1988-04-01

    chromium fumes can cause cancer of the nasal passages and lungs. 05) What exposure symptom(s) can develop slowly over time? Answer:. Lung, kidney, and...safety and health, as well as that of your co- workers , depends on your active participation in this program. Learn about chemical materials, what...chemical hazards "* Identify and evaluate chemical hazards "* Communicate information about chemical hazards to management and workers . OSHA requires

  15. Double shroud delivery of silica precursor for reducing hexavalent chromium in welding fume.

    PubMed

    Wang, Jun; Kalivoda, Mark; Guan, Jianying; Theodore, Alexandros; Sharby, Jessica; Wu, Chang-Yu; Paulson, Kathleen; Es-Said, Omar

    2012-01-01

    The welding process yields a high concentration of nanoparticles loaded with hexavalent chromium (Cr(6+)), a known human carcinogen. Previous studies have demonstrated that using tetramethylsilane (TMS) as a shielding gas additive can significantly reduce the Cr(6+) concentration in welding fume particles. In this study, a novel insulated double shroud torch (IDST) was developed to further improve the reduction of airborne Cr(6+) concentration by separating the flows of the primary shielding gas and the TMS carrier gas. Welding fumes were collected from a welding chamber in the laboratory and from a fixed location near the welding arc in a welding facility. The Cr(6+) content was analyzed with ion chromatography and X-ray photoelectron spectroscopy (XPS). Results from the chamber sampling demonstrated that the addition of 3.2 ≈ 5.1% of TMS carrier gas to the primary shielding gas resulted in more than a 90% reduction of airborne Cr(6+) under all shielding gas flow rates. The XPS result confirmed complete elimination of Cr(6+) inside the amorphous silica shell. Adding 100 ≈ 1000 ppm of nitric oxide or carbon monoxide to the shielding gas could also reduce Cr(6+) concentrations up to 57% and 35%, respectively; however, these reducing agents created potential hazards from the release of unreacted agents. Results of the field test showed that the addition of 1.6% of TMS carrier gas to the primary shielding gas reduced Cr(6+) concentration to the limitation of detection (1.1 μg/m(3)). In a worst-case scenario, if TMS vapor leaked into the environment without decomposition and ventilation, the estimated TMS concentration in the condition of field sampling would be a maximum 5.7 ppm, still well below its flammability limit (1%). Based on a previously developed cost model, the use of TMS increases the general cost by 3.8%. No visual deterioration of weld quality caused by TMS was found, although further mechanical testing is necessary.

  16. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-01-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  17. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-04-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  18. Occupational hypersensitivity pneumonitis in a smelter exposed to zinc fumes

    SciTech Connect

    Ameille, J.; Brechot, J.M.; Brochard, P.; Capron, F.; Dore, M.F. )

    1992-03-01

    A smelter exposed to zinc fumes reported severe recurrent episodes of cough, dyspnea and fever. Bronchoalveolar lavage showed a marked increase in lymphocytes count with predominance of CD8 T-lymphocytes. Presence of zinc in alveolar macrophages was assessed by analytic transmission electron microscopy. This is the first case of recurrent bronchoalveolitis related to zinc exposure in which the clinical picture and BAL results indicate a probable hypersensitivity pneumonitis.

  19. A study of the bio-accessibility of welding fumes.

    PubMed

    Berlinger, Balázs; Ellingsen, Dag G; Náray, Miklós; Záray, Gyula; Thomassen, Yngvar

    2008-12-01

    The respiratory bio-accessibility of a substance is the fraction that is soluble in the respiratory environment and is available for absorption. In the case of respiratory exposure the amount of absorbed substance plays a main role in the biological effects. Extensive bio-accessibility studies have always been an essential requirement for a better understanding of the biological effects of different workplace aerosols, such as welding fumes. Fumes generated using three different welding techniques, manual metal arc (MMA) welding, metal inert gas (MIG) welding, and tungsten inert gas (TIG) welding were investigated in the present study. Each technique was used for stainless steel welding. Welding fumes were collected on PVC membrane filters in batches of 114 using a multiport air sampler. Three different fluids were applied for the solubility study: deionised water and two kinds of lung fluid simulants: lung epithelial lining fluid simulant (Gamble's solution) and artificial lung lining fluid simulant (Hatch's solution). In order to obtain sufficient data to study the tendencies in solubility change with time, seven different leaching periods were used (0.5, 1, 2, 4, 8, 16, 24 h), each of them with three replicates. The effect of dissolution temperature was also studied. The total amounts of selected metals in the three different welding fumes were determined after microwave-assisted digestion with the mixture of aqua regia and hydrofluoric acid. The most obvious observation yielded by the results is that the solubility of individual metals varies greatly depending on the welding technique, the composition of the leaching fluid and leaching time. This study shows that the most reasonable choice as a media for the bio-assessment of solubility might be Hatch's solution by a dissolution time of 24 h.

  20. Detailed characterization of welding fumes in personal exposure samples

    NASA Astrophysics Data System (ADS)

    Quémerais, B.; Mino, James; Amin, M. R.; Golshahi, H.; Izadi, H.

    2015-05-01

    The objective of the project was to develop a method allowing for detailed characterization of welding particles including particle number concentration, size distribution, surface chemistry and chemical composition of individual particles, as well as metal concentration of various welding fumes in personal exposure samples using regular sampling equipment. A sample strategy was developed to evaluate the variation of the collection methods on mass concentration. Samples were collected with various samplers and filters at two different locations using our collection system. The first location was using a robotic welding system while the second was manual welding. Collected samples were analysed for mass concentration using gravimetryand metal concentration using ICP/OES. More advanced analysis was performed on selected filters using X-Ray Photoelectron Spectroscopy to determine surface composition of the particles, and X-Ray Diffraction to determine chemical composition of the fumes. Results showed that the robotic system had a lot of variation in space when the collection system was located close to the weld. Collection efficiency was found to be quite variable depending upon the type of filter. As well, metal concentrations in blank filters were dependent upon the type of filter with MCE presenting with the highest blank values. Results obtained with the XRD and XPS systems showed that it was possible to analyse a small of powdered welding fume sample but results on filters were not conclusive.

  1. The effect of thermal loading on laboratory fume hood performance.

    PubMed

    Johnston, J D; Chessin, S J; Chesnovar, B W; Lillquist, D R

    2000-11-01

    A modified version of the ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to evaluate the relationship between thermal loading in a laboratory fume hood and subsequent tracer gas leakage. Three types of laboratory burners were used, alone and in combination, to thermally challenge the hood. Heat output from burners was measured in BTU/hr, which was based on the fuel heat capacity and flow rate. Hood leakage was measured between 2824 and 69,342 BTU/hr. Sulfur hexafluoride (SF6) was released at 23.5 LPM for each level of thermal loading. Duct temperature was also measured during the heating process. Results indicate a linear relationship for both BTU/hr vs. hood leakage and duct temperature vs. hood leakage. Under these test conditions, each increase of 10,000 BTU/hr resulted in an additional 4 ppm SF6 in the manikin's breathing zone (r2 = 0.68). An additional 3.1 ppm SF6 was measured for every 25 degrees F increase in duct temperature (r2 = 0.60). Both BTU/hr and duct temperature models showed p < 0.001. For these tests, BTU/hr was a better predictor of hood leakage than duct temperature. The results of this study indicate that heat output may compromise fume hood performance. This finding is consistent with those of previous studies.

  2. Preparation and Characterization of Single Ion Conductors from High Surface Area Fumed Silica

    NASA Technical Reports Server (NTRS)

    Zhang, H.; Maitra, P.; Liu, B.; Wunder, S. L.; Lin, H.-P.; Salomon, M.; Hagedorn, Norman H. (Technical Monitor)

    2002-01-01

    Anions that can form dissociative salts with Li(+) have been prepared and covalently attached to high surface area fumed silica. When blended with polyethylene oxide (PEO), the functionalized fumed silica suppresses the crystallization of the PEO, provides dimensional stability, and serves as a single ion conductor. Since functionalized fumed silica is easily dispersed in common polar solvents, it can be incorporated in both the polymer electrolyte and the electrodes.

  3. Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility.

    PubMed

    Taube, Fabian

    2013-01-01

    Physicochemical properties, such as particle sizes, composition, and solubility of welding fumes are decisive for the bioaccessibility of manganese and thereby for the manganese cytotoxic and neurotoxic effects arising from various welding fumes. Because of the diverse results within the research on welding fume solubility, this article aims to review and discuss recent literature on physicochemical properties of gas metal arc welding, shielded metal arc welding, and flux-cored arc welding fumes, with focus on solubility properties. This article also presents a short introduction to the literature on arc welding techniques, health effects from manganese, and occupational exposure to manganese among welders.

  4. 42 CFR 84.1140 - Dust, fume, and mist respirators; performance requirements; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High...

  5. 42 CFR 84.1140 - Dust, fume, and mist respirators; performance requirements; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High...

  6. 42 CFR 84.1140 - Dust, fume, and mist respirators; performance requirements; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High...

  7. 42 CFR 84.1140 - Dust, fume, and mist respirators; performance requirements; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High...

  8. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages.

    PubMed

    Badding, Melissa A; Fix, Natalie R; Antonini, James M; Leonard, Stephen S

    2014-01-01

    Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. While federal regulations have reduced permissible worker exposure limits to Cr(VI), this is not always practical considering that welders may work in confined spaces and exhaust ventilation may be ineffective. Thus, there has been a recent initiative to minimize the potentially hazardous components in welding materials by developing new consumables containing much less Cr(VI) and Mn. A new nickel (Ni) and copper (Cu)-based material (Ni-Cu WF) is being suggested as a safer alternative to stainless steel consumables; however, its adverse cellular effects have not been studied. This study compared the cytotoxic effects of the newly developed Ni-Cu WF with two well-characterized welding fumes, collected from gas metal arc welding using mild steel (GMA-MS) or stainless steel (GMA-SS) electrodes. RAW 264.7 mouse macrophages were exposed to the three welding fumes at two doses (50 µg/ml and 250 µg/ml) for up to 24 hours. Cell viability, reactive oxygen species (ROS) production, phagocytic function, and cytokine production were examined. The GMA-MS and GMA-SS samples were found to be more reactive in terms of ROS production compared to the Ni-Cu WF. However, the fumes from this new material were more cytotoxic, inducing cell death and mitochondrial dysfunction at a lower dose. Additionally, pre-treatment with Ni-Cu WF particles impaired the ability of cells to phagocytize E. coli, suggesting macrophage dysfunction. Thus, the toxic cellular responses to welding fumes are largely due to the metal composition. The results also suggest that reducing Cr(VI) and Mn in the generated fume by increasing the concentration of other metals (e.g., Ni, Cu) may not necessarily improve welder safety.

  9. Efficiency of different respiratory protective devices for removal of particulate and gaseous reactive oxygen species from welding fumes.

    PubMed

    Chen, Hsiu-Ling; Chung, Shih-Hsiang; Jhuo, Ming-Lin

    2013-01-01

    Ultraviolet (UV) light inherent to welding processes generates ozone (O(3)) with subsequent formation of reactive oxygen species (ROS) through photochemical reactions when UV light is present with O(3). This study aimed to determine the performance of filters used as respiratory protective devices by welding personnel to simultaneously mitigate particulate and gaseous inhalation hazards. Four respiratory protective devices were selected for this study, including a surgical facemask, a cotton-fabric facemask, an activated-carbon facemask, and an N95 respirator. The removal efficiencies for the particulates in welding fumes were all above 98%. For particulate-phase ROS, the removal efficiencies of the different respiratory protective devices ranged from 83.5% to 94.1%; however, the removal efficiencies for gaseous ROS were only 1.3% (active carbon facemask) to 21.1% (N95 respirator). The data indicated that the respiratory protective devices commercially available cannot block the passage of the gas-phase ROS found in welding fumes.

  10. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    PubMed

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  11. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  12. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R; Stone, Samuel; Chen, Bean T; Schwegler-Berry, Diane; Chapman, Rebecca; Zeidler-Erdely, Patti C; Andrews, Ronnee N; Frazer, David G

    2011-05-01

    Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs.

  13. 30 CFR 70.305 - Respiratory equipment; gas, dusts, fumes, or mists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.305 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved...

  14. Physicochemical Characterization of Simulated Welding Fume from a Spark Discharge System

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Kim, Jong Sung; Stanam, Aditya; Thorne, Peter S.; Grassian, Vicki H.; Peters, Thomas M.

    2014-01-01

    This study introduces spark discharge system (SDS) as a way to simulate welding fumes. The SDS was developed using welding rods as electrodes with an optional coagulation chamber. The size, morphology, composition, and concentration of the fume produced and the concentration of ozone (O3) and nitrogen oxides (NOX) were characterized. The number median diameter (NMD) and total number concentration (TNC) of fresh fume particles were ranged 10–23 nm and 3.1×107–6×107 particles/cm3, respectively. For fresh fume particles, the total mass concentration (TMC) measured gravimetrically ranged 85–760 μg/m3. The size distribution was stable over a period of 12 h. The NMD and TNC of aged fume particles were ranged 81–154 nm and 1.5×106–2.7×106 particles/cm3, respectively. The composition of the aged fume particles was dominated by Fe and O with an estimated stoichiometry between that of Fe2O3 and Fe3O4. Concentrations of O3 and NOX were ranged 0.07–2.2 ppm and 1–20 ppm, respectively. These results indicate that the SDS is capable of producing stable fumes over a long-period that are similar to actual welding fumes. This system may be useful in toxicological studies and evaluation of instrumentation. PMID:25097299

  15. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance tests; all dust, fume, and mist... Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. (a) Resistance to airflow will be measured in the facepiece,...

  16. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance tests; all dust, fume, and mist... Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. (a) Resistance to airflow will be measured in the facepiece,...

  17. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance tests; all dust, fume, and mist... Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. (a) Resistance to airflow will be measured in the facepiece,...

  18. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance tests; all dust, fume, and mist... Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. (a) Resistance to airflow will be measured in the facepiece,...

  19. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance tests; all dust, fume, and mist... Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. (a) Resistance to airflow will be measured in the facepiece,...

  20. 30 CFR 70.305 - Respiratory equipment; gas, dusts, fumes, or mists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.305 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved...

  1. 30 CFR 70.305 - Respiratory equipment; gas, dusts, fumes, or mists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.305 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved...

  2. 30 CFR 70.305 - Respiratory equipment; gas, dusts, fumes, or mists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.305 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved...

  3. 30 CFR 72.701 - Respiratory equipment; gas, dusts, fumes, or mists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.701 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved by NIOSH under 42 CFR part 84...

  4. 30 CFR 70.305 - Respiratory equipment; gas, dusts, fumes, or mists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.305 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved...

  5. Some engineering properties of heavy concrete added silica fume

    SciTech Connect

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-12-16

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated.

  6. Some engineering properties of heavy concrete added silica fume

    NASA Astrophysics Data System (ADS)

    Akkaş, Ayşe; Başyiǧit, Celalettin; Esen, Serap

    2013-12-01

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes' added Silica fume have been investigated.

  7. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... respiratory protection against dusts, fumes, and mists having an air contamination level less than 0.05... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an...

  8. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... respiratory protection against dusts, fumes, and mists having an air contamination level less than 0.05... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an...

  9. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... respiratory protection against dusts, fumes, and mists having an air contamination level less than 0.05... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an...

  10. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Dust, fume, mist, and smoke tests; canister bench..., fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters; minimum requirements. (a) Gas mask canisters containing filters for protection against dusts, fumes, mists, and...

  11. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Dust, fume, mist, and smoke tests; canister bench..., fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters; minimum requirements. (a) Gas mask canisters containing filters for protection against dusts, fumes, mists, and...

  12. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Dust, fume, mist, and smoke tests; canister bench..., fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters; minimum requirements. (a) Gas mask canisters containing filters for protection against dusts, fumes, mists, and...

  13. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Dust, fume, mist, and smoke tests; canister bench..., fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters; minimum requirements. (a) Gas mask canisters containing filters for protection against dusts, fumes, mists, and...

  14. Fume hoods, open canopy type--their ability to capture pollutants in various environments.

    PubMed

    Bender, M

    1979-02-01

    Using field observations, modelling techniques and theoretical analysis, parameters describing the performance and collection efficiency of large industrial canopy fume hoods are established for, a) steady state collection of fume and b) collection of plumes with fluctuating flowrates. Hopper and pool type hoods are investigated. A baffle plate arrangement for placement within hoods is proposed. It prevents recirculation and spillage of fume. Temporary storage of fume surges within the hood is shown to be possible. At a cost of $6 per m3/hr ($10 per ft3/min) of installed fume control system capacity the arrangement promises to save millions of dollars on large new installations and to significantly improve the collection efficiency of many existing systems. A practical application of the results is proposed for the design of electric arc furnace canopy hoods.

  15. Collection, validation and generation of bitumen fumes for inhalation studies in rats Part 3: Regeneration of bitumen fumes, inhalation setup, validation.

    PubMed

    Pohlmann, G; Preiss, A; Koch, W; Kock, H; Elend, M; Raabe, M

    2006-11-01

    Undertaking a chronic inhalation study on bitumen fume presents a challenge in terms of generating sufficient amounts of representative fume. The objective of the study described in this and in previous publications was to collect sufficient fume and use this to develop a laboratory-generated exposure atmosphere, for use in chronic inhalation toxicity studies in rats that resembles, as closely as possible, personal exposures seen in workers during road paving operation. To achieve this goal, atmospheric workplace samples were collected at road paving work sites and compared with bitumen fume condensate samples collected from the headspace of hot bitumen storage tanks. In Parts 1 and 2, we described the collection and analysis of workplace samples, the strategy for in-line extraction of a suitable fraction of bitumen fume collected from the headspace of a bitumen storage tank and the comparison of the collected condensate to the workplace samples. This paper (Part 3) describes the regeneration of bitumen fume for inhalation and the exposure setup used for inhalation studies.

  16. Supplementary catechins attenuate cooking-oil-fumes-induced oxidative stress in rat lung.

    PubMed

    Yang, Chao-Huei; Lin, Chun-Yao; Yang, Joan-Hwa; Liou, Shaw-Yih; Li, Ping-Chia; Chien, Chiang-Ting

    2009-06-30

    Cooking-oil-fumes containing toxic components may induce reactive oxygen species (ROS) to oxidize macromolecules and lead to acute lung injury. Our previous study showed that a decaffineated green tea extract containing (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate can inhibit oxidation, inflammation, and apoptosis. We determined whether the catechins supplement may reduce cooking-oil-fumes-induced acute lung injury in rat. In the urethane-anesthetized Wistar rat subjected to 30-120 min of cooking-oil-fumes exposure, blood ROS significantly increased in the recovery stage. After 30-min cooking-oil-fumes exposure, the enhanced blood ROS level further increased in a time-dependent manner during the recovery stage (321 +/- 69 counts/10 s after 1 h, 540 +/- 89 counts/10 s after 2 h, and 873 +/- 112 counts/10 s after 4 h). Four hours after 30-min cooking-oil-fumes exposure, lung lavage neutrophils and ROS as well as lung tissue dityrosine and 4-hydroxy-2-nonenal increased significantly. Two weeks of catechins supplememnt significantly reduced the enhanced lavage ROS, lung dityrosine and 4-hydroxy-2-nonenal level. Cooking-oil-fumes-induced oxidative stress decreased lung Bcl-2/Bax ratio and HSP70 expression, but catechins treatment preserved the downregulation of Bcl-2/Bax ratio and HSP70 expression. We conclude that catechins supplement attenuates cooking-oil-fumes-induced acute lung injury via the preservation of oil-smoke induced downregulation of antioxidant, antiapoptosis, and chaperone protein expression.

  17. Development of an animal model to study the potential neurotoxic effects associated with welding fume inhalation.

    PubMed

    Antonini, James M; O'Callaghan, James P; Miller, Diane B

    2006-09-01

    Serious questions have been raised regarding a possible causal association between neurological effects in welders and the presence of manganese in welding fume. An experimental model is needed that could examine the potential neurotoxic effect of manganese after pulmonary exposure to welding fume. The National Institute for Occupational Safety and Health (NIOSH) has recently finished construction of a completely automated, computer controlled welding fume generation and inhalation exposure system for laboratory animals. The system is comprised of a programmable six-axis robotic welding arm and a water-cooled arc welding torch. A flexible trunk has been attached to the robotic arm of the welder and is used to collect and transport fume from the vicinity of the arc to the animal exposure chamber. Preliminary fume characterization studies have indicated that particle morphology, size, and chemical composition were comparable to welding fume generated in the workplace. Animal inhalation studies are currently underway. With the development of this novel system, an animal model has been established using controlled welding exposures to investigate the possible mechanisms by which welding fume may affect the central nervous system.

  18. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes

    PubMed Central

    Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J.; McKinney, Walter; Jackson, Mark; Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L.; Roberts, Jenny R.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m3; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their ne counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. PMID:25549921

  19. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

    PubMed

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M

    2015-02-03

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks.

  20. The effects of utilizing silica fume in Portland Cement Pervious Concrete

    NASA Astrophysics Data System (ADS)

    Mann, Daniel Allen

    Silica fume has long been used as a supplementary cementing material to provide a high density, high strength, and durable building material. Silica fume has a particle size a fraction of any conventional cement, which allows it to increase concrete strength by decreasing the porosity especially near the aggregates surface. Because Portland Cement Pervious Concrete (PCPC) has a smaller bond area between aggregate and paste, silica fume has significant impacts on the properties of the PCPC. The research in this paper studies the workability of a cement paste containing silica fume in addition to analyzing the results of testing on Portland Cement Pervious Concrete mixtures that also contained silica fume. Testing conducted included a study of the effects of silica fume on cement's rheological properties at various dosage rates ranging from zero to ten percent by mass. It was determined that silica fume has negligible effects on the viscosity of cement paste until a dosage rate of five percent, at which point the viscosity increases rapidly. In addition to the rheological testing of the cement paste, trials were also conducted on the pervious concrete samples. Sample groups included mixes with river gravel and chipped limestone as aggregate, washed and unwashed, and two different void contents. Workability tests showed that mixtures containing a silica fume dosage rate of 5 percent or less had comparable or slightly improved workability when compared to control groups. Workability was found to decrease at a 7 percent dosage rate. Samples were tested for compressive strength at 7 and 28 days and splitting tensile strength at 28 days. It was found in most sample groups, strength increased with dosage rates of 3 to 5 percent but often decreased when the dosage reached 7 percent. Abrasion testing showed that both samples containing washed aggregate and samples containing silica fume exhibited a reduced mass loss.

  1. Effect of Silica Fume on two-stage Concrete Strength

    NASA Astrophysics Data System (ADS)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  2. Health-hazard evaluation report HETA-86-524-1851, Four Wheel Drive Corportion, Clintonville, Wisconsin

    SciTech Connect

    Matte, T.; Almaguer, D.

    1987-11-01

    Exposures to welding fumes, paint, and asbestos among workers were evaluated. Workers had complained of respiratory and other health problems. Total airborne welding-fume concentrations collected near welders ranged from 0.7 mg/m/sup 3/ to 6.2 mg/m/sup 3/. Concentrations of nickel ranged from 0.001 to 0.022 mg/m/sup 3/. Silver was detected in only one sample. Airborne-asbestos concentrations were below the limit of detection. Analysis of brake shoe shavings showed that they contained 10 to 20% chrysotile asbestos. The authors conclude that there is a health hazard from exposure to welding fume, and that a potential for exposure to asbestos exists in the brake shoe machining area. The authors recommend improvements in ventilation, use of respiratory protective equipment, and engineering controls.

  3. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    PubMed Central

    2010-01-01

    Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of

  4. Reproductive Hazards

    MedlinePlus

    ... such as lead and mercury Chemicals such as pesticides Cigarettes Some viruses Alcohol For men, a reproductive hazard can affect the sperm. For a woman, a reproductive hazard can cause different effects during pregnancy, depending on when she is exposed. ...

  5. Microstructural characterization of a fumed titanium dioxide photocatalyst

    SciTech Connect

    Datye, A.K.; Huang, Min; Riegel, G.; Bolton, J.R.

    1995-02-15

    The authors present observations of a fumed titania photocatalyst using high resolution TEM and X-ray diffraction. The catalyst was observed as-received and after being used for photocatalytic destruction of salicylic acid. The characterization results suggest that the photocatalyst consists of individual single crystal particles of the rutile and anatase phases of titania; no amorphous titania particles could be identified conclusively. The authors also did not detect any particles of anatase that were covered by a layer of rutile, as proposed previously by Bickley et al. No changes were seen in the titania after it was used for photocatalysis of salicylic acid at pH 6 for short times (less than 1 hr).

  6. 42 CFR 84.1147 - Silica mist test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High... minutes each at a continuous airflow rate of 32 liters per minute. (b) The room temperature in the...

  7. 42 CFR 84.1147 - Silica mist test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High... minutes each at a continuous airflow rate of 32 liters per minute. (b) The room temperature in the...

  8. 42 CFR 84.1147 - Silica mist test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High... minutes each at a continuous airflow rate of 32 liters per minute. (b) The room temperature in the...

  9. 42 CFR 84.1147 - Silica mist test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High... minutes each at a continuous airflow rate of 32 liters per minute. (b) The room temperature in the...

  10. The mechanism of cesium immobilization in densified silica-fume blended cement pastes

    SciTech Connect

    Bar-Nes, G. Katz, A.; Peled, Y.; Zeiri, Y.

    2008-05-15

    The role of silica-fume agglomerates, found in densified silica-fume (DSF) pastes, in the immobilization mechanism of Cs ions was studied. Samples of cementitious pastes containing two different forms of silica fume - DSF and raw silica fume (RSF) - were prepared. Leaching experiments showed that both additives reduced the leachability of the metal ion, but the effect of the DSF paste was much stronger. Scanning Electron Microscopy, together with Differential Thermal Analysis, proved that no agglomerated particles were present in the RSF pastes and that the extent of pozzolanic reactivity was higher. We therefore believe that unreacted silica within the DSF agglomerates adsorbs Cs ions and consequently increases their immobilization. Furthermore, this work suggests that during the pozzolanic reaction, a hydrated rim develops around the agglomerate that acts as an additional diffusion barrier for the Cs ions, resulting in an increased efficiency of Cs immobilization.

  11. [Case of polymer fume fever with interstitial pneumonia caused by inhalation of polytetrafluoroethylene (Teflon)].

    PubMed

    Son, Masami; Maruyama, Eiichi; Shindo, Yuichiro; Suganuma, Nobukazu; Sato, Shinji; Ogawa, Masahiro

    2006-07-01

    A 30-year old man was admitted to our hospital with cough, slight fever, and dyspnea that he had developed several hours after inhaling the fumes produced from a Teflon-coated pan, after evaporation of the water in the pan. Chest radiography revealed diffuse infiltrations, and a computed tomography (CT) scan revealed patchy interstitial shadows in both lungs. In pulmonary function tests, the diffusing capacity of the lungs showed a moderate decrease. Leukocytosis and slight hypoxemia were observed. The patient recovered clinically in a few days without any specific treatment. We speculated that the pulmonary problems in this patient may have been induced by the products of thermal degradation of Teflon that were present in the fumes. When Teflon is heated, the fumes generated cause an influenza like syndrome (polymer fume fever) or cause severe toxic effects such as pulmonary edema, pneumonitis, and death in the exposed individual.

  12. 5. West SideElevated Tank Structure with fume exhaust system and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. West Side-Elevated Tank Structure with fume exhaust system and support structure in foreground. - Mare Island Naval Shipyard, Acid Mixing Facility, California Avenue & E Street, Vallejo, Solano County, CA

  13. A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.

    PubMed

    Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul

    2015-12-01

    A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower

  14. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  15. Properties of Silica-Fume Concrete. Repair, Evaluation, Maintenance, and Rehabilitation Research Program

    DTIC Science & Technology

    1991-03-01

    activities were moni- tored by Mr. Donald M. Walley, CTD. COL Larry B. Fulton, EN, was Commander and Director of WES during publi- cation of this report...of American Society for Testing and Materials (ASTM) C 150-86 (ASTM 1987e) for a Type I (low- alkali ) cement. Mineral admixture 9. The silica fume used...the Kinzua Dam Stilling Basin," Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete. SP-91, Vol 2, American Concrete Institute, Detroit, MI

  16. Numerical investigation of turbulent diffusion in push-pull and exhaust fume cupboards.

    PubMed

    Chern, Ming-Jyh; Cheng, Wei-Ying

    2007-08-01

    The aim of this study is to investigate airflow motions and associated pollutant distributions in fume hoods. Currently, most exhaust fume hoods are designed to use an airflow induced by a fan at the top to remove pollutants. Ambient fluids are drawn, flowing toward the opening and subsequently turning to the outlet at the roof. Pollutants are supposedly captured by the airflow and brought out from the cupboard. The present numerical study based on the finite-volume method and the standard k-epsilon turbulence model simulates flow patterns and pollutant distributions in an exhaust fume hood with and without a manikin present. Subsequently, a push-pull air curtain technique is applied to a fume cupboard. To investigate the capturing performance of a push-pull fume cupboard, numerical approaches are used to simulate flow and concentration variations. Numerical results reveal that four characteristic flow modes exist for a variety of speed ratios of push-pull flows and openings. A concave curtain mode which has a fast pull flow and a weak push flow is suggested for the operation of a push-pull fume cupboard. According to ANSI-ASHRAE Standard 110-1995, the local concentration at the specified point is <0.1 parts per million (p.p.m.). Meanwhile, we also examine concentration variations at 12 selected points in front of the sash, and all where the concentration is <0.1 p.p.m. A manikin is put in front of the sash to observe its effect. As a result, the flow and the concentration contours in a push-pull fume cupboard are not affected by a manikin. In terms of those predicted results, it turns out that a push-pull fume cupboard successfully captures pollutants and prevents an operator from breathing pollutants.

  17. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    PubMed

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement.

  18. Non-occupational exposure to paint fumes during pregnancy and fetal growth in a general population.

    PubMed

    Sørensen, Mette; Andersen, Anne-Marie N; Raaschou-Nielsen, Ole

    2010-05-01

    Occupational exposure to organic solvents during pregnancy has been associated with reduced fetal growth. Though organic solvents in the form of paint fumes are also found in the home environment, no studies have investigated the effect of such exposure in a general population. We studied associations between residential exposure to paint fumes during pregnancy and fetal growth within the Danish National Birth Cohort which consecutively recruited pregnant women from 1996 to 2002 from all over Denmark. Around the 30th pregnancy week, 19,000 mothers were interviewed about use of paint in their residence during pregnancy. The mothers were also asked about smoking habits and alcohol consumption during pregnancy, pre-pregnancy weight, height, parity and occupation. Information on birth weight and gestational age was obtained from national registers. We found that 45% of the mothers had been exposed to paint fumes in their residence during pregnancy. We found a statistically significant inverse relationship between exposure to paint fumes and the risk of being small for gestational age. There were no statistically significant associations between exposure to paint fumes and birth weight and risk of preterm birth after adjustment for potential confounders. Our results suggest that there are no causal relationship between non-occupational exposure to paint fumes in the residence during pregnancy and fetal growth.

  19. Cytotoxic effects of four types of welding fumes on macrophages in vitro: a comparative study

    SciTech Connect

    Pasanen, J.T.; Gustafsson, T.E.; Kalliomaeki, P.L.T.; Tossavainen, A.; Jaervisalo, J.O.

    1986-01-01

    The effects of fume particles given off by the manual metal arc (MMA) and metal inert gas (MIG) welding of stainless steel (SS) and mild steel (MS) were studied on rat alveolar macrophage cultures in vitro. The fumes were generated by welding, and particulate material obtained was collected on membrane filters. The macrophage cultures were exposed to the total dust and to its water-insoluble fractions. Cell variability and the release of both lactate dehydrogenase and one lysosomal enzyme from the cells to the medium were measured after an exposure period of 24 h. The cytotoxic control dust was DQ 12 quartz, and the inert control dust was pure titanium dioxide. According to the parameters studied, SS/MMA and MS/MMA welding fumes were cytotoxic to rat alveolar macrophages. The cytotoxic effect of SS/MMA welding fumes decreased after the samples had been washed with phosphate-buffered salt solution. The MIG welding fumes of SS and MS had markedly smaller effects on the cells. Diluted solutions of potassium chromate were also tested in order to investigate its role in the cytotoxicity of SS/MMA welding fumes. The results suggest that hexavalent chromium may be responsible for the cytotoxicity of SS/MMA.

  20. Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity.

    PubMed

    Antonini, James M; Keane, Michael; Chen, Bean T; Stone, Samuel; Roberts, Jenny R; Schwegler-Berry, Diane; Andrews, Ronnee N; Frazer, David G; Sriram, Krishnan

    2011-12-01

    The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m³ (3 h/day × 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile.

  1. Reducing employee exposure potential using the ANSI/ASHRAE 110 Method of Testing Performance of Laboratory Fume Hoods as a diagnostic tool.

    PubMed

    Maupins, K; Hitchings, D T

    1998-02-01

    The primary goal of a laboratory ventilation system is to assure that employee exposure to hazardous chemicals does not exceed acceptable levels. Industrial hygienists at Eli Lilly & Co. were concerned about the adequacy of fume hoods to protect workers in an aging laboratory facility. Wanting to conduct a comprehensive series of tests for a true reading on the containment effectiveness of these hoods, the industrial hygienists went beyond the traditional face velocity tests. Tests prescribed in the ANSI/ASHRAE 110 Method of Testing Performance of Laboratory Fume Hoods (ASHRAE 110) standard including low- and high-volume smoke tests, face velocity tests, and tracer gas containment tests indicated that many of the hoods did not meet industry consensus standards for containment (0.1 ppm), yet met industry recommended face velocity specifications (80-120 ft/min). Based on the results of performance tests and engineering observations of the facility, apparent causes of poor performance were identified, and a mitigation plan was implemented to bring the hoods to the desired containment standards. After completion of the improvements, retesting was conducted to confirm achievement of these standards. Pre- and postmitigation test results, indicating a 99.5% reduction in tracer gas leakage or potential employee exposures, build a strong case for a more complete testing protocol as specified by the ASHRAE 110 test method. The authors recommend that traditional face velocity testing alone be discontinued in favor of the ASHRAE 110 method as a quantitative measure of fume hood performance coupled with the traditional face velocity measurement at periodic intervals to assure continued performance.

  2. Manganese speciation of laboratory-generated welding fumes

    PubMed Central

    Andrews, Ronnee N.; Keane, Michael; Hanley, Kevin W.; Feng, H. Amy; Ashley, Kevin

    2015-01-01

    The objective of this laboratory study was to identify and measure manganese (Mn) fractions in chamber-generated welding fumes (WF) and to evaluate and compare the results from a sequential extraction procedure for Mn fractions with that of an acid digestion procedure for measurement of total, elemental Mn. To prepare Mn-containing particulate matter from representative welding processes, a welding system was operated in short circuit gas metal arc welding (GMAW) mode using both stainless steel (SS) and mild carbon steel (MCS) and also with flux cored arc welding (FCAW) and shielded metal arc welding (SMAW) using MCS. Generated WF samples were collected onto polycarbonate filters before homogenization, weighing and storage in scintillation vials. The extraction procedure consisted of four sequential steps to measure various Mn fractions based upon selective solubility: (1) soluble Mn dissolved in 0.01 M ammonium acetate; (2) Mn (0,II) dissolved in 25 % (v/v) acetic acid; (3) Mn (III,IV) dissolved in 0.5% (w/v) hydroxylamine hydrochloride in 25% (v/v) acetic acid; and (4) insoluble Mn extracted with concentrated hydrochloric and nitric acids. After sample treatment, the four fractions were analyzed for Mn by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). WF from GMAW and FCAW showed similar distributions of Mn species, with the largest concentrations of Mn detected in the Mn (0,II) and insoluble Mn fractions. On the other hand, the majority of the Mn content of SMAW fume was detected as Mn (III,IV). Although the concentration of Mn measured from summation of the four sequential steps was statistically significantly different from that measured from the hot block dissolution method for total Mn, the difference is small enough to be of no practical importance for industrial hygiene air samples, and either method may be used for Mn measurement. The sequential extraction method provides valuable information about the oxidation state of Mn in samples

  3. Landslide Hazards

    USGS Publications Warehouse

    ,

    2000-01-01

    Landslide hazards occur in many places around What Can You Do If You Live Near Steep Hills? the world and include fast-moving debris flows, slow-moving landslides, and a variety of flows and slides initiating from volcanoes. Each year, these hazards cost billions of dollars and cause numerous fatalities and injuries. Awareness and education about these hazards is a first step toward reducing damaging effects. The U.S. Geological Survey conducts research and distributes information about geologic hazards. This Fact Sheet is published in English and Spanish and can be reproduced in any form for further distribution. 

  4. Genotoxic effects of fumes from asphalt modified with waste plastic and tall oil pitch.

    PubMed

    Lindberg, Hanna K; Väänänen, Virpi; Järventaus, Hilkka; Suhonen, Satu; Nygren, Jonas; Hämeilä, Mervi; Valtonen, Jarkko; Heikkilä, Pirjo; Norppa, Hannu

    2008-05-31

    As the use of recycled materials and industrial by-products in asphalt mixtures is increasing, we investigated if recycled additives modify the genotoxicity of fumes emitted from asphalt. Fumes were generated in the laboratory at paving temperature from stone-mastic asphalt (SMA) and from SMA modified with waste plastic (90% polyethylene, 10% polypropylene) and tall oil pitch (SMA-WPT). In addition, fumes from SMA, SMA-WPT, asphalt concrete (AC), and AC modified with waste plastic and tall oil pitch (AC-WPT) were collected at paving sites. The genotoxicity of the fumes was studied by analysis of DNA damage (measured in the comet assay) and micronucleus formation in human bronchial epithelial BEAS 2B cells in vitro and by counting mutations in Salmonella typhimurium strains TA98 and YG1024. DNA damage was also assessed in buccal leukocytes from road pavers before and after working with SMA, SMA-WPT, AC, and AC-WPT. The chemical composition of the emissions was analysed by gas chromatography/mass spectrometry. The SMA-WPT fume generated in the laboratory induced a clear increase in DNA damage in BEAS 2B cells without metabolic activation. The laboratory-generated SMA fume increased the frequency of micronucleated BEAS 2B cells without metabolic activation. None of the asphalt fumes collected at the paving sites produced DNA damage with or without metabolic activation. Fumes from SMA and SMA-WPT from the paving sites increased micronucleus frequency without metabolic activation. None of the asphalt fumes studied showed mutagenic activity in Salmonella. No statistically significant differences in DNA damage in buccal leukocytes were detected between the pre- and post-shift samples collected from the road pavers. However, a positive correlation was found between DNA damage and the urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) after work shift, which suggested an association between occupational exposures during road paving and genotoxic effects. Our

  5. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying...

  6. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying...

  7. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying...

  8. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying...

  9. Surface structure and properties of mixed fumed oxides.

    PubMed

    Gun'ko, V M; Blitz, J P; Gude, K; Zarko, V I; Goncharuk, E V; Nychiporuk, Y M; Leboda, R; Skubiszewska-Zieba, J; Osovskii, V D; Ptushinskii, Y G; Mishchuk, O A; Pakhovchishin, S V; Gorbik, P P

    2007-10-01

    A variety of fumed oxides such as silica, alumina, titania, silica/alumina (SA), silica/titania (ST), and alumina/silica/titania (AST) were characterized. These oxides have different specific surface areas and different primary particle composition in the bulk and at the surface. These materials were studied by FTIR, NMR, Auger electron spectroscopy, one-pass temperature-programmed desorption with mass spectrometry control (OP TPDMS), microcalorimetry, and nitrogen adsorption. Nonlinear changes in the surface content of alumina in SA and AST and titania in ST and AST samples with increasing oxide content along with simultaneous changes in their specific surface area cause complex dependencies of the heat of immersion in water and desorption of water on heating on the structural parameters. Simultaneous analysis of changes in the surface phase composition, in the concentration of hydroxyls, and in the structural characteristics reveals that at a low content of the second phase the structural characteristics (e.g., S(BET)) are predominant; however, at a large content of these oxides the phase composition plays a more important role.

