Science.gov

Sample records for hazardous waste shipment

  1. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-12-31

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  2. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D. ); Stevens, L. )

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  3. Argonne National Laboratory, east hazardous waste shipment data validation

    SciTech Connect

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean.

  4. International Agreements on Transboundary Shipments of Hazardous Waste

    EPA Pesticide Factsheets

    Several international agreements may affect U.S. hazardous waste import and export practices including the Basel Convention, the OECD Council Decision, and bilateral agreements between the U.S. and Canada, Mexico, Costa Rica, Malaysia, and the Philippines

  5. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    SciTech Connect

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  6. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  7. 75 FR 1235 - Revisions to the Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Rule Apply to Me? B. List of Acronyms Used in This Final Rule C. What are the Statutory Authorities for This Final Rule? II. Background A. OECD Revisions B. SLAB Revisions C. Exception Reports for Hazardous... Rule A. Changes to 40 CFR 262.10(d) B. Changes to 40 CFR Part 262, Subpart E C. Changes to 40 CFR...

  8. EPA Appoints Diverse Board of Experts to Help Develop National Electronic System to Track Hazardous Waste Shipments

    EPA Pesticide Factsheets

    WASHINGTON - Today, the U.S. Environmental Protection Agency (EPA) announced the selection of a diverse group of experts to join the Hazardous Waste Electronic Manifest Advisory Board. The Advisory Board will advise the agency on the development and

  9. EPA Appoints Diverse Board of Experts to Help Develop National Electronic System to Track Hazardous Waste Shipments

    EPA Pesticide Factsheets

    (03/17/2016 - ATLANTA - Today, the U.S. Environmental Protection Agency (EPA) announced the selection of a diverse group of experts to join the Hazardous Waste Electronic Manifest Advisory Board. The Advisory Board will advise the agency on the deve

  10. 49 CFR 174.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transportation or transport by rail any shipment of hazardous material that is not in conformance with the... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY...

  11. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.39 Tracking universal waste shipments. (a) Receipt of shipments. A large...

  12. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.39 Tracking universal waste shipments. (a) Receipt of shipments. A large...

  13. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.39 Tracking universal waste shipments. (a) Receipt of shipments. A large...

  14. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.39 Tracking universal waste shipments. (a) Receipt of shipments. A large...

  15. 49 CFR 177.801 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PUBLIC HIGHWAY General Information and Regulations § 177.801 Unacceptable hazardous materials shipments. No person may accept for transportation or transport by motor vehicle a forbidden material...

  16. 49 CFR 177.801 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PUBLIC HIGHWAY General Information and Regulations § 177.801 Unacceptable hazardous materials shipments. No person may accept for transportation or transport by motor vehicle a forbidden material...

  17. 49 CFR 177.801 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PUBLIC HIGHWAY General Information and Regulations § 177.801 Unacceptable hazardous materials shipments. No person may accept for transportation or transport by motor vehicle a forbidden material...

  18. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Exceptions for shipment of waste materials. 173.12... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... materials. (a) Open head drums. If a hazardous material that is a hazardous waste is required by...

  19. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste...

  20. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste...

  1. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste...

  2. 40 CFR 273.19 - Tracking universal waste shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste...

  3. Delisting a Hazardous Waste

    EPA Pesticide Factsheets

    This page discussed the hazardous waste delisting process. A hazardous waste delisting is a rulemaking procedure to amend the list of hazardous wastes to exclude a waste produced at a particular facility.

  4. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62 Tracking universal waste shipments. (a) The owner or operator of a destination facility must keep a...

  5. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62 Tracking universal waste shipments. (a) The owner or operator of a destination facility must keep a...

  6. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62 Tracking universal waste shipments. (a) The owner or operator of a destination facility must keep a...

  7. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.62 Tracking universal waste shipments. (a) The owner or operator of a destination facility must keep a...

  8. 49 CFR 175.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Unacceptable hazardous materials shipments. 175.3 Section 175.3 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT General Information and Regulations...

  9. 49 CFR 176.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Unacceptable hazardous materials shipments. 176.3 Section 176.3 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General § 176.3 Unacceptable...

  10. 49 CFR 174.3 - Unacceptable hazardous materials shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Unacceptable hazardous materials shipments. 174.3 Section 174.3 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY RAIL General Requirements § 174.3...

  11. Release protocol to address DOE moratorium on shipments of waste generated in radiologically controlled areas

    SciTech Connect

    Rathbun, L A; Boothe, G F

    1992-10-01

    On May 17, 1991 the US DOE Office of Waste Operations issued a moratorium on the shipment of hazardous waste from radiologically contaminated or potentially contaminated areas on DOE sites to offsite facilities not licensed for radiological material. This document describes a release protocol generated by Westinghouse Hanford submitted for US DOE approval. Topics considered include designating Radiological Materials Management Areas (RMMAs), classification of wastes, handling of mixed wastes, detection limits.

  12. Hazardous Waste Generators

    EPA Pesticide Factsheets

    Many industries generate hazardous waste. EPA regulates hazardous waste under the Resource Conservation and Recovery Act to ensure these wastes are managed in ways that are protective of human health and the environment.

  13. The tracking of high level waste shipments-TRANSCOM system

    SciTech Connect

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-12-31

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy`s (DOE`s) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users.

  14. 40 CFR 273.39 - Tracking universal waste shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... universal waste was sent; (2) The quantity of each type of universal waste received (e.g., batteries... universal waste sent (e.g., batteries, pesticides, thermostats); (3) The date the shipment of universal... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking universal waste...

  15. 40 CFR 273.62 - Tracking universal waste shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of each type of universal waste received (e.g., batteries, pesticides, thermostats); (3) The date of... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking universal waste shipments... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities §...

  16. Hazardous Waste Permitting

    EPA Pesticide Factsheets

    To provide RCRA hazardous waste permitting regulatory information and resources permitted facilities, hazardous waste generators, and permit writers. To provide the public with information on how they can be involved in the permitting process.

  17. Hazardous Waste Manifest System

    EPA Pesticide Factsheets

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  18. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.

  19. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  20. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in...

  1. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in...

  2. Hazardous Waste Data (RCRAInfo)

    EPA Pesticide Factsheets

    Hazardous waste information is contained in the Resource Conservation and Recovery Act Information (RCRAInfo), a national program management and inventory system about hazardous waste handlers. In general, all generators, transporters, treaters, storers, and disposers of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies, in turn pass on the information to regional and national EPA offices. This regulation is governed by the Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984. You may use the RCRAInfo Search to determine identification and location data for specific hazardous waste handlers, and to find a wide range of information on treatment, storage, and disposal facilities regarding permit/closure status, compliance with Federal and State regulations, and cleanup activities.

  3. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in...

  4. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of shipment of irradiated reactor fuel or nuclear waste must contain the following... irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel...

  5. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in...

  6. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  7. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…

  8. Pipe overpack container for trasuranic waste storage and shipment

    DOEpatents

    Geinitz, Richard R.; Thorp, Donald T.; Rivera, Michael A.

    1999-01-01

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  9. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    SciTech Connect

    Simpson, Lewis Edward

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  10. Developing hazardous waste programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Developing a fully operational hazardous waste regulatory system requires at least 10 to 15 years—even in countries with strong legal and bureaucratic institutions, according to a report on "The Evolution of Hazardous Waste Programs," which was funded by Resources for the Future (RFF) and the World Bank's South Asia Environment Group, and issued on June 4.The report, which compares the experiences of how four developed and four developing countries have created hazardous waste programs, indicates that hazardous waste issues usually do not become a pressing environmental issue until after countries have dealt with more direct threats to public health, such as contaminated drinking water and air pollution. The countries examined include Indonesia, Thailand, Germany, and the United States.

  11. Household Hazardous Waste (HHW)

    EPA Pesticide Factsheets

    This page gives an overview of how to safely manage household hazardous wastes like cleaners, paints and oils. Information is also provided on how to find recycling and disposal options for these products, as well as natural alternatives.

  12. Innovative hazardous waste treatment technology

    SciTech Connect

    Freeman, H.M.; Sferra, P.R. . Hazardous Waste Engineering Research Lab.)

    1990-01-01

    This book contains information about the latest developments in destroying hazardous wastes by incineration or pyrolysis. Topics include: hydrogenation and reuse of hazardous organic wastes; catalytic incineration of gaseous wastes; oxygen enhancement of hazardous waste incineration; and thermal fixation of hazardous metal sludges in an alumina-silicate matrix.

  13. Household Hazardous Waste and Demolition

    EPA Pesticide Factsheets

    Household wastes that are toxic, corrosive, ignitable, or reactive are known as Household Hazardous Waste (HHW). Household Hazardous Waste may be found during residential demolitions, and thus require special handling for disposal.

  14. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  15. Defense Transportation: DOD Needs to Take Actions to Improve the Transportation of Hazardous Material Shipments

    DTIC Science & Technology

    2014-05-01

    report of a bottled oxygen (nonflammable gas, class 2.2 HAZMAT) shipment that arrived via highway improperly packaged for air shipment. According to the...Waste, and Abuse in Federal Programs Congressional Relations Public Affairs Please Print on Recycled Paper.

  16. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for shipments by rail or water equivalent to those under 40 CFR 263.20(e) and (f). (4) For exports... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS...

  17. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for shipments by rail or water equivalent to those under 40 CFR 263.20(e) and (f). (4) For exports... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS...

  18. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for shipments by rail or water equivalent to those under 40 CFR 263.20(e) and (f). (4) For exports... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS...

  19. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  20. ACCELERATING HANFORD TRANSURANC (TRU) WASTE CERTIFICATION & SHIPMENT FROM 2 PER YEAR TO 12 PER MONTH

    SciTech Connect

    MCDONALD, K.M.

    2005-01-20

    The Department of Energy's site at Hanford has significantly accelerated the characterization of transuranic (TRU) waste and its subsequent shipment to the Waste Isolation Pilot Plant (WIPP)--from a total of two shipments in fiscal year 2002 to twelve shipments per month. The challenges encountered and experience gained in achieving this acceleration provide valuable lessons that can be used by others in the waste industry. Lessons learned as well as estimates of cost savings and schedule benefits are described. At the start of the acceleration effort, three separate facilities managed by multiple organizations characterized and handled the drums. To consolidate the majority of these activities under one organization and in one facility required RCRA permit and safety basis modifications. and a myriad of construction activities--but all with very visible benefit. Transferring drums between the separate facilities involved multiple organizations, and required meeting a complex set of transportation and safety basis requirements. Consolidating characterization activities into a single facility greatly simplified this process, realizing very significant operational efficiencies. Drums stockpiled in buildings for future processing previously were stored with recognition of physical, chemical, and radiological hazards, but without consideration for future processing. Drums are now stored using a modular approach so that feed for characterization processing takes drums from the accessible module face rather than randomly throughout the storage building. This approach makes drum handling more efficient, minimizes the potential for worker injuries, and supports the principles of ''as low as reasonably achievable'' (ALARA) exposure from the waste. Sampling the headspace gas of the TRU waste packages was a major bottleneck in the characterization process, and hence an obstacle to acceleration. Sampling rates were improved by a combination of insulating and heating a waste

  1. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  2. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  3. New hazardous waste solutions

    SciTech Connect

    Krukowski, J.

    1993-05-15

    From data supplied by industrial laboratories, from academia, and from the EPA's Superfund Innovative Site Evaluation (SITE) program, this paper presents an informal look at some new and innovative hazardous waste treatment processes. These processes show promise for sparing users off-site disposal costs as well as for remediation of contamination at Superfund or RCRA sites. Included are the following: equipment that will biodegrade water-based paint wastes and pesticide wastes; recycling of potliner and furnace dusts for metal recovery; a process that reduces PCBs and PAHs to lighter hydrocarbons such as methane. Finally, two radiofrequency (RF) processes are described that can be used to remove soil contaminants such as pentachlorophenols, Aroclor 1242, solvents, oils, jet fuel, and pesticides.

  4. Hazardous Wastes--New Developments.

    ERIC Educational Resources Information Center

    Rogers, Harvey W.

    1979-01-01

    The need for effective disposal of hazardous medical and pathological wastes is discussed and the results of a test of five different models of incinerators in disposing of such wastes is presented. (MJB)

  5. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  6. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    SciTech Connect

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Duncan, D.R.

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  7. Learn the Basics of Hazardous Waste

    EPA Pesticide Factsheets

    Overview that includes the definition of hazardous waste, EPA’s Cradle-to-Grave Hazardous Waste Management Program, and hazardous waste generation, identification, transportation, recycling, treatment, storage, disposal and regulations.

  8. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  9. Avoiding the Hazards of Hazardous Waste.

    ERIC Educational Resources Information Center

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  10. Elimination of the hazards from hazardous wastes.

    PubMed Central

    Gloyna, E F; Taylor, R D

    1978-01-01

    The "hazard" associated with a waste essentially controls the overall engineering approach to finding suitable alternatives for solving potential disposal problems. It should be recognized that all factors affecting environmental equilibrium must be considered, including product sales, process design, financing, pre- and end-of-pipe treatment, residuals management, and ultimate bioaccumulation of residuals. To meet this challenge, a systems approach to waste treatment and residuals disposal provides a logical approach, but this management concept requires a thorough understanding of the important physical and chemical aspects of the problem, as well as many social implications of the resulting decisions. Thus waste management within a plant necessarily involves process control, pretreatment and end-of-pipe treatment. Further, it follows that residuals management from a disposal point-of-view must ultimately embrace what is called the "multi-barrier concept." In essence, hazard elimination occurs in varying degrees during each phase of a properly engineered system. PMID:738249

  11. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will...

  12. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will...

  13. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will...

  14. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will...

  15. 40 CFR 194.8 - Approval process for waste shipment from waste generator sites for disposal at the WIPP.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from waste generator sites for disposal at the WIPP. 194.8 Section 194.8 Protection of Environment... General Provisions § 194.8 Approval process for waste shipment from waste generator sites for disposal at the WIPP. (a) Quality Assurance Programs at Waste Generator Sites. The Agency will...

  16. Preparation of the First Shipment of Transuranic Waste by the Los Alamos National Laboratory: A Rest Stop on the Road to WIPP

    SciTech Connect

    Allen, G.; Barr, A.; Betts, S.E.; Farr, J.; Foxx, J.; Gavett, M.A.; Janecky, D.R.; Kosiewicz, S.T.; Liebman, C.P.; Montoya, A.; Poths, H.; Rogers, P.S.Z.; Taggart, D.P.; Triay, I.R.; Vigil, G.I.; Vigil, J.J.; Wander, S.G.; Yeamans, D.

    1999-02-01

    The Los Alamos National Laboratory (LANL) achieved a national milestone on the road to shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) when it received certification authority on September 12, 1997. Since that time, LANL has been characterizing a non-mixed TRU waste stream and preparing shipments of this TRU waste for disposal in the WIPP. The paper describes the TRU waste identified as waste stream TA-55-43 Lot No. 01 from LANL Technical Area-55 and the process used to determine that it does not contain hazardous waste regulated by the Resource Conservation Recovery Act (RCRA) or the New Mexico Hazardous Waste Act (HWA). The non-mixed determination is based on the acceptable knowledge (AK) characterization process, which clearly shows that the waste does not exhibit any RCRA characteristics nor meet any RCRA listing descriptions. LANL has certified TRU waste from waste stream TA-55-43 Lot No. 01 and is prepared to certify additional quantities of TRU waste horn other non-mixed TRU waste streams. Assembly and preparation of AK on the processes that generated TRU waste is recognized as a necessary part of the process for having waste ready for shipment to the WIPP.

  17. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    SciTech Connect

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  18. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2009-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008.

  19. Innovative hazardous waste treatment technology

    SciTech Connect

    Freeman, H.M.; Sferra, P.R. . Hazardous Waste Engineering Research Lab.)

    1990-01-01

    This book contains technical overviews of new processes for reducing hazardous waste volume. These processes are based upon physico-chemical principles. Topics include: vacuum extraction for cleanup of soils and groundwater; catalytic hydrodechlorination; on stripping technology; and recovery and disposal of nitrate wastes.

  20. Federal Agency Hazardous Waste Compliance Docket

    EPA Pesticide Factsheets

    The Federal Agency Hazardous Waste Compliance Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants, or contaminants have been - or may be - released.

  1. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  2. 4th Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2014-12-02

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014.

  3. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System Identification and Listing of Hazardous Waste...,'' to exclude (or delist) on a one-time basis from the lists of hazardous waste, a certain solid waste... the petitioned waste is ] not hazardous waste. This exclusion applies to 148 cubic yards of...

  4. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  5. Biological treatment of hazardous waste

    SciTech Connect

    Lewandowski, G.A.; Filippi, L.J. de

    1998-12-01

    This reference book is intended for individuals interested in or involved with the treatment of hazardous wastes using biological/biochemical processes. Composed of 13 chapters, it covers a wide variety of topics ranging from engineering design to hydrogeologic factors. The first four chapters are devoted to a description of several different types of bioreactors. Chapter 5 discusses the biofiltration of volatile organic compounds. Chapters 6 through 9 discuss specific biological, biochemical, physical, and engineering factors that affect bioremediation of hazardous wastes. Chapter 10 is a very good discussion of successful bioremediation of pentachlorophenol contamination under laboratory and field conditions, and excellent references are provided. The next chapter discusses the natural biodegradation of PCB-contaminated sediments in the Hudson River in New York state. Chapter 12 takes an excellent look at the bioremediation capability of anaerobic organisms. The final chapter discusses composting of hazardous waste.

  6. Financial assistance to States and tribes to support emergency preparedness and response and the safe transportation of hazardous shipments

    SciTech Connect

    Bradbury, J.A.; Jones, M.L.

    1995-01-01

    This report identifies and summarizes existing sources of financial assistance to States and Indian tribes in preparing and responding to transportation emergencies and ensuring the safe transportation of hazardous shipments through their jurisdictions. The report has been prepared as an information resource for the US Department of Energy`s Office of Environmental Restoration and Waste Management, Office of Transportation, Emergency Management and Analytical Services. The report discusses funding programs administered by the following Federal agencies: Federal Emergency Management Agency; Department of Transportation; the Environmental Protection Agency; and the Department of Energy. Also included is a summary of fees assessed by some States on carriers of hazardous materials and hazardous waste. The discussion of programs is supplemented by an Appendix that provides a series of tables summarizing funding sources and amounts. The report includes several conclusions concerning the level of funding provided to Indian tribes, the relative ranking of funding sources and the variation among States in overall revenues for emergency response and safe transportation.

