Science.gov

Sample records for hazardous waste research

  1. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  2. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  3. BIOREMEDIATION OF HAZARDOUS WASTES - RESEARCH, DEVELOPMENT AND FIELD EVALUATIONS - 1995

    EPA Science Inventory

    The proceedings of the 1995 Symposium on Bioremediation of Hazardous Wastes, hosted by the Office of Research and Development (ORD) of the EPA in Rye Brook, New York. he symposium was the eighth annual meeting for the presentation of research conducted by EPA's Biosystems Technol...

  4. Hazardous waste research and development in the Pacific Basin

    SciTech Connect

    Cirillo, R.R.; Carpenter, R.A.; Environment and Policy Inst., Honolulu, HI )

    1989-01-01

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

  5. Delisting a Hazardous Waste

    EPA Pesticide Factsheets

    This page discussed the hazardous waste delisting process. A hazardous waste delisting is a rulemaking procedure to amend the list of hazardous wastes to exclude a waste produced at a particular facility.

  6. Hazardous Waste Generators

    EPA Pesticide Factsheets

    Many industries generate hazardous waste. EPA regulates hazardous waste under the Resource Conservation and Recovery Act to ensure these wastes are managed in ways that are protective of human health and the environment.

  7. Notification: Preliminary Research to Evaluate Hazardous Waste Passing Through Publicly Owned Treatment Works

    EPA Pesticide Factsheets

    March 13, 2013. The EPA's OIG plans to start preliminary research to evaluate the effectiveness of the EPA’s programs in preventing and addressing contamination of surface water from hazardous wastes passing through publicly owned treatment works.

  8. Hazardous Waste Permitting

    EPA Pesticide Factsheets

    To provide RCRA hazardous waste permitting regulatory information and resources permitted facilities, hazardous waste generators, and permit writers. To provide the public with information on how they can be involved in the permitting process.

  9. Hazardous Waste Manifest System

    EPA Pesticide Factsheets

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  10. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  11. Hazardous Waste Data (RCRAInfo)

    EPA Pesticide Factsheets

    Hazardous waste information is contained in the Resource Conservation and Recovery Act Information (RCRAInfo), a national program management and inventory system about hazardous waste handlers. In general, all generators, transporters, treaters, storers, and disposers of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies, in turn pass on the information to regional and national EPA offices. This regulation is governed by the Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984. You may use the RCRAInfo Search to determine identification and location data for specific hazardous waste handlers, and to find a wide range of information on treatment, storage, and disposal facilities regarding permit/closure status, compliance with Federal and State regulations, and cleanup activities.

  12. Northwest Hazardous Waste Research, Development, and Demonstration Center: Program Plan. [Contains glossary

    SciTech Connect

    Not Available

    1988-02-01

    The Northwest Hazardous Waste Research, Development, and Demonstration Center was created as part of an ongoing federal effort to provide technologies and methods that protect human health and welfare and environment from hazardous wastes. The Center was established by the Superfund Amendments and Reauthorization Act (SARA) to develop and adapt innovative technologies and methods for assessing the impacts of and remediating inactive hazardous and radioactive mixed-waste sites. The Superfund legislation authorized $10 million for Pacific Northwest Laboratory to establish and operate the Center over a 5-year period. Under this legislation, Congress authorized $10 million each to support research, development, and demonstration (RD and D) on hazardous and radioactive mixed-waste problems in Idaho, Montana, Oregon, and Washington, including the Hanford Site. In 1987, the Center initiated its RD and D activities and prepared this Program Plan that presents the framework within which the Center will carry out its mission. Section 1.0 describes the Center, its mission, objectives, organization, and relationship to other programs. Section 2.0 describes the Center's RD and D strategy and contains the RD and D objectives, priorities, and process to be used to select specific projects. Section 3.0 contains the Center's FY 1988 operating plan and describes the specific RD and D projects to be carried out and their budgets and schedules. 9 refs., 18 figs., 5 tabs.

  13. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…

  14. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    SciTech Connect

    Wolfram, J.H.; Radtke, M.; Wey, J.E.; Rogers, R.D.; Rau, E.H.

    1997-10-01

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed.

  15. Developing hazardous waste programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Developing a fully operational hazardous waste regulatory system requires at least 10 to 15 years—even in countries with strong legal and bureaucratic institutions, according to a report on "The Evolution of Hazardous Waste Programs," which was funded by Resources for the Future (RFF) and the World Bank's South Asia Environment Group, and issued on June 4.The report, which compares the experiences of how four developed and four developing countries have created hazardous waste programs, indicates that hazardous waste issues usually do not become a pressing environmental issue until after countries have dealt with more direct threats to public health, such as contaminated drinking water and air pollution. The countries examined include Indonesia, Thailand, Germany, and the United States.

  16. Household Hazardous Waste (HHW)

    EPA Pesticide Factsheets

    This page gives an overview of how to safely manage household hazardous wastes like cleaners, paints and oils. Information is also provided on how to find recycling and disposal options for these products, as well as natural alternatives.

  17. WASTE RESEARCH STRATEGY

    EPA Science Inventory

    The Waste Research Strategy covers research necessary to support both the proper management of solid and hazardous wastes and the effective remediation of contaminated waste sites. This research includes improving the assessment of existing environmental risks, as well as develop...

  18. Innovative hazardous waste treatment technology

    SciTech Connect

    Freeman, H.M.; Sferra, P.R. . Hazardous Waste Engineering Research Lab.)

    1990-01-01

    This book contains information about the latest developments in destroying hazardous wastes by incineration or pyrolysis. Topics include: hydrogenation and reuse of hazardous organic wastes; catalytic incineration of gaseous wastes; oxygen enhancement of hazardous waste incineration; and thermal fixation of hazardous metal sludges in an alumina-silicate matrix.

  19. Household Hazardous Waste and Demolition

    EPA Pesticide Factsheets

    Household wastes that are toxic, corrosive, ignitable, or reactive are known as Household Hazardous Waste (HHW). Household Hazardous Waste may be found during residential demolitions, and thus require special handling for disposal.

  20. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  1. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  2. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  3. HANDBOOK: ASSESSING THE FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE. Summaries of Recent Research

    EPA Science Inventory

    This handbook has been developed for use as a reference tool in evaluating the suitability of disposing of specific hazardous wastes in deep injection wells. sers of the document will get a better understanding of the factors that affect 1) geochemical waste-reservoir reactions o...

  4. New hazardous waste solutions

    SciTech Connect

    Krukowski, J.

    1993-05-15

    From data supplied by industrial laboratories, from academia, and from the EPA's Superfund Innovative Site Evaluation (SITE) program, this paper presents an informal look at some new and innovative hazardous waste treatment processes. These processes show promise for sparing users off-site disposal costs as well as for remediation of contamination at Superfund or RCRA sites. Included are the following: equipment that will biodegrade water-based paint wastes and pesticide wastes; recycling of potliner and furnace dusts for metal recovery; a process that reduces PCBs and PAHs to lighter hydrocarbons such as methane. Finally, two radiofrequency (RF) processes are described that can be used to remove soil contaminants such as pentachlorophenols, Aroclor 1242, solvents, oils, jet fuel, and pesticides.

  5. Hazardous Wastes--New Developments.

    ERIC Educational Resources Information Center

    Rogers, Harvey W.

    1979-01-01

    The need for effective disposal of hazardous medical and pathological wastes is discussed and the results of a test of five different models of incinerators in disposing of such wastes is presented. (MJB)

  6. Management of hazardous wastes Lawrence Livermore National Laboratory

    SciTech Connect

    Jackson, C.S.

    1993-11-01

    Lawrence Livermore National Laboratory (LLNL), during the course of numerous research activities, generates hazardous, radioactive, and mixed (radioactive and hazardous) wastes. The management of these waste materials is highly regulated in the United States (US). This paper focuses on the hazardous waste regulations that limit and prescribe waste management at LLNL.

  7. Learn the Basics of Hazardous Waste

    EPA Pesticide Factsheets

    Overview that includes the definition of hazardous waste, EPA’s Cradle-to-Grave Hazardous Waste Management Program, and hazardous waste generation, identification, transportation, recycling, treatment, storage, disposal and regulations.

  8. The National Shipbuilding Research Program. Environmental Training Modules. Module 8 - Generation/Treatment/Minimization of Hazardous Waste

    DTIC Science & Technology

    1999-05-01

    facility that generates 1,000 kilograms (2,200 lbs) or more per month. The federal hazardous waste regulations also recognize other smaller categories of...training is the first step to both ensuring compliance with the hazardous waste regulations , as well as facility and worker safety. Training for the...buildings, and waste container marking and labeling requirements. Subpart D - Recordkeeping and Reporting: The hazardous waste regulations require that a

  9. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  10. Avoiding the Hazards of Hazardous Waste.

    ERIC Educational Resources Information Center

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  11. Elimination of the hazards from hazardous wastes.

    PubMed Central

    Gloyna, E F; Taylor, R D

    1978-01-01

    The "hazard" associated with a waste essentially controls the overall engineering approach to finding suitable alternatives for solving potential disposal problems. It should be recognized that all factors affecting environmental equilibrium must be considered, including product sales, process design, financing, pre- and end-of-pipe treatment, residuals management, and ultimate bioaccumulation of residuals. To meet this challenge, a systems approach to waste treatment and residuals disposal provides a logical approach, but this management concept requires a thorough understanding of the important physical and chemical aspects of the problem, as well as many social implications of the resulting decisions. Thus waste management within a plant necessarily involves process control, pretreatment and end-of-pipe treatment. Further, it follows that residuals management from a disposal point-of-view must ultimately embrace what is called the "multi-barrier concept." In essence, hazard elimination occurs in varying degrees during each phase of a properly engineered system. PMID:738249

  12. Innovative hazardous waste treatment technology

    SciTech Connect

    Freeman, H.M.; Sferra, P.R. . Hazardous Waste Engineering Research Lab.)

    1990-01-01

    This book contains technical overviews of new processes for reducing hazardous waste volume. These processes are based upon physico-chemical principles. Topics include: vacuum extraction for cleanup of soils and groundwater; catalytic hydrodechlorination; on stripping technology; and recovery and disposal of nitrate wastes.

  13. Federal Agency Hazardous Waste Compliance Docket

    EPA Pesticide Factsheets

    The Federal Agency Hazardous Waste Compliance Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants, or contaminants have been - or may be - released.

  14. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  15. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System Identification and Listing of Hazardous Waste...,'' to exclude (or delist) on a one-time basis from the lists of hazardous waste, a certain solid waste... the petitioned waste is ] not hazardous waste. This exclusion applies to 148 cubic yards of...

  16. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  17. Biological treatment of hazardous waste

    SciTech Connect

    Lewandowski, G.A.; Filippi, L.J. de

    1998-12-01

    This reference book is intended for individuals interested in or involved with the treatment of hazardous wastes using biological/biochemical processes. Composed of 13 chapters, it covers a wide variety of topics ranging from engineering design to hydrogeologic factors. The first four chapters are devoted to a description of several different types of bioreactors. Chapter 5 discusses the biofiltration of volatile organic compounds. Chapters 6 through 9 discuss specific biological, biochemical, physical, and engineering factors that affect bioremediation of hazardous wastes. Chapter 10 is a very good discussion of successful bioremediation of pentachlorophenol contamination under laboratory and field conditions, and excellent references are provided. The next chapter discusses the natural biodegradation of PCB-contaminated sediments in the Hudson River in New York state. Chapter 12 takes an excellent look at the bioremediation capability of anaerobic organisms. The final chapter discusses composting of hazardous waste.

  18. Hazardous-waste analysis plan for LLNL operations

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  19. Hazardous waste management

    SciTech Connect

    Dawson, G.W.; Mercer, B.W.

    1986-01-01

    This is a reference work designed to guide the chemist to solutions to problems of waste disposal. It has chapters on incineration, ocean dumping and underground injection, landfill disposal, transportation, abandoned sites, regulation, etc. A group of 12 appendices provide a lot of useful information for quick reference.

  20. Innovative hazardous waste treatment technology

    SciTech Connect

    Freeman, H.M.; Sferra, P.R. . Hazardous Waste Engineering Research Lab.)

    1990-01-01

    This book contains 21 various biodegradation techniques for hazardous waste treatment. Topics include: cyclic vertical water table movement for enhancement of in situ biodegradation of diesel fuel; enhanced biodegradation of petroleum hydrocarbons; and evaluation of aeration methods to bioremediate fuel-contaminated soils.

  1. Management of uncontrolled hazardous waste sites

    SciTech Connect

    Not Available

    1985-01-01

    This book is a compilation of papers presented at a conference on the management of uncontrolled hazardous waste sites. Papers were presented in the following topics: federal and state programs; sampling and monitoring; leaking tanks; in-situ treatment; site remediation; banner technology; storage/disposal; endangerment assessment; risk assessment techniques; and research and development.

  2. Evaluation of health effects from hazardous waste sites

    SciTech Connect

    Andelman, J.B.; Underhill, D.W.

    1986-01-01

    This information and data for evaluating health effects from hazardous waste sites stems from the efforts of specialists representing leading research centers, hospitals, universities, government agencies and includes consultant as well as corporate viewpoints. The work evolved from the Fourth Annual Symposium on Environmental Epidemiology sponsored by the Center for Environmental Epidemiology at the University of Pittsburgh and the U.S. EPA. Contents-One: Scope of the Hazardous Wastes Problems. Evaluating Health Effects at Hazardous Waste Sites. Historical Perspective on Waste Disposal. Two: Assessment of Exposure to Hazardous Wastes. Chemical Emissions Assessment for Hazardous Waste Sites. Assessing Pathways to Human Populations. Methods of Defining Human Exposures. Three: Determining Human Health Effects. Health Risks of Concern. Expectations and Limitations of Human Health Studies and Risk Assessment. Four: Case Studies. Love Canal. Hardeman County, Tennessee. Cannonsburg, Pennsylvania. Five: Defining Health Risks at Waste Sites. Engineering Perspectives from an Industrial Viewpoint. Role of Public Groups. Integration of Governmental Resources in Assessment of Hazards.

  3. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  4. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  5. Ground freezing for containment of hazardous waste

    SciTech Connect

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  6. Hazardous Waste Reduction Naval Air Station Oceana

    DTIC Science & Technology

    1991-06-01

    hazardous waste. 1. Federal Legislation Resources Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of...Material Control and Management HSWA Hazardous and Solid Waste Amendments MATWING Medium Attack Wing MEK Methylethyl Ketone MI Maintenance Instruction

  7. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... released from the waste, plausible and specific types of management of the petitioned waste, the quantities..., Tennessee from the lists of hazardous wastes. This final rule responds to a petition submitted by Valero...

  8. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... specific waste from a particular generating facility should not be regulated as a hazardous waste. Based on waste-specific information provided by the petitioner, EPA granted an exclusion for up to 3,000...

  9. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste...) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA... petitioned waste on human health and the environment. DATES: Comments must be received on or before...

  10. Phytoremediation of hazardous wastes

    SciTech Connect

    McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.; Ou, T.Y.

    1995-11-01

    A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approach 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.

  11. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  12. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  13. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  14. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  15. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  16. Hazardous-waste minimization assessment: Fort Campbell, Kentucky. Final report

    SciTech Connect

    Dharmavaram, S.; Knowlton, D.A.; Heflin, C.; Donahue, B.A.

    1991-03-01

    Waste minimization is the process of reducing the net outflow of hazardous materials that may be solid, liquid, or gaseous effluents from a given source or generating process. It involves reducing air pollution emissions, contamination of surface and ground water, and land disposal by means of source reduction, waste recycling processes, and treatment leading to complete destruction. Among Federal regulations is a requirement that every generator of hazardous wastes producing in excess of 2205 pounds per month certify that a hazardous waste minimization program is in operation. Generators are required to submit biennial reports to the USEPA that describe efforts taken to reduce the volume and toxicity of waste generated during the year. The objective of this research was to develop a hazardous waste minimization plan for Fort Campbell, Kentucky, to include actions necessary to reduce the generation of hazardous wastes. Reduction should be in both volume and toxicity.

  17. Training for hazardous waste workers

    SciTech Connect

    Favel, K.

    1990-10-26

    This implementation plan describes the system and provides the information and schedules that are necessary to comply with the Department of Energy (DOE) Albuquerque Operations Office (AL) Memorandum, Reference EPD dated September 11, 1990, Training for Hazardous Waste Workers. The memo establishes the need for identifying employees requiring environmental training, ensuring that the training is received, and meeting documentation and recordkeeping requirements for the training.

  18. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  19. Hazardous waste minimization report for CY 1986

    SciTech Connect

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  20. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... Refinery (Beaumont Refinery) to exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS)...

  1. Hazardous waste management in the Pacific basin

    SciTech Connect

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  2. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  3. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  4. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  5. Land Disposal Restrictions for Hazardous Waste

    EPA Pesticide Factsheets

    The land disposal restrictions prohibits the land disposal of untreated hazardous wastes. EPA has specified either concentration levels or methods of treatment for hazardous constituents to meet before land disposal.

  6. EPA Sets Rules on Hazardous Wastes.

    ERIC Educational Resources Information Center

    Smith, R. Jeffrey

    1980-01-01

    Announces the final rules published by the Environmental Protection Agency requiring that generators, transporters, and disposers of hazardous wastes report exactly where the wastes will be taken. (Author/SA)

  7. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  8. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  9. Hazardous waste operational plan for site 300

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  10. Technology transfer in hazardous waste management

    SciTech Connect

    Drucker, H.

    1989-01-01

    Hazardous waste is a growing problem in all parts of the world. Industrialized countries have had to deal with the treatment and disposal of hazardous wastes for many years. The newly industrializing countries of the world are now faced with immediate problems of waste handling. The developing nations of the world are looking at increasing quantities of hazardous waste generation as they move toward higher levels of industrialization. Available data are included on hazardous waste generation in Asia and the Pacific as a function of Gross Domestic Product (GDP). Although there are many inconsistencies in the data (inconsistent hazardous waste definitions, inconsistent reporting of wastes, etc.) there is definite indication that a growing economy tends to lead toward larger quantities of hazardous waste generation. In developing countries the industrial sector is growing at a faster rate than in the industrialized countries. In 1965 industry accounted for 29% of GDP in the developing countries of the world. In 1987 this had grown to 37% of GDP. In contrast, industry accounted for 40% of GDP in 1965 in industrialized countries and dropped to 35% in 1987. This growth in industrial activity in the developing countries brings an increase in the need to handle hazardous wastes. Although hazardous wastes are ubiquitous, the control of hazardous wastes varies. The number of regulatory options used by various countries in Asia and the Pacific to control wastes are included. It is evident that the industrialized countries, with a longer history of having to deal with hazardous wastes, have found the need to use more mechanisms to control them. 2 refs., 2 figs.

  11. Mediated electrochemical hazardous waste destruction

    SciTech Connect

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1991-08-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag{sup 2+} or Ce{sup +4} are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs.

  12. 76 FR 48073 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... AGENCY 40 CFR Parts 260 and 261 RIN 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY... the Agency) is proposing to revise the regulations for hazardous waste management under the...

  13. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann

    1992-03-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  14. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann.

    1992-01-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  15. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... Planning and Permitting Division, Corrective Action and Waste Minimization Section (6PD-C), 1445 Ross... will be taken on this petition. A new petition will be required for this waste stream. List of...

  16. Organic and inorganic hazardous waste stabilization utilizing fossil fuel combustion waste materials

    SciTech Connect

    Netzel, D.A.; Lane, D.C.; Brown, M.A.; Raska, K.A.; Clark, J.A.; Rovani, J.F.