  10. Changes of glycoconjugate expression in nasal respiratory mucosa of rats exposed to welding fumes.

    PubMed

    Jeong, Gil Nam; Jo, Un Bock; Yu, Il Je

    2007-09-01

    To investigate the effects of welding fumes on the glycoconjugates in nasal respiratory mucosa, male Sprague-Dawley rats were exposed to manual metal arc stainless steel (MMA-SS) welding fumes at a concentration of 56-76 mg/m(3) total suspended particulate for 2 h/day in an inhalation chamber for 90 days. During the exposure period, the experimental animals were sacrificed after 2 h and 15, 30, 60, and 90 days of exposure; then sections were examined using lectin histochemistry. Some remarkable changes, such as destroyed cilia, desquamation and mucification of epithelial cells, and destruction of nasal septal glands, were seen in the welding fume-exposed groups. Specific changes in the lectin binding patterns were also observed in the welding fume-exposed rats. The Ricinus communis agglutinin-I (RCA-I) staining of the cilia and columnar cells increased slightly when compared with the unexposed rats. The RCA-I and Ulex europaeus agglutinin-I (UEA-I) staining of the goblet cells also increased as the exposure continued. The mucigenous epithelial cells reacted with Bandeiraea simplicifolia lectin-I (BSL-I), RCA-I, and succinylated wheat germ agglutinin A (sWGA) after 15 days of exposure, which was not visible in the control group. The dorsal septal glands exhibited an affinity with peanut agglutinin (PNA), BSL-I, and RCA-I, which was also not visible in the control group. The affinity for Dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA), PNA, sWGA, BSL-I, and UEA-I in the ventral septal glands of the welding fume-exposed groups tended to increase, whereas the concanavalin A (Con A) reactivity in the dorsal septal glands decreased slightly. In conclusion, it was assumed that the changes in the glycoconjugate residues in the nasal respiratory mucosa of the welding fume-exposed rats represented important components of defense mechanisms against the toxicants in the welding fumes.

  11. The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints

    NASA Astrophysics Data System (ADS)

    Day, Joanna S.; Edwards, Howell G. M.; Dobrowski, Steven A.; Voice, Alison M.

    2004-07-01

    This paper describes the application of Raman spectroscopy to the detection of exogenous substances in cyanoacrylate-fumed fingerprints. The scenario considered was that of an individual handling a substance and subsequently depositing a contaminated fingerprint. These fingerprints were enhanced by cyanoacrylate fuming, a process in which a layer of white cyanoacrylate polymer is deposited on the fingerprint material, enabling visual detection. Five drugs of abuse (codeine phosphate, cocaine hydrochloride, amphetamine sulphate, barbital and nitrazepam) and five non-controlled substances of similar appearance, which may be used in the adulteration of drugs of abuse (caffeine, aspirin, paracetamol, starch and talc), were used. The substances studied could be clearly distinguished using their Raman spectra and were all successfully detected in cyanoacrylate-fumed fingerprints. Photobleaching was necessary to reduce the fluorescence background in the spectra of some substances. Raman spectra obtained from the substances in cyanoacrylate-fumed fingerprints were of a similar quality to spectra obtained from the substances under normal sampling conditions, however, interfering Raman bands arising from the cyanoacrylate polymer were present in the spectra. In most cases the only interfering band was the CN stretching mode of the polymer, and there were no cases where the interfering bands prevented identification of the substances. If necessary, the interfering bands could be successfully removed by spectral subtraction. The most difficult aspect of the detection of these substances in cyanoacrylate-fumed fingerprints was visually locating the substance in the fingerprint beneath the polymer layer in order to obtain a Raman spectrum.

  12. Effects of Exposure to Welding Fume on Lung Function: Results from the German WELDOX Study.

    PubMed

    Lehnert, M; Hoffmeyer, F; Gawrych, K; Lotz, A; Heinze, E; Berresheim, H; Merget, R; Harth, V; Van Gelder, R; Hahn, J-U; Hartwig, A; Weiß, T; Pesch, B; Brüning, T

    2015-01-01

    The association between exposure to welding fume and chronic obstructive pulmonary disease (COPD) has been insufficiently clarified. In this study we assessed the influence of exposure to welding fume on lung function parameters. We investigated forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and expiratory flow rates in 219 welders. We measured current exposure to respirable particles and estimated a worker's lifetime exposure considering welding techniques, working conditions and protective measures at current and former workplaces. Multiple regression models were applied to estimate the influence of exposure to welding fume, age, and smoking on lung function. We additionally investigated the duration of working as a welder and the predominant welding technique. The findings were that age- and smoking-adjusted lung function parameters showed no decline with increasing duration, current exposure level, and lifetime exposure to welding fume. However, 15% of the welders had FEV1/FVC below the lower limit of normal, but we could not substantiate the presence of an association with the measures of exposure. Adverse effects of cigarette smoking were confirmed. In conclusion, the study did not support the notion of a possible detrimental effect of exposure to welding fume on lung function in welders.

  13. Home cage locomotor changes in non-human primates after prolonged welding-fume exposure.

    PubMed

    Kim, Choong Yong; Sung, Jae Hyuck; Chung, Yong Hyun; Park, Jung Duck; Han, Jeong Hee; Lee, Jong Seong; Heo, Jeong Doo; Yu, Il Je

    2013-12-01

    To define the relationship between the brain concentration of manganese and neurological signs, such as locomotion, after prolonged welding-fume exposure, cynomolgus monkeys were acclimated for 1 month and then divided into three concentration groups: unexposed, low concentration (31 mg/m(3) total suspended particulate (TSP), 0.9 mg/m(3) of Mn), and high concentration (62 mg/m(3) TSP, 1.95 mg/m(3) of Mn) of TSP. The monkeys were exposed to manual metal-arc stainless steel (MMA-SS) welding fumes for 2 h per day over 8 months in an inhalation chamber system equipped with an automatic fume generator. The home cage locomotor activity and patterns were determined using a camera system over 2-4 consecutive days. After 25 and 32 weeks of exposure, the home cage locomotor activity of the high-concentration primates was found to be 5-6 times higher than that of the unexposed primates, and this increased locomotor activity was maintained for 7 weeks after ceasing the welding-fume exposure, eventually subsiding to three times higher after 13 weeks of recovery. Therefore, the present results, along with our previous observations of a high magnetic resonance imaging (MRI) T1 signal in the globus pallidus and increased blood Mn concentration, indicate that prolonged welding-fume exposure can cause neurobehavioral changes in cynomolgus monkeys.

  14. Hazardous'' terminology

    SciTech Connect

    Powers, J.

    1991-01-01

    A number of terms (e.g., hazardous chemicals,'' hazardous materials,'' hazardous waste,'' and similar nomenclature) refer to substances that are subject to regulation under one or more federal environmental laws. State laws and regulations also provide additional, similar, or identical terminology that may be confused with the federally defined terms. Many of these terms appear synonymous, and it easy to use them interchangeably. However, in a regulatory context, inappropriate use of narrowly defined terms can lead to confusion about the substances referred to, the statutory provisions that apply, and the regulatory requirements for compliance under the applicable federal statutes. This information Brief provides regulatory definitions, a brief discussion of compliance requirements, and references for the precise terminology that should be used when referring to hazardous'' substances regulated under federal environmental laws. A companion CERCLA Information Brief (EH-231-004/0191) addresses toxic'' nomenclature.

  15. Identifying Hazards

    EPA Pesticide Factsheets

    The federal government has established a system of labeling hazardous materials to help identify the type of material and threat posed. Summaries of information on over 300 chemicals are maintained in the Envirofacts Master Chemical Integrator.

  16. Coastal Hazards.

    ERIC Educational Resources Information Center

    Vandas, Steve

    1998-01-01

    Focuses on hurricanes and tsunamis and uses these topics to address other parts of the science curriculum. In addition to a discussion on beach erosion, a poster is provided that depicts these natural hazards that threaten coastlines. (DDR)

  17. 42 CFR 84.1153 - Dust, fume, mist, and smoke tests; canister bench tests; gas masks canisters containing filters...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, mist, and smoke tests; canister bench... Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist;...

  18. Control of airborne nickel welding fumes by means of a vertical laminar air flow system

    SciTech Connect

    Helms, T.C.

    1980-12-08

    The purpose of this study was to evaluate the effeciveness of a clean room facility with laminar air flow in the control of nickel fumes released from metal inert gas (MIG) and shielded metal arc (SMA) welding operations performed on mild steel using nickel filler materials. From data observed in these experiments, it appears that the laminar flow clean room approach to controlling welding fumes can be successful in certain small table top welding operations. However, almost any interferences that obstruct the downward airflow can result in eddy currents and subsequent build-up of fumes by entrapment. Airflow patterns differ significantly when comparing table top operations to welding on large cylindrical and/or doughnut shaped items. (JGB)

  19. Kinetics of the zinc slag-Fuming process: Part i. industrial measurements

    NASA Astrophysics Data System (ADS)

    Richards, G. G.; Brimacombe, J. K.; Toop, G. W.

    1985-09-01

    A study involving industrial measurements and mathematical modeling has been conducted to eluci-date kinetic phenomena in the zinc slag fuming process. In the first part of this three-part paper, the results of industrial measurements and observations are presented. In Part II a mathematical model of the process is developed, and finally in Part III the implications of a kinetic conception of the process for process improvement are explored. The industrial work consisted primarily of slag sampling through the fuming cycles of five different fuming operations. In addition, tuyere back-pressure mea-surements, tuyere photography using a tuyerescope, and sampling of the fume product were under-taken at one operation. Analysis of the slag samples has shown that, in general, the zinc elimination curve is linear with time and that a portion of the injected coal entrains in the slag. Analysis of tuyere back-pressure fluctuations and movie photographs of the tuyere tip indicate that the coal-air mixture enters the slag in the form of discrete bubbles. From these results it can be deduced that the fuming furnace consists of two reaction zones which are created by the division of coal between the slag and the tuyere gas stream. The coal entrained in the slag reduces ZnO and Fe3O4 in a “reduction zone” which is responsible for fuming. The coal remaining in the tuyere gas stream combusts in an “oxidation zone” although a fraction passes through the bath unconsumed and reports to the solid products. The oxidation zone supplies heat to the endothermic reduction reactions and heat losses.

  20. A Case of Tracheal Adenoid Cystic Carcinoma in a Worker Exposed to Rubber Fumes

    PubMed Central

    2013-01-01

    Background Primary tracheal tumors occur infrequently, accounting for less than 0.1% of all tumors. Adenoid cystic carcinoma (ACC) is the second most common type of malignancy of the trachea after squamous cell carcinoma (SCC). Little has been reported on the risk factors for tracheal ACC. The purpose of this study is to describe a case of tracheal ACC in a patient who had been exposed to rubber fumes, and to review the relationship between tracheal ACC and rubber fumes. Case report A 48-year-old man who had been experiencing aggravation of dyspnea for several months was diagnosed as having ACC of the trachea on the basis of a pathologic examination of a biopsy specimen obtained via laser microscopy-guided resection. The patient had been exposed to rubber fumes for 10 years at a tire manufacturing factory where he worked until ACC was diagnosed. His job involved preheating and changing rubber molds during the curing process. Conclusion ACC of both the trachea and the salivary glands show very similar patterns with regard to histopathology and epidemiology and are therefore assumed to have a common etiology. Rubber manufacturing is an occupational risk factor for the development of salivary gland tumors. Further, rubber fumes have been reported to be mutagenic. The exposure level to rubber fumes during the curing process at the patient’s workplace was estimated to be close to or higher than British Occupational Exposure Limits. Therefore, tracheal ACC in this case might have been influenced by occupational exposure to rubber fumes. PMID:24472110

  1. Interstitial lung disease due to fumes from heat-cutting polymer rope.

    PubMed

    Sharman, P; Wood-Baker, R

    2013-09-01

    Interstitial lung disease (ILD) due to inhalation of fume/smoke from heating or burning of synthetic polymers has not been reported previously. A fish farm worker developed ILD after cutting rope (polypropylene and nylon) for about 2 hours per day over an extended period using an electrically heated 'knife'. This process produced fume/smoke that entered the workers breathing zone. No other likely cause was identified. This case suggests that exposure to airborne contaminants generated by the heating or burning of synthetic polymers has the potential to cause serious lung disease.

  2. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    SciTech Connect

    Trautschold, Olivia Carol

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  3. Energy efficient fume and odor control equipment for coil coating line

    SciTech Connect

    Coughran, G.

    1982-06-01

    Wolverine Aluminum Corporation, producer of exterior siding building material, recently installed a Variable Energy Recovery Control System at its Lincoln Park coil coating plant. Boilers had an incinerator which emitted odors and consumed large volumes of gas. The fume incinerators were eliminated by one Model G 56,000 SCFM RE-THE M thermal Oxidizer from Reeco of Morris Plains, NJ. Its chambers, preheaters, two main ducts, and other design features are described. Installation was simple, as was operation. Fumes and odor have been controlled; operating costs have been reduced.

  4. Influence of welding fume on systemic iron status.

    PubMed

    Casjens, Swaantje; Henry, Jana; Rihs, Hans-Peter; Lehnert, Martin; Raulf-Heimsoth, Monika; Welge, Peter; Lotz, Anne; Gelder, Rainer Van; Hahn, Jens-Uwe; Stiegler, Hugo; Eisele, Lewin; Weiss, Tobias; Hartwig, Andrea; Brüning, Thomas; Pesch, Beate

    2014-11-01

    Iron is the major metal found in welding fumes, and although it is an essential trace element, its overload causes toxicity due to Fenton reactions. To avoid oxidative damage, excess iron is bound to ferritin, and as a result, serum ferritin (SF) is a recognized biomarker for iron stores, with high concentrations linked to inflammation and potentially also cancer. However, little is known about iron overload in welders. Within this study, we assessed the iron status and quantitative associations between airborne iron, body iron stores, and iron homeostasis in 192 welders not wearing dust masks. Welders were equipped with personal samplers in order to determine the levels of respirable iron in the breathing zone during a working shift. SF, prohepcidin and other markers of iron status were determined in blood samples collected after shift. The impact of iron exposure and other factors on SF and prohepcidin were estimated using multiple regression models. Our results indicate that respirable iron is a significant predictor of SF and prohepcidin. Concentrations of SF varied according to the welding technique and respiratory protection used, with a median of 103 μg l(-1) in tungsten inert gas welders, 125 μg l(-1) in those wearing air-purifying respirators, and 161 μg l(-1) in other welders. Compared to welders with low iron stores (SF < 25 μg l(-1)), those with excess body iron (SF ≥ 400 μg l(-1)) worked under a higher median concentration of airborne iron (60 μg m(-3) versus 148 μg m(-3)). Even though air concentrations of respirable iron and manganese were highly correlated, and low iron stores have been reported to increase manganese uptake in the gastrointestinal tract, no correlation was seen between SF and manganese in blood. In conclusion, monitoring SF may be a reasonable method for health surveillance of welders. Respiratory protection with air-purifying respirators can decrease iron exposure and avoid chronically higher SF in welders working with

  5. Low Temperature Synthesis of Belite Cement Based on Silica Fume and Lime

    PubMed Central

    Tantawy, M. A.; Shatat, M. R.; El-Roudi, A. M.; Taher, M. A.; Abd-El-Hamed, M.

    2014-01-01

    This paper describes the low temperature synthesis of belite (β-C2S) from silica fume. Mixtures of lime, BaCl2, and silica fume with the ratio of (Ca + Ba)/Si = 2 were hydrothermally treated in stainless steel capsule at 110–150°C for 2–5 hours, calcined at 600–700°C for 3 hours, and analyzed by FTIR, XRD, TGA/DTA, and SEM techniques. Dicalcium silicate hydrate (hillebrandite) was prepared by hydrothermal treatment of lime/silica fume mixtures with (Ca + Ba)/Si = 2 at 110°C for 5 hours. Hillebrandite partially dehydrates in two steps at 422 and 508°C and transforms to γ-C2S at 734°C which in turn transforms to α′-C2S at 955°C which in turn transforms to β-C2S when cooled. In presence of Ba2+ ions, β-C2S could be stabilized with minor transformation to γ-C2S. Mixture of silica fume, lime, and BaCl2 with the ratio of (Ca + Ba)/Si = 2 was successfully utilized for synthesis of β-C2S by hydrothermal treatment at 110°C for 5 hours followed by calcination of the product at 700°C for 3 hours. PMID:27437495

  6. 42 CFR 84.1158 - Dust, fume, and mist tests; respirators with filters; minimum requirements; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air... Requirements for Canisters and Cartridges Type of pesticide respirator Test concentration p.p.m. CCl4 Flow rate... The flow rate shall be the effective flow rate of the device, but shall be not less than 115 l.p.m....

  7. The Use of Feedback in Lab Energy Conservation: Fume Hoods at MIT

    ERIC Educational Resources Information Center

    Wesolowski, Daniel; Olivetti, Elsa; Graham, Amanda; Lanou, Steve; Cooper, Peter; Doughty, Jim; Wilk, Rich; Glicksman, Leon

    2010-01-01

    Purpose: The purpose of this paper is to report on the results of an Massachusetts Institute of Technology Chemistry Department campaign to reduce energy consumption in chemical fume hoods. Hood use feedback to lab users is a crucial component of this campaign. Design/methodology/approach: Sash position sensor data on variable air volume fume…

  8. 42 CFR 84.1147 - Silica mist test for dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Silica mist test for dust, fume, and mist respirators; minimum requirements. 84.1147 Section 84.1147 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  9. 42 CFR 84.1140 - Dust, fume, and mist respirators; performance requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist respirators; performance requirements; general. 84.1140 Section 84.1140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  10. 42 CFR 84.1158 - Dust, fume, and mist tests; respirators with filters; minimum requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist tests; respirators with filters; minimum requirements; general. 84.1158 Section 84.1158 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED...

  11. Computational fluid dynamics as a method for assessing fume cupboard performance.

    PubMed

    Nicholson, G P; Clark, R P; de Calcina-Goff, M L

    2000-05-01

    A commercially available computational fluid dynamic (CFD) software program, specific for HVAC systems, was used to study the performance of an aerodynamic fume cupboard. The numerical results showed good qualitative agreement with physical measurements giving confidence in the CFD model to simulate and predict overall fume cupboard performance. However, there were some quantitative differences specifically around 'aerodynamic' features that could not be accurately simulated by the software code. The CFD model was clearly able to demonstrate differences in performance between good and bad cupboard designs, and show the importance of using rear baffles and lipfoils. It also showed the importance of good design features when a 'worker' was standing against the front edge or when there were draughts in front of the aperture. The computer model was used to simulate the gas tracer containment test method described in BS 7258 (1994) [Laboratory Fume Cupboards], and had a much greater sensitivity than the recommended physical measuring instruments. The results given in this paper demonstrate the potential for using a commercially available software package for the optimisation of fume cupboard design and testing. It also indicates the economy of using CFD compared with building a prototype and testing a model.

  12. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen.

    PubMed

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Khateeb-ur-Rehman; Raashid, M

    2009-09-01

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  13. 42 CFR 84.1158 - Dust, fume, and mist tests; respirators with filters; minimum requirements; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air... Requirements for Canisters and Cartridges Type of pesticide respirator Test concentration p.p.m. CCl4 Flow...

  14. 42 CFR 84.1158 - Dust, fume, and mist tests; respirators with filters; minimum requirements; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air... Requirements for Canisters and Cartridges Type of pesticide respirator Test concentration p.p.m. CCl4 Flow...

  15. 42 CFR 84.1158 - Dust, fume, and mist tests; respirators with filters; minimum requirements; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air... Requirements for Canisters and Cartridges Type of pesticide respirator Test concentration p.p.m. CCl4 Flow...

  16. A Novel Method for Assessing Respiratory Deposition of Welding Fume Nanoparticles

    PubMed Central

    Cena, L. G.; Keane, M. J.; Chisholm, W. P.; Stone, S.; Harper, M.; Chen, B. T.

    2016-01-01

    Welders are exposed to high concentrations of nanoparticles. Compared to larger particles, nanoparticles have been associated with more toxic effects at the cellular level, including the generation of more reactive oxygen species activity. Current methods for welding-fume aerosol exposures do not differentiate between the nano-fraction and the larger particles. The objectives of this work are to establish a method to estimate the respiratory deposition of the nano-fraction of selected metals in welding fumes and test this method in a laboratory setting. Manganese (Mn), Nickel (Ni), Chromium (Cr), and hexavalent chromium (Cr(VI)) are commonly found in welding fume aerosols and have been linked with severe adverse health outcomes. Inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) were evaluated as methods for analyzing the content of Mn, Ni, Cr, and Cr(VI) nanoparticles in welding fumes collected with nanoparticle respiratory deposition (NRD) samplers. NRD samplers collect nanoparticles at deposition efficiencies that closely resemble physiological deposition in the respiratory tract. The limits of detection (LODs) and quantitation (LOQs) for ICP-MS and IC were determined analytically. Mild and stainless steel welding fumes generated with a robotic welder were collected with NRD samplers inside a chamber. LODs (LOQs) for Mn, Ni, Cr, and Cr(VI) were 1.3 μg (4.43 μg), 0.4 μg (1.14 μg), 1.1 μg (3.33 μg), and 0.4 μg (1.42 μg), respectively. Recovery of spiked samples and certified welding fume reference material was greater than 95%. When testing the method, the average percentage of total mass concentrations collected by the NRD samplers was ~30% for Mn, ~50% for Cr, and ~60% for Ni, indicating that a large fraction of the metals may lie in the nanoparticle fraction. This knowledge is critical to the development of toxicological studies aimed at finding links between exposure to welding fume nanoparticles and adverse health

  17. Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes

    SciTech Connect

    Antonini, James M. . E-mail: jga6@cdc.gov; Taylor, Michael D.; Millecchia, Lyndell; Bebout, Alicia R.; Roberts, Jenny R.

    2004-11-01

    Epidemiology suggests that inhalation of welding fumes increases the susceptibility to lung infection. The effects of chemically distinct welding fumes on lung defense responses after bacterial infection were compared. Fume was collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two consumable electrodes: stainless steel (SS) or mild steel (MS). The fumes were separated into water-soluble and -insoluble fractions. The GMA-SS and GMA-MS fumes were found to be relatively insoluble, whereas the MMA-SS was highly water soluble, with the soluble fraction comprised of 87% Cr and 11% Mn. On day 0, male Sprague-Dawley rats were intratracheally instilled with saline (vehicle control) or the different welding fumes (0.1 or 2 mg/rat). At day 3, the rats were intratracheally inoculated with 5 x 10{sup 3} Listeria monocytogenes. On days 6, 8, and 10, left lungs were removed, homogenized, cultured overnight, and colony-forming units were counted to assess pulmonary bacterial clearance. Bronchoalveolar lavage (BAL) was performed on right lungs to recover phagocytes and BAL fluid to measure the production of nitric oxide (NO) and immunomodulatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin (IL)-2, IL-6, and IL-10. In contrast to the GMA-SS, GMA-MS, and saline groups, pretreatment with the highly water soluble MMA-SS fume caused significant body weight loss, extensive lung damage, and a dramatic reduction in pulmonary clearance of L. monocytogenes after infection. NO concentrations in BAL fluid and lung immunostaining of inducible NO synthase were dramatically increased in rats pretreated with MMA-SS before and after infection. MMA-SS treatment caused a significant decrease in IL-2 and significant increases in TNF-{alpha}, IL-6, and IL-10 after infection. In conclusion, pretreatment with MMA-SS increased production of NO and proinflammatory cytokines (TNF-{alpha} and IL-6) after infection, which are likely

  18. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species.

    PubMed

    Keane, Michael; Stone, Samuel; Chen, Bean

    2010-05-01

    Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (<0.01 to ≈ 1% or <0.1 to ≈ 10 microg ml(-1)) and Ni2+ (<0.01 to ≈ 0.2% or <0.1 to ≈ 2 mg ml(-1)) ions were found in biological buffer media, but amounts were highly dependent on pH and the

  19. A novel method for assessing respiratory deposition of welding fume nanoparticles.

    PubMed

    Cena, L G; Keane, M J; Chisholm, W P; Stone, S; Harper, M; Chen, B T

    2014-01-01

    Welders are exposed to high concentrations of nanoparticles. Compared to larger particles, nanoparticles have been associated with more toxic effects at the cellular level, including the generation of more reactive oxygen species activity. Current methods for welding-fume aerosol exposures do not differentiate between the nano-fraction and the larger particles. The objectives of this work are to establish a method to estimate the respiratory deposition of the nano-fraction of selected metals in welding fumes and test this method in a laboratory setting. Manganese (Mn), Nickel (Ni), Chromium (Cr), and hexavalent chromium (Cr(VI)) are commonly found in welding fume aerosols and have been linked with severe adverse health outcomes. Inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) were evaluated as methods for analyzing the content of Mn, Ni, Cr, and Cr(VI) nanoparticles in welding fumes collected with nanoparticle respiratory deposition (NRD) samplers. NRD samplers collect nanoparticles at deposition efficiencies that closely resemble physiological deposition in the respiratory tract. The limits of detection (LODs) and quantitation (LOQs) for ICP-MS and IC were determined analytically. Mild and stainless steel welding fumes generated with a robotic welder were collected with NRD samplers inside a chamber. LODs (LOQs) for Mn, Ni, Cr, and Cr(VI) were 1.3 μg (4.43 μg), 0.4 μg (1.14 μg), 1.1 μg (3.33 μg), and 0.4 μg (1.42 μg), respectively. Recovery of spiked samples and certified welding fume reference material was greater than 95%. When testing the method, the average percentage of total mass concentrations collected by the NRD samplers was ~30% for Mn, ~50% for Cr, and ~60% for Ni, indicating that a large fraction of the metals may lie in the nanoparticle fraction. This knowledge is critical to the development of toxicological studies aimed at finding links between exposure to welding fume nanoparticles and adverse health

  20. Total Fume and Metal Concentrations during Welding in Selected Factories in Jeddah, Saudi Arabia

    PubMed Central

    Balkhyour, Mansour Ahmed; Goknil, Mohammad Khalid

    2010-01-01

    Welding is a major industrial process used for joining metals. Occupational exposure to welding fumes is a serious occupational health problem all over the world. The degree of risk to welder’s health from fumes depends on composition, concentration, and the length of exposure. The aim of this study was to investigate workers’ welding fume exposure levels in some industries in Jeddah, Saudi Arabia. In each factory, the air in the breathing zone within 0.5 m from welders was sampled during 8-hour shifts. Total particulates, manganese, copper, and molybdenum concentrations of welding fumes were determined. Mean values of eight-hour average particulate concentrations measured during welding at the welders breathing zone were 6.3 mg/m3 (Factory 1), 5.3 mg/m3 (Factory 2), 11.3 mg/m3 (Factory 3), 6.8 mg/m3 (Factory 4), 4.7 mg/m3 (Factory 5), and 3.0 mg/m3 (Factory 6). Mean values of airborne manganese, copper, and molybdenum levels measured during welding were in the range of 0.010 mg/m3–0.477 mg/m3, 0.001 mg/m3–0.080 mg/m3 and 0.001 mg/m3–0.058 mg/m3 respectively. Mean values of calculated equivalent exposure values were: 1.50 (Factory 1), 1.56 (Factory 2), 5.14 (Factory 3), 2.21 (Factory 4), 2.89 (Factory 5), and 1.20 (Factory 6). The welders in factories 1, 2, 3, and 4 were exposed to welding fume concentration above the SASO limit value, which may increase the risk of respiratory health problems. PMID:20717553

  1. Effects on the efficiency of activated carbon on exposure to welding fumes

    SciTech Connect

    Ghosh, D.

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  2. Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods

    NASA Astrophysics Data System (ADS)

    Tsai, Su-Jung (Candace); Ada, Earl; Isaacs, Jacqueline A.; Ellenbecker, Michael J.

    2009-01-01

    Manual handling of nanoparticles is a fundamental task of most nanomaterial research; such handling may expose workers to ultrafine or nanoparticles. Recent studies confirm that exposures to ultrafine or nanoparticles produce adverse inflammatory responses in rodent lungs and such particles may translocate to other areas of the body, including the brain. An important method for protecting workers handling nanoparticles from exposure to airborne nanoparticles is the laboratory fume hood. Such hoods rely on the proper face velocity for optimum performance. In addition, several other hood design and operating factors can affect worker exposure. Handling experiments were performed to measure airborne particle concentration while handling nanoparticles in three fume hoods located in different buildings under a range of operating conditions. Nanoalumina and nanosilver were selected to perform handling experiments in the fume hoods. Air samples were also collected on polycarbonate membrane filters and particles were characterized by scanning electron microscopy. Handling tasks included transferring particles from beaker to beaker by spatula and by pouring. Measurement locations were the room background, the researcher's breathing zone and upstream and downstream from the handling location. Variable factors studied included hood design, transfer method, face velocity/sash location and material types. Airborne particle concentrations measured at breathing zone locations were analyzed to characterize exposure level. Statistics were used to test the correlation between data. The test results found that the handling of dry powders consisting of nano-sized particles inside laboratory fume hoods can result in a significant release of airborne nanoparticles from the fume hood into the laboratory environment and the researcher's breathing zone. Many variables were found to affect the extent of particle release including hood design, hood operation (sash height, face velocity

  3. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    PubMed

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be

  4. Alterations in cardiomyocyte function after pulmonary treatment with stainless steel welding fume in rats.

    PubMed

    Popstojanov, Risto; Antonini, James M; Salmen, Rebecca; Ye, Morgan; Zheng, Wen; Castranova, Vincent; Fekedulegn, Desta B; Kan, Hong

    2014-01-01

    Welding fume is composed of a complex of different metal particulates. Pulmonary exposure to different welding fumes may exert a negative impact on cardiac function, although the underlying mechanisms remain unclear. To explore the effect of welding fumes on cardiac function, Sprague-Dawley rats were exposed by intratracheal instillation to 2 mg/rat of manual metal arc hard surfacing welding fume (MMA-HS) once per week for 7 wk. Control rats received saline. Cardiomyocytes were isolated enzymatically at d 1 and 7 postexposure. Intracellular calcium ([Ca(2+)]i) transients (fluorescence ratio) were measured on the stage of an inverted phase-contrast microscope using a myocyte calcium imaging/cell length system. Phosphorylation levels of cardiac troponin I (cTnI) were determined by Western blot. The levels of nonspecific inflammatory marker C-reactive protein (CRP) and proinflammatory cytokine interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Contraction of isolated cardiomyocytes was significantly reduced at d 1 and d 7 postexposure. Intracellular calcium levels were decreased in response to extracellular calcium stimulation at d 7 postexposure. Changes of intracellular calcium levels after isoprenaline hydrochloride (ISO) stimulation were not markedly different between groups at either time point. Phosphorylation levels of cTnI in the left ventricle were significantly lower at d 1 postexposure. The serum levels of CRP were not markedly different between groups at either time point. Serum levels of IL-6 were not detectable in both groups. Cardiomyocyte alterations observed after welding fume treatment were mainly due to alterations in intracellular calcium handling and phosphorylation levels of cTnI.

  5. Total fume and metal concentrations during welding in selected factories in Jeddah, Saudi Arabia.

    PubMed

    Balkhyour, Mansour Ahmed; Goknil, Mohammad Khalid

    2010-07-01

    Welding is a major industrial process used for joining metals. Occupational exposure to welding fumes is a serious occupational health problem all over the world. The degree of risk to welder's health from fumes depends on composition, concentration, and the length of exposure. The aim of this study was to investigate workers' welding fume exposure levels in some industries in Jeddah, Saudi Arabia. In each factory, the air in the breathing zone within 0.5 m from welders was sampled during 8-hour shifts. Total particulates, manganese, copper, and molybdenum concentrations of welding fumes were determined. Mean values of eight-hour average particulate concentrations measured during welding at the welders breathing zone were 6.3 mg/m(3) (Factory 1), 5.3 mg/m(3) (Factory 2), 11.3 mg/m(3) (Factory 3), 6.8 mg/m(3) (Factory 4), 4.7 mg/m(3) (Factory 5), and 3.0 mg/m(3) (Factory 6). Mean values of airborne manganese, copper, and molybdenum levels measured during welding were in the range of 0.010 mg/m(3)-0.477 mg/m(3), 0.001 mg/m(3)-0.080 mg/m(3) and 0.001 mg/m(3)-0.058 mg/m(3) respectively. Mean values of calculated equivalent exposure values were: 1.50 (Factory 1), 1.56 (Factory 2), 5.14 (Factory 3), 2.21 (Factory 4), 2.89 (Factory 5), and 1.20 (Factory 6). The welders in factories 1, 2, 3, and 4 were exposed to welding fume concentration above the SASO limit value, which may increase the risk of respiratory health problems.

  6. Evolution of Welding-Fume Aerosols with Time and Distance from the Source: A study was conducted on the spatiotemporal variability in welding-fume concentrations for the characterization of first- and second-hand exposure to welding fumes.

    PubMed

    Cena, L G; Chen, B T; Keane, M J

    2016-08-01

    Gas metal arc welding fumes were generated from mild-steel plates and measured near the arc (30 cm), representing first-hand exposure of the welder, and farther away from the source (200 cm), representing second-hand exposure of adjacent workers. Measurements were taken during 1-min welding runs and at subsequent 5-min intervals after the welding process was stopped. Number size distributions were measured in real time. Particle mass distributions were measured using a micro-orifice uniform deposition impactor, and total mass concentrations were measured with polytetrafluorothylene filters. Membrane filters were used for collecting morphology samples for electron microscopy. Average mass concentrations measured near the arc were 45 mg/m(3) and 9 mg/m(3) at the farther distance. The discrepancy in concentrations at the two distances was attributed to the presence of spatter particles, which were observed only in the morphology samples near the source. As fumes aged over time, mass concentrations at the farther distance decreased by 31% (6.2 mg/m(3)) after 5 min and an additional 13% (5.4 mg/m(3)) after 10 min. Particle number and mass distributions during active welding were similar at both distances, indicating similar exposure patterns for welders and adjacent workers. Exceptions were recorded for particles smaller than 50 nm and larger than 3 μm, where concentrations were higher near the arc, indicating higher exposures of welders. These results were confirmed by microscopy analysis. As residence time increased, number concentrations decreased dramatically. In terms of particle number concentrations, second-hand exposures to welding fumes during active welding may be as high as first-hand exposures.

  7. [Inhalation exposure to welding fumes of arc welders in processing Cr-Ni steel in large chemical industry].

    PubMed

    Dyrba, B C; Richter, K H

    1989-05-01

    For clearing up the inhalative load by welding fumes and gases of arc welders in industrial workshops mainly working on Cr-Ni-steels the following welding processes were studied: tungsten inert-gas (TIG), electrode-by-hand (EH), metal inert-gas (MIG), and plasma cutting (plasma). From the total load by welding fumes follows the rank TIG less than EH less than plasma less than MIG. Observing the maximum allowable concentration (MACD) for the total welding fume, no MACD for Cr and Ni was found exceeded. Regarding the welding gases ozone and CO no limit values were exceeded. From the results conclusions were made.

  8. Prediction of Flexural Strength of Concretes Containing Silica Fume and Styrene-Butadiene Rubber (SBR) with an Empirical Model

    NASA Astrophysics Data System (ADS)

    Shafieyzadeh, M.

    2015-12-01

    In the flexural test, the theoretical maximum tensile stress at the bottom fiber of a test beam is known as the modulus of rupture or flexural strength. This work deals with the effects of Silica Fume and Styrene-Butadiene Latex (SBR) on flexural strength of concrete. An extensive experimentation was carried out to determine the effects of silica fume and SBR on flexural strength of concrete. Two water-binder ratios and several percentages of silica fume and SBR were considered. Abrams' Law, which was originally formulated for conventional concrete containing cement as the only cementations material, is used for prediction of flexural strength of these concretes. The aim of this work is to construct an empirical model to predict the flexural strength of silica fume-SBR concretes using concrete ingredients and time of curing in water. Also, the obtained results for flexural strength tests have been compared with predicted results.

  9. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... contamination level not less than 0.05 milligram per cubic meter; minimum requirements. 84.1141 Section 84.1141... protection against fumes of various metals having an air contamination level not less than 0.05 milligram...

  10. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contamination level not less than 0.05 milligram per cubic meter; minimum requirements. 84.1141 Section 84.1141... protection against fumes of various metals having an air contamination level not less than 0.05 milligram...

  11. Inhalation exposure of rats to asphalt fumes generated at paving temperatures alters pulmonary xenobiotic metabolism pathways without lung injury.

    PubMed Central

    Ma, Jane Y C; Rengasamy, Apavoo; Frazer, Dave; Barger, Mark W; Hubbs, Ann F; Battelli, Lori; Tomblyn, Seith; Stone, Samuel; Castranova, Vince

    2003-01-01

    Asphalt fumes are complex mixtures of various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). PAHs require bioactivation by the cytochrome P-450 monooxygenase system to exert toxic/carcinogenic effects. The present study was carried out to characterize the acute pulmonary inflammatory responses and the alterations of pulmonary xenobiotic pathways in rats exposed to asphalt fumes by inhalation. Rats were exposed at various doses and time periods to air or to asphalt fumes generated at paving temperatures. To assess the acute damage and inflammatory responses, differential cell counts, acellular lactate dehydrogenase (LDH) activity, and protein content of bronchoalveolar lavage fluid were determined. Alveolar macrophage (AM) function was assessed by monitoring generation of chemiluminescence and production of tumor necrosis factor-alpha and interleukin-1. Alteration of pulmonary xenobiotic pathways was determined by monitoring the protein levels and activities of P-450 isozymes (CYP1A1 and CYP2B1), glutathioneS-transferase (GST), and NADPH:quinone oxidoreductase (QR). The results show that acute asphalt fume exposure did not cause neutrophil infiltration, alter LDH activity or protein content, or affect AM function, suggesting that short-term asphalt fume exposure did not induce acute lung damage or inflammation. However, acute asphalt fume exposure significantly increased the activity and protein level of CYP1A1 whereas it markedly reduced the activity and protein level of CYP2B1 in the lung. The induction of CYP1A1 was localized in nonciliated bronchiolar epithelial (Clara) cells, alveolar septa, and endothelial cells by immunofluorescence microscopy. Cytosolic QR activity was significantly elevated after asphalt fume exposure, whereas GST activity was not affected by the exposure. This induction of CYP1A1 and QR with the concomitant down-regulation of CYP2B1 after asphalt fume exposure could alter PAH metabolism and may lead to potential

  12. Ignition Delays of Alkyl Thiophosphites with White and Red Fuming Nitric Acids Within Temperature Range 80 to -105 F

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ladanyi, Dezso J

    1953-01-01

    Ignition delays of alkyl thiophosphites were obtained in a modified open-cup apparatus and a small-scale rocket engine apparatus. At -40 F, mixed alkyl thiophosphites gave short delays with white fuming nitric acid containing 2 percent water and red fuming nitric acids of widely varying compositions. At -40 F and higher, triethyl trithiophosphite blended with as much as 40 percent n-heptane gave satisfactory self-igniting properties at temperatures as low as -76 F.

  13. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.

    PubMed

    Chen, Jia-Kun

    2016-08-01

    An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002-0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood.

  14. Reduced worker exposure and improved energy efficiency in industrial fume-hoods using an airvest

    SciTech Connect

    Gadgil, A.J.; Faulkner, D.; Fisk, W.J.

    1992-05-01

    Reduction in the breathing zone concentration of an experimentally simulated pollutant, by factors ranging from 100 to 800, was observed with the device (called an airvest). With use of the airvest by the worker, the hood face velocity can be reduced, leading to substantial energy savings in conditioning of make up air in the building. The airvest works by elimination or ventilation of the eddy that develops in front of a worker when the worker stands in the open face of a fume hood. Normally this eddy draws some of the pollutant (commonly generated near and in front of the worker) towards the worker`s breathing zone. Experiments sing a heated full-size mannequin were conducted with a full scale walk-in fume hood. Sulfur hexafluoride was used to simulate pollutant generation and exposure during a work situation. Flow visualization with smoke was also undertaken to evaluate the airvest qualitatively. 3 refs.