  7. Hazardous waste management

    SciTech Connect

    Dawson, G.W.; Mercer, B.W.

    1986-01-01

    This is a reference work designed to guide the chemist to solutions to problems of waste disposal. It has chapters on incineration, ocean dumping and underground injection, landfill disposal, transportation, abandoned sites, regulation, etc. A group of 12 appendices provide a lot of useful information for quick reference.

  8. Innovative hazardous waste treatment technology

    SciTech Connect

    Freeman, H.M.; Sferra, P.R. . Hazardous Waste Engineering Research Lab.)

    1990-01-01

    This book contains 21 various biodegradation techniques for hazardous waste treatment. Topics include: cyclic vertical water table movement for enhancement of in situ biodegradation of diesel fuel; enhanced biodegradation of petroleum hydrocarbons; and evaluation of aeration methods to bioremediate fuel-contaminated soils.

  9. Report: EPA Does Not Effectively Control or Monitor Imports of Hazardous Waste

    EPA Pesticide Factsheets

    Report #15-P-0172, July 6, 2015. The EPA lacks explicit authority to block imported shipments of hazardous waste that lack prior EPA consent. This could lead to improper handling and disposal, resulting in unknown human and environmental exposure to toxic

  10. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  11. Garbage imperialism: health implications of dumping hazardous wastes in Third World countries.

    PubMed

    Stebbins, K R

    1992-11-01

    This paper calls for studies of the potential health implications of today's hazardous waste disposal practices, and suggests that such studies are urgently needed in Third World countries where industrial nations are increasingly dumping their unwanted waste materials. The United States produces enormous quantities of hazardous waste each year, and approximately 1,200 "priority hazardous waste sites" presently threaten the nation's health. Because of environmental regulations, landfill closings, and citizen opposition to local waste facilities, industrialized countries are increasingly disposing of their problematic materials by shipping them to the Third World, where they pose substantial threats to human health and the environment. From a political economy perspective, this paper suggests that global health would be better served by reducing hazardous waste production, encouraging reusing and recycling, and restricting or banning international shipment of toxic wastes.

  12. Hazardous Waste Reduction Naval Air Station Oceana

    DTIC Science & Technology

    1991-06-01

    hazardous waste. 1. Federal Legislation Resources Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of...Material Control and Management HSWA Hazardous and Solid Waste Amendments MATWING Medium Attack Wing MEK Methylethyl Ketone MI Maintenance Instruction

  13. 3rd Quarter Transportation Report FY2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis B.

    2015-07-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments.

  14. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... released from the waste, plausible and specific types of management of the petitioned waste, the quantities..., Tennessee from the lists of hazardous wastes. This final rule responds to a petition submitted by Valero...

  15. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... specific waste from a particular generating facility should not be regulated as a hazardous waste. Based on waste-specific information provided by the petitioner, EPA granted an exclusion for up to 3,000...

  16. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste...) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA... petitioned waste on human health and the environment. DATES: Comments must be received on or before...

  17. Phytoremediation of hazardous wastes

    SciTech Connect

    McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.; Ou, T.Y.

    1995-11-01

    A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approach 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.

  18. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  19. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  20. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  1. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  2. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used...

  3. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with a solid material, successfully passes the tests prescribed in §§ 178.603 (drop) and 178.606... exceed 5 kg (11 pounds) net weight per outer packaging. Organic Peroxide, Type B material may not exceed... 49 Transportation 2 2013-10-01 2013-10-01 false Exceptions for shipment of waste materials....

  4. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... with a solid material, successfully passes the tests prescribed in §§ 178.603 (drop) and 178.606... exceed 5 kg (11 pounds) net weight per outer packaging. Organic Peroxide, Type B material may not exceed... 49 Transportation 2 2014-10-01 2014-10-01 false Exceptions for shipment of waste materials....

  5. Training for hazardous waste workers

    SciTech Connect

    Favel, K.

    1990-10-26

    This implementation plan describes the system and provides the information and schedules that are necessary to comply with the Department of Energy (DOE) Albuquerque Operations Office (AL) Memorandum, Reference EPD dated September 11, 1990, Training for Hazardous Waste Workers. The memo establishes the need for identifying employees requiring environmental training, ensuring that the training is received, and meeting documentation and recordkeeping requirements for the training.

  6. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  7. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  8. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... Refinery (Beaumont Refinery) to exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS)...

  9. Hazardous waste management in the Pacific basin

    SciTech Connect

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  10. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  11. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  12. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  13. Land Disposal Restrictions for Hazardous Waste

    EPA Pesticide Factsheets

    The land disposal restrictions prohibits the land disposal of untreated hazardous wastes. EPA has specified either concentration levels or methods of treatment for hazardous constituents to meet before land disposal.

  14. Hazardous waste database: Waste management policy implications for the US Department of Energy`s Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    SciTech Connect

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M.; Stoll, P.W.

    1994-03-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy`s Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations.

  15. EPA Sets Rules on Hazardous Wastes.

    ERIC Educational Resources Information Center

    Smith, R. Jeffrey

    1980-01-01

    Announces the final rules published by the Environmental Protection Agency requiring that generators, transporters, and disposers of hazardous wastes report exactly where the wastes will be taken. (Author/SA)

  16. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  17. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  18. Hazardous waste operational plan for site 300

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  19. Technology transfer in hazardous waste management

    SciTech Connect

    Drucker, H.

    1989-01-01

    Hazardous waste is a growing problem in all parts of the world. Industrialized countries have had to deal with the treatment and disposal of hazardous wastes for many years. The newly industrializing countries of the world are now faced with immediate problems of waste handling. The developing nations of the world are looking at increasing quantities of hazardous waste generation as they move toward higher levels of industrialization. Available data are included on hazardous waste generation in Asia and the Pacific as a function of Gross Domestic Product (GDP). Although there are many inconsistencies in the data (inconsistent hazardous waste definitions, inconsistent reporting of wastes, etc.) there is definite indication that a growing economy tends to lead toward larger quantities of hazardous waste generation. In developing countries the industrial sector is growing at a faster rate than in the industrialized countries. In 1965 industry accounted for 29% of GDP in the developing countries of the world. In 1987 this had grown to 37% of GDP. In contrast, industry accounted for 40% of GDP in 1965 in industrialized countries and dropped to 35% in 1987. This growth in industrial activity in the developing countries brings an increase in the need to handle hazardous wastes. Although hazardous wastes are ubiquitous, the control of hazardous wastes varies. The number of regulatory options used by various countries in Asia and the Pacific to control wastes are included. It is evident that the industrialized countries, with a longer history of having to deal with hazardous wastes, have found the need to use more mechanisms to control them. 2 refs., 2 figs.

  20. Mediated electrochemical hazardous waste destruction

    SciTech Connect

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1991-08-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag{sup 2+} or Ce{sup +4} are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs.

  1. Gamma monitor for assay of radioactive solid-waste shipments

    SciTech Connect

    Crawford, J H

    1982-06-01

    A gamma waste monitor has been developed and evaluated at the Savannah River Plant (SRP). The purpose of the monitor is to improve estimates of the radionuclides in solid wastes arriving at the plant's burial ground. This monitor, a computer-based spectrometer, quantitatively measures many radionuclides in SRP waste, including waste in heavily shielded shipping casks. Radionuclides emitting gamma rays of sufficient energy to penetrate the shipping container walls can be measured directly. Other radionuclides that are beta emitters or which emit gamma photons too weak to penetrate the walls of the waste containers can often be estimated by their association with measurable gamma photons. Development of the monitor was initiated to find a more accurate method of estimating the quantities of radioactive materials accumulated in the burial ground and to ensure compliance with burial limits imposed by SRP technical standards. Another benefit from the monitor is that it provides specific radionuclide data which are essential to environmental impact evaluations and decommissioning planning. The gamma waste monitor is described. (WHK)

  2. 76 FR 48073 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... AGENCY 40 CFR Parts 260 and 261 RIN 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY... the Agency) is proposing to revise the regulations for hazardous waste management under the...

  3. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann

    1992-03-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  4. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann.

    1992-01-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  5. Criteria for the Certification of Non-Radioactive Hazardous Waste

    SciTech Connect

    Gagner, S D; Gaylord, R; Govers, R; Kennedy, W E; Hunnacek, M M; Kennedy, A M

    2003-04-10

    In 1991, in response to the Department of Energy (DOE) Moratorium on the shipment of hazardous waste from Radioactive Materials Management Areas (RMMAs), Lawrence Livermore National Laboratory (LLNL) developed a process to use a combination of generator knowledge and/or sampling and analyses to certify waste as non-radioactive. The analytical process used the minimum detectable activity (MDA) as the de minimus value. In the past twelve years, a great deal of operating experience has shown the LLNL certification process has serious limitations including: (1) Procedure-specified analytical methodologies have resulted in the inability to adopt new techniques and methods that are more rapid, safer, and produce less waste. (2) The characterization of materials as radioactive or non-radioactive is dependent on method-specific detection limits, not on an objective risk-based standard. (3) There are substantial differences in the limits for surface contamination, sewer discharges, and hazardous waste moratorium determinations, even though all of these methods are used to free-release materials from radiological controls. LLNL, in conjunction with the Chamberlain Group and Dade Moeller & Associates, Inc., is pursuing a risk-based approach to determine whether waste is non-radioactive, consistent with DOE guidance. This paper discusses the approach, which includes defining the radionuclides considered, establishing the exposure scenarios for the critical groups identified for each of three waste streams, defining the exposure pathways and key input data or assumptions, presenting radiation doses for unit concentrations of radionuclides in each waste stream, presenting radiation doses for unit concentrations of radionuclides in each waste stream, presenting the authorized limits for each waste stream, and discussing the results. Analytical values which fall below these authorization limits will be considered non-radioactive, with any individual dose maintained below 1 mrem/yr.

  6. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    SciTech Connect

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision

  7. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... Planning and Permitting Division, Corrective Action and Waste Minimization Section (6PD-C), 1445 Ross... will be taken on this petition. A new petition will be required for this waste stream. List of...

  8. Military hazardous wastes: an overview and analysis

    SciTech Connect

    Kawaoka, K.E.; Malloy, M.C.; Dever, G.L.; Weinberger, L.P.

    1981-12-01

    The report describes and analyzes the management activities and motivating factors of the military in dealing with its hazardous waste streams. Findings and conclusions in areas of concern are given to provide information that may be of value to the future management of military hazardous wastes.

  9. The Disposal of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  10. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  11. Hazardous waste status of discarded electronic cigarettes

    SciTech Connect

    Krause, Max J.; Townsend, Timothy G.

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  12. Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509

    SciTech Connect

    Boyle, J.D.; Fort, E. Joseph; Lorenz, William; Mills, Andy

    2013-07-01

    Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

  13. Industrial ecology: Environmental chemistry and hazardous waste

    SciTech Connect

    Manahan, S.E.

    1999-01-01

    Industrial ecology may be a relatively new concept -- yet it`s already proven instrumental for solving a wide variety of problems involving pollution and hazardous waste, especially where available material resources have been limited. By treating industrial systems in a manner that parallels ecological systems in nature, industrial ecology provides a substantial addition to the technologies of environmental chemistry. Stanley E. Manahan, bestselling author of many environmental chemistry books for Lewis Publishers, now examines Industrial Ecology: Environmental Chemistry and Hazardous Waste. His study of this innovative technology uses an overall framework of industrial ecology to cover hazardous wastes from an environmental chemistry perspective. Chapters one to seven focus on how industrial ecology relates to environmental science and technology, with consideration of the anthrosphere as one of five major environmental spheres. Subsequent chapters deal specifically with hazardous substances and hazardous waste, as they relate to industrial ecology and environmental chemistry.

  14. 49 CFR 173.155 - Exceptions for Class 9 (miscellaneous hazardous materials).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions Classification, Packing Group... the material meets the definition of a hazardous substance, hazardous waste, marine pollutant, or...

  15. Hazardous waste status of discarded electronic cigarettes.

    PubMed

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  16. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  17. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.904 Who responds to an accident involving a radioactive or hazardous... Radiological Assistance Program team that may include nuclear engineers, health physicists,...

  18. Overweight truck shipments to nuclear waste repositories: legal, political, administrative and operational considerations

    SciTech Connect

    Not Available

    1986-03-01

    This report, prepared for the Chicago Operations Office and the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), identifies and analyzes legal, political, administrative, and operational issues that could affect an OCRWM decision to develop an overweight truck cask fleet for the commercial nuclear waste repository program. It also provides information required by DOE on vehicle size-and-weight administration and regulation, pertinent to nuclear waste shipments. Current legal-weight truck casks have a payload of one pressurized-water reactor spent fuel element or two boiling-water reactor spent fuel elements (1 PWR/2 BWR). For the requirements of the 1960s and 1970s, casks were designed with massive shielding to accommodate 6-month-old spent fuel; the gross vehicle weight was limited to 73,280 pounds. Spent fuel to be moved in the 1990s will have aged five years or more. Gross vehicle weight limitation for the Interstate highway system has been increased to 80,000 pounds. These changes allow the design of 25-ton legal-weight truck casks with payloads of 2 PWR/5 BWR. These changes may also allow the development of a 40-ton overweight truck cask with a payload of 4 PWR/10 BWR. Such overweight casks will result in significantly fewer highway shipments compared with legal-weight casks, with potential reductions in transport-related repository risks and costs. These advantages must be weighed against a number of institutional issues surrounding such overweight shipments before a substantial commitment is made to develop an overweight truck cask fleet. This report discusses these issues in detail and provides recommended actions to DOE.

  19. Electrochemical treatment of mixed and hazardous waste

    SciTech Connect

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-12-31

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study.

  20. Federal Agency Hazardous Waste Compliance Docket

    EPA Pesticide Factsheets

    List of the Federal Agency Hazardous Waste Compliance Docket Facilities comprised of four lists: National Priorities List (NPL), Non-National Priorities List, Base Realignment and Closure Act (BRAC), and Resource Conservation and Recovery Act (RCRA).

  1. GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES

    EPA Science Inventory

    This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...

  2. Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  3. 75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... standards for the management of specific types of hazardous waste and specific types of hazardous waste management facilities, the land disposal restrictions program and the hazardous waste permit program. DATES... disposal facilities, the standards for the management of specific types of hazardous waste and...

  4. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous...

  5. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous...

  6. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous...

  7. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous...

  8. 75 FR 12989 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ...The Environmental Protection Agency (EPA or the Agency) is taking Direct Final action on a number of technical changes that correct or clarify several parts of the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations that relate to hazardous waste identification, manifesting, the hazardous waste generator requirements, standards for owners and operators of hazardous waste......

  9. Special Report: Hazardous Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  10. Hazardous Educational Waste Collections in Illinois.

    ERIC Educational Resources Information Center

    Illinois State Environmental Protection Agency, Springfield.

    This report presents the status of programs designed to manage hazardous educational waste collections in secondary schools in the state of Illinois. Laboratory wastes, expired chemicals, unstable compounds, and toxic or flammable materials are accounted for in this document. The report contains an executive summary, a review of Illinois statutes…

  11. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-10-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na{sub 2}O) - Lime (CaO) - Silica (SiO{sub 2}) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  12. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na[sub 2]O) - Lime (CaO) - Silica (SiO[sub 2]) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  13. Previous Federal Agency Hazardous Waste Compliance Docket Updates

    EPA Pesticide Factsheets

    The Federal Agency Hazardous Waste Compliance Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants, or contaminants have been - or may be - released.

  14. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.

    1984-01-01

    This book is a review and evaluation of vadose (unsaturated) zone monitoring. It describes the applicability of selected monitoring methods to hazardous waste disposal sites. Topics covered include: geohydrologic framework of the vadose zone; premonitoring of storage at disposal sites; premonitoring of water movement at disposal sites; active and abandoned site monitoring methods; waste source pollutant characterization; geohydrologic settings for waste disposals and conceptual vadose zone monitoring descriptions.

  15. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carry an EPA Acknowledgment of Consent to the shipment, to sign and date the International Shipments... appropriate State, local, and Federal agencies of such discharges, and clean up such wastes, or take action...

  16. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  17. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  18. Regulatory Exclusions and Alternative Standards for the Recycling of Materials, Solid Wastes and Hazardous Wastes

    EPA Pesticide Factsheets

    Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.

  19. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  20. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  1. 75 FR 71559 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... final exclusion for ExxonMobil Refining and Supply Company-- Beaumont Refinery, published on October 1...Mobil Refining and Supply Company--Beaumont Refinery, published on October 1, 2010, 75 FR 60632....

  2. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... exclusion for Eastman Chemical Company--Texas Operations, published on September 24, 2010. DATES: Effective... Company--Texas Operations, published on September 24, 2010, 75 FR 58315. We stated in that direct...

  3. E-waste hazard: The impending challenge

    PubMed Central

    Pinto, Violet N.

    2008-01-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981

  4. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from...

  5. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  6. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  7. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  8. Hazardous waste regulations: an interpretive guide

    SciTech Connect

    Mallow, A.

    1981-01-01

    Compliance with hazardous-waste laws has been made difficult by new, lengthy, and complicated Environmental Protection Agency regulations. This book analyzes and reorganizes the 150 pages of three-column regulations, clarifying all aspects of the requirements. Paralleling the related sections of the law (Subtitle C of the Resources Act), the book begins with an overview of the law and regulations and an identification and listing of hazardous wastes. There are guidelines for authorized state programs along with notification requirements for those in hazardous-waste activities. A checklist format, using five different scenarios offers a practical approach to analyzing the unique requirements for generators and transporters as well as owners and operators. 3 figures.

  9. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  10. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  11. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hazardous waste manifest. 172.205 Section 172.205... SECURITY PLANS Shipping Papers § 172.205 Hazardous waste manifest. (a) No person may offer, transport, transfer, or deliver a hazardous waste (waste) unless an EPA Form 8700-22 and 8700-22A (when...

  12. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  13. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  14. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  15. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  16. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  17. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  18. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  19. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  20. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Imports of hazardous waste. 262.60 Section 262.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60...

  1. Management of hazardous wastes Lawrence Livermore National Laboratory

    SciTech Connect

    Jackson, C.S.

    1993-11-01

    Lawrence Livermore National Laboratory (LLNL), during the course of numerous research activities, generates hazardous, radioactive, and mixed (radioactive and hazardous) wastes. The management of these waste materials is highly regulated in the United States (US). This paper focuses on the hazardous waste regulations that limit and prescribe waste management at LLNL.