    1993-09-01

    A laboratory study was conducted at the Western Research Institute to evaluate the ability of innovative clean coal technology (ICCT) waste to stabilize organic and inorganic constituents of hazardous wastes. The four ICCT wastes used in this study were: (1) the Tennessee Valley Authority (TVA) atmospheric fluidized bed combustor (AFBC) waste, (2) the TVA spray dryer waste, (3) the Laramie River Station spray dryer waste, and (4) the Colorado-Ute AFBC waste. Four types of hazardous waste stream materials were obtained and chemically characterized for use in evaluating the ability of the ICCT wastes to stabilize hazardous organic and inorganic wastes. The wastes included an API separator sludge, mixed metal oxide-hydroxide waste, metal-plating sludge, and creosote-contaminated soil. The API separator sludge and creosote-contaminated soil are US Environmental Protection Agency (EPA)-listed hazardous wastes and contain organic contaminants. The mixed metal oxide-hydroxide waste and metal-plating sludge (also an EPA-listed waste) contain high concentrations of heavy metals. The mixed metal oxide-hydroxide waste fails the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metal-plating sludge fails the TCLP for chromium. To evaluate the ability of the ICCT wastes to stabilize the hazardous wastes, mixtures involving varying amounts of each of the ICCT wastes with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest using the Toxicity Characteristic Leaching Procedure.

  17. Notification: Evaluation of EPA Oversight of Hazardous Waste Imports

    EPA Pesticide Factsheets

    Project #OPE-FY14-0036, March 26, 2014. The Office of Inspector General for the U.S. Environmental Protection Agency plans to begin preliminary research on the EPA oversight of hazardous waste imports on April 14, 2014.

  18. Military hazardous wastes: an overview and analysis

    SciTech Connect

    Kawaoka, K.E.; Malloy, M.C.; Dever, G.L.; Weinberger, L.P.

    1981-12-01

    The report describes and analyzes the management activities and motivating factors of the military in dealing with its hazardous waste streams. Findings and conclusions in areas of concern are given to provide information that may be of value to the future management of military hazardous wastes.

  19. The Disposal of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  20. The Impact of Household Hazardous Wastes on Landfill Leachates.

    DTIC Science & Technology

    1988-05-01

    sample was taken. Sorting municipal solid waste after collection has the advantage of directly sampling what will go into the landfill. A study of the...Seattle/King County area (Cal Recovery Systems, 1985) determined that approximately 0.5 percent (by weight) of the municipal solid waste stream are...the Stanford Research Institute is now underway to determine the concentration of household hazardous waste in municipal solid waste (Galvin, 1987). A

  1. Hazardous waste status of discarded electronic cigarettes

    SciTech Connect

    Krause, Max J.; Townsend, Timothy G.

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  2. Linking emerging hazardous waste technologies with the electronic information era

    SciTech Connect

    Anderson, B.E.; Suk, W.A.; Blackard, B.

    1996-12-31

    In looking to the future and the development of new approaches or strategies for managing hazardous waste, it is important to understand and appreciate the factors that have contributed to current successful approaches. In the United States, several events in the last two decades have had a significant impact in advancing remediation of hazardous waste, including environmental legislation, legislative reforms on licensing federally funded research, and electronic transfer of information. Similar activities also have occurred on a global level. While each of these areas is significant, the electronic exchange of information has no national boundaries and has become an active part of major hazardous waste research and management programs. It is important to realize that any group or society that is developing a comprehensive program in hazardous waste management should be able to take advantage of this advanced approach in the dissemination of information. 6 refs., 1 tab.

  3. Industrial ecology: Environmental chemistry and hazardous waste

    SciTech Connect

    Manahan, S.E.

    1999-01-01

    Industrial ecology may be a relatively new concept -- yet it`s already proven instrumental for solving a wide variety of problems involving pollution and hazardous waste, especially where available material resources have been limited. By treating industrial systems in a manner that parallels ecological systems in nature, industrial ecology provides a substantial addition to the technologies of environmental chemistry. Stanley E. Manahan, bestselling author of many environmental chemistry books for Lewis Publishers, now examines Industrial Ecology: Environmental Chemistry and Hazardous Waste. His study of this innovative technology uses an overall framework of industrial ecology to cover hazardous wastes from an environmental chemistry perspective. Chapters one to seven focus on how industrial ecology relates to environmental science and technology, with consideration of the anthrosphere as one of five major environmental spheres. Subsequent chapters deal specifically with hazardous substances and hazardous waste, as they relate to industrial ecology and environmental chemistry.

  4. Hazardous waste status of discarded electronic cigarettes.

    PubMed

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  5. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  6. Vegetative soil covers for hazardous waste landfills

    NASA Astrophysics Data System (ADS)

    Peace, Jerry L.

    Shallow land burial has been the preferred method for disposing of municipal and hazardous wastes in the United States because it is the simplest, cheapest, and most cost-effective method of disposal. Arid and semiarid regions of the western United States have received considerable attention over the past two decades in reference to hazardous, radioactive, and mixed waste disposal. Disposal is based upon the premise that low mean annual precipitation, high evapotranspiration, and low or negligible recharge, favor waste isolation from the environment for long periods of time. The objective of this study is to demonstrate that containment of municipal and hazardous wastes in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers utilizing natural soils and native vegetation i.e., vegetative soil covers, will meet the technical equivalency criteria prescribed by the U.S. Environmental Protection Agency for hazardous waste landfills. Vegetative soil cover design combines layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem that maintains the natural water balance. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards' equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data from 1919 to 1996 are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 1 m (3 ft) cover is the minimum design thickness necessary to meet the U.S. Environmental Protection Agency

  7. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  8. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect

    Not Available

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  9. Electrochemical treatment of mixed and hazardous waste

    SciTech Connect

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-12-31

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study.

  10. Federal Agency Hazardous Waste Compliance Docket

    EPA Pesticide Factsheets

    List of the Federal Agency Hazardous Waste Compliance Docket Facilities comprised of four lists: National Priorities List (NPL), Non-National Priorities List, Base Realignment and Closure Act (BRAC), and Resource Conservation and Recovery Act (RCRA).

  11. GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES

    EPA Science Inventory

    This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...

  12. Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  13. Evaluations in support of regulatory and research decisions by the U. S. Environmental Protection Agency for the control of toxic hazards from hazardous wastes, glyphosate, dalapon, and synthetic fuels

    SciTech Connect

    Scofield, R.

    1984-01-01

    This report includes toxicological and regulatory evaluations performed in support of U.S. EPA regulation of toxic materials and hazardous wastes. The first section of the report describes evaluations which support: (a) the regulation of small-volume generators of hazardous wastes, (b) the regulation of hazardous wastes from pesticide manufacturing, and (c) the disposal of the herbicide, silvex. The second section describes the environmental fate, transport, and effect of glyphosate and dalapon. The third section deals with synthetic fuels, including evaluations of synfuel-product toxicity, uncontrolled air emissions, and particular focus on the toxicity of products from several indirect coal liquefaction processes including methanol synthesis, Fischer-Tropsch, Mobil M-Gasoline, and Lurgi gasification technologies. Three direct coal liquefaction processes were examined for product toxicity and air emissions: Solvent Refined Coal (I and II) and the Exxon Donor Solvent Process. Also described in the third section is an evaluation of environmental and health hazards associated with the use of synthetic fuels from indirect coal liquefaction, direct coal liquefaction, and shale oil. Finally, the fourth section discusses some problems associated with performing, on a contractual basis, scientific and technical evaluations in support of U.S. EPA regulatory and research decisions.

  14. 75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... standards for the management of specific types of hazardous waste and specific types of hazardous waste management facilities, the land disposal restrictions program and the hazardous waste permit program. DATES... disposal facilities, the standards for the management of specific types of hazardous waste and...

  15. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous...

  16. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous...

  17. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous...

  18. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous...

  19. 75 FR 12989 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ...The Environmental Protection Agency (EPA or the Agency) is taking Direct Final action on a number of technical changes that correct or clarify several parts of the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations that relate to hazardous waste identification, manifesting, the hazardous waste generator requirements, standards for owners and operators of hazardous waste......

  20. Special Report: Hazardous Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  1. Hazardous Educational Waste Collections in Illinois.

    ERIC Educational Resources Information Center

    Illinois State Environmental Protection Agency, Springfield.

    This report presents the status of programs designed to manage hazardous educational waste collections in secondary schools in the state of Illinois. Laboratory wastes, expired chemicals, unstable compounds, and toxic or flammable materials are accounted for in this document. The report contains an executive summary, a review of Illinois statutes…

  2. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-10-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na{sub 2}O) - Lime (CaO) - Silica (SiO{sub 2}) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  3. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na[sub 2]O) - Lime (CaO) - Silica (SiO[sub 2]) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  4. Previous Federal Agency Hazardous Waste Compliance Docket Updates

    EPA Pesticide Factsheets

    The Federal Agency Hazardous Waste Compliance Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants, or contaminants have been - or may be - released.

  5. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.

    1984-01-01

    This book is a review and evaluation of vadose (unsaturated) zone monitoring. It describes the applicability of selected monitoring methods to hazardous waste disposal sites. Topics covered include: geohydrologic framework of the vadose zone; premonitoring of storage at disposal sites; premonitoring of water movement at disposal sites; active and abandoned site monitoring methods; waste source pollutant characterization; geohydrologic settings for waste disposals and conceptual vadose zone monitoring descriptions.

  6. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  7. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  8. Regulatory Exclusions and Alternative Standards for the Recycling of Materials, Solid Wastes and Hazardous Wastes

    EPA Pesticide Factsheets

    Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.

  9. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  10. 75 FR 71559 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... final exclusion for ExxonMobil Refining and Supply Company-- Beaumont Refinery, published on October 1...Mobil Refining and Supply Company--Beaumont Refinery, published on October 1, 2010, 75 FR 60632....

  11. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... exclusion for Eastman Chemical Company--Texas Operations, published on September 24, 2010. DATES: Effective... Company--Texas Operations, published on September 24, 2010, 75 FR 58315. We stated in that direct...

  12. E-waste hazard: The impending challenge

    PubMed Central

    Pinto, Violet N.

    2008-01-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981

  13. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from...

  14. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  15. Hazardous waste regulations: an interpretive guide

    SciTech Connect

    Mallow, A.

    1981-01-01

    Compliance with hazardous-waste laws has been made difficult by new, lengthy, and complicated Environmental Protection Agency regulations. This book analyzes and reorganizes the 150 pages of three-column regulations, clarifying all aspects of the requirements. Paralleling the related sections of the law (Subtitle C of the Resources Act), the book begins with an overview of the law and regulations and an identification and listing of hazardous wastes. There are guidelines for authorized state programs along with notification requirements for those in hazardous-waste activities. A checklist format, using five different scenarios offers a practical approach to analyzing the unique requirements for generators and transporters as well as owners and operators. 3 figures.

  16. Visible and infrared remote imaging of hazardous waste: A review

    USGS Publications Warehouse

    Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry

    2010-01-01

    One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  17. Research Implementation and Quality Assurance Project Plan: An Evaluation of Hyperspectral Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2009-01-01

    This project is a research collaboration between the U.S. Environmental Protection Agency (EPA) Office of Inspector General (OIG) and the U.S. Geological Survey (USGS) Eastern Geographic Science Center (EGSC), for the purpose of evaluating the utility of hyperspectral remote sensing technology for post-closure monitoring of residual contamination at delisted and closed hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act [CERCLA (also known as 'Superfund')] of 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986.

  18. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  19. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  20. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hazardous waste manifest. 172.205 Section 172.205... SECURITY PLANS Shipping Papers § 172.205 Hazardous waste manifest. (a) No person may offer, transport, transfer, or deliver a hazardous waste (waste) unless an EPA Form 8700-22 and 8700-22A (when...

  1. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  2. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  3. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  4. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  5. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  6. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  7. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  8. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  9. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Imports of hazardous waste. 262.60 Section 262.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60...

  10. Application of a hazard-assessment research strategy for waste disposal at 106-mile ocean disposal site (Chapter 14). Book chapter

    SciTech Connect

    Paul, J.F.; Bierman, V.J.; Walker, H.A.; Gentile, J.H.; Hood, D.W.

    1989-01-01

    An application of a hazard-assessment research strategy was made using waste disposal at Deepwater Dumpsite-106 (DWD-106) as an example. The strategy involved the synthesis of results from separate exposure and effects components in order to provide a scientific basis for estimating the risk to the aquatic environment. The exposure assessment related source inputs of contaminants to environmental concentration fields through considerations of transport and fate. The effects assessment related environmental contaminant concentration fields to biological effects through considerations of toxicity and bioaccumulation. The implementation of the hazard-assessment strategy for 106-Mile Site was made with the currently available information. Upper bounds on the time-averaged concentration fields for selected contaminants in the water column were developed corresponding to the physical transport patterns that occur in the vicinity of the site.

  11. Tougher standards for burning hazardous waste

    SciTech Connect

    Valenti, M.

    1993-08-01

    This article reports that tighter emission standards for hazardous waste combustion proposed by the EPA may require design changes that could alter the economics of hazardous waste incineration in the US. A recent draft strategy for the combustion of hazardous waste by the Environmental Protection Agency (EPA) in Washington, DC, has sent tremors through the two major types of combustors of industrial wastes: commercial incinerators and cement kilns. It is too early to predict what new environmental regulations will result from this proposal, but the ability of competitive combustors to meet them will likely determine their survival. The two emissions standards specified in the draft strategy announced in May by EPA administrator Carol Browner limit the particulate emissions from hazardous waste incinerators to 0.015 grain per dry standard cubic foot, less than one-fifth the 0.08 grain now permitted. Control of dioxins spells an even sharper change in EPA strategy, for these must be held to under 30 nanograms per dry standard cubic meter. Currently, there are no overall dioxin limits, only site-specific boundaries calculated on a risk-assessment basis for boilers and industrial furnaces (BIF) that have the potential to emit large amounts of dioxins and furans.

  12. Pollution due to hazardous glass waste.

    PubMed

    Pant, Deepak; Singh, Pooja

    2014-02-01

    Pollution resulting from hazardous glass (HG) is widespread across the globe, both in terms of quantity and associated health risks. In waste cathode ray tube (CRT) and fluorescent lamp glass, mercury and lead are present as the major pollutants. The current review discusses the issues related to quantity and associated risk from the pollutant present in HG and proposes the chemical, biological, thermal, hybrid, and nanotechniques for its management. The hybrid is one of the upcoming research models involving the compatible combination of two or more techniques for better and efficient remediation. Thermal mercury desorption starts at 100 °C but for efficient removal, the temperature should be >460 °C. Involvement of solar energy for this purpose makes the research more viable and ecofriendly. Nanoparticles such as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formulation can immobilize heavy metals present in HG by involving a redox mechanism. Straight-line equation from year-wise sale can provide future sale data in comparison with lifespan which gives future pollutant approximation. Waste compact fluorescent lamps units projected for the year 2015 is 9,300,000,000 units and can emit nearly 9,300 kg of mercury. On the other hand, CRT monitors have been continuously replaced by more improved versions like liquid crystal display and plasma display panel resulting in the production of more waste. Worldwide CRT production was 83,300,000 units in 2002 and can approximately release 83,000 metric tons of lead.

  13. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  14. Vitrification: Destroying and immobilizing hazardous wastes

    SciTech Connect

    Chapman, C.C.; Peters, R.D.; Perez, J.M.

    1994-04-01

    Researchers at the US Department of Energy`s Pacific Northwest Laboratory (PNL) have led the development of vitrification a versatile adaptable process that transforms waste solutions, slurries, moist powder and/or dry solids into a chemically durable glass form. The glass form can be safely disposed or used for other purposes, such as construction material if non-radioactive. The feed used in the process can be either combustible or non-combustible. Organic compounds are decomposed in the melters` plenum, while the inorganic residue melts into a molten glass pool. The glass produced by this process is a chemically durable material comparable to natural obsidian. Its properties typically allow it to pass the EPA Toxicity (TCLP) test as non-hazardous. To date, no glass produced by vitrification has failed the TCLP test. Vitrification is thus an ideal method of treating DOE`s mixed waste because of its ability to destroy organic compounds and bind toxic or radioactive elements. This article provides an overview of the technology.

  15. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    SciTech Connect

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  16. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  17. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  18. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  19. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  20. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  1. Toxic Hazards Research Unit

    NASA Technical Reports Server (NTRS)

    Macewen, J. D.; Vernot, E. H.

    1971-01-01

    The activities of the Toxic Hazards Research Unit (THRU) for the period of June 1970 through May 1971 reviewed. Modification of the animal exposure facilities primarily for improved human safety but also for experimental integrity and continuity are discussed. Acute toxicity experiments were conducted on hydrogen fluoride (HF), hydrogen chloride (HCl), nitrogen dioxide (NO2), and hydrogen cyanide (HCN) both singly and in combination with carbon dioxide (CO). Additional acute toxicity experiments were conducted on oxygen difluoride (OF2) and chlorine pentafluoride (ClF5). Subacute toxicity studies were conducted on methylisobutylketone and dichloromethane (methylene dichloride). The interim results of further chronic toxicity experiments on monomethylhydrazine (MMH) are also described.

  2. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.; Wilson, L.G.; Hoylman, E.W.

    1983-10-01

    This book describes the applicability of vadose zone monitoring techniques to hazardous waste site investigations. More than 70 different sampling and nonsampling vadose zone monitoring techniques are described in terms of their advantages and disadvantages. Physical, chemical, geologic, topographic, geohydrologic, and climatic constraints for vadose zone monitoring are quantitatively determined. Vadose zone monitoring techniques are categorized for premonitoring, active, and postclosure site assessments. Waste disposal methods are categorized for piles, landfills, impoundments, and land treatment. Conceptual vadose zone monitoring approaches are developed for specific waste disposal method categories.

  3. Hazardous wastes in Eastern and Central Europe [meeting report

    PubMed Central

    Carpenter, D O; Suk, W A; Blaha, K; Cikrt, M

    1996-01-01

    The countries of Eastern and Central Europe have emerged from a political system which for decades has ignored protection of human health from hazardous wastes. While the economies of the countries in this region are stretched, awareness and concern about hazardous waste issues are a part of the new realities. At a recent conference sponsored in part by the National Institute of Environmental Health Sciences, representatives of seven countries in the region described the status of hazardous waste programs, issues of major concern, and steps being taken to protect human health. This report summarizes the deliberations, outlines some of the problems remaining in dealing with the legacy of the past, addressing the problems of the present, and providing a framework for future research and collaborative efforts. PMID:8919756

  4. Management of hazardous medical waste in Croatia

    SciTech Connect

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  5. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  6. Children's Understandings Related to Hazardous Household Items and Waste

    ERIC Educational Resources Information Center

    Malandrakis, George N.

    2008-01-01

    This study focuses on children's understanding of hazardous household items (HHI) and waste (HHW). Children from grades 4, 5 and 6 (n=173) participated in a questionnaire and interview research design. The results indicate that: (a) on a daily basis the children used HHI and disposed of HHW, (b) the children did not realize the danger of these…

  7. What Specific Areas Must a Hazardous Waste Permit Address?

    EPA Pesticide Factsheets

    Hazardous waste permits provide treatment, storage, and disposal facilities (TSDFs) with the legal authority to treat, store, or dispose of hazardous waste and detail how the facility must comply with the regulations

  8. Psychosocial effects of hazardous toxic waste disposal on communities

    SciTech Connect

    Peck, D.L. )

    1989-01-01

    This book covers the following topics: Community responses to exposure to hazardous wastes; Characteristics of citizen groups which emerge with respect to hazardous waste sites; The technological world-view and environmental planning.

  9. Hazardous Waste Generator Regulations: A User-Friendly Reference Document

    EPA Pesticide Factsheets

    User-friendly reference to assist EPA and state staff, industrial facilities generating and managing hazardous wastes as well as the general public, in locating and understanding RCRA hazardous waste generator regulations.