  15. A spectrophotometric method for the determination of organic soluble matter in bitumen fumes.

    PubMed

    Vu-Duc, T; Huynh, C K; Lafontaine, M; Bonnet, P; Binet, S

    2002-07-01

    A UV spectrophotometric procedure was validated for the determination of organic soluble matter in bitumen fumes collected by filtration technique. Ultrasonic extraction was carried out with toluene, an efficient extraction solvent for polycyclic aromatic hydrocarbons, followed by UV absorbance measurements at 320 nm. A calibration curve is plotted from the same set of samples determined by classical weighing method. Further determinations can also be made using the slope factor of the calibration curve. The procedure presents obvious simplicity and rapidity advantages and is less prone to losses than the measurements of weight. Inter-method comparisons of samples collected from experimental laboratory-generated penetration bitumen fumes commonly used in road paving showed that the three available procedures-weighing, infrared, and UV--described for the determination of organic soluble matter yield equivalent results.

  16. Combustion fume structure and dynamics. Period of performance, August 16, 1990--September 15, 1991

    SciTech Connect

    Flagan, R.C.

    1991-12-31

    The focus of this research program is on elucidating the fundamental processes that determine the particle size distribution, comparison, and agglomerate structures of coal ash fumes. The ultimate objective of this work is the development and validation of a model for the dynamics of combustion fumes, describing both the evolution of the particle size distribution and the particle morphology. The study employs model systems to address the fundamental questions and to provide rigorous validation of the models to be developed. This first phase of the project has been devoted to the development of a detailed experimental strategy that will allow agglomerates with a broad range of fractal dimensions to be studied in the laboratory.

  17. Vapor-phase staining of cyanoacrylate-fumed latent fingerprints using p-dimethylaminobenzaldehyde.

    PubMed

    Takatsu, Masahisa; Shimoda, Osamu; Teranishi, Hiroyoshi

    2012-03-01

    Contrasting or enhancing of cyanoacrylate ester-fumed latent fingerprints deposited on solvent-sensitive materials such as oil marker writings and rough surface materials such as unglazed earthenware is not easy by conventional dye solutions dipping or dye powder dusting. In this study, a new vapor-phase staining method using p-dimethylaminobenzaldehyde (DMAB) is proposed for staining such materials. DMAB has high volatility and selective absorbability to cyanoacrylate-fumed fingerprints, so that cyanoacrylate-treated samples can be easily stained by leaving them simply in a closed container along with DMAB crystals for 48-96 h at room temperature or in conjunction with the use of mild heating. The stained fingerprint could be excited by UV irradiation (365 nm), and the fluorescent fingerprint was photographed through a UV cut-off filter (420 nm). The new method achieved minimally destructive fluorescent staining for the solvent-sensitive samples and the rough surfaced samples.

  18. Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace

    NASA Astrophysics Data System (ADS)

    Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.

    2012-02-01

    Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.

  19. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    NASA Technical Reports Server (NTRS)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  20. Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media.

    PubMed

    Cruz, Juan C; Würges, Kerstin; Kramer, Martin; Pfromm, Peter H; Rezac, Mary E; Czermak, Peter

    2011-01-01

    Enzymatic catalysis in nonaqueous media is considered as an attractive tool for the preparation of a variety of organic compounds of commercial interest. This approach is advantageous for numerous reasons including the enhanced stability of some substrates and products in solvents, sometimes improved selectivity of the enzyme, and reduction of unwanted water-dependent side reactions since little water is present. Due to the poor solubility of enzymes in these media, mass transfer limitations are sometimes present, leading to low apparent catalytic activity. Immobilization on solid supports has been successfully applied to overcome enzyme solubility issues by increasing the accessibility of substrates to the enzymes' active sites. We have developed a simple immobilization protocol that uses fumed silica as support. Fumed silica is an inexpensive nanostructured material with unique properties including large surface area and exceptional adsorptive affinity for organic macromolecules. Our protocol is performed in two main steps. First, the enzyme molecules are physically adsorbed on the surface of the non-porous fumed silica nanoparticles with the participation of silanol groups (Si-OH) and second, water is removed by lyophilization. The protocol has been successfully applied to both s. Carlsberg and Candida antarctica lipase B (CALB). The resulting fumed silica-based nanobiocatalysts of these two enzymes were tested for catalytic activity in hexane. The transesterification of N-acetyl-L: -phenylalanine ethyl ester was the model reaction for s. Carlsberg nanobiocatalysts. The simple esterification of geraniol and the enantioselective transesterification of (RS)-1-phenylethanol were the model reactions for CALB nanobiocatalysts. The observed catalytic activities were remarkably high and even exceeded those of commercially available preparations.

  1. Contraction-free, fume-fixed longitudinal sections of fresh frozen muscle

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Slocum, Glenn R.

    1988-01-01

    Contraction damage occurring when longitudinal frozen sections of fresh unfixed muscles are thawed on microscope slides has limited histological examination of this tissue mainly to cross sections. Longitudinally oriented sections are advantageous for investigating properties that vary along the length of the muscle fibers. A fume fixation technique has been developed for preventing contraction of thick longitudinal frozen sections. The technique is compatible with histochemical staining of enzymes.

  2. The effects of fumed silica and barite on the aluminum resistance of alumina castables

    NASA Astrophysics Data System (ADS)

    Afshar, Saied; Gaubert, Christophe; Allaire, Claude

    2003-11-01

    A study of the effects of microsilica and barium sulfate as additives in high-tabular alumina castables on cold and hot modulus of rupture, porosity, thermal shock, and corrosion resistance to aluminum attack is reported in this article. This investigation underlined the importance of the quality of fumed silica on the physical and mechanical properties of refractory castables, and also confirmed the importance of celsian formation during firing in the protection of refractory against aluminum attack.

  3. Increased levels of oxidative DNA damage attributable to cooking-oil fumes exposure among cooks.

    PubMed

    Ke, Yuebin; Cheng, Jinquan; Zhang, Zhicheng; Zhang, Renli; Zhang, Zhunzhen; Shuai, Zhihong; Wu, Tangchun

    2009-07-01

    Previous investigations have indicated that cooks are exposed to polycyclic aromatic hydrocarbons (PAHs) from cooking-oil fumes. However, Emission of PAH and their carcinogenic potencies from cooking oil fumes sources have not been investigated among cooks. To investigate the urinary excretion of a marker for oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG), in different groups of cooks and different exposure groups, and to study the association between 8-OHdG and 1-hydroxypyrene(1-OHP), a biological marker for PAH exposure. Urine samples were collected from different groups of cooks (n = 86) and from unexposed controls (n = 36); all were male with similar age and smoking habits. The health status, occupational history, smoking, and alcohol consumption 24 h prior to sampling was estimated from questionnaires. The urine samples were frozen for later analyses of 8-OHdG and 1-OHP levels by high-performance liquid chromatography. Excretion in urine of 8-OHdG was similar for controls (mean 1.2micromol/mol creatinine, n = 36), and for those who had been in the kitchen with an exhaust-hood operating (mean 1.5micromol/mol creatinine, n = 45). Cooks exposed to cooking-oil fumes without exhaust-hood operation had significantly increased excretion of 8-OHdG (mean 2.3micromol/mol creatinine, n = 18), compared with controls. The urinary levels of ln 1-OHP and ln 8-OHdG were still significantly correlated in a multiple regression analysis. The results indicate that exposure to PAH or possibly other compounds in cooking-oil fumes may cause oxidative DNA damage.

  4. The precancerous effect of emitted cooking oil fumes on precursor lesions of cervical cancer.

    PubMed

    Lee, Chien-Hung; Yang, Sheau-Fang; Peng, Chiung-Yu; Li, Ruei-Nian; Chen, Yu-Chieh; Chan, Te-Fu; Tsai, Eing-Mei; Kuo, Fu-Chen; Huang, Joh-Jong; Tsai, Hsiu-Ting; Hung, Yu-Hsiu; Huang, Hsiao-Ling; Tsai, Sharon; Wu, Ming-Tsang

    2010-08-15

    Although cooking emission from high-temperature frying has been deemed a Group 2A carcinogen by the International Agency for Research on Cancer, little is known about its impact on cervical tumorigenesis. To investigate the precancerous consequence of cooking oil fumes on cervical intraepithelial neoplasm (CIN), a community-based case-control study, which takes all known risk factors into consideration, was conducted in Taiwan. From 2003 to 2008, in a Pap smear screening and biopsy examination network, 206 pathology-verified women with inflammations/atypical squamous cells of undetermined significance or CIN grade-1 (CIN1) and 73 with CIN2-3 (defined as low-grade squamous intraepithelial lesions (LGSIL) and high-grade squamous intraepithelial lesions (HGSIL), respectively); and 1,200 area-and-age-matched controls with negative cytology were recruited. Multinomial logistic regression was applied in the multivariate analysis to determine the likelihood of contracting LGSIL or HGSIL. The risks of the two lesions increased with the increase of carcinogenic high-risk human papillomavirus DNA load, with a clear dose-response relationship. Chefs were observed to experience a 7.9-fold elevated HGSIL risk. Kitchens with poor fume ventilation during the main cooking life-stage correlated to a 3.7-fold risk of HGSIL, but not for LGSIL. More than 1 hr of daily cooking in kitchens with poor fume conditions appeared to confer an 8.4-fold HGSIL risk, with an 8.3-fold heterogeneously higher odds ratio than that (aOR = 1.0) for LGSIL. Similar risk pattern has been reproduced among never-smoking women. Our findings demonstrate the association between indoor exposure to cooking fumes from heated oil and the late development of cervical precancerous lesions. This final conclusion needs to be verified by future research.

  5. Characteristics of PAHs from deep-frying and frying cooking fumes.

    PubMed

    Yao, Zhiliang; Li, Jing; Wu, Bobo; Hao, Xuewei; Yin, Yong; Jiang, Xi

    2015-10-01

    Cooking fumes are an important indoor source of polycyclic aromatic hydrocarbons (PAHs). Because indoor pollution has a more substantial impact on human health than outdoor pollution, PAHs from cooking fumes have drawn considerable attention. In this study, 16 PAHs emitted through deep-frying and frying methods using rapeseed, soybean, peanut, and olive oil were examined under a laboratory fume hood. Controlled experiments were conducted to collect gas- and particulate-phase PAHs emitted from the cooking oil fumes, and PAH concentrations were quantified via high-performance liquid chromatography (HPLC). The results show that deep-frying methods generate more PAHs and benzo[a]pyrene (B[a]P) (1.3 and 10.9 times, respectively) because they consume greater volumes of edible oil and involve higher oil temperatures relative to those of frying methods. In addition, the total B[a]Peq concentration of deep-frying is 2.2-fold larger than that of frying. Regarding the four types of edible oils studied, rapeseed oil produced more PAH emission than the other three oil varieties. For all of the cooking tests, three- and four-ringed PAHs were the main PAH components regardless of the food and oil used. Concerning the PAH partition between gas and particulate phase, the gaseous compounds accounted for 59-96 % of the total. Meanwhile, the particulate fraction was richer of high molecular weight PAHs (five-six rings). Deep-frying and frying were confirmed as important sources of PAH pollution in internal environments. The results of this study provide additional insights into the polluting features of PAHs produced via cooking activities in indoor environments.

  6. Chemical composition and morphology of welding fume particles and grinding dusts

    SciTech Connect

    Karlsen, J.T.; Farrants, G.; Torgrimsen, T.; Reith, A. )

    1992-05-01

    Elemental composition and morphology of pure manual metal arc (MMA) welding fumes, pure grinding dust, and combined fume/dust air samples were collected and determined separately under semilaboratory conditions. The base material was stainless steel. The purpose of the present study was to create a synthetic' work situation under semilaboratory conditions by combining one grinding period and two MMA welding periods and comparing these results with results during welding in a workshop. The duty cycles of pure welding and of pure grinding were also observed. A comparison was also made between metal inert gas (MIG) and MMA welding on stainless steel as well as a nickel-rich alloy under regular conditions. The amount of collected material was determined by weighing the membrane filters before and after exposure, and the element contents were determined by atomic spectroscopy. Other transmission electron microscopy (TEM) filters were used for TEM and computer-image analysis, in which the amount of collected material and its morphological characteristics were observed. The arcing time and the consumption of filler material were estimated for different kinds of electrodes. Chemical analysis showed that the contents of manganese and total chromium were lower in grinding dust than in welding fumes. The contents of hexavalent chromium, Cr(VI), in grinding dust were undetectable. Samples collected in welding shops where concomitant grinding was performed contained about 30% less Cr(VI) than those collected under laboratory conditions during welding only. The sizes and shapes of the particles depend on the welding process and distance of collection from the plume of the fume. To compare laboratory experiments with regular welding situations, the experiment must resemble industrial welding.

  7. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    SciTech Connect

    Roberson, P.W.

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  8. Composite polymer electrolytes using fumed silica fillers: synthesis, rheology and electrochemistry

    SciTech Connect

    Khan, Saad A.; Fedkiw, Peter S.; Baker, Gregory L.

    1999-06-28

    The goal of the synthesis research was to devise routes to PEG/fumed silica/lithium salt composites that can be processed and then photochemically cross-linked to form mechanically stable electrolytes. An essential feature of the system is that the ionic conductivity and the mechanical properties must be de-coupled from each other, i.e., cross-linking of the fumed silica matrix must not cause a significant deterioration of the conductivity of the composite. As shown in Figure 2, we prepared a range of surface-modified fumed silicas and investigated their ability to form mechanically stable composite electrolytes. The groups used to modify the surface properties of the silica ranged from simple linear alkyls that render the silica hydrophobia to polyethers that promote compatibility with the electrolyte. From these materials we developed a cross-linkable system that satisfies the criteria of processibility and high-conductivity. The key material needed for the cross-linking reaction are silicas that bear surface-attached monomers. As shown schematically in Figure 3a, we prepared fumed silicas with a combination of surface groups, for example, an octyl chain with different coverages of tethered methacrylates. The length of the tether was varied, and we found that both C{sub 3} and C{sub 8} tethers gave useful composites. The functionalized silicas were combined with PEG-DM, AIBN or benzophenone (free radical initiators), LiClO{sub 4} or Li imide, and either methyl, butyl, or octyl, methacrylate to form stable clear gels. Upon irradiation with UV light, polymerization of both the tethered methacrylate and the added methacrylate took place, yielding a cross-linked rubbery composite material. Ionic conductivity measurements before and after cross-linking showed only a slight decrease (see Figure 9 later), thereby offering strong experimental evidence that the mechanical properties conferred by the silica matrix are de-coupled from the ionic conductivity of the PEG

  9. Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting.

    PubMed

    Dufficy, Martin K; Geiger, Mackenzie T; Bonino, Christopher A; Khan, Saad A

    2015-11-17

    Fumed silica (FS) particles with hydrophobic (R805) or hydrophilic (A150) surface functionalities are incorporated in polyacrylonitrile (PAN) fibers by electrospinning to produce mats with controlled wettability. Rheological measurements are conducted to elucidate the particle-polymer interactions and characterize the system while microscopic and analytic tools are used to examine FS location within both fibers and films to aid in the fundamental understanding of wetting behavior. Unlike traditional polymers, we find these systems to be gel-like, yet electrospinnable; the fumed silica networks break down into smaller aggregates during the electrospinning process and disperse both within and on the surface of the fibers. Composite nanofiber mats containing R805 FS exhibit an apparent contact angle over 130° and remain hydrophobic over 30 min, while similar mats with A150 display rapid surface-wetting with a static contact angle of ∼30°. Wicking experiments reveal that the water absorption properties can be further manipulated, with R805 FS-impregnated mats taking up only 8% water relative to mat weight in 15 min. In contrast, PAN fibers containing A150 FS absorb 425% of water in the same period, even more than the pure PAN fiber (371%). The vastly different responses to water demonstrate the versatility of FS in surface modification, especially for submicron fibrous mats. The role of fumed silica in controlling wettability is discussed in terms of their surface functionality, placement on nanofibers and induced surface roughness.

  10. Enhancement of concrete properties for pavement slabs using waste metal drillings and silica fume.

    PubMed

    Hassani, Abolfazl; Arjmandi, Mohsen

    2010-01-01

    This paper presents a comparative study on the effects of steel fibres and waste metal drillings on the mechanical/physical behaviour of conventional and silica fume concrete. The amount of silica fume used was 10% of cement by mass and the amount of steel fibres and metal drillings used in both concrete mixtures was 0.5% by concrete volume for steel fibres and 0.0, 0.25, 0.50 and 0.75% for metal drillings, respectively. In total, 10 different mixtures were made and tested for compressive strength, modulus of elasticity, flexural strength and toughness. Our data reveal the significant impact of the effect of silica fume, steel fibres and industrial waste metal drillings on the mechanical and physical characteristics of concrete mixtures. The results also show that mixtures with steel fibres and waste metal drillings have comparable behaviour. Hence, there is a potential for use of waste metal drillings as an alternative to steel fibres for specific cases such as concrete pavement slabs.

  11. Toxic effect of cooking oil fumes in primary fetal pulmonary type II-like epithelial cells.

    PubMed

    Cao, Jiyu; Ding, Rui; Wang, Yong; Chen, Daojun; Guo, Dongmei; Liang, Chunmei; Feng, Zhewei; Che, Zhen

    2013-09-01

    Epidemiological studies indicated that there is an increased risk of respiratory tract cancer among cooks and bakers. The cooking oil fumes are believed to conduct this risk, and many studies have focused on evaluating the mutagenicity and finding the mutagenic components in oil fumes. COFs contains two major classes of compounds. One class consists of polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene, benzo[b]fluoranthene, fluoranthene, and benzo[g,h,i]perylene. BaP is a known immunosuppressant. It can also alter cell cycle progression, induce inflammation, and impair DNA repair and apoptotic processes leading to aberrant cellular functioning. This study investigates the effect of toxicity of cooking oil fumes (COFs) in primary ICR mice' fetal lung type II-like epithelium cells (AEC II). The cells were cultured in different concentrations (0, 12.5, 25, 50, 100, and 200μg/ml) of COFs for different time periods. The results showed that cell viability decreased in a dose- and time- dependent manner, which is accompanied by increased malondialdehyde (MDA) level and decreased superoxide dismutase (SOD) and glutathione (GSH) activities. Moreover, comet assay suggested DNA damage, as well as increased production of DNA adducts induced by PAHs. The present study also shows that COFs may disturb cell cycles even at a very low dose. In summary, the present study indicates that COFs may lead to toxicity in AEC II cells.

  12. Development of Welding Fumes Health Index (WFHI) for Welding Workplace’s Safety and Health Assessment

    PubMed Central

    HARIRI, Azian; PAIMAN, Nuur Azreen; LEMAN, Abdul Mutalib; MD. YUSOF, Mohammad Zainal

    2014-01-01

    Abstract Background This study aimed to develop an index that can rank welding workplace that associate well with possible health risk of welders. Methods Welding Fumes Health Index (WFHI) were developed based on data from case studies conducted in Plant 1 and Plant 2. Personal sampling of welding fumes to assess the concentration of metal constituents along with series of lung function tests was conducted. Fifteen metal constituents were investigated in each case study. Index values were derived from aggregation analysis of metal constituent concentration while significant lung functions were recognized through statistical analysis in each plant. Results The results showed none of the metal constituent concentration was exceeding the permissible exposure limit (PEL) for all plants. However, statistical analysis showed significant mean differences of lung functions between welders and non-welders. The index was then applied to one of the welding industry (Plant 3) for verification purpose. The developed index showed its promising ability to rank welding workplace, according to the multiple constituent concentrations of welding fumes that associates well with lung functions of the investigated welders. Conclusion There was possibility that some of the metal constituents were below the detection limit leading to ‘0’ value of sub index, thus the multiplicative form of aggregation model was not suitable for analysis. On the other hand, maximum or minimum operator forms suffer from compensation issues and were not considered in this study. PMID:25927034

  13. Effects of gas and other fume emitting heaters on the development of asthma during childhood

    PubMed Central

    Phoa, L; Toelle, B; Ng, K; Marks, G

    2004-01-01

    Background: Several studies have shown adverse effects of gas cookers and heaters on respiratory health. The long term effects of early life exposure to these appliances are not known. This study investigated the effect of exposure to fume emitting heaters, currently and during the first year of life, on the risk of asthma outcomes. Methods: A cross sectional study of schoolchildren (n = 627) aged 8–11 years was conducted in Belmont, Australia. Information on symptoms and heating types was collected by parent completed questionnaire. Atopy was assessed by skin prick tests and airway hyperresponsiveness (AHR) was assessed by histamine challenge test. Results: There was no association between the current use of fume emitting heaters and any of the asthma outcomes. However, having been exposed to fume emitting heaters during the first year of life was associated with an increased risk of having AHR (relative risk (RR) 1.47, 95% confidence interval (CI) 1.06 to 2.03), recent wheeze (RR 1.44, 95% CI 1.11 to 1.86), and recent wheeze + AHR (RR 2.08, 95% CI 1.31 to 3.31). Conclusion: If confirmed in other settings, this finding would require a review of the range of heating types that are appropriate for use in households in which young children live. PMID:15333848

  14. Risk Communication Concerning Welding Fumes for the Primary Preventive Care of Welding Apprentices in Southern Brazil

    PubMed Central

    Cezar-Vaz, Marta Regina; Bonow, Clarice Alves; Cezar Vaz, Joana

    2015-01-01

    This study’s aim was to assess the perceptions of welding apprentices concerning welding fumes being associated with respiratory and cardiovascular disorders and assess the implementation of risk communication as a primary prevention tool in the welding training process. This quasi-experimental, non-randomized study with before-and-after design was conducted with 84 welding apprentices in Southern Brazil. Poisson Regression analysis was used. Relative Risk was the measure used with a 95% confidence interval and 5% (p ≤ 0.05) significance level. Significant association was found between perceptions of worsened symptoms of respiratory disorders caused by welding fumes and educational level (p = 0.049), the use of goggles to protect against ultraviolet rays (p = 0.023), and access to services in private health facilities without insurance coverage (p = 0.001). Apprentices younger than 25 years old were 4.9 times more likely to perceive worsened cardiovascular symptoms caused by welding fumes after risk communication (RR = 4.91; CI 95%: 1.09 to 22.2). The conclusion is that risk communication as a primary preventive measure in continuing education processes implemented among apprentices, who are future welders, was efficacious. Thus, this study confirms that risk communication can be implemented as a primary prevention tool in welding apprenticeships. PMID:25607606

  15. Risk communication concerning welding fumes for the primary preventive care of welding apprentices in southern Brazil.

    PubMed

    Cezar-Vaz, Marta Regina; Bonow, Clarice Alves; Vaz, Joana Cezar

    2015-01-19

    This study's aim was to assess the perceptions of welding apprentices concerning welding fumes being associated with respiratory and cardiovascular disorders and assess the implementation of risk communication as a primary prevention tool in the welding training process. This quasi-experimental, non-randomized study with before-and-after design was conducted with 84 welding apprentices in Southern Brazil. Poisson Regression analysis was used. Relative Risk was the measure used with a 95% confidence interval and 5% (p ≤ 0.05) significance level. Significant association was found between perceptions of worsened symptoms of respiratory disorders caused by welding fumes and educational level (p = 0.049), the use of goggles to protect against ultraviolet rays (p = 0.023), and access to services in private health facilities without insurance coverage (p = 0.001). Apprentices younger than 25 years old were 4.9 times more likely to perceive worsened cardiovascular symptoms caused by welding fumes after risk communication (RR = 4.91; CI 95%: 1.09 to 22.2). The conclusion is that risk communication as a primary preventive measure in continuing education processes implemented among apprentices, who are future welders, was efficacious. Thus, this study confirms that risk communication can be implemented as a primary prevention tool in welding apprenticeships.

  16. Development and evaluation of an air-curtain fume cabinet with considerations of its aerodynamics.

    PubMed

    Huang, R F; Wu, Y D; Chen, H D; Chen, C-C; Chen, C-W; Chang, C-P; Shih, T-S

    2007-03-01

    In order to avoid the inherent aerodynamic difficulties of the conventional fume hood, an innovative design--the 'air curtain-isolated fume hood' is developed. The new hood applies a specially designed air curtain (which is generated by a narrow planar jet and a suction slot flow at low velocities) across the sash plane. The hood constructed for the study is full size and transparent for flow visualization. The aerodynamic characteristics are diagnosed by using the laser-light-sheet-assisted smoke flow visualization method. Four characteristic air-curtain flow modes are identified in the domain of jet and suction velocities when the sash remains static. Some of these characteristic flow modes have much improved flow patterns when compared with those of the conventional fume hoods. From the viewpoint of the aerodynamics and mass transport, the results indicate that the air curtain properly setup across the sash opening allows almost no sensible exchange of momentum and mass between the flowfields of the cabinet and the outside environment. Two standard sulfur hexafluoride (SF6) tracer gas concentration measurement methods following the ANSI/ASHRAE 110-1995 standard and the prEN14175 protocol for static test are employed to examine the contaminant leakage levels. Results of the rigorous examinations of leakage show unusually satisfactory hood performance. The leakage of the tracer gas can approach almost null (<0.001 p.p.m.) if the jet and suction velocities are properly adjusted.

  17. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding

    PubMed Central

    Bonthoux, Francis

    2016-01-01

    Welding fumes are classified as Group 2B ‘possibly carcinogenic’ and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s−1. The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s−1) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s−1. The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. PMID:27074798

  18. Effect of silica fume on the characterization of the geopolymer materials

    NASA Astrophysics Data System (ADS)

    Khater, Hisham M.

    2013-12-01

    The influence of silica fume (SF) addition on properties of geopolymer materials produced from alkaline activation of alumino-silicates metakaolin and waste concrete produced from demolition works has been studied through the measurement of compressive strength, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy (SEM) analysis. Alumino-silicate materials are coarse aggregate included waste concrete and fired kaolin (metakaolin) at 800°C for 3 h, both passing a sieve of 90 μm. Mix specimens containing silica fume were prepared at water/binder ratios in a range of 0.30 under water curing. The used activators are an equal mix of sodium hydroxide and silicate in the ratio of 3:3 wt.%. The control geopolymer mix is composed of metakaolin and waste concrete in an equal mix (50:50, wt.%). Waste concrete was partially replaced by silica fume by 1 to 10 wt.%. The results indicated that compressive strengths of geopolymer mixes incorporating SF increased up to 7% substitution and then decreased up to 10% but still higher than that of the control mix. Results indicated that compressive strengths of geopolymer mixes incorporating SF increases up to 7% substitution and then decreases up to 10% but still higher than the control mix, where 7% SF-digested calcium hydroxide (CH) crystals, decreased the orientation of CH crystals, reduced the crystal size of CH gathered at the interface, and improved the interface more effectively.

  19. NASA Hazard Analysis Process

    NASA Technical Reports Server (NTRS)

    Deckert, George

    2010-01-01

    This viewgraph presentation reviews The NASA Hazard Analysis process. The contents include: 1) Significant Incidents and Close Calls in Human Spaceflight; 2) Subsystem Safety Engineering Through the Project Life Cycle; 3) The Risk Informed Design Process; 4) Types of NASA Hazard Analysis; 5) Preliminary Hazard Analysis (PHA); 6) Hazard Analysis Process; 7) Identify Hazardous Conditions; 8) Consider All Interfaces; 9) Work a Preliminary Hazard List; 10) NASA Generic Hazards List; and 11) Final Thoughts

  20. Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure–Activity Relationships and Biopersistence in the Lung

    DOE PAGES

    Sun, Bingbing; Wang, Xiang; Liao, Yu-Pei; ...

    2016-08-02

    Contrary to the notion that the use of fumed silica in consumer products can “generally (be) regarded as safe” (GRAS), the high surface reactivity of pyrogenic silica differs from other forms of synthetic amorphous silica (SAS), including the capacity to induce membrane damage and acute proinflammatory changes in the murine lung. Additionally, the chain-like structure and reactive surface silanols also allow fumed silica to activate the NLRP3 inflammasome, leading to IL-1β production. This pathway is known to be associated with subchronic inflammation and profibrogenic effects in the lung by α-quartz and carbon nanotubes. Different from the latter materials, bolus dosemore » instillation of 21 mg/kg fumed silica did not induce sustained IL-1β production or subchronic pulmonary effects. In contrast, the NLRP3 inflammasome pathway was continuously activated by repetitive-dose administration of 3 × 7 mg/kg fumed silica, 1 week apart. We also found that while single-dose exposure failed to induce profibrotic effects in the lung, repetitive dosing can trigger increased collagen production, even at 3 × 3 mg/kg. The change between bolus and repetitive dosing was due to a change in lung clearance, with recurrent dosing leading to fumed silica biopersistence, sustained macrophage recruitment, and activation of the NLRP3 pathway. These subchronic proinflammatory effects disappeared when less surface-reactive titanium-doped fumed silica was used for recurrent administration. Finally, these data indicate that while fumed silica may be regarded as safe for some applications, we should reconsider the GRAS label during repetitive or chronic inhalation exposure conditions.« less

  1. Design, construction, and characterization of a novel robotic welding fume generator and inhalation exposure system for laboratory animals.

    PubMed

    Antonini, James M; Afshari, Aliakbar A; Stone, Sam; Chen, Bean; Schwegler-Berry, Diane; Fletcher, W Gary; Goldsmith, W Travis; Vandestouwe, Kurt H; McKinney, Walter; Castranova, Vincent; Frazer, David G

    2006-04-01

    Respiratory effects observed in welders have included lung function changes, metal fume fever, bronchitis, and a possible increase in the incidence of lung cancer. Many questions remain unanswered regarding the causality and possible underlying mechanisms associated with the potential toxic effects of welding fume inhalation. The objective of the present study was to construct a completely automated, computer-controlled welding fume generation and inhalation exposure system to simulate real workplace exposures. The system comprised a programmable six-axis robotic welding arm, a water-cooled arc welding torch, and a wire feeder that supplied the wire to the torch at a programmed rate. For the initial studies, gas metal arc welding was performed using a stainless steel electrode. A flexible trunk was attached to the robotic arm of the welder and was used to collect and transport fume from the vicinity of the arc to the animal exposure chamber. Undiluted fume concentrations consistently ranged from 90-150 mg/m(3) in the animal chamber during welding. Temperature and humidity remained constant in the chamber during the welding operation. The welding particles were composed of (from highest to lowest concentration) iron, chromium, manganese, and nickel as measured by inductively coupled plasma atomic emission spectroscopy. Size distribution analysis indicated the mass median aerodynamic diameter of the generated particles to be approximately 0.24 microm with a geometric standard deviation (sigma(g)) of 1.39. As determined by transmission and scanning electron microscopy, the generated aerosols were mostly arranged as chain-like agglomerates of primary particles. Characterization of the laboratory-generated welding aerosol has indicated that particle morphology, size, and chemical composition are comparable to stainless steel welding fume generated in other studies. With the development of this novel system, it will be possible to establish an animal model using

  2. Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure–Activity Relationships and Biopersistence in the Lung

    SciTech Connect

    Sun, Bingbing; Wang, Xiang; Liao, Yu-Pei; Ji, Zhaoxia; Chang, Chong Hyun; Pokhrel, Suman; Ku, Justine; Liu, Xiangsheng; Wang, Meiying; Dunphy, Darren R.; Li, Ruibin; Meng, Huan; Mädler, Lutz; Brinker, C. Jeffrey; Nel, André E.; Xia, Tian

    2016-08-02

    Contrary to the notion that the use of fumed silica in consumer products can “generally (be) regarded as safe” (GRAS), the high surface reactivity of pyrogenic silica differs from other forms of synthetic amorphous silica (SAS), including the capacity to induce membrane damage and acute proinflammatory changes in the murine lung. Additionally, the chain-like structure and reactive surface silanols also allow fumed silica to activate the NLRP3 inflammasome, leading to IL-1β production. This pathway is known to be associated with subchronic inflammation and profibrogenic effects in the lung by α-quartz and carbon nanotubes. Different from the latter materials, bolus dose instillation of 21 mg/kg fumed silica did not induce sustained IL-1β production or subchronic pulmonary effects. In contrast, the NLRP3 inflammasome pathway was continuously activated by repetitive-dose administration of 3 × 7 mg/kg fumed silica, 1 week apart. We also found that while single-dose exposure failed to induce profibrotic effects in the lung, repetitive dosing can trigger increased collagen production, even at 3 × 3 mg/kg. The change between bolus and repetitive dosing was due to a change in lung clearance, with recurrent dosing leading to fumed silica biopersistence, sustained macrophage recruitment, and activation of the NLRP3 pathway. These subchronic proinflammatory effects disappeared when less surface-reactive titanium-doped fumed silica was used for recurrent administration. Finally, these data indicate that while fumed silica may be regarded as safe for some applications, we should reconsider the GRAS label during repetitive or chronic inhalation exposure conditions.

  3. 30 CFR 71.700 - Inhalation hazards; threshold limit values for gases, dust, fumes, mists, and vapors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Attn: Customer Service, Cincinnati, OH 45240... for Occupational Safety and Health, 5600 Fishers Lane, Rockville, MD; and at the Public Health...

  4. 30 CFR 71.700 - Inhalation hazards; threshold limit values for gases, dust, fumes, mists, and vapors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Attn: Customer Service, Cincinnati, OH 45240... for Occupational Safety and Health, 5600 Fishers Lane, Rockville, MD; and at the Public Health...

  5. 30 CFR 71.700 - Inhalation hazards; threshold limit values for gases, dust, fumes, mists, and vapors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Attn: Customer Service, Cincinnati, OH 45240... for Occupational Safety and Health, 5600 Fishers Lane, Rockville, MD; and at the Public Health...

  6. 30 CFR 71.700 - Inhalation hazards; threshold limit values for gases, dust, fumes, mists, and vapors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Attn: Customer Service, Cincinnati, OH 45240... for Occupational Safety and Health, 5600 Fishers Lane, Rockville, MD; and at the Public Health...

  7. 30 CFR 71.700 - Inhalation hazards; threshold limit values for gases, dust, fumes, mists, and vapors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Attn: Customer Service, Cincinnati, OH 45240... for Occupational Safety and Health, 5600 Fishers Lane, Rockville, MD; and at the Public Health...

  8. Delisting a Hazardous Waste

    EPA Pesticide Factsheets

    This page discussed the hazardous waste delisting process. A hazardous waste delisting is a rulemaking procedure to amend the list of hazardous wastes to exclude a waste produced at a particular facility.

  9. Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete

    NASA Astrophysics Data System (ADS)

    Memon, Fareed Ahmed; Nuruddin, Muhd Fadhil; Shafiq, Nasir

    2013-02-01

    The effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete (SCGC) was investigated in this paper. The work focused on the concrete mixes with a fixed water-to-geopolymer solid (W/Gs) ratio of 0.33 by mass and a constant total binder content of 400 kg/m3. The mass fractions of silica fume that replaced fly ash in this research were 0wt%, 5wt%, 10wt%, and 15wt%. The workability-related fresh properties of SCGC were assessed through slump flow, V-funnel, and L-box test methods. Hardened concrete tests were limited to compressive, splitting tensile and flexural strengths, all of which were measured at the age of 1, 7, and 28 d after 48-h oven curing. The results indicate that the addition of silica fume as a partial replacement of fly ash results in the loss of workability; nevertheless, the mechanical properties of hardened SCGC are significantly improved by incorporating silica fume, especially up to 10wt%. Applying this percentage of silica fume results in 4.3% reduction in the slump flow; however, it increases the compressive strength by 6.9%, tensile strength by 12.8% and flexural strength by 11.5%.

  10. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with "covalently" incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-06

    This study is concerned with the incorporation of surface modified fumed silica nanoparticles (FSNPs) into polymethacrylate based monolithic columns for use in reversed phase chromatography (RPC) of small solutes and proteins. First, FSNPs were modified with 3-(trimethoxysilyl)propylmethacrylate (TMSPM) to yield the "hybrid" methacryloyl fumed silica nanoparticle (MFSNP) monomer. The resulting MFSNP was then mixed with glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in a binary porogenic solvent composed of cyclohexanol and dodecanol, and the in situ copolymerization of MFSNP, GMM and EDMA was performed in a stainless steel column of 4.6 mm i.d. The silanol groups of the hybrid monolith thus obtained were grafted with octadecyl ligands by perfusing the hybrid monolithic column with a solution of 4% w/v of dimethyloctadecylchlorosilane (DODCS) in toluene while the column was maintained at 110°C for 6h (in a heated HPLC oven). One of the originalities of this study was to demonstrate MFSNP as a novel derivatized "hybrid monomer" in making RPC monolithic columns with surface bound octadecyl ligands. In this respect, the RPC behavior of the monolithic column with "covalently" incorporated FNSPs having surface grafted octadecyl ligands was evaluated with alkylbenzenes, aniline derivatives and phenolic compounds. The results showed that the hybrid poly(GMA-EDMA-MFSNP) having surface bound octadecyl ligands exhibited hydrophobic interactions under reversed phase elution conditions. Furthermore, six standard proteins were baseline separated on the column using a 10min linear gradient elution at increasing ACN concentration in the mobile phase at a flow rate of 1.0mL/min using a 10 cm×4.6mm i.d. column. The relative standard deviations (RSDs) for the retention times of the tested solutes were lower than 2.1% and 2.4% under isocratic elution and gradient elution conditions, respectively.

  11. Health-hazard evaluation report HETA 85-045-1762, American Crystal Sugar Co. , Crookston, Minnesota

    SciTech Connect

    Almaguer, D.; Boiano, J.M.

    1986-12-01

    Employee exposures to airborne contaminants during sugar-beet processing and to welding fumes during facility maintenance were evaluated at a sugar beet mill owned by the American Crystal Sugar Company (ACSCO), in response to a request from ACSCO's management and the American Federation of Grain Millers International Union. During beet processing, personal breathing-zone and general air samples were collected and analyzed for several chemicals and total and respirable particulates of various dusts. Welding fumes were analyzed by inductively coupled plasma/atomic emission spectroscopy of personal filter samples. The following exposures were considered excessive by the most-stringent criteria: lime-kiln helper to total particulates; Weibul storage-bin housekeeper to sugar dust; diffuser operator and charger to formaldehyde; welders and cutters to total welding fumes and specific metals, particularly hexavalent chromium and nickel. High-volume air and settled-dust samples contained crystalline silica representing a potential hazard. Recommendations include improved particulate containment and ventilation, use of respirators where appropriate, and formaldehyde replacement.

  12. Engineered nanomaterials: exposures, hazards, and risk prevention

    PubMed Central

    2011-01-01

    Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public in industrialized nations) are either developing or using engineered nanomaterials (ENMs) or ENM-containing products. However, our understanding of the occupational, health and safety aspects of ENMs is still in its formative stage. A survey of the literature indicates the available information is incomplete, many of the early findings have not been independently verified, and some may have been over-interpreted. This review describes ENMs briefly, their application, the ENM workforce, the major routes of human exposure, some examples of uptake and adverse effects, what little has been reported on occupational exposure assessment, and approaches to minimize exposure and health hazards. These latter approaches include engineering controls such as fume hoods and personal protective equipment. Results showing the effectiveness - or lack thereof - of some of these controls are also included. This review is presented in the context of the Risk Assessment/Risk Management framework, as a paradigm to systematically work through issues regarding human health hazards of ENMs. Examples are discussed of current knowledge of nanoscale materials for each component of the Risk Assessment/Risk Management framework. Given the notable lack of information, current recommendations to minimize exposure and hazards are largely based on common sense, knowledge by analogy to ultrafine material toxicity, and general health and safety recommendations. This review may serve as an overview for health and safety personnel, management, and ENM workers to establish and maintain a safe work environment. Small start-up companies and research institutions with limited personnel or expertise in nanotechnology health and safety issues may find this review particularly useful. PMID:21418643

  13. Development and characterization of an inclined air-curtain (IAC) fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Tang, Kun-Chi

    2015-06-01

    An inclined air-curtain (IAC) fume hood was developed and characterized using the laser-assisted smoke flow visualization technique and tracer-gas (sulphur hexafluoride) concentration detection method. The IAC fume hood features four innovative design elements: (i) an elongated suction slot installed at the hood roof with an offset towards the rear wall, (ii) an elongated up-blowing planar jet issued from the work surface near the hood inlet, (iii) two deflection plates installed at the left and right side walls, and (iv) a boundary-layer separation controller installed at the sash bottom. Baffles employed in conventional hoods were not used. The suction slot and the up-blowing planar jet formed a rearward-inclined push-pull air curtain. The deflection plates worked with the inclined air curtain to induce four rearward-inclined counter-rotating 'tornados.' The fumes generated in the hood were isolated behind the rearward-inclined air curtain, entrained by the low pressure within the vortical flows, moved up spirally, and finally exhausted through the suction slot. The risk of containment leakage due to the large recirculation vortex that usually exists behind the sash of conventional hoods was reduced by the boundary-layer separation controller. The results of the tracer-gas concentration detection method based on the EN-14175 method showed that the flow field created by the geometric configurations of the IAC hood presented characteristics of low leakage and high resistance to dynamic disturbances at low face velocities. The leakage levels measured by the static, sash movement, and walk-by tests were negligible at a face velocity of 0.26 m s(-1).