  2. Ground freezing for containment of hazardous waste

    SciTech Connect

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  3. Improvements to enforcement of multilateral environmental agreements to control international shipments of chemicals and wastes.

    PubMed

    Liu, Ning; Somboon, Vira; Wun'gaeo, Surichai; Middleton, Carl; Tingsabadh, Charit; Limjirakan, Sangchan

    2016-06-01

    Illegal trade in hazardous waste and harmful chemicals has caused severe damage on human health and the environment, and brought big challenges to countries to meet their commitments to related multilateral environmental agreements. Synergy-building, like organising law enforcement operations, is critical to address illegal trade in waste and chemicals, and further improve the effectiveness of environmental enforcement. This article discusses how and why law enforcement operations can help countries to implement chemical and waste-related multilateral environmental agreements in a more efficient and effective way. The research explores key barriers and factors for organising law enforcement operations, and recommends methods to improve law enforcement operations to address illegal trade in hazardous waste and harmful chemicals.

  4. Tougher standards for burning hazardous waste

    SciTech Connect

    Valenti, M.

    1993-08-01

    This article reports that tighter emission standards for hazardous waste combustion proposed by the EPA may require design changes that could alter the economics of hazardous waste incineration in the US. A recent draft strategy for the combustion of hazardous waste by the Environmental Protection Agency (EPA) in Washington, DC, has sent tremors through the two major types of combustors of industrial wastes: commercial incinerators and cement kilns. It is too early to predict what new environmental regulations will result from this proposal, but the ability of competitive combustors to meet them will likely determine their survival. The two emissions standards specified in the draft strategy announced in May by EPA administrator Carol Browner limit the particulate emissions from hazardous waste incinerators to 0.015 grain per dry standard cubic foot, less than one-fifth the 0.08 grain now permitted. Control of dioxins spells an even sharper change in EPA strategy, for these must be held to under 30 nanograms per dry standard cubic meter. Currently, there are no overall dioxin limits, only site-specific boundaries calculated on a risk-assessment basis for boilers and industrial furnaces (BIF) that have the potential to emit large amounts of dioxins and furans.

  5. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  6. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    SciTech Connect

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  7. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  8. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  9. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  10. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  11. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE General § 262.11 Hazardous waste... waste in subpart D of 40 CFR part 261. Note: Even if the waste is listed, the generator still has an... the waste is not listed in subpart D of 40 CFR part 261, the generator must then determine whether...

  12. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    SciTech Connect

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  13. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.; Wilson, L.G.; Hoylman, E.W.

    1983-10-01

    This book describes the applicability of vadose zone monitoring techniques to hazardous waste site investigations. More than 70 different sampling and nonsampling vadose zone monitoring techniques are described in terms of their advantages and disadvantages. Physical, chemical, geologic, topographic, geohydrologic, and climatic constraints for vadose zone monitoring are quantitatively determined. Vadose zone monitoring techniques are categorized for premonitoring, active, and postclosure site assessments. Waste disposal methods are categorized for piles, landfills, impoundments, and land treatment. Conceptual vadose zone monitoring approaches are developed for specific waste disposal method categories.

  14. Management of hazardous medical waste in Croatia

    SciTech Connect

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  15. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  16. Management of uncontrolled hazardous waste sites

    SciTech Connect

    Not Available

    1985-01-01

    This book is a compilation of papers presented at a conference on the management of uncontrolled hazardous waste sites. Papers were presented in the following topics: federal and state programs; sampling and monitoring; leaking tanks; in-situ treatment; site remediation; banner technology; storage/disposal; endangerment assessment; risk assessment techniques; and research and development.

  17. What Specific Areas Must a Hazardous Waste Permit Address?

    EPA Pesticide Factsheets

    Hazardous waste permits provide treatment, storage, and disposal facilities (TSDFs) with the legal authority to treat, store, or dispose of hazardous waste and detail how the facility must comply with the regulations

  18. Psychosocial effects of hazardous toxic waste disposal on communities

    SciTech Connect

    Peck, D.L. )

    1989-01-01

    This book covers the following topics: Community responses to exposure to hazardous wastes; Characteristics of citizen groups which emerge with respect to hazardous waste sites; The technological world-view and environmental planning.

  19. Hazardous Waste Generator Regulations: A User-Friendly Reference Document

    EPA Pesticide Factsheets

    User-friendly reference to assist EPA and state staff, industrial facilities generating and managing hazardous wastes as well as the general public, in locating and understanding RCRA hazardous waste generator regulations.

  20. Hazardous Waste Electronic Manifest System (E-Manifest)

    EPA Pesticide Factsheets

    This webpage provides information on EPA's work toward developing a hazardous waste electronic manifest system. Information on the Hazardous Waste Electronic Manifest Establishment Act, progress on the project and frequent questions are available.

  1. 75 FR 16037 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... (carcinogenic risk of 10 -5 and non-cancer hazard index of 1.0). The DRAS program can back-calculate the... possible risks associated with releases of waste constituents through surface pathways...

  2. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... site. Using the risk level (carcinogenic risk of 10 -5 and non-cancer hazard index of 0.1), the DRAS... of waste constituents through surface pathways (e.g., volatilization or wind-blown particulate...

  3. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  4. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL...-eligible wastes in permitted hazardous waste landfills. (a) The Regional Administrator with regulatory... hazardous waste landfills not located at the site from which the waste originated, without the...

  5. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL...-eligible wastes in permitted hazardous waste landfills. (a) The Regional Administrator with regulatory... hazardous waste landfills not located at the site from which the waste originated, without the...

  6. Integrating waste management with Job Hazard analysis

    SciTech Connect

    2007-07-01

    The web-based Automated Job Hazard Analysis (AJHA) system is a tool designed to help capture and communicate the results of the hazard review and mitigation process for specific work activities. In Fluor Hanford's day-to-day work planning and execution process, AJHA has become the focal point for integrating Integrated Safety Management (ISM) through industrial health and safety principles; environmental safety measures; and involvement by workers, subject-matter experts and management. This paper illustrates how AJHA has become a key element in involving waste-management and environmental-control professionals in planning and executing work. To support implementing requirements for waste management and environmental compliance within the core function and guiding principles of an integrated safety management system (ISMS), Fluor Hanford has developed the a computer-based application called the 'Automated Job Hazard Analysis' (AJHA), into the work management process. This web-based software tool helps integrate the knowledge of site workers, subject-matter experts, and safety principles and requirements established in standards, and regulations. AJHA facilitates a process of work site review, hazard identification, analysis, and the determination of specific work controls. The AJHA application provides a well-organized job hazard analysis report including training and staffing requirements, prerequisite actions, notifications, and specific work controls listed for each sub-task determined for the job. AJHA lists common hazards addressed in the U.S. Occupational, Safety, and Health Administration (OSHA) federal codes; and State regulations such as the Washington Industrial Safety and Health Administration (WISHA). AJHA also lists extraordinary hazards that are unique to a particular industry sector, such as radiological hazards and waste management. The work-planning team evaluates the scope of work and reviews the work site to identify potential hazards. Hazards

  7. Wastewater and Hazardous Waste Survey, England AFB Louisiana.

    DTIC Science & Technology

    1988-01-01

    Background 1 A. Wastewater System 2 B. England AFB Wastewater Discharge Limitations 2 C. Characteristic Hazardous Waste Regulations 3 1II. Procedures 4 A...Conservation and Recovery Act, or the Louisiana State Hazardous Waste Regulations . The wastewater survey was conducted by 1 Lt Robert A. Tetla, 2Lt Charles W...34Hazardous Waste Abatement Plan, England Air Force Base, Louisiana," 1987. 0 12. State of Louisiana Hazardous Waste Regulations 13. RCRA Interim

  8. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  9. TECHNICAL BASIS DOCUMENT FOR CRITERIA AND PROCESSES FOR THE CERTIFICATION OF NON-RADIOACTIVE HAZARDOUS AND NON-HAZARDOUS WASTES

    SciTech Connect

    Dominick, J; Gaylord, R

    2007-02-13

    This Technical Basis Document (TBD) identifies how the values presented in the ''Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes'' were derived. The original moratorium document (UCRL-AR-109662) applied only to hazardous wastes generated in Radioactive Materials Management Areas (RMMAs) that were destined for off-site Treatment, Storage, and Disposal Facilities (TSDFs) that did not possess a radioactive materials license. Since its inception, the original moratorium document has become the de facto free-release procedure for potentially volumetrically contaminated materials of all varieties. This was promulgated in a February 4, 1992 memo from Jyle Lytle, Deputy Assistant Secretary for Waste Management, entitled ''Update: Moratorium on Shipment of Potentially Radioactive Hazardous and Toxic Wastes''. In this memo, Ms. Lytle states, ''While the moratorium does not apply to non-hazardous/non-TSCA solid wastes and non-waste materials, the same release criteria apply''. Over the past few years, a considerable quantity of data and operating experience has been developed, which has shown the limitations of UCRL-AR-109662. The original Moratorium is out of date, and many of the organizations and procedures that it references are no longer in existence. In addition, the original document lacked sufficient detail to be used as an LLNL-wide procedure for free release, as it only addressed hazardous wastes. The original moratorium document also used highly optimistic ''action limits'', which were based on theoretically achievable minimum detectable activity (MDA) levels for various matrices. Years of operating experience has shown that these action limits are simply not achievable for certain analyses in certain matrices, either due to limitations in sample size, or underestimates of the contribution of naturally-occurring radioactive materials, resulting in the mis-characterization of samples of these matrices as radioactive

  10. Estimating the Long Term Liability from Landfilling Hazardous Waste

    DTIC Science & Technology

    1992-01-01

    Hazardous and Solid Waste Amendments make the key element in...Society of Civil Engineers, New York, Nov. 1990. 44 required by the 1984 Hazardous and Solid Waste Amendments to RCRA, as shown in Figure 10...reauthorized in 1984 by the Hazardous and Solid Waste Amendments , is due for reauthorization in 1992 and it is probable that leachate flow rates shall

  11. 76 FR 36480 - Hazardous Waste Manifest Printing Specifications Correction Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... AGENCY 40 CFR Part 262 Hazardous Waste Manifest Printing Specifications Correction Rule AGENCY... proposing a minor change to the Resource Conservation and Recovery Act (RCRA) hazardous waste manifest regulations that affects those entities that print the hazardous waste manifest form in accordance with...

  12. 76 FR 72311 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... the receptor's respiratory system. This is no longer necessary as toxicity reference values for...-2009-0312; SW FRL-9490-9] Hazardous Waste Management System; Identification and Listing of Hazardous... States: States having a dual system that includes Federal RCRA requirements and their own...

  13. Hazardous waste minimization report for CY 1986

    SciTech Connect

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  14. 77 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Protection Agency (EPA) is granting a petition submitted by ExxonMobil Refining and Supply Company (ExxonMobil) Baytown Refinery to exclude from hazardous waste control (or delist) a certain solid waste. This final rule responds to the petition submitted by ExxonMobil to have the F039 underflow water...

  15. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... exclude (or delist) its wastewater treatment biosludge generated by its Ingleside, Texas facility from the..., K020, F025, F001, F003, and F005 waste resulting from the treatment of wastewaters from the... 9, 2009, to exclude the wastewater treatment biosludge from the lists of hazardous waste under...

  16. The Scientific Management of Hazardous Wastes

    NASA Astrophysics Data System (ADS)

    Porter, Keith S.

    According to the jacket of this book, three independent scientists carefully define the limits of scientific knowledge applicable to the management of hazardous wastes. It is claimed that the extrapolation and application of this knowledge is examined, significant areas of uncertainty are identified, and the authors reveal “the fallibility of certain interpretations.” It would be more accurate to claim these as possible goals of the book rather than its accomplishments.Chapter 1, Hazardous Wastes and Their Recycling Potential, includes 11 pages of lists of chemicals, some of which are poorly reproduced. The remaining pages describe, superficially, several recycling schemes. Connections between the chemicals previously listed and the recycling schemes are not given. Concerning the potential for recycling, the last sentence of the chapter reads, “Indeed, the concept of waste recycling, itself a contradiction in terms, is better politics than business.” Taken literally, this assertion itself contradicts venerable practice, as the farmer might observe as he transfers waste from his cows to the crops in his field. More pertinently, it can be argued that the recovery of solvents, metals, and oil from waste flows is much more than a political gesture.

  17. Biological treatment of hazardous aqueous wastes

    SciTech Connect

    Opatken, E.J.; Howard, H.K.; Bond, J.J.

    1987-06-01

    Studies were conducted with a rotating biological conractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous-waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protection Agency's Testing and Evaluation Facility. A series of batches were run with primary effluent from Cincinnati's Mill Creek Sewage Treatment Facility. The paper reports on the results from these experiments and the effectiveness of an RBC to adequately treat leachates from Superfund sites.

  18. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace gas sampling and analysis. Therefore, it is concluded that this transuranic debris

  19. Frozen soil barriers for hazardous waste confinement

    SciTech Connect

    Dash, J.G.; Leger, R.; Fu, H.Y.

    1997-12-31

    Laboratory and full field measurements have demonstrated the effectiveness of artificial ground freezing for the containment of subsurface hazardous and radioactive wastes. Bench tests and a field demonstration have shown that cryogenic barriers are impenetrable to aqueous and non aqueous liquids. As a result of the successful tests the US Department of Energy has designated frozen ground barriers as one of its top ten remediation technologies.

  20. Determining Cleanup Standards for Hazardous Waste Sites

    DTIC Science & Technology

    1991-04-01

    CERCLA ) 8 was designed to deal with so-called Superfund sites like Love Canal. Among other things, Section 121 of that Act 9 describes, the cleanup...the "big stick" for cleaning up dangerous environmental sites falls under the broad 17 scope of CERCLA and the Superfund . The fundamental difference...as wastes under RCRA but are still 43 considered "hazardous" for CERCLA regulation. Furthermore, CERCLA , as amended by the Superfund Amendment and

  1. Hazardous Waste Minimization Guide for Shipyards

    DTIC Science & Technology

    1994-01-01

    suited for low-boiling solvents without abrasive solids. Another evaporation method involves the use of a dryer . In this operation, the waste is fed...sludge is dewatered through filter presses and sludge dryers . The sludge is then generally disposed of at a class 1 Iandfill site owned by a hazardous...piece, the metal powder, water, glass shot, and additives are tumbled together in a barrel. Coatings are limited to ductile metals such as Cd, An, Sn

  2. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  3. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  4. Development of an Evaluation Methodology for Hazardous Waste Training Programs

    DTIC Science & Technology

    2006-03-01

    substances, which reduces the amount of waste covered by RCRA. 2.2.2. Enforcement of Hazardous Waste Regulations The goals of the RCRA enforcement...civil action is a formal lawsuit filed against an entity that failed to comply with hazardous waste regulations or contributed to a release of... hazardous waste regulations on an Air Force installation is the _______________. A. State environmental regulatory agency B. Local county or city

  5. Hazardous and toxic waste management in Botswana: practices and challenges.

    PubMed

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future.

  6. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored.

  7. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    SciTech Connect

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

  8. Issues in the shipment and disposal of TRU waste from small stream generators: The case of Battelle Columbus Operations

    SciTech Connect

    Kohli, R.; Pasupathi, V.

    1995-11-01

    The Battelle Hot Cell Facility in Central Ohio is scheduled to be decommissioned in the near future. Past nuclear research activities have left the hot cells and other controlled areas with highly contaminated equipment, as well as extensively contaminated surfaces and residual radioactive materials, including approximately 45 m{sup 3} of stored transuranic (TRU) waste. Because of the high radiation levels of the waste, it must be packaged in shielded containers for shipment and, depending on the final disposal site, repackaged in different containers to meet disposal site acceptance criteria. At present, Battelle does not have authorization to ship the TRU waste off site since no storage or disposal site has been designated to receive the waste. Various options are being considered for disposal of the TRU waste each with different packaging requirements that will have major impacts on the cost and schedule for completion of the decommissioning of the facility. These issues are discussed.

  9. Minnesota Mining and Manufacturing Company's hazardous waste program.

    PubMed

    Van Noordwyk, H J; Santoro, M A

    1978-12-01

    This paper discusses the present hazardous waste program of 3M Company (Minnesota Mining and Manufacturing Company). 3M's definition of hazardous waste and the company's position on hazardous waste disposal are first considered. The company position is that wherever and whenever the disposal of a waste material threatens the environment or public safety, then that waste should be considered a hazardous waste and treated accordingly in terms of its handling and ultimate disposal. The generation of hazardous wastes and the differentiation of "hazardous" and "nonhazardous" wastes are described next. Handling of hazardous wastes from their generation to their disposal is then covered. This includes a definition of internal 3M terminology and a description of the hazard rating system used by the company. Finally, 3M disposal practices are presented. It is 3M's position that thermal destruction of hazardous wastes, where appropriate, is the best method for their disposal. With this in mind, 3M has constructed incineration facilities throughout the country. The rotary kiln incinerator at the 3M Chemolite plant in Cottage Grove, Minnesota is briefly described. Disposal of certain hazardous wastes in controlled secure land disposal sites is then briefly discussed.

  10. Hazardous-waste analysis plan for LLNL operations

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  11. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2010-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  12. Evaluation of health effects from hazardous waste sites

    SciTech Connect

    Andelman, J.B.; Underhill, D.W.

    1986-01-01

    This information and data for evaluating health effects from hazardous waste sites stems from the efforts of specialists representing leading research centers, hospitals, universities, government agencies and includes consultant as well as corporate viewpoints. The work evolved from the Fourth Annual Symposium on Environmental Epidemiology sponsored by the Center for Environmental Epidemiology at the University of Pittsburgh and the U.S. EPA. Contents-One: Scope of the Hazardous Wastes Problems. Evaluating Health Effects at Hazardous Waste Sites. Historical Perspective on Waste Disposal. Two: Assessment of Exposure to Hazardous Wastes. Chemical Emissions Assessment for Hazardous Waste Sites. Assessing Pathways to Human Populations. Methods of Defining Human Exposures. Three: Determining Human Health Effects. Health Risks of Concern. Expectations and Limitations of Human Health Studies and Risk Assessment. Four: Case Studies. Love Canal. Hardeman County, Tennessee. Cannonsburg, Pennsylvania. Five: Defining Health Risks at Waste Sites. Engineering Perspectives from an Industrial Viewpoint. Role of Public Groups. Integration of Governmental Resources in Assessment of Hazards.