  10. Hazardous Waste Electronic Manifest System (E-Manifest)

    EPA Pesticide Factsheets

    This webpage provides information on EPA's work toward developing a hazardous waste electronic manifest system. Information on the Hazardous Waste Electronic Manifest Establishment Act, progress on the project and frequent questions are available.

  11. 75 FR 16037 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... (carcinogenic risk of 10 -5 and non-cancer hazard index of 1.0). The DRAS program can back-calculate the... possible risks associated with releases of waste constituents through surface pathways...

  12. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... site. Using the risk level (carcinogenic risk of 10 -5 and non-cancer hazard index of 0.1), the DRAS... of waste constituents through surface pathways (e.g., volatilization or wind-blown particulate...

  13. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  14. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL...-eligible wastes in permitted hazardous waste landfills. (a) The Regional Administrator with regulatory... hazardous waste landfills not located at the site from which the waste originated, without the...

  15. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL...-eligible wastes in permitted hazardous waste landfills. (a) The Regional Administrator with regulatory... hazardous waste landfills not located at the site from which the waste originated, without the...

  16. Integrating waste management with Job Hazard analysis

    SciTech Connect

    2007-07-01

    The web-based Automated Job Hazard Analysis (AJHA) system is a tool designed to help capture and communicate the results of the hazard review and mitigation process for specific work activities. In Fluor Hanford's day-to-day work planning and execution process, AJHA has become the focal point for integrating Integrated Safety Management (ISM) through industrial health and safety principles; environmental safety measures; and involvement by workers, subject-matter experts and management. This paper illustrates how AJHA has become a key element in involving waste-management and environmental-control professionals in planning and executing work. To support implementing requirements for waste management and environmental compliance within the core function and guiding principles of an integrated safety management system (ISMS), Fluor Hanford has developed the a computer-based application called the 'Automated Job Hazard Analysis' (AJHA), into the work management process. This web-based software tool helps integrate the knowledge of site workers, subject-matter experts, and safety principles and requirements established in standards, and regulations. AJHA facilitates a process of work site review, hazard identification, analysis, and the determination of specific work controls. The AJHA application provides a well-organized job hazard analysis report including training and staffing requirements, prerequisite actions, notifications, and specific work controls listed for each sub-task determined for the job. AJHA lists common hazards addressed in the U.S. Occupational, Safety, and Health Administration (OSHA) federal codes; and State regulations such as the Washington Industrial Safety and Health Administration (WISHA). AJHA also lists extraordinary hazards that are unique to a particular industry sector, such as radiological hazards and waste management. The work-planning team evaluates the scope of work and reviews the work site to identify potential hazards. Hazards

  17. Wastewater and Hazardous Waste Survey, England AFB Louisiana.

    DTIC Science & Technology

    1988-01-01

    Background 1 A. Wastewater System 2 B. England AFB Wastewater Discharge Limitations 2 C. Characteristic Hazardous Waste Regulations 3 1II. Procedures 4 A...Conservation and Recovery Act, or the Louisiana State Hazardous Waste Regulations . The wastewater survey was conducted by 1 Lt Robert A. Tetla, 2Lt Charles W...34Hazardous Waste Abatement Plan, England Air Force Base, Louisiana," 1987. 0 12. State of Louisiana Hazardous Waste Regulations 13. RCRA Interim

  18. Hazardous waste sites and stroke in New York State

    PubMed Central

    Shcherbatykh, Ivan; Huang, Xiaoyu; Lessner, Lawrence; Carpenter, David O

    2005-01-01

    Background - Environmental exposure to persistent organic pollutants (POPs) may lead to elevation of serum lipids, increasing risk of atherosclerosis with thromboembolism, a recognized cause of stroke. We tested the hypothesis that exposure to contaminants from residence near hazardous waste sites in New York State influences the occurrence of stroke. Methods - The rates of stroke hospital discharges were compared among residents of zip codes containing hazardous waste sites with POPs, other pollutants or without any waste sites using information for 1993–2000 from the New York Statewide Planning and Research Cooperative System (SPARCS) database, containing the records of all discharge diagnoses for patients admitted to state-regulated hospitals. Results - After adjustment for age and race, the hospitalization rate for stroke in zip codes with POPs-contaminated sites was 15% higher than in zip codes without any documented hazardous waste sites (RR 1.15, 95% CI, 1.05, 1.26). For ischemic stroke only, the RR was 1.17 (95% CI 1.04, 1.31). Residents of zip codes containing other waste sites showed a RR of 1.13 (95% CI, 1.02, 1.24) as compared to zip codes without an identified waste site. Conclusion - These results suggest that living near a source of POPs contamination constitutes a risk of exposure and an increased risk of acquiring cerebrovascular disease. However further research with better control of individual risk factors and direct measurement of exposure is necessary for providing additional support for this hypothesis. PMID:16129026

  19. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  20. Estimating the Long Term Liability from Landfilling Hazardous Waste

    DTIC Science & Technology

    1992-01-01

    Hazardous and Solid Waste Amendments make the key element in...Society of Civil Engineers, New York, Nov. 1990. 44 required by the 1984 Hazardous and Solid Waste Amendments to RCRA, as shown in Figure 10...reauthorized in 1984 by the Hazardous and Solid Waste Amendments , is due for reauthorization in 1992 and it is probable that leachate flow rates shall

  1. 76 FR 36480 - Hazardous Waste Manifest Printing Specifications Correction Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... AGENCY 40 CFR Part 262 Hazardous Waste Manifest Printing Specifications Correction Rule AGENCY... proposing a minor change to the Resource Conservation and Recovery Act (RCRA) hazardous waste manifest regulations that affects those entities that print the hazardous waste manifest form in accordance with...

  2. 76 FR 72311 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... the receptor's respiratory system. This is no longer necessary as toxicity reference values for...-2009-0312; SW FRL-9490-9] Hazardous Waste Management System; Identification and Listing of Hazardous... States: States having a dual system that includes Federal RCRA requirements and their own...

  3. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    SciTech Connect

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work.

  4. 77 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Protection Agency (EPA) is granting a petition submitted by ExxonMobil Refining and Supply Company (ExxonMobil) Baytown Refinery to exclude from hazardous waste control (or delist) a certain solid waste. This final rule responds to the petition submitted by ExxonMobil to have the F039 underflow water...

  5. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... exclude (or delist) its wastewater treatment biosludge generated by its Ingleside, Texas facility from the..., K020, F025, F001, F003, and F005 waste resulting from the treatment of wastewaters from the... 9, 2009, to exclude the wastewater treatment biosludge from the lists of hazardous waste under...

  6. The Scientific Management of Hazardous Wastes

    NASA Astrophysics Data System (ADS)

    Porter, Keith S.

    According to the jacket of this book, three independent scientists carefully define the limits of scientific knowledge applicable to the management of hazardous wastes. It is claimed that the extrapolation and application of this knowledge is examined, significant areas of uncertainty are identified, and the authors reveal “the fallibility of certain interpretations.” It would be more accurate to claim these as possible goals of the book rather than its accomplishments.Chapter 1, Hazardous Wastes and Their Recycling Potential, includes 11 pages of lists of chemicals, some of which are poorly reproduced. The remaining pages describe, superficially, several recycling schemes. Connections between the chemicals previously listed and the recycling schemes are not given. Concerning the potential for recycling, the last sentence of the chapter reads, “Indeed, the concept of waste recycling, itself a contradiction in terms, is better politics than business.” Taken literally, this assertion itself contradicts venerable practice, as the farmer might observe as he transfers waste from his cows to the crops in his field. More pertinently, it can be argued that the recovery of solvents, metals, and oil from waste flows is much more than a political gesture.

  7. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 2

    SciTech Connect

    Not Available

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL`s Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL`s research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL`s acceptance criteria for hazardous chemical waste.

  8. Biological treatment of hazardous aqueous wastes

    SciTech Connect

    Opatken, E.J.; Howard, H.K.; Bond, J.J.

    1987-06-01

    Studies were conducted with a rotating biological conractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous-waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protection Agency's Testing and Evaluation Facility. A series of batches were run with primary effluent from Cincinnati's Mill Creek Sewage Treatment Facility. The paper reports on the results from these experiments and the effectiveness of an RBC to adequately treat leachates from Superfund sites.

  9. Frozen soil barriers for hazardous waste confinement

    SciTech Connect

    Dash, J.G.; Leger, R.; Fu, H.Y.

    1997-12-31

    Laboratory and full field measurements have demonstrated the effectiveness of artificial ground freezing for the containment of subsurface hazardous and radioactive wastes. Bench tests and a field demonstration have shown that cryogenic barriers are impenetrable to aqueous and non aqueous liquids. As a result of the successful tests the US Department of Energy has designated frozen ground barriers as one of its top ten remediation technologies.

  10. Determining Cleanup Standards for Hazardous Waste Sites

    DTIC Science & Technology

    1991-04-01

    CERCLA ) 8 was designed to deal with so-called Superfund sites like Love Canal. Among other things, Section 121 of that Act 9 describes, the cleanup...the "big stick" for cleaning up dangerous environmental sites falls under the broad 17 scope of CERCLA and the Superfund . The fundamental difference...as wastes under RCRA but are still 43 considered "hazardous" for CERCLA regulation. Furthermore, CERCLA , as amended by the Superfund Amendment and

  11. Hazardous Waste Minimization Guide for Shipyards

    DTIC Science & Technology

    1994-01-01

    suited for low-boiling solvents without abrasive solids. Another evaporation method involves the use of a dryer . In this operation, the waste is fed...sludge is dewatered through filter presses and sludge dryers . The sludge is then generally disposed of at a class 1 Iandfill site owned by a hazardous...piece, the metal powder, water, glass shot, and additives are tumbled together in a barrel. Coatings are limited to ductile metals such as Cd, An, Sn

  12. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  13. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  14. Sociological perspective on the siting of hazardous waste facilities

    SciTech Connect

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented.

  15. Development of an Evaluation Methodology for Hazardous Waste Training Programs

    DTIC Science & Technology

    2006-03-01

    substances, which reduces the amount of waste covered by RCRA. 2.2.2. Enforcement of Hazardous Waste Regulations The goals of the RCRA enforcement...civil action is a formal lawsuit filed against an entity that failed to comply with hazardous waste regulations or contributed to a release of... hazardous waste regulations on an Air Force installation is the _______________. A. State environmental regulatory agency B. Local county or city

  16. Hazardous and toxic waste management in Botswana: practices and challenges.

    PubMed

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future.

  17. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored.

  18. Minnesota Mining and Manufacturing Company's hazardous waste program.

    PubMed

    Van Noordwyk, H J; Santoro, M A

    1978-12-01

    This paper discusses the present hazardous waste program of 3M Company (Minnesota Mining and Manufacturing Company). 3M's definition of hazardous waste and the company's position on hazardous waste disposal are first considered. The company position is that wherever and whenever the disposal of a waste material threatens the environment or public safety, then that waste should be considered a hazardous waste and treated accordingly in terms of its handling and ultimate disposal. The generation of hazardous wastes and the differentiation of "hazardous" and "nonhazardous" wastes are described next. Handling of hazardous wastes from their generation to their disposal is then covered. This includes a definition of internal 3M terminology and a description of the hazard rating system used by the company. Finally, 3M disposal practices are presented. It is 3M's position that thermal destruction of hazardous wastes, where appropriate, is the best method for their disposal. With this in mind, 3M has constructed incineration facilities throughout the country. The rotary kiln incinerator at the 3M Chemolite plant in Cottage Grove, Minnesota is briefly described. Disposal of certain hazardous wastes in controlled secure land disposal sites is then briefly discussed.

  19. Hazardous-waste incineration in a rotary kiln

    SciTech Connect

    Owens, W.D. Jr.

    1991-01-01

    A rotary-kiln simulator was used to develop a better understanding of how hazardous materials are removed from sorbent clays. Experimental results and associated numerical modeling on the combustion and desorption of toluene from a montmorillonite clay sorbent are presented. The purpose of these tests was to understand the mass and heat transfer characteristics of the material in a rotary kiln environment. The experiments were done in a batch mode, simulating a control volume of solids moving down the length of a full-scale rotary kiln, exchanging time for distance as the independent variable. Studies investigating the effect of oxygen concentration, charge size, rotational velocity, and kiln cavity temperature on the desorption rate were completed. Also, effects of water in the montmorillonite were examined. Two comprehensive models were developed to predict the thermal and mass desorption characteristics of the bed, respectively. Another series of studies in the rotary kiln simulator was focused on NO, formation from nitrogenous waste constituents. These tests were performed to simulate materials (plastics, nylons, dyes, and process waste) usually destroyed in hazardous-waste incinerators. Four surrogate wastes, Aniline, Pyridine, Malononitrile, and Ethylenediamine, were absorbed onto the montmorillonite clay sorbent. A detailed discussion regarding the design, construction and operation of the rotary-kiln simulator for research on the destruction of hazardous waste materials is presented in the Appendices. All facility calibration techniques and calculations in addition to data acquisition and reduction algorithms are also discussed there.

  20. National information network and database system of hazardous waste management in China

    SciTech Connect

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry, and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.

  1. Medical aspects of the hazardous waste problem.

    PubMed

    Ozonoff, D

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, (1) causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. (2) This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem.

  2. Medical aspects of the hazardous waste problem

    SciTech Connect

    Ozonoff, D.

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem.

  3. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  4. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  5. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  6. 77 FR 36447 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... (that is, ignitability, corrosivity, reactivity, and toxicity), (2) the wastes meet the criteria for... any of the hazardous waste characteristics (that is, ignitability, reactivity, corrosivity, and...+00 Copper 2.23E-03 4.60E+02 o-Cresol ND 2.00E+02 m-Cresol ND 2.00E+02 p-Cresol ND 2.00E+02...

  7. Plasma destruction of North Carolina`s hazardous waste based on hazardous waste generated between the years of 1989 and 1992

    SciTech Connect

    Williams, Dwight LeRoi

    1994-01-01

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day`s average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina`s primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail.

  8. Characterizing soils for hazardous waste site assessments.

    PubMed

    Breckenridge, R P; Keck, J F; Williams, J R

    1994-04-01

    This paper provides a review and justification of the minimum data needed to characterize soils for hazardous waste site assessments and to comply with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Scientists and managers within the regulatory agency and the liable party need to know what are the important soil characteristics needed to make decisions about risk assessment, what areas need remediation and what remediation options are available. If all parties involved in characterizing a hazardous waste site can agree on the required soils data set prior to starting a site investigation, data can be collected in a more efficient and less costly manner. Having the proper data will aid in reaching decisions on how to address concerns at, and close-out, hazardous waste sites.This paper was prepared to address two specific concerns related to soil characterization for CERCLA remedial response. The first concern is the applicability of traditional soil classification methods to CERCLA soil characterization. The second is the identification of soil characterization data type required for CERCLA risk assessment and analysis of remedial alternatives. These concerns are related, in that the Data Quality Objective (DQO) process addresses both. The DQO process was developed in part to assist CERCLA decision-makers in identifying the data types, data quality, and data quantity required to support decisions that must be made during the remedial investigation/feasibility study (RI/FS) process. Data Quality Objectives for Remedial Response Activities: Development Process (US EPA, 1987a) is a guidebook on developing DQOs. This process as it relates to CERCLA soil characterization is discussed in the Data Quality Objective Section of this paper.

  9. Economic Analysis of Hazardous Waste Minimization Alternatives

    DTIC Science & Technology

    1992-08-01

    OF REPORT OF THIS PP,,E OF ABSTRACT Unclassified Unclassilied Unclassified SAR NSN 7540 01-280 5500 SuxVl form t (Rev 2- R ]I Pe•nbed or ANSi Srd 2r39...Consulting Associates, Inc.. 15 June 1987). Chapter 7. T . Page, R . Harris, and J. Bruser, Removal of Carcinogens from Drinking Water: A Cost-Benefit Analysis...Pretreatment of Hazardous Waste, EPA/600/D-87/047 (EPA, January 1987), pp 58-70. Page, T ., R . Harris, and J. Bruser. Removal of Carcinogens from Drinking Water

  10. Regulatory compliance by small-quantity generators of hazardous waste

    SciTech Connect

    Deyle, R.E.

    1987-01-01

    While small quantity and very small quantity generators of hazardous waste (SQCs and VSQGs) are responsible for less than one percent of the total hazardous waste produced, mismanagement of even small quantities of many types of hazardous waste can cause significant local impacts. Most SQGs and VSQGs are also small businesses. They are presumed to face significant time, expertise, and other resource constraints in complying with legally and technically complex regulations such as those that govern hazardous waste management. A sample of 400 SQGs and VSQGs in New Jersey was surveyed to assess policy options for two policy issues identified by the New Jersey Hazardous Waste Facilities Siting Commission: (1) enhancing regulatory compliance by SQGs, and (2) promoting voluntary adherence with hazardous waste regulations by VSQGs in the state. The analysis empirically tests hypotheses based on the rational utility maximization and bounded rationality models of individual and organizational decision making and compliance behavior.

  11. Spatial analysis of hazardous waste data using geostatistics

    SciTech Connect

    Zirschky, J.H.

    1984-01-01

    The objective of this investigation was to determine if geostatistics could be a useful tool for evaluating hazardous waste sites. Three sites contaminated by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) were investigated. The first site evaluated was a creek into which TCDD-contaminated soil had eroded. The second site was a town in which TCDD-contaminated wastes had been sprayed onto the streets. Finally, the third site was a highway of which the shoulders were contaminated by dust deposition from a nearby hazardous waste site. The distribution of TCDD at the first and third sites were investigated using kriging, an optimal estimation technique. By using kriging, the areas of both sites requiring cleanup were successfully identified. At the second site, the town, satisfactory results were not obtained. The distribution of contamination in this town is believed to be very heterogeneous; thus, reasonable estimates could not be obtained. Additional sampling was therefore recommended at this site. Based upon this research, geostatistics appears to be a very useful tool for evaluating a hazardous waste site if the distribution of contaminants at the site is homogeneous, or can be divided into homogeneous areas.

  12. In-plant management of hazardous waste

    SciTech Connect

    Hall, M.W.; Howell, W.L. Jr. |

    1995-12-31

    One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interests within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.

  13. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE,...

  14. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE,...

  15. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE,...

  16. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE,...

  17. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... F037 Benzene, benzo(a)pyrene, chrysene, lead, chromium. F038 Benzene, benzo(a)pyrene, chrysene, lead.... K052 Lead. K169 Benzene. K170 Benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(a)anthracene, benzo(b... separation sludges that are listed as hazardous wastes due to benzene, benzo(a)pyrene, chrysene, lead...

  18. Hazardous Waste Minimization Assessment: Fort Sam Houston, Texas

    DTIC Science & Technology

    1991-01-01

    Houston has a number of power production and heating/cooling plants ( HCP ) that use hazardous materials and generate potentially hazardous wastes. The DEH...Training and Support Center - Photo, Print Section; Buildings 2010, 2016 2. DPTMSEC - Training and Support Center - Graphics Section; Building 1450 3...Hazardous Waste Minimization HCL Hospitals, Clinics, and Laboratories HCP Heating/Cooling Plants HMTC Hazardous Materials Technical Center HSC Health

  19. Fire hazards analysis of transuranic waste storage and assay facility

    SciTech Connect

    Busching, K.R., Westinghouse Hanford

    1996-07-31

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  20. Hazardous waste and environmental trade: China`s issues

    SciTech Connect

    Ma Jiang

    1996-12-31

    By presenting some case studies, this paper analyzes China`s situation with regard to hazardous waste: its environmental trade, treatment, and management. The paper describes China`s experiences with the environmental trade of hazardous waste in both the internal and international market. Regulations for managing the import of waste are discussed, as are China`s major approaches to the trading of hazardous waste both at home and overseas. The major reasons for setting up the Asian-Pacific Regional Training Center for Technology Transfer and Environmental Sound Management of Wastes in China and the activities involved in this effort are also described. 1 tab.