  14. Evolution of Welding-Fume Aerosols with Time and Distance from the Source

    PubMed Central

    CENA, L. G.; CHEN, B. T.; KEANE, M. J.

    2016-01-01

    Gas metal arc welding fumes were generated from mild-steel plates and measured near the arc (30 cm), representing first-hand exposure of the welder, and farther away from the source (200 cm), representing second-hand exposure of adjacent workers. Measurements were taken during 1-min welding runs and at subsequent 5-min intervals after the welding process was stopped. Number size distributions were measured in real time. Particle mass distributions were measured using a micro-orifice uniform deposition impactor, and total mass concentrations were measured with polytetrafluorothylene filters. Membrane filters were used for collecting morphology samples for electron microscopy. Average mass concentrations measured near the arc were 45 mg/m3 and 9 mg/m3 at the farther distance. The discrepancy in concentrations at the two distances was attributed to the presence of spatter particles, which were observed only in the morphology samples near the source. As fumes aged over time, mass concentrations at the farther distance decreased by 31% (6.2 mg/m3) after 5 min and an additional 13% (5.4 mg/m3) after 10 min. Particle number and mass distributions during active welding were similar at both distances, indicating similar exposure patterns for welders and adjacent workers. Exceptions were recorded for particles smaller than 50 nm and larger than 3 μm, where concentrations were higher near the arc, indicating higher exposures of welders. These results were confirmed by microscopy analysis. As residence time increased, number concentrations decreased dramatically. In terms of particle number concentrations, second-hand exposures to welding fumes during active welding may be as high as first-hand exposures. PMID:27559198

  15. Smog chamber study on the evolution of fume from residential coal combustion.

    PubMed

    Geng, Chunmei; Wang, Kun; Wang, Wei; Chen, Jianhua; Liu, Xiaoyu; Liu, Hongjie

    2012-01-01

    Domestic coal stoves are widely used in countryside and greenbelt residents in China for heating and cooking, and emit considerable pollutants to the atmosphere because of no treatment of their exhaust, which can result in deteriorating local air quality. In this study, a dynamic smog chamber was used to investigate the real-time emissions of gaseous and particulate pollutants during the combustion process and a static smog chamber was used to investigate the fume evolution under simulate light irradiation. The real-time emissions revealed that the total hydrocarbon (THC) and CO increased sharply after ignition, and then quickly decreased, indicating volatilization of hydrocarbons with low molecular weight and incomplete combustion at the beginning stage of combustion made great contribution to these pollutants. There was evident shoulder peak around 10 min combustion for both THC and CO, revealing the emissions from vitrinite combustion. Additionally, another broad emission peak of CO after 30 min was also observed, which was ascribed to the incomplete combustion of the inertinite. Compared with THC and CO, there was only one emission peak for NOx, SO2 and particular matters at the beginning stage of combustion. The fume evolution with static chamber simulation indicated that evident consumption of SO2 and NOx as well as new particle formation were observed. The consumption rates for SO2 and NOx were about 3.44% hr(-1) and 3.68% hr(-1), the new particle formation of nuclei particles grew at a rate of 16.03 nm/hr during the first reaction hour, and the increase of the diameter of accumulation mode particles was evident. The addition of isoprene to the diluted mixture of the fume could promote 03 and secondary particle formation.

  16. Manganese accumulation in nail clippings as a biomarker of welding fume exposure and neurotoxicity.

    PubMed

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Roberts, Jenny R; Andrews, Ronnee N; Kashon, Michael L; Antonini, James M

    2012-01-27

    Occupational exposure to welding fumes (WF) is thought to cause Parkinson's disease (PD)-like neurological dysfunction. An apprehension that WF may accelerate the onset of PD also exists. Identifying reliable biomarkers of exposure and neurotoxicity are therefore critical for biomonitoring and neurological risk characterization of WF exposure. Manganese (Mn) in welding consumables is considered the causative factor for the neurological deficits seen in welders. Hence, we sought to determine if Mn accumulation in blood or nail clippings can be a marker for adverse exposure and neurotoxicity. To model this, rats were exposed by intratracheal instillation to dissolved or suspended fume components collected from gas metal arc-mild steel (GMA-MS) or manual metal arc-hard surfacing (MMA-HS) welding. Trace element analysis revealed selective Mn accumulation in dopaminergic brain areas, striatum (STR) and midbrain (MB), following exposure to the two fumes. This caused dopaminergic abnormality as evidenced by loss of striatal tyrosine hydroxylase (Th; 25-32% decrease) and Parkinson disease (autosomal recessive, early onset) 7 (Park7; 25-46% decrease) proteins. While blood Mn was not detectable, Mn levels in nails strongly correlated with the pattern of Mn accumulation in the striatum (R(2)=0.9386) and midbrain (R(2)=0.9332). Exposure to manganese chloride (MnCl(2)) caused similar Mn accumulation in STR, MB and nail. Our findings suggest that nail Mn has the potential to be a sensitive and reliable biomarker for long-term Mn exposure and associated neurotoxicity. The non-invasive means by which nail clippings can be collected, stored, and transported with relative ease, make it an attractive surrogate for biomonitoring WF exposures in occupational settings.

  17. Combustion fume structure and dynamics. Period of performance: 8/16/91--2/15/92

    SciTech Connect

    Flagan, R.C.

    1992-12-31

    During pulverized coal combustion, a fume of submicron particles is formed when minerals that have volatilized from the parent coal nucleate to form new particles. The particles thus generated are extremely small, but they grow rapidly due to Brownian coagulation. Much has been learned about these fine particles in experimental studies of the particles formed in coal combustion. Measurements of the variation of chemical composition with particle size clearly demonstrate that the particles smaller than about 0.1 {mu}m in diameter are formed from vapors while larger particles are dominated by residues from the mineral matter in the coal. Theoretical predictions of the evolution of the particle size distribution suggest that the nuclei should produce a sharp peak which may approach 0.1 {mu}m, but they are unlikely to grow much beyond that size in the limited time available in practical combustors. The focus of this research program is on elucidating the fundamental processes that determine the particle size distribution, composition, and agglomerate structures of coal ash fumes. The ultimate objective of this work is the development and validation of a model for the dynamics of combustion fumes, describing both the evolution of the particle size distribution and the particle morphology. The study employs model systems to address the fundamental questions and to provide rigorous validation of the models to be developed. This first phase of the project has been devoted to the development of a detailed experimental strategy that will allow agglomerates with a broad range of fractal dimensions to be studied in the laboratory.

  18. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events.

    PubMed

    Schindler, Birgit Karin; Weiss, Tobias; Schütze, Andre; Koslitz, Stephan; Broding, Horst Christoph; Bünger, Jürgen; Brüning, Thomas

    2013-04-01

    Aircraft cabin air can possibly be contaminated by tricresyl phosphates (TCP) from jet engine oils during fume events. o-TCP, a known neurotoxin, has been addressed to be an agent that might cause the symptoms reported by cabin crews after fume events. A total of 332 urine samples of pilots and cabin crew members in common passenger airplanes, who reported fume/odour during their last flight, were analysed for three isomers of tricresyl phosphate metabolites as well as dialkyl and diaryl phosphate metabolites of four flame retardants. None of the samples contained o-TCP metabolites above the limit of detection (LOD 0.5 μg/l). Only one sample contained metabolites of m- and p-tricresyl phosphates with levels near the LOD. Median metabolite levels of tributyl phosphate (TBP), tris-(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPP) (DBP 0.28 μg/l; BCEP 0.33 μg/l; DPP 1.1 μg/l) were found to be significantly higher than in unexposed persons from the general population. Median tris-(2-chloropropyl) phosphate (TCPP) metabolite levels were significantly not higher in air crews than in controls. Health complaints reported by air crews can hardly be addressed to o-TCP exposure in cabin air. Elevated metabolite levels for TBP, TCEP and TPP in air crews might occur due to traces of hydraulic fluid in cabin air (TBP, TPP) or due to release of commonly used flame retardants from the highly flame protected environment in the airplane. A slight occupational exposure of air crews to organophosphates was shown.

  19. Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes.

    PubMed

    Berlinger, B; Náray, M; Sajó, I; Záray, G

    2009-06-01

    In this work, welding fume samples were collected in a welding plant, where corrosion-resistant steel and unalloyed structural steel were welded by gas metal arc welding (GMAW) and manual metal arc welding (MMAW) techniques. The welding fumes were sampled with a fixed-point sampling strategy applying Higgins-Dewell cyclones. The following solutions were used to dissolve the different species of Ni and Mn: ammonium citrate solution [1.7% (m/v) diammonium hydrogen citrate and 0.5% (m/v) citric acid monohydrate] for 'soluble' Ni, 50:1 methanol-bromine solution for metallic Ni, 0.01 M ammonium acetate for soluble Mn, 25% acetic acid for Mn(0) and Mn(2+) and 0.5% hydroxylammonium chloride in 25% acetic acid for Mn(3+) and Mn(4+). 'Insoluble' Ni and Mn contents of the samples were determined after microwave-assisted digestion with the mixture of concentrated (cc). HNO(3), cc. HCl and cc. HF. The sample solutions were analysed by inductively coupled plasma quadrupole mass spectrometry and inductively coupled plasma atomic emission spectrometry. The levels of total Ni and Mn measured in the workplace air were different because of significant differences of the fume generation rates and the distributions of the components in the welding fumes between the welding processes. For quality control of the leaching process, dissolution of the pure stoichiometric Mn and Ni compounds and their mixtures weighing was investigated using the optimized leaching conditions. The results showed the adequacy of the procedure for the pure metal compounds. Based on the extraction procedures, the predominant oxidation states of Ni and Mn proved to be very different depending on the welding techniques and type of the welded steels. The largest amount of Mn in GMAW fumes were found as insoluble Mn (46 and 35% in case of corrosion-resistant steel and unalloyed structural steel, respectively), while MMAW fumes contain mainly soluble Mn, Mn(0) and Mn(2+) (78%) and Mn(3+) and Mn(4+) (54%) in case of

  20. Effects of magnesium potassium phosphate cements mixed with silica fume on the solidification and reduction of municipal sludge

    NASA Astrophysics Data System (ADS)

    Chen, Yanchang; Wang, Lixin; Song, Peng; Wang, Qi

    2017-01-01

    In order to investigate Magnesium-Potassium Phosphate Cement (MKPC) mixed with silica fume on the solidification and reduction of high moisture content (94%) of municipal sludge. The moisture content of the solidified sludge, volume shrinkage, compressive strength and other properties were studied, and the mechanism was discussed based on phase and morphology analysis. The results indicates that the solidified sludge (30% MKPC) with 30% silica fume can obtain with the early compressive strength of 430 KPa, which reached the requirements of the landfill (≥ 350 KPa). The moisture content of solidified sludge decrease to 30% and the volume shrinkage of solidified sludge can reduce to 68% or less at 7d, which played a key role for sludge reduction. MKPC and silica fume form skeleton structure that can promote the evaporation of moisture in the sludge.

  1. Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC

    NASA Astrophysics Data System (ADS)

    Arel, Hasan Şahan

    The effects of silica fume fineness and fiber aspect ratio on the compressive strength and impact resistance of ultra high-performance fiber-reinforced concrete (UHPFRC) are investigated experimentally. To this end, UHPFRC mixtures are manufactured by combining silica fumes with different fineness (specific surface areas: 17,200, 20,000, and 27,600 m2/kg) and hooked-end steel fibers with various aspect ratios (lengths: 8, 13, and 16 mm). The samples are subjected to standard curing, steam curing, and hot-water curing. Compressive strength tests are conducted after 7-, 28-, 56-, and 90-day curing periods, and an impact resistance experiment is performed after the 90th day. A steam-cured mixture of silica fumes with a specific surface area of 27,600 m2/kg and 16-mm-long fibers produce better results than the other mixtures in terms of mechanical properties. Moreover, impact resistance increases with the fiber aspect ratio.

  2. Effects of lead pollution from vehicular exhaust fumes against sentinel juvenile Achatina achatina.

    PubMed

    Ebenso, I E; Ologhobo, A D

    2008-11-01

    We investigated lead metal pollution induced by traffic fumes along roads with differing traffic intensity near abandoned battery factory (Niger Delta, Nigeria). Juvenile Achatina achatina were positioned as sentinels in plastic snaileries 2 m on road sides. Lead contamination in snail tissue by atomic absorption spectrophotometer increased with increasing vehicular traffic intensity. Snails showed low positive (r (2) = 0.40) relationship and significant (p < 0.05) accumulation of atmospheric lead pollution. Edible snails sold along road sides are prone to lead contamination.

  3. Decontamination of a technetium contaminated fume hood in a research laboratory.

    PubMed

    O'Dou, Thomas J; Bertoia, Julie; Czerwinski, Kenneth R

    2011-08-01

    After 4 y of working with 99Tc in milligram to gram quantities to make many different compounds and provide the resource for the generation of several publications, work in one of the fume hoods used by the University of Nevada, Las Vegas (UNLV), radiochemistry program started to cause an increase in contamination events that were discovered in weekly surveys. It was decided that the hood should be cleaned out when the researchers were away during the winter break in December 2009. The hood, until just before the winter break, held equipment from years of operation.

  4. Morphological, rheological and electrochemical studies ofpoly(ethylene oxide) electrolytes containing fumed silicananoparticles

    SciTech Connect

    Xie, Jiangbing; Kerr, John B.; Duan, Robert G.; Han, Yongbong

    2003-06-01

    In this paper, the rheology and crystallization of composite Poly(Ethylene Oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting point were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

  5. Local exhaust ventilation for the control of welding fumes in the construction industry--a literature review.

    PubMed

    Flynn, Michael R; Susi, Pam

    2012-08-01

    Arc welding is a common unit operation in the construction industry, where frequent changes in location and welding position make it more difficult to control fume exposures than in industries where fixed locations are the norm. Welders may be exposed to a variety of toxic airborne contaminants including manganese (Mn) and hexavalent chromium (CrVI). Local exhaust ventilation (LEV) is a well-known engineering control for welding fumes but has not been adopted widely in the construction industry. This literature review presents data on the performance of a variety of LEV systems for welding fume control from the construction (five references), shipyard (five references), and other industries. The studies indicate that LEV can reduce fume exposures to total particulate, Mn, and CrVI to levels below currently relevant standards. Field studies suggest that 40-50% or more reduction in exposure is possible with portable or fixed LEV systems relative to natural ventilation but that correct positioning of the hood and adequate exhaust flow rates are essential. Successful implementation of extraction guns for gas metal arc welding (GMAW) and flux core arc welding has been demonstrated, indicating that a successful balance between extraction airflow and shielding gas requirements is possible. Work practices are an important part of achieving successful control of fume exposures; in particular, positioning the hood close to the arc, checking exhaust flow rates, and avoiding the plume. Further research is needed on hood size effects for controlling welding fume with portable LEV systems and identifying and overcoming barriers to LEV use in construction.

  6. Characterization of the Potential Hazards Associated with Potential RCRA Treatment Noncompliances

    SciTech Connect

    Clark, David Lewis

    2015-08-20

    The purpose of this document is to provide a hazard evaluation of the noncompliances and whether any new actions are required to mitigate potential risk to the worker or the public. In short, we have reviewed the noncompliances and have concluded that the possibility of exothermic reactions leading to radioactive release is not credible, and in one case, inconceivable, stemming from the fact that the majority fraction of the waste is compatible with organic absorbents and neutralizers. It is not expected that the noncompliances would generate or produce uncontrolled flammable fumes, gases, extreme heat, pressure, fire, explosions, or violent reactions.

  7. Tissue distribution of manganese in iron-sufficient or iron-deficient rats after stainless steel welding-fume exposure.

    PubMed

    Park, Jung-Duck; Kim, Ki-Young; Kim, Dong-Won; Choi, Seong-Jin; Choi, Byung-Sun; Chung, Yong Hyun; Han, Jeong Hee; Sung, Jae Hyuck; Kwon, Il Hoon; Mun, Je-Hyeok; Yu, Il Je

    2007-05-01

    Welders can be exposed to high levels of manganese through welding fumes. Although it has already been suggested that excessive manganese exposure causes neurotoxicity, called manganism, the pathway of manganese transport to the brain with welding-fume exposure remains unclear. Iron is an essential metal that maintains a homeostasis in the body. The divalent metal transporter 1 (DMT1) transports iron and other divalent metals, such as manganese, and the depletion of iron is known to upregulate DMT1 expression. Accordingly, this study investigated the tissue distribution of manganese in iron-sufficient and iron-deficient rats after welding-fume exposure. The feeding of an iron-deficient diet for 4 wk produced a depletion of body iron, such as decreased iron levels in the serum and tissues, and upregulated the DMT1 expression in the rat duodenum. The iron-sufficient and iron-deficient rats were then exposed to welding fumes generated from manual metal arc stainless steel at a concentration of 63.5 +/- 2.3 mg/m3 for 2 h per day over a 30-day period. Animals were sacrificed on days 1, 15, and 30. The level of body iron in the iron-deficient rats was restored to the control level after the welding-fume exposure. However, the tissue distributions of manganese after the welding-fume exposure showed similar patterns in both the iron-sufficient and iron-deficient groups. The concentration of manganese increased in the lungs and liver on days 15 and 30, and increased in the olfactory bulb on day 30. Slight and heterogeneous increases of manganese were observed in different brain regions. Consequently, these findings suggest that the presence of Fe in the inhaled welding fumes may not have a significant effect on the uptake of Mn into the brain. Thus, the condition of iron deficiency did not seem to have any apparent effect on the transport of Mn into the brain after the inhalation of welding fumes.

  8. Effects of magnesium sulfate concentration on the sulfate resistance of mortars with and without silica fume

    SciTech Connect

    Tuerker, F.; Akoez, F.; Koral, S.; Yuezer, N.

    1997-02-01

    An investigation was carried out on the resistance of mortars to magnesium sulfate attack. Experiments were carried out on portland cement (PC) and portland cement-silica fume (PC-SF) mortars. Mortars were immersed in magnesium sulfate solutions after 28 days of lime-saturated water curing. Concentrations were 1900, 13,000 and 52,000 mg/L as SO{sub 4}{sup {minus}2} solutions. A number of physical and mechanical properties were determined at different periods of exposure up to 300 days. For the first 28 days of exposure, some improvements of mortar properties in magnesium sulfate environment were observed. This is the early stage of sulfate attack. Thereafter, negative changes of the properties indicate a transition stage. Deterioration process of mortars was retarded by the presence of silica fume. After the transition stage, negative changes of physical properties accelerate, indicating the later stage. Compressive and flexural strength properties showed different response to magnesium sulfate attack at later stage. Only in 52,000 mg/L concentration, all the measured properties showed clear negative changes.

  9. Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions.

    PubMed

    Warren, Justin; Offenberger, Sean; Toghiani, Hossein; Pittman, Charles U; Lacy, Thomas E; Kundu, Santanu

    2015-08-26

    Shear-thickening fluids (STFs) can be subjected to a significant temperature variation in many applications. Polymeric or oligomeric fluids are commonly used as suspending media for STFs. Because the viscosities of polymeric fluids are strongly temperature-dependent, large temperature changes can profoundly affect the shear-thickening responses. Here, the effect of temperature on the shear-thickening behavior of four low-molecular-weight polymeric glycols/fumed silica suspensions is reported. The dispersed-phase volume fraction, its surface chemistry, and the chemical compositions of the suspending media were varied. These factors influence the viscosity and the interactions between the suspended particles and the suspending media. Fumed silica particles with two different silanol-group surface densities were suspended in the polymeric glycols, where these silanol surface groups formed hydrogen bonds with the suspending media's glycols and internal oxygen atoms. Steady-shear experiments were performed over a temperature range spanning approximately 100 °C. The critical shear rate for the onset of shear thickening decreased with decreasing temperature. The critical shear rates were inversely proportional to the viscosity of the pure suspending media over these same temperature ranges. The response of STFs to varying both the temperature and shear rate investigated here will help to design application-specific STFs. Mitigation of a hypervelocity (6.81 km/s) impact on an aluminum facesheet sandwich composite filled with one of these STFs was demonstrated.

  10. Sampling and analysis of hexavalent chromium during exposure to chromic acid mist and welding fumes.

    PubMed

    Blomquist, G; Nilsson, C A; Nygren, O

    1983-12-01

    Sampling and analysis of hexavalent chromium during exposure to chromic acid mist and welding fumes. Scand j work environ & health 9 (1983) 489-495. In view of the serious health effects of hexavalent chromium, the problems involved in its sampling and analysis in workroom air have been the subject of much concern. In this paper, the stability problems arising from the reduction of hexavalent to trivalent chromium during sampling, sample storage, and analysis are discussed. Replacement of sulfuric acid by a sodium acetate buffer (pH 4) as a leaching solution prior to analysis with the diphenylcarbazide (DPC) method is suggested and is demonstrated to be necessary in order to avoid reduction. Field samples were taken from two different industrial processes-manual metal arc welding on stainless steel without shield gas and chromium plating. A comparison was made of the DPC method, acidic dissolution with atomic absorption spectrophotometric (AAS) analysis, and the carbonate method. For chromic acid mist, the DPC method and AAS analysis were shown to give the same results. In the analysis of welding fumes, the modified DPC method gave the same results as the laborious and less sensitive carbonate method.

  11. Dry plant extracts loaded on fumed silica for direct compression: preparation and preformulation.

    PubMed

    Palma, S D; Manzo, R H; Allemandi, D A

    1999-01-01

    This paper describes the development of a method to load fumed silica with vegetal material (solid residue) from a liquid extract to obtain a solid loaded silica product (LSP) with satisfactory flow properties and compressibility to be processed by direct-compression technology. Extracts of Melissa officinalis L. (M.o.), Cardus marianus L. (C.m.), and Peumus boldus L. (P.b.) were used to load silica support. The release of boldine from LSP (P.b.) reached 100% in HCl 0.1 N solution and only approximately 70% in water. Some physical-mechanical properties of LSP (M.o. and C.m.) alone and LSP-excipient mixtures were determined. The densities (bulk and tap) of LSP were higher than those of fumed silica alone. Consequently, good flow properties of LSP products were observed. On the other hand, flowability, densities, and compactibility of directly compressible excipients (lactose, dicalcium phosphate dihydrate, and microcrystalline cellulose) were not adversely affected when mixed with LSP.

  12. Removal of gaseous polycyclic aromatic hydrocarbons from cooking fumes using an atmospheric plasma reactor.

    PubMed

    Chang, Hung C; Mi, Hsiao H; Lin, Yuan C; Hsieh, Lien T; Chao, How R

    2011-01-01

    Plasma technology is becoming increasingly important for treating various environmental pollutants. Treatment of polycyclic aromatic hydrocarbons (PAHs), such as those emitted from electric ovens while roasting pork, using an atmospheric plasma reactor has seldom been studied. This study investigated the characteristics of five PAH species (acenaphthalene (AcPy), acenaphthene (Acp), anthracene (Ant), benzo[a]anthracene (BaA), and benzo(ghi)perylene (BghiP)) in fumes emitted while roasting pork. The removal efficiency at different plasma output powers (0.112, 0.138, and 0.156 kJ/m(3)) of the reactor was also investigated. In the experiments, cooking fumes were generated by a small electrical oven, with pork being roasted at 200 °C. After a steady state was reached, samples were collected at the inlet and outlet of the atmospheric plasma reactor. The PAHs were analyzed using gas chromatography-mass spectrophotometry. The experimental results indicated that the removal efficiency for each PAH was highest with the highest plasma reactor output power. This was also true of the total PAH concentration, but the total toxic equivalence, BaP(eq), was lowest at the medium power output. This demonstrates that the total toxicity and the removal of PAHs were not directly proportional, and careful consideration must be made by engineers when setting the treatment conditions.

  13. 1-Hydroxypyrene Levels in Blood Samples of Rats After Exposure to Generator Fumes

    PubMed Central

    Ifegwu, Clinton; Igwo-Ezikpe, Miriam N.; Anyakora, Chimezie; Osuntoki, Akinniyi; Oseni, Kafayat A.; Alao, Eragbae O.

    2013-01-01

    Polynuclear Aromatic Hydrocarbons (PAHs) are a major component of fuel generator fumes. Carcinogenicity of these compounds has long been established. In this study, 37 Swiss albino rats were exposed to generator fumes at varied distances for 8 hours per day for a period of 42 days and the level of 1-hydroxypyrene in their blood was evaluated. This study also tried to correlate the level of blood 1-hyroxypyrene with the distance from the source of pollution. Plasma was collected by centrifuging the whole blood sample followed by complete hydrolysis of the conjugated 1-hydroxypyrene glucuronide to yield the analyte of interest, 1-hydroxypyrene, which was achieved using beta glucuronidase. High performance liquid chromatography (HPLC) with UV detector was used to determine the 1-hydroxypyrene concentrations in the blood samples. The mobile phase was water:methanol (12:88 v/v) isocratic run at the flow rate of 1.2 mL/min with CI8 stationary phase at 250 nm. After 42 days of exposure, blood concentration level of 1-hydroxypyrene ranged from 34 μg/mL to 26.29 μg/mL depending on the distance from source of exposure. The control group had no 1-hydroxypyrene in their blood. After the period of exposure, percentage of death correlated with the distance from the source of exposure. Percentage of death ranged from 56% to zero depending on the proximity to source of pollution. PMID:24179393

  14. Exposure of Petrol Station Attendants and Auto Mechanics to Premium Motor Sprit Fumes in Calabar, Nigeria

    PubMed Central

    Udonwa, N. E.; Uko, E. K.; Ikpeme, B. M.; Ibanga, I. A.; Okon, B. O.

    2009-01-01

    A population-based-cross-sectional survey was carried out to investigate the potential risk of exposure to premium motor spirit (PMS) fumes in Calabar, Nigeria, among Automobile Mechanics (AM), Petrol Station Attendants (PSA) and the general population. Structured questionnaire was administered on the randomly chosen subjects to elicit information on their exposure to PMS. Duration of exposure was taken as the length of work in their various occupations. Venous blood was taken for methaemoglobin (MetHb) and packed cells volume (PCV). Mean MetHb value was higher in AM (7.3%) and PSA (5.8%) than in the subjects from the general population (2.7%). PCV was lower in PSA (30.8%), than AM (33.3%) and the subjects from the general population (40.8%). MetHb level was directly proportional, and PCV inversely related, to the duration of exposure. The study suggested increased exposure to petrol fumes among AM, PSA, and MetHb as a useful biomarker in determining the level of exposure to benzene in petrol vapour. PMID:19936128

  15. Lipase immobilization for catalytic applications obtained using fumed silica deposited with MAPLE technique

    NASA Astrophysics Data System (ADS)

    Bloisi, Francesco; Califano, Valeria; Perretta, Giuseppe; Nasti, Libera; Aronne, Antonio; Di Girolamo, Rocco; Auriemma, Finizia; De Rosa, Claudio; Vicari, Luciano R. M.

    2016-06-01

    Lipases are enzymes used for catalyzing reactions of acylglycerides in biodiesel production from lipids, where enzyme immobilization on a substrate is required. Silica nanoparticles in different morphologies and configurations are currently used in conjunction with biological molecules for drug delivery and catalysis applications, but up to date their use for triglycerides has been limited by the large size of long-chain lipid molecules. Matrix assisted pulsed laser evaporation (MAPLE), a laser deposition technique using a frozen solution/suspension as a target, is widely used for deposition of biomaterials and other delicate molecules. We have carried out a MAPLE deposition starting from a frozen mixture containing fumed silica and lipase in water. Deposition parameters were chosen in order to increase surface roughness and to promote the formation of complex structures. Both the target (a frozen thickened mixture of nanoparticles/catalyst in water) and the deposition configuration (a small target to substrate distance) are unusual and have been adopted in order to increase surface contact of catalyst and to facilitate access to long-chain molecules. The resulting innovative film morphology (fumed silica/lipase cluster level aggregation) and the lipase functionality (for catalytic biodiesel production) have been studied by FESEM, FTIR and transesterification tests.

  16. Correlation between airflow patterns and performance of a laboratory fume hood.

    PubMed

    Tseng, Li-Ching; Huang, Rong Fung; Chen, Chih-Chieh; Chang, C-P

    2006-12-01

    To understand the physical mechanisms of the contaminant dispersion and containment leakage during the ventilation process through a laboratory fume hood, the complicated three-dimensional flow patterns and the real-time tracer gas (SF6) leakage were studied via the laser-assisted flow visualization method and the standard/special gas sampling technique, respectively. Through flow visualization, the large-scale vortex structures and boundary layer separations were found around the side poles and doorsill of the hood. In the near-wake region of the manikin, large recirculation zones and wavy flow structures were also identified. When tracer gas concentration measurements were conducted point-by-point across the sash opening, the areas near the doorsill, the lower parts of the side poles, and the sides of the manikin showed significant contaminant leaks. These areas with high contaminant leaks exactly corresponded to where the flow recirculated or separated. However, when the ANSI/ASHRAE 110-1995 protocol was used to measure the concentration of SF6 at the breathing zone of the manikin, no appreciable leakage was detected. It is suggested that a method based on the aerodynamic features and multipoint leakage detections would reflect a more realistic evaluation of overall performance of laboratory fume hood than a single-point sampling method at the manikin's breathing zone.

  17. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review

    NASA Astrophysics Data System (ADS)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.

    2017-01-01

    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  18. Exposure to cooking oil fumes and oxidative damages: a longitudinal study in Chinese military cooks.

    PubMed

    Lai, Ching-Huang; Jaakkola, Jouni J K; Chuang, Chien-Yi; Liou, Saou-Hsing; Lung, Shih-Chun; Loh, Ching-Hui; Yu, Dah-Shyong; Strickland, Paul T

    2013-01-01

    Cooking oil fumes (COF) contain polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines, benzene, and formaldehyde, which may cause oxidative damages to DNA and lipids. We assessed the relations between exposure to COF and subsequent oxidative DNA damage and lipid peroxidation among military cooks and office-based soldiers. The study population, including 61 Taiwanese male military cooks and a reference group of 37 office soldiers, collected urine samples pre-shift of the first weekday and post-shift of the fifth workday. We measured airborne particulate PAHs in military kitchens and offices and concentrations of urinary 1-OHP, a biomarker of PAH exposure, urinary 8-hydroxydeoxyguanosine (8-OHdG), a biomarkers of oxidative DNA damage, and urinary isoprostane (Isop). Airborne particulate PAHs levels in kitchens significantly exceeded those in office areas. The concentrations of urinary 1-OHP among military cooks increased significantly after 5 days of exposure to COF. Using generalized estimating equation analysis adjusting for confounding, a change in log(8-OHdG) and log(Isop) were statistically significantly related to a unit change in log(1-OHP) (regression coefficient (β), β=0.06, 95% CI 0.001-0.12) and (β=0.07, 95% CI 0.001-0.13), respectively. Exposure to PAHs, or other compounds in cooking oil fumes, may cause both oxidative DNA damage and lipid peroxidation.

  19. Hydration of a silica fume blended low-alkali shotcrete cement

    NASA Astrophysics Data System (ADS)

    Lothenbach, Barbara; Rentsch, Daniel; Wieland, Erich

    Ettringite and C-S-H are the main hydrates formed during the hydration of the low-alkali cement “ESDRED” consisting of 60% CEM I, 40% microsilica and 4.8% set accelerator. Small quantities of portlandite and hemicarbonate present as intermediate phases destabilise within a few weeks. The use of a set accelerator leads to massive ettringite precipitation, a moderate decalcification of C-S-H and reduction of pH due to presence of dissolved formate. The slow reaction of the silica fume during hydration decalcifies the C-S-H and decreases the alkali concentration to 30 mM and the pH value of the pore solution to 11.5 after 1 year and longer. The further reaction of the silica fume is expected to be slow and to result in a decrease of pH to 11. Further, the destabilisation of ettringite to thaumasite is expected. The long-term stability of C-S-H and the pH of approximately 11 make ESDRED a good candidate for usage in contact with the clay-based barriers of a repository for radioactive waste.

  20. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  1. Quantitative exposure matrix for asphalt fume, total particulate matter, and respirable crystalline silica among roofing and asphalt manufacturing workers.

    PubMed

    Fayerweather, William E; Trumbore, David C; Johnson, Kathleen A; Niebo, Ronald W; Maxim, L Daniel

    2011-09-01

    This paper summarizes available data on worker exposures to asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica (quartz) [hereinafter RCS] over a 30-year period in Owens Corning's asphalt production and roofing manufacturing plants. For the period 1977 through 2006, the air-monitoring database contains more than 1,400 personal samples for asphalt fume (soluble fraction), 2,400 personal samples for total particulate, and 1,300 personal samples for RCS. Unique process-job categories were identified for the asphalt production and roofing shingle manufacturing plants. Quantitative exposures were tabulated by agent, process-job, and calendar period to form an exposure matrix for use in subsequent epidemiologic studies of the respiratory health of these workers. Analysis of time trends in exposure data shows substantial and statistically significant exposure reductions for asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica at Owens Corning plants. Cumulative distribution plots for the most recent sampling period (2001-2006) show that 95% of the asphalt fume (soluble fraction) measurements were less than 0.25 mg/m3; 95% of the total particulate measurements were less than 2.2 mg/m3; and 95% of the RCS measurements were less than 0.05 mg/m3. Several recommendations are offered to improve the design of future monitoring efforts.

  2. Use of Technogenic Silica Fume and Brown Coal Semi-Coke in the Technology of Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Anikin, A. E.; Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Il'yaschenko, D. P.

    2016-08-01

    The paper describes thermodynamic experiments to determine the optimal temperature and time modes for the carbide production process from the briquette charge comprising silica fume and brown coal semi-coke, conditions for chemical enriching of silicon carbide, its phase, chemical and granulometric compositions and particle morphology.

  3. Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress

    PubMed Central

    Wang, Yue; Wang, Sheng-Yuan; Jia, Li; Zhang, Lin; Ba, Jing-Chong; Han, Dan; Yu, Cui-Ping; Wu, Yong-Hui

    2016-01-01

    Although there have been numerous studies examining the toxicity and carcinogenicity of nickel compounds in humans and animals, its molecular mechanisms of action are not fully elucidated. In our research, NIH/3T3 cells were exposed to nickel-refining fumes at the concentrations of 0, 6.25, 12.50, 25, 50 and 100 μg/mL for 24 h. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) assay, the level of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) level were detected. The exposure of NIH/3T3 cells to nickel-refining fumes significantly reduced cell viability and induced cell apoptotic death in a dose-dependent manner. Nickel-refining fumes significantly increased ROS levels and induced DNA damage. Nickel-refining fumes may induce the changes in the state of ROS, which may eventually initiate oxidative stress, DNA damage and apoptosis of NIH/3T3 cells. PMID:27347984

  4. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an air contamination level less than 0.05... contamination level less than 0.05 milligram per cubic meter and against radionuclides; minimum requirements....

  5. 42 CFR 84.1152 - Silica dust loading test; respirators designed as protection against dusts, fumes, and mists...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Silica dust loading test; respirators designed as protection against dusts, fumes, and mists having an air contamination level less than 0.05 milligram per... air contamination level less than 0.05 milligram per cubic meter and against radionuclides;...

  6. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an air contamination level less than 0.05... contamination level less than 0.05 milligram per cubic meter and against radionuclides; minimum requirements....

  7. 42 CFR 84.1152 - Silica dust loading test; respirators designed as protection against dusts, fumes, and mists...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Silica dust loading test; respirators designed as protection against dusts, fumes, and mists having an air contamination level less than 0.05 milligram per... air contamination level less than 0.05 milligram per cubic meter and against radionuclides;...

  8. Association between cooking oil fume exposure and lung cancer among Chinese nonsmoking women: a meta-analysis.

    PubMed

    Xue, Yingbo; Jiang, Ying; Jin, Shan; Li, Yong

    2016-01-01

    Lung cancer has been the main cause of cancer death around the world. Cigarette smoking has been identified as a risk factor for lung cancer in males. However, the etiological factors in nonsmoking women remain elusive. A meta-analysis was conducted to evaluate the relationship between cooking oil fume exposure and lung cancer among Chinese nonsmoking women. Thirteen articles containing three population-based case-control and ten hospital-based case-control studies were included in this meta-analysis. These studies with a total of 3,596 lung cancer women and 6,082 healthy controls were analyzed by RevMan 5.3. Fixed effects model or random effects model was used to obtain pooled estimates of risk ratio. The risk ratios with a 95% CI were 1.74 (95% CI =1.57-1.94) and 2.11 (95% CI =1.54-2.89), respectively. Cooking oil fume exposure as well as not using a kitchen ventilator when cooking was significantly associated with lung cancer among nonsmoking women (Z=10.07, P<0.00001; Z=4.65, P<0.00001). Cooking oil fume exposure, especially lacking a fume extractor, may increase the risk of lung cancer among Chinese nonsmoking women.

  9. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  10. MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES

    EPA Science Inventory

    MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES. C. F. Blackman1, D. E. House2*, S. G. Benane3*, A. Ubeda4, M.A. TrilIo4. 1 National Health and Environmental Effects Research Laboratory, EPA,
    Research Triangle Park, North Caro...

  11. Thermal loading as a causal factor in exceeding the 0.1 PPM laboratory fume hood control level.

    PubMed

    Chessin, Saul J; Johnston, James D

    2002-07-01

    Tracer gas testing per ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to investigate the role of thermal loading in exceeding laboratory fume hood control levels. Three types of typical laboratory burners (blast, Meeker, and economy) were used to provide a thermal challenge. Heat outputs of between 0 and 61,610 Btu/hr were based on fuel heat capacity (for liquid propane gas) and fuel gas flow rates. Breathing zone concentrations were measured with a MIRAN 1B2 infrared gas analyzer. Also, for each test, the difference between the room and duct temperatures (delta temperature) was measured. Results indicated a linear relationship between heat loads and tracer gas breathing zone concentrations for both Btu/hr and delta temperature. Control levels of 0.1 ppm were exceeded at less than 12,000 Btu/hr. Also, control levels were exceeded at a lower heat load when the tracer gas generation rate was increased. These results indicate that thermal loads in laboratory fume hoods increase the risk of exceeding laboratory fume hood control levels. Some compensatory measures relative to hood configuration and flow rates are recommended for laboratory operations involving heat sources.

  12. DripFume: A Visual Basic Program For Simulating Distribution And Atmospheric Volatilization Of Soil Fumigants Applied Through Drip Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Windows-based graphical user interface program (DripFume) was developed in MS Visual Basic (VB) to utilize a two-dimensional multi-phase finite element pesticide transport model to simulate distribution and emission of volatile fumigant chemicals when applied through drip irrigation or shank injec...