  13. Vegetative soil covers for hazardous waste landfills

    NASA Astrophysics Data System (ADS)

    Peace, Jerry L.

    Shallow land burial has been the preferred method for disposing of municipal and hazardous wastes in the United States because it is the simplest, cheapest, and most cost-effective method of disposal. Arid and semiarid regions of the western United States have received considerable attention over the past two decades in reference to hazardous, radioactive, and mixed waste disposal. Disposal is based upon the premise that low mean annual precipitation, high evapotranspiration, and low or negligible recharge, favor waste isolation from the environment for long periods of time. The objective of this study is to demonstrate that containment of municipal and hazardous wastes in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers utilizing natural soils and native vegetation i.e., vegetative soil covers, will meet the technical equivalency criteria prescribed by the U.S. Environmental Protection Agency for hazardous waste landfills. Vegetative soil cover design combines layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem that maintains the natural water balance. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards' equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data from 1919 to 1996 are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 1 m (3 ft) cover is the minimum design thickness necessary to meet the U.S. Environmental Protection Agency

  14. Medical aspects of the hazardous waste problem.

    PubMed

    Ozonoff, D

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, (1) causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. (2) This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem.

  15. Medical aspects of the hazardous waste problem

    SciTech Connect

    Ozonoff, D.

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem.

  16. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  17. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  18. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  19. 77 FR 36447 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... (that is, ignitability, corrosivity, reactivity, and toxicity), (2) the wastes meet the criteria for... any of the hazardous waste characteristics (that is, ignitability, reactivity, corrosivity, and...+00 Copper 2.23E-03 4.60E+02 o-Cresol ND 2.00E+02 m-Cresol ND 2.00E+02 p-Cresol ND 2.00E+02...

  20. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2006

    SciTech Connect

    DOE /NNSA NSO

    2007-01-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMS) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2006.

  1. 40 CFR 262.27 - Waste minimization certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization certification. A generator who initiates a shipment of hazardous waste must certify to one of the following statements in Item 15 of the uniform hazardous waste manifest: (a) “I am a large quantity generator. I have...

  2. 40 CFR 262.27 - Waste minimization certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization certification. A generator who initiates a shipment of hazardous waste must certify to one of the following statements in Item 15 of the uniform hazardous waste manifest: (a) “I am a large quantity generator. I have...

  3. 40 CFR 262.27 - Waste minimization certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization certification. A generator who initiates a shipment of hazardous waste must certify to one of the following statements in Item 15 of the uniform hazardous waste manifest: (a) “I am a large quantity generator. I have...

  4. 40 CFR 262.27 - Waste minimization certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization certification. A generator who initiates a shipment of hazardous waste must certify to one of the following statements in Item 15 of the uniform hazardous waste manifest: (a) “I am a large quantity generator. I have...

  5. 40 CFR 262.27 - Waste minimization certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization certification. A generator who initiates a shipment of hazardous waste must certify to one of the following statements in Item 15 of the uniform hazardous waste manifest: (a) “I am a large quantity generator. I have...

  6. Characterizing soils for hazardous waste site assessments.

    PubMed

    Breckenridge, R P; Keck, J F; Williams, J R

    1994-04-01

    This paper provides a review and justification of the minimum data needed to characterize soils for hazardous waste site assessments and to comply with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Scientists and managers within the regulatory agency and the liable party need to know what are the important soil characteristics needed to make decisions about risk assessment, what areas need remediation and what remediation options are available. If all parties involved in characterizing a hazardous waste site can agree on the required soils data set prior to starting a site investigation, data can be collected in a more efficient and less costly manner. Having the proper data will aid in reaching decisions on how to address concerns at, and close-out, hazardous waste sites.This paper was prepared to address two specific concerns related to soil characterization for CERCLA remedial response. The first concern is the applicability of traditional soil classification methods to CERCLA soil characterization. The second is the identification of soil characterization data type required for CERCLA risk assessment and analysis of remedial alternatives. These concerns are related, in that the Data Quality Objective (DQO) process addresses both. The DQO process was developed in part to assist CERCLA decision-makers in identifying the data types, data quality, and data quantity required to support decisions that must be made during the remedial investigation/feasibility study (RI/FS) process. Data Quality Objectives for Remedial Response Activities: Development Process (US EPA, 1987a) is a guidebook on developing DQOs. This process as it relates to CERCLA soil characterization is discussed in the Data Quality Objective Section of this paper.

  7. Economic Analysis of Hazardous Waste Minimization Alternatives

    DTIC Science & Technology

    1992-08-01

    OF REPORT OF THIS PP,,E OF ABSTRACT Unclassified Unclassilied Unclassified SAR NSN 7540 01-280 5500 SuxVl form t (Rev 2- R ]I Pe•nbed or ANSi Srd 2r39...Consulting Associates, Inc.. 15 June 1987). Chapter 7. T . Page, R . Harris, and J. Bruser, Removal of Carcinogens from Drinking Water: A Cost-Benefit Analysis...Pretreatment of Hazardous Waste, EPA/600/D-87/047 (EPA, January 1987), pp 58-70. Page, T ., R . Harris, and J. Bruser. Removal of Carcinogens from Drinking Water

  8. Regulatory compliance by small-quantity generators of hazardous waste

    SciTech Connect

    Deyle, R.E.

    1987-01-01

    While small quantity and very small quantity generators of hazardous waste (SQCs and VSQGs) are responsible for less than one percent of the total hazardous waste produced, mismanagement of even small quantities of many types of hazardous waste can cause significant local impacts. Most SQGs and VSQGs are also small businesses. They are presumed to face significant time, expertise, and other resource constraints in complying with legally and technically complex regulations such as those that govern hazardous waste management. A sample of 400 SQGs and VSQGs in New Jersey was surveyed to assess policy options for two policy issues identified by the New Jersey Hazardous Waste Facilities Siting Commission: (1) enhancing regulatory compliance by SQGs, and (2) promoting voluntary adherence with hazardous waste regulations by VSQGs in the state. The analysis empirically tests hypotheses based on the rational utility maximization and bounded rationality models of individual and organizational decision making and compliance behavior.

  9. In-plant management of hazardous waste

    SciTech Connect

    Hall, M.W.; Howell, W.L. Jr. |

    1995-12-31

    One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interests within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.

  10. Dumping and illegal transport of hazardous waste, danger of modern society.

    PubMed

    Obradović, Mario; Kalambura, Sanja; Smolec, Danijel; Jovicić, Nives

    2014-06-01

    Increasing the production of hazardous waste during the past few years and stricter legislation in the area of permanent disposal and transportation costs were significantly elevated above activities. This creates a new, highly lucrative gray market which opens the way for the criminalization. Of great importance is the identification of illegal trafficking of hazardous waste since it can have a significant impact on human health and environmental pollution. Barriers to effective engagement to prevent these activities may vary from region to region, country to country, but together affect the ability of law enforcement authorities to ensure that international shipments of hazardous waste comply with national laws and maritime regulations. This paper will overview the legislation governing these issues, and to analyze the barriers to their implementation, but also try to answer the question of why and how this type of waste traded. Paper is an overview of how Croatia is prepared to join the European Union in this area and indicates the importance and necessity of the cooperation of all of society, and international organizations in the fight with the new trend of environmental crime.

  11. Hazardous-waste minimization assessment: Fort Campbell, Kentucky. Final report

    SciTech Connect

    Dharmavaram, S.; Knowlton, D.A.; Heflin, C.; Donahue, B.A.

    1991-03-01

    Waste minimization is the process of reducing the net outflow of hazardous materials that may be solid, liquid, or gaseous effluents from a given source or generating process. It involves reducing air pollution emissions, contamination of surface and ground water, and land disposal by means of source reduction, waste recycling processes, and treatment leading to complete destruction. Among Federal regulations is a requirement that every generator of hazardous wastes producing in excess of 2205 pounds per month certify that a hazardous waste minimization program is in operation. Generators are required to submit biennial reports to the USEPA that describe efforts taken to reduce the volume and toxicity of waste generated during the year. The objective of this research was to develop a hazardous waste minimization plan for Fort Campbell, Kentucky, to include actions necessary to reduce the generation of hazardous wastes. Reduction should be in both volume and toxicity.

  12. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE,...

  13. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE,...

  14. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE,...

  15. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE,...

  16. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... F037 Benzene, benzo(a)pyrene, chrysene, lead, chromium. F038 Benzene, benzo(a)pyrene, chrysene, lead.... K052 Lead. K169 Benzene. K170 Benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(a)anthracene, benzo(b... separation sludges that are listed as hazardous wastes due to benzene, benzo(a)pyrene, chrysene, lead...

  17. Hazardous Waste Minimization Assessment: Fort Sam Houston, Texas

    DTIC Science & Technology

    1991-01-01

    Houston has a number of power production and heating/cooling plants ( HCP ) that use hazardous materials and generate potentially hazardous wastes. The DEH...Training and Support Center - Photo, Print Section; Buildings 2010, 2016 2. DPTMSEC - Training and Support Center - Graphics Section; Building 1450 3...Hazardous Waste Minimization HCL Hospitals, Clinics, and Laboratories HCP Heating/Cooling Plants HMTC Hazardous Materials Technical Center HSC Health

  18. Fire hazards analysis of transuranic waste storage and assay facility

    SciTech Connect

    Busching, K.R., Westinghouse Hanford

    1996-07-31

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  19. S. 1082: This Act may be cited as the Hazardous and Additional Waste Export and Import Act of 1991, introduced in the US Senate, One Hundred Second Congress, First Session, May 15, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill was introduced into the US Senate on May 15, 1991 to amend the Solid Waste Disposal Act. This legislation prohibits the export from and import into the United States of Hazardous and additional waste except in compliance with the requirements of this bill. The purpose of this act is to implement the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal, done at Basel, Switzerland, March 22, 1989. Key sections of this bill address the following: international shipments of hazardous and additional waste; objectives and national policy; retention of existing authority; and conforming amendments.

  20. Hazardous waste and environmental trade: China`s issues

    SciTech Connect

    Ma Jiang

    1996-12-31

    By presenting some case studies, this paper analyzes China`s situation with regard to hazardous waste: its environmental trade, treatment, and management. The paper describes China`s experiences with the environmental trade of hazardous waste in both the internal and international market. Regulations for managing the import of waste are discussed, as are China`s major approaches to the trading of hazardous waste both at home and overseas. The major reasons for setting up the Asian-Pacific Regional Training Center for Technology Transfer and Environmental Sound Management of Wastes in China and the activities involved in this effort are also described. 1 tab.

  1. A Guidance Manual: Waste Analysis at Facilities that Generate, Treat, Store, and Dispose of Hazardous Wastes

    EPA Pesticide Factsheets

    Discusses how a person can perform waste analyses and develop waste analysis plans (WAPs) in accordance with the federal hazardous waste regulations of the Resource Conservation and Recovery Act (RCRA)

  2. Financial assistance to states and tribes to support emergency preparedness and response and the safe transportation of hazardous shipments: 1996 Update

    SciTech Connect

    Bradbury, J.A.; Leyson, J.; Lester, M.K.

    1996-07-01

    This report revises and updates the 1995 report Financial Assistance to States and Tribes to Support Emergency Preparedness and Response and the Safe Transportation of Hazardous Shipments, PNL-10260 (UC-620). The presentation of data and some of the data reported have been changed; these data supersede those presented in the earlier publication. All data have been updated to fiscal year 1995, with the exception of FEMA data that are updated to fiscal year 1994 only. The report identifies and summarizes existing sources of financial assistance to States and Tribes in preparing and responding to transportation emergencies and ensuring the safe transportation of hazardous shipments through their jurisdictions. It is intended for use as an information resource for the U.S. Department of Energy`s Office of Environmental Management (EM), Office of Transportation, Emergency Management, and Analytical Services (EM-76).

  3. Hazardous healthcare waste management in the Kingdom of Bahrain

    SciTech Connect

    Mohamed, L.F. Ebrahim, S.A.; Al-Thukair, A.A.

    2009-08-15

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  4. HAZ-ED Classroom Activities for Understanding Hazardous Waste.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Federal Superfund Program investigates and cleans up hazardous waste sites throughout the United States. Part of this program is devoted to informing the public and involving people in the process of cleaning up hazardous waste sites from beginning to end. The Haz-Ed program was developed to assist the Environmental Protection Agency's (EPA)…

  5. Fire hazards analysis for solid waste burial grounds

    SciTech Connect

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  6. SEMINAR PUBLICATION: OPERATIONAL PARAMETERS FOR HAZARDOUS WASTE COMBUSTION DEVICES

    EPA Science Inventory

    The information in the document is based on presentations at the EPA-sponsored seminar series on Operational Parameters for Hazardous Waste Combustion Devices. This series consisted of five seminars held in 1992. Hazardous waste combustion devices are regulated under the Resource...

  7. Hazardous Waste Technical Assistance Survey, March AFB, California

    DTIC Science & Technology

    1989-03-01

    Bioenvironmental Engineer, SGPB, AV 947-3952 2Lt Bachand, Environmental Coordinator, OEEV, AV 947-4855 Ms Billy Maddi, Hazardous Waste Manager, DRMO (Located...amounts of oily rags which are drummed and disposed of as hazardous waste. Shop: Fuel Systems Building: 2307 Contact: Mr Vaughn AUTOVON: 947-5256 Shop

  8. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  9. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  10. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  11. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  12. A rating system for determination of hazardous wastes.

    PubMed

    Talinli, Ilhan; Yamantürk, Rana; Aydin, Egemen; Başakçilardan-Kabakçi, Sibel

    2005-11-11

    Although hazardous waste lists and their classification methodologies are nearly the same in most of the countries, there are some gaps and subjectiveness in determining the waste as hazardous waste. A rating system for the determination of waste as a hazardous waste is presented in this study which aims to overcome the problems resulted from the existing methodologies. Overall rating value (ORV) calculates and quantifies the waste as regular, non-regular or hazardous waste in an "hourglass" scale. "ORV" as a cumulative-linear formulation in proposed model consists of components such as ecological effects of the waste (Ee) in terms of four main hazard criteria: ignitability, reactivity, corrosivity and toxicity; combined potential risk (CPR) including carcinogenic effect, toxic, infectious and persistence characteristics; existing lists and their methodology (L) and decision factor (D) to separate regular and non-regular waste. Physical form (f) and quantity (Q) of the waste are considered as factors of these components. Seventeen waste samples from different sources are evaluated to demonstrate the simulation of the proposed model by using "hourglass" scale. The major benefit of the presented rating system is to ease the works of decision makers in managing the wastes.

  13. Method for disposing of hazardous wastes

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  14. Hazardous Waste Management System: Identification and Listing of Hazardous Waste - Burning of Hazardous Waste in Boilers and Industrial Furnaces - Federal Register Notice, September 5, 1991

    EPA Pesticide Factsheets

    EPA is announcing an administrative stay of the permitting standards for boilers and industrial furnaces adopted pursuant to the Resource Conservation and Recovery Act (56 FR 7206, Feb. 21, 1991) as they apply to coke ovens burning certain hazardous wastes

  15. Hazardous waste research and development in the Pacific Basin

    SciTech Connect

    Cirillo, R.R.; Carpenter, R.A.; Environment and Policy Inst., Honolulu, HI )

    1989-01-01

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

  16. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles Joe

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  17. Vitrification: Destroying and immobilizing hazardous wastes

    SciTech Connect

    Chapman, C.C.; Peters, R.D.; Perez, J.M.

    1994-04-01

    Researchers at the US Department of Energy`s Pacific Northwest Laboratory (PNL) have led the development of vitrification a versatile adaptable process that transforms waste solutions, slurries, moist powder and/or dry solids into a chemically durable glass form. The glass form can be safely disposed or used for other purposes, such as construction material if non-radioactive. The feed used in the process can be either combustible or non-combustible. Organic compounds are decomposed in the melters` plenum, while the inorganic residue melts into a molten glass pool. The glass produced by this process is a chemically durable material comparable to natural obsidian. Its properties typically allow it to pass the EPA Toxicity (TCLP) test as non-hazardous. To date, no glass produced by vitrification has failed the TCLP test. Vitrification is thus an ideal method of treating DOE`s mixed waste because of its ability to destroy organic compounds and bind toxic or radioactive elements. This article provides an overview of the technology.

  18. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect

    1988-04-01

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  19. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... AGENCY 40 CFR Part 272 Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program... in the regulations entitled ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The EPA will incorporate by reference into the Code of...

  20. 77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... AGENCY 40 CFR Part 272 Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program... in the regulations entitled ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The EPA will incorporate by reference into the Code of...

  1. 75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... AGENCY 40 CFR Part 272 Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program... in the regulations entitled ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The EPA will incorporate by reference into the Code of...

  2. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect

    COVEY, L.I.

    2000-11-28

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  3. Pollution due to hazardous glass waste.

    PubMed

    Pant, Deepak; Singh, Pooja

    2014-02-01

    Pollution resulting from hazardous glass (HG) is widespread across the globe, both in terms of quantity and associated health risks. In waste cathode ray tube (CRT) and fluorescent lamp glass, mercury and lead are present as the major pollutants. The current review discusses the issues related to quantity and associated risk from the pollutant present in HG and proposes the chemical, biological, thermal, hybrid, and nanotechniques for its management. The hybrid is one of the upcoming research models involving the compatible combination of two or more techniques for better and efficient remediation. Thermal mercury desorption starts at 100 °C but for efficient removal, the temperature should be >460 °C. Involvement of solar energy for this purpose makes the research more viable and ecofriendly. Nanoparticles such as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formulation can immobilize heavy metals present in HG by involving a redox mechanism. Straight-line equation from year-wise sale can provide future sale data in comparison with lifespan which gives future pollutant approximation. Waste compact fluorescent lamps units projected for the year 2015 is 9,300,000,000 units and can emit nearly 9,300 kg of mercury. On the other hand, CRT monitors have been continuously replaced by more improved versions like liquid crystal display and plasma display panel resulting in the production of more waste. Worldwide CRT production was 83,300,000 units in 2002 and can approximately release 83,000 metric tons of lead.

  4. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  5. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  6. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  7. Hydrothermal Oxidation Hazardous Waste Pilot Plant Test Bed

    SciTech Connect

    Welland, H.; Reed, W.; Valentich, D.; Charlton, T.