  1. A Guidance Manual: Waste Analysis at Facilities that Generate, Treat, Store, and Dispose of Hazardous Wastes

    EPA Pesticide Factsheets

    Discusses how a person can perform waste analyses and develop waste analysis plans (WAPs) in accordance with the federal hazardous waste regulations of the Resource Conservation and Recovery Act (RCRA)

  2. Screening tests for hazard classification of complex waste materials - Selection of methods

    SciTech Connect

    Weltens, R.; Vanermen, G.; Tirez, K.; Robbens, J.; Deprez, K.; Michiels, L.

    2012-12-15

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which can be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of

  3. Screening tests for hazard classification of complex waste materials--selection of methods.

    PubMed

    Weltens, R; Vanermen, G; Tirez, K; Robbens, J; Deprez, K; Michiels, L

    2012-12-01

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which can be assessed from the hazardous properties of individual identified waste compounds or--if not all compounds are identified--from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of

  4. Hazardous healthcare waste management in the Kingdom of Bahrain

    SciTech Connect

    Mohamed, L.F. Ebrahim, S.A.; Al-Thukair, A.A.

    2009-08-15

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  5. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-12-31

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  6. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D. ); Stevens, L. )

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  7. HAZ-ED Classroom Activities for Understanding Hazardous Waste.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Federal Superfund Program investigates and cleans up hazardous waste sites throughout the United States. Part of this program is devoted to informing the public and involving people in the process of cleaning up hazardous waste sites from beginning to end. The Haz-Ed program was developed to assist the Environmental Protection Agency's (EPA)…

  8. Fire hazards analysis for solid waste burial grounds

    SciTech Connect

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  9. SEMINAR PUBLICATION: OPERATIONAL PARAMETERS FOR HAZARDOUS WASTE COMBUSTION DEVICES

    EPA Science Inventory

    The information in the document is based on presentations at the EPA-sponsored seminar series on Operational Parameters for Hazardous Waste Combustion Devices. This series consisted of five seminars held in 1992. Hazardous waste combustion devices are regulated under the Resource...

  10. Hazardous Waste Technical Assistance Survey, March AFB, California

    DTIC Science & Technology

    1989-03-01

    Bioenvironmental Engineer, SGPB, AV 947-3952 2Lt Bachand, Environmental Coordinator, OEEV, AV 947-4855 Ms Billy Maddi, Hazardous Waste Manager, DRMO (Located...amounts of oily rags which are drummed and disposed of as hazardous waste. Shop: Fuel Systems Building: 2307 Contact: Mr Vaughn AUTOVON: 947-5256 Shop

  11. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  12. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  13. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  14. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  15. A rating system for determination of hazardous wastes.

    PubMed

    Talinli, Ilhan; Yamantürk, Rana; Aydin, Egemen; Başakçilardan-Kabakçi, Sibel

    2005-11-11

    Although hazardous waste lists and their classification methodologies are nearly the same in most of the countries, there are some gaps and subjectiveness in determining the waste as hazardous waste. A rating system for the determination of waste as a hazardous waste is presented in this study which aims to overcome the problems resulted from the existing methodologies. Overall rating value (ORV) calculates and quantifies the waste as regular, non-regular or hazardous waste in an "hourglass" scale. "ORV" as a cumulative-linear formulation in proposed model consists of components such as ecological effects of the waste (Ee) in terms of four main hazard criteria: ignitability, reactivity, corrosivity and toxicity; combined potential risk (CPR) including carcinogenic effect, toxic, infectious and persistence characteristics; existing lists and their methodology (L) and decision factor (D) to separate regular and non-regular waste. Physical form (f) and quantity (Q) of the waste are considered as factors of these components. Seventeen waste samples from different sources are evaluated to demonstrate the simulation of the proposed model by using "hourglass" scale. The major benefit of the presented rating system is to ease the works of decision makers in managing the wastes.

  16. Method for disposing of hazardous wastes

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  17. Hazardous Waste Management System: Identification and Listing of Hazardous Waste - Burning of Hazardous Waste in Boilers and Industrial Furnaces - Federal Register Notice, September 5, 1991

    EPA Pesticide Factsheets

    EPA is announcing an administrative stay of the permitting standards for boilers and industrial furnaces adopted pursuant to the Resource Conservation and Recovery Act (56 FR 7206, Feb. 21, 1991) as they apply to coke ovens burning certain hazardous wastes

  18. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles Joe

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  19. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    SciTech Connect

    Simpson, Lewis Edward

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  20. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect

    1988-04-01

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  1. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... AGENCY 40 CFR Part 272 Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program... in the regulations entitled ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The EPA will incorporate by reference into the Code of...

  2. 77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... AGENCY 40 CFR Part 272 Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program... in the regulations entitled ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The EPA will incorporate by reference into the Code of...

  3. 75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... AGENCY 40 CFR Part 272 Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program... in the regulations entitled ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The EPA will incorporate by reference into the Code of...

  4. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect

    COVEY, L.I.

    2000-11-28

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  5. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  6. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  7. Toxic Hazards Research Unit

    DTIC Science & Technology

    1981-12-01

    STATEMENT (of the abstract entered In Block 20, if different fro. Report) 18 . SUPPLEMENTARY NOTES Funded in part by the Naval Medical Research Institute...to methylcyclohexane vapor for 12 months. 71 17. Mean body weights of female rats exposed to methylcyclohexane vapor for 12 months. 71 18 . Mean body...Lesions Found in C57BL/6 Mice Following Inhalation of MMH Vapor for One Year 18 4. Lesions Found in Fischer 344 Male Rats Following Inhalation of MMH

  8. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  9. Hydrothermal Oxidation Hazardous Waste Pilot Plant Test Bed

    SciTech Connect

    Welland, H.; Reed, W.; Valentich, D.; Charlton, T.

    1995-03-01

    The Idaho National Engineering Laboratory (INEL) is fabricating a Hydrothermal Oxidation (HTO) Hazardous Waste Pilot Plant Test Bed to evaluate and test various HTO reactor concepts for initial processing of the U.S. Department of Energy (DOE) mixed wastes. If the HTO process is successful it will significantly reduce the volume of DOE mixed wastes by destroying the organic constituents.

  10. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Disposal of CAMU-eligible wastes in permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS...

  11. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Disposal of CAMU-eligible wastes in permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS...

  12. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the Resource Conservation and Recovery Act of 1976 (RCRA), as amended by the Hazardous and Solid Waste Amendments of...

  13. Risk-Based Prioritization Method for the Classification of Groundwater Pollution from Hazardous Waste Landfills

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Jiang, Yong-Hai; lian, Xin-Ying; Xi, Bei-Dou; Ma, Zhi-fei; Xu, Xiang-Jian; An, Da

    2016-12-01

    Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.

  14. Risk-Based Prioritization Method for the Classification of Groundwater Pollution from Hazardous Waste Landfills.

    PubMed

    Yang, Yu; Jiang, Yong-Hai; Lian, Xin-Ying; Xi, Bei-Dou; Ma, Zhi-Fei; Xu, Xiang-Jian; An, Da

    2016-12-01

    Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.

  15. Physical and chemical methods for the characterization of hazardous wastes

    NASA Astrophysics Data System (ADS)

    Francis, C. W.; Maskarinec, M. P.; Lee, D. W.

    Numerous test methods have been proposed and developed to evaluate the hazards associated with handling and disposal of wastes in landfills. The major concern is the leaching of toxic constituents from the wastes. The fate of hazardous constituents in landfilled wastes is highly dependent on the physical and chemical characteristics of the waste. Thus, the primary objective in the selection of waste characterization procedures should be focused on those methods that gauge the fate of the waste's hazardous constituents in a specific landfill environment. Waste characterization in the United States has centered around the characteristics of ignitability, corrosivity, reactivity, and toxicity. The strategy employed in the development of most regulatory waste characterization procedures has been a pass or fail approach, usually tied to some form of a mismanagement scenario for that waste. For example, USEPA has chosen the disposal of a waste in a municipal waste landfill as a mismanagement scenario for the development of the waste leaching tests to determine the toxicity characteristic. Many wastes, such as large-volume utility wastes or mining wastes, are not disposed of in municipal waste landfills. As a consequence, more effort is needed in the development of waste leaching tests that determine the long-term leaching characteristics of that waste in the landfill environment in which the waste is to be disposed. Waste leaching models also need to be developed and tested as to their ability to simulate actual disposal environments. These models need to be compared with laboratory leaching tests, and, if practical, coupled with groundwater transport models.

  16. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Residues of hazardous waste in empty... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.7 Residues of hazardous waste in empty containers. (a)(1) Any hazardous waste remaining in either: an empty container; or...

  17. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  18. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  19. Hazardous waste minimization at Oak Ridge National Laboratory during 1987

    SciTech Connect

    Kendrick, C.M.

    1988-03-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems, Inc. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid-1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). The plan for waste minimization has been modified several times and continues to be dynamic. During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a system for distributing surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. Progress is being made toward completing these tasks and is described in this report. 13 refs., 1 fig., 7 tabs.

  20. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect

    Kirk, Nancy

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  1. Trip Reports. Hazardous Waste Minimization and Control at Army Depots

    DTIC Science & Technology

    1989-08-01

    phosphoric acid and sludge from the bottom of the tank is a very small waste stream at Tobyhanna; therefore, even complete elimination of this *waste... stream would result in only a small reduction in hazardous waste generation. Tooele performed several tests with Rust Eliminator on a variety of...rinse waters are treated In the Industrial Waste Treatment Plant (lWTW.. However, this stream is not monitored for Total Toxic Organics. The cleaning ae

  2. Wastewater and Hazardous Waste Survey, Homestead AFB Florida.

    DTIC Science & Technology

    1988-03-01

    Hexachloroexxhydro-exo,exo-dimethanonapthalene Hexamethyltetraphosphate Hydrazinecarbothioam ide Hydrazine methyl Hydrocyanic acid Hydrogen cyanide Hydrogen...characteristic hazardous waste (EP Toxicity) analysis on neutralized battery acid . (5) Drums and bowsers at waste storage sites should be secured. (6) Paint...neutralized battery acid . In fact, 95% of all wastes are included in the first six categories. Table 7: Categories of Waste on Homestead AFB 1 Category

  3. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hazardous waste. 258.20 Section 258.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20 Procedures..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that...

  4. Hazardous waste treatment using fungus enters marketplace

    SciTech Connect

    Illman, D.L.

    1993-07-01

    When the announcement was made eight years ago that a common fungus had been found that could degrade a variety of environmental pollutants, the news stirred interest in the scientific community, the private sector, and the general public. Here was the promise of a new technology that might be effective and economical in treating hazardous waste, especially the most recalcitrant of toxic pollutants. Today, commercialization is beginning amid a mixture of optimism and skepticism. The organism in question is white rot fungus, or Phanerochaete chrysosporium, and it belongs to a family of woodrotting fungi common all over North America. The fungi secrete enzymes that break down lignin in wood to carbon dioxide and water--a process called mineralization. These lignin-degrading enzymes are not very discriminating, however. The white rot fungi have been shown to degrade such materials as DDT, the herbicide (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T), 2,4,6-trinitrotoluene (TNT), pentachlorophenol (PCP), creosote, coal tars, and heavy fuels, in many cases mineralizing these pollutants to a significant extent.

  5. Waste disposal by hydrofracture and application of the technology to the management of hazardous wastes

    SciTech Connect

    Stow, S.H.; Haase, C.S.; Weeren, H.O.

    1985-01-01

    A unique disposal method, involving hydrofracturing, has been used for management of liquid low-level radioactive wastes at Oak Ridge National Laboratory (ORNL). Wastes are mixed with cement and other solids and injected along bedding plane fractures into highly impermeable shale at a depth of 300 m forming a grout sheet. The process has operated successfully for 20 years and may be applicable to disposal of hazardous wastes. The cement grout represents the primary barrier for immobilization of the wastes; the hydrologically isolated injection horizon represents a secondary barrier. At ORNL work has been conducted to characterize the geology of the disposal site and to determine its relationship to the injection process. The site is structurally quite complex. Research has also been conducted on the development of methods for monitoring the extent and orientation of the grout sheets; these methods include gamma-ray logging of cased observation wells, leveling surveys of benchmarks, tiltmeter surveys, and microseismic arrays. These methods, some of which need further development, offer promise for real-time and post-injection monitoring. Initial suggestions are offered for possible application of the technology to hazardous waste management and technical and regulatory areas needing attention are addressed. 11 refs., 1 fig.

  6. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... taking place identifies principal hazardous constitutes in such waste, in accordance with § 264.552(e)(4... following standards specified for CAMU-eligible wastes: (i) The treatment standards under § 264.552(e)(4)(iv... authorizes receipt of such waste. (e) For each remediation, CAMU-eligible waste may not be placed in an...

  7. Technologies for environmental cleanup: Toxic and hazardous waste management

    SciTech Connect

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ``Technologies for Environmental Cleanup.`` To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste.

  8. Hazardous waste incineration: Emotional fears and technical reality

    SciTech Connect

    Martin, E.J.

    1995-04-01

    Although incinerators are not risk-free, they bear up well by comparison to other methods of hazardous waste disposal and other socially-accepted risks. The current level of suspicion and anxiety regarding incinerators can be reduced through the sharing of expert information about the need for, and process of, hazardous waste combustion, and early involvement of community and industry representatives, even before a particular incinerator site is chosen. The federal government`s role should not be one of asking whether a particular place wants a hazardous waste incinerator. Their approach should be one of consensus-building. A brief look at the facts can help the public understand that incineration is the best available treatment for hazardous wastes.

  9. EPA requires Phoenix facility to safely handle hazardous waste

    EPA Pesticide Factsheets

    SAN FRANCISCO - The U.S. Environmental Protection Agency recently fined World Resources Company $39,900 for violations of hazardous waste laws. World Resources, located in Tolleson, Ariz. uses manufactured residues to produce metal concentrate

  10. International Agreements on Transboundary Shipments of Hazardous Waste

    EPA Pesticide Factsheets

    Several international agreements may affect U.S. hazardous waste import and export practices including the Basel Convention, the OECD Council Decision, and bilateral agreements between the U.S. and Canada, Mexico, Costa Rica, Malaysia, and the Philippines

  11. Engineering Forum Issue Paper: Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  12. Powercon Corp. settles hazardous waste violations at Severn, Md. facility

    EPA Pesticide Factsheets

    PHILADELPHIA (November 19, 2015) - Powercon Corporation has agreed to pay a $40,000 penalty to settle alleged violations of hazardous waste regulations at its manufacturing facility in Severn, Md., the U.S. Environmental Protection Agency announced today.

  13. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators....

  14. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators....

  15. Lowell Company Settles with EPA for Hazardous Waste Concerns

    EPA Pesticide Factsheets

    A Lowell, Mass., manufacturer of fiber products has come into compliance with hazardous waste laws after the US Environmental Agency found the company was violating federal and state environmental laws.

  16. Process development accomplishments: Waste and hazard minimization, FY 1991

    SciTech Connect

    Homan, D.A.

    1991-11-04

    This report summarizes significant technical accomplishments of the Mound Waste and Hazard Minimization Program for FY 1991. The accomplishments are in one of eight major areas: environmentally responsive cleaning program; nonhalogenated solvent trials; substitutes for volatile organic compounds; hazardous material exposure minimization; nonhazardous plating development; explosive processing waste reduction; tritium capture without conversion to water; and robotic assembly. Program costs have been higher than planned.

  17. 40 CFR 261.35 - Deletion of certain hazardous waste codes following equipment cleaning and replacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.35 Deletion of certain hazardous waste codes following equipment... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Deletion of certain hazardous...

  18. Degradation of hazardous organic wastes by microorganisms. Preliminary report

    SciTech Connect

    Kenis, P.

    1988-05-01

    This report addresses the microbiological detoxification of hazardous organic compounds before and after they have contaminated soil, ground water, and other areas. The in-situ degradation of toxic organic compounds is often the most cost-effective cleanup approach. Companies that use or provide microorganisms and other products and services for hazardous organic waste detoxification are listed in the appendices of this report.

  19. Hazardous Waste Management System - Definition of Hazardous Waste - Mixture and Derived- From Rules - Federal Register Notice, October 30, 1992

    EPA Pesticide Factsheets

    This action responds to public comment on two proposals (57 FR 7636, March 3, 1992, and 57 FR 21450, May 20, 1992) to modify EPA's hazardous waste identification rules under the Resource Conservation and Recovery Act (RCRA).

  20. Argonne National Laboratory, east hazardous waste shipment data validation

    SciTech Connect

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean.

  1. Hazardous Waste Management: A View to the New Century, 2001.

    ERIC Educational Resources Information Center

    Burton, Gwen

    Like many parts of the United States, Colorado is facing a significant hazardous waste problem. Radioactive and chemical wastes generated by the Rocky Flats Nuclear Plant, the toxic Lowry Land Fill Site, industrial dumps, and heavy land and air traffic contribute to water, land, and air pollution in the state. As part of a statewide response…

  2. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Hazardous waste incinerator permits. 270.62 Section 270.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID.../feed). (E) Capacity of prime mover. (F) Description of automatic waste feed cut-off system(s)....

  3. Self Audits of Hazardous Waste Operations in Laboratories.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1987-01-01

    Discusses the need for compliance with state and federal regulations regarding the handling of hazardous wastes in college chemistry laboratories. Addresses: (1) waste determination; (2) facility requirements; (3) use of the manifest, vendor, transporter, site selection requirements, and training; (4) contingency planning; and (5) documentation.…

  4. EXPERIMENTAL INVESTIGATION OF CRITICAL FUNDAMENTAL ISSUES IN HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    The report gives results of a laboratory-scale program investigating several fundamental issues involved in hazardous waste incineration. The key experiment for each study was the measurement of waste destruction behavior in a sub-scale turbulent spray flame. (1) Atomization Qual...

  5. GUIDE TO TREATMENT TECHNOLOGIES FOR HAZARDOUS WASTES AT SUPERFUND SITES

    EPA Science Inventory

    Over the past fewyears, it has become increasinsly evident that land disposal of hazardous wastes is at least only a temporary solution for much of the wastes present at Superfund sites. The need for more Iong-term, permanent "treatment solutions as alternatives to land disposal ...

  6. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  7. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  8. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J.; Knecht, Dieter A.; Todd, Terry A.; Burchfield, Larry A.; Anshits, Alexander G.; Vereshchagina, Tatiana; Tretyakov, Alexander A.; Aloy, Albert S.; Sapozhnikova, Natalia V.

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  9. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

  10. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  11. 78 FR 54178 - Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... AGENCY 40 CFR Part 271 Virginia: Final Authorization of State Hazardous Waste Management Program..., Virginia received final authorization to implement its hazardous waste management program effective... the analogous Federal requirements. The Virginia Waste Management Act (VWMA), enacted by the...

  12. Treatment Technologies for Hazardous Ashes Generated from Possible Incineration of Navy Waste

    DTIC Science & Technology

    1990-10-01

    Hazardous and Solid Waste Amendments of 1984 HW - Hazardous Waste HWM - Hazardous Waste Minimization IWTP - Industrial wastewater treatment piant...Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA) will eventually prohibit land disposal of...Conservation and Recovery Act of 1976, as amended, PL 94-580, 42 USC 6901. 3. Hazardous and Solid Waste Amendments

  13. Transportation training: Focusing on movement of hazardous substances and wastes

    SciTech Connect

    Jones, E.; Moreland, W.M.

    1988-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Program at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, are developing and implementing a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 5 figs., 3 tabs.

  14. [Nursing workers' perceptions regarding the handling of hazardous chemical waste].