  13. Nickel-smelting fumes increased the expression of HIF-1α through PI3K/ERK pathway in NIH/3T3 cells

    PubMed Central

    Han, Dan; Yang, Yue; Zhang, Lin; Wang, Chao; Wang, Yue; Tan, Wen-Qiao; Hu, Xue-Ying; Wu, Yong-Hui

    2016-01-01

    Objective: The purpose of this study was to investigate the effects of Nickel (Ni) -smelting fumes on oncogenic proteins in vivo and in vitro. Methods: Ni fallout beside a Ni smelting furnace in a factory was sampled to study its toxic effect. The effects of Ni-smelting fumes on the regulation of PI3K and ERK signaling pathways and the important downstream hypoxia inducible factor, HIF-1α, were studied both in NIH/3T3 cells and in the lung tissue of rats. NIH/3T3 cell transformation induced by Ni-smelting fumes was also observed. Results: Ni-smelting fumes activated PI3K, p-AKT, p70S6K1, and ERK proteins and increased HIF-1α expression in a time- and dose-dependent manner. However, activation was suppressed when NIH/3T3 cells were pretreated with PI3K/AKT or ERK inhibitors. Ni-smelting fumes caused malignant transformation of NIH/3T3 cells. Conclusions: Ni-smelting fumes increased the expression of HIF-1α through the PI3K/ERK pathway in NIH/3T3 cells and induced malignant transformation in these cells indicating that Ni-smelting fumes may be a potential carcinogen in mammalian cells. PMID:27488040

  14. Effect of short-term stainless steel welding fume inhalation exposure on lung inflammation, injury, and defense responses in rats

    SciTech Connect

    Antonini, James M. Stone, Sam; Roberts, Jenny R.; Chen, Bean; Schwegler-Berry, Diane; Afshari, Aliakbar A.; Frazer, David G.

    2007-09-15

    Many welders have experienced bronchitis, metal fume fever, lung function changes, and an increase in the incidence of lung infection. Questions remain regarding the possible mechanisms associated with the potential pulmonary effects of welding fume exposure. The objective was to assess the early effects of stainless steel (SS) welding fume inhalation on lung injury, inflammation, and defense responses. Male Sprague-Dawley rats were exposed to gas metal arc-SS welding fume at a concentration of 15 or 40 mg/m{sup 3} x 3 h/day for 1, 3, or 10 days. The control group was exposed to filtered air. To assess lung defense responses, some animals were intratracheally inoculated with 5 x 10{sup 4}Listeria monocytogenes 1 day after the last exposure. Welding particles were collected during exposure, and elemental composition and particle size were determined. At 1, 4, 6, 11, 14, and 30 days after the final exposure, parameters of lung injury (lactate dehydrogenase and albumin) and inflammation (PMN influx) were measured in the bronchoalveolar lavage fluid. In addition, particle-induced effects on pulmonary clearance of bacteria and macrophage function were assessed. SS particles were composed of Fe, Cr, Mn, and Ni. Particle size distribution analysis indicated the mass median aerodynamic diameter of the generated fume to be 0.255 {mu}m. Parameters of lung injury were significantly elevated at all time points post-exposure compared to controls except for 30 days. Interestingly, no significant difference in lung PMNs was observed between the SS and control groups at 1, 4, and 6 days post-exposure. After 6 days post-exposure, a dramatic increase in lung PMNs was observed in the SS group compared to air controls. Lung bacteria clearance and macrophage function were reduced and immune and inflammatory cytokines were altered in the SS group. In summary, short-term exposure of rats to SS welding fume caused significant lung damage and suppressed lung defense responses to bacterial

  15. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    PubMed

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  16. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace

    PubMed Central

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T.

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr6+). Elemental manganese, nickel, chromium, iron emissions per unit length of weld and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered and analyzed by inductively-coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr6+. GMAW processes used were Surface Tension Transfer™, Regulated Metal Deposition™, Cold Metal Transfer™, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr6+ ranged from 50 to 7800 μg/min, and Cr6+ generation rates per g electrode ranged from 1 to 270μg/g. Elemental Cr generation rates spanned 13 to 330μg/g. Manganese emission rates ranged from 50 to 300μg/g. Nickel emission rates ranged from 4 to140 μg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as 5 times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes

  17. Determination of total sulfur compounds and benzothiazole in asphalt fume samples by gas chromatography with sulfur chemiluminescence detection.

    PubMed

    Jaycox, L B; Olsen, L D

    2000-09-01

    As part of a collaborative project between the National Institute for Occupational Safety and Health and the Federal Highway Administration to evaluate asphalt pavers' exposures to asphalt fume and their potential health effects, a method was developed for the determination of total sulfur compounds and benzothiazole in asphalt fume samples. Asphalt fume samples were collected from asphalt mixtures with and without the addition of ground-up rubber tires. The asphalt fume samples were collected with sampling trains that consisted of a Teflon membrane filter and an XAD-2 adsorbent tube. Filter and sampling tube media were extracted with hexane and subsequently analyzed by gas chromatography with a sulfur chemiluminescence detector. Separation was achieved with a 100 percent dimethyl polysiloxane fused silica column. Typical calibration curves had linear correlation coefficients of 0.99 or better with a relative standard deviation (RSD) of 5 percent. Benzothiazole desorption efficiency (DE) determined using spiked sampling tubes ranged from 96.5 percent at 5.0 micrograms to 89.4 percent at 40 micrograms with RSD values from 0.9 to 4.0 percent. Benzothiazole storage recovery determined using sampling tubes spiked at 20 micrograms and refrigerated for 30 days at 4 degrees C was 89.8 percent when corrected for the DE with an RSD of 1.1 percent. The limit of detection for the method determined using spiked sampling tubes was 0.30 microgram. Quantitation for total sulfur compounds and benzothiazole was against benzothiazole standards in hexane. Because of detector selectivity, sample preparation consisted of a simple hexane extraction even when samples had a high background due to hydrocarbon overload. Detector sensitivity provided quantitation in the sub-microgram region. Because of the sample preparation step and because benzothiazole was determined during the same analysis run, this method is straightforward and analytically efficient. The method has been used to

  18. Lifetime Occupational Exposure to Dusts, Gases and Fumes Is Associated with Bronchitis Symptoms and Higher Diffusion Capacity in COPD Patients

    PubMed Central

    Rodríguez, Esther; Ferrer, Jaume; Zock, Jan-Paul; Serra, Ignasi; Antó, Josep M.; de Batlle, Jordi; Kromhout, Hans; Vermeulen, Roel; Donaire-González, David; Benet, Marta; Balcells, Eva; Monsó, Eduard; Gayete, Angel; Garcia-Aymerich, Judith

    2014-01-01

    Background Occupational exposure to dusts, gases and fumes has been associated with reduced FEV1 and sputum production in COPD patients. The effect of occupational exposure on other characteristics of COPD, especially those reflecting emphysema, has not been studied in these patients. Methods We studied 338 patients hospitalized for a first exacerbation of COPD in 9 Spanish hospitals, obtaining full occupational history in a face-to-face interview; job codes were linked to a job exposure matrix for semi-quantitative estimation of exposure to mineral/biological dust, and gases/fumes for each job held. Patients underwent spirometry, diffusing capacity testing and analysis of gases in stable conditions. Quality of life, dyspnea and chronic bronchitis symptoms were determined with a questionnaire interview. A high- resolution CT scan was available in 133 patients. Results 94% of the patients included were men, with a mean age of 68(8.5) years and a mean FEV1% predicted 52 (16). High exposure to gases or fumes was associated with chronic bronchitis, and exposure to mineral dust and gases/fumes was associated with higher scores for symptom perception in the St. George’s questionnaire. No occupational agent was associated with a lower FEV1. High exposure to all occupational agents was associated with better lung diffusion capacity, in long-term quitters. In the subgroup with CT data, patients with emphysema had 18% lower DLCO compared to those without emphysema. Conclusions In our cohort of COPD patients, high exposure to gases or fumes was associated with chronic bronchitis, and high exposure to all occupational agents was consistently associated with better diffusion capacity in long-term quitters. PMID:24516659

  19. Health Care Wide Hazards

    MedlinePlus

    ... Electrical Ergonomics Fire Hazards Glutaraldehyde Hazardous Chemicals Infection Seasonal Flu MDRO - Multidrug-Resistant Organisms MRSA - Methicillin-resistant Staphylococcus aureus Latex Allergy Legionnaires' Disease Needlesticks Noise Mercury Inappropriate PPE Slips/ ...

  20. Hazardous Waste Generators

    EPA Pesticide Factsheets

    Many industries generate hazardous waste. EPA regulates hazardous waste under the Resource Conservation and Recovery Act to ensure these wastes are managed in ways that are protective of human health and the environment.

  1. Hazardous Waste Permitting

    EPA Pesticide Factsheets

    To provide RCRA hazardous waste permitting regulatory information and resources permitted facilities, hazardous waste generators, and permit writers. To provide the public with information on how they can be involved in the permitting process.

  2. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  3. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  4. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L. K.; Vogel, R. M.

    2015-11-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied Generalized Pareto (GP) model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series X, with corresponding failure time series T, should have application to a wide class of natural hazards with rich opportunities for future extensions.

  5. Hazard function theory for nonstationary natural hazards

    DOE PAGES

    Read, Laura K.; Vogel, Richard M.

    2016-04-11

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field ofmore » hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. As a result, our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.« less

  6. Hazard function theory for nonstationary natural hazards

    SciTech Connect

    Read, Laura K.; Vogel, Richard M.

    2016-04-11

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. As a result, our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  7. Disposal of low concentration fume with solid waste modified by microwave.

    PubMed

    He, Zhijun; Jin, Yonglong; Zhang, Junhong; Liu, Jihui; Guan, Zhigang

    2011-06-01

    The feasibilities of two solid waste, smelting slag and fly ash, as desulfurization and denitrogenation absorbents and additives by microwave were investigated. The influences of operating parameters were also studied. Under the optimal operating conditions, the removal efficiencies of 65.9% and 65.0% were achieved for S02 and NOx respectively. Scanning Electron Microscope and energy dispersive spectroscopy were employed to study the micro-area characteristics of fly ash, smelting slag absorbent and the spent absorbent. In addition, the mechanisms of simultaneous removal of S02 and NOx were investigated. The microwave-modified absorbent in fact played the role of solid catalyst in the process of S02 and NOx treatment from fume. S02 and NOx were oxidized because of microwave-modified absorbent catalytic effect.

  8. Removal of Fluorides and Chlorides from Zinc Oxide Fumes by Microwave Sulfating Roasting

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang; Zhang, Libo; Chen, Guo; Peng, Jinhui; Zhou, Liexing; Yin, Shaohua; Liu, Chenhui

    2015-10-01

    Dechlorination and defluorination from zinc oxide dust by microwave sulfating roasting was investigated in this study. According to proposed reactions in the process, detailed experiments were systematically conducted to study the effect of roasting temperature, holding time, air and steam flow rates on the efficiency of the removal of F and Cl. The results show that 92.3% of F and 90.5% of Cl in the fume could be purified when the condition of the roasting temperature of 650 °C, holding time at 60 min, air flow of 300 L/h and steam flow of 8 ml/min was optimized. Our investigation indicates that microwave sulfating roasting could be a promising new way for the dechlorination and defluorination from zinc oxide dust.

  9. Electric conductivity percolation in naturally dehydrating, lightly wetted, hydrophilic fumed silica powder.

    PubMed

    Sokolowska, Dagmara; Dziob, Daniel; Gorska, Urszula; Kieltyka, Bartosz; Moscicki, Jozef K

    2013-06-01

    In studying the dehydration of surface-moistened fumed silica Aerosil powders, we found a conductivity percolation transition at low hydration levels. Both the percolation exponent and the threshold are typical for correlated site-bond transitions in complex two-dimensional (2D) systems. The exponent values, 0.94-1.10, are indicative of severe heterogeneity in the conducting medium. The surface moisture at the percolation threshold takes on a universal value of 0.65 mg([H2O])/m(2)([silica]), independent of the silica grain size, and equivalent to twice the first hydration monolayer. This level is just sufficient to sustain a quasi-2D, hydrogen-bonded water network spanning the silica surface.

  10. Comparison of sampling positions when measuring personal exposure to solder fume.

    PubMed

    Simpson, A T

    2005-07-01

    A sampling device based on a telephone headset was developed and used to support a sampler close to the mouth during personal exposure monitoring of solder fume. In a field trial, it was compared with the established method of mounting the sampler on the arm of a pair of spectacles, and a linear correlation was evident between the two positions (slope 1.56 +/- 0.05, r(2) = 0.98). Although the headset sampler held the sampler closer to the breathing zone, experience showed that the spectacles position was less intrusive on the subject and allowed a more consistent and stable sampling position. On balance, the spectacles position was the preferred sampling location.

  11. Fumed silica nanoparticle mediated biomimicry for optimal cell-material interactions for artificial organ development.

    PubMed

    de Mel, Achala; Ramesh, Bala; Scurr, David J; Alexander, Morgan R; Hamilton, George; Birchall, Martin; Seifalian, Alexander M

    2014-03-01

    Replacement of irreversibly damaged organs due to chronic disease, with suitable tissue engineered implants is now a familiar area of interest to clinicians and multidisciplinary scientists. Ideal tissue engineering approaches require scaffolds to be tailor made to mimic physiological environments of interest with specific surface topographical and biological properties for optimal cell-material interactions. This study demonstrates a single-step procedure for inducing biomimicry in a novel nanocomposite base material scaffold, to re-create the extracellular matrix, which is required for stem cell integration and differentiation to mature cells. Fumed silica nanoparticle mediated procedure of scaffold functionalization, can be potentially adapted with multiple bioactive molecules to induce cellular biomimicry, in the development human organs. The proposed nanocomposite materials already in patients for number of implants, including world first synthetic trachea, tear ducts and vascular bypass graft.

  12. Comparative characterization of polymethylsiloxane hydrogel and silylated fumed silica and silica gel.

    PubMed

    Gun'ko, V M; Turov, V V; Zarko, V I; Goncharuk, E V; Gerashchenko, I I; Turova, A A; Mironyuk, I F; Leboda, R; Skubiszewska-Zieba, J; Janusz, W

    2007-04-01

    Polymethylsiloxane (PMS) hydrogel (C(PMS)=10 wt%, soft paste-like hydrogel), diluted aqueous suspensions, and dried/wetted xerogel (powder) were studied in comparison with suspensions and dry powders of unmodified and silylated nanosilicas and silica gels using (1)H NMR, thermally stimulated depolarization current (TSDC), quasielastic light scattering (QELS), rheometry, and adsorption methods. Nanosized primary PMS particles, which are softer and less dense than silica ones because of the presence of CH(3) groups attached to each Si atom and residual silanols, form soft secondary particles (soft paste-like hydrogel) that can be completely decomposed to nanoparticles with sizes smaller than 10 nm on sonication of the aqueous suspensions. Despite the soft character of the secondary particles, the aqueous suspensions of PMS are characterized by a higher viscosity (at concentration C(PMS)=3-5 wt%) than the suspension of fumed silica at a higher concentration. Three types of structured water are observed in dry PMS xerogel (adsorbed water of 3 wt%). These structures, characterized by the chemical shift of the proton resonance at delta(H) approximately 1.7,3.7, and 5 ppm, correspond to weakly associated but strongly bound water and to strongly associated but weakly or strongly bound waters, respectively. NMR cryoporometry and QELS results suggest that PMS is a mesoporous-macroporous material with the textural porosity caused by voids between primary particles forming aggregates and agglomerates of aggregates. PMS is characterized by a much smaller adsorption capacity with respect to proteins (gelatin, ovalbumin) than unmodified fumed silica A-300.

  13. Effect of welding fume on heart rate variability among workers with respirators in a shipyard

    PubMed Central

    Han, Bor-Cheng; Liu, I-Jung; Chuang, Hsiao-Chi; Pan, Chih-Hong; Chuang, Kai-Jen

    2016-01-01

    Welding fume exposure is associated with heart rate variability (HRV) reduction. It is still unknown whether respirator can reduce effect of welding fume on HRV among welding workers in a shipyard. We recruited 68 welding workers with respirator and 52 welding workers without respirator to measure HRV indices, including standard deviation of normal-to-normal intervals (SDNN) and square root of the mean squared differences of successive intervals (r-MSSD) by ambulatory electrocardiographic (ECG). Personal exposure to particulate matter less than or equal to 2.5 μm in diameter (PM2.5) was measured by a dust monitor. The association between 5-minute mean PM2.5 and log10-transformed HRV indices was analyzed by mixed-effects models. We found 5-minute mean PM2.5 was associated with 8.9% and 10.3% decreases in SDNN and r-MSSD. Effect of PM2.5 on HRV indices was greatest among workers without respirator {SDNN: 12.4% (95% confidence interval = −18.8–−6.9); r-MSSD: 14.7% (95% confidence interval = −20.8–−8.6)}. Workers with respirator showed slight decreases in HRV indices {SDNN: 2.2% (95% confidence interval = −6.3–−1.9); r-MSSD: 4.0% (95% confidence interval = −6.4–−1.6)}. We conclude that respirator use reduces the effect of PM2.5 exposure on HRV among workers performing welding in a shipyard. PMID:27677526

  14. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae

    PubMed Central

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C.; Melton, Geoffrey; Palmer, Keith T.; Andujar, Pascal; Antonini, James M.; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J.; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2015-01-01

    Background Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). Objective We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. Methods The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. Results: MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF–stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF–exposed mice CV-3988 reduced BALF CFU values. Conclusions Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. PMID:26277596

  15. Aerodynamics and performance verifications of test methods for laboratory fume cupboards.

    PubMed

    Tseng, Li-Ching; Huang, Rong Fung; Chen, Chih-Chieh; Chang, Cheng-Ping

    2007-03-01

    The laser-light-sheet-assisted smoke flow visualization technique is performed on a full-size, transparent, commercial grade chemical fume cupboard to diagnose the flow characteristics and to verify the validity of several current containment test methods. The visualized flow patterns identify the recirculation areas that would inevitably exist in the conventional fume cupboards because of the fundamental configurations and structures. The large-scale vortex structures exist around the side walls, the doorsill of the cupboard and in the vicinity of the near-wake region of the manikin. The identified recirculation areas are taken as the 'dangerous' regions where the risk of turbulent dispersion of contaminants may be high. Several existing tracer gas containment test methods (BS 7258:1994, prEN 14175-3:2003 and ANSI/ASHRAE 110:1995) are conducted to verify the effectiveness of these methods in detecting the contaminant leakage. By comparing the results of the flow visualization and the tracer gas tests, it is found that the local recirculation regions are more prone to contaminant leakage because of the complex interaction between the shear layers and the smoke movement through the mechanism of turbulent dispersion. From the point of view of aerodynamics, the present study verifies that the methodology of the prEN 14175-3:2003 protocol can produce more reliable and consistent results because it is based on the region-by-region measurement and encompasses the most area of the entire recirculation zone of the cupboard. A modified test method combined with the region-by-region approach at the presence of the manikin shows substantially different results of the containment. A better performance test method which can describe an operator's exposure and the correlation between flow characteristics and the contaminant leakage properties is therefore suggested.

  16. Interfacial phenomena at a surface of individual and complex fumed nanooxides.

    PubMed

    Gun'ko, V M; Turov, V V; Zarko, V I; Goncharuk, O V; Pakhlov, E M; Skubiszewska-Zięba, J; Blitz, J P

    2016-09-01

    Investigations of interfacial and temperature behaviors of nonpolar and polar adsorbates interacting with individual and complex fumed metal or metalloid oxides (FMO), initial and subjected to various treatments or chemical functionalization and compared to such porous adsorbents as silica gels, precipitated silica, mesoporous ordered silicas, filled polymeric composites, were analyzed. Complex nanooxides include core-shell nanoparticles, CSNP (50-200nm in size) with titania or alumina cores and silica or alumina shells in contrast to simple and smaller nanoparticles of individual FMO. CSNP could be destroyed under high-pressure cryogelation (HPCG) or mechanochemical activation (MCA). These treatments affect the structure of aggregates of nanoparticles and agglomerates of aggregates, resulting in their becoming more compacted. The analysis shows that complex FMO could be more sensitive to external actions than simple nanooxides such as fumed silica. Any treatment of 'soft' FMO affects the interfacial and temperature behaviors of polar and nonpolar adsorbates. Rearrangement of secondary particles and surface functionalization affects the freezing-melting point depression of adsorbates. For some adsorbates, open hysteresis loops became readily apparent in adsorption-desorption isotherms. Clustering of adsorbates bound in textural pores in aggregates of nanoparticles (i.e., voids between nanoparticles in secondary structures) causes reduced changes in enthalpy during phase transitions (freezing, fusion, evaporation). Freezing point depression and melting point elevation cause significant hysteresis freezing-melting effects for adsorbates bound to FMO in the textural pores. Relaxation phenomena for both low- and high-molecular weight adsorbates or filled polymeric composites are affected by the morphology of primary particles, structural organization of secondary particles of differently treated or functionalized FMO, content of adsorbates, co-adsorption order, and

  17. Nitric oxide-releasing fumed silica particles: synthesis, characterization, and biomedical application.

    PubMed

    Zhang, Huiping; Annich, Gail M; Miskulin, Judiann; Stankiewicz, Kelly; Osterholzer, Kathryn; Merz, Scott I; Bartlett, Robert H; Meyerhoff, Mark E

    2003-04-30

    The preparation, characterization, and preliminary biomedical application of various nitric oxide (NO)-releasing fumed silica particles (0.2-0.3 microm) are reported. The tiny NO-releasing particles are synthesized by first tethering alkylamines onto the surface of the silica using amine-containing silylation reagents. These amine groups are then converted to corresponding N-diazeniumdiolate groups via reaction with NO(g) at high pressure in the presence of methoxide bases (e.g., NaOMe). N-Diazeniumdiolate groups were found to form more readily with secondary amino nitrogens than primary amino nitrogens tethered to the silica. Different alkali metal cations of the methoxide bases, however, have little effect on the degree of N-diazeniumdiolate formation. The N-diazeniumdiolate moieties attached on the silica surface undergo a primarily proton-driven dissociation to NO under physiological conditions, with an "apparent" reaction order somewhat greater than 1 owing to local increases in pH at the surface of the particles as free amine groups are generated. The rates of N-diazeniumdiolate dissociation are further related to the parent amine structures and the pH of the soaking buffer. The N-diazeniumdiolate groups also undergo slow thermal dissociation to NO, with zero-order dissociation observed at both -15 and 23 degrees C. It is further shown that the resulting NO-releasing fumed silica particles can be embedded into polymer films to create coatings that are thromboresistant, via the release of NO at fluxes that mimic healthy endothelial cells (EC). For example a polyurethane coating containing 20 wt % of NO-releasing particles prepared with pendant hexane diamine structure (i.e., Sil-2N[6]-N(2)O(2)Na) is shown to exhibit improved surface thromboresistivity (compared to controls) when used to coat the inner walls of extracorporeal circuits (ECC) employed in a rabbit model for extracorporeal blood circulation.

  18. Hazard Analysis Database Report

    SciTech Connect

    GRAMS, W.H.

    2000-12-28

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

  19. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-06

    Fumed silica nanoparticles (FSNPs), were incorporated for the first time into a polymethacrylate monolithic column containing glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in order to develop a new monolithic column for hydrophilic interaction high performance liquid chromatography (HILIC). When compared to poly(GMM-EDMA) monolithic column without FSNPs, the same monolithic column with incorporated FSNPs yielded important effects on HILIC separations. The effects of monomers and FSNPs content of the polymerization mixture on the performance of the monolithic column were examined in details, and the optimized stationary phase was investigated over a wide range of mobile phase composition with polar acidic, weakly basic and neutral analytes including hydroxy benzoic acids, nucleotides, nucleosides, dimethylformamide, formamide and thiourea. The retention of these analytes was mainly controlled by hydrophilic interactions with the FSNPs and electrostatic repulsion from the negatively charged silica surface in the case of hydroxy benzoic acids and nucleotides. The electrostatic repulsion was minimized by decreasing the pH of the aqueous component of the mobile phase, which in turn enhanced the retention of acidic solutes. Nucleotides were best separated using step gradient elution at decreasing pH as well as ACN concentration in the mobile phase. Improved peak shape and faster analysis of nucleosides were attained by a fast linear gradient elution with a shallow decrease in the ACN content of the ACN-rich mobile phase. The run-to-run and column-to-column reproducibility were satisfactory. The percent relative standard deviations (%RSDs) for the retention times of tested solutes were lower than 2.5% under isocratic conditions and lower than 3.5 under gradient conditions.

  20. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case-control studies in Montreal.

    PubMed

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-08-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case-control studies were conducted in Montreal. Study I (1979-1986) included 857 cases and 1066 controls, and Study II (1996-2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist-hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9-1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8-1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7-4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3-3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes.

  1. Design and analysis on fume exhaust system of blackbody cavity sensor for continuously measuring molten steel temperature

    NASA Astrophysics Data System (ADS)

    Mei, Guohui; Zhang, Jiu; Zhao, Shumao; Xie, Zhi

    2017-03-01

    Fume exhaust system is the main component of the novel blackbody cavity sensor with a single layer tube, which removes the fume by gas flow along the exhaust pipe to keep the light path clean. However, the gas flow may break the conditions of blackbody cavity and results in the poor measurement accuracy. In this paper, we analyzed the influence of the gas flow on the temperature distribution of the measuring cavity, and then calculated the integrated effective emissivity of the non-isothermal cavity based on Monte-Carlo method, accordingly evaluated the sensor measurement accuracy, finally obtained the maximum allowable flow rate for various length of the exhaust pipe to meet the measurement accuracy. These results will help optimize the novel blackbody cavity sensor design and use it better for measuring the temperature of molten steel.

  2. Software safety hazard analysis

    SciTech Connect

    Lawrence, J.D.

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper.

  3. Migration and Environmental Hazards

    PubMed Central

    Hunter, Lori M.

    2011-01-01

    Losses due to natural hazards (e.g., earthquakes, hurricanes) and technological hazards (e.g., nuclear waste facilities, chemical spills) are both on the rise. One response to hazard-related losses is migration, with this paper offering a review of research examining the association between migration and environmental hazards. Using examples from both developed and developing regional contexts, the overview demonstrates that the association between migration and environmental hazards varies by setting, hazard types, and household characteristics. In many cases, however, results demonstrate that environmental factors play a role in shaping migration decisions, particularly among those most vulnerable. Research also suggests that risk perception acts as a mediating factor. Classic migration theory is reviewed to offer a foundation for examination of these associations. PMID:21886366

  4. Volcano Hazards Program

    USGS Publications Warehouse

    Venezky, Dina Y.; Myers, Bobbie; Driedger, Carolyn

    2008-01-01

    Diagram of common volcano hazards. The U.S. Geological Survey Volcano Hazards Program (VHP) monitors unrest and eruptions at U.S. volcanoes, assesses potential hazards, responds to volcanic crises, and conducts research on how volcanoes work. When conditions change at a monitored volcano, the VHP issues public advisories and warnings to alert emergency-management authorities and the public. See http://volcanoes.usgs.gov/ to learn more about volcanoes and find out what's happening now.

  5. Hazards in the theater.

    PubMed

    Rossol, M; Hinkamp, D

    2001-01-01

    The authors offer a survey of the myriad and unique safety and health hazards faced past and present by performers and theatrical workers, from preproduction work, through the show, and during the strike (dismantling). Special emphasis is given to health hazards posed by the many new plastic resin systems and adhesives used in set, prop, and costume construction; the hazards of special-effect fogs, smokes, haze, dusts, and pyrotechnic emissions; and theatrical makeup.

  6. Asphalt fume dermal carcinogenicity potential: II. Initiation-promotion assay of Type III built-up roofing asphalt.

    PubMed

    Freeman, James J; Schreiner, Ceinwen A; Beazley, S; Burnett, Donald M; Clark, Charles R; Mahagaokar, Suneeta; Parker, Craig M; Stewart, Christopher W; Swanson, Mark S; Arp, Earl W

    2011-10-01

    Clark et al. (accepted for publication) reported that a sample of field-matched fume condensate from a Type III built-up roofing asphalt (BURA) resulted in a carcinogenic response in a mouse skin bioassay, with relatively few tumor-bearing animals, long tumor latency and chronic skin irritation. This mouse skin initiation/promotion study was conducted to assess possible mechanisms, i.e., genotoxic initiation vs. tumor promotion subsequent to repeated skin injury and repair. The same Type III BURA fume condensate sample was evaluated in groups of 30 male Crl:CD1® mice by skin application twice per week (total dose of 50 mg/week) for 2 weeks during the initiation phase and for 26 weeks during the promotion phase. Positive control substances were 7,12-dimethylbenz(a)anthracene (DMBA, 50 μg applied once) as an initiator and 12-O-tetradecanoyl-13-acetate (TPA, 5 μg, applied twice weekly) during the promotion phase. During the 6 months of study with the asphalt fume condensate, eight skin masses were observed when tested for initiation, five of which were confirmed microscopically to be benign squamous cell papillomas. Only two papillomas were observed when tested for promotion. There was no apparent relationship between skin irritation and tumor development in this study. These results are more indicative of genotoxicity rather than a non-genotoxic mode of action.

  7. Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand

    PubMed Central

    2014-01-01

    In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required. PMID:25197709

  8. Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand.

    PubMed

    Ahmad, Shamsad; Hakeem, Ibrahim; Maslehuddin, Mohammed

    2014-01-01

    In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.

  9. Asphalt fume exposure levels in North American asphalt production and roofing manufacturing operations.

    PubMed

    Axten, Charles W; Fayerweather, William E; Trumbore, David C; Mueller, Dennis J; Sampson, Arthur F

    2012-01-01

    This study extends by 8 years (1998-2005) a previous survey of asphalt fume exposures within North American asphalt processing and roofing product manufacturing workers. It focuses on characterizing personal, full-shift samples and seeks to address several limitations of the previous survey. Five major roofing manufacturers with established occupational health programs submitted workplace asphalt fume sampling results to a central repository for review and analysis. A certified industrial hygienist-led quality assurance team oversaw the data collection, consolidation, and analysis efforts. The analysis dataset consisted of 1261 personal exposure samples analyzed for total particulate (TP) and benzene soluble fraction (BSF) using existing NIOSH methods. For BSF, the survey's arithmetic (0.25 mg/m(3), SD = 0.62) and geometric (0.12 mg/m(3), GSD = 2.88) means indicate that the industry has sustained the control levels achieved in the late 1980s, early 1990s. Similar results were found for TP. The survey-wide summary statistics are consistent with other post-1990 multi-company exposure studies. Although these findings indicate that currently available controls are capable of achieving substantial (95%) compliance with the current threshold limit value in asphalt processing and inorganic shingle and roll plants, they also show that the majority of plants are not achieving this level of exposure control, and that exposures are significantly higher in plants making other product lines, particularly organic felt products. The current retrospective survey of existing company exposure data, like its predecessor, has several important limitations. These include lack of data on smaller manufacturers and on several commercially important product lines; insufficient information on the prevalence and effectiveness of engineering controls; no standard criteria by which to define and assess exposures in non-routine operations; and a paucity of exposure data collected as part of a

  10. Toenail metal concentration as a biomarker of occupational welding fume exposure

    PubMed Central

    Grashow, Rachel; Zhang, Jinming; Fang, Shona C.; Weisskopf, Marc G.; Christiani, David C.; Cavallari, Jennifer M.

    2014-01-01

    In populations exposed to heavy metals, there are few biomarkers that capture intermediate exposure windows. We sought to determine the correlation between toenail metal concentrations and prior 12 month work activity in welders with variable, metal-rich, welding fume exposures. Forty-eight participants, recruited through a local union, provided 69 sets of toenail clippings. Union-supplied and worker verified personal work histories were used to quantify hours welded and respirator use. Toenail samples were digested and analyzed for lead (Pb), manganese (Mn), cadmium (Cd), nickel (Ni) and arsenic (As) using ICP-MS. Spearman correlation coefficients were used to examine the correlation between toenail metal concentrations. Using mixed models to account for multiple participation times, we divided hours welded into three-month intervals and examined how weld hours correlated with log-transformed toenail Pb, Mn, Cd, Ni and As concentrations. Highest concentrations were found for Ni, followed by Mn, Pb and As, and Cd. All of the metals were significantly correlated with one another (rho range=0.28–0.51), with the exception of Ni and As (rho=0.20, p=0.17). Using mixed models adjusted for age, respirator use, smoking status and BMI, we found that Mn was associated with weld hours 7–9 months prior to clipping (p = 0.003), Pb was associated with weld hours 10–12 months prior to clipping (p=0.03) and over the entire year (p=0.04). Cd was associated with weld hours 10–12 months prior to clipping (p=0.05), and also with the previous year’s total hours welded (p=0.02). The association between Ni and weld hours 7–9 months prior to clipping approached significance (p=0.06). Toenail metal concentrations were not associated with the long-term exposure metric, years as a welder. Results suggest Mn, Pb, and Cd may have particular windows of relevant exposure that reflect work activity. In a population with variable exposure, toenails may serve as useful biomarkers for

  11. Respiratory health of workers exposed to metal dusts and foundry fumes in a copper refinery.

    PubMed Central

    Ostiguy, G; Vaillancourt, C; Bégin, R

    1995-01-01

    OBJECTIVES--To assess airflow limitation in workers exposed long term to metal dust, the prevalence of pleural plaques in those workers exposed in the past to asbestos, the influence of pleural plaques on lung function, and the possible association with airway disease caused by asbestos. METHODS--A cross sectional and longitudinal (seven year) survey of 494 long term (mean (SEM) 21(1) years) workers in a copper refinery was carried out from medical questionnaires, chest radiographs, and forced spirometry. RESULTS--The prevalence of lifetime non-smokers was 19%, current smokers 39%, and ex-smokers 42%. The prevalence of chronic obstructive pulmonary diseases (COPD) (forced expiratory volume in one second (FEV1) < 80% predicted) was 5%, small airway dysfunction (SAD) (maximal mid-expiratory flow (MMEF) < 60% predicted) was 7%, and this did not differ from the control population. The COPD and SAD were associated with cumulative smoking index but not with the cumulative work years at the plant or with any type of work at the plant. The mean (SEM) reduction of FEV1 was 20(7) ml in non-smokers, 26(4) ml in smokers, and 26(5) ml in ex-smokers (P > 0.05). In the smokers and ex-smokers with COPD, the loss of FEV1 was 53(10) (P < 0.02). The prevalence of pleural plaques was 11% (P < 0.0001); pleural plaques were found in older workers with known exposure to asbestos. The pleural plaques were circumscribed and associated with a non-significant 196 ml reduction in forced vital capacity (FVC) and non-significant reduction of FVC over time. The pleural plaques were not associated with COPD or SAD. The cumulative smoking index obtained by a technician did not differ from that by a chest physician. CONCLUSIONS--Despite exposures to asbestos that produced pleural plaques and exposures to metal dusts and foundry fumes the long term workers of this plant did not have excessive prevalence of COPD or SAD. The data suggest that low level long term exposure to metal dusts, gases, and

  12. Fume Emissions from a Low-Cost 3-D Printer with Various Filaments.

    PubMed

    Floyd, Evan L; Wang, Jun; Regens, James L

    2017-04-13

    3-D printing is an additive manufacturing process involving the injection of melted thermoplastic polymers, which are then laid down in layers to achieve a pre-designed shape. The heated deposition process raises concerns of potential aerosol and volatile organic compounds (VOC) emission and exposure. The decreasing cost of desktop 3-D printers has made the use of 3-D printers more acceptable in non-industrial workplaces lacking sufficient ventilation. Meanwhile, little is known about the characteristics of 3-D printing fume emission. The objective of this study was to characterize aerosols and VOC emissions generated from various filaments used with a low-cost 3-D printer in an environmental testing chamber. A pre-designed object was printed in 1.25 hours using eight types of filaments. A scanning mobility particle sizer and an aerodynamic particle sizer were employed to measure the particle size distribution in sub-half-micron fraction (<0.5 µm) and super-half-micron fraction (0.5-20 µm), respectively. VOC concentration was monitored real-time by a photoionization detector and sampled with a tri-sorbent thermal desorption tube, and analyzed by thermal desorption gas chromatography mass spectrometry (TD-GC/MS). Results showed high levels of fume particles emission rate (1.0 × 10(7) to 1.2 × 10(10) #/min) in the sub-half-micron range with mode sizes of 41-83 nm. Particle concentrations peaked during the heat-up and solid layer printing periods. Total VOC concentration in the chamber followed a first-order buildup, with predominant VOC species in the chamber were breakdown and reaction products of the filaments, such as styrene from ABS filaments. These findings and exposure scenario estimation suggest that although the VOC concentrations were much lower than occupational exposure limits, particles with size less than micron might be a concern for users of low-cost 3-D printers due to high respirablity, especially if used in settings without proper guidance

  13. Relative Hazard Calculation Methodology

    SciTech Connect

    DL Strenge; MK White; RD Stenner; WB Andrews

    1999-09-07

    The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation).

  14. Danger: Hazardous Gifts.

    ERIC Educational Resources Information Center

    Beaumont, Mary Ann; Englezos, Gay

    1991-01-01

    Under existing laws, the federal and some state and local agencies can hold current real estate owners liable for cleaning up property contaminated with hazardous wastes. This applies whether the property is purchased or comes as a gift. Schools should develop hazardous-gift policies and investigation procedures. (MSE)

  15. Hazardous Waste Manifest System

    EPA Pesticide Factsheets

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  16. A Natural Hazards Workbook.

    ERIC Educational Resources Information Center

    Kohler, Fred

    This paper discusses the development of and provides examples of exercises from a student workbook for a college-level course about natural hazards. The course is offered once a year to undergraduates at Western Illinois University. Students are introduced to 10 hazards (eight meteorological plus earthquakes and volcanoes) through slides, movies,…

  17. Avoiding the Hazards of Hazardous Waste.

    ERIC Educational Resources Information Center

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  18. Development of latent fingermarks on thermal paper: preliminary investigation into use of iodine fuming.

    PubMed

    Jasuja, Om Prakash; Singh, Gagandeep

    2009-11-20

    Thermal paper finds its extensive use in the modern day life and could act as a vital piece of physical evidence carrying latent fingermarks. A large number of citations are available in literature suggesting various techniques to develop these marks but all are suffering with one or the other drawbacks such as complex and cumbersome procedure, pre- or post-treatment, background coloration and efficiency to develop aged fingermarks. In present study, a very simple and novel method involving iodine fuming has been suggested to develop fingermarks which were not only permanent but also without any background coloration. The suggested method does not involve any pre- or post-treatment of the substrate and was able to develop very old fingermarks (upto >1 year). In this study an attempt has been made to explain the reaction mechanism of the process. In case of different types of thermal papers, presence of different substituents on leuco dye (lactone ring) structure resulted in development of different colored fingermarks upon reaction with iodine. Sebaceous material laden marks have been found to be more intensely developed as compared to eccrine marks, and the difference was more pronounced in case of aged fingermarks.

  19. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.

    PubMed

    Peng, Chiung-Yu; Lan, Cheng-Hang; Lin, Pei-Chen; Kuo, Yi-Chun

    2017-02-15

    Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE.

  20. Comparison of Nanoparticle Exposures Between Fumed and Sol-gel Nano-silica Manufacturing Facilities

    PubMed Central

    OH, Sewan; KIM, Boowook; KIM, Hyunwook

    2014-01-01

    Silica nanoparticles (SNPs) are widely used all around the world and it is necessary to evaluate appropriate risk management measures. An initial step in this process is to assess worker exposures in their current situation. The objective of this study was to compare concentrations and morphologic characteristics of fumed (FS) and sol-gel silica nanoparticles (SS) in two manufacturing facilities. The number concentration (NC) and particle size were measured by a real-time instrument. Airborne nanoparticles were subsequently analyzed using a TEM/EDS. SNPs were discharged into the air only during the packing process, which was the last manufacturing step in both the manufacturing facilities studied. In the FS packing process, the geometric mean (GM) NC in the personal samples was 57,000 particles/cm3. The geometric mean diameter (GMD) measured by the SMPS was 64 nm. Due to the high-temperature formation process, the particles exhibited a sintering coagulation. In the SS packing process that includes a manual jet mill operation, the GM NC was calculated to be 72,000 particles/cm3 with an assumption of 1,000,000 particles/cm3 when the upper limit is exceeded (5% of total measure). The particles from SS process had a spherical-shaped morphology with GMD measured by SMPS of 94 nm. PMID:24583511

  1. The impedance characterization of Carbon Nanotubes - Fumed Silica Poly (vinyl alcohol) Composites

    NASA Astrophysics Data System (ADS)

    Othman, R. N.; Wilkinson, A. N.