    1995-03-01

    The Idaho National Engineering Laboratory (INEL) is fabricating a Hydrothermal Oxidation (HTO) Hazardous Waste Pilot Plant Test Bed to evaluate and test various HTO reactor concepts for initial processing of the U.S. Department of Energy (DOE) mixed wastes. If the HTO process is successful it will significantly reduce the volume of DOE mixed wastes by destroying the organic constituents.

  8. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Disposal of CAMU-eligible wastes in permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS...

  9. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Disposal of CAMU-eligible wastes in permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS...

  10. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the Resource Conservation and Recovery Act of 1976 (RCRA), as amended by the Hazardous and Solid Waste Amendments of...

  11. Physical and chemical methods for the characterization of hazardous wastes

    NASA Astrophysics Data System (ADS)

    Francis, C. W.; Maskarinec, M. P.; Lee, D. W.

    Numerous test methods have been proposed and developed to evaluate the hazards associated with handling and disposal of wastes in landfills. The major concern is the leaching of toxic constituents from the wastes. The fate of hazardous constituents in landfilled wastes is highly dependent on the physical and chemical characteristics of the waste. Thus, the primary objective in the selection of waste characterization procedures should be focused on those methods that gauge the fate of the waste's hazardous constituents in a specific landfill environment. Waste characterization in the United States has centered around the characteristics of ignitability, corrosivity, reactivity, and toxicity. The strategy employed in the development of most regulatory waste characterization procedures has been a pass or fail approach, usually tied to some form of a mismanagement scenario for that waste. For example, USEPA has chosen the disposal of a waste in a municipal waste landfill as a mismanagement scenario for the development of the waste leaching tests to determine the toxicity characteristic. Many wastes, such as large-volume utility wastes or mining wastes, are not disposed of in municipal waste landfills. As a consequence, more effort is needed in the development of waste leaching tests that determine the long-term leaching characteristics of that waste in the landfill environment in which the waste is to be disposed. Waste leaching models also need to be developed and tested as to their ability to simulate actual disposal environments. These models need to be compared with laboratory leaching tests, and, if practical, coupled with groundwater transport models.

  12. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Residues of hazardous waste in empty... WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.7 Residues of hazardous waste in empty containers. (a)(1) Any hazardous waste remaining in either: an empty container; or...

  13. Organic and inorganic hazardous waste stabilization utilizing fossil fuel combustion waste materials

    SciTech Connect

    Netzel, D.A.; Lane, D.C.; Brown, M.A.; Raska, K.A.; Clark, J.A.; Rovani, J.F.

    1993-09-01

    A laboratory study was conducted at the Western Research Institute to evaluate the ability of innovative clean coal technology (ICCT) waste to stabilize organic and inorganic constituents of hazardous wastes. The four ICCT wastes used in this study were: (1) the Tennessee Valley Authority (TVA) atmospheric fluidized bed combustor (AFBC) waste, (2) the TVA spray dryer waste, (3) the Laramie River Station spray dryer waste, and (4) the Colorado-Ute AFBC waste. Four types of hazardous waste stream materials were obtained and chemically characterized for use in evaluating the ability of the ICCT wastes to stabilize hazardous organic and inorganic wastes. The wastes included an API separator sludge, mixed metal oxide-hydroxide waste, metal-plating sludge, and creosote-contaminated soil. The API separator sludge and creosote-contaminated soil are US Environmental Protection Agency (EPA)-listed hazardous wastes and contain organic contaminants. The mixed metal oxide-hydroxide waste and metal-plating sludge (also an EPA-listed waste) contain high concentrations of heavy metals. The mixed metal oxide-hydroxide waste fails the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metal-plating sludge fails the TCLP for chromium. To evaluate the ability of the ICCT wastes to stabilize the hazardous wastes, mixtures involving varying amounts of each of the ICCT wastes with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest using the Toxicity Characteristic Leaching Procedure.

  14. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  15. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  16. A real-time tracking system for monitoring shipments of hazardous materials

    NASA Astrophysics Data System (ADS)

    Womble, Phillip; Paschal, Jon; Hopper, Lindsay; Pinson, Dudley; Schultz, Frederick; Whitfield Humphrey, Melinda

    2007-04-01

    Due to the ever increasing use of radioactive materials in day to day living from the treatment of cancer patients and irradiation of food for preservation to industrial radiography to check for defects in the welding of pipelines and buildings there is a growing concern over the tracking and monitoring of these sources in transit prior to use as well as the waste produced by such use. The prevention of lost sealed sources is important in reducing the environmental and health risk posed by direct exposure, co-mingling in the metal recycling stream, use in contaminated consumer products, and use in terrorist activities. Northwest Nuclear, LLC (NWN) and the Applied Physics Institute (API) at Western Kentucky University have developed a tracking technology using active radio frequency identification (RFID) tags. This system provides location information by measuring the time of arrival of packets from a set of RFID tags to a set of location receivers. The system can track and graphically display the location on maps, drawings or photographs of tagged items on any 802.11- compliant device (PDAs, laptops, computers, WiFi telephones) situated both outside and inside structures. This location information would be vital for tracking the location of high level radiological sources while in transit. RFID technology would reduce the number of lost sources by tracking them from origination to destination. Special tags which indicate tampering or sudden movement have also been developed.

  17. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect

    Kirk, Nancy

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  18. Trip Reports. Hazardous Waste Minimization and Control at Army Depots

    DTIC Science & Technology

    1989-08-01

    phosphoric acid and sludge from the bottom of the tank is a very small waste stream at Tobyhanna; therefore, even complete elimination of this *waste... stream would result in only a small reduction in hazardous waste generation. Tooele performed several tests with Rust Eliminator on a variety of...rinse waters are treated In the Industrial Waste Treatment Plant (lWTW.. However, this stream is not monitored for Total Toxic Organics. The cleaning ae

  19. Wastewater and Hazardous Waste Survey, Homestead AFB Florida.

    DTIC Science & Technology

    1988-03-01

    Hexachloroexxhydro-exo,exo-dimethanonapthalene Hexamethyltetraphosphate Hydrazinecarbothioam ide Hydrazine methyl Hydrocyanic acid Hydrogen cyanide Hydrogen...characteristic hazardous waste (EP Toxicity) analysis on neutralized battery acid . (5) Drums and bowsers at waste storage sites should be secured. (6) Paint...neutralized battery acid . In fact, 95% of all wastes are included in the first six categories. Table 7: Categories of Waste on Homestead AFB 1 Category

  20. The Impact of Household Hazardous Wastes on Landfill Leachates.

    DTIC Science & Technology

    1988-05-01

    sample was taken. Sorting municipal solid waste after collection has the advantage of directly sampling what will go into the landfill. A study of the...Seattle/King County area (Cal Recovery Systems, 1985) determined that approximately 0.5 percent (by weight) of the municipal solid waste stream are...the Stanford Research Institute is now underway to determine the concentration of household hazardous waste in municipal solid waste (Galvin, 1987). A

  1. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hazardous waste. 258.20 Section 258.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20 Procedures..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that...

  2. Hazardous waste treatment using fungus enters marketplace

    SciTech Connect

    Illman, D.L.

    1993-07-01

    When the announcement was made eight years ago that a common fungus had been found that could degrade a variety of environmental pollutants, the news stirred interest in the scientific community, the private sector, and the general public. Here was the promise of a new technology that might be effective and economical in treating hazardous waste, especially the most recalcitrant of toxic pollutants. Today, commercialization is beginning amid a mixture of optimism and skepticism. The organism in question is white rot fungus, or Phanerochaete chrysosporium, and it belongs to a family of woodrotting fungi common all over North America. The fungi secrete enzymes that break down lignin in wood to carbon dioxide and water--a process called mineralization. These lignin-degrading enzymes are not very discriminating, however. The white rot fungi have been shown to degrade such materials as DDT, the herbicide (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T), 2,4,6-trinitrotoluene (TNT), pentachlorophenol (PCP), creosote, coal tars, and heavy fuels, in many cases mineralizing these pollutants to a significant extent.

  3. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... taking place identifies principal hazardous constitutes in such waste, in accordance with § 264.552(e)(4... following standards specified for CAMU-eligible wastes: (i) The treatment standards under § 264.552(e)(4)(iv... authorizes receipt of such waste. (e) For each remediation, CAMU-eligible waste may not be placed in an...

  4. Technologies for environmental cleanup: Toxic and hazardous waste management

    SciTech Connect

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ``Technologies for Environmental Cleanup.`` To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste.

  5. Hazardous waste incineration: Emotional fears and technical reality

    SciTech Connect

    Martin, E.J.

    1995-04-01

    Although incinerators are not risk-free, they bear up well by comparison to other methods of hazardous waste disposal and other socially-accepted risks. The current level of suspicion and anxiety regarding incinerators can be reduced through the sharing of expert information about the need for, and process of, hazardous waste combustion, and early involvement of community and industry representatives, even before a particular incinerator site is chosen. The federal government`s role should not be one of asking whether a particular place wants a hazardous waste incinerator. Their approach should be one of consensus-building. A brief look at the facts can help the public understand that incineration is the best available treatment for hazardous wastes.

  6. EPA requires Phoenix facility to safely handle hazardous waste

    EPA Pesticide Factsheets

    SAN FRANCISCO - The U.S. Environmental Protection Agency recently fined World Resources Company $39,900 for violations of hazardous waste laws. World Resources, located in Tolleson, Ariz. uses manufactured residues to produce metal concentrate

  7. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  8. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect

    Not Available

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  9. Engineering Forum Issue Paper: Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  10. Linking emerging hazardous waste technologies with the electronic information era

    SciTech Connect

    Anderson, B.E.; Suk, W.A.; Blackard, B.

    1996-12-31

    In looking to the future and the development of new approaches or strategies for managing hazardous waste, it is important to understand and appreciate the factors that have contributed to current successful approaches. In the United States, several events in the last two decades have had a significant impact in advancing remediation of hazardous waste, including environmental legislation, legislative reforms on licensing federally funded research, and electronic transfer of information. Similar activities also have occurred on a global level. While each of these areas is significant, the electronic exchange of information has no national boundaries and has become an active part of major hazardous waste research and management programs. It is important to realize that any group or society that is developing a comprehensive program in hazardous waste management should be able to take advantage of this advanced approach in the dissemination of information. 6 refs., 1 tab.

  11. Notification: Evaluation of EPA Oversight of Hazardous Waste Imports

    EPA Pesticide Factsheets

    Project #OPE-FY14-0036, March 26, 2014. The Office of Inspector General for the U.S. Environmental Protection Agency plans to begin preliminary research on the EPA oversight of hazardous waste imports on April 14, 2014.

  12. Powercon Corp. settles hazardous waste violations at Severn, Md. facility

    EPA Pesticide Factsheets

    PHILADELPHIA (November 19, 2015) - Powercon Corporation has agreed to pay a $40,000 penalty to settle alleged violations of hazardous waste regulations at its manufacturing facility in Severn, Md., the U.S. Environmental Protection Agency announced today.

  13. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators....

  14. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators....

  15. Lowell Company Settles with EPA for Hazardous Waste Concerns

    EPA Pesticide Factsheets

    A Lowell, Mass., manufacturer of fiber products has come into compliance with hazardous waste laws after the US Environmental Agency found the company was violating federal and state environmental laws.

  16. Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518

    SciTech Connect

    Dilger, Fred C.; Ballard, James D.; Halstead, Robert J.

    2013-07-01

    As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

  17. Process development accomplishments: Waste and hazard minimization, FY 1991

    SciTech Connect

    Homan, D.A.

    1991-11-04

    This report summarizes significant technical accomplishments of the Mound Waste and Hazard Minimization Program for FY 1991. The accomplishments are in one of eight major areas: environmentally responsive cleaning program; nonhalogenated solvent trials; substitutes for volatile organic compounds; hazardous material exposure minimization; nonhazardous plating development; explosive processing waste reduction; tritium capture without conversion to water; and robotic assembly. Program costs have been higher than planned.

  18. Getting waste ready for shipment to the WIPP: integration of characterization and certification activities

    SciTech Connect

    Sinkule, B.; Knudsen, K.; Rogers, P.

    1996-06-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) serve as the primary directive for assuring the safe handling, transportation, and disposal of transuranic (TRU) waste generated at Department of Energy (DOE) sites. The WIPP WAC address fulfillment of WIPP`s operational safety and performance assessment criteria, compliance with Resource Conservation and Recovery Act (RCRA) requirements, and preparation of waste packages that meet all transportation criteria. At individual generator sites, preparation of transuranic waste for final disposal at WIPP includes characterizing the waste to meet the requirements of the transuranic Waste Characterization Quality Assurance Program Plan (QAPP) and certifying waste containers to meet the WIPP WAC and the Transuranic Package Transporter-II Authorized Methods for Payload Control (TRAMPAC). This paper compares the quality assurance and quality control requirements specified in the WIPP WAC, QAPP, and TRAMPAC and discusses the potential to consolidate activities to comply with the TRU waste characterization and certification program requirements.

  19. 40 CFR 261.35 - Deletion of certain hazardous waste codes following equipment cleaning and replacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Lists of Hazardous Wastes § 261.35 Deletion of certain hazardous waste codes following equipment... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Deletion of certain hazardous...

  20. Degradation of hazardous organic wastes by microorganisms. Preliminary report

    SciTech Connect

    Kenis, P.

    1988-05-01

    This report addresses the microbiological detoxification of hazardous organic compounds before and after they have contaminated soil, ground water, and other areas. The in-situ degradation of toxic organic compounds is often the most cost-effective cleanup approach. Companies that use or provide microorganisms and other products and services for hazardous organic waste detoxification are listed in the appendices of this report.

  1. Hazardous Waste Management System - Definition of Hazardous Waste - Mixture and Derived- From Rules - Federal Register Notice, October 30, 1992

    EPA Pesticide Factsheets

    This action responds to public comment on two proposals (57 FR 7636, March 3, 1992, and 57 FR 21450, May 20, 1992) to modify EPA's hazardous waste identification rules under the Resource Conservation and Recovery Act (RCRA).

  2. Hazardous Waste Management: A View to the New Century, 2001.

    ERIC Educational Resources Information Center

    Burton, Gwen

    Like many parts of the United States, Colorado is facing a significant hazardous waste problem. Radioactive and chemical wastes generated by the Rocky Flats Nuclear Plant, the toxic Lowry Land Fill Site, industrial dumps, and heavy land and air traffic contribute to water, land, and air pollution in the state. As part of a statewide response…

  3. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Hazardous waste incinerator permits. 270.62 Section 270.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID.../feed). (E) Capacity of prime mover. (F) Description of automatic waste feed cut-off system(s)....

  4. Self Audits of Hazardous Waste Operations in Laboratories.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1987-01-01

    Discusses the need for compliance with state and federal regulations regarding the handling of hazardous wastes in college chemistry laboratories. Addresses: (1) waste determination; (2) facility requirements; (3) use of the manifest, vendor, transporter, site selection requirements, and training; (4) contingency planning; and (5) documentation.…

  5. EXPERIMENTAL INVESTIGATION OF CRITICAL FUNDAMENTAL ISSUES IN HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    The report gives results of a laboratory-scale program investigating several fundamental issues involved in hazardous waste incineration. The key experiment for each study was the measurement of waste destruction behavior in a sub-scale turbulent spray flame. (1) Atomization Qual...

  6. GUIDE TO TREATMENT TECHNOLOGIES FOR HAZARDOUS WASTES AT SUPERFUND SITES

    EPA Science Inventory

    Over the past fewyears, it has become increasinsly evident that land disposal of hazardous wastes is at least only a temporary solution for much of the wastes present at Superfund sites. The need for more Iong-term, permanent "treatment solutions as alternatives to land disposal ...

  7. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  8. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  9. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J.; Knecht, Dieter A.; Todd, Terry A.; Burchfield, Larry A.; Anshits, Alexander G.; Vereshchagina, Tatiana; Tretyakov, Alexander A.; Aloy, Albert S.; Sapozhnikova, Natalia V.

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  10. Radioactive waste shipments to Hanford retrievable storage from Babcock and Wilcox, Leechburg, Pennsylvania

    SciTech Connect

    Duncan, D.R.

    1994-02-14

    This report characterizes, as far as possible, the solid radioactive wastes generated by Babcock and Wilcox`s Park Township Plutonium Facility near Leechburg, Pennsylvania that were sent to retrievable storage at the Hanford Site. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. The objective is a description of characteristics of solid wastes that are or will be managed by the Restoration and Upgrades Program; gaseous or liquid effluents are discussed only at a summary level This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations, including the Waste Receiving and Processing (WRAP) Facility, because Babcock and Wilcox generated greater than 2.5 percent of the total volume of TRU waste currently stored at the Hanford Site.

  11. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

  12. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  13. 78 FR 54178 - Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... AGENCY 40 CFR Part 271 Virginia: Final Authorization of State Hazardous Waste Management Program..., Virginia received final authorization to implement its hazardous waste management program effective... the analogous Federal requirements. The Virginia Waste Management Act (VWMA), enacted by the...

  14. Treatment Technologies for Hazardous Ashes Generated from Possible Incineration of Navy Waste

    DTIC Science & Technology

    1990-10-01

    Hazardous and Solid Waste Amendments of 1984 HW - Hazardous Waste HWM - Hazardous Waste Minimization IWTP - Industrial wastewater treatment piant...Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA) will eventually prohibit land disposal of...Conservation and Recovery Act of 1976, as amended, PL 94-580, 42 USC 6901. 3. Hazardous and Solid Waste Amendments

  15. Transportation training: Focusing on movement of hazardous substances and wastes

    SciTech Connect

    Jones, E.; Moreland, W.M.

    1988-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Program at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, are developing and implementing a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 5 figs., 3 tabs.

  16. [Nursing workers' perceptions regarding the handling of hazardous chemical waste].

    PubMed

    Costa, Taiza Florêncio; Felli, Vanda Elisa Andres; Baptista, Patrícia Campos Pavan

    2012-12-01

    The objectives of this study were to identify the perceptions of nursing workers regarding the handling of hazardous chemical waste at the University of São Paulo University Hospital (HU-USP), and develop a proposal to improve safety measures. This study used a qualitative approach and a convenience sample consisting of eighteen nursing workers. Data collection was performed through focal groups. Thematic analysis revealed four categories that gave evidence of training deficiencies in terms of the stages of handling waste. Difficulties that emerged included a lack of knowledge regarding exposure and its impact, the utilization of personal protective equipment versus collective protection, and suggestions regarding measures to be taken by the institution and workers for the safe handling of hazardous chemical waste. The present data allowed for recommending proposals regarding the safe management of hazardous chemical waste by the nursing staff.