    PubMed

    Costa, Taiza Florêncio; Felli, Vanda Elisa Andres; Baptista, Patrícia Campos Pavan

    2012-12-01

    The objectives of this study were to identify the perceptions of nursing workers regarding the handling of hazardous chemical waste at the University of São Paulo University Hospital (HU-USP), and develop a proposal to improve safety measures. This study used a qualitative approach and a convenience sample consisting of eighteen nursing workers. Data collection was performed through focal groups. Thematic analysis revealed four categories that gave evidence of training deficiencies in terms of the stages of handling waste. Difficulties that emerged included a lack of knowledge regarding exposure and its impact, the utilization of personal protective equipment versus collective protection, and suggestions regarding measures to be taken by the institution and workers for the safe handling of hazardous chemical waste. The present data allowed for recommending proposals regarding the safe management of hazardous chemical waste by the nursing staff.

  15. Information on Disposal Practices of Generators of Small Quantities of Hazardous Wastes.

    DTIC Science & Technology

    1983-09-28

    reviewed the States’ solid and hazardous waste regulations , policies, and procedures. We contacted solid or hazardous waste officials in 46 other States...exempts from hazardous waste regulations mixtures of domestic sewage and other wastes that pass through a sewer system to a publicly owned sewage...such wastes under hazardous waste regulations is necessary. An assistant to the EPA Assistant Administrator for Water said that EPA recognizes that a

  16. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  17. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  18. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  19. A pilot outreach program for small quantity generators of hazardous waste.

    PubMed

    Brown, M S; Kelley, B G; Gutensohn, J

    1988-10-01

    The Massachusetts Department of Environmental Management initiated a pilot project to improve compliance with hazardous waste regulations and management of hazardous wastes with auto body shops around the state. The program consisted of mass mailings, a series of workshops throughout the state, a coordinated inspection program by the state regulatory agency, and technology transfer. At the start of the program in January 1986, approximately 650 of the estimated 2,350 auto body shops in the state had notified EPA of their waste generating activities; by January 1987, approximately 1,200 shops had done so. Suggestions for improving program efforts include tailoring the outreach effort to the industry, government-sponsored research and development directed at the needs of small firms, mandatory participation in hazardous waste transportation programs, and better coordination by EPA of its information collection and distribution program.

  20. New hazardous waste management system: regulation of wastes or wasted regulation

    SciTech Connect

    Friedland, S.I.

    1981-01-01

    The unsound management of hazardous wastes, as exemplified by Love Canal, causes a variety of environmental and health problems. A review of present state controls reveals the need for the Federal regulation that was incorporated in the Resource Conservation and Recovery Act of 1976 (RCRA). A detailed description of RCRA, however, faults the Environmental Protection Agency (EPA) for deferring regulation and for its failure to meet deadlines, issue standards, or include many dangerous wastes in the prohibited list. EPA's interim standards of essentially voluntary guidelines will offer little protection from contamination until final permit regulations are established. 326 references. (DCK)

  1. Hazardous waste management in Chilean main industry: an overview.

    PubMed

    Navia, Rodrigo; Bezama, Alberto

    2008-10-01

    The new "Hazardous Waste Management Regulation" was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a "Hazardous Waste Management Plan" if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory.

  2. 2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site

    SciTech Connect

    Gladden, J.B.

    2003-08-28

    Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is a United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay

  3. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  4. Hazardous Waste Test Methods / SW-846

    EPA Pesticide Factsheets

    The Resource Conservation and Recovery Act Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (SW-846) provide guidance to analytical scientists, enforcement officers and method developers across a variety of sectors.

  5. The coast guard's cleanup of hazardous waste sites

    SciTech Connect

    Rezendes, V.S.

    1989-11-01

    GAO concluded that the Coast Guard still has most of its major hazardous waste cleanup work to do - an effort that will cost millions and will take decades to complete. Yet the Coast Guard cannot confidently estimate long-term cleanup costs until it assesses and investigates potential hazardous waste locations. While Coast Guard data suggest that it is complying with hazardous waste regulations, this GAO report maintains that the Coast Guard may not be collecting the type of information needed to support long-term budget requests. The Coast Guard is planning to reissue reporting instructions in order to stress the importance of reporting violations and related costs. If successful, this effort could help ensure that the Coast Guard has the information necessary to estimate future funding needs.

  6. Chemical hazards associated with treatment of waste electrical and electronic equipment

    SciTech Connect

    Tsydenova, Oyuna; Bengtsson, Magnus

    2011-01-15

    This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associated with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.

  7. Chemical hazards associated with treatment of waste electrical and electronic equipment.

    PubMed

    Tsydenova, Oyuna; Bengtsson, Magnus

    2011-01-01

    This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associated with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.

  8. Degradation of Hazardous Organic Wastes by Microorganisms

    DTIC Science & Technology

    1988-05-01

    Environmental Restoration Account, Installation Restoration R&D Demonstration Project. It was funded by the Naval Facilities Engineering Command and represents...organic wastes in liquid streams . APPENDIX E Smith and Loveless, Inc. 14040 Santa Fe Trail Drive Lenexa, Kansas 66215 (913) 888-5201 Prefabricated fixed...in the waste stream . tha-t-would p _obele-x-ie, The CECOS proposal met the 2. React Phase, during this nerg-e-6fficient an-d costeffetive. Energy

  9. Stabilization solutions to hazardous metals laden waste

    SciTech Connect

    Kramer, M.

    1996-12-31

    This paper is limited to treatment of bottom and fly ash waste resulting from WTE and RTE Cogeneration plants, commonly known as trash burners. The body of the paper defines waste generation and conventional treatment schemes. This paper does not identify a best treatment, however, it does offer a general perspective of the treatments to lead the reader to further investigation. Advantages and disadvantages of the ash treatments is discussed in each treatment section. 29 refs., 1 fig.

  10. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.11 Requirements for transporters of hazardous wastes. (a) The...

  11. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Requirements for hazardous waste... (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The...

  12. Hazardous Waste: EPA’s Generation and Management Data Need Further Improvement

    DTIC Science & Technology

    1990-02-01

    Hazardous and Solid Waste Amendments of 1984 form the foundation for this...Superfund) EPA Environmental Protection Agency GAO General Accounting Office HSWA Hazardous and Solid Waste Amendments , 1984 NGA National Governors...to final disposition. The Hazardous and Solid Waste Amendments of 1984 (HswA) strengthened RCRA by further encouraging waste

  13. Method of recovering hazardous waste from phenolic resin filters

    DOEpatents

    Meikrantz, David H.; Bourne, Gary L.; McFee, John N.; Burdge, Bradley G.; McConnell, Jr., John W.

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  14. Locating hazardous waste facilities: The influence of NIMBY beliefs

    SciTech Connect

    Groothuis, P.A.; Miller, G. )

    1994-07-01

    The [open quote]Not-In-My-Backyard[close quote] (NIMBY) syndrome is analyzed in economic decision making. Belief statements that reflect specific NIMBY concerns are subjected to factor analysis and the structure reveals two dimensions: tolerance and avoidance. Tolerance reflects an acceptance of rational economic arguments regarding the siting of a hazardous waste facility and avoidance reflects a more personal fear-of-consequences. Analysis identifies demographic characteristics of individuals likely to exhibit these two beliefs. These beliefs also are shown to influence the acceptance of a hazardous waste disposal facility in ones neighborhood when compensation is offered.

  15. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  16. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  17. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  18. Hazardous Waste Site Analysis (Small Site Technology)

    DTIC Science & Technology

    1990-08-01

    Fluidized Bed ......................................................................... 48 M ultiple H earth...contamination 17 Fluidized Bed Incineration - The vessels contain a bed of graded, inert granular material, usually silica sand or a catalyst. The heated bed ...material is expanded by combustion air forced upward through the bed . As waste material is mixed with the hot fluidized bed material, heat is rapidly

  19. Emerging technologies in hazardous waste management

    SciTech Connect

    Tedder, D.W. ); Pohland, F.G. )

    1990-01-01

    The book includes chapters on topics such as municipal solid wastes, water purification by radiation, the isolation or organic species and inorganic radionuclides, and solvent recycling. Several chapters cover radiolysis chemistry in dilute aqueous media, solar treatment, chemical separations (adsorption, ion exchange, membrane dialysis, and distillation), the biological and chemical treatment of soils and sludges, and solids immobilization.

  20. Integrated approach to hazardous and radioactive waste remediation

    SciTech Connect

    Hyde, R.A.; Reece, W.J.

    1994-11-01

    The US Department of Energy Office of Technology Development is supporting the demonstration, and evaluation of a suite of waste retrieval technologies. An integration of leading-edge technologies with commercially available baseline technologies will form a comprehensive system for effective and efficient remediation of buried waste throughout the complex of DOE nuclear facilities. This paper discusses the complexity of systems integration, addressing organizational and engineering aspects of integration as well as the impact of human operators, and the importance of using integrated systems in remediating buried hazardous and radioactive waste.

  1. What was leaking from a hazardous-waste dump

    SciTech Connect

    Hites, R.A.

    1988-05-15

    The city of Niagara Falls, N.Y., is the home of several toxic waste disposal sites, the most famous of which is Love Canal. Although less well known, the Hyde Park dump is equally noxious. This hazardous-waste dump was operated by the Hooker Chemical Company from about 1953 to 1975. Approximately 55,000 tons of halogenated waste were buried at this site, which is just north of the city. The Hyde Park dump is drained by Bloody Run Creek. Ronald A. Hites of Indiana University outlines the steps taken to identify the structures of organic compounds leaking from the Hyde Park dump.

  2. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  3. Hazardous-waste nightmare. [Evaluation of legislative proposals

    SciTech Connect

    Alexander, T.

    1980-04-21

    Mr. Alexander points out that, even in the absence of Federal regulation, hazardous wastes would be a major problem for companies. Many have been driven to desperate measures even to find someplace to put the 125 billion pounds of such wastes that are produced each year - but that nobody wants nearby. EPA recently began promulgating final regulations implementing the Resource Conservation and Recovery Act passed by Congress in 1976; these regulations will mandate technical standards for all future waste sites as well as a cradle to grave system for tracking major hazardous wastes to their ultimate disposition. But much of Washington's new interest seems to be a response to the charge that government too long overlooked the menace in old wastes; so, they are now turning to unusually primitive measures aimed at industry's past practice. The Justice Department has mobilized a fourteen-lawyer section to track down and prosecute companies for transgressions. Several bills are making their way through committees and, if enacted, could confront even very large industries with the choice of finding some new way of dealing with old wastes or going out of business. In discussing these proposals and touching briefly on the technical side of how wastes reach the aquifers, Mr. Alexander says that little is known about the extent of trace-chemical contamination - and, although it's time Washington ended its neglect of the problem, the extremely punitive measures are probably not called for.

  4. Accepting leachate from a hazardous-waste landfill

    SciTech Connect

    Kelly, J.M.; Brandenburg, B.L. )

    1991-08-01

    This article discusses the considerations necessary in preparing to treat leachate from a hazardous-waste landfill. The topics discussed include a review of the law, federal, state and local regulations, specific constituents of concern, leachate characteristics, process design and toxicity of the leachate. A table of the actual leachate composition is included.

  5. Household Hazardous Waste: Everyone's Problem--Everyone's Solution.

    ERIC Educational Resources Information Center

    Evenson, Linda

    1985-01-01

    Examines the household hazardous waste problem, addressing several areas related to regulation, disposal, and control. Also gives a list of safer alternatives for household cleaners/disinfectants, paint products, and pesticides. Indicates that individuals can collectively make a difference in public exposure by changing purchases and practices.…

  6. The Future of Hazardous Waste Tracking: Radio Frequency Identification (RFID)

    EPA Science Inventory

    The capability and performance of various RFID technologies to track hazardous wastes and materials (HAZMAT) across international borders will be verified in the El Paso, Texas-Ciudad Juarez, Mexico area under EPA's Environmental Technology Verification (ETV)/Environmental and S...

  7. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    EPA Science Inventory

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  8. 77 FR 22229 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... table listing hazardous wastes from specific sources; and a conforming change to alert certain recycling...) of this chapter'' to alert recyclers to the existing LDR certification and notification requirement... those imposed by such regulations * * *'' EPA disagrees. The amendment simply alerts persons subject...

  9. Household Hazardous Waste and Automotive Products: A Pennsylvania Survey.

    ERIC Educational Resources Information Center

    Shorten, Charles V.; And Others

    1995-01-01

    A significant fraction of household hazardous waste (HHW) is generated by home mechanics who use such products as motor oil, cleaners and solvents, and batteries. This survey assessed the following aspects: (1) perceptions of their health-related effects; (2) perceptions of their pollution potential; and (3) their use and disposal. (LZ)

  10. MEASUREMENT OF BIOAVAILABLE IRON AT TWO HAZARDOUS WASTE SITES

    EPA Science Inventory

    In the past, the concentrations of iron II in monitoring wells has been used to evaluate natural attenuation processes at hazardous waste sites. Changes in the aqueous concentrations of electron acceptors/products are important to the evaluation of natural biological attenuation...

  11. Reliability analysis of common hazardous waste treatment processes

    SciTech Connect

    Waters, Robert D.

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  12. Cleaner production: Minimizing hazardous waste in Indonesia

    SciTech Connect

    Bratasida, D.L.

    1996-12-31

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmental management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.

  13. Evaluation of frameworks for ecotoxicological hazard classification of waste.

    PubMed

    Stiernström, S; Wik, O; Bendz, D

    2016-12-01

    A new harmonized EU regulation for the classification of waste came into effect on 1st June 2015, in which the criteria and assessment methods for the classification of hazardous waste are harmonized with other internationally agreed-upon systems for hazard classification of chemicals (CLP). However, criteria and guidance for the assessment of ecotoxicological hazard (Hazard Property 14, HP14) are still lacking for waste classification. This paper have evaluated and compared two HP14 classification frameworks: (i) a calculation method (summation) for mixtures, and (ii) leaching tests. The two frameworks were evaluated by surveying and evaluating ecotoxicological data for Cu, Zn, K and Ca species in bottom ash from incinerated waste, together with geochemical speciation modelling. Classification based on the summation method proved to be highly sensitive to the choice of speciation and ecotoxicological classification. This results in a wide range of critical concentrations triggering hazardous classification (in particular for Cu and Zn). Important parameters governing the availability of toxic elements, such as transformation from one species to another and complexation on organic or inorganic sorbents, are not accounted for. Geochemical modelling revealed that a testing strategy built on CLP based leaching tests (liquid/solid ratio (L/S)⩾10,000, pH range 5.5-8.5) avoids bias and is superior to the summation method with respect to both precision and accuracy. A testing strategy built on leaching tests, designed for risk assessment purposes, (L/S ratio of 10, natural pH of the ash) severely underestimate the hazard associated with the presence of toxic compounds (Cu and Zn), while simultaneously falsely indicate a hazardousness due to the presence of non-toxic compounds (Ca and K). However, the testing methods adopted by CLP are problematic from a practical and functional point of view. To conclude, the L/S ratio and pH were found to be critical for hazard

  14. Federal Agency Hazardous Waste Compliance Docket (docket). Revision 1

    SciTech Connect

    Not Available

    1994-01-01

    The Federal Facilities Hazardous Waste Compliance Docket (``docket``) identifies Federal facilities that may be contaminated with hazardous substances and that must be evaluated to determine if they pose a risk to public health or the environment The docket, required by Section 120(c) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), also provides a vehicle for making information about potentially contaminated facilities available to the public. Facilities listed on the docket must complete site assessments that provide the Environmental Protection Agency (EPA) with information needed to determine whether or not the facility should be included on he National Priorities List (NPL). This Information Brief, which revises the previous Federal Agency Hazardous Waste Compiliance Docket Information Brief, provides updated information on the docket listing process, the implications of listing, and facility status after listing.

  15. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    SciTech Connect

    KRIPPS, L.J.

    2000-06-28

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report.

  16. Towards identifying the next generation of superfund and hazardous waste site contaminants

    USGS Publications Warehouse

    Ela, Wendell P.; Sedlak, David L.; Barlaz, Morton A.; Henry, Heather F.; Muir, Derek C.G.; Swackhamer, Deborah L.; Weber, Eric J.; Arnold, Robert G.; Ferguson, P. Lee; Field, Jennifer A.; Furlong, Edward T.; Giesy, John P.; Halden, Rolf U.; Henry, Tala; Hites, Ronald A.; Hornbuckle, Keri C.; Howard, Philip H.; Luthy, Richard G.; Meyer, Anita K.; Saez, A. Eduardo; vom Saal, Frederick S.; Vulpe, Chris D.; Wiesner, Mark R.

    2011-01-01

    Conclusions A need exists for a carefully considered and orchestrated expansion of programmatic and research efforts to identify, evaluate, and manage CECs of hazardous waste site relevance, including developing an evolving list of priority CECs, intensifying the identification and monitoring of likely sites of present or future accumulation of CECs, and implementing efforts that focus on a holistic approach to prevention.

  17. Information for Importers and Receiving Facilities of Resource Conservation and Recovery Act (RCRA) Hazardous Waste

    EPA Pesticide Factsheets

    Information for importers of hazardous waste from Canada, Chile, Mexico, or non-OECD countries who are subject to the hazardous waste generator and importer requirements described in 40 CFR Part 262 Subpart A – D and F, under RCRA

  18. EPA Proposes Clarksburg, W.Va. Hazardous Waste Site to Superfunds National Priorities List

    EPA Pesticide Factsheets

    PHILADELPHIA (April 6, 2016) - Today the U.S. Environmental Protection Agency announced that five hazardous waste sites are being added to the National Priorities List (NPL). The Agency also has proposed that eight other hazardous waste sites be add

  19. 77 FR 52717 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Cornerstone Chemical Company, Waggaman, LA AGENCY... granted to Cornerstone for four Class I injection wells located at Waggaman, Louisiana. The company...

  20. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF Corporation Freeport, Texas AGENCY: Environmental... granted to BASF Corporation for three Class I injection wells located at Freeport, Texas. The company...

  1. Information for Exporters of Resource Conservation and Recovery Act (RCRA) Hazardous Waste

    EPA Pesticide Factsheets

    Information for exporters of hazardous waste to OECD countries for recycling who are subject to the hazardous waste generator and importer requirements described in 40 CFR Part 262 Subpart H, under RCRA

  2. 76 FR 36879 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... 142A; Specific Provisions for Batteries, Checklist 142B; Specific Provisions for Pesticides, Checklist..., Storage and Disposal Facilities and Hazardous Waste Generators; Organic Air Emissions Standards for Tanks... Facilities and Hazardous Waste Generators; Organic Air Emissions Standards for Tanks, Surface...

  3. A COMPARISON: ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS VERSUS THE 1990 TOXICS RELEASE INVENTORY AIR RELEASES.

    EPA Science Inventory

    Incineration is often the preferred technology for disposing of hazardous waste, and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition `to hazardous waste' incineration HWI). One of the reasons cited for...

  4. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  5. Attenuation of heavy metal leaching from hazardous wastes by co-disposal of wastes

    SciTech Connect

    Bae, Wookeun; Shin, Eung Bai; Lee, Kil Chul; Kim, Jae Hyung

    1996-12-31

    The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, the latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.

  6. Application of glove box robotics to hazardous waste management

    SciTech Connect

    Dennison, D.K.; Hurd, R.L.; Merrill, R.D.; Reitz, T.C.

    1995-02-01

    Lawrence Livermore Laboratory (LLNL) is developing a semi-automated system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM developed gantry robot with a special glove box enclosure designed to protect the operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely using the robot in a telerobotic mode for one-of-a-kind functions and in an autonomous mode for repetitive type operations. The system will initially be used in conjunction with a portable gas system designed to capture any gaseous phase tritium released into the glove box. This paper presents the objectives of this program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

  7. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    SciTech Connect

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  8. EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash.