    2016-06-01

    Carbon Nanotube (CNT) was grown on the surface of fumed silica via chemical vapor deposition (CVD) method. In this work, silica acted as a site that holds CNT together, which prevents further agglomeration during composite processing. Iron catalyst at different loading (7.5 wt. % up to 25 wt. %) was introduced via impregnation method to synthesize CNT at 1000°C, under methane flow. Floating catalyst method was used where ferrocene (2.5 wt. % and 5 wt. %) was used as starting reactants together with toluene at 760°C. The reaction time was set at 1 hour for both methods. It was later confirmed via SEM images that the floating catalyst method is more suitable to produce a large amount of CNTs. The sample synthesized via floating catalyst method at both 2.5 wt.% and 5 wt. % ferrocene was later used to prepare composites. Composite films of the particles in poly (vinyl alcohol) (PVOH) were cast and their TEM images show that the dispersion is indeed uniform. From impedance measurement, it was found that the particles synthesized via floating catalyst method were found to form an electrically-conductive percolated network with percolation threshold of 1 wt. %, obtained via percolation equation.

  2. Nature and morphology of fumed oxides and features of interfacial phenomena

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Zarko, V. I.; Goncharuk, O. V.; Matkovsky, A. K.; Remez, O. S.; Skubiszewska-Zięba, J.; Wojcik, G.; Walusiak, B.; Blitz, J. P.

    2016-03-01

    Individual and complex fumed nanooxides were studied using high-resolution transmission electron microscopy, X-ray diffraction, ultraviolet-visible (UV-vis) spectroscopy, differential scanning calorimetry, nuclear magnetic resonance spectroscopy, adsorption, desorption (evaporation), and quantum chemical methods. For mixed nanooxides in contrast to simple and small nanoparticles of individual silica or titania, complex core-shell nanoparticles (50-200 nm in size) with titania or alumina cores and silica or alumina shells can be destroyed under high-pressure cryogelation (HPCG), mechnochemical activation (MCA) that also affect the structure of aggregates of nanoparticles and agglomerates of aggregates becoming more compacted. This is accompanied by changes in color from white to beige of different tints and changes in the UV-vis spectra in the 300-600 nm range, as well as changes in crystalline structure of alumina. Any treatment of 'soft' nanooxides affects the interfacial behavior of polar and nonpolar adsorbates. For some of them, the hysteresis loops become strongly open. Rearrangement of secondary particles affects the freezing-melting point depression. Clusterization of adsorbates bound in pores causes diminution of heat effects during phase transition (freezing, fusion). Freezing point depression and increasing melting point cause significant hysteresis freezing-melting effects for adsorbates bound to oxide nanoparticles. The study shows that complex nanooxides can be more sensitive to external actions than simple nanooxides such as silica.

  3. Chemical and physical characterisation of welding fume particles for distinguishing from gunshot residue.

    PubMed

    Brożek-Mucha, Zuzanna

    2015-09-01

    Spherical particles produced by firearms loaded with a traditional ammunition reveal characteristic elemental contents and so their identification may provide a significant evidence in criminal investigations. With the advent of modern technologies in manufacturing ammunition, which replace toxic compounds of lead, antimony and barium in the primer mixture by elements and compounds such as powdered aluminium, titanium, amorphous boron or calcium silicide, differentiation between gunshot residue and morphologically similar particles originating from other anthropogenic or natural sources becomes more difficult. This work provides a chemical and morphological characterisation of welding fume particles originating from both the core and the covering of electrodes used in popular manners of welding steel and aluminium alloy constructions. With the use of scanning electron microscopy and energy dispersive X-ray spectrometry it has been established that single spherules containing aluminium, titanium or a set of such elements as aluminium, silicon, potassium and calcium may occur in result of welding processes, however, they are accompanied by great numbers of iron and iron oxide spherules. Thus, with this analytical method a population of welding particles can be distinguished from a population of gunshot residue originating from a modern type of ammunition, but a special care has to be taken when assessing the evidential value of single or few spherules consisting from light elements being detected in result of the search for gunshot residue for forensic purposes.

  4. Synergistic hypergolic ignition of blends of dienes and dienophiles with red fuming nitric acid as oxidizer

    SciTech Connect

    Panda, S.P.; Kulkarni, S.G.; Prabhakaran, C.

    1989-04-01

    Synergistic hypergolic ignition of several fuel blends and mixtures with red fuming nitric acid (RFNA) as oxidizer has been reported previously. The liquid fuels consisted of blends of 3-carene, cyclopentadiene, or norbornadiene with cardanol in the weight ratio 70:30 for the first two and 85:15 for norbornadiene. In all these cases, synergism in ignition was believed to be due to the fast and exothermic oligomerization of 3-carene, cyclopentadiene, and norbornadiene in the presence of acid. The exothermicity of the systems was enhanced by the addition of cardanol to the unsaturation of oligomers, leading to the formation of highly oxidizable phenolic ethers. Two more important reactions at the preignition stage were nitration and oxidation of the ethers leading to the production of gaseous combustibles and heat. In this case, an attempt has been made to extend the range of possible preignition reactions by introducing diene-dienophile Diels-Alder cycloaddition with low activation energy by replacing cardanol with furfuryl alcohol or furfurylideneacetone having a furan ring to behave as acid polymerizable dienes in the above systems.

  5. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  6. The effect of subchronic exposure to the rubber vulcanization fumes on guinea pig lungs.

    PubMed

    Rydzyński, K; Domańska, A; Czerczak, S; Krysiak, B

    1990-01-01

    The influence of 28 days' inhalatory exposure to rubber vulcanization fumes at a concentration of 100 mg/m3 on guinea pigs' lung morphology was investigated. Focal infiltrations of pulmonary parenchyma with lymphocytes, neutrophilic and eosinophilic granulocytes and macrophages were observed. Lymphatic tissue concentrations having the typical appearance of solitary lymphatic nodules were also seen. The use of the double sequential Alcian blue/safranin O staining method for the identification of the mast cells [MCs] revealed that only Alcian-blue-positive MCs were observed, regardless of the region of the lungs examined, both in control and exposed guinea pigs. No safranin-0-positive MCs were seen. However, the MCs number increased from 1934 +/- 91 cells/mm3 tissue in controls to a statistically significant (p less than 0.05) 2486 +/- 89 cells/mm3 tissue in exposed guinea pig lungs. It was accompanied by histamine content increase from 1.50 +/- 0.06 micrograms/g wet tissue weight and 2.45 +/- 0.18 micrograms/g wet tissue weight, respectively. The distribution of the lung MCs varied, showing a statistically significant (p less than 0.05) increase in their number in the intraalveolar septa: from 957 +/- 53 to 1369 +/- 74 cells/mm3 tissue and in the peribronchial and peribronchiolar spaces: from 204 +/- 36 to 359 +/- 42 cells/mm3 tissue.

  7. Chronic Obstructive Pulmonary Disease (COPD) and Vapors, Gases, Dusts, or Fumes (VGDF): A Meta-analysis.

    PubMed

    Ryu, Ji Young; Sunwoo, Yu Eun; Lee, Sang-Yoon; Lee, Chae-Kwan; Kim, Jeong-Ho; Lee, Jong-Tae; Kim, Dae-Hwan

    2015-08-01

    To evaluate the association between the risk of chronic obstructive pulmonary disease (COPD) and exposure to vapors, gases, dusts, or fumes (VGDF), we conducted a meta-analysis of epidemiological studies. We searched for studies investigating the relationship between COPD and occupational exposure to VGDF in the adult population. The bibliographic search was conducted in databases (PubMed and Google Scholar). Eleven studies that met predetermined inclusion criteria were included in the meta-analysis. We calculated the pooled odds ratio (OR) with its 95% confidence interval (CI) of COPD for exposure to VGDF using a random-effects model. The presence of publication bias was explored. There was moderate heterogeneity among the included studies (I(2) = 54.3%). In a random-effects model meta-analysis, the pooled OR for exposure to VGDF was 1.43 for COPD (95% CI: 1.19-1.73) compared with no exposure to VGDF. Publication bias was not observed in this study. Our study suggests that exposure to VGDF is associated with a higher risk of COPD. Further prospective cohort studies are needed to confirm this association.

  8. Preliminary Appraisal of Ferrocene as an Igniting Agent for JP-4 Fuel and Fuming Nitric Acid

    NASA Technical Reports Server (NTRS)

    Miller, RIley O.

    1953-01-01

    A preliminary experimental study was made of the properties of ferrocene as a solute and as a suspension in JP-4 fuel, and of the ignition delays of ferrocene - JP-4 mixture with A.F. specification 14104 white fuming nitric acid (WFNA). The investigation covered concentrations of 4 to 10 percent by weight ferrocene, and a temperature range of -40 to 80 F. The solubility of ferrocene in JP-4 is about 5 percent at room temperature and about 1 percent (extrapolated) at -80 F. The solubility is increased somewhat by increased aromatics content. Undissolved ferrocene particles of 100 mesh and smaller settle rapidly in JP-4. Clear solutions of 4 and 5 percent ferrocene in JP-4 fuels containing 10 and 25 percent by volume aromatics, respectively, do not ignite with WFNA at room temperature. Mixtures containing 10 percent ferrocene (100- mesh and smaller undissolved particles in suspension) ignited with vigorous persistent flames at room temperature, but did not ignite at -38 F. The ignition delays at room temperature, however, were widely varied; the range from 85 milliseconds to over 1 second perhaps reflected differences in degree of sedimentation.

  9. Hazardous Waste Data (RCRAInfo)

    EPA Pesticide Factsheets

    Hazardous waste information is contained in the Resource Conservation and Recovery Act Information (RCRAInfo), a national program management and inventory system about hazardous waste handlers. In general, all generators, transporters, treaters, storers, and disposers of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies, in turn pass on the information to regional and national EPA offices. This regulation is governed by the Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984. You may use the RCRAInfo Search to determine identification and location data for specific hazardous waste handlers, and to find a wide range of information on treatment, storage, and disposal facilities regarding permit/closure status, compliance with Federal and State regulations, and cleanup activities.

  10. A Windshear Hazard Index

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hinton, David A.; Bowles, Roland L.

    2000-01-01

    An aircraft exposed to hazardous low-level windshear may suffer a critical loss of airspeed and altitude, thus endangering its ability to remain airborne. In order to characterize this hazard, a nondimensional index was developed based oil aerodynamic principals and understanding of windshear phenomena, 'This paper reviews the development and application of the Bowles F-tactor. which is now used by onboard sensors for the detection of hazardous windshear. It was developed and tested during NASA/I:AA's airborne windshear program and is now required for FAA certification of onboard radar windshear detection systems. Reviewed in this paper are: 1) definition of windshear and description of atmospheric phenomena that may cause hazardous windshear. 2) derivation and discussion of the F-factor. 3) development of the F-factor hazard threshold, 4) its testing during field deployments, and 5) its use in accident reconstructions,

  11. Short-term inhalation exposure to mild steel welding fume had no effect on lung inflammation and injury but did alter defense responses to bacteria in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R; Stone, Sam; Chen, Bean T; Schwegler-Berry, Diane; Frazer, David G

    2009-02-01

    Many workers worldwide are continually exposed to complex aerosols generated from welding processes. The objective was to assess the effect of inhalation exposure to mild steel (MS) welding fume on lung injury, inflammation, and defense responses. Male Sprague-Dawley rats were exposed to MS fume at a concentration of 40 mg/m(3) x 3 h/day x 3 or 10 days using a robotic welding fume generator. Controls were exposed to filtered air. To assess lung defense responses, a group of animals were intratracheally inoculated with 5 x 10(4) Listeria monocytogenes 1 day after the last daily exposure. Welding particles were collected during exposure, and chemical composition and particle size were determined. After exposure, lung injury, inflammation, and host defense (bacterial clearance) were measured. The particles were composed of iron (80.6 %) and manganese (14.7 %) with a mass median aerodynamic diameter of 0.31 microm. No significant difference was observed in lung injury or inflammation after MS fume inhalation at 1, 4, and 11 days after the last exposure. However, there were significantly more bacteria at 3 days after infection in the lungs of the animals exposed to MS fume compared to air controls. Acute exposure of rats to MS fume had no effect on injury and inflammation, but suppressed lung defense responses after infection. More chronic inhalation studies are needed to further examine the immune effects and to elucidate the possible mechanisms of the suppressed lung defense response to infection associated with the inhalation of MS welding fume.

  12. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study

    PubMed Central

    Jara-Ettinger, Ana Cecilia; López-Tavera, Juan Carlos; Zavala-Cerna, María Guadalupe; Torres-Bugarín, Olivia

    2015-01-01

    Background An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders. Material and Methods We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls). Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age. Results Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis) did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor. Conclusions Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject. PMID:26244938

  13. Natural hazards science strategy

    USGS Publications Warehouse

    Holmes, Jr., Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research - founded on detailed observations and improved understanding of the responsible physical processes - can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events. To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science. In October 2010, the Natural Hazards Science Strategy Planning Team (H-SSPT) was charged with developing a long-term (10-year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical statutory

  14. Natural hazards science strategy

    USGS Publications Warehouse

    Holmes, Jr., Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events.To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science.In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10-year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical statutory

  15. Space Debris Hazard Evaluation

    NASA Technical Reports Server (NTRS)

    Davison, Elmer H.; Winslow, Paul C., Jr.

    1961-01-01

    The hazard to space vehicles from natural space debris has been explored. A survey of the available information pertinent to this problem is presented. The hope is that this presentation gives a coherent picture of the knowledge to date in terms of the topic covered. The conclusion reached is that a definite hazard exists but that it can only be poorly assessed on the basis of present information. The need for direct measurement of this hazard is obvious, and some of the problems involved in making these direct measurements have been explored.

  16. Elimination of the hazards from hazardous wastes.

    PubMed Central

    Gloyna, E F; Taylor, R D

    1978-01-01

    The "hazard" associated with a waste essentially controls the overall engineering approach to finding suitable alternatives for solving potential disposal problems. It should be recognized that all factors affecting environmental equilibrium must be considered, including product sales, process design, financing, pre- and end-of-pipe treatment, residuals management, and ultimate bioaccumulation of residuals. To meet this challenge, a systems approach to waste treatment and residuals disposal provides a logical approach, but this management concept requires a thorough understanding of the important physical and chemical aspects of the problem, as well as many social implications of the resulting decisions. Thus waste management within a plant necessarily involves process control, pretreatment and end-of-pipe treatment. Further, it follows that residuals management from a disposal point-of-view must ultimately embrace what is called the "multi-barrier concept." In essence, hazard elimination occurs in varying degrees during each phase of a properly engineered system. PMID:738249

  17. Nano-composite polymer gel electrolytes containing ortho-nitro benzoic acid: role of dielectric constant of solvent and fumed silica

    NASA Astrophysics Data System (ADS)

    Kumar, R.

    2015-03-01

    In this paper, nano-composite polymer gel electrolytes containing polymethylmethacrylate, dimethylacetamide, diethyl carbonate, fumed silica and ortho-nitro benzoic acid have been synthesized. Electrical conductivity, viscosity, pH and thermal behavior of these electrolytes have been studied. The effect of acid, polymer, fumed silica concentration on conductivity, pH and viscosity has been discussed. The effect of dielectric constant of solvent on conductivity behavior of composite polymer gel electrolytes has also been studied. Two maxima in conductivity behavior have been observed with fumed silica concentration for composite polymer gel electrolytes, which have been explained on the basis of double percolation threshold model. Maximum conductivity of 3.20 × 10-4 and 2.46 × 10-6 S/cm at room temperature has been observed for nano-composite polymer gel electrolytes containing 10 wt% polymethylmethacrylate in 1 M solution of o-nitro benzoic acid in dimethylacetamide and diethyl carbonate respectively. The intensity of first maximum observed in conductivity at low concentration of fumed silica has been found to decrease with the decrease in acid concentration for composite polymer gel electrolytes, while the intensity of second maximum at higher fumed silica concentration remains unaffected. The conductivity of composite gels does not show much change in the temperature range of 20-100 °C and also remains constant with time, making them suitable for use as electrolytes in various devices like fuel cells, proton batteries, electrochromic window applications etc.

  18. Preparation and certification of two new bulk welding fume reference materials for use in laboratories undertaking analysis of occupational hygiene samples.

    PubMed

    Butler, Owen; Musgrove, Darren; Stacey, Peter

    2014-01-01

    Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories.

  19. Preparation and Certification of Two New Bulk Welding Fume Reference Materials for Use in Laboratories Undertaking Analysis of Occupational Hygiene Samples

    PubMed Central

    Butler, Owen; Musgrove, Darren; Stacey, Peter

    2014-01-01

    Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories. PMID:24499055

  20. Developing hazardous waste programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Developing a fully operational hazardous waste regulatory system requires at least 10 to 15 years—even in countries with strong legal and bureaucratic institutions, according to a report on "The Evolution of Hazardous Waste Programs," which was funded by Resources for the Future (RFF) and the World Bank's South Asia Environment Group, and issued on June 4.The report, which compares the experiences of how four developed and four developing countries have created hazardous waste programs, indicates that hazardous waste issues usually do not become a pressing environmental issue until after countries have dealt with more direct threats to public health, such as contaminated drinking water and air pollution. The countries examined include Indonesia, Thailand, Germany, and the United States.

  1. California's potential volcanic hazards

    SciTech Connect

    Jorgenson, P. )

    1989-01-01

    Although volcanic eruptions have occurred infrequently in California during the last few thousand years, the potential danger to life and property from volcanoes in the state is great enough to be of concern, according to a recent U.S. Geological Survey (USGS) publication. The 17-page bulletin, Potential Hazards from Future Volcanic Eruptions in California, gives a brief history of volcanic activity in California during the past 100,000 years, descriptions of the types of volcanoes in the state, the types of potentially hazardous volcanic events that could occur, and hazard-zonation maps and tables depicting six areas of the state where volcanic eruptions might occur. The six areas and brief descriptions of their past volcanic history and potential for future volcanic hazards are briefly summarized here.

  2. Household Hazards to Pets

    MedlinePlus

    ... follow label instructions before using any type of pesticide in your pet’s environment. For example, flea and ... when ingested. Hazards in the Garage & Yard Antifreeze, Herbicides and Insecticides Ethylene glycol-containing antifreeze and coolants, ...

  3. Barrier Island Hazard Mapping.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.; Neal, William J.

    1980-01-01

    Describes efforts to evaluate and map the susceptibility of barrier islands to damage from storms, erosion, rising sea levels and other natural phenomena. Presented are criteria for assessing the safety and hazard potential of island developments. (WB)

  4. Household Hazardous Waste (HHW)

    EPA Pesticide Factsheets

    This page gives an overview of how to safely manage household hazardous wastes like cleaners, paints and oils. Information is also provided on how to find recycling and disposal options for these products, as well as natural alternatives.

  5. Automated Standard Hazard Tool

    NASA Technical Reports Server (NTRS)

    Stebler, Shane

    2014-01-01

    The current system used to generate standard hazard reports is considered cumbersome and iterative. This study defines a structure for this system's process in a clear, algorithmic way so that standard hazard reports and basic hazard analysis may be completed using a centralized, web-based computer application. To accomplish this task, a test server is used to host a prototype of the tool during development. The prototype is configured to easily integrate into NASA's current server systems with minimal alteration. Additionally, the tool is easily updated and provides NASA with a system that may grow to accommodate future requirements and possibly, different applications. Results of this project's success are outlined in positive, subjective reviews complete by payload providers and NASA Safety and Mission Assurance personnel. Ideally, this prototype will increase interest in the concept of standard hazard automation and lead to the full-scale production of a user-ready application.

  6. K Basins Hazard Analysis

    SciTech Connect

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  7. K Basin Hazard Analysis

    SciTech Connect

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  8. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; Garwan, M A; Nagadi, M M; Al-Amoudi, O S B; Raashid, M; Khateeb-ur-Rehman

    2010-03-01

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  9. Electron paramagnetic resonance study of paramagnetic centers in carbon-fumed silica adsorbent

    SciTech Connect

    Savchenko, D. V.; Shanina, B. D.; Kalabukhova, E. N.; Sitnikov, A. A.; Lysenko, V. S.; Tertykh, V. A.

    2014-04-07

    Fumed silica A-300 was carbonized by means of pyrolysis of CH{sub 2}Cl{sub 2}. The obtained initial SiO{sub 2}:C nanopowders of black color, with an average diameter of 14–16 nm and carbon (C) concentration 7 wt. %, subjected to the oxidation and passivation treatment were studied by electron paramagnetic resonance (EPR) in the temperature range 4–400 K. Two EPR signals of Lorentzian lineshape with nearly equal g-factors and different linewidth were observed in the initial, oxidized, and passivated SiO{sub 2}:C nanopowders. The two-component EPR spectrum was explained by the presence of C in two electronic states. The intensive narrow EPR signal, which has a temperature-dependent intensity, linewidth, and resonance field position, was attributed to the carbon-related defect with non-localized electron hopping between neighboring C-dangling bonds. The striking effect is that the temperature dependence of the EPR linewidth demonstrates the motional narrowing of the EPR signal at very low temperatures from 4 K to 20 K, which is not typically for nonmetallic materials and was explained by the quantum character of C layer conductivity in the SiO{sub 2}:C. The observed peaks in the temperature dependence of the conduction electron EPR signal integral intensity in the high-temperature range 200–440 K was explained by the presence of the C nanodots at the surface of SiO{sub 2} nanoparticles and the ejection of electrons from the confinement energy levels of C quantum dot when the temperature becomes comparable to the confinement energy.

  10. Carbon Structure Hazard Control

    NASA Technical Reports Server (NTRS)

    Yoder, Tommy; Greene, Ben; Porter, Alan

    2015-01-01

    Carbon composite structures are widely used in virtually all advanced technology industries for a multitude of applications. The high strength-to-weight ratio and resistance to aggressive service environments make them highly desirable. Automotive, aerospace, and petroleum industries extensively use, and will continue to use, this enabling technology. As a result of this broad range of use, field and test personnel are increasingly exposed to hazards associated with these structures. No single published document exists to address the hazards and make recommendations for the hazard controls required for the different exposure possibilities from damaged structures including airborne fibers, fly, and dust. The potential for personnel exposure varies depending on the application or manipulation of the structure. The effect of exposure to carbon hazards is not limited to personnel, protection of electronics and mechanical equipment must be considered as well. The various exposure opportunities defined in this document include pre-manufacturing fly and dust, the cured structure, manufacturing/machining, post-event cleanup, and post-event test and/or evaluation. Hazard control is defined as it is applicable or applied for the specific exposure opportunity. The carbon exposure hazard includes fly, dust, fiber (cured/uncured), and matrix vapor/thermal decomposition products. By using the recommendations in this document, a high level of confidence can be assured for the protection of personnel and equipment.

  11. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size.

    PubMed

    Richman, Julie D; Livi, Kenneth J T; Geyh, Alison S

    2011-06-01

    Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected.

  12. Pneumococcal infection of respiratory cells exposed to welding fumes; Role of oxidative stress and HIF-1 alpha

    PubMed Central

    Grigg, Jonathan; Miyashita, Lisa

    2017-01-01

    Welders are more susceptible to pneumococcal pneumonia. The mechanisms are yet unclear. Pneumococci co-opt the platelet activating factor receptor (PAFR) to infect respiratory epithelial cells. We previously reported that exposure of respiratory cells to welding fumes (WF), upregulates PAFR–dependent pneumococcal infection. The signaling pathway for this response is unknown, however, in intestinal cells, hypoxia-inducible factor-1 α (HIF 1α) is reported to mediate PAFR-dependent infection. We sought to assess whether oxidative stress plays a role in susceptibility to pneumococcal infection via the platelet activating factor receptor. We also sought to evaluate the suitability of nasal epithelial PAFR expression in welders as a biomarker of susceptibility to infection. Finally, we investigated the generalisability of the effect of welding fumes on pneumococcal infection and growth using a variety of different welding fume samples. Nasal epithelial PAFR expression in welders and controls was analysed by flow cytometry. WF were collected using standard methodology. The effect of WF on respiratory cell reactive oxygen species production, HIF-1α expression, and pneumococcal infection was determined using flow cytometry, HIF-1α knockdown and overexpression, and pneumococcal infection assays. We found that nasal PAFR expression is significantly increased in welders compared with controls and that WF significantly increased reactive oxygen species production, HIF-1α and PAFR expression, and pneumococcal infection of respiratory cells. In unstimulated cells, HIF-1α knockdown decreased PAFR expression and HIF-1α overexpression increased PAFR expression. However, in knockdown cells pneumococcal infection was paradoxically increased and in overexpressing cells infection was unaffected. Nasal epithelial PAFR expression may be used as a biomarker of susceptibility to pneumococcal infection in order to target individuals, particularly those at high risk such as welders

  13. Pneumococcal infection of respiratory cells exposed to welding fumes; Role of oxidative stress and HIF-1 alpha.

    PubMed

    Grigg, Jonathan; Miyashita, Lisa; Suri, Reetika

    2017-01-01

    Welders are more susceptible to pneumococcal pneumonia. The mechanisms are yet unclear. Pneumococci co-opt the platelet activating factor receptor (PAFR) to infect respiratory epithelial cells. We previously reported that exposure of respiratory cells to welding fumes (WF), upregulates PAFR-dependent pneumococcal infection. The signaling pathway for this response is unknown, however, in intestinal cells, hypoxia-inducible factor-1 α (HIF 1α) is reported to mediate PAFR-dependent infection. We sought to assess whether oxidative stress plays a role in susceptibility to pneumococcal infection via the platelet activating factor receptor. We also sought to evaluate the suitability of nasal epithelial PAFR expression in welders as a biomarker of susceptibility to infection. Finally, we investigated the generalisability of the effect of welding fumes on pneumococcal infection and growth using a variety of different welding fume samples. Nasal epithelial PAFR expression in welders and controls was analysed by flow cytometry. WF were collected using standard methodology. The effect of WF on respiratory cell reactive oxygen species production, HIF-1α expression, and pneumococcal infection was determined using flow cytometry, HIF-1α knockdown and overexpression, and pneumococcal infection assays. We found that nasal PAFR expression is significantly increased in welders compared with controls and that WF significantly increased reactive oxygen species production, HIF-1α and PAFR expression, and pneumococcal infection of respiratory cells. In unstimulated cells, HIF-1α knockdown decreased PAFR expression and HIF-1α overexpression increased PAFR expression. However, in knockdown cells pneumococcal infection was paradoxically increased and in overexpressing cells infection was unaffected. Nasal epithelial PAFR expression may be used as a biomarker of susceptibility to pneumococcal infection in order to target individuals, particularly those at high risk such as welders

  14. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    SciTech Connect

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  15. Exposure to welding fumes is associated with hypomethylation of the F2RL3 gene: a cardiovascular disease marker

    PubMed Central

    Hossain, Mohammad B; Li, Huiqi; Hedmer, Maria; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-01-01

    Background Welders are at risk for cardiovascular disease. Recent studies linked tobacco smoke exposure to hypomethylation of the F2RL3 (coagulation factor II (thrombin) receptor-like 3) gene, a marker for cardiovascular disease prognosis and mortality. However, whether welding fumes cause hypomethylation of F2RL3 remains unknown. Methods We investigated 101 welders (median span of working as a welder: 7 years) and 127 unexposed controls (non-welders with no obvious exposure to respirable dust at work), age range 23–60 years, all currently non-smoking, in Sweden. The participants were interviewed about their work history, lifestyle factors and diseases. Personal sampling of respirable dust was performed for the welders. DNA methylation of F2RL3 in blood was assessed by pyrosequencing of four CpG sites, CpG_2 (corresponds to cg03636183) to CpG_5, in F2RL3. Multivariable linear regression analysis was used to assess the association between exposure to welding fumes and F2RL3 methylation. Results Welders had 2.6% lower methylation of CpG_5 than controls (p<0.001). Higher concentrations of measured respirable dust among the welders were associated with hypomethylation of CpG_2, CpG_4 and CpG_5 (β=−0.49 to −1.4, p<0.012); p<0.029 adjusted for age, previous smoking, passive smoking, education, current residence and respirator use. Increasing the number of years working as a welder was associated with hypomethylation of CpG_4 (linear regression analysis, β=−0.11, p=0.039, adjusted for previous smoking). Previous tobacco smokers had 1.5–4.7% (p<0.014) lower methylation of 3 of the 4 CpG sites in F2RL3 (CpG_2, CpG_4 and CpG_5) compared to never-smokers. A non-significant lower risk of cardiovascular disease with more methylation was observed for all CpG sites. Conclusions Welding fumes exposure and previous smoking were associated with F2RL3 hypomethylation. This finding links low-to-moderate exposure to welding fumes to adverse effects on the cardiovascular

  16. Exposure to rubber fume and rubber process dust in the general rubber goods, tyre manufacturing and retread industries.

    PubMed

    Dost, A A; Redman, D; Cox, G

    2000-08-01

    This study assesses the current patterns and levels of exposure to rubber fume and rubber process dust in the British rubber industry and compares and contrasts the data obtained from the general rubber goods (GRG), retread tire (RT) and new tire (NT) sectors. A total of 179 rubber companies were visited and data were obtained from 52 general rubber goods, 29 retread tire and 7 new tire manufacturers. The survey was conducted using a questionnaire and included a walk-through inspection of the workplace to assess the extent of use of control measures and the nature of work practices being employed. The most recent (predominantly 1995-97) exposure monitoring data for rubber fume and rubber process dust were obtained from these companies; no additional sampling was conducted for the purpose of this study. In addition to the assessment of exposure data, evaluation of occupational hygiene reports for the quality of information and advice was also carried out.A comparison of the median exposures for processes showed that the order of exposure to rubber fume (E, in mg m(-3)) is: E(moulding) (0.40) approximately E(extrusion) (0.33)>E(milling) (0.18) for GRG; E(press) (0. 32)>E(extrusion) (0.19)>E(autoclave) (0.10) for RT; and E(press) (0. 22) approximately E(all other) (0.22) for NT. The order of exposure to rubber fume between sectors was E(GRG) (0.40)>E(RT) (0.32)>E(NT) (0.22). Median exposures to rubber process dust in the GRG was E(weighing) (4.2)>E(mixing) (1.2) approximately E(milling) (0.8) approximately E(extrusion) (0.8) and no significant difference (P=0. 31) between GRG and NT sectors. The findings compare well with the study carried out in the Netherlands [Kromhout et al. (1994), Annals of Occupational Hygiene 38(1), 3-22], and it is suggested that the factors governing the significant differences noted between the three sectors relate principally to the production and task functions and also to the extent of controls employed. Evaluation of occupational

  17. Chemical process hazards analysis

    SciTech Connect

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  18. Innovative hazardous waste treatment technology

    SciTech Connect

    Freeman, H.M.; Sferra, P.R. . Hazardous Waste Engineering Research Lab.)

    1990-01-01

    This book contains information about the latest developments in destroying hazardous wastes by incineration or pyrolysis. Topics include: hydrogenation and reuse of hazardous organic wastes; catalytic incineration of gaseous wastes; oxygen enhancement of hazardous waste incineration; and thermal fixation of hazardous metal sludges in an alumina-silicate matrix.

  19. The California Hazards Institute

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.

    2006-12-01

    California's abundant resources are linked with its natural hazards. Earthquakes, landslides, wildfires, floods, tsunamis, volcanic eruptions, severe storms, fires, and droughts afflict the state regularly. These events have the potential to become great disasters, like the San Francisco earthquake and fire of 1906, that overwhelm the capacity of society to respond. At such times, the fabric of civic life is frayed, political leadership is tested, economic losses can dwarf available resources, and full recovery can take decades. A patchwork of Federal, state and local programs are in place to address individual hazards, but California lacks effective coordination to forecast, prevent, prepare for, mitigate, respond to, and recover from, the harmful effects of natural disasters. Moreover, we do not know enough about the frequency, size, time, or locations where they may strike, nor about how the natural environment and man-made structures would respond. As California's population grows and becomes more interdependent, even moderate events have the potential to trigger catastrophes. Natural hazards need not become natural disasters if they are addressed proactively and effectively, rather than reactively. The University of California, with 10 campuses distributed across the state, has world-class faculty and students engaged in research and education in all fields of direct relevance to hazards. For that reason, the UC can become a world leader in anticipating and managing natural hazards in order to prevent loss of life and property and degradation of environmental quality. The University of California, Office of the President, has therefore established a new system-wide Multicampus Research Project, the California Hazards Institute (CHI), as a mechanism to research innovative, effective solutions for California. The CHI will build on the rich intellectual capital and expertise of the Golden State to provide the best available science, knowledge and tools for

  20. Identification of Aircraft Hazards

    SciTech Connect

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  1. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  2. Hazardous materials dictionary

    SciTech Connect

    Coleman, R.J.

    1987-01-01

    Parallel growth of the chemical industry of emergency response capabilities in the public and private sectors has created a new need for improved communications. A new vocabulary of important terms is emerging in each of the industries that transport, store and handle hazardous materials. This dictionary, representing a compilation of words and phrases from many relevant sources, will help document and standardize the nomenclature of hazardous materials. The authors have screened the technical discourse of the chemical, transportation, petroleum and medical fields, both governmental and private, to determine the most current expressions and their uses. The lexicographic goal has been to identify key terms, ambiguous and multiple meaning words, acronyms, symbols and even slang referring to hazardous materials reactions, storing and handling procedures.

  3. Effect of magnesium and sulfate ions on durability of silica fume blended mixes exposed to the seawater tidal zone

    SciTech Connect

    Ganjian, Eshmaiel . E-mail: E.Ganjian@Coventry.ac.uk; Pouya, Homayoon Sadeghi

    2005-07-01

    The effect of silica fume on deterioration resistance to sulfate attack in seawater within tidal zone and simulated wetting-drying condition has been studied in Portland cement concretes and pastes containing silica fume (SF) with/without ground granulated blast furnace slag (GGBS). Changes in the compressive strength and capillary water absorption of specimens as a function of SF content have been investigated combined with phases determination by means of scanning electron microscopy and X-ray energy dispersion analysis. The strength change factors (SCFs) of specimens with SF (the more SF content, the higher strength loss) were greater than that of the mixes without SF or cured under tap water. Mg{sup 2+} ion originated attack found to be the dominating deterioration mechanism as confirmed by X-ray and chemical analyses. Further, the incorporation of GGBS with SF mixes in different exposure conditions led to the worst performance in all of the test environments. Lower cement content and hydration rate accompanied with particular chemical composition of GGBS made concrete and paste specimens to be more susceptible to deleterious seawater environment.

  4. Characterization of the morphological properties of welding fume particles by transmission electron microscopy and digital image analysis.

    PubMed

    Farrants, G; Schüler, B; Karlsen, J; Reith, A; Langård, S

    1989-09-01

    The morphological characteristics of welding fume particles have been determined using transmission electron microscopy (TEM) and automatic image analysis (AIA). Two personal samples and one background sample were collected using a new, easy to handle sampling method, during tungsten inert gas (TIG) and manual metal arc (MMA) welding on Inconel in the same shop. The collection method gave samples which were suitable for TEM and AIA. Electron micrographs were taken in a transmission electron microscope and further analyzed using an image analysis unit. Aggregates composed of many individual particles were analyzed both for the parameters of the aggregate and for the parameters of the individual particles by using an algorithm based on a grain boundary reconstruction technique. The morphological parameters allowed the welding fume's particulate matter to be divided into three types - here called small, medium, and large - with a somewhat unclear distinction between medium and large. Medium and large particles occur either as individual particles or as clusters of approximately spherical particles with average diameters of 0.07 and 0.15 microm, respectively. Small particles occur almost exclusively as long chains or lace-like structures of aggregates of particles, often in the range of 5-10 microm. The aggregates have an average projected area of 2.6 x 10-3 microm2 and are composed of several hundred individual particles.

  5. In vitro dentin permeability after application of Gluma® desensitizer as aqueous solution or aqueous fumed silica dispersion

    PubMed Central

    ISHIHATA, Hiroshi; FINGER, Werner J.; KANEHIRA, Masafumi; SHIMAUCHI, Hidetoshi; KOMATSU, Masashi

    2011-01-01

    Objectives To assess and to compare the effects of Gluma® Desensitizer (GDL) with an experimental glutaraldehyde and HEMA containing fumed silica dispersion (GDG) on dentin permeability using a chemiluminous tracer penetration test. Material and Methods Twenty disc-shaped dentin specimens were dissected from extracted human third molars. The dentin specimens were mounted in a split chamber device for determination of permeability under liquid pressure using a photochemical method. Ten specimens were randomly selected and allocated to the evaluation groups Gluma® Desensitizer as aqueous solution and glutaraldehyde/HEMA as fumed silica dispersion, respectively. Dentin disc permeability was determined at two pressure levels after removal of smear with EDTA, after albumin soaking, and after application of the desensitizing agents. Two desensitizer-treated and rinsed specimens of each group were examined by scanning electron microscopy (SEM) for surface remnants. Results Comparatively large standard deviations of the mean EDTA reference and albumin soaked samples permeability values reflected the differences of the dentin substrates. The mean chemiluminescence values of specimen treated with GDL and GDG, respectively, were significantly reduced after topical application of the desensitizing agents on albumin-soaked dentin. The effects of GDL and GDG on permeability were not significantly different. Treated specimens showed no surface remnants after rinsing. Conclusions The experimental desensitizer gel formulation reduced dentin permeability as effectively as the original Gluma® Desensitizer solution. PMID:21552716

  6. Effects of sash movement and walk-bys on aerodynamics and contaminant leakage of laboratory fume cupboards.

    PubMed

    Tseng, Li-Ching; Huang, Rong Fung; Chen, Chih-Chieh; Chang, Cheng-Ping

    2007-04-01

    In order to speculate the physical mechanisms of contaminant leakage during sash movement and walk-bys through a laboratory fume cupboard, the complicated three-dimensional flow patterns and the real-time tracer gas leakage are studied via the laser-assisted flow visualization method and the standard gas sampling technique, respectively, over a transparent, full scale chemical fume cupboard. Through the flow visualization, the evolution of drastic changes of the flow pattern is demonstrated. The highly turbulent jet-like currents are induced by the unsteady flow motion near the cupboard face. Large-scale turbulent eddies accompanied with the jet-like currents obviously bring large amount of in-cupboard smoke out to the atmosphere. The turbulent mixing extends the size and the strength of the large-scale eddy circulations, and predominantly contributes to the mechanism that causes the severe spread of contaminant leakage in few seconds. The tracer gas tests that are conducted by employing pr-EN 14175:2003 method show consistent containment results with the flow visualization findings. The temporally evolving large-scale turbulent eddies induced by the sash movement and the walk-bys cause substantially high contaminant leakage to the environment and the breathing zone of the operator.

  7. Crosslinkable fumed silica-based nanocomposite electrolytes: role of methacrylate monomer in formation of crosslinked silica network

    NASA Astrophysics Data System (ADS)

    Yerian, Jeffrey A.; Khan, Saad A.; Fedkiw, Peter S.

    The electrochemical and rheological properties of composite polymer electrolytes (CPEs) based on fumed silica with tethered crosslinkable groups are reported. These silica nanoparticles are dispersed in electrolytes consisting of poly(ethylene glycol) dimethyl ether (PEGdm)+lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to which various methacrylate monomers, such as methyl (MMA), ethyl (EMA), butyl (BMA), n-hexyl (HMA), and n-dodecyl (DMA) methacrylate, are added. The methacrylate monomer facilitates creation of chemical crosslinks between fumed silica particles and formation of a crosslinked network. In this study, the effects of concentration and alkyl chain length of the monomers on conductivity, dynamic rheology, open-circuit interfacial stability, and cell voltage in lithium-lithium cell cycling are examined. Increasing the length of the monomer alkyl chain enhances both conductivity and elastic modulus of the crosslinked CPE. In contrast, increasing monomer concentration results in higher elastic modulus, but reduced conductivity. Lithium-lithium cell cycling and open-circuit interfacial stability results did not correlate with alkyl chain length. That is, for the lithium-lithium cycling studies, all crosslinked samples exhibit higher half-cycle voltage compared to non-crosslinked samples; however, the open-circuit interfacial stability of CPEs containing BMA and HMA exhibit improved stability compared to the other monomers and the CPE without monomer.