  17. Visible and infrared remote imaging of hazardous waste: A review

    USGS Publications Warehouse

    Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry

    2010-01-01

    One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  18. Information on Disposal Practices of Generators of Small Quantities of Hazardous Wastes.

    DTIC Science & Technology

    1983-09-28

    reviewed the States’ solid and hazardous waste regulations , policies, and procedures. We contacted solid or hazardous waste officials in 46 other States...exempts from hazardous waste regulations mixtures of domestic sewage and other wastes that pass through a sewer system to a publicly owned sewage...such wastes under hazardous waste regulations is necessary. An assistant to the EPA Assistant Administrator for Water said that EPA recognizes that a

  19. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  20. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  1. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  2. New hazardous waste management system: regulation of wastes or wasted regulation

    SciTech Connect

    Friedland, S.I.

    1981-01-01

    The unsound management of hazardous wastes, as exemplified by Love Canal, causes a variety of environmental and health problems. A review of present state controls reveals the need for the Federal regulation that was incorporated in the Resource Conservation and Recovery Act of 1976 (RCRA). A detailed description of RCRA, however, faults the Environmental Protection Agency (EPA) for deferring regulation and for its failure to meet deadlines, issue standards, or include many dangerous wastes in the prohibited list. EPA's interim standards of essentially voluntary guidelines will offer little protection from contamination until final permit regulations are established. 326 references. (DCK)

  3. Hazardous waste management in Chilean main industry: an overview.

    PubMed

    Navia, Rodrigo; Bezama, Alberto

    2008-10-01

    The new "Hazardous Waste Management Regulation" was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a "Hazardous Waste Management Plan" if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory.

  4. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  5. Hazardous Waste Test Methods / SW-846

    EPA Pesticide Factsheets

    The Resource Conservation and Recovery Act Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (SW-846) provide guidance to analytical scientists, enforcement officers and method developers across a variety of sectors.

  6. Hazardous wastes in Eastern and Central Europe [meeting report

    PubMed Central

    Carpenter, D O; Suk, W A; Blaha, K; Cikrt, M

    1996-01-01

    The countries of Eastern and Central Europe have emerged from a political system which for decades has ignored protection of human health from hazardous wastes. While the economies of the countries in this region are stretched, awareness and concern about hazardous waste issues are a part of the new realities. At a recent conference sponsored in part by the National Institute of Environmental Health Sciences, representatives of seven countries in the region described the status of hazardous waste programs, issues of major concern, and steps being taken to protect human health. This report summarizes the deliberations, outlines some of the problems remaining in dealing with the legacy of the past, addressing the problems of the present, and providing a framework for future research and collaborative efforts. PMID:8919756

  7. The coast guard's cleanup of hazardous waste sites

    SciTech Connect

    Rezendes, V.S.

    1989-11-01

    GAO concluded that the Coast Guard still has most of its major hazardous waste cleanup work to do - an effort that will cost millions and will take decades to complete. Yet the Coast Guard cannot confidently estimate long-term cleanup costs until it assesses and investigates potential hazardous waste locations. While Coast Guard data suggest that it is complying with hazardous waste regulations, this GAO report maintains that the Coast Guard may not be collecting the type of information needed to support long-term budget requests. The Coast Guard is planning to reissue reporting instructions in order to stress the importance of reporting violations and related costs. If successful, this effort could help ensure that the Coast Guard has the information necessary to estimate future funding needs.

  8. Degradation of Hazardous Organic Wastes by Microorganisms

    DTIC Science & Technology

    1988-05-01

    Environmental Restoration Account, Installation Restoration R&D Demonstration Project. It was funded by the Naval Facilities Engineering Command and represents...organic wastes in liquid streams . APPENDIX E Smith and Loveless, Inc. 14040 Santa Fe Trail Drive Lenexa, Kansas 66215 (913) 888-5201 Prefabricated fixed...in the waste stream . tha-t-would p _obele-x-ie, The CECOS proposal met the 2. React Phase, during this nerg-e-6fficient an-d costeffetive. Energy

  9. Stabilization solutions to hazardous metals laden waste

    SciTech Connect

    Kramer, M.

    1996-12-31

    This paper is limited to treatment of bottom and fly ash waste resulting from WTE and RTE Cogeneration plants, commonly known as trash burners. The body of the paper defines waste generation and conventional treatment schemes. This paper does not identify a best treatment, however, it does offer a general perspective of the treatments to lead the reader to further investigation. Advantages and disadvantages of the ash treatments is discussed in each treatment section. 29 refs., 1 fig.

  10. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.11 Requirements for transporters of hazardous wastes. (a) The...

  11. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Requirements for hazardous waste... (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The...

  12. Hazardous Waste: EPA’s Generation and Management Data Need Further Improvement

    DTIC Science & Technology

    1990-02-01

    Hazardous and Solid Waste Amendments of 1984 form the foundation for this...Superfund) EPA Environmental Protection Agency GAO General Accounting Office HSWA Hazardous and Solid Waste Amendments , 1984 NGA National Governors...to final disposition. The Hazardous and Solid Waste Amendments of 1984 (HswA) strengthened RCRA by further encouraging waste

  13. Method of recovering hazardous waste from phenolic resin filters

    DOEpatents

    Meikrantz, David H.; Bourne, Gary L.; McFee, John N.; Burdge, Bradley G.; McConnell, Jr., John W.

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  14. Locating hazardous waste facilities: The influence of NIMBY beliefs

    SciTech Connect

    Groothuis, P.A.; Miller, G. )

    1994-07-01

    The [open quote]Not-In-My-Backyard[close quote] (NIMBY) syndrome is analyzed in economic decision making. Belief statements that reflect specific NIMBY concerns are subjected to factor analysis and the structure reveals two dimensions: tolerance and avoidance. Tolerance reflects an acceptance of rational economic arguments regarding the siting of a hazardous waste facility and avoidance reflects a more personal fear-of-consequences. Analysis identifies demographic characteristics of individuals likely to exhibit these two beliefs. These beliefs also are shown to influence the acceptance of a hazardous waste disposal facility in ones neighborhood when compensation is offered.

  15. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  16. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  17. Hazardous waste sites and stroke in New York State

    PubMed Central

    Shcherbatykh, Ivan; Huang, Xiaoyu; Lessner, Lawrence; Carpenter, David O

    2005-01-01

    Background - Environmental exposure to persistent organic pollutants (POPs) may lead to elevation of serum lipids, increasing risk of atherosclerosis with thromboembolism, a recognized cause of stroke. We tested the hypothesis that exposure to contaminants from residence near hazardous waste sites in New York State influences the occurrence of stroke. Methods - The rates of stroke hospital discharges were compared among residents of zip codes containing hazardous waste sites with POPs, other pollutants or without any waste sites using information for 1993–2000 from the New York Statewide Planning and Research Cooperative System (SPARCS) database, containing the records of all discharge diagnoses for patients admitted to state-regulated hospitals. Results - After adjustment for age and race, the hospitalization rate for stroke in zip codes with POPs-contaminated sites was 15% higher than in zip codes without any documented hazardous waste sites (RR 1.15, 95% CI, 1.05, 1.26). For ischemic stroke only, the RR was 1.17 (95% CI 1.04, 1.31). Residents of zip codes containing other waste sites showed a RR of 1.13 (95% CI, 1.02, 1.24) as compared to zip codes without an identified waste site. Conclusion - These results suggest that living near a source of POPs contamination constitutes a risk of exposure and an increased risk of acquiring cerebrovascular disease. However further research with better control of individual risk factors and direct measurement of exposure is necessary for providing additional support for this hypothesis. PMID:16129026

  18. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  19. Hazardous Waste Site Analysis (Small Site Technology)

    DTIC Science & Technology

    1990-08-01

    Fluidized Bed ......................................................................... 48 M ultiple H earth...contamination 17 Fluidized Bed Incineration - The vessels contain a bed of graded, inert granular material, usually silica sand or a catalyst. The heated bed ...material is expanded by combustion air forced upward through the bed . As waste material is mixed with the hot fluidized bed material, heat is rapidly

  20. Emerging technologies in hazardous waste management

    SciTech Connect

    Tedder, D.W. ); Pohland, F.G. )

    1990-01-01

    The book includes chapters on topics such as municipal solid wastes, water purification by radiation, the isolation or organic species and inorganic radionuclides, and solvent recycling. Several chapters cover radiolysis chemistry in dilute aqueous media, solar treatment, chemical separations (adsorption, ion exchange, membrane dialysis, and distillation), the biological and chemical treatment of soils and sludges, and solids immobilization.

  1. NRC`s proposed rulemaking on the documentation and reporting of low-level radioactive waste shipment manifest information

    SciTech Connect

    Lahs, W.R.; Haisfield, M.F.

    1991-12-31

    Since the 1982 promulgation of regulations for the land disposal of low-level radioactive waste (LLW), requirements have been in place to control transfers of LLW intended for disposal at licensed land disposal facilities. These requirements established a manifest tracking system and defined processes to control transfers of LLW intended for disposal at a land disposal facility. Because the regulations did not specify the format for the LLW shipment manifests, it was not unexpected that the two operators of the three currently operating disposal sites should each have developed their own manifest forms. The forms have many similarities and the collected information, in many cases, is identical; however, these manifests incorporate unique operator preferences and also reflect the needs of the Agreement State regulatory authority in the States where the disposal sites are located. Since Agreement State regulations must be compatible with, but need not always be identical to, those of the Nuclear Regulatory Commission (NRC), the possibility of a proliferation of different manifest forms containing variations in collected information could be envisioned. If these manifests were also to serve a shipping paper purpose, effective integration of the Department of Transportations` (DOT) requirements would also have to be addressed. This wide diversity in uses of manifest information by Federal and State regulatory authorities, other State or Compact entities, and disposal site operators, suggested a single consolidated approach to develop a uniform manifest format with a baseline information content and to define recordkeeping requirements. The NRC, in 1989, had embarked on a rulemaking activity to establish a base set of manifest information needs for regulatory purposes. In response to requests from State and Regional Compact organizations who are attempting to design, develop and operate LLW disposal facilities, and with the general support of Agreement State regulatory

  2. Integrated approach to hazardous and radioactive waste remediation

    SciTech Connect

    Hyde, R.A.; Reece, W.J.

    1994-11-01

    The US Department of Energy Office of Technology Development is supporting the demonstration, and evaluation of a suite of waste retrieval technologies. An integration of leading-edge technologies with commercially available baseline technologies will form a comprehensive system for effective and efficient remediation of buried waste throughout the complex of DOE nuclear facilities. This paper discusses the complexity of systems integration, addressing organizational and engineering aspects of integration as well as the impact of human operators, and the importance of using integrated systems in remediating buried hazardous and radioactive waste.

  3. What was leaking from a hazardous-waste dump

    SciTech Connect

    Hites, R.A.

    1988-05-15

    The city of Niagara Falls, N.Y., is the home of several toxic waste disposal sites, the most famous of which is Love Canal. Although less well known, the Hyde Park dump is equally noxious. This hazardous-waste dump was operated by the Hooker Chemical Company from about 1953 to 1975. Approximately 55,000 tons of halogenated waste were buried at this site, which is just north of the city. The Hyde Park dump is drained by Bloody Run Creek. Ronald A. Hites of Indiana University outlines the steps taken to identify the structures of organic compounds leaking from the Hyde Park dump.

  4. Hazardous-waste nightmare. [Evaluation of legislative proposals

    SciTech Connect

    Alexander, T.

    1980-04-21

    Mr. Alexander points out that, even in the absence of Federal regulation, hazardous wastes would be a major problem for companies. Many have been driven to desperate measures even to find someplace to put the 125 billion pounds of such wastes that are produced each year - but that nobody wants nearby. EPA recently began promulgating final regulations implementing the Resource Conservation and Recovery Act passed by Congress in 1976; these regulations will mandate technical standards for all future waste sites as well as a cradle to grave system for tracking major hazardous wastes to their ultimate disposition. But much of Washington's new interest seems to be a response to the charge that government too long overlooked the menace in old wastes; so, they are now turning to unusually primitive measures aimed at industry's past practice. The Justice Department has mobilized a fourteen-lawyer section to track down and prosecute companies for transgressions. Several bills are making their way through committees and, if enacted, could confront even very large industries with the choice of finding some new way of dealing with old wastes or going out of business. In discussing these proposals and touching briefly on the technical side of how wastes reach the aquifers, Mr. Alexander says that little is known about the extent of trace-chemical contamination - and, although it's time Washington ended its neglect of the problem, the extremely punitive measures are probably not called for.

  5. Children's Understandings Related to Hazardous Household Items and Waste

    ERIC Educational Resources Information Center

    Malandrakis, George N.

    2008-01-01

    This study focuses on children's understanding of hazardous household items (HHI) and waste (HHW). Children from grades 4, 5 and 6 (n=173) participated in a questionnaire and interview research design. The results indicate that: (a) on a daily basis the children used HHI and disposed of HHW, (b) the children did not realize the danger of these…

  6. BIOREMEDIATION OF HAZARDOUS WASTES - RESEARCH, DEVELOPMENT AND FIELD EVALUATIONS - 1995

    EPA Science Inventory

    The proceedings of the 1995 Symposium on Bioremediation of Hazardous Wastes, hosted by the Office of Research and Development (ORD) of the EPA in Rye Brook, New York. he symposium was the eighth annual meeting for the presentation of research conducted by EPA's Biosystems Technol...

  7. Accepting leachate from a hazardous-waste landfill

    SciTech Connect

    Kelly, J.M.; Brandenburg, B.L. )

    1991-08-01

    This article discusses the considerations necessary in preparing to treat leachate from a hazardous-waste landfill. The topics discussed include a review of the law, federal, state and local regulations, specific constituents of concern, leachate characteristics, process design and toxicity of the leachate. A table of the actual leachate composition is included.

  8. Household Hazardous Waste: Everyone's Problem--Everyone's Solution.

    ERIC Educational Resources Information Center

    Evenson, Linda

    1985-01-01

    Examines the household hazardous waste problem, addressing several areas related to regulation, disposal, and control. Also gives a list of safer alternatives for household cleaners/disinfectants, paint products, and pesticides. Indicates that individuals can collectively make a difference in public exposure by changing purchases and practices.…

  9. The Future of Hazardous Waste Tracking: Radio Frequency Identification (RFID)

    EPA Science Inventory

    The capability and performance of various RFID technologies to track hazardous wastes and materials (HAZMAT) across international borders will be verified in the El Paso, Texas-Ciudad Juarez, Mexico area under EPA's Environmental Technology Verification (ETV)/Environmental and S...

  10. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    EPA Science Inventory

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  11. 77 FR 22229 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... table listing hazardous wastes from specific sources; and a conforming change to alert certain recycling...) of this chapter'' to alert recyclers to the existing LDR certification and notification requirement... those imposed by such regulations * * *'' EPA disagrees. The amendment simply alerts persons subject...

  12. Household Hazardous Waste and Automotive Products: A Pennsylvania Survey.

    ERIC Educational Resources Information Center

    Shorten, Charles V.; And Others

    1995-01-01

    A significant fraction of household hazardous waste (HHW) is generated by home mechanics who use such products as motor oil, cleaners and solvents, and batteries. This survey assessed the following aspects: (1) perceptions of their health-related effects; (2) perceptions of their pollution potential; and (3) their use and disposal. (LZ)

  13. MEASUREMENT OF BIOAVAILABLE IRON AT TWO HAZARDOUS WASTE SITES

    EPA Science Inventory

    In the past, the concentrations of iron II in monitoring wells has been used to evaluate natural attenuation processes at hazardous waste sites. Changes in the aqueous concentrations of electron acceptors/products are important to the evaluation of natural biological attenuation...

  14. Reliability analysis of common hazardous waste treatment processes

    SciTech Connect

    Waters, Robert D.

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  15. Sociological perspective on the siting of hazardous waste facilities

    SciTech Connect

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented.

  16. Cleaner production: Minimizing hazardous waste in Indonesia

    SciTech Connect

    Bratasida, D.L.

    1996-12-31

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmental management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.

  17. Evaluation of frameworks for ecotoxicological hazard classification of waste.

    PubMed

    Stiernström, S; Wik, O; Bendz, D

    2016-12-01

    A new harmonized EU regulation for the classification of waste came into effect on 1st June 2015, in which the criteria and assessment methods for the classification of hazardous waste are harmonized with other internationally agreed-upon systems for hazard classification of chemicals (CLP). However, criteria and guidance for the assessment of ecotoxicological hazard (Hazard Property 14, HP14) are still lacking for waste classification. This paper have evaluated and compared two HP14 classification frameworks: (i) a calculation method (summation) for mixtures, and (ii) leaching tests. The two frameworks were evaluated by surveying and evaluating ecotoxicological data for Cu, Zn, K and Ca species in bottom ash from incinerated waste, together with geochemical speciation modelling. Classification based on the summation method proved to be highly sensitive to the choice of speciation and ecotoxicological classification. This results in a wide range of critical concentrations triggering hazardous classification (in particular for Cu and Zn). Important parameters governing the availability of toxic elements, such as transformation from one species to another and complexation on organic or inorganic sorbents, are not accounted for. Geochemical modelling revealed that a testing strategy built on CLP based leaching tests (liquid/solid ratio (L/S)⩾10,000, pH range 5.5-8.5) avoids bias and is superior to the summation method with respect to both precision and accuracy. A testing strategy built on leaching tests, designed for risk assessment purposes, (L/S ratio of 10, natural pH of the ash) severely underestimate the hazard associated with the presence of toxic compounds (Cu and Zn), while simultaneously falsely indicate a hazardousness due to the presence of non-toxic compounds (Ca and K). However, the testing methods adopted by CLP are problematic from a practical and functional point of view. To conclude, the L/S ratio and pH were found to be critical for hazard

  18. Federal Agency Hazardous Waste Compliance Docket (docket). Revision 1

    SciTech Connect

    Not Available

    1994-01-01

    The Federal Facilities Hazardous Waste Compliance Docket (``docket``) identifies Federal facilities that may be contaminated with hazardous substances and that must be evaluated to determine if they pose a risk to public health or the environment The docket, required by Section 120(c) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), also provides a vehicle for making information about potentially contaminated facilities available to the public. Facilities listed on the docket must complete site assessments that provide the Environmental Protection Agency (EPA) with information needed to determine whether or not the facility should be included on he National Priorities List (NPL). This Information Brief, which revises the previous Federal Agency Hazardous Waste Compiliance Docket Information Brief, provides updated information on the docket listing process, the implications of listing, and facility status after listing.