    PubMed

    Donatello, S; Tyrer, M; Cheeseman, C R

    2010-01-01

    A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.

  9. Public perception of hazardousness caused by current trends of municipal solid waste management.

    PubMed

    Al-Khatib, Issam A; Kontogianni, Stamatia; Abu Nabaa, Hendya; Alshami, Ni'meh; Al-Sari', Majed I

    2015-02-01

    Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) as a result of inequitable waste collection and treatment. Citizens' collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent's educational attainment and their awareness of hazardous waste (hazard perception); the results will indicate the measure taking required to avoid accidents occurred in those regions (burns from toxics, cuts from sharps, etc). National policy and legislation development based on the research outcomes will ensure equitable and accessible services are in place in order to move towards a healthier environment. Specialized health education and training programs on national scale are also needed to enhance awareness on hazardous waste.

  10. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    SciTech Connect

    Liu Peizhe

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  11. Criteria for the Certification of Non-Radioactive Hazardous Waste

    SciTech Connect

    Gagner, S D; Gaylord, R; Govers, R; Kennedy, W E; Hunnacek, M M; Kennedy, A M

    2003-04-10

    In 1991, in response to the Department of Energy (DOE) Moratorium on the shipment of hazardous waste from Radioactive Materials Management Areas (RMMAs), Lawrence Livermore National Laboratory (LLNL) developed a process to use a combination of generator knowledge and/or sampling and analyses to certify waste as non-radioactive. The analytical process used the minimum detectable activity (MDA) as the de minimus value. In the past twelve years, a great deal of operating experience has shown the LLNL certification process has serious limitations including: (1) Procedure-specified analytical methodologies have resulted in the inability to adopt new techniques and methods that are more rapid, safer, and produce less waste. (2) The characterization of materials as radioactive or non-radioactive is dependent on method-specific detection limits, not on an objective risk-based standard. (3) There are substantial differences in the limits for surface contamination, sewer discharges, and hazardous waste moratorium determinations, even though all of these methods are used to free-release materials from radiological controls. LLNL, in conjunction with the Chamberlain Group and Dade Moeller & Associates, Inc., is pursuing a risk-based approach to determine whether waste is non-radioactive, consistent with DOE guidance. This paper discusses the approach, which includes defining the radionuclides considered, establishing the exposure scenarios for the critical groups identified for each of three waste streams, defining the exposure pathways and key input data or assumptions, presenting radiation doses for unit concentrations of radionuclides in each waste stream, presenting radiation doses for unit concentrations of radionuclides in each waste stream, presenting the authorized limits for each waste stream, and discussing the results. Analytical values which fall below these authorization limits will be considered non-radioactive, with any individual dose maintained below 1 mrem/yr.

  12. Mutagenicity in Salmonella of hazardous wastes and urine from rats fed these wastes

    SciTech Connect

    DeMarini, D.M.; Inmon, J.P.; Simmons, J.E.; Berman, E.; Pasley, T.C.

    1987-06-01

    Fifteen hazardous industrial waste samples were evaluated for mutagenicity in the Salmonella plate-incorporation assay using strains TA98 and TA100 in the presence and absence of Aroclor 1254-induced rat liver S9. Dichloromethane/methanol extracts of the crude wastes also were evalauted. Seven of the crude wastes were mutagenic, but only 2 of the extract of these 7 wastes were mutagenic; extracts of 2 additional wastes also were mutagenic. In addition, 10 of the crude wastes were administered by gavage to F-344 rats, and 24-H urine samples were collected. Of the 10 raw urines evaluated, 3 were mutagenic in strain TA98 in the presence of S9 and B-glucuronidase. To the authors' knowledge, this is the first report of the mutagenicity of urine from rodents exposed to hazardous wastes. Based on the present results, the use of only strain TA98 in the presence of S9 might be adequate for general screening of hazardous wastes or waste extracts for genotoxicity.

  13. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Disposed Prohibited Hazardous Wastes VII Appendix VII to Part 268 Protection of Environment ENVIRONMENTAL... VII to Part 268—LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes Table 1—Effective... Land Disposal Restrictions for Contaminated Soil and Debris (CSD) Restricted hazardous waste in...

  14. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Disposed Prohibited Hazardous Wastes VII Appendix VII to Part 268 Protection of Environment ENVIRONMENTAL... VII to Part 268—LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes Table 1—Effective... Contaminated Soil and Debris (CSD) Restricted hazardous waste in CSD Effective date 1. Solvent-(F001-F005)...

  15. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Hazardous Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  16. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Hazardous Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  17. 76 FR 26681 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... AGENCY 40 CFR Part 272 Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management... codify in the regulations entitled ``Approved State Hazardous Waste Management Programs,'' Wisconsin's authorized hazardous waste program. EPA will incorporate by reference into the Code of Federal...

  18. 77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... AGENCY 40 CFR Part 271 Ohio: Final Authorization of State Hazardous Waste Management Program Revision..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... Combustors; Final Rule, Checklist 198, February 14, 2002 (67 FR 6968); Hazardous Waste Management...

  19. 76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... AGENCY 40 CFR Part 271 California: Final Authorization of State Hazardous Waste Management Program... hazardous waste management program shall be effective at 1 p.m. on October 7, 2011. FOR FURTHER INFORMATION..., effective August 1, 1992 (57 FR 32726), to implement the RCRA hazardous waste management program....

  20. 78 FR 25579 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... AGENCY 40 CFR Part 271 Georgia: Final Authorization of State Hazardous Waste Management Program Revisions... adopted these requirements by reference at Georgia Hazardous Waste Management Rule 391-3-11-.07(1), EPA... to EPA for final authorization of changes to its hazardous waste program under the...

  1. 76 FR 37021 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... AGENCY 40 CFR Part 271 Louisiana: Final Authorization of State Hazardous Waste Management Program..., (50 FR 3348), to implement its base Hazardous Waste Management Program. We granted authorization for... opportunity to apply for final authorization to operate all aspects of their hazardous waste...

  2. 77 FR 38530 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... AGENCY 40 CFR Part 271 Louisiana: Final Authorization of State Hazardous Waste Management Program..., (50 FR 3348), to implement its base Hazardous Waste Management Program. We granted authorization for... operate all aspects of their hazardous waste management programs in lieu of the Federal government....

  3. 77 FR 15273 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... AGENCY 40 CFR Part 271 Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management...

  4. 77 FR 12228 - Idaho: Proposed Authorization of State Hazardous Waste Management Program; Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... AGENCY 40 CFR Part 271 Idaho: Proposed Authorization of State Hazardous Waste Management Program... Conservation and Recovery Act, as amended (RCRA). RCRA allows EPA to authorize State hazardous waste management... hazardous ] waste management program with the changes described in the authorization application. Idaho...

  5. 78 FR 43810 - State of Kansas; Authorization of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... AGENCY 40 CFR Part 271 State of Kansas; Authorization of State Hazardous Waste Management Program AGENCY... authorization on October 17, 1985 (50 FR 40377), to implement its Base Hazardous Waste Management program... Administrative Regulations, Article 31--Hazardous Waste Management, effective May 10, 2013. The...

  6. 77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...; FRL-9613-5] New Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY... regulations entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste program. The EPA will incorporate by reference into the Code of Federal Regulations (CFR)...

  7. 77 FR 65314 - Missouri: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... AGENCY 40 CFR Part 271 Missouri: Final Authorization of State Hazardous Waste Management Program..., Missouri received final authorization to implement its hazardous waste management program effective... Hazardous Waste Management Law'' section 260.350 through 260.434. Missouri's authority to incorporate...

  8. 76 FR 6561 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... AGENCY 40 CFR Part 271 North Carolina: Final Authorization of State Hazardous Waste Management Program..., effective December 31, 1984 (49 FR 48694) to implement its base hazardous waste management program. EPA... XV are from the North Carolina Hazardous Waste Management Rules 15A NCAC 13A, effective April...

  9. 78 FR 32161 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... AGENCY 40 CFR Part 271 Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision... authorization of its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management... seq. establishes the statutory authority to administer the Hazardous waste management program...

  10. 77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... AGENCY 40 CFR Part 272 Idaho: Incorporation by Reference of Approved State Hazardous Waste Management... codify in the regulations entitled ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA ] proposes to revise the codification of Idaho's program...

  11. 77 FR 47779 - Arkansas: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... AGENCY 40 CFR Part 271 Arkansas: Final Authorization of State Hazardous Waste Management Program Revision..., 1985) to implement its Base Hazardous Waste Management program. Arkansas received authorization for... Ecology Commission Regulation Number 23 (Hazardous Waste Management), adopted on April 25, 2008 and...

  12. 75 FR 45583 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... AGENCY 40 CFR Part 272 New York: Incorporation by Reference of State Hazardous Waste Management Program... the codification of New York's authorized hazardous waste program which is set forth in the regulations entitled ``Approved State Hazardous Waste Management Programs'', New York's authorized...

  13. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    ERIC Educational Resources Information Center

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  14. Method for solidification of radioactive and other hazardous waste

    DOEpatents

    Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  15. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    SciTech Connect

    Adelman, D.D.; Stansbury, J.

    1997-12-31

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions.

  16. Hazardous waste cleanup: A case study for developing efficient programs

    SciTech Connect

    Elcock, D.; Puder, M.G.

    1995-06-01

    As officials in Pacific Basin Countries develop laws and policies for cleaning up hazardous wastes, experiences of countries with such instruments in place may be instructive. The United States has addressed cleanups of abandoned hazardous waste sites through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The US Congress enacted CERCLA in 1980. The task of cleaning up waste sites became larger and more costly than originally envisioned and as a result, Congress strengthened and expanded CERCLA in 1986. Today, many industry representatives, environmentalists, and other interested parties say the program is still costly and ineffective, and Congress is responding through a reauthorization process to change the law once again. Because the law and modifications to it can affect company operations and revenues, industries want to know the potential consequences of such changes. Argonne National Laboratory (ANL) recently developed a baseline for one economic sector -- the US energy industry -- against which impacts of proposed changes to CERCLA could be measured. Difficulties encountered in locating and interpreting the data for developing that baseline suggest that legislation should not only provide for meeting its stated goals (e.g., protection of human health and the environment) but also allow for its efficient evaluation over time. This lesson can be applied to any nation contemplating hazardous waste cleanup laws and policies.

  17. Buying time: Franchising hazardous and nuclear waste cleanup

    SciTech Connect

    Hale, D.R.

    1997-05-01

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government. In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.

  18. Hazardous solid waste from metallurgical industries.

    PubMed Central

    Leonard, R P

    1978-01-01

    Types of land disposed residuals from selected metal smelting and refining industries are described, as are the origin and disposition of land disposed residuals from the primary copper industry as an example. Quantities of land-disposed or stored residuals, including slags, sludges, and dusts, are given per unit of metal production for most primary and secondary metal smelting and refining industries. Assessments of the hazard potential of residuals are given. Present treatment and disposal of residuals are discussed and assessed for health and environmental protection. Possible technologies for protection of ground and surface water contamination are presented. These include lined lagoons, chemical fixation of sludge, and ground sealing. Possibilities of resource recovery from residuals are discussed. Data are presented showing attenuation of heavy metal ions and fluorides in selected soils. The leachability and mobility of smelting and refining residuals constituents, including heavy metals and fluorides, and other potential toxicants in specific soil, geologic, and hydrologic disposal environments must be carefully considered in setting disposal requirements. PMID:738242

  19. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  20. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-05

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  1. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    EPA Pesticide Factsheets

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  2. Minimization of combustion by-products: Characteristics of hazardous waste

    SciTech Connect

    Lee, C.C.; Huffman, G.L.

    1990-11-01

    It has been well recognized that, although there are many potential solid waste treatment technologies, none are as universally applicable as incineration for the treatment of the many types of waste which are governed by the many different Federal laws and State regulations. However, incinerators may release trace amounts of unwanted combustion by-products, particularly if the incinerators are not well designed or properly operated. Control of emissions of combustion by-products (CBPs) is one of the major technical and sociological issues surrounding the implementation of incineration as a waste treatment alternative. Much of this is due to the lack of detailed knowledge about CBPs. The Clean Air Act Amendment is emphasizing the control of toxic air pollutants from all combustion sources; some of these pollutants are CBPs. CBPs include: (1) unburned principal organic hazardous constituents (POHCs); (2) products of incomplete combustion (PICs); (3) metals emissions; and (4) residuals/ashes. The Paper is a part of a series of writings on the subject of the CBP issue from EPA's Risk Reduction Engineering Laboratory in Cincinnati, Ohio. It specifically addresses the aspect of hazardous waste characteristics. The main objective of the series is to compare combustion by-products from all combustion sources including fossil fuel combustion and waste incineration, which hopefully will serve as an initial step in the eventual minimization of the release of CBPs to the environment.

  3. Hazard and consequence analysis for waste emplacement at the Waste Isolation Pilot Plant

    SciTech Connect

    Gerstner, D.M.; Clayton, S.G.; Farrell, R.F.; McCormick, J.A.; Ortiz, C.; Standiford, D.L.

    1996-05-01

    The Carlsbad Area Office established and analyzed the safety bases for the design and operations as documented in the WIPP Safety Analysis Report (SAR). Additional independent efforts are currently underway to assess the hazards associated with the long-term (10,000 year) isolation period as required by 40 CFR 191. The structure of the WIPP SAR is unique due to the hazards involved, and the agreement between the State of New Mexico and the DOE regarding SAR content and format. However, the hazards and accident analysis philosophy as contained in DOE-STD-3009-94 was followed as closely as possible, while adhering to state agreements. Hazards associated with WIPP waste receipt, emplacement, and disposal operations were systematically identified using a modified Hazard and Operability Study (HAZOP) technique. The WIPP HAZOP assessed the potential internal, external, and natural phenomena events that can cause the identified hazards to develop into accidents. The hazard assessment identified deviations from the intended design and operation of the waste handling system, analyzed potential accident consequences to the public and workers, estimated likelihood of occurrence, and evaluated associated preventative and mitigative features. It was concluded from the assessment that the proposed WIPP waste emplacement operations and design are sufficient to ensure safety of the public, workers, and environment, over the 35 year disposal phase.

  4. Destruction of hazardous military wastes using plasma arc technology

    SciTech Connect

    Kanaras, L.; Qazi, M.

    1996-12-31

    A Plasma Arc Technology (PAT) system treats hazardous wastes in a furnace, at temperatures of 2,000 C, or higher, using a plasma torch. The organic components vaporize, decompose or oxidize. The off-gases consist of hydrogen, carbon monoxide, carbon dioxide and nitric oxides. A wet air scrubber is used to remove most of these gases. The scrubber water is treated and recycled. Metal-bearing solids are melted or vaporized. The solids are usually recovered as molten metal, or as non-leachable vitrified slag, suitable for disposal in a landfill. A Plasma Arc Centrifugal Treatment system was used to evaluate this technology for destruction of four military hazardous wastes: sludge from Longhorn Army Ammunition Plant, TX; blast media from Letterkenny Army Depot, PA; medical incineration ash from Aberdeen Proving Ground, MD; and contaminated soil from open burning/open detonation ground at Picatinny Arsenal, NJ.

  5. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... exposure pathway analyzed. For a one-time delisting, EPA Region III evaluates the cumulative cancer risk... constituents through surface pathways (e.g., volatilization or wind-blown particulate from the landfill). As in... cancer risks (risk) and noncarcinogenic hazards (hazard). If a delisting evaluation is performed for...

  6. Can hazardous waste become a raw material? The case study of an aluminium residue: a review.

    PubMed

    López-Delgado, Aurora; Tayibi, Hanan

    2012-05-01

    The huge number of research studies carried out during recent decades focused on finding an effective solution for the waste treatment, have allowed some of these residues to become new raw materials for many industries. Achieving this ensures a reduction in energy and natural resources consumption, diminishing of the negative environmental impacts and creating secondary and tertiary industries. A good example is provided by the metallurgical industry, in general, and the aluminium industry in this particular case. The aluminium recycling industry is a beneficial activity for the environment, since it recovers resources from primary industry, manufacturing and post-consumer waste. Slag and scrap which were previously considered as waste, are nowadays the raw material for some highly profitable secondary and tertiary industries. The most recent European Directive on waste establishes that if waste is used as a common product and fulfils the existing legislation for this product, then this waste can be defined as 'end-of-waste'. The review presented here, attempts to show several proposals for making added-value materials using an aluminium residue which is still considered as a hazardous waste, and accordingly, disposed of in secure storage. The present proposal includes the use of this waste to manufacture glass, glass-ceramic, boehmite and calcium aluminate. Thus the waste might effectively be recovered as a secondary source material for various industries.

  7. Regulating the disposal of cigarette butts as toxic hazardous waste.

    PubMed

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  8. 1996 hazardous waste management survey in selected Asian countries

    SciTech Connect

    Nelson, D.; Christie, K.; Tao, Hong-lei

    1996-12-31

    This report documents the results of a 42-question survey submitted to countries in Asia concerning their hazardous waste management programs and other issues. The same survey questions were distributed in 1992. This report compares the 1992 and 1996 responses. The respondents were Australia, New Zealand, Malaysia, Philippines, Hong Kong, People`s Republic of China, Taiwan, Japan, Korea, Singapore, Thailand, and Indonesia. 7 figs.

  9. Hazardous Waste and Wastewater Characterization Survey, Columbus AFB, Mississippi

    DTIC Science & Technology

    1988-06-01

    step of the survey was to review the base’s hazardous waste management plan, and the Bioenvironmental Engineer’s industrial shop folders. From our review ... biodegradeable compounds. Grab samples for EPA Methods 601 and 602 were also collected for three days at the pre-chlorinated effluent. Total Toxic Organic (TTO...value of 0.56 indicates that the waststream is amenable to biological treatment, however this is misleading. The biodegradeable portion of this

  10. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    PubMed

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends.

  11. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    SciTech Connect

    Arbon, R.E.

    2001-01-31

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  12. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  13. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... landfill. The scrubber water blowdown will be managed in the waste water treatment plant (WWTP). The sludge..., and the RKI scrubber water blowdown will be treated in the Wastewater Treatment Plant. Treatment of... captured facilities, such use of the wastewater treatment plant and waste management in the RKI...

  14. Determinants of risk perceptions of a hazardous waste site

    SciTech Connect

    Bord, R.J.; O`Conner, R.E.

    1992-09-01

    A before-stimulus-after quasi-experimental design is used to assess the factors relating to risk perceptions of a hazardous waste site. First, a pretest obtains measures of attitudes and beliefs about hazardous waste and waste sites. Second, a detailed hypothetical {open_quotes}Superfund{close_quotes} scenario, including a complex cleanup plan, is introduced. Finally, indices of health risk estimates, trust, knowledge, and other pertinent beliefs are obtained. levels of concern, both before and after cleanup, are the dependent variables. Independent variables include risk management options, health risk estimates, trust, and five sociodemographic characteristics. Concern is extremely high prior to cleanup and moderately high after cleanup. Concern is a clear function of health risk estimates. Toxic chemicals from waste sites are viewed as a major cause of multiple health problems, especially cancers. Accurate health risk estimates moderate fears and are linked to levels of education. Education, however, does not explain concern. Trust is a major factor explaining concern and health risk estimates. The implications of these findings for risk communication is discussed. 13 refs., 4 tabs.

  15. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  16. Validation of the U.S. Army’s Current Hazardous Waste Data

    DTIC Science & Technology

    1990-04-01

    categories of hazardous waste generators. The first is the troop unit, generating waste solvents, paints, fuel and oils . The second category is the...public health threat, and essentiality . First, the types of materials that will be included in the prioritization scheme must be defined and...guidelines. The Army’s hazardous waste minimization program includes such wastes 7USEPA, ’National Oil and Hazardous Substances Contingency Plan

  17. Hazardous waste, impact on health and environment for development of better waste management strategies in future in India.

    PubMed

    Misra, Virendra; Pandey, S D

    2005-04-01

    Industry has become an essential part of modern society, and waste production is an inevitable outcome of the developmental activities. A material becomes waste when it is discarded without expecting to be compensated for its inherent value. These wastes may pose a potential hazard to the human health or the environment (soil, air, water) when improperly treated, stored, transported or disposed off or managed. Currently in India even though hazardous wastes, emanations and effluents are regulated, solid wastes often are disposed off indiscriminately posing health and environmental risk. In view of this, management of hazardous wastes including their disposal in environment friendly and economically viable way is very important and therefore suggestions are made for developing better strategies. Out of the various categories of the wastes, solid waste contributes a major share towards environmental degradation. The present paper outlines the nature of the wastes, waste generating industries, waste characterization, health and environmental implications of wastes management practices, steps towards planning, design and development of models for effective hazardous waste management, treatment, approaches and regulations for disposal of hazardous waste. Appraisal of the whole situation with reference to Indian scenario is attempted so that a better cost-effective strategies for waste management be evolved in future.

  18. Mutagenicity in Salmonella of hazardous wastes and urine from rats fed these wastes

    SciTech Connect

    DeMarini, D.M.; Inmon, J.P.; Simmons, J.E.; Berman, E.; Pasley, T.C.

    1987-01-01

    15 hazardous industrial-waste samples were evaluated for mutagenicity in the Salmonella plate-incorporation assay using strains TA98 and TA100 in the presence and absence of Aroclor 1254-induced rat liver S9. Dichloromethane/methanol extracts of the crude wastes were also evaluated. 7 of the crude wastes were mutagenic, but only 2 of the extracts of these 7 wastes were mutagenic; extracts of 2 additional wastes also were mutagenic. In addition, 10 of the crude wastes were administered by gavage to F-344 rats, and 24-h urine samples were collected. Of the 10 raw urines evaluated, 3 were mutagenic in strain TA98 in the presence of S9 and beta-glucuronidase. The 3 crude wastes that produced these 3 mutagenic urines were, themselves, mutagenic. Adequate volumes of 6 of the 10 raw urines were available for extraction/concentration. These 6 urines were incubated with beta-glucuronidase and eluted through Sep-Pak C18 columns; the methanol eluates of 3 of the urines were mutagenic, and these were the same 3 whose raw urines also were mutagenic. In general, the C18/methanol extraction procedure reduced the cytotoxicity and increased the mutagenic potency of the urines. To the authors knowledge, this is the first report of the mutagenicity of urine from rodents exposed to hazardous wastes.

  19. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    SciTech Connect

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  20. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., corrected to 7 percent oxygen. (b) Emission and hazardous waste feed limits for new sources. You must not... Pollutants from Hazardous Waste Combustors Replacement Emissions Standards and Operating Limits for... hazardous waste burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits...

  1. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

  2. Hazardous Wastes and the Consumer Connection. A Guide for Educators and Citizens Concerned with the Role of Consumers in the Generation of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Assaff, Edith

    Many consumers do not see a strong connection between our lifestyles and buying decisions, and the amount of hazardous wastes generated in the United States. This guide was developed to be used by educators and citizens concerned with the role of consumers in the generation of hazardous wastes. It examines several products in terms of their…

  3. State Decision-Makers Guide for Hazardous Waste Management: Defining Hazardous Wastes, Problem Recognition, Land Use, Facility Operations, Conceptual Framework, Policy Issues, Transportation.

    ERIC Educational Resources Information Center

    Corson, Alan; And Others

    Presented are key issues to be addressed by state, regional, and local governments and agencies in creating effective hazardous waste management programs. Eight chapters broadly frame the topics which state-level decision makers should consider. These chapters include: (1) definition of hazardous waste; (2) problem definition and recognition; (3)…

  4. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    SciTech Connect

    Dare, J. H.; Cournoyer, M. E.

    2002-02-26

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases.

  5. Public perception of hazardousness caused by current trends of municipal solid waste management

    SciTech Connect

    Al-Khatib, Issam A.; Kontogianni, Stamatia; Abu Nabaa, Hendya; Alshami, Ni’meh; Al-Sari’, Majed I.

    2015-02-15

    Highlights: • Contribution to the scientific literature by examining the relationship between concern for the environment and waste disposal in the frame of household waste treatment mechanism specifically in developing countries. • The awareness of the citizens satisfaction level and the local existing capacities in developing countries significantly contribute to decision making on MSW management sustainability in Palestine and other developing countries when applied. • Identification of the differences and similarities among DC resulting to failures or success in WM field. - Abstract: Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) as a result of inequitable waste collection and treatment. Citizens’ collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent’s educational attainment and their awareness of hazardous waste (hazard perception); the

  6. Integrated management of hazardous waste generated from community sources in Thailand

    SciTech Connect

    Yodnane, P.; Spaeder, D.J.

    1999-07-01

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most of this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.

  7. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  8. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  9. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  10. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  11. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  12. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  13. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  14. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  15. 77 FR 69788 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... AGENCY 40 CFR Part 271 Colorado: Final Authorization of State Hazardous Waste Management Program... applied to the EPA for final authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). The EPA proposes to grant final authorization to the hazardous...

  16. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Requirements for hazardous...

  17. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous...

  18. Attitudes toward environmental hazards: where do toxic wastes fit?

    PubMed

    Burger, J; Martin, M; Cooper, K; Gochfeld, M

    1997-06-06

    The public is continually faced with making decisions about the risks associated with environmental hazards, and, along with managers and government officials, must make informed decisions concerning possible regulation, mitigation, and restoration of degraded sites or other environmental threats. We explored the attitudes regarding several environmental hazards of six groups of people: undergraduate science majors, undergraduate nonscience majors, and graduate students in environmental health, in ecological risk assessment, and in nonscience disciplines, as well as nonstudents over 35 yr of age. We had predicted that there would be significant differences in attitudes between science and nonscience majors and as a function of age. Relative concerns could be divided into three discrete classes (in descending order of concern): (1) general ecological problems (cutting tropical forests, polluting groundwater, trash along the coasts, lead in drinking water, and acid rain), (2) radon and nuclear wastes, and finally (3) specific nuclear waste facilities, chromium, fertilizers and pesticides, and electromagnetic waves. For any hazard, attitudes were consistent across groups with regard to ranking the severity of the environmental problem and willingness to expend funds to solve the problems. Attitudes about spending money to develop methods to evaluate risk fell in the middle level of concern. There were no major differences among classes of college-age students, or between them and older nonstudents.

  19. Coal tar-containing asphalt - resource or hazardous waste?

    SciTech Connect

    Andersson-Skold, Y.; Andersson, K.; Lind, B.; Claesson, A.; Larsson, L.; Suer, P.; Jacobson, T.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.

  20. Geotechnical hazards associated with closed municipal solid waste landfill sites

    NASA Astrophysics Data System (ADS)

    Powrie, W.; Richards, D.; Beaven, R.

    2015-09-01

    As pressure for new infrastructure and development grows, it is inevitable that building projects will encounter some of the c20,000 closed former solid waste landfills in the UK, many of which will have accepted municipal solid wastes (MSW). Construction on or across these sites brings a special set of geohazards associated with the potential for large and difficult to predict settlements, gas (and odour) release or generation, contaminated leachate and the breach of containment systems and other environmental controls. The presentation will discuss these issues with reference to recent research into understanding and predicting settlements in municipal solid waste landfills; assessing the total, current and residual gas potential of biodegradable wastes; the role of the hydraulic regime in the flushing of contaminants from the waste and the quality of leachate; and the need or otherwise for the long term integrity of engineered barriers and controls.

  1. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity...

  2. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity...

  3. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity...

  4. HOUSEHOLD HAZARDOUS WASTE CHARACTERIZATION STUDY FOR PALM BEACH COUNTY, FLORIDA - A MITE PROGRAM EVALUATION

    EPA Science Inventory

    The objectives of the Household Hazardous Waste Characterization Study (the HHW Study) were to: 1) Quantity the annual household hazardous waste (HHW) tonnages disposed in Palm Beach County Florida’s (the County) residential solid waste (characterized in this study as municipal s...

  5. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  6. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  7. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for shipments by rail or water equivalent to those under 40 CFR 263.20(e) and (f). (4) For exports... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS...

  8. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for shipments by rail or water equivalent to those under 40 CFR 263.20(e) and (f). (4) For exports... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS...

  9. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for shipments by rail or water equivalent to those under 40 CFR 263.20(e) and (f). (4) For exports... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS...

  10. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If...

  11. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If...

  12. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... laboratory to a TSD facility permitted to handle the waste, each University must evaluate such laboratory... Laboratories XL Project-Laboratory Environmental Management Standard § 262.106 When must a hazardous waste determination be made? (a) For laboratory waste sent from a laboratory to an on-site hazardous...

  13. 75 FR 76633 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... authorization for changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management... Conditionally Exempt Small Quality Generators (CESQG) waste is subject to RCRA used oil management standards... later date. With this correction to Oregon's federally authorized RCRA Hazardous Waste...

  14. 77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... AGENCY 40 CFR Part 271 Tennessee: Final Authorization of State Hazardous Waste Management Program... the Tennessee Department of Environment and Conservation, Division of Solid Waste Management, 5th...), to implement the RCRA hazardous waste management program. We granted authorization for changes...

  15. 78 FR 79654 - Vermont: Proposed Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...-0554; FRL-9904-46-Region 1] Vermont: Proposed Authorization of State Hazardous Waste Management Program... INFORMATION CONTACT: Sharon Leitch, RCRA Waste Management and UST Section, Office of Site Remediation and... grant final authorization to the State of Vermont for changes to its hazardous waste program. In...

  16. 77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... AGENCY 40 CFR Part 271 Missouri: Authorization of State Hazardous Waste Management Program Revisions... EPA for final authorization for the changes to its hazardous waste program under the Resource....gov . 3. Mail: Berla Jackson-Johnson, Environmental Protection Agency, Waste Enforcement &...

  17. 77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... AGENCY 40 CFR Part 271 Colorado: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste... November 2, 1984 (49 FR 41036), to implement the RCRA hazardous waste management program. We...

  18. 75 FR 76691 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... waste management program. On January 7, 2010, EPA published a final rule under docket EPA-R10-RCRA 2009... Hazardous Waste Management Program. These authorized changes included, among others, the Federal Recycled... Hazardous Waste Management Program Revision though a direct final rule without prior proposal because...

  19. 75 FR 60398 - California: Proposed Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... AGENCY 40 CFR Part 271 California: Proposed Authorization of State Hazardous Waste Management Program... application for authorization for changes to its hazardous waste management program by November 1, 2010... waste management program. EPA continues to have independent enforcement authority under RCRA...

  20. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false When must a hazardous waste determination be made? 262.106 Section 262.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  1. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  2. 78 FR 70225 - West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Waste Management System'' (33 CSR 20), effective June 16, 2011; and Title 45, Series 25 ``Control of Air Pollution from Hazardous Waste Treatment, Storage and Disposal Facilities'' (45 CSR 25), effective June 16... 64504, 12/5/ 33 CSR 20, section 33- Hazardous Waste LDR Treatment 97. 20-10.2. (At 33-20-...

  3. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Residues of hazardous waste in empty containers. 261.7 Section 261.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.7 Residues of...

  4. 40 CFR 261.35 - Deletion of certain hazardous waste codes following equipment cleaning and replacement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cleaning and replacement. (a) Wastes from wood preserving processes at plants that do not resume or... hazardous waste characteristics. (b) Generators must either clean or replace all process equipment that may... drippage, or hazardous waste decomposition products to the ground water, surface water, or atmosphere....

  5. 40 CFR 261.35 - Deletion of certain hazardous waste codes following equipment cleaning and replacement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cleaning and replacement. (a) Wastes from wood preserving processes at plants that do not resume or... hazardous waste characteristics. (b) Generators must either clean or replace all process equipment that may... drippage, or hazardous waste decomposition products to the ground water, surface water, or atmosphere....

  6. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false When must a hazardous waste determination be made? 262.106 Section 262.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  7. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false When must a hazardous waste determination be made? 262.106 Section 262.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  8. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    SciTech Connect

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.

  9. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    SciTech Connect

    Feo, Giovanni De; Gisi, Sabino De

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  10. Toxic Hazards Research Unit 1989

    DTIC Science & Technology

    1990-10-01

    Report. AAMRL TR-75-57. Wright-Patterson Air Force 9ase, OH: Aero~pacp Medical Research Laboratory. 294 APPENDIX E SUBMITTED TECHiNICAL REPORTS, LETTER...Medical Research Laboratory. Ad~itional copies may be purchased from: National Technical Information Service 5285 Port Royal Road Springfield, Virginia...Resources, National Research Council. This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical

  11. SB 1082 -- Unified hazardous materials/waste program: Local implementation

    SciTech Connect

    Jones, W.

    1995-12-31

    California Senate Bill 1082 was signed into law in the fall of 1993 because business and industry believed there were too many hazardous materials inspectors asking the same questions, looking at the same items and requiring similar information on several variations of the same form. Industry was not happy with the large diversity of programs, each with its own inspectors, permits and fees, essentially doing what industry believed was the same inspection. SB 1082 will allow local city and county agencies to apply to the California Environmental Protection Agency to become a Certified Unified Program Agency (CUPA) or work with a CUPA as a Participating Agency (PA) to manage specific program elements. The CUPA will unify six regulatory programs including hazardous waste/tiered permitting, aboveground storage tanks, underground storage tanks, business and area plans/inventory or disclosure, acutely hazardous materials/risk management prevention and Uniform Fire Code programs related to hazardous materials inventory/plan requirements. The bill requires the CUPA to (1) implement a permit consolidation program; (2) implement a single fee system with a state surcharge; (3) consolidate, coordinate and make consistent any local or regional requirements or guidance documents; and (4) implement a single unified inspection and enforcement program.

  12. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... exclude (or delist) a wastewater treatment plant (WWTP) sludge filter cake (called sludge hereinafter... brass coating. The facility generates F006 filter cake by the dewatering of wastewater sludge generated at the on-site wastewater treatment plants. This waste is stored on-site less than 90 days and...

  13. 76 FR 76677 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ..., residual solids from sludge removed from two storm water tanks at its Billings, Montana refinery and... requested the residual solids from processed storm water tank sludge be excluded from the F037 waste listing... if it is delisted? ConocoPhillips will dispose of the residual solids from the processed storm...

  14. Property-close source separation of hazardous waste and waste electrical and electronic equipment--a Swedish case study.

    PubMed

    Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik

    2011-03-01

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  15. Three multimedia models used at hazardous and radioactive waste sites

    SciTech Connect

    1996-01-01

    The report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. The study focused on three specific models: MEPAS version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. The approach to model review advocated in the study is directed to technical staff responsible for identifying, selecting and applying multimedia models for use at sites containing radioactive and hazardous materials. In the report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted.

  16. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  17. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  18. Hazardous solid waste from domestic wastewater treatment plants.

    PubMed Central

    Harrington, W M

    1978-01-01

    The treatment of liquid wastes in municipal sewage treatment plants creates significant quantities of solid residue for disposal. The potential hazard from these wastes requires that their characteristics be determined accurately to develop environmentally sound management criteria. It is readily recognized that the sludge characteristics vary with the type and degree of industrial activity within a wastewater collection system and that these characteristics play a significant role in determining whether the material has potential for beneficial reuse or if it must be directed to final disposal. This paper offers an overview of past and present practices of sewage sludge disposal, an indication of quantities produced, and experience with beneficial reuse. An estimated range of costs involved, expected environmental effects and potential for continued use is offered for each disposal or reuse system discussed. PMID:738239

  19. Development of consistent hazard controls for DOE transuranic waste operations

    SciTech Connect

    Woody, W.J.

    2007-07-01

    This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsite movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)

  20. Subsurface geology of Louisiana hazardous waste landfills: A case study

    NASA Astrophysics Data System (ADS)

    Hanor, J. S.

    1995-09-01

    Many hazardous waste sites in the south Louisiana Gulf Coast have been emplaced in sediments of Plio-Pleistocene to Recent age. Because of the fining upward nature of these regressive-transgressive fluvial-deltaic sequences and the purported confining capabilities of the shallow clay layers within them, this area would seem to be ideal for the location of surface waste landfills. However, detailed geologic mapping at a site in southeastern Louisiana documents how the three-dimensional distribution of sediment types and early diagenetic features, both of which were ultimately controlled by depositional history, can increase effective vertical permeability of finegrained sequences. Many bodies of sand that appear to be isolated in standard geotechnical cross sections can be shown to be part of spatially complex three-dimensional distributary networks, with fine-grained sediments representing overbank and backswamp deposits. Some clay layers are actually a composite of thinner clay beds, each subjected to subaerial exposure and the development of secondary porosity related to soil formation. There has been documented leakage of wastes down through the clays, and a recent study indicates that the effective vertical hydraulic conductivity of the clay layers exceeds 10-5 cm s-1, or from one to four orders of magnitude higher than values measured on samples from cores of the same sediment. An understanding of the depositional framework, facies architecture, and diagenetic history of geologic materials underlying waste disposal sites in Louisiana is required for rational development of monitoring and remediation plans.

  1. Hazardous Waste Management System: Land Disposal Restrictions - Federal Register Notice, May 15, 1992

    EPA Pesticide Factsheets

    In response to the Proposed Rule on Land Disposal Restrictions (LDR) for Newly Listed Wastes and Hazardous Debris, EPA received numerous comments regarding the availability of treatment capacity for hazardous debris. EPA agrees with these comments.

  2. Mixed waste minimization in a research environment

    SciTech Connect

    Kirner, N.

    1994-12-31

    This presentation describes minimization efforts and processes for mixed waste generated by research facilities. Waste stream assessment and treatment, and database management for various research-related waste streams is detailed.

  3. Using the Triad Approach to Improve the Cost-effectiveness of Hazardous Waste Site Cleanups

    EPA Pesticide Factsheets

    U.S. EPA's Office of Solid Waste and Emergency Response is promoting more effective strategies for characterizing, monitoring, and cleaning up hazardous waste sites. In particular, a paradigm based on using an integrated triad of systematic planning...

  4. Documents Related to the Decision Not to List Fourteen Solvents as Hazardous Waste

    EPA Pesticide Factsheets

    Links to federal register notices and fact sheets about the decision to not list wastes generated from the use of 14 solvents as hazardous wastes under the Resource Conservation and Recovery Act (RCRA).

  5. Closure and Post-Closure Care Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    When a hazardous waste management unit stops receiving waste at the end of its active life, it must be cleaned up, closed, monitored, and maintained in accordance with the Resource Conservation and Recovery Ac

  6. 78 FR 76294 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Exemption--Class I Hazardous Waste Injection; Mosaic Fertilizer, LLC Uncle Sam, LA AGENCY: Environmental... Waste Amendments to the Resource Conservation and Recovery Act, has been granted to Mosaic...

  7. Toxic Hazards Research Unit - 1988

    DTIC Science & Technology

    1989-07-01

    the test material One-tenth of a milliliter of the test material was applied to one eye of each of the nine albino rabbits. The opposite eye was left...adult guinea pigs for sensitization testing and albino rabbits for skin irritation testing Existing alternative methods to animal testing are inadequate...purchased for use in the skin irritation study from Clerco Research Farms, Cincinnati, OH. Male, albino , Hartley strain guinea pigs, weighing between 200

  8. Power and public participation in a hazardous waste dispute: a community case study.

    PubMed

    Culley, Marci R; Hughey, Joseph

    2008-03-01

    Qualitative case study findings are presented. We examined whether public participation in a hazardous waste dispute manifested in ways consistent with theories of social power; particularly whether participatory processes or participants' experiences of them were consistent with the three-dimensional view of power (Gaventa, Power and powerlessness: quiescence and rebellion in an appalacian valley, 1980; Lukes, Power: A radical view, 1974; Parenti, Power and the powerless, 1978). Findings from four data sources collected over 3 years revealed that participatory processes manifested in ways consistent with theories of power, and participants' experiences reflected this. Results illustrated how participation was limited and how citizen influence could be manipulated via control of resources, barriers to participation, agenda setting, and shaping conceptions about what participation was possible. Implications for community research and policy related to participation in hazardous waste disputes are discussed.

  9. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of......

  10. Minimization and management of wastes from biomedical research.

    PubMed Central

    Rau, E H; Alaimo, R J; Ashbrook, P C; Austin, S M; Borenstein, N; Evans, M R; French, H M; Gilpin, R W; Hughes, J; Hummel, S J; Jacobsohn, A P; Lee, C Y; Merkle, S; Radzinski, T; Sloane, R; Wagner, K D; Weaner, L E

    2000-01-01

    Several committees were established by the National Association of Physicians for the Environment to investigate and report on various topics at the National Leadership Conference on Biomedical Research and the Environment held at the 1--2 November 1999 at the National Institutes of Health in Bethesda, Maryland. This is the report of the Committee on Minimization and Management of Wastes from Biomedical Research. Biomedical research facilities contribute a small fraction of the total amount of wastes generated in the United States, and the rate of generation appears to be decreasing. Significant reductions in generation of hazardous, radioactive, and mixed wastes have recently been reported, even at facilities with rapidly expanding research programs. Changes in the focus of research, improvements in laboratory techniques, and greater emphasis on waste minimization (volume and toxicity reduction) explain the declining trend in generation. The potential for uncontrolled releases of wastes from biomedical research facilities and adverse impacts on the general environment from these wastes appears to be low. Wastes are subject to numerous regulatory requirements and are contained and managed in a manner protective of the environment. Most biohazardous agents, chemicals, and radionuclides that find significant use in research are not likely to be persistent, bioaccumulative, or toxic if they are released. Today, the primary motivations for the ongoing efforts by facilities to improve minimization and management of wastes are regulatory compliance and avoidance of the high disposal costs and liabilities associated with generation of regulated wastes. The committee concluded that there was no evidence suggesting that the anticipated increases in biomedical research will significantly increase generation of hazardous wastes or have adverse impacts on the general environment. This conclusion assumes the positive, countervailing trends of enhanced pollution prevention

  11. Minimization and management of wastes from biomedical research.

    PubMed

    Rau, E H; Alaimo, R J; Ashbrook, P C; Austin, S M; Borenstein, N; Evans, M R; French, H M; Gilpin, R W; Hughes, J; Hummel, S J; Jacobsohn, A P; Lee, C Y; Merkle, S; Radzinski, T; Sloane, R; Wagner, K D; Weaner, L E

    2000-12-01

    Several committees were established by the National Association of Physicians for the Environment to investigate and report on various topics at the National Leadership Conference on Biomedical Research and the Environment held at the 1--2 November 1999 at the National Institutes of Health in Bethesda, Maryland. This is the report of the Committee on Minimization and Management of Wastes from Biomedical Research. Biomedical research facilities contribute a small fraction of the total amount of wastes generated in the United States, and the rate of generation appears to be decreasing. Significant reductions in generation of hazardous, radioactive, and mixed wastes have recently been reported, even at facilities with rapidly expanding research programs. Changes in the focus of research, improvements in laboratory techniques, and greater emphasis on waste minimization (volume and toxicity reduction) explain the declining trend in generation. The potential for uncontrolled releases of wastes from biomedical research facilities and adverse impacts on the general environment from these wastes appears to be low. Wastes are subject to numerous regulatory requirements and are contained and managed in a manner protective of the environment. Most biohazardous agents, chemicals, and radionuclides that find significant use in research are not likely to be persistent, bioaccumulative, or toxic if they are released. Today, the primary motivations for the ongoing efforts by facilities to improve minimization and management of wastes are regulatory compliance and avoidance of the high disposal costs and liabilities associated with generation of regulated wastes. The committee concluded that there was no evidence suggesting that the anticipated increases in biomedical research will significantly increase generation of hazardous wastes or have adverse impacts on the general environment. This conclusion assumes the positive, countervailing trends of enhanced pollution prevention

  12. Wastewater Characterization and Hazardous Waste Survey, Reese Air Force Base, Texas

    DTIC Science & Technology

    1988-04-01

    waste. The casings are neutralized with baking soda and turned In to DRMO. This generates approximately 55 gallons of hazardous waste per eight month...Facility. The remaining vats are topped off when losses from evaporation and drag-out become significant; with the exception of the hot water rinse ...Bldg 52 accumulation site. Trichloroethane is used to rinse bolts, and the waste solvent is drummed as hazardous waste and transported to the Base’s

  13. Hazardous Wastes. Two Games for Teaching about the Problem. Environmental Communications Activities. Bulletin 703.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Cooperative Extension Service.

    Two games are presented which demonstrate the complexity of the hazardous waste problem through an introduction to the: (1) economics of waste disposal; (2) legislation surrounding waste disposal; (3) necessity to handle wastes with care; (4) damages to the environmental and human health resulting from improper disposal; (5) correct ways to…

  14. Coherent and consistent decision making for mixed hazardous waste management: The application of quantitative assessment techniques

    SciTech Connect

    Smith, G.M.; Little, R.H.; Torres, C.

    1994-12-31

    This paper focuses on predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities, illustrated by presentation of the development and application of a comprehensive, yet practicable, assessment framework. The issues addressed include: (1) land-based disposal practice, (2) the conceptual and mathematical representation of processes leading to release, migration and accumulation of contaminants, (3) the identification and evaluation of relevant assessment end-points, including human health, health of non-human biota and eco-systems, and property and resource effects, (4) the gap between data requirements and data availability, and (5) the application of results in decision making, given the uncertainties in assessment results and the difficulty of comparing qualitatively different impacts arising in different temporal and spatial scales. The paper illustrates the issues with examples based on disposal of metals and radionuclides to shallow facilities. The types of disposal facility considered include features consistent with facilities for radioactive wastes as well as other types of design more typical of hazardous wastes. The intention is to raise the question of whether radioactive and other hazardous wastes are being consistently managed, and to show that assessment methods are being developed which can provide quantitative information on the levels of environmental impact as well as a consistent approach for different types of waste, such methods can then be applied to mixed hazardous wastes contained radionuclides as well as other contaminants. The remaining question is whether the will exists to employ them. The discussion and worked illustrations are based on a methodology developed and being extended within the current European Atomic Energy Community`s cost-sharing research program on radioactive waste management and disposal, with co-funding support from Empresa Nacional de Residuous Radiactivos SA, Spain.

  15. Landfilling of solid and hazardous waste: Facing long-term liability

    SciTech Connect

    Lee, G.F.; Jones-Lee, A.

    1994-12-31

    In the past, the cheapest method available was used for the management of solid non-hazardous and hazardous waste. Now with cradle-to-grave liability, many companies are more critically evaluating the near-term and long-term liabilities and costs associated with various options for solid and liquid waste management. Recycle and reuse of wastes with residue management that eliminates long-term liability are the most desirable. However, most waste management programs involve some landfilling of wastes and/or treated residues. The disposal of hazardous and non-hazardous wastes in such landfills carries a significant, perpetual liability for clean-up of contaminated groundwaters and eventual Superfund-like activities for waste removal and proper management. The inability of US EPA-prescribed Subtitle C and D landfills to prevent groundwater pollution by landfill leachate for as long as the wastes are a threat should be of significant concern to all waste generators. Solid and hazardous waste generators should critically evaluate the potential near-term and long-term liabilities associated with any particular approach for waste management, resource recovery (including fuel blending, solvent recovery, and reuse), and management of waste residues. This paper reviews why landfills of the type being developed today do no eliminate long-term liability associated with wastes and issues of long-term liability associated with alternative methods of waste management.

  16. 40 CFR 63.1203 - What are the standards for hazardous waste incinerators that are effective until compliance with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants from Hazardous Waste Combustors Interim Emissions Standards and... standards for hazardous waste incinerators that are effective until compliance with the standards under § 63... feedrate of one principal organic hazardous constituent (POHC) in a waste feedstream; and Wout =...

  17. 40 CFR 63.1203 - What are the standards for hazardous waste incinerators that are effective until compliance with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants from Hazardous Waste Combustors Interim Emissions Standards and... standards for hazardous waste incinerators that are effective until compliance with the standards under § 63... feedrate of one principal organic hazardous constituent (POHC) in a waste feedstream; and Wout =...

  18. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment... of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked drums (lab packs) may be placed in a landfill if the following requirements are met: (a) Hazardous...

  19. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment... of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked drums (lab packs) may be placed in a landfill if the following requirements are met: (a) Hazardous...

  20. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment... of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked drums (lab packs) may be placed in a landfill if the following requirements are met: (a) Hazardous...

  1. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment... of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked drums (lab packs) may be placed in a landfill if the following requirements are met: (a) Hazardous...

  2. Thunderstorm hazards flight research: Storm hazards 1980 overview

    NASA Technical Reports Server (NTRS)

    Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.

    1981-01-01

    A highly instrumented NASA F-106B aircraft, modified for the storm hazards mission and protected against direct lightning strikes, was used in conjunction with various ground based radar and lightning measurement systems to collect data during thunderstorm penetration flights. During 69 thunderstorm penetrations, there were 10 direct lightning strikes to the aircraft. No problems were encountered with any of the aircraft's systems as a result of the strikes and the research instrumentation performed as designed. Electromagnetic characteristics of nine strikes were recorded, and the results of other experiments confirm the theory that X-ray radiation and nitrous oxide gas are being produced by processes associated directly with thunderstorm electric fields and lightning discharges. A better understanding of aircraft lightning attachment mechanisms and strike zones is being accomplished by careful inspection, identification, and documentation of lightning attachment points and swept stroke paths following each strike to the aircraft.

  3. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...

  4. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...

  5. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...

  6. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  7. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    SciTech Connect

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  8. WHO collaboration in hazardous waste management in the Western Pacific Region

    SciTech Connect

    Ogawa, Hisashi

    1996-12-31

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects of WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.

  9. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    PubMed

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  10. Preparation of waste oil for analysis to determine hazardous metals

    SciTech Connect

    Essling, A.M.; Huff, D.R.; Huff, E.A.; Fox, I.M.; Graczyk, D.G.

    1995-07-01

    Two methods for preparing waste-oil samples to permit measurement of their metals content were evaluated. For this evaluation, metals-in-oil standard reference materials were prepared by each method and the resulting solutions were analyzed for 20 metals, including those (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag) regulated as hazardous under the Resource Conservation and Recovery Act. One preparation method involved combustion of the waste oil under oxygen at 25 atm pressure, as described in the American Society for Testing and Materials test method E926-88. As we applied it, this method gave recoveries well under 90% for most of the metals that we examined and, hence, proved unsatisfactory for routine application to waste-oil analysis. With the other method, nitric acid decomposition in a sealed vessel heated with microwave energy (analogous to US Environmental Protection Agency Method 3051), recoveries of all 20 metal contaminants were within 90 to 110% of the certified values. This microwave digestion procedure was also more efficient since it allowed six samples to be prepared together, whereas the oxygen combustion approach allowed processing of only one sample at a time.

  11. Garbage imperialism: health implications of dumping hazardous wastes in Third World countries.

    PubMed

    Stebbins, K R

    1992-11-01

    This paper calls for studies of the potential health implications of today's hazardous waste disposal practices, and suggests that such studies are urgently needed in Third World countries where industrial nations are increasingly dumping their unwanted waste materials. The United States produces enormous quantities of hazardous waste each year, and approximately 1,200 "priority hazardous waste sites" presently threaten the nation's health. Because of environmental regulations, landfill closings, and citizen opposition to local waste facilities, industrialized countries are increasingly disposing of their problematic materials by shipping them to the Third World, where they pose substantial threats to human health and the environment. From a political economy perspective, this paper suggests that global health would be better served by reducing hazardous waste production, encouraging reusing and recycling, and restricting or banning international shipment of toxic wastes.

  12. USE OF ELECTROKINETICS FOR HAZARDOUS WASTE SITE REMEDIATION

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) program was authorized as part of the 1986 amendments to the Superfund legislation. It represents a joint effort between U.S. EPA`s Office of Research and Development and Office of Solid Waste and Emergency Response. The progr...

  13. Identification and Listing of Hazardous Waste - CERCLA Hazardous Substance Designation - Reportable Quantity Adjustment - Coke By-Products Wastes - Federal Register Notice, August 18, 1992

    EPA Pesticide Factsheets

    EPA is amending its regulations under the Resource Conservation and Recovery Act (RCRA) by listing as hazardous seven wastes generated during the production, recovery, and refining of coke by-products produced from coal.

  14. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes.

    PubMed

    Randall, Paul; Chattopadhyay, Sandip

    2004-10-18

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of historic operations that have led to significant contamination and ongoing hazardous waste generation. This study was performed to evaluate whether the U.S. EPA could propose treatment and disposal alternatives to the current land disposal restriction (LDR) treatment standards for mercury. The focus of this article is on the current state of encapsulation technologies that can be used to immobilize elemental mercury, mercury-contaminated debris, and other mercury-contaminated wastes, soils, sediments, or sludges. The range of encapsulation materials used in bench-scale, pilot-scale, and full-scale applications for mercury-contaminated wastes are summarized. Several studies have been completed regarding the application of sulfur polymer stabilization/solidification, chemically bonded phosphate ceramic encapsulation, and polyethylene encapsulation. Other materials reported in the literature as under development for encapsulation use include asphalt, polyester resins, synthetic elastomers, polysiloxane, sol-gels, Dolocrete, and carbon/cement mixtures. The primary objective of these encapsulation methods is to physically immobilize the wastes to prevent contact with leaching agents such as water. However, when used for mercury-contaminated wastes, several of these methods require a pretreatment or stabilization step to chemically fix mercury into a highly insoluble form prior to encapsulation. Performance data is summarized from the testing and evaluation of various encapsulated, mercury-contaminated wastes. Future technology development and research needs are also discussed.

  15. 2002 Report to Congress: Evaluating the Consensus Best Practices Developed through the Howard Hughes Medical Institute’s Collaborative Hazardous Waste Management Demonstration Project

    EPA Pesticide Factsheets

    This report discusses a collaborative project initiated by the Howard Hughes Medical Institute (HHMI) to establish and evaluate a performance-based approach to management of hazardous wastes in the laboratories of academic research institutions.

  16. Detonation Ground Soils, & Explosive-Contaminated Metal Have No Reactivity Characteristics Under RCRA Hazardous Waste Regulations

    DTIC Science & Technology

    1994-08-01

    DETONATION GROUND SOILS, & EXPLOSIVE-CONTAMINATED METAL HAVE NO REACTIVITY CHARACTERISTIC UNDER RCRA HAZARDOUS WASTE REGULATIONS Jay L. Bishop, PhD...Metal Have No Reactivity Characteristics Under RCRA Hazardous Waste Regulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  17. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive...

  18. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive...

  19. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive...

  20. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive...

  1. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive...

  2. A RULE-BASED SYSTEM FOR EVALUATING FINAL COVERS FOR HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    This chapter examines how rules are used as a knowledge representation formalism in the domain of hazardous waste management. A specific example from this domain involves performance evaluation of final covers used to close hazardous waste landfills. Final cover design and associ...

  3. ASSESSMENT OF LIQUID EMULSION MEMBRANE FOR CLEAN UP OF AQUEOUS WASTE EFFLUENTS FROM HAZARDOUS ELEMENTS

    SciTech Connect

    El-Reefy, Sohair A.; Selim, Y.T.; Hassan, M.A.; Aly, H.F.

    2003-02-27

    Four liquid emulsion membrane (LEM) systems are given to remove different hazardous elements such as uranium, thorium, cobalt, copper, lead, and cadmium from different aqueous waste effluents. The optimum conditions for use of these systems are deduced. The potentiality of LEM for removal of hazardous pollutants from aqueous waste solutions is given.

  4. Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites

    EPA Pesticide Factsheets

    The purpose of this paper is to provide RPMs and others investigating hazardous waste sites a summary of the technical issues that need to be considered when determining if a site (i.e., hazardous waste site/area of concern) has elevated levels of ...

  5. 76 FR 42125 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ConocoPhillips Company, Borger, TX AGENCY: Environmental... Company for one Class I injection well located at Borger, Texas. The company has adequately...

  6. 76 FR 55908 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Great Lakes Chemical Corporation, El Dorado, AR AGENCY... granted to Great Lakes Chemical Corporation for two Class I injection wells located at El Dorado,...

  7. 76 FR 36129 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; ExxonMobil Environmental Services Company, Pasadena TX AGENCY... Environmental Services Company for two Class I injection wells located at Pasadena, Texas. The company...

  8. 75 FR 60457 - Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... AGENCY Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection Dow Chemical Company (DOW), Magnolia, AR AGENCY: Environmental... a Class I injection well located at Magnolia, Arkansas. As required by 40 CFR Part 148, the...

  9. 78 FR 42776 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Blanchard Refining Company LLC Galveston Bay Refinery, Texas... injection wells located at Texas City, Texas. The company has adequately demonstrated to the satisfaction...

  10. 76 FR 37048 - Louisiana; Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 Louisiana; Final Authorization of State Hazardous Waste Management Program... Louisiana has applied to EPA for Final authorization of the changes to its hazardous waste program under...

  11. 76 FR 19004 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 Oklahoma: Final Authorization of State Hazardous Waste Management Program... Oklahoma has applied to EPA for Final authorization of the changes to its hazardous waste program under...

  12. 77 FR 38566 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 Louisiana: Final Authorization of State Hazardous Waste Management Program... Louisiana has applied to EPA for Final authorization of the changes to its hazardous waste program under...

  13. 76 FR 6594 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... AGENCY 40 CFR Part 271 Florida: Final Authorization of State Hazardous Waste Management Program Revisions... for Final authorization of the changes to its hazardous waste program under the Resource Conservation... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...

  14. 78 FR 43842 - State of Kansas; Authorization of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 State of Kansas; Authorization of State Hazardous Waste Management Program AGENCY... authorization for changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  15. 77 FR 60963 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... AGENCY 40 CFR Part 271 Tennessee: Final Authorization of State Hazardous Waste Management Program... applied to EPA for final authorization of the changes to its hazardous waste program under the Resource... Otis Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch,...

  16. 77 FR 13248 - Texas: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 Texas: Final Authorization of State Hazardous Waste Management Program Revisions... applied to EPA for Final authorization of the changes to its hazardous waste program under the...

  17. 78 FR 25678 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... AGENCY 40 CFR Part 271 Georgia: Final Authorization of State Hazardous Waste Management Program Revisions... for final authorization of changes to its hazardous waste program under the Resource Conservation and... Materials Management Branch, RCRA Division, U.S. Environmental Protection Agency, Atlanta Federal Center,...

  18. 78 FR 15338 - New York: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... From the Federal Register Online via the Government Publishing Office ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 New York: Final Authorization of State Hazardous Waste Management Program... applied to EPA for final authorization of changes to its hazardous waste program under the Solid...

  19. 77 FR 15343 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 Oklahoma: Final Authorization of State Hazardous Waste Management Program... Oklahoma has applied to EPA for Final authorization of the changes to its hazardous waste program under...

  20. 78 FR 70255 - West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 West Virginia: Final Authorization of State Hazardous Waste Management Program... applied to EPA for final authorization of revisions to its hazardous waste program under the...