  8. The injury of fine particulate matter from cooking oil fumes on umbilical cord blood vessels in vitro.

    PubMed

    Hou, Lijuan; Zhang, Jian; Zhang, Chao; Xu, Yachun; Zhu, Xiaoxia; Yao, Cijiang; Liu, Ying; Li, Tao; Cao, Jiyu

    2017-01-01

    Cooking oil fumes (COFs) derived PM2.5 is the major source of indoor air pollution in Asia. For this, a pregnant rat model within different doses of cooking oil fumes (COFs) derived PM2.5 was established in pregnancy in our research. Our previous studies have showed that exposure to COFs-derived PM2.5 was related to adverse pregnancy outcomes. However, the mechanisms of signaling pathways remain unknown. Therefore, this study aimed to investigate the underlying mechanisms induced by COFs-derived PM2.5 injury on umbilical cord blood vessels (UCs) in vitro. Exposure to COFs-derived PM2.5 resulted in changing the expression of eNOS, ET-1, ETRA, and ETRB. In additions, western blot analysis indicated that the HIF-1α/iNOS/NO signaling pathway and VEGF/VEGFR1/iNOS signaling pathway were involved in UCs injury triggered by COFs-derived PM2.5. In conclusion, our data suggested that exposure to COFs-derived PM2.5 resulted in increasing of oxidative stress and inflammation, as well as dysfunction of UCs.

  9. Hazardous-Materials Robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Edmonds, Gary O.

    1995-01-01

    Remotely controlled mobile robot used to locate, characterize, identify, and eventually mitigate incidents involving hazardous-materials spills/releases. Possesses number of innovative features, allowing it to perform mission-critical functions such as opening and unlocking doors and sensing for hazardous materials. Provides safe means for locating and identifying spills and eliminates risks of injury associated with use of manned entry teams. Current version of vehicle, called HAZBOT III, also features unique mechanical and electrical design enabling vehicle to operate safely within combustible atmosphere.

  10. Hazard Communication Standard

    SciTech Connect

    Sichak, S.

    1991-01-01

    The current rate of technological advances has brought with it an overwhelming increase in the usage of chemicals in the workplace and in the home. Coupled to this increase has been a heightened awareness in the potential for acute and chronic injuries attributable to chemical insults. The Hazard Communication Standard has been introduced with the desired goal of reducing workplace exposures to hazardous substances and thereby achieving a corresponding reduction in adverse health effects. It was created and proclaimed by the US Department of Labor and regulated by the Occupational Safety and Health Administration. 1 tab.

  11. Geothermal hazards - Mercury emission

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1975-01-01

    Enthusiasm for intensified geothermal exploration may induce many participants to overlook a long-term potential toxicity hazard possibly associated with the tapping of magmatic steam. The association of high atmospheric Hg levels with geothermal activity has been established both in Hawaii and Iceland, and it has been shown that mercury can be introduced into the atmosphere from fumaroles, hot springs, and magmatic sources. These arguments, extended to thallium, selenium, and other hazardous elements, underscore the need for environmental monitoring in conjunction with the delivery of magmatic steam to the surface.

  12. Managing Academe's Hazardous Materials.

    ERIC Educational Resources Information Center

    Thompson, Fay

    1991-01-01

    Those responsible for planning and management of colleges and universities must plan comprehensively for hazardous waste disposal. Federal and state regulations are increasing, landfill area is becoming scarce, and incineration costs are rising fast. High-level institutional commitment to a sound campus environment policy is essential. (MSE)

  13. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  14. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…

  15. Hazardous solvent substitution

    SciTech Connect

    Twitchell, K.E.

    1995-11-01

    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is `What can we use as replacements for hazardous solvents?`You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product`s constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace.

  16. Hazards of Mercury.

    ERIC Educational Resources Information Center

    Environmental Research, 1971

    1971-01-01

    Common concern for the protection and improvement of the environment and the enhancement of human health and welfare underscore the purpose of this special report on the hazards of mercury directed to the Secretary's Pesticide Advisory Committee, Department of Health, Education, and Welfare. The report summarizes the findings of a ten-member study…

  17. Health Hazard Evaluations

    MedlinePlus

    ... provide assistance and information by phone and in writing, or may visit the workplace to assess exposure and employee health. Based on their findings, NIOSH will recommend ways to reduce hazards and prevent work-related illness. The evaluation is done at no cost to the employees, ...

  18. The Impact Hazard

    NASA Technical Reports Server (NTRS)

    Morrison, David

    1994-01-01

    The Earth has been subject to hypervelocity impacts from comets and asteroids since its formation, and such impacts have played an important role in the evolution of life on our planet. We now recognize not only the historical role of impacts, but the contemporary hazard posed by such events. In the absence of a complete census of potentially threatening Earth-crossing asteroids or comets (called collectively Near Earth Objects, or NEOs), or even of a comprehensive cur-rent search program to identify NEOs, we can consider the hazard only from a probabilistic perspective. We know the steep power-law relationship between NEO numbers and size, with many more small bodies than large ones. We also know that few objects less than about 50 m in diameter (with kinetic energy near 10 megatons) penetrate the atmosphere and are capable of doing surface damage. But there is a spectrum of possible impact hazards associated with objects from this 10-megaton threshold all the way up to NEOs 5 km or larger in diameter, which are capable of inflicting severe damage on the environment, leading to mass extinction's of species. Detailed analysis has shown that, in general, the larger the object the greater the hazard, even when allowance is made for the infrequency of large impacts. Most of the danger to human life is associated with impacts by objects roughly 2 km or larger (energy greater than 1 million megatons), which can inject sufficient submicrometer dust into the atmosphere to produce a severe short-term global cooling with subsequent loss of crops, leading to starvation. Hazard estimates suggest that the chance of such an event occurring during a human lifetime is about 1:5000, and the global probability of death from such impacts is of the order of 1:20000, values that can be compared with risks associated with other natural hazards such as earthquakes, volcanic eruptions, and severe storms. However, the impact hazard differs from the others in that it can be largely

  19. Tank farms hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  20. The Impact Hazard

    NASA Astrophysics Data System (ADS)

    Morrison, D.

    2009-12-01

    Throughout its existence, Earth has been pummelled by rocks from space. The cratered face of the Moon testifies to this continuing cosmic bombardment, and the 1908 Tunguska impact in Siberia should have been a wake-up call to the impact hazard. For most scientists, however, it was the discovery 30 years ago that the KT mass extinction was caused by an impact that opened our eyes to this important aspect of Earth history -- that some geological and biological changes have an external origin, and that the biosphere is much more sensitive to impact disturbance than was imagined. While life adapts beautifully to slow changes in the enviroment, a sudden event, like a large impact, can have catastrophic consequences. While we do not face any known hazard today for an extinction-level event, we are becoming aware that more than a million near-earth asteroids (NEAs) exist with the capacity to take out a city if they hit in the wrong place. The NASA Spaceguard Survey has begun to discover and track the larger NEAs, but we do not yet have the capability to find more than a few pecent of the objects as small as the Tunguska impactor (about 40 m diameter). This continuing impact hazard is at roughly the hazard level of volcanic eruptions, including the rare supervolcano eruptions. The differnece is that an incoming cosmic projectile can be detected and tracked, and by application of modern space technology, most impactors could be deflected. Impacts are the only natural hazard that can be eliminated. This motivates our NEA search programs such as Spaceguard and argues for extending them to smaller sizes. At the same time we realize that the most likely warning time for the next impact remains a few seconds, and we may therefore need to fall back on the more conventional responses of disaster mitigation and relief.

  1. Synthesis of Silicon Nitride and Silicon Carbide Nanocomposites through High Energy Milling of Waste Silica Fume for Structural Applications

    NASA Astrophysics Data System (ADS)

    Suri, Jyothi

    Nanocomposites have been widely used in a multitude of applications in electronics and structural components because of their improved mechanical, electrical, and magnetic properties. Silicon nitride/Silicon carbide (Si 3N4/SiC) nanocomposites have been studied intensively for low and high temperature structural applications, such as turbine and automobile engine components, ball bearings, turbochargers, as well as energy applications due to their superior wear resistance, high temperature strength, high oxidation resistance and good creep resistance. Silica fume is the waste material produced during the manufacture of silicon and ferro-silicon alloys, and contains 94 to 97 wt.% SiO2. In the present dissertation, the feasibility of using waste silica fume as the raw material was investigated to synthesize (I) advanced nanocomposites of Si3N4/SiC, and (2) porous silicon carbide (SiC) for membrane applications. The processing approach used to convert the waste material to advanced ceramic materials was based on a novel process called, integrated mechanical and thermal activation process (IMTA) process. In the first part of the dissertation, the effect of parameters such as carbothermic nitridation and reduction temperature and the graphite concentration in the starting silica fume plus graphite mixture, were explored to synthesize nanocomposite powders with tailored amounts of Si3N4 and SiC phases. An effective way to synthesize carbon-free Si3N 4/SiC composite powders was studied to provide a clear pathway and fundamental understanding of the reaction mechanisms. Si3N4/SiC nanocomposite powders were then sintered using two different approaches, based on liquid phase sintering and spark plasma sintering processes, with Al 2O3 and Y2O3 as the sintering aids. The nanocomposites were investigated for their densification behavior, microstructure, and mechanical properties. Si3N4/SiC nanocomposites thus obtained were found to possess superior mechanical properties at much

  2. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.

    PubMed

    Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila

    2015-09-01

    A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of

  3. Physicochemistry and cardiovascular toxicity of metal fume PM2.5: a study of human coronary artery endothelial cells and welding workers

    NASA Astrophysics Data System (ADS)

    Lai, Chane-Yu; Lai, Ching-Huang; Chuang, Hsiao-Chi; Pan, Chih-Hong; Yen, Cheng-Chieh; Lin, Wen-Yi; Chen, Jen-Kun; Lin, Lian-Yu; Chuang, Kai-Jen

    2016-09-01

    Occupational exposure to welding fumes causes a higher incidence of cardiovascular disease; however, the association remains unclear. To clarify the possible association, exposure assessment of metal fumes with an aerodynamic diameter of <2.5 μm (PM2.5) in welding and office areas was characterized in a shipyard in Taiwan. Cardiovascular toxicity caused by PM2.5 was determined in workers (in both the welding and office areas). Significant amounts of bimodal metal fume particles with count median diameters (CMDs) of 14.1~15.1 and 126.3~135.8 nm were produced in the shipyard. Metal fume PM2.5 resulted in decreased cell viability and increased levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), interleukin (IL)-6, and nitric oxide (NO) in human coronary artery epithelial cells (HCAECs). We recruited 118 welding workers and 45 office workers for a personal PM2.5 exposure assessment and determination of urinary levels of 8-OHdG, 8-iso-prostaglandin F2α (8-iso-PGF2α), and various metals. We observed that a 10-μg/m3 increase in the mean PM2.5 concentration was associated with a 2.15% increase in 8-OHdG and an 8.43% increase in 8-iso-PGF2α in welding workers. Both 8-OHdG and 8-iso-PGF2α were associated with Fe and Zn in the urine. In conclusion, metal fume PM2.5 could increase the risk of cardiovascular toxicity after inhalation.

  4. Air sampling methodology for asphalt fume in asphalt production and asphalt roofing manufacturing facilities: total particulate sampler versus inhalable particulate sampler.

    PubMed

    Calzavara, Thomas S; Carter, Charles M; Axten, Charles

    2003-05-01

    In 2000, the American Conference of Governmental Industrial Hygienists (ACGIH(R)) changed its 1971 threshold limit value (TLV) for 8-hour time-weighted average (TWA) exposure to asphalt from 5 mg/m(3) total particulate (generally < or =40 micrometer [microm] diameter) to 0.5 mg/m(3) inhalable particulate (< or =100 microm aerodynamic diameter) as benzene-soluble aerosol. To date, no inhalable particulate sampling method has been standardized and validated for asphalt fume. Furthermore, much of the historical data were collected using total particulate samplers, and the comparability of total versus inhalable size fractions of asphalt fume is not known. Therefore, the present study compared results from two types of asphalt fume samplers: 1) a traditional total particulate sampler with a 37-mm filter in a closed-face cassette with a 4-mm orifice (NIOSH 5042) versus (2) an inhalable particulate sampler designed by the IOM with a 15-mm orifice. A total of 75 simultaneous pairs of samples were collected, including personal and area samples from 19 roofing and asphalt production facilities operated by 7 different manufacturers. Each sample was analyzed for total mass collected and for benzene-soluble mass. Data from the two sampling methods (total versus inhalable) were comparable for asphalt fumes up to an aerosol concentration of 10 mg/m(3). However, we conclude that the traditional total particulate method is preferable, for this reason: The vast majority of asphalt fume particles are <12.5 microm in diameter. The traditional sampler is designed to collect primarily particles < or =40 microm, while the IOM sampler is optimized for collecting particles < or =100 microm. Thus, the traditional sampler is less likely than the IOM sampler to collect the larger-size fraction of airborne particles, most of which are non-asphalt dust.

  5. Physicochemistry and cardiovascular toxicity of metal fume PM2.5: a study of human coronary artery endothelial cells and welding workers

    PubMed Central

    Lai, Chane-Yu; Lai, Ching-Huang; Chuang, Hsiao-Chi; Pan, Chih-Hong; Yen, Cheng-Chieh; Lin, Wen-Yi; Chen, Jen-Kun; Lin, Lian-Yu; Chuang, Kai-Jen

    2016-01-01

    Occupational exposure to welding fumes causes a higher incidence of cardiovascular disease; however, the association remains unclear. To clarify the possible association, exposure assessment of metal fumes with an aerodynamic diameter of <2.5 μm (PM2.5) in welding and office areas was characterized in a shipyard in Taiwan. Cardiovascular toxicity caused by PM2.5 was determined in workers (in both the welding and office areas). Significant amounts of bimodal metal fume particles with count median diameters (CMDs) of 14.1~15.1 and 126.3~135.8 nm were produced in the shipyard. Metal fume PM2.5 resulted in decreased cell viability and increased levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), interleukin (IL)-6, and nitric oxide (NO) in human coronary artery epithelial cells (HCAECs). We recruited 118 welding workers and 45 office workers for a personal PM2.5 exposure assessment and determination of urinary levels of 8-OHdG, 8-iso-prostaglandin F2α (8-iso-PGF2α), and various metals. We observed that a 10-μg/m3 increase in the mean PM2.5 concentration was associated with a 2.15% increase in 8-OHdG and an 8.43% increase in 8-iso-PGF2α in welding workers. Both 8-OHdG and 8-iso-PGF2α were associated with Fe and Zn in the urine. In conclusion, metal fume PM2.5 could increase the risk of cardiovascular toxicity after inhalation. PMID:27641436

  6. Counterfactual Volcano Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Woo, Gordon

    2013-04-01

    The historical database of past disasters is a cornerstone of catastrophe risk assessment. Whereas disasters are fortunately comparatively rare, near-misses are quite common for both natural and man-made hazards. The word disaster originally means 'an unfavourable aspect of a star'. Except for astrologists, disasters are no longer perceived fatalistically as pre-determined. Nevertheless, to this day, historical disasters are treated statistically as fixed events, although in reality there is a large luck element involved in converting a near-miss crisis situation into a disaster statistic. It is possible to conceive a stochastic simulation of the past to explore the implications of this chance factor. Counterfactual history is the exercise of hypothesizing alternative paths of history from what actually happened. Exploring history from a counterfactual perspective is instructive for a variety of reasons. First, it is easy to be fooled by randomness and see regularity in event patterns which are illusory. The past is just one realization of a variety of possible evolutions of history, which may be analyzed through a stochastic simulation of an array of counterfactual scenarios. In any hazard context, there is a random component equivalent to dice being rolled to decide whether a near-miss becomes an actual disaster. The fact that there may be no observed disaster over a period of time may belie the occurrence of numerous near-misses. This may be illustrated using the simple dice paradigm. Suppose a dice is rolled every month for a year, and an event is recorded if a six is thrown. There is still an 11% chance of no events occurring during the year. A variety of perils may be used to illustrate the use of near-miss information within a counterfactual disaster analysis. In the domain of natural hazards, near-misses are a notable feature of the threat landscape. Storm surges are an obvious example. Sea defences may protect against most meteorological scenarios. However

  7. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  8. Household Hazardous Waste and Demolition

    EPA Pesticide Factsheets

    Household wastes that are toxic, corrosive, ignitable, or reactive are known as Household Hazardous Waste (HHW). Household Hazardous Waste may be found during residential demolitions, and thus require special handling for disposal.

  9. Health Hazards of Hospital Personnel

    PubMed Central

    Clever, Linda Hawes

    1981-01-01

    Health care workers historically have faced serious health problems, such as exposure to patients with tuberculosis. For hospital personnel today, a number of hazards exist. These range from toxic substance exposure to safety hazards presented by patients themselves. PMID:7281652

  10. Seismic hazard maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  11. Autonomous Landing Hazard Avoidance Technology

    NASA Video Gallery

    Future NASA space crafts will be able to safely land on the Moon, Marsand even an asteroid, in potentially hazardous terrain areas, allautonomously. And NASA’s Autonomous Landing Hazard Avoidan...

  12. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  13. Identifying and modeling safety hazards

    SciTech Connect

    DANIELS,JESSE; BAHILL,TERRY; WERNER,PAUL W.

    2000-03-29

    The hazard model described in this paper is designed to accept data over the Internet from distributed databases. A hazard object template is used to ensure that all necessary descriptors are collected for each object. Three methods for combining the data are compared and contrasted. Three methods are used for handling the three types of interactions between the hazard objects.

  14. Hazard Maps in the Classroom.

    ERIC Educational Resources Information Center

    Cross, John A.

    1988-01-01

    Emphasizes the use of geophysical hazard maps and illustrates how they can be used in the classroom from kindergarten to college level. Depicts ways that hazard maps of floods, landslides, earthquakes, volcanoes, and multi-hazards can be integrated into classroom instruction. Tells how maps may be obtained. (SLM)

  15. California's potential volcanic hazards

    USGS Publications Warehouse

    Jorgenson, P.

    1989-01-01

    This is a summary of "Potential Hazards from Future Volcanic Eruptions in California' (USGS Bulletin No. 1847: price $4.75). The chief areas of danger are Lassen Peak, Mount Shasta and Medicine Lake Highland in the north; Clear Lake, Mono Lake and Long Valley in the centre; and Owen's River-Death Valley, Amboy Crater and the Saltan Butter in the south of the State. -A.Scarth

  16. Job Hazard Analysis

    DTIC Science & Technology

    1998-01-01

    lifting heavy objects? • Do environmenta on, welding rays, heat, or excessiv Job Hazard Analysis U.S. Department of Labor Occupational Safety and...Performing Organization Name(s) and Address(es) U.S. Department of Labor Occupational Safety & Health Administration 200 Constitution Avenue Washington, DC...not itself alter or determine compliance responsibilities, which are set forth in OSHA standards themselves and the Occupational Safety and Health Act

  17. Nitrous Oxide Explosive Hazards

    DTIC Science & Technology

    2008-05-01

    may be the only way to ensure large N2O system safety. Prior hazard and monopropellant decomposition studies largely indicated that N2O was...difficult to initiate into dangerous monopropellant decompositions. Based on prior studies and use of N2O for decades in dental practice without serious... monopropellant decomposition studies largely indicated that N2O was difficult to initiate into dangerous monopropellant decompositions. Based on prior

  18. Publication: Evansville hazard maps

    USGS Publications Warehouse

    ,

    2012-01-01

    The Evansville (Indiana) Area Earthquake Hazards Mapping Project was completed in February 2012. It was a collaborative effort among the U.S. Geological Survey and regional partners Purdue University; the Center for Earthquake Research and Information at the University of Memphis; the state geologic surveys of Kentucky, Illinois, and Indiana; the Southwest Indiana Disaster Resistant Community Corporation; and the Central U.S. Earthquake Consortium state geologists.

  19. Prioritizing industrial chemical hazards.

    PubMed

    Hauschild, Veronique D; Bratt, Gary M

    This article describes the approach used to develop a prioritized list of toxic and hazardous industrial chemical hazards considered to pose substantial risk to deployed troops and military operations. The U.S. Army Center for Health Promotion and Preventive Medicine published the prioritized list in November 2003. The work was performed as part of a multinational military effort supported by Canada, the United Kingdom, and the United States. Previous chemical priority lists had been developed to support military as well as homeland defense research, development, and acquisition communities to determine enhanced detection and protection needs. However, there were questions as to the adequacy of the methodologies and focus of the previous efforts. This most recent effort is a more extensive evaluation of over 1700 industrial chemicals, with a modified methodology that includes not only the assessment of acute inhalation toxic industrial chemicals (TICs), but also chemicals/compounds that pose substantial physical risk (from fire/explosion) and those that may pose acute ingestion risks (such as in water supplies). The methodology was designed to rank such hazards from a strategic (global) military perspective, but it may be adapted to address more site/user specific needs. Users of this or any other chemical priority list are cautioned that the derivation of such lists is largely influenced by subjective decisions and significant variability in chemical-specific data availability and quality.

  20. PUREX facility hazards assessment

    SciTech Connect

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  1. Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume

    SciTech Connect

    Akoez, F.; Koral, S.; Yuezer, N.; Tuerker, F.

    1999-04-01

    Effect of raised temperature of sodium sulfate and magnesium sulfate solutions on the resistance of mortars was investigated. Experimental study was carried out on mortars with and without silica fume. Sulfate concentration was 18,000 mg/L as SO{sub 4}{sup 2{minus}} for the sodium sulfate and 13,000 mg/L magnesium sulfate solutions. Temperatures of solutions were 20 and 40 C. Some physical and mechanical properties were tested during the 300 days of sulfate exposure. Test results showed that raised solution temperature did not accelerate the deterioration of mortars under the conditions used in this research. Moreover, raised temperature improved many properties of the specimens. It can be suggested that there are some problems with raising the temperature of sulfate solution as an accelerated test method.

  2. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    SciTech Connect

    Maruyama, I.; Teramoto, A.

    2013-08-15

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflection point and with increase in temperature inside concrete members with large cross sections.

  3. Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1997-12-01

    Due to their poor conductivity, latex (20--30% by weight of cement), methylcellulose (0.4--0.8% by weight of cement), and silica fume (15% by weight of cement) decreased the thermal conductivity of cement paste by up to 46%. In addition, these admixtures increased the specific heat of cement paste by up to 10%. The thermal conductivity decreased and the specific heat increased with increasing latex or methylcellulose content. Short carbon fibers (0.5--1.0% by weight of cement) either did not change or decreased the thermal conductivity of cement paste, such that the thermal conductivity decreased with increasing fiber content due to the increase in air void content. The fibers increased the specific heat due to the contribution of the fiber-matrix interface to vibration.

  4. Cooking oil fumes and lung cancer: a review of the literature in the context of the U.S. population.

    PubMed

    Lee, Trevor; Gany, Francesca

    2013-06-01

    There is growing evidence that exposure to cooking oil fumes (COF) is linked to lung cancer. Existing literature on this risk was reviewed, specifically as it may relate to potentially at-risk populations such as Chinese immigrants and restaurant workers in the United States. Studies were identified by searching the NCBI database with key terms. All studies that examined the significance, prevalence, and/or mechanism(s) of the association between COF exposure and cancer (all types) were included. A majority of epidemiologic studies found associations between lung cancer and COF exposure. All studies that examined the mechanisms underlying the risk found evidence for mutagenic and/or carcinogenic compounds in COF extract and/or molecular mechanisms for COF-induced DNA damage or carcinogenesis. The evidence reviewed underscores the need to thoroughly investigate the association among at-risk groups in the United States, as well as to develop and assess concrete interventions to reduce these risks.

  5. Studies on Pre-Ignition Reactions of Hydrocarbon-Based Rocket Fuels Hypergolic with Red Fuming Nitric Acid as Oxidizer

    NASA Astrophysics Data System (ADS)

    Kulkarni, Suresh G.; Bagalkote, Vrushali S.

    2010-06-01

    Carene, norbornadiene, ethylidene norbornene, and furfuryl alcohol exhibit hypergolic ignition with red fuming nitric acid as oxidizer. Carene, when blended with norbornadiene, ethylidene norbornene, and furfuryl alcohol in appropriate proportions, exhibits synergistic hypergolic ignition with further decrease in ignition delay. In order to understand the probable mechanism of hypergolic ignition and synergy in ignition, various pre-ignition reactions have been studied by quenching the reactions and analyzing the intermediate products by Fourier transform infrared (FTIR) and gas chromatography-mass spectrometry (GC-MS) techniques. Based on the product analysis, the probable schemes of reactions have been proposed. Oxidation, nitration, and cationic polymerization appear to be the important pre-ignition reactions taking place simultaneously that are responsible for hypergolic ignition.

  6. Quantitative cancer risk assessment for occupational exposures to asphalt fumes during built-up roofing asphalt (BURA) operations.

    PubMed

    Rhomberg, Lorenz R; Mayfield, David B; Goodman, Julie E; Butler, Eric L; Nascarella, Marc A; Williams, Daniel R

    2015-01-01

    The International Agency for Research on Cancer qualitatively characterized occupational exposure to oxidized bitumen emissions during roofing as probably carcinogenic to humans (Group 2A). We examine chemistry, exposure, epidemiology and animal toxicity data to explore quantitative risks for roofing workers applying built-up roofing asphalt (BURA). Epidemiology studies do not consistently report elevated risks, and generally do not have sufficient exposure information or adequately control for confounders, precluding their use for dose-response analysis. Dermal carcinogenicity bioassays using mice report increased tumor incidence with single high doses. In order to quantify potential cancer risks, we develop time-to-tumor model methods [consistent with U.S. Environmental Protection Agency (EPA) dose-response analysis and mixtures guidelines] using the dose-time-response shape of concurrent exposures to benzo[a]pyrene (B[a]P) as concurrent controls (which had several exposure levels) to infer presumed parallel dose-time-response curves for BURA-fume condensate. We compare EPA relative potency factor approaches, based on observed relative potency of BURA to B[a]P in similar experiments, and direct observation of the inferred BURA dose-time-response (scaled to humans) as means for characterizing a dermal unit risk factor. We apply similar approaches to limited data on asphalt-fume inhalation and respiratory cancers in rats. We also develop a method for adjusting potency estimates for asphalts that vary in composition using measured fluorescence. Overall, the various methods indicate that cancer risks to roofers from both dermal and inhalation exposure to BURA are within a range typically deemed acceptable within regulatory frameworks. The approaches developed may be useful in assessing carcinogenic potency of other complex mixtures of polycyclic aromatic compounds.

  7. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes.

    PubMed

    Li, Huiqi; Hedmer, Maria; Wojdacz, Tomasz; Hossain, Mohammad Bakhtiar; Lindh, Christian H; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-10-01

    Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation-sensitive high-resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m(3) (standard deviation, 3.3 mg/m(3); range, 0.1-19.3), whereas control exposures did not exceed 0.1 mg/m(3) (P < 0.001). Welders and controls did not differ in 8-oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = -0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval -0.013 to -0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low-to-moderate levels of particles.

  8. Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.

    PubMed

    Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José

    2012-02-01

    Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.

  9. Volcanic hazards to airports

    USGS Publications Warehouse

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  10. Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia.

    PubMed

    Inanloo, Bahareh; Tansel, Berrin

    2015-06-01

    The aim of this research was to investigate accidental releases of ammonia followed by an en-route incident in an attempt to further predict the consequences of hazardous cargo accidents. The air dispersion model Areal Locations of Hazardous Atmospheres (ALOHA) was employed to track the probable outcomes of a hazardous material release of a tanker truck under different explosion scenarios. The significance of identification of the flammable zones was taken into consideration; in case the flammable vapor causes an explosion. The impacted areas and the severity of the probable destructions were evaluated for an explosion by considering the overpressure waves. ALOHA in conjunction with ArcGIS was used to delineate the flammable and overpressure impact zones for different scenarios. Based on the results, flammable fumes were formed in oval shapes having a chief axis along the wind direction at the time of release. The expansions of the impact areas under the overpressure value which can lead to property damage for 2 and 20 tons releases, under very stable and unstable atmospheric conditions were estimated to be around 1708, 1206; 3742, 3527 feet, respectively, toward the wind direction. A sensitivity analysis was done to assess the significance of wind speed on the impact zones. The insight provided by this study can be utilized by decision makers in transportation of hazardous materials as a guide for possible rerouting, rescheduling, or limiting the quantity of hazardous cargo to reduce the possible impacts after hazardous cargo accidents during transport.

  11. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  12. Toxic Hazards Research Unit

    NASA Technical Reports Server (NTRS)

    Macewen, J. D.; Vernot, E. H.

    1971-01-01

    The activities of the Toxic Hazards Research Unit (THRU) for the period of June 1970 through May 1971 reviewed. Modification of the animal exposure facilities primarily for improved human safety but also for experimental integrity and continuity are discussed. Acute toxicity experiments were conducted on hydrogen fluoride (HF), hydrogen chloride (HCl), nitrogen dioxide (NO2), and hydrogen cyanide (HCN) both singly and in combination with carbon dioxide (CO). Additional acute toxicity experiments were conducted on oxygen difluoride (OF2) and chlorine pentafluoride (ClF5). Subacute toxicity studies were conducted on methylisobutylketone and dichloromethane (methylene dichloride). The interim results of further chronic toxicity experiments on monomethylhydrazine (MMH) are also described.

  13. Rocket plume burn hazard.

    PubMed

    Stoll, A M; Piergallini, J R; Chianta, M A

    1980-05-01

    By use of miniature rocket engines, the burn hazard posed by exposure to ejection seat rocket plume flames was determined in the anaesthetized rat. A reference chart is provided for predicting equivalent effects in human skin based on extrapolation of earlier direct measurements of heat input for rat and human burns. The chart is intended to be used in conjunction with thermocouple temperature measurements of the plume environment for design and modification of escape seat system to avoid thermal injury on ejection from multiplace aircraft.

  14. Hazards of geomagnetic storms

    USGS Publications Warehouse

    Herzog, D.C.

    1992-01-01

    Geomagnetic storms are large and sometimes rapid fluctuations in the Earth's magnetic field that are related to disturbances on the Sun's surface. Although it is not widely recognized, these transient magnetic disturbances can be a significant hazard to people and property. Many of us know that the intensity of the auroral lights increases during magnetic storms, but few people realize that these storms can also cause massive power outages, interrupt radio communications and satellite operations, increase corrosion in oil and gas pipelines, and lead to spuriously high rejection rates in the manufacture of sensitive electronic equipment. 

  15. Landing Hazard Avoidance Display

    NASA Technical Reports Server (NTRS)

    Abernathy, Michael Franklin (Inventor); Hirsh, Robert L. (Inventor)

    2016-01-01

    Landing hazard avoidance displays can provide rapidly understood visual indications of where it is safe to land a vehicle and where it is unsafe to land a vehicle. Color coded maps can indicate zones in two dimensions relative to the vehicles position where it is safe to land. The map can be simply green (safe) and red (unsafe) areas with an indication of scale or can be a color coding of another map such as a surface map. The color coding can be determined in real time based on topological measurements and safety criteria to thereby adapt to dynamic, unknown, or partially known environments.

  16. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  17. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  18. Health Hazard Evaluation Report HETA-80-073-1589, Marion Power Shovel, Marion, Ohio. [Core and mold areas (MDI binders)

    SciTech Connect

    Stephenson, R.L.; Liss, G.M.

    1985-04-01

    Environmental and breathing-zone samples were analyzed for methylene-bisphenyl-isocyanate (MDI), total reactive isocyanate groups (TRIG), triethylamine, mineral spirits, and metal fume at Marion Power Shovel Foundry, Marion, Ohio, in March and September, 1983. The evaluation was requested by the union to assess exposures in the core and mold areas where MDI binders were used. Interviews were conducted with 26 exposed and 13 nonexposed workers. Medical examinations that included pulmonary function and immunological testing, and chest x-rays were administered. All exposures were below the OSHA standards for TRIG. Previously obtained silica monitoring data was reviewed. Silica overexposure was indicated. Twenty-seven exposed workers reported lower respiratory tract symptoms consistent with occupational asthma. The authors conclude that significant exposures to isocyanates have occurred at the facility. A health hazard due to silica also exists. Recommendations include establishing a medical surveillance program for MDI and reducing silica exposures by appropriate engineering controls.

  19. Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semiflexible Pavement Surfacing

    PubMed Central

    Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S.; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout. PMID:24526911

  20. PHAZE. Parametric Hazard Function Estimation

    SciTech Connect

    Atwood, C.L.

    1990-09-01

    Phaze performs statistical inference calculations on a hazard function ( also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking of the model assumptions.

  1. The inverse hazard law: blood pressure, sexual harassment, racial discrimination, workplace abuse and occupational exposures in US low-income black, white and Latino workers.

    PubMed

    Krieger, Nancy; Chen, Jarvis T; Waterman, Pamela D; Hartman, Cathy; Stoddard, Anne M; Quinn, Margaret M; Sorensen, Glorian; Barbeau, Elizabeth M

    2008-12-01

    Research on societal determinants of health suggests the existence of an "inverse hazard law," which we define as: "The accumulation of health hazards tends to vary inversely with the power and resources of the populations affected." Yet, little empirical research has systematically investigated this topic, including in relation to workplace exposures. We accordingly designed the United for Health study (Greater Boston Area, Massachusetts, 2003-2004) to investigate the joint distribution and health implications of workplace occupational hazards (dust, fumes, chemical, noise, ergonomic strain) and social hazards (racial discrimination, sexual harassment, workplace abuse). Focusing on blood pressure as our health outcome, we found that among the 1202 low-income multi-racial/ethnic working class participants in our cohort - of whom 40% lived below the US poverty line - 79% reported exposure to at least one social hazard and 82% to at least one high-exposure occupational hazard. Only sexual harassment, the least common social hazard, was associated with elevated systolic blood pressure (SBP) among the women workers. By contrast, no statistically significant associations were detectable between the other additional highly prevalent social and occupational hazards and SBP; we did, however, find suggestive evidence of an association between SBP and response to unfair treatment, implying that in a context of high exposure, differential susceptibility to the exposure matters. These results interestingly contrast to our prior findings for this same cohort, in which we found associations between self-reported experiences of racial discrimination and two other health outcomes: psychological distress and cigarette smoking. Likely explanations for these contrasting findings include: (a) the differential etiologic periods and pathways involving somatic health, mental health, and health behaviors, and (b) the high prevalence of adverse exposures, limiting the ability to detect

  2. Size Distribution and Estimated Respiratory Deposition of Total Chromium, Hexavalent Chromium, Manganese, and Nickel in Gas Metal Arc Welding Fume Aerosols.

    PubMed

    Cena, Lorenzo G; Chisholm, William P; Keane, Michael J; Cumpston, Amy; Chen, Bean T

    A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μm. Total Cr and Ni presented an additional fraction <0.03 μm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7-10%) and the alveolar region (11-14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%).

  3. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    PubMed

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising.

  4. Flow and leakage characteristics of a sashless inclined air-curtain (sIAC) fume hood containing tall pollutant-generation tanks.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hung, Wei-Lun

    2013-01-01

    In many fume hood applications, pollutant-generation devices are tall. Human operators of a fume hood must stand close to the front of the hood and lift up their hands to reach the top opening of the tall tank. In this situation, it is inconvenient to access the conventional hood because the sash acts as a barrier. Also, the bluff-body wake in front of the operator's chest causes a problem. By using laser-assisted smoke flow visualization and tracer-gas test methods, the present study examines a sashless inclined air-curtain (sIAC) fume hood for tall pollutant-generation tanks, with a mannequin standing in front of the hood face. The configuration of the sIAC fume hood, which had the important element of a backward-inclined push-pull air curtain, was different from conventional configurations. Depending on suction velocity, the backward-inclined air curtain had three characteristic modes: straight, concave, and attachment. A large recirculation bubble covering the area--from the hood ceiling to the work surface--was formed behind the inclined air curtain in the straight and concave modes. In the attachment mode, the inclined air curtain was attached to the rear wall of the hood, about 50 cm from the hood ceiling, and bifurcated into up and down streams. Releasing the pollutants at an altitude above where the inclined air curtain was attached caused the suction slot to directly draw up the pollutants. Releasing pollutants in the rear recirculation bubble created a risk of pollutants' leaking from the hood face. The tracer-gas (SF6) test results showed that operating the sIAC hood in the attachment mode, with the pollutants being released high above the critical altitude, could guarantee almost no leakage, even though a mannequin was standing in front of the sashless hood face.

  5. Investigation of effect of fluoride on corrosion of 2S-0 aluminum and 347 stainless steel in fuming nitric acid at 170 F

    NASA Technical Reports Server (NTRS)

    Feiler, Charles E; Morrell, Gerald

    1954-01-01

    The effect of small additions of fluoride on the corrosion of 2S-0 aluminum and 347 stainless steel by fuming nitric acid at 170 degrees F has been evaluated quantitatively by the determination of the weight loss of metal specimens immersed in the acid. The ratio of metal surface area to volume of acid was approximately 7.5 inch (superscript)-1 in all cases. It was found that for acids containing no fluorides the weight loss of aluminum was approximately 1/5 that of stainless steel. Addition of 1 percent fluoride ion to the acid reduced the weight loss of both metals to practically zero even after 26 days of exposure to the acid at 170 degrees F. The minimum quantity of fluoride ion required to inhibit corrosion was found to be approximately 0.25 and 0.5 percent for aluminum and stainless steel, respectively, in white fuming nitric acid and 0.5 and 1 percent in red fuming nitric acid (18 percent nitrogen dioxide). These fluoride percentages were based on the total weight of acid. Provided the concentration of fluoride ion was sufficient to inhibit corrosion, the source of these ions was immaterial. Additional information concerning the effect of fluorides on corrosion was obtained by measuring the electrode potentials of the metals against a platinum reference electrode.

  6. Effects of cyanoacrylate fuming, time after recovery, and location of biological material on the recovery and analysis of DNA from post-blast pipe bomb fragments*.

    PubMed

    Bille, Todd W; Cromartie, Carter; Farr, Matthew

    2009-09-01

    This study investigated the effects of time, cyanoacrylate fuming, and location of the biological material on DNA analysis of post-blast pipe bomb fragments. Multiple aliquots of a cell suspension (prepared by soaking buccal swabs in water) were deposited on components of the devices prior to assembly. The pipe bombs were then deflagrated and the fragments recovered. Fragments from half of the devices were cyanoacrylate fumed. The cell spots on the fragments were swabbed and polymerase chain reaction/short tandem repeat analysis was performed 1 week and 3 months after deflagration. A significant decrease in the amount of DNA recovered was observed between samples collected and analyzed within 1 week compared with the samples collected and analyzed 3 months after deflagration. Cyanoacrylate fuming did not have a measurable effect on the success of the DNA analysis at either time point. Greater quantities of DNA were recovered from the pipe nipples than the end caps. Undeflagrated controls showed that the majority (>95%) of the DNA deposited on the devices was not recovered at a week or 3 months.

  7. Sports: The Infectious Hazards.

    PubMed

    Minooee, Arezou; Wang, Jeff; Gupta, Geeta K

    2015-10-01

    Although the medical complications of sports are usually traumatic in nature, infectious hazards also arise. While blood-borne pathogens such as HIV, hepatitis B, and hepatitis C, cause significant illness, the risk of acquiring these agents during sporting activities is minimal. Skin infections are more commonplace, arising from a variety of microbial agents including bacterial, fungal, and viral pathogens. Sports involving water contact can lead to enteric infections, eye infections, or disseminated infections such as leptospirosis. Mumps, measles, and influenza are vaccine-preventable diseases that have been transmitted during sporting events, both in players and in spectators. Prevention is the key to many of these infections. Players should be vaccinated and should not participate in sports if their infection can be spread by contact, airborne, or droplet transmission.