  19. Hazardous-waste incineration in a rotary kiln

    SciTech Connect

    Owens, W.D. Jr.

    1991-01-01

    A rotary-kiln simulator was used to develop a better understanding of how hazardous materials are removed from sorbent clays. Experimental results and associated numerical modeling on the combustion and desorption of toluene from a montmorillonite clay sorbent are presented. The purpose of these tests was to understand the mass and heat transfer characteristics of the material in a rotary kiln environment. The experiments were done in a batch mode, simulating a control volume of solids moving down the length of a full-scale rotary kiln, exchanging time for distance as the independent variable. Studies investigating the effect of oxygen concentration, charge size, rotational velocity, and kiln cavity temperature on the desorption rate were completed. Also, effects of water in the montmorillonite were examined. Two comprehensive models were developed to predict the thermal and mass desorption characteristics of the bed, respectively. Another series of studies in the rotary kiln simulator was focused on NO, formation from nitrogenous waste constituents. These tests were performed to simulate materials (plastics, nylons, dyes, and process waste) usually destroyed in hazardous-waste incinerators. Four surrogate wastes, Aniline, Pyridine, Malononitrile, and Ethylenediamine, were absorbed onto the montmorillonite clay sorbent. A detailed discussion regarding the design, construction and operation of the rotary-kiln simulator for research on the destruction of hazardous waste materials is presented in the Appendices. All facility calibration techniques and calculations in addition to data acquisition and reduction algorithms are also discussed there.

  20. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    SciTech Connect

    KRIPPS, L.J.

    2000-06-28

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report.

  1. Information for Importers and Receiving Facilities of Resource Conservation and Recovery Act (RCRA) Hazardous Waste

    EPA Pesticide Factsheets

    Information for importers of hazardous waste from Canada, Chile, Mexico, or non-OECD countries who are subject to the hazardous waste generator and importer requirements described in 40 CFR Part 262 Subpart A – D and F, under RCRA

  2. EPA Proposes Clarksburg, W.Va. Hazardous Waste Site to Superfunds National Priorities List

    EPA Pesticide Factsheets

    PHILADELPHIA (April 6, 2016) - Today the U.S. Environmental Protection Agency announced that five hazardous waste sites are being added to the National Priorities List (NPL). The Agency also has proposed that eight other hazardous waste sites be add

  3. 77 FR 52717 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Cornerstone Chemical Company, Waggaman, LA AGENCY... granted to Cornerstone for four Class I injection wells located at Waggaman, Louisiana. The company...

  4. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF Corporation Freeport, Texas AGENCY: Environmental... granted to BASF Corporation for three Class I injection wells located at Freeport, Texas. The company...

  5. Information for Exporters of Resource Conservation and Recovery Act (RCRA) Hazardous Waste

    EPA Pesticide Factsheets

    Information for exporters of hazardous waste to OECD countries for recycling who are subject to the hazardous waste generator and importer requirements described in 40 CFR Part 262 Subpart H, under RCRA

  6. 76 FR 36879 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... 142A; Specific Provisions for Batteries, Checklist 142B; Specific Provisions for Pesticides, Checklist..., Storage and Disposal Facilities and Hazardous Waste Generators; Organic Air Emissions Standards for Tanks... Facilities and Hazardous Waste Generators; Organic Air Emissions Standards for Tanks, Surface...

  7. A COMPARISON: ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS VERSUS THE 1990 TOXICS RELEASE INVENTORY AIR RELEASES.

    EPA Science Inventory

    Incineration is often the preferred technology for disposing of hazardous waste, and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition `to hazardous waste' incineration HWI). One of the reasons cited for...

  8. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  9. Attenuation of heavy metal leaching from hazardous wastes by co-disposal of wastes

    SciTech Connect

    Bae, Wookeun; Shin, Eung Bai; Lee, Kil Chul; Kim, Jae Hyung

    1996-12-31

    The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, the latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.

  10. Application of glove box robotics to hazardous waste management

    SciTech Connect

    Dennison, D.K.; Hurd, R.L.; Merrill, R.D.; Reitz, T.C.

    1995-02-01

    Lawrence Livermore Laboratory (LLNL) is developing a semi-automated system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM developed gantry robot with a special glove box enclosure designed to protect the operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely using the robot in a telerobotic mode for one-of-a-kind functions and in an autonomous mode for repetitive type operations. The system will initially be used in conjunction with a portable gas system designed to capture any gaseous phase tritium released into the glove box. This paper presents the objectives of this program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

  11. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    SciTech Connect

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  12. EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash.

    PubMed

    Donatello, S; Tyrer, M; Cheeseman, C R

    2010-01-01

    A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.

  13. Summary of Remediated and Unremediated Nitrate Salt Surrogate Testing in Support of the Waste Treatment Permit Application to the New Mexico Environment Department (NMED)

    SciTech Connect

    Funk, David John

    2016-06-22

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report briefly summarizes the surrogate testing that was done in support of our understanding of this waste form.

  14. Mutagenicity in Salmonella of hazardous wastes and urine from rats fed these wastes

    SciTech Connect

    DeMarini, D.M.; Inmon, J.P.; Simmons, J.E.; Berman, E.; Pasley, T.C.

    1987-06-01

    Fifteen hazardous industrial waste samples were evaluated for mutagenicity in the Salmonella plate-incorporation assay using strains TA98 and TA100 in the presence and absence of Aroclor 1254-induced rat liver S9. Dichloromethane/methanol extracts of the crude wastes also were evalauted. Seven of the crude wastes were mutagenic, but only 2 of the extract of these 7 wastes were mutagenic; extracts of 2 additional wastes also were mutagenic. In addition, 10 of the crude wastes were administered by gavage to F-344 rats, and 24-H urine samples were collected. Of the 10 raw urines evaluated, 3 were mutagenic in strain TA98 in the presence of S9 and B-glucuronidase. To the authors' knowledge, this is the first report of the mutagenicity of urine from rodents exposed to hazardous wastes. Based on the present results, the use of only strain TA98 in the presence of S9 might be adequate for general screening of hazardous wastes or waste extracts for genotoxicity.

  15. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Disposed Prohibited Hazardous Wastes VII Appendix VII to Part 268 Protection of Environment ENVIRONMENTAL... VII to Part 268—LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes Table 1—Effective... Land Disposal Restrictions for Contaminated Soil and Debris (CSD) Restricted hazardous waste in...

  16. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Disposed Prohibited Hazardous Wastes VII Appendix VII to Part 268 Protection of Environment ENVIRONMENTAL... VII to Part 268—LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes Table 1—Effective... Contaminated Soil and Debris (CSD) Restricted hazardous waste in CSD Effective date 1. Solvent-(F001-F005)...

  17. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Hazardous Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  18. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Hazardous Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  19. 76 FR 26681 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... AGENCY 40 CFR Part 272 Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management... codify in the regulations entitled ``Approved State Hazardous Waste Management Programs,'' Wisconsin's authorized hazardous waste program. EPA will incorporate by reference into the Code of Federal...

  20. 77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... AGENCY 40 CFR Part 271 Ohio: Final Authorization of State Hazardous Waste Management Program Revision..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... Combustors; Final Rule, Checklist 198, February 14, 2002 (67 FR 6968); Hazardous Waste Management...

  1. 76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... AGENCY 40 CFR Part 271 California: Final Authorization of State Hazardous Waste Management Program... hazardous waste management program shall be effective at 1 p.m. on October 7, 2011. FOR FURTHER INFORMATION..., effective August 1, 1992 (57 FR 32726), to implement the RCRA hazardous waste management program....

  2. 78 FR 25579 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... AGENCY 40 CFR Part 271 Georgia: Final Authorization of State Hazardous Waste Management Program Revisions... adopted these requirements by reference at Georgia Hazardous Waste Management Rule 391-3-11-.07(1), EPA... to EPA for final authorization of changes to its hazardous waste program under the...

  3. 76 FR 37021 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... AGENCY 40 CFR Part 271 Louisiana: Final Authorization of State Hazardous Waste Management Program..., (50 FR 3348), to implement its base Hazardous Waste Management Program. We granted authorization for... opportunity to apply for final authorization to operate all aspects of their hazardous waste...

  4. 77 FR 38530 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... AGENCY 40 CFR Part 271 Louisiana: Final Authorization of State Hazardous Waste Management Program..., (50 FR 3348), to implement its base Hazardous Waste Management Program. We granted authorization for... operate all aspects of their hazardous waste management programs in lieu of the Federal government....

  5. 77 FR 15273 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... AGENCY 40 CFR Part 271 Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management...

  6. 77 FR 12228 - Idaho: Proposed Authorization of State Hazardous Waste Management Program; Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... AGENCY 40 CFR Part 271 Idaho: Proposed Authorization of State Hazardous Waste Management Program... Conservation and Recovery Act, as amended (RCRA). RCRA allows EPA to authorize State hazardous waste management... hazardous ] waste management program with the changes described in the authorization application. Idaho...

  7. 78 FR 43810 - State of Kansas; Authorization of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... AGENCY 40 CFR Part 271 State of Kansas; Authorization of State Hazardous Waste Management Program AGENCY... authorization on October 17, 1985 (50 FR 40377), to implement its Base Hazardous Waste Management program... Administrative Regulations, Article 31--Hazardous Waste Management, effective May 10, 2013. The...

  8. 77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...; FRL-9613-5] New Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY... regulations entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste program. The EPA will incorporate by reference into the Code of Federal Regulations (CFR)...

  9. 77 FR 65314 - Missouri: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... AGENCY 40 CFR Part 271 Missouri: Final Authorization of State Hazardous Waste Management Program..., Missouri received final authorization to implement its hazardous waste management program effective... Hazardous Waste Management Law'' section 260.350 through 260.434. Missouri's authority to incorporate...

  10. 76 FR 6561 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... AGENCY 40 CFR Part 271 North Carolina: Final Authorization of State Hazardous Waste Management Program..., effective December 31, 1984 (49 FR 48694) to implement its base hazardous waste management program. EPA... XV are from the North Carolina Hazardous Waste Management Rules 15A NCAC 13A, effective April...

  11. 78 FR 32161 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... AGENCY 40 CFR Part 271 Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision... authorization of its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management... seq. establishes the statutory authority to administer the Hazardous waste management program...

  12. 77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... AGENCY 40 CFR Part 272 Idaho: Incorporation by Reference of Approved State Hazardous Waste Management... codify in the regulations entitled ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA ] proposes to revise the codification of Idaho's program...

  13. 77 FR 47779 - Arkansas: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... AGENCY 40 CFR Part 271 Arkansas: Final Authorization of State Hazardous Waste Management Program Revision..., 1985) to implement its Base Hazardous Waste Management program. Arkansas received authorization for... Ecology Commission Regulation Number 23 (Hazardous Waste Management), adopted on April 25, 2008 and...

  14. 75 FR 45583 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... AGENCY 40 CFR Part 272 New York: Incorporation by Reference of State Hazardous Waste Management Program... the codification of New York's authorized hazardous waste program which is set forth in the regulations entitled ``Approved State Hazardous Waste Management Programs'', New York's authorized...

  15. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    ERIC Educational Resources Information Center

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  16. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear... Radiological Assistance Program team that may include nuclear engineers, health physicists,...

  17. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear... Radiological Assistance Program team that may include nuclear engineers, health physicists,...

  18. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear... Radiological Assistance Program team that may include nuclear engineers, health physicists,...

  19. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear... Radiological Assistance Program team that may include nuclear engineers, health physicists,...

  20. Method for solidification of radioactive and other hazardous waste

    DOEpatents

    Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  1. USE OF RFID TO TRACK HAZARDOUS WASTE SHIPMENTS ACROSS DOMESTIC AND INTERNATIONAL BORDERS

    EPA Science Inventory

    Radio-frequency identification system (RFID) is an emerging commodity tracking technology that is being tested and implemented in a large number of applications worldwide. RFID is a method of transmitting data using radio waves, usually through communication with a tag. Both ac...

  2. U.S. sent fuel shipment experience by rail

    SciTech Connect

    Colborn, K.

    2007-07-01

    As planning for the large scale shipment of spent nuclear fuel to Yucca Mountain proceeds to address these challenges, actual shipments of spent fuel in other venues continues to provide proof that domestic rail spent fuel shipments can proceed safely and effectively. This paper presents some examples of recently completed spent fuel shipments, and the shipment of large low-level radioactive waste shipments offering lessons learned that may be beneficial to the planning process for large scale spent fuel shipments in the US. (authors)

  3. Spatial analysis of hazardous waste data using geostatistics

    SciTech Connect

    Zirschky, J.H.

    1984-01-01

    The objective of this investigation was to determine if geostatistics could be a useful tool for evaluating hazardous waste sites. Three sites contaminated by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) were investigated. The first site evaluated was a creek into which TCDD-contaminated soil had eroded. The second site was a town in which TCDD-contaminated wastes had been sprayed onto the streets. Finally, the third site was a highway of which the shoulders were contaminated by dust deposition from a nearby hazardous waste site. The distribution of TCDD at the first and third sites were investigated using kriging, an optimal estimation technique. By using kriging, the areas of both sites requiring cleanup were successfully identified. At the second site, the town, satisfactory results were not obtained. The distribution of contamination in this town is believed to be very heterogeneous; thus, reasonable estimates could not be obtained. Additional sampling was therefore recommended at this site. Based upon this research, geostatistics appears to be a very useful tool for evaluating a hazardous waste site if the distribution of contaminants at the site is homogeneous, or can be divided into homogeneous areas.

  4. Hazardous waste cleanup: A case study for developing efficient programs

    SciTech Connect

    Elcock, D.; Puder, M.G.

    1995-06-01

    As officials in Pacific Basin Countries develop laws and policies for cleaning up hazardous wastes, experiences of countries with such instruments in place may be instructive. The United States has addressed cleanups of abandoned hazardous waste sites through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The US Congress enacted CERCLA in 1980. The task of cleaning up waste sites became larger and more costly than originally envisioned and as a result, Congress strengthened and expanded CERCLA in 1986. Today, many industry representatives, environmentalists, and other interested parties say the program is still costly and ineffective, and Congress is responding through a reauthorization process to change the law once again. Because the law and modifications to it can affect company operations and revenues, industries want to know the potential consequences of such changes. Argonne National Laboratory (ANL) recently developed a baseline for one economic sector -- the US energy industry -- against which impacts of proposed changes to CERCLA could be measured. Difficulties encountered in locating and interpreting the data for developing that baseline suggest that legislation should not only provide for meeting its stated goals (e.g., protection of human health and the environment) but also allow for its efficient evaluation over time. This lesson can be applied to any nation contemplating hazardous waste cleanup laws and policies.

  5. Buying time: Franchising hazardous and nuclear waste cleanup

    SciTech Connect

    Hale, D.R.

    1997-05-01

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government. In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.

  6. Hazardous solid waste from metallurgical industries.

    PubMed Central

    Leonard, R P

    1978-01-01

    Types of land disposed residuals from selected metal smelting and refining industries are described, as are the origin and disposition of land disposed residuals from the primary copper industry as an example. Quantities of land-disposed or stored residuals, including slags, sludges, and dusts, are given per unit of metal production for most primary and secondary metal smelting and refining industries. Assessments of the hazard potential of residuals are given. Present treatment and disposal of residuals are discussed and assessed for health and environmental protection. Possible technologies for protection of ground and surface water contamination are presented. These include lined lagoons, chemical fixation of sludge, and ground sealing. Possibilities of resource recovery from residuals are discussed. Data are presented showing attenuation of heavy metal ions and fluorides in selected soils. The leachability and mobility of smelting and refining residuals constituents, including heavy metals and fluorides, and other potential toxicants in specific soil, geologic, and hydrologic disposal environments must be carefully considered in setting disposal requirements. PMID:738242

  7. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  8. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-05

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  9. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    EPA Pesticide Factsheets

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  10. Minimization of combustion by-products: Characteristics of hazardous waste

    SciTech Connect

    Lee, C.C.; Huffman, G.L.

    1990-11-01

    It has been well recognized that, although there are many potential solid waste treatment technologies, none are as universally applicable as incineration for the treatment of the many types of waste which are governed by the many different Federal laws and State regulations. However, incinerators may release trace amounts of unwanted combustion by-products, particularly if the incinerators are not well designed or properly operated. Control of emissions of combustion by-products (CBPs) is one of the major technical and sociological issues surrounding the implementation of incineration as a waste treatment alternative. Much of this is due to the lack of detailed knowledge about CBPs. The Clean Air Act Amendment is emphasizing the control of toxic air pollutants from all combustion sources; some of these pollutants are CBPs. CBPs include: (1) unburned principal organic hazardous constituents (POHCs); (2) products of incomplete combustion (PICs); (3) metals emissions; and (4) residuals/ashes. The Paper is a part of a series of writings on the subject of the CBP issue from EPA's Risk Reduction Engineering Laboratory in Cincinnati, Ohio. It specifically addresses the aspect of hazardous waste characteristics. The main objective of the series is to compare combustion by-products from all combustion sources including fossil fuel combustion and waste incineration, which hopefully will serve as an initial step in the eventual minimization of the release of CBPs to the environment.

  11. Hazard and consequence analysis for waste emplacement at the Waste Isolation Pilot Plant

    SciTech Connect

    Gerstner, D.M.; Clayton, S.G.; Farrell, R.F.; McCormick, J.A.; Ortiz, C.; Standiford, D.L.

    1996-05-01

    The Carlsbad Area Office established and analyzed the safety bases for the design and operations as documented in the WIPP Safety Analysis Report (SAR). Additional independent efforts are currently underway to assess the hazards associated with the long-term (10,000 year) isolation period as required by 40 CFR 191. The structure of the WIPP SAR is unique due to the hazards involved, and the agreement between the State of New Mexico and the DOE regarding SAR content and format. However, the hazards and accident analysis philosophy as contained in DOE-STD-3009-94 was followed as closely as possible, while adhering to state agreements. Hazards associated with WIPP waste receipt, emplacement, and disposal operations were systematically identified using a modified Hazard and Operability Study (HAZOP) technique. The WIPP HAZOP assessed the potential internal, external, and natural phenomena events that can cause the identified hazards to develop into accidents. The hazard assessment identified deviations from the intended design and operation of the waste handling system, analyzed potential accident consequences to the public and workers, estimated likelihood of occurrence, and evaluated associated preventative and mitigative features. It was concluded from the assessment that the proposed WIPP waste emplacement operations and design are sufficient to ensure safety of the public, workers, and environment, over the 35 year disposal phase.

  12. Destruction of hazardous military wastes using plasma arc technology

    SciTech Connect

    Kanaras, L.; Qazi, M.

    1996-12-31

    A Plasma Arc Technology (PAT) system treats hazardous wastes in a furnace, at temperatures of 2,000 C, or higher, using a plasma torch. The organic components vaporize, decompose or oxidize. The off-gases consist of hydrogen, carbon monoxide, carbon dioxide and nitric oxides. A wet air scrubber is used to remove most of these gases. The scrubber water is treated and recycled. Metal-bearing solids are melted or vaporized. The solids are usually recovered as molten metal, or as non-leachable vitrified slag, suitable for disposal in a landfill. A Plasma Arc Centrifugal Treatment system was used to evaluate this technology for destruction of four military hazardous wastes: sludge from Longhorn Army Ammunition Plant, TX; blast media from Letterkenny Army Depot, PA; medical incineration ash from Aberdeen Proving Ground, MD; and contaminated soil from open burning/open detonation ground at Picatinny Arsenal, NJ.

  13. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... exposure pathway analyzed. For a one-time delisting, EPA Region III evaluates the cumulative cancer risk... constituents through surface pathways (e.g., volatilization or wind-blown particulate from the landfill). As in... cancer risks (risk) and noncarcinogenic hazards (hazard). If a delisting evaluation is performed for...

  14. Regulating the disposal of cigarette butts as toxic hazardous waste.

    PubMed

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  15. 1996 hazardous waste management survey in selected Asian countries

    SciTech Connect

    Nelson, D.; Christie, K.; Tao, Hong-lei

    1996-12-31

    This report documents the results of a 42-question survey submitted to countries in Asia concerning their hazardous waste management programs and other issues. The same survey questions were distributed in 1992. This report compares the 1992 and 1996 responses. The respondents were Australia, New Zealand, Malaysia, Philippines, Hong Kong, People`s Republic of China, Taiwan, Japan, Korea, Singapore, Thailand, and Indonesia. 7 figs.

  16. Hazardous Waste and Wastewater Characterization Survey, Columbus AFB, Mississippi

    DTIC Science & Technology

    1988-06-01

    step of the survey was to review the base’s hazardous waste management plan, and the Bioenvironmental Engineer’s industrial shop folders. From our review ... biodegradeable compounds. Grab samples for EPA Methods 601 and 602 were also collected for three days at the pre-chlorinated effluent. Total Toxic Organic (TTO...value of 0.56 indicates that the waststream is amenable to biological treatment, however this is misleading. The biodegradeable portion of this

  17. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    PubMed

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends.

  18. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    SciTech Connect

    Arbon, R.E.

    2001-01-31

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  19. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  20. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... landfill. The scrubber water blowdown will be managed in the waste water treatment plant (WWTP). The sludge..., and the RKI scrubber water blowdown will be treated in the Wastewater Treatment Plant. Treatment of... captured facilities, such use of the wastewater treatment plant and waste management in the RKI...

  1. Determinants of risk perceptions of a hazardous waste site

    SciTech Connect

    Bord, R.J.; O`Conner, R.E.

    1992-09-01

    A before-stimulus-after quasi-experimental design is used to assess the factors relating to risk perceptions of a hazardous waste site. First, a pretest obtains measures of attitudes and beliefs about hazardous waste and waste sites. Second, a detailed hypothetical {open_quotes}Superfund{close_quotes} scenario, including a complex cleanup plan, is introduced. Finally, indices of health risk estimates, trust, knowledge, and other pertinent beliefs are obtained. levels of concern, both before and after cleanup, are the dependent variables. Independent variables include risk management options, health risk estimates, trust, and five sociodemographic characteristics. Concern is extremely high prior to cleanup and moderately high after cleanup. Concern is a clear function of health risk estimates. Toxic chemicals from waste sites are viewed as a major cause of multiple health problems, especially cancers. Accurate health risk estimates moderate fears and are linked to levels of education. Education, however, does not explain concern. Trust is a major factor explaining concern and health risk estimates. The implications of these findings for risk communication is discussed. 13 refs., 4 tabs.

  2. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  3. Validation of the U.S. Army’s Current Hazardous Waste Data

    DTIC Science & Technology

    1990-04-01

    categories of hazardous waste generators. The first is the troop unit, generating waste solvents, paints, fuel and oils . The second category is the...public health threat, and essentiality . First, the types of materials that will be included in the prioritization scheme must be defined and...guidelines. The Army’s hazardous waste minimization program includes such wastes 7USEPA, ’National Oil and Hazardous Substances Contingency Plan

  4. Hazardous waste, impact on health and environment for development of better waste management strategies in future in India.

    PubMed

    Misra, Virendra; Pandey, S D

    2005-04-01

    Industry has become an essential part of modern society, and waste production is an inevitable outcome of the developmental activities. A material becomes waste when it is discarded without expecting to be compensated for its inherent value. These wastes may pose a potential hazard to the human health or the environment (soil, air, water) when improperly treated, stored, transported or disposed off or managed. Currently in India even though hazardous wastes, emanations and effluents are regulated, solid wastes often are disposed off indiscriminately posing health and environmental risk. In view of this, management of hazardous wastes including their disposal in environment friendly and economically viable way is very important and therefore suggestions are made for developing better strategies. Out of the various categories of the wastes, solid waste contributes a major share towards environmental degradation. The present paper outlines the nature of the wastes, waste generating industries, waste characterization, health and environmental implications of wastes management practices, steps towards planning, design and development of models for effective hazardous waste management, treatment, approaches and regulations for disposal of hazardous waste. Appraisal of the whole situation with reference to Indian scenario is attempted so that a better cost-effective strategies for waste management be evolved in future.

  5. Mutagenicity in Salmonella of hazardous wastes and urine from rats fed these wastes

    SciTech Connect

    DeMarini, D.M.; Inmon, J.P.; Simmons, J.E.; Berman, E.; Pasley, T.C.

    1987-01-01

    15 hazardous industrial-waste samples were evaluated for mutagenicity in the Salmonella plate-incorporation assay using strains TA98 and TA100 in the presence and absence of Aroclor 1254-induced rat liver S9. Dichloromethane/methanol extracts of the crude wastes were also evaluated. 7 of the crude wastes were mutagenic, but only 2 of the extracts of these 7 wastes were mutagenic; extracts of 2 additional wastes also were mutagenic. In addition, 10 of the crude wastes were administered by gavage to F-344 rats, and 24-h urine samples were collected. Of the 10 raw urines evaluated, 3 were mutagenic in strain TA98 in the presence of S9 and beta-glucuronidase. The 3 crude wastes that produced these 3 mutagenic urines were, themselves, mutagenic. Adequate volumes of 6 of the 10 raw urines were available for extraction/concentration. These 6 urines were incubated with beta-glucuronidase and eluted through Sep-Pak C18 columns; the methanol eluates of 3 of the urines were mutagenic, and these were the same 3 whose raw urines also were mutagenic. In general, the C18/methanol extraction procedure reduced the cytotoxicity and increased the mutagenic potency of the urines. To the authors knowledge, this is the first report of the mutagenicity of urine from rodents exposed to hazardous wastes.

  6. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    SciTech Connect

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  7. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., corrected to 7 percent oxygen. (b) Emission and hazardous waste feed limits for new sources. You must not... Pollutants from Hazardous Waste Combustors Replacement Emissions Standards and Operating Limits for... hazardous waste burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits...

  8. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

  9. Hazardous Wastes and the Consumer Connection. A Guide for Educators and Citizens Concerned with the Role of Consumers in the Generation of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Assaff, Edith

    Many consumers do not see a strong connection between our lifestyles and buying decisions, and the amount of hazardous wastes generated in the United States. This guide was developed to be used by educators and citizens concerned with the role of consumers in the generation of hazardous wastes. It examines several products in terms of their…

  10. State Decision-Makers Guide for Hazardous Waste Management: Defining Hazardous Wastes, Problem Recognition, Land Use, Facility Operations, Conceptual Framework, Policy Issues, Transportation.

    ERIC Educational Resources Information Center

    Corson, Alan; And Others

    Presented are key issues to be addressed by state, regional, and local governments and agencies in creating effective hazardous waste management programs. Eight chapters broadly frame the topics which state-level decision makers should consider. These chapters include: (1) definition of hazardous waste; (2) problem definition and recognition; (3)…

  11. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    SciTech Connect

    Dare, J. H.; Cournoyer, M. E.

    2002-02-26

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases.

  12. Integrated management of hazardous waste generated from community sources in Thailand

    SciTech Connect

    Yodnane, P.; Spaeder, D.J.

    1999-07-01

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most of this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.

  13. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  14. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  15. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  16. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  17. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  18. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  19. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  20. 29 CFR 1910.120 - Hazardous waste operations and emergency response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Hazardous waste operations and emergency response. 1910.120 Section 1910.120 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.120 Hazardous waste operations and...

  1. 77 FR 69788 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... AGENCY 40 CFR Part 271 Colorado: Final Authorization of State Hazardous Waste Management Program... applied to the EPA for final authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). The EPA proposes to grant final authorization to the hazardous...

  2. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Requirements for hazardous...

  3. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous...

  4. Attitudes toward environmental hazards: where do toxic wastes fit?

    PubMed

    Burger, J; Martin, M; Cooper, K; Gochfeld, M

    1997-06-06

    The public is continually faced with making decisions about the risks associated with environmental hazards, and, along with managers and government officials, must make informed decisions concerning possible regulation, mitigation, and restoration of degraded sites or other environmental threats. We explored the attitudes regarding several environmental hazards of six groups of people: undergraduate science majors, undergraduate nonscience majors, and graduate students in environmental health, in ecological risk assessment, and in nonscience disciplines, as well as nonstudents over 35 yr of age. We had predicted that there would be significant differences in attitudes between science and nonscience majors and as a function of age. Relative concerns could be divided into three discrete classes (in descending order of concern): (1) general ecological problems (cutting tropical forests, polluting groundwater, trash along the coasts, lead in drinking water, and acid rain), (2) radon and nuclear wastes, and finally (3) specific nuclear waste facilities, chromium, fertilizers and pesticides, and electromagnetic waves. For any hazard, attitudes were consistent across groups with regard to ranking the severity of the environmental problem and willingness to expend funds to solve the problems. Attitudes about spending money to develop methods to evaluate risk fell in the middle level of concern. There were no major differences among classes of college-age students, or between them and older nonstudents.

  5. Coal tar-containing asphalt - resource or hazardous waste?

    SciTech Connect

    Andersson-Skold, Y.; Andersson, K.; Lind, B.; Claesson, A.; Larsson, L.; Suer, P.; Jacobson, T.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.

  6. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity...

  7. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity...

  8. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VIII Appendix VIII to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity...

  9. HOUSEHOLD HAZARDOUS WASTE CHARACTERIZATION STUDY FOR PALM BEACH COUNTY, FLORIDA - A MITE PROGRAM EVALUATION

    EPA Science Inventory

    The objectives of the Household Hazardous Waste Characterization Study (the HHW Study) were to: 1) Quantity the annual household hazardous waste (HHW) tonnages disposed in Palm Beach County Florida’s (the County) residential solid waste (characterized in this study as municipal s...

  10. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  11. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  12. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If...

  13. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If...

  14. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... laboratory to a TSD facility permitted to handle the waste, each University must evaluate such laboratory... Laboratories XL Project-Laboratory Environmental Management Standard § 262.106 When must a hazardous waste determination be made? (a) For laboratory waste sent from a laboratory to an on-site hazardous...

  15. 75 FR 76633 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... authorization for changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management... Conditionally Exempt Small Quality Generators (CESQG) waste is subject to RCRA used oil management standards... later date. With this correction to Oregon's federally authorized RCRA Hazardous Waste...

  16. 77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... AGENCY 40 CFR Part 271 Tennessee: Final Authorization of State Hazardous Waste Management Program... the Tennessee Department of Environment and Conservation, Division of Solid Waste Management, 5th...), to implement the RCRA hazardous waste management program. We granted authorization for changes...

  17. 78 FR 79654 - Vermont: Proposed Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...-0554; FRL-9904-46-Region 1] Vermont: Proposed Authorization of State Hazardous Waste Management Program... INFORMATION CONTACT: Sharon Leitch, RCRA Waste Management and UST Section, Office of Site Remediation and... grant final authorization to the State of Vermont for changes to its hazardous waste program. In...

  18. 77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... AGENCY 40 CFR Part 271 Missouri: Authorization of State Hazardous Waste Management Program Revisions... EPA for final authorization for the changes to its hazardous waste program under the Resource....gov . 3. Mail: Berla Jackson-Johnson, Environmental Protection Agency, Waste Enforcement &...

  19. 77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... AGENCY 40 CFR Part 271 Colorado: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste... November 2, 1984 (49 FR 41036), to implement the RCRA hazardous waste management program. We...

  20. 75 FR 76691 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... waste management program. On January 7, 2010, EPA published a final rule under docket EPA-R10-RCRA 2009... Hazardous Waste Management Program. These authorized changes included, among others, the Federal Recycled... Hazardous Waste Management Program Revision though a direct final rule without prior proposal because...

  1. 75 FR 60398 - California: Proposed Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... AGENCY 40 CFR Part 271 California: Proposed Authorization of State Hazardous Waste Management Program... application for authorization for changes to its hazardous waste management program by November 1, 2010... waste management program. EPA continues to have independent enforcement authority under RCRA...

  2. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false When must a hazardous waste determination be made? 262.106 Section 262.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  3. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  4. 78 FR 70225 - West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Waste Management System'' (33 CSR 20), effective June 16, 2011; and Title 45, Series 25 ``Control of Air Pollution from Hazardous Waste Treatment, Storage and Disposal Facilities'' (45 CSR 25), effective June 16... 64504, 12/5/ 33 CSR 20, section 33- Hazardous Waste LDR Treatment 97. 20-10.2. (At 33-20-...

  5. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Residues of hazardous waste in empty containers. 261.7 Section 261.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.7 Residues of...

  6. 40 CFR 261.35 - Deletion of certain hazardous waste codes following equipment cleaning and replacement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cleaning and replacement. (a) Wastes from wood preserving processes at plants that do not resume or... hazardous waste characteristics. (b) Generators must either clean or replace all process equipment that may... drippage, or hazardous waste decomposition products to the ground water, surface water, or atmosphere....

  7. 40 CFR 261.35 - Deletion of certain hazardous waste codes following equipment cleaning and replacement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cleaning and replacement. (a) Wastes from wood preserving processes at plants that do not resume or... hazardous waste characteristics. (b) Generators must either clean or replace all process equipment that may... drippage, or hazardous waste decomposition products to the ground water, surface water, or atmosphere....

  8. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false When must a hazardous waste determination be made? 262.106 Section 262.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  9. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false When must a hazardous waste determination be made? 262.106 Section 262.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE...

  10. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    SciTech Connect

    Feo, Giovanni De; Gisi, Sabino De

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  11. SB 1082 -- Unified hazardous materials/waste program: Local implementation

    SciTech Connect

    Jones, W.

    1995-12-31

    California Senate Bill 1082 was signed into law in the fall of 1993 because business and industry believed there were too many hazardous materials inspectors asking the same questions, looking at the same items and requiring similar information on several variations of the same form. Industry was not happy with the large diversity of programs, each with its own inspectors, permits and fees, essentially doing what industry believed was the same inspection. SB 1082 will allow local city and county agencies to apply to the California Environmental Protection Agency to become a Certified Unified Program Agency (CUPA) or work with a CUPA as a Participating Agency (PA) to manage specific program elements. The CUPA will unify six regulatory programs including hazardous waste/tiered permitting, aboveground storage tanks, underground storage tanks, business and area plans/inventory or disclosure, acutely hazardous materials/risk management prevention and Uniform Fire Code programs related to hazardous materials inventory/plan requirements. The bill requires the CUPA to (1) implement a permit consolidation program; (2) implement a single fee system with a state surcharge; (3) consolidate, coordinate and make consistent any local or regional requirements or guidance documents; and (4) implement a single unified inspection and enforcement program.

  12. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... exclude (or delist) a wastewater treatment plant (WWTP) sludge filter cake (called sludge hereinafter... brass coating. The facility generates F006 filter cake by the dewatering of wastewater sludge generated at the on-site wastewater treatment plants. This waste is stored on-site less than 90 days and...

  13. 76 FR 76677 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ..., residual solids from sludge removed from two storm water tanks at its Billings, Montana refinery and... requested the residual solids from processed storm water tank sludge be excluded from the F037 waste listing... if it is delisted? ConocoPhillips will dispose of the residual solids from the processed storm...

  14. Property-close source separation of hazardous waste and waste electrical and electronic equipment--a Swedish case study.

    PubMed

    Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik

    2011-03-01

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  15. Three multimedia models used at hazardous and radioactive waste sites

    SciTech Connect

    1996-01-01

    The report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. The study focused on three specific models: MEPAS version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. The approach to model review advocated in the study is directed to technical staff responsible for identifying, selecting and applying multimedia models for use at sites containing radioactive and hazardous materials. In the report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted.

  16. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  17. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  18. Hazardous solid waste from domestic wastewater treatment plants.

    PubMed Central

    Harrington, W M

    1978-01-01

    The treatment of liquid wastes in municipal sewage treatment plants creates significant quantities of solid residue for disposal. The potential hazard from these wastes requires that their characteristics be determined accurately to develop environmentally sound management criteria. It is readily recognized that the sludge characteristics vary with the type and degree of industrial activity within a wastewater collection system and that these characteristics play a significant role in determining whether the material has potential for beneficial reuse or if it must be directed to final disposal. This paper offers an overview of past and present practices of sewage sludge disposal, an indication of quantities produced, and experience with beneficial reuse. An estimated range of costs involved, expected environmental effects and potential for continued use is offered for each disposal or reuse system discussed. PMID:738239

  19. 40 CFR 273.61 - Off-site shipments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Off-site shipments. 273.61 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Destination Facilities § 273.61 Off-site shipments... notify the appropriate regional EPA office of the illegal shipment, and provide the name, address,...

  20. Development of consistent hazard controls for DOE transuranic waste operations

    SciTech Connect

    Woody, W.J.

    2007-07-01

    This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsite movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)