  8. Secondary impact hazard assessment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A series of light gas gun shots (4 to 7 km/sec) were performed with 5 mg nylon and aluminum projectiles to determine the size, mass, velocity, and spatial distribution of spall and ejecta from a number of graphite/epoxy targets. Similar determinations were also performed on a few aluminum targets. Target thickness and material were chosen to be representative of proposed Space Station structure. The data from these shots and other information were used to predict the hazard to Space Station elements from secondary particles resulting from impacts of micrometeoroids and orbital debris on the Space Station. This hazard was quantified as an additional flux over and above the primary micrometeoroid and orbital debris flux that must be considered in the design process. In order to simplify the calculations, eject and spall mass were assumed to scale directly with the energy of the projectile. Other scaling systems may be closer to reality. The secondary particles considered are only those particles that may impact other structure immediately after the primary impact. The addition to the orbital debris problem from these primary impacts was not addressed. Data from this study should be fed into the orbital debris model to see if Space Station secondaries make a significant contribution to orbital debris. The hazard to a Space Station element from secondary particles above and beyond the micrometeoroid and orbital debris hazard is categorized in terms of two factors: (1) the 'view factor' of the element to other Space Station structure or the geometry of placement of the element, and (2) the sensitivity to damage, stated in terms of energy. Several example cases were chosen, the Space Station module windows, windows of a Shuttle docked to the Space Station, the habitat module walls, and the photovoltaic solar cell arrays. For the examples chosen the secondary flux contributed no more than 10 percent to the total flux (primary and secondary) above a given calculated

  9. Runoff inundation hazard cartography

    NASA Astrophysics Data System (ADS)

    Pineux, N.; Degré, A.

    2012-04-01

    Between 1998 and 2004, Europe suffered from more than hundred major inundations, responsible for some 700 deaths, for the moving of about half a million of people and the economic losses of at least 25 billions Euros covered by the insurance policies. Within this context, EU launched the 2007/60/CE directive. The inundations are natural phenomenon. They cannot be avoided. Nevertheless this directive permits to better evaluate the risks and to coordinate the management measures taken at member states level. In most countries, inundation maps only include rivers' overflowing. In Wallonia, overland flows and mudflows also cause huge damages, and must be included in the flood hazard map. Indeed, the cleaning operations for a village can lead to an estimated cost of 11 000 €. Average construction cost of retention dams to control off-site damage caused by floods and muddy flows was valued at 380 000€, and yearly dredging costs associated with these retention ponds at 15 000€. For a small city for which a study was done in a more specific way (Gembloux), the mean annual cost for the damages that can generate the runoff is about 20 000€. This cost consists of the physical damages caused to the real estate and movable properties of the residents as well as the emergency operations of the firemen and the city. On top of damages to public infrastructure (clogging of trenches, silting up of retention ponds) and to private property by muddy flows, runoff generates a significant loss of arable land. Yet, the soil resource is not an unlimited commodity. Moreover, sediments' transfer to watercourses alters their physical and chemical quality. And that is not to mention the increased psychological stress for people. But to map overland flood and mud flow hazard is a real challenge. This poster will present the methodology used to in Wallonia. The methodology is based on 3 project rainfalls: 25, 50 and 100 years return period (consistency with the cartography of the

  10. New hazardous waste solutions

    SciTech Connect

    Krukowski, J.

    1993-05-15

    From data supplied by industrial laboratories, from academia, and from the EPA's Superfund Innovative Site Evaluation (SITE) program, this paper presents an informal look at some new and innovative hazardous waste treatment processes. These processes show promise for sparing users off-site disposal costs as well as for remediation of contamination at Superfund or RCRA sites. Included are the following: equipment that will biodegrade water-based paint wastes and pesticide wastes; recycling of potliner and furnace dusts for metal recovery; a process that reduces PCBs and PAHs to lighter hydrocarbons such as methane. Finally, two radiofrequency (RF) processes are described that can be used to remove soil contaminants such as pentachlorophenols, Aroclor 1242, solvents, oils, jet fuel, and pesticides.

  11. Health-hazard evaluation report HETA 87-232-1948, Consolidated Freightways, Pocono Summit, Pennsylvania

    SciTech Connect

    Blade, L.M.; Savery, H.

    1989-02-01

    A study was made of possible hazardous working conditions at Consolidated Freightways, Pocono Summit, Pennsylvania. The request concerned potential exposure of dock workers to exhaust emissions from diesel-powered forklift trucks brought about by the health complaints of several of the workers there. Twenty-one workers were identified as symptomatic of exposure to diesel exhaust fumes. This included at least half of the midnight shift. Upper respiratory tract irritation was mentioned by all of these workers. Some reported eye irritation, cough productive of black-tinged sputum, and sore throat. These symptoms lessened during periods away from work. Airborne concentrations of all components measured at the site were well below the applicable exposure limits. A potential health hazard associated with exposure to diesel engine exhaust existed. The authors recommend that whenever a forklift truck is to be left unattended for more than the shortest of periods, the motor should be turned off. The newer forklifts should be used on a shift before the older, less emission controlled, lifts. Roof exhaust fans ordered are to be installed at the facility and their effectiveness evaluated.

  12. Health-hazard evaluation report HETA 87-435-1896, Wilbanks International, Inc. , Hillsboro, Oregon

    SciTech Connect

    Thun, M.; McCammon, C.; Wells, V.

    1988-05-01

    An evaluation was made of possible hazardous working conditions at Wilbanks International, Hillsboro, Oregon. Three cases of kidney failure had occurred in male workers after performing similar jobs; each of these workers had been a hydrostatic press operator. Medical evaluations indicated minor renal dysfunction in two of 12 current Wilbanks employees who worked in or near the press area. Medical records, insurance claims and the U.S. End Stage Renal Disease registry were used to identify additional cases of kidney disease at this facility and five other Coors ceramics facilities; there was no excess of renal disease identified at the other facilities. Concern was noted about binder burnoff, which consists of partially combusted byproducts of polyethylene glycol, and which may occasionally vent into the plant from the kilns. Potentially nephrotoxic short chain glycol compounds may exist in these fumes. The authors conclude that a potential hazard may have existed from the recirculation of combustion byproducts from periodic kilns. The authors recommend that medical surveillance be instituted for renal disease in production workers. Engineering controls should be instituted to eliminate exposure to binder burnoff.

  13. Informing Workers of Chemical Hazards: The OSHA Hazard Communication Standard.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Practical information on how to implement a chemical-related safety program is outlined in this publication. Highlights of the federal Occupational Safety and Health Administrations (OSHA) Hazard Communication Standard are presented and explained. These include: (1) hazard communication requirements (consisting of warning labels, material safety…

  14. Identification of Potential Hazard using Hazard Identification and Risk Assessment

    NASA Astrophysics Data System (ADS)

    Sari, R. M.; Syahputri, K.; Rizkya, I.; Siregar, I.

    2017-03-01

    This research was conducted in the paper production’s company. These Paper products will be used as a cigarette paper. Along in the production’s process, Company provides the machines and equipment that operated by workers. During the operations, all workers may potentially injured. It known as a potential hazard. Hazard identification and risk assessment is one part of a safety and health program in the stage of risk management. This is very important as part of efforts to prevent occupational injuries and diseases resulting from work. This research is experiencing a problem that is not the identification of potential hazards and risks that would be faced by workers during the running production process. The purpose of this study was to identify the potential hazards by using hazard identification and risk assessment methods. Risk assessment is done using severity criteria and the probability of an accident. According to the research there are 23 potential hazard that occurs with varying severity and probability. Then made the determination Risk Assessment Code (RAC) for each potential hazard, and gained 3 extreme risks, 10 high risks, 6 medium risks and 3 low risks. We have successfully identified potential hazard using RAC.

  15. Assessment of Occupational Exposure to Manganese and Other Metals in Welding Fumes by Portable X-ray Fluorescence Spectrometer

    PubMed Central

    Laohaudomchok, Wisanti; Cavallari, Jennifer M.; Fang, Shona C.; Lin, Xihong; Herrick, Robert F.; Christiani, David C.; Weisskopf, Marc G.

    2011-01-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM2.5 deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman ρ = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the

  16. Oxidative stress, telomere shortening, and DNA methylation in relation to low‐to‐moderate occupational exposure to welding fumes

    PubMed Central

    Li, Huiqi; Hedmer, Maria; Wojdacz, Tomasz; Hossain, Mohammad Bakhtiar; Lindh, Christian H.; Tinnerberg, Håkan; Albin, Maria

    2015-01-01

    Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low‐to‐moderate occupational exposure to particles from welding fumes and cancer‐related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8‐oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation‐sensitive high‐resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m3 (standard deviation, 3.3 mg/m3; range, 0.1–19.3), whereas control exposures did not exceed 0.1 mg/m3 (P < 0.001). Welders and controls did not differ in 8‐oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = −0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval −0.013 to −0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low‐to‐moderate levels of particles. Environ. Mol. Mutagen. 56:684–693, 2015. © 2015 The Authors

  17. Laboratory Safety and Chemical Hazards.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Toxicology/chemical hazards, safety policy, legal responsibilities, adequacy of ventilation, chemical storage, evaluating experimental hazards, waste disposal, and laws governing chemical safety were among topics discussed in 10 papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). Several topics…

  18. Michigan Household Hazardous Substance Handbook.

    ERIC Educational Resources Information Center

    Senior, Janet; Stone Nancy

    Common household hazardous substances include cleansers, drain cleaners, automotive products, paints, solvents, and pesticides. This handbook was designed to serve as a resource for people frequently contacted by the public for information on household hazardous substances and wastes. Included in the handbook are: (1) an introduction to Michigan's…

  19. 77 FR 17573 - Hazard Communication

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... with the GHS will improve worker understanding of the hazardous chemicals they encounter every day... System of Classification and Labelling of Chemicals (GHS). OSHA has determined that the modifications... information provided to employers and employees regarding chemical hazards and associated protective...

  20. Occupational hazards to hospital personnel

    SciTech Connect

    Patterson, W.B.; Craven, D.E.; Schwartz, D.A.; Nardell, E.A.; Kasmer, J.; Noble, J.

    1985-05-01

    Hospital personnel are subject to various occupational hazards. Awareness of these risks, compliance with basic preventive measures, and adequate resources for interventions are essential components of an occupational health program. Physical, chemical, and radiation hazards; important infectious risks; and psychosocial problems prevalent in hospital workers are reviewed. A rational approach to managing and preventing these problems is offered. 370 references.

  1. 74 FR 50279 - Hazard Communication

    Federal Register 2010, 2011, 2012, 2013, 2014

    2009-09-30

    ... Labor Occupational Safety and Health Administration 29 CFR Parts 1910, 1915, and 1926 Hazard... / Proposed Rules#0;#0; ] DEPARTMENT OF LABOR Occupational Safety and Health Administration 29 CFR Parts 1910, 1915, and 1926 RIN 1218-AC20 Hazard Communication AGENCY: Occupational Safety and Health...

  2. THE CLASSIFICATION OF HAZARDOUS OCCUPATIONS

    PubMed Central

    Hayhurst, E. R.

    1916-01-01

    In this paper Doctor Hayhurst describes the six classifications for hazardous occupations which were employed in a survey made in Ohio. He also explains, by text and diagram, the process of analyzing, upon a standard formula, the hazard of an individual case. PMID:18009453

  3. Inter-rater agreement for a retrospective exposure assessment of asbestos, chromium, nickel and welding fumes in a study of lung cancer and ionizing radiation.

    PubMed

    Seel, E A; Zaebst, D D; Hein, M J; Liu, J; Nowlin, S J; Chen, P

    2007-10-01

    A retrospective exposure assessment of asbestos, welding fumes, chromium and nickel (in welding fumes) was conducted at the Portsmouth Naval Shipyard for a nested case-control study of lung cancer risk from external ionizing radiation. These four contaminants were included because of their potential to confound or modify the effect of a lung cancer-radiation relationship. The exposure assessment included three experienced industrial hygienists from the shipyard who independently assessed exposures for 3519 shop/job/time period combinations. A consensus process was used to resolve estimates with large differences. Final exposure estimates were linked to employment histories of the 4388 study subjects to calculate their cumulative exposures. Inter-rater agreement analyses were performed on the original estimates to better understand the estimation process. Although concordance was good to excellent (78-99%) for intensity estimates and excellent (96-99%) for frequency estimates, overall simple kappa statistics indicated only slight agreement beyond chance (kappa < 0.2). Unbalanced distributions of exposure estimates partly contributed to the weak observed overall inter-rater agreement. Pairwise weighted kappa statistics revealed better agreement between two of the three panelists (kappa = 0.19-0.65). The final consensus estimates were similar to the estimates made by these same two panelists. Overall welding fume exposures were fairly stable across time at the shipyard while asbestos exposures were higher in the early years and fell in the mid-1970s. Mean cumulative exposure for all study subjects was 520 fiber-days cc(-1) for asbestos and 1000 mg-days m(-3) for welding fumes. Mean exposure was much lower for nickel (140 microg-days m(-3)) and chromium (45 microg-days m(-3)). Asbestos and welding fume exposure estimates were positively associated with lung cancer in the nested case-control study. The radiation-lung cancer relationship was attenuated by the inclusion

  4. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  5. Direct Evidence for Percolation of Immobilized Polymer Layer around Nanoparticles Accounting for Sol-Gel Transition in Fumed Silica Dispersions.

    PubMed

    Zheng, Zhong; Song, Yihu; Yang, Ruiquan; Zheng, Qiang

    2015-12-22

    Immobilized polymer fractions have been claimed to be of vital importance for sol-gel transitions generally observed in nanoparticle dispersions but remain a matter of debate regarding mechanism and difficulty for prediction. Here we investigate the immobilized layer structures of trifunctionality polyether polyol (PPG) near the surfaces of hydrophilic and hydrophobic fumed silica (FS) nanoparticles to reveal the role of surface chemistry on the molecular dynamics and sol-gel transitions of the dispersions. Using modulated differential scanning calorimetry, we measure the specific heat capacity during glass transition and the enthalpy during cold-crystallization. Comparing with hydrophobic FS that forms a fully immobilized (glassy) layer, we find that hydrophilic FS immobilizes more PPG, forming a partially immobilized outer layer being unable to crystallize next to the inner glassy layer. By correlating the thickness of the glassy layer with half of the minimum spacing between nanoparticles, we directly evidence the percolation of this layer along the nearest neighbor nanoparticles responsible for the sol-gel transition. Using effective volume fraction including the glassy layer, we successfully construct master curves of relative viscosity of both hydrophilic and hydrophobic FS dispersions, pointing to a common sol-gel transition mechanism mediated by the surface chemistry.

  6. The apoptotic pathways effect of fine particulate from cooking oil fumes in primary fetal alveolar type II epithelial cells.

    PubMed

    Che, Zhen; Liu, Ying; Chen, Yanyan; Cao, Jiyu; Liang, Chunmei; Wang, Lei; Ding, Rui

    2014-02-01

    Apoptosis occurs along three major pathways: (i) an extrinsic pathway, mediated by death receptors; (ii) an intrinsic pathway centered on mitochondria; and (iii) an ER-stress pathway. We investigated the apoptotic pathway effects of cooking oil fumes (COF) in fetal lung type II-like epithelium cells (AEC II). Exposure to COF caused up-regulation of the pro-apoptotic protein Bax and down-regulation of the anti-apoptotic protein Bcl-2. COF induced the mitochondrial permeability transition, an early event in apoptosis; cytochrome c was translocated from the mitochondria to the cytoplasm and nucleus. Caspase-9 and caspase-3 were activated, as a consequence of the mitochondrial permeability transition. The death receptor apoptotic pathway was triggered by COF, as indicated by a change in Fas expression, resulting in increased caspase-8 content. COF exposure arrested the cell cycle the at G0-G1 phase. In summary, COF can lead to apoptosis via mitochondrial and death receptor pathways in AEC II cells.

  7. Immunological evaluation of four arc welders exposed to fumes from ignited polyurethane (isocyanate) foam: antibodies and immune profiles

    SciTech Connect

    Broughton, A.; Thrasher, J.D.; Gard, Z.

    1988-01-01

    Four arc welders having a flu-like illness with multiple health complaints following an exposure to high concentrations of isocyanate fumes from ignited polyurethane foam underwent immunological tests as follows: ELISA antibody assays, activated lymphocyte profiles, and lymphocyte blastogenesis. ELISA procedures revealed the presence of antibodies to hexamethylene diisocyanate (HDI) and formaldehyde (F) conjugated to human serum albumin (HDI-SA and F-SA). The results from the activated lymphocyte profiles showed deviations from the norm as follows: three welders had elevated helper/suppressor (H/S) ratios; all four had elevated percentages of Tal positive cells; two had decreases in B cells; and one had low total white cell and lymphocyte counts. In contrast, the percentage and absolute numbers of ILS receptor cells were normal in the four subjects. T cell blastogenesis to PHA, Con A and PWM resulted in the following: T-cells from one subject responded normally; in another, a high response (212% of controls) to PHA occurred with normal mitogenesis to Con A and PWM. In the remaining two welders, the T cells responded abnormally low (50 to 75% of controls) to the three mitogens. In conclusion, the existence of IgG antibodies to HDI-SA and F-SA, the altered activated immune profiles, the elevated Tal cells, and the abnormal blastogenesis are interpreted as being linked with the episode of HDI and F exposure and the subsequent flu-like illness of the four welders.

  8. Annual decline in forced expiratory volume is steeper in aluminum potroom workers than in workers without exposure to potroom fumes

    PubMed Central

    Henneberger, Paul K.; Einvik, Gunnar; Virji, Mohammed Abbas; Bakke, Berit; Kongerud, Johny

    2016-01-01

    Background Aluminum potroom exposure is associated with increased mortality of COPD but the association between potroom exposure and annual decline in lung function is unknown. We have measured lung volumes annually using spirometry from 1986 to 1996. The objective was to compare annual decline in forced expiratory volume in 1 s (dFEV1) and forced vital capacity (dFVC). Methods The number of aluminum potroom workers was 4,546 (81% males) and the number of workers in the reference group was 651 (76% males). The number of spirometries in the index group and the references were 24,060 and 2,243, respectively. Results After adjustment for confounders, the difference in dFEV1 and dFVC between the index and reference groups were 13.5 (P < 0.001) and −8.0 (P = 0.060) ml/year. Conclusion Aluminum potroom operators have increased annual decline in FEV1 relative to a comparable group with non‐exposure to potroom fumes and gases. Am. J. Ind. Med. 59:322–329, 2016. © 2016 The Authors. American Journal of Industrial Medicine Published by Wiley Periodicals, Inc. PMID:26853811

  9. Lung tumor production and tissue metal distribution after exposure to manual metal ARC-stainless steel welding fume in A/J and C57BL/6J mice.

    PubMed

    Zeidler-Erdely, Patti C; Battelli, Lori A; Salmen-Muniz, Rebecca; Li, Zheng; Erdely, Aaron; Kashon, Michael L; Simeonova, Petia P; Antonini, James M

    2011-01-01

    Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.

  10. Hazard identification for contaminants.

    PubMed

    Iscan, Mümtaz

    2004-12-15

    In recent years, the recognition of generation of large quantities of toxicants and their by-products due to the industrial and/or cultural activities and transport and their persistence in the environment and biological activities brings out the necessity and importance of their assessment of risk they pose to the ecosystems (e.g. aquatic environment-coastal waters, rivers, lakes and ground water). Indeed, understanding the impacts of contaminants on the environment, including the organisms which live in it, is rather complicated. Nevertheless, the need for protection of the scarce natural resources in the environment and wiser use of them brings the necessity and importance of focusing more attention to the issue. Accordingly the process of ecological risk assessment (ERA) has evolved rapidly since the Environmental Protection Agency (EPA) issued a framework for ecological risk assessment in 1992. The ecological risk assessment involves three stages in a continuous process: (1) problem formulation (problem identification-hazard identification), (2) the analysis of exposure and effects and (3) risk characterisation. Risk management follows the risk characterisation. Of these stages, problem identification is the most critical one which establishes the direction and scope of the ecological risk assessment. The stage involves identifying the actual environmental value(s) to be protected (assessment endpoints) and selecting ways in which these can be measured and evaluated (measurement endpoints). The accuracy of the risk estimation is largely based on the availability of the key information about the contaminant characteristics, ecosystem at risk and ecological effects and the less uncertainty associated with them. The key information required during this phase of the risk assessment process are as follows: (a) potential/actual contaminant of concern, (b) source of contaminant; current and historic use, (c) mode of action of the contaminant, (d) contaminant

  11. 78 FR 42998 - Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... TRANSPORTATION Federal Railroad Administration Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials AGENCY: Pipeline and Hazardous Materials, Safety Administration (PHMSA... participate in a public meeting addressing the transportation of hazardous materials by rail. FRA and......

  12. Hamburger hazards and emotions.

    PubMed

    Olsen, Nina Veflen; Røssvoll, Elin; Langsrud, Solveig; Scholderer, Joachim

    2014-07-01

    Previous studies indicate that many consumers eat rare hamburgers and that information about microbiological hazards related to undercooked meat not necessarily leads to more responsible behavior. With this study we aim to investigate whether consumers' willingness to eat hamburgers depends on the emotions they experience when confronted with the food. A representative sample of 1046 Norwegian consumers participated in an online experiment. In the first part, participants were randomly divided into two groups. One group was confronted with a picture of a rare hamburger, whereas the other group was confronted with a picture of a well-done hamburger. The respondents were instructed to imagine that they were served the hamburger on the picture and then to indicate which emotions they experienced: fear, disgust, surprise, interest, pleasure, or none of these. In part two, all respondents were confronted with four pictures of hamburgers cooked to different degrees of doneness (rare, medium rare, medium well-done, well-done), and were asked to state their likelihood of eating. We analyzed the data by means of a multivariate probit model and two linear fixed-effect models. The results show that confrontation with rare hamburgers evokes more fear and disgust than confrontation with well-done hamburgers, that all hamburgers trigger pleasure and interest, and that a consumer's willingness to eat rare hamburgers depends on the particular type of emotion evoked. These findings indicate that emotions play an important role in a consumer's likelihood of eating risky food, and should be considered when developing food safety strategies.

  13. Contaminant Hazard Reviews (compilation)

    USGS Publications Warehouse

    Eisler, R.; Munro, R.E.; Loges, L.M.; Boone, K.; Paul, M.M.; Garrett, L.J.

    2000-01-01

    This compact disc (CD) contains the 35 reports in the Contaminant Hazard Reviews (CHR) that were published originally between 1985 and 1999 in the U.S. Department of the Interior Biological Report series. The CD was produced because printed supplies of these reviews--a total of 105,000--became exhausted and demand remained high. Each review was prepared at the request of environmental specialists of the U.S. Fish and Wildlife Service and each contained specific information on the following: mirex, cadmium, carbofuran, toxaphene, selenium, chromium, polychlorinated biphenyls, dioxins, diazinon, mercury, polycyclic aromatic hydrocarbons, arsenic, chlorpyrifos, lead, tin, index issue, pentachlorophenol, atrazine, molybdenum, boron, chlordane, paraquat, cyanide, fenvalerate, diflubenzuron, zinc, famphur, acrolein, radiation, sodium monofluoroacetate, planar PCBs, silver, copper, nickel, and a cumulative index to chemicals and species. Each report reviewed and synthesized the technical literature on a single contaminant and its effects on terrestrial plants and invertebrates, aquatic plants and animals, avian and mammalian wildlife, and other natural resources. The subtopics include contaminant sources and uses; physical, chemical, and metabolic properties; concentrations in field collections of abiotic materials and living organisms; deficiency effects, where appropriate; lethal and sublethal effects, including effects on survival, growth, reproduction, metabolism, mutagenicity, teratogenicity, and carcinogenicity; proposed criteria for the protection of human health and sensitive natural resources; and recommendations for additional research.

  14. Occupational hazards in dentistry.

    PubMed

    Neuman, Haim

    2011-07-01

    Professional risk factors in dentistry may harm the dentist and the dental team. It is essential for the dentist to recognize these risk factors and protect against them. Among the various organs that are vulnerable in the dental situation are (in a nut-shell): The eyes, the ears, the respiratory system, the palm of the hand, and the back and the vertebrae. In addition, the dentist and the dental team must recognizes the potential for Hepatitis (A, B, C, D, E), and for the acquired immune deficiency syndrome due to the HIV virus. The primary means for protecting against these potential hazardous factors is meticulously keeping proper working conditions such as good ventilation of the operating room, using face masks which are capable of blocking even small particles, using eye protection and gloves, and proper seating at the chair. It is reasonable to adopt a routine of taking a vaccine against Influenza and Hepatitis B, and to routinely check the level of antibodies for Hepatitis B. Personal accidents- and severe-diseases-insurances, as well as insurance against losing the ability to work are advised for every dentist.

  15. Phytoremediation of hazardous wastes

    SciTech Connect

    McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.; Ou, T.Y.

    1995-11-01

    A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approach 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.

  16. Learn the Basics of Hazardous Waste

    EPA Pesticide Factsheets

    Overview that includes the definition of hazardous waste, EPA’s Cradle-to-Grave Hazardous Waste Management Program, and hazardous waste generation, identification, transportation, recycling, treatment, storage, disposal and regulations.

  17. 78 FR 5821 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  18. 78 FR 21143 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  19. 78 FR 52953 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  20. 78 FR 52954 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  1. 78 FR 5820 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  2. 78 FR 48703 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency... Register a proposed flood hazard determination notice that contained an erroneous table. This notice.... The table provided here represents the proposed flood hazard determinations and communities...

  3. Federal Agency Hazardous Waste Compliance Docket

    EPA Pesticide Factsheets

    The Federal Agency Hazardous Waste Compliance Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants, or contaminants have been - or may be - released.

  4. Infrasound Monitoring of Natural Hazards

    NASA Astrophysics Data System (ADS)

    Arrowsmith, S.

    2015-12-01

    Infrasound is generated by a wide variety of energetic natural and anthropogenic phenomena that originate in the solid earth, ocean, and atmosphere. Because the absorption of infrasound is low, it can propagate long distances through atmospheric waveguides, making it a valuable tool for remote monitoring of hazards. Advances in using infrasound for monitoring energetic events in the solid earth, oceans, and atmosphere are being driven by the wealth of new datasets in addition to advances in modeling source and propagation physics. This presentation provides an overview of recent advances in infrasound monitoring of natural hazards, focusing on selected hazards in the earth (earthquakes and volcanoes), ocean (tsunamis), and atmosphere (meteoroids).

  5. The hazard in using probabilistic seismic hazard analysis

    SciTech Connect

    Krinitzsky, E.L. . Geotechnical Lab.)

    1993-11-01

    Earthquake experts rely on probabilistic seismic hazard analysis for everything from emergency-response planning to development of building codes. Unfortunately, says the author, the analysis is defective for the large earthquakes that pose the greater risks. Structures have short lifetimes and the distance over which earthquakes cause damage are relatively small. Exceptions serve to prove the rule. To be useful in engineering, earthquakes hazard assessment must focus narrowly in both time and space.

  6. Understanding risk and resilience to natural hazards

    USGS Publications Warehouse

    Wood, Nathan

    2011-01-01

    Natural hazards threaten the safety and economic wellbeing of communities. These hazards include sudden-onset hazards, such as earthquakes, and slowly emerging, chronic hazards, such as those associated with climate change. To help public officials, emergency and other managers, the business community, and at-risk individuals reduce the risks posed by such hazards, the USGS Western Geographic Science Center is developing new ways to assess and communicate societal risk and resilience to catastrophic and chronic natural hazards.

  7. Radon and Thoron Measured in Petrol and Gas-oil Exhaust Fumes by Using CR-39 and LR-115 II Nuclear Track Detectors: Radiation Doses to the Respiratory Tract of Mechanic Workers.

    PubMed

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-06-01

    Mechanic workers are exposed to exhaust fumes when controlling vehicle engines in motion inside repair shops. To assess radiation doses due to radon short-lived progeny from the inhalation of exhaust fumes by mechanic workers, concentrations of these radionuclides were measured in petrol (gasoline) and gas-oil exhaust fumes by evaluating mean critical angles of etching of the CR-39 and LR-115 type II SSNTDs for alpha particles emitted by the radon and thoron decay series. Committed effective doses due to ²¹⁸Po and ²¹⁴Po short-lived radon decay products from the inhalation of petrol and gas-oil exhaust fumes by workers were evaluated. A maximum value of 1.35 mSv y⁻¹ due to radon short-lived decay products from the inhalation of gas-oil exhaust fumes by mechanic workers was found, which is lower than the (3-10 mSv y⁻¹) dose limit interval for workers.

  8. Natural Hazards - A National Threat

    USGS Publications Warehouse

    Geological Survey, U.S.

    2007-01-01

    The USGS Role in Reducing Disaster Losses -- In the United States each year, natural hazards cause hundreds of deaths and cost billions of dollars in disaster aid, disruption of commerce, and destruction of homes and critical infrastructure. Although the number of lives lost to natural hazards each year generally has declined, the economic cost of major disaster response and recovery continues to rise. Each decade, property damage from natural hazards events doubles or triples. The United States is second only to Japan in economic damages resulting from natural disasters. A major goal of the U.S. Geological Survey (USGS) is to reduce the vulnerability of the people and areas most at risk from natural hazards. Working with partners throughout all sectors of society, the USGS provides information, products, and knowledge to help build more resilient communities.

  9. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  10. MGR External Events Hazards Analysis

    SciTech Connect

    L. Booth

    1999-11-06

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses.

  11. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    SciTech Connect

    R. Longwell; J. Keifer; S. Goodin

    2001-01-22

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  12. Safety Tips: Hazardous Chemical Storage.

    ERIC Educational Resources Information Center

    Williamson, J. R.

    1983-01-01

    Discusses storage of hazardous chemicals and provides a list of eight basic safety rules to use in developing a safe storage system. Suggestions include not storing materials alphabetically, storing nonreactive chemicals together, and not storing oxidizers and fuels together. (JN)

  13. Holiday Decor Can Be Hazardous

    MedlinePlus

    ... gifts are opened. This "debris" can cause a fire or pose a choking or suffocation hazard for ... Human Services. More Health News on: Child Safety Fire Safety Recent Health News Related MedlinePlus Health Topics ...

  14. Transportation of Hazardous Evidentiary Material.

    SciTech Connect

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  15. Exporting hazards to developing countries.

    PubMed

    Menkes, D B

    1998-01-01

    The health of people in developing countries is threatened by the importation of hazardous products, wastes and industrial processes from the developed world. Combating this menace is a facet of environmental protection and management of the planet's resources.

  16. Toxic hazards of underground excavation

    SciTech Connect

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  17. Hazardous Wastes--New Developments.

    ERIC Educational Resources Information Center

    Rogers, Harvey W.

    1979-01-01

    The need for effective disposal of hazardous medical and pathological wastes is discussed and the results of a test of five different models of incinerators in disposing of such wastes is presented. (MJB)

  18. Preliminary hazards analysis -- vitrification process

    SciTech Connect

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  19. Progress in NTHMP Hazard Assessment

    USGS Publications Warehouse

    Gonzalez, F.I.; Titov, V.V.; Mofjeld, H.O.; Venturato, A.J.; Simmons, R.S.; Hansen, R.; Combellick, R.; Eisner, R.K.; Hoirup, D.F.; Yanagi, B.S.; Yong, S.; Darienzo, M.; Priest, G.R.; Crawford, G.L.; Walsh, T.J.

    2005-01-01

    The Hazard Assessment component of the U.S. National Tsunami Hazard Mitigation Program has completed 22 modeling efforts covering 113 coastal communities with an estimated population of 1.2 million residents that are at risk. Twenty-three evacuation maps have also been completed. Important improvements in organizational structure have been made with the addition of two State geotechnical agency representatives to Steering Group membership, and progress has been made on other improvements suggested by program reviewers. ?? Springer 2005.

  20. USGS National Seismic Hazard Maps

    USGS Publications Warehouse

    Frankel, A.D.; Mueller, C.S.; Barnhard, T.P.; Leyendecker, E.V.; Wesson, R.L.; Harmsen, S.C.; Klein, F.W.; Perkins, D.M.; Dickman, N.C.; Hanson, S.L.; Hopper, M.G.

    2000-01-01

    The U.S. Geological Survey (USGS) recently completed new probabilistic seismic hazard maps for the United States, including Alaska and Hawaii. These hazard maps form the basis of the probabilistic component of the design maps used in the 1997 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, prepared by the Building Seismic Safety Council arid published by FEMA. The hazard maps depict peak horizontal ground acceleration and spectral response at 0.2, 0.3, and 1.0 sec periods, with 10%, 5%, and 2% probabilities of exceedance in 50 years, corresponding to return times of about 500, 1000, and 2500 years, respectively. In this paper we outline the methodology used to construct the hazard maps. There are three basic components to the maps. First, we use spatially smoothed historic seismicity as one portion of the hazard calculation. In this model, we apply the general observation that moderate and large earthquakes tend to occur near areas of previous small or moderate events, with some notable exceptions. Second, we consider large background source zones based on broad geologic criteria to quantify hazard in areas with little or no historic seismicity, but with the potential for generating large events. Third, we include the hazard from specific fault sources. We use about 450 faults in the western United States (WUS) and derive recurrence times from either geologic slip rates or the dating of pre-historic earthquakes from trenching of faults or other paleoseismic methods. Recurrence estimates for large earthquakes in New Madrid and Charleston, South Carolina, were taken from recent paleoliquefaction studies. We used logic trees to incorporate different seismicity models, fault recurrence models, Cascadia great earthquake scenarios, and ground-motion attenuation relations. We present disaggregation plots showing the contribution to hazard at four cities from potential earthquakes with various magnitudes and

  1. Volcanic hazards in Central America

    USGS Publications Warehouse

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  2. Ocular hazards of light

    NASA Technical Reports Server (NTRS)

    Sliney, David H.

    1994-01-01

    The eye is protected against bright light by the natural aversion response to viewing bright light sources. The aversion response normally protects the eye against injury from viewing bright light sources such as the sun, arc lamps and welding arcs, since this aversion limits the duration of exposure to a fraction of a second (about 0.25 s). The principal retinal hazard resulting from viewing bright light sources is photoretinitis, e.g., solar retinitis with an accompanying scotoma which results from staring at the sun. Solar retinitis was once referred to as 'eclipse blindness' and associated 'retinal burn'. Only in recent years has it become clear that photoretinitis results from a photochemical injury mechanism following exposure of the retina to shorter wavelengths in the visible spectrum, i.e., violet and blue light. Prior to conclusive animal experiments at that time, it was thought to be a thermal injury mechanism. However, it has been shown conclusively that an intense exposure to short-wavelength light (hereafter referred to as 'blue light') can cause retinal injury. The product of the dose-rate and the exposure duration always must result in the same exposure dose (in joules-per-square centimeter at the retina) to produce a threshold injury. Blue-light retinal injury (photoretinitis) can result from viewing either an extremely bright light for a short time, or a less bright light for longer exposure periods. This characteristic of photochemical injury mechanisms is termed reciprocity and helps to distinguish these effects from thermal burns, where heat conduction requires a very intense exposure within seconds to cause a retinal coagulation otherwise, surrounding tissue conducts the heat away from the retinal image. Injury thresholds for acute injury in experimental animals for both corneal and retinal effects have been corroborated for the human eye from accident data. Occupational safety limits for exposure to UVR and bright light are based upon this

  3. Probabilistic analysis of tsunami hazards

    USGS Publications Warehouse

    Geist, E.L.; Parsons, T.

    2006-01-01

    Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).

  4. Success in transmitting hazard science

    NASA Astrophysics Data System (ADS)

    Price, J. G.; Garside, T.

    2010-12-01

    Money motivates mitigation. An example of success in communicating scientific information about hazards, coupled with information about available money, is the follow-up action by local governments to actually mitigate. The Nevada Hazard Mitigation Planning Committee helps local governments prepare competitive proposals for federal funds to reduce risks from natural hazards. Composed of volunteers with expertise in emergency management, building standards, and earthquake, flood, and wildfire hazards, the committee advises the Nevada Division of Emergency Management on (1) the content of the State’s hazard mitigation plan and (2) projects that have been proposed by local governments and state agencies for funding from various post- and pre-disaster hazard mitigation programs of the Federal Emergency Management Agency. Local governments must have FEMA-approved hazard mitigation plans in place before they can receive this funding. The committee has been meeting quarterly with elected and appointed county officials, at their offices, to encourage them to update their mitigation plans and apply for this funding. We have settled on a format that includes the county’s giving the committee an overview of its infrastructure, hazards, and preparedness. The committee explains the process for applying for mitigation grants and presents the latest information that we have about earthquake hazards, including locations of nearby active faults, historical seismicity, geodetic strain, loss-estimation modeling, scenarios, and documents about what to do before, during, and after an earthquake. Much of the county-specific information is available on the web. The presentations have been well received, in part because the committee makes the effort to go to their communities, and in part because the committee is helping them attract federal funds for local mitigation of not only earthquake hazards but also floods (including canal breaches) and wildfires, the other major concerns in

  5. Size Distribution and Estimated Respiratory Deposition of Total Chromium, Hexavalent Chromium, Manganese, and Nickel in Gas Metal Arc Welding Fume Aerosols

    PubMed Central

    Cena, Lorenzo G.; Chisholm, William P.; Keane, Michael J.; Cumpston, Amy; Chen, Bean T.

    2016-01-01

    A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μm. Total Cr and Ni presented an additional fraction <0.03 μm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7–10%) and the alveolar region (11–14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%). PMID:26848207

  6. 16 CFR 1500.5 - Hazardous mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Hazardous mixtures. 1500.5 Section 1500.5... HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.5 Hazardous mixtures. For a mixture of substances, the determination of whether the mixture is a “hazardous substance”...

  7. 16 CFR 1500.5 - Hazardous mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Hazardous mixtures. 1500.5 Section 1500.5... HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.5 Hazardous mixtures. For a mixture of substances, the determination of whether the mixture is a “hazardous substance”...

  8. 16 CFR 1500.5 - Hazardous mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Hazardous mixtures. 1500.5 Section 1500.5... HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.5 Hazardous mixtures. For a mixture of substances, the determination of whether the mixture is a “hazardous substance”...

  9. 16 CFR 1500.5 - Hazardous mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Hazardous mixtures. 1500.5 Section 1500.5... HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.5 Hazardous mixtures. For a mixture of substances, the determination of whether the mixture is a “hazardous substance”...

  10. 16 CFR 1500.5 - Hazardous mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Hazardous mixtures. 1500.5 Section 1500.5... HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.5 Hazardous mixtures. For a mixture of substances, the determination of whether the mixture is a “hazardous substance”...

  11. 14 CFR 437.29 - Hazard analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard...

  12. 14 CFR 437.29 - Hazard analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard...

  13. 14 CFR 437.29 - Hazard analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard...

  14. 14 CFR 437.29 - Hazard analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard...

  15. 14 CFR 437.29 - Hazard analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard...

  16. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... define a hazard area that confines the adverse effects of a hardware system should an event occur that... the facility and related safety warnings, procedures, and rules that provide protection, or a launch... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard...

  17. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... define a hazard area that confines the adverse effects of a hardware system should an event occur that... the facility and related safety warnings, procedures, and rules that provide protection, or a launch... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard...

  18. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... define a hazard area that confines the adverse effects of a hardware system should an event occur that... the facility and related safety warnings, procedures, and rules that provide protection, or a launch... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard...

  19. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... define a hazard area that confines the adverse effects of a hardware system should an event occur that... the facility and related safety warnings, procedures, and rules that provide protection, or a launch... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard...

  20. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... define a hazard area that confines the adverse effects of a hardware system should an event occur that... the facility and related safety warnings, procedures, and rules that provide protection, or a launch... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard...