Science.gov

Sample records for hazardous waste streams

  1. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  2. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    SciTech Connect

    Arbon, R.E.

    2001-01-31

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  3. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  4. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOEpatents

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  5. Hazardous Waste Code Determinations for the First/Second Stage Sludge Waste Stream (IDCs 001, 002, 800)

    SciTech Connect

    Arbon, Rodney Edward

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  6. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace gas sampling and analysis. Therefore, it is concluded that this transuranic debris

  7. Review of treatment for hazardous-waste streams (Chapter 21). Book chapter

    SciTech Connect

    Grosse, D.W.

    1991-01-01

    The publication will examine some of the practices being used or considered for use at on-site or commercial hazardous waste treatment, storage and disposal facilities (TSDF). Options for managing hazardous wastes containing heavy metals and/or cyanide compounds involve conventional treatment processes, recycle/reuse applications and waste minimization. Some of the technologies to be reviewed in this section include: precipitation applications such as hydroxide (e.g. lime, magnesium and iron oxyhydroxide), sulfide and carbonate systems; reduction techniques employing chromium, mercury and selenium reducing agents; adsorption/selection techniques using activated carbon ion exchange and hydrous solids; stabilization/fixation with discussion on applications, interferences and landfill design; cyanide destruction, including chemical oxidation (e.g. alkaline chlorination, ozonation/photolysis), electrolytic decompostion and incineration; and pollution prevention measures such as source reduction, recycling and reuse. Each of these options will be described in terms of effectiveness of treatment in removing the hazardous constituents of interest and characterization of the generated treatment residuals or in the case of waste minimization practices, the degree to which the constituents of concern are eliminated at the point of waste generation.

  8. Medical waste: a minimal hazard.

    PubMed

    Keene, J H

    1991-11-01

    Medical waste is a subset of municipal waste, and regulated medical waste comprises less than 1% of the total municipal waste volume in the United States. As part of the overall waste stream, medical waste does contribute in a relative way to the aesthetic damage of the environment. Likewise, some small portion of the total release of hazardous chemicals and radioactive materials is derived from medical wastes. These comments can be made about any generated waste, regulated or unregulated. Healthcare professionals, including infection control personnel, microbiologists, public health officials, and others, have unsuccessfully argued that there is no evidence that past methods of treatment and disposal of regulated medical waste constitute any public health hazard. Historically, discovery of environmental contamination by toxic chemical disposal has followed assurances that the material was being disposed of in a safe manner. Therefore, a cynical public and its elected officials have demanded proof that the treatment and disposal of medical waste (i.e., infectious waste) do not constitute a public health hazard. Existent studies on municipal waste provide that proof. In order to argue that the results of these municipal waste studies are demonstrative of the minimal potential infectious environmental impact and lack of public health hazard associated with medical waste, we must accept the following: that the pathogens are the same whether they come from the hospital or the community, and that the municipal waste studied contained waste materials we now define as regulated medical waste.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Hazardous waste management

    SciTech Connect

    Miller, S.

    1981-12-01

    An international meeting held at the State Department in Washington, DC on hazardous waste management is discussed. The conference was held by the Committee on the Challenges to Modern Society of the North Atlantic Treaty Organization. Among the wastes considered at the meeting were chromium wastes, lead wastes, pesticides, mercury wastes, nickel wastes, oil refinery wastes, PCBs, cadmium wastes, and others. Radioactive wastes were not considered. Legislation, landfill use, recycling, and the Common Market's approach to these wastes were also discussed. (JMT)

  10. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from...

  11. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  12. Citrus waste stream utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waste streams, generated during fruit processing, consist of solid fruit residues in addition to liquid waste streams from washing operations which must be handled in an environmentally acceptable manner. Unsound fruit from packing houses are usually sent off to be processed for juice and the solid ...

  13. Hazardous waste tracking issues

    SciTech Connect

    Marvin, R. )

    1993-08-01

    The concept of cradle-to-grave oversight of hazardous waste was established in 1976 under RCRA. Since then, the multicopy Uniform Hazardous Waste Manifest has been a key component in the federal tracking system. The manifests ensure that generators, transporters and TSDFs maintain documentation of hazardous waste shipments. To a large extent, the tracking system has served its intended purpose; nevertheless, certain shortcomings exist. Anyone involved in shipping hazardous waste should be aware of the system's weaknesses and take appropriate measures to compensate for them.

  14. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  15. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…

  16. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  17. Developing hazardous waste programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Developing a fully operational hazardous waste regulatory system requires at least 10 to 15 years—even in countries with strong legal and bureaucratic institutions, according to a report on "The Evolution of Hazardous Waste Programs," which was funded by Resources for the Future (RFF) and the World Bank's South Asia Environment Group, and issued on June 4.The report, which compares the experiences of how four developed and four developing countries have created hazardous waste programs, indicates that hazardous waste issues usually do not become a pressing environmental issue until after countries have dealt with more direct threats to public health, such as contaminated drinking water and air pollution. The countries examined include Indonesia, Thailand, Germany, and the United States.

  18. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  19. New hazardous waste solutions

    SciTech Connect

    Krukowski, J.

    1993-05-15

    From data supplied by industrial laboratories, from academia, and from the EPA's Superfund Innovative Site Evaluation (SITE) program, this paper presents an informal look at some new and innovative hazardous waste treatment processes. These processes show promise for sparing users off-site disposal costs as well as for remediation of contamination at Superfund or RCRA sites. Included are the following: equipment that will biodegrade water-based paint wastes and pesticide wastes; recycling of potliner and furnace dusts for metal recovery; a process that reduces PCBs and PAHs to lighter hydrocarbons such as methane. Finally, two radiofrequency (RF) processes are described that can be used to remove soil contaminants such as pentachlorophenols, Aroclor 1242, solvents, oils, jet fuel, and pesticides.

  20. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  1. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 2, Site specific---California through Idaho. [Waste mixtures of hazardous materials and low-level radioactive wastes or transuranic wastes

    SciTech Connect

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provide site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: eight California facilities which are Energy Technology engineering Center, General Atomics, General Electric Vallecitos Nuclear Center, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Laboratory for Energy-Related Health Research, Mare Island Naval Shipyard, and Sandia national Laboratories; Grand Junction Project Office; Rocky Flats Plant; Knolls Atomic Power Laboratory-Windsor Site; Pinellas Plant; Pearl Harbor Naval Shipyard; Argonne National Laboratory-West; and Idaho National Engineering Laboratory.

  2. National Institutes of Health: Mixed waste stream analysis

    SciTech Connect

    Kirner, N.P.; Faison, G.P.; Johnson, D.R.

    1994-08-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 requires that the US Department of Energy (DOE) provide technical assistance to host States, compact regions, and unaffiliated States to fulfill their responsibilities under the Act. The National Low-Level Waste Management Program (NLLWMP) operated for DOE by EG&G Idaho, Inc. provides technical assistance in the development of new commercial low-level radioactive waste disposal capacity. The NLLWMP has been requested by the Appalachian Compact to help the biomedical community become better acquainted with its mixed waste streams, to help minimize the mixed waste streams generated by the biomedical community, and to provide applicable treatment technologies to those particular mixed waste streams. Mixed waste is waste that satisfies the definition of low-level radioactive waste (LLW) in the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) and contains hazardous waste that either (a) is listed as a hazardous waste in Subpart D of 40 CFR 261, or (b) causes the LLW to exhibit any of the hazardous waste characteristics identified in 40 CFR 261. The purpose of this report is to clearly define and characterize the mixed waste streams generated by the biomedical community so that an identification can be made of the waste streams that can and cannot be minimized and treated by current options. An understanding of the processes and complexities of generation of mixed waste in the biomedical community may encourage more treatment and storage options to become available.

  3. Hazardous Wastes--New Developments.

    ERIC Educational Resources Information Center

    Rogers, Harvey W.

    1979-01-01

    The need for effective disposal of hazardous medical and pathological wastes is discussed and the results of a test of five different models of incinerators in disposing of such wastes is presented. (MJB)

  4. Mediated electrochemical hazardous waste destruction

    SciTech Connect

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1991-08-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag{sup 2+} or Ce{sup +4} are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs.

  5. Elimination of the hazards from hazardous wastes.

    PubMed Central

    Gloyna, E F; Taylor, R D

    1978-01-01

    The "hazard" associated with a waste essentially controls the overall engineering approach to finding suitable alternatives for solving potential disposal problems. It should be recognized that all factors affecting environmental equilibrium must be considered, including product sales, process design, financing, pre- and end-of-pipe treatment, residuals management, and ultimate bioaccumulation of residuals. To meet this challenge, a systems approach to waste treatment and residuals disposal provides a logical approach, but this management concept requires a thorough understanding of the important physical and chemical aspects of the problem, as well as many social implications of the resulting decisions. Thus waste management within a plant necessarily involves process control, pretreatment and end-of-pipe treatment. Further, it follows that residuals management from a disposal point-of-view must ultimately embrace what is called the "multi-barrier concept." In essence, hazard elimination occurs in varying degrees during each phase of a properly engineered system. PMID:738249

  6. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  7. Characterizing cemented TRU waste for RCRA hazardous constituents

    SciTech Connect

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-06-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol.

  8. Regulatory framework for the thermal treatment of various waste streams.

    PubMed

    Lee, C C; Huffman, G L; Mao, Y L

    2000-08-28

    Since 1990, regulations and standards have changed considerably. This article is an update of the regulatory requirements for the thermal treatment of various waste streams. The waste categories covered, along with the laws they are governed under, include: Hazardous waste under Subtitle C of the Resource Conservation and Recovery Act (RCRA) and under the Clean Air Act; municipal solid waste under Subtitle D of the RCRA; medical waste under Subtitle J of the RCRA; Superfund waste under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA); toxic waste under the Toxic Substances Control Act (TSCA); and sludge waste under the Clean Water Act (CWA).

  9. Regulatory framework for the thermal treatment of various waste streams.

    PubMed

    Lee, C C; Huffman, G L; Mao, Y L

    2000-08-28

    Since 1990, regulations and standards have changed considerably. This article is an update of the regulatory requirements for the thermal treatment of various waste streams. The waste categories covered, along with the laws they are governed under, include: Hazardous waste under Subtitle C of the Resource Conservation and Recovery Act (RCRA) and under the Clean Air Act; municipal solid waste under Subtitle D of the RCRA; medical waste under Subtitle J of the RCRA; Superfund waste under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA); toxic waste under the Toxic Substances Control Act (TSCA); and sludge waste under the Clean Water Act (CWA). PMID:10863011

  10. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  11. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  12. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  13. Household hazardous waste in Massachusetts

    SciTech Connect

    Stanek, E.J. 3d.; Tuthill, R.W.; Willis, C.; Moore, G.S.

    1987-03-01

    Household wastes, when disposed of improperly, are hazardous to health. This paper reports a random digit dial telephone survey of Massachusetts households concerning household hazardous waste (HHW) disposal with a 54% response. Of the automotive oil disposed of by 33% of survey households, 57% was deposited in the ground, sewer, or landfill. Annually by household oil disposal in Massachusetts is estimated to be 8.8 million quarts. Four percent of hazardous waste generated in Massachusetts is from households. Improper disposal makes it a major environmental contaminant. More households (41.5%) in smaller communities disposed of oil compared with 26% of households in larger communities. Paint and pesticides were disposed of by 10% of the households, but were dumped on the ground sewer or landfills more than 90% of the time.

  14. RCRA hazardous waste contingency plans

    SciTech Connect

    Wagner, T.P. )

    1991-10-01

    This paper reports that the Resource Conservation and Recovery Act (RCRA) requires hazardous waste treatment, storage and disposal facilities (TSDFs) to prepare a contingency plan. The plan is a blueprint for emergency response, and must be designed to minimize health and environmental hazards resulting from fires, explosions or other unplanned hazardous releases. Hazardous waste contingency plans often are neglected and considered an unnecessary regulatory exercise by facility operators. However, an effective contingency plan is a valuable tool for reducing liability, protecting workers and the community, and avoiding costly shutdowns. The requirement under Title III of the Superfund Amendments and Reauthorization Act (SARA) that regulated facilities report to EPA annually on releases to the environment has caused regulators to renew emphasis on the importance of RCRA contingency plans. However, regulatory agencies historically have provided insufficient information on the elements of an adequate contingency plan. Nevertheless, facility operators seriously should consider going beyond minimum regulatory requirements and create a comprehensive contingency plan.

  15. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  16. Local governments take on hazardous waste collection

    SciTech Connect

    Spencer, R.L.

    1989-03-01

    Diversion of toxic chemicals from solid waste disposal facilities is one major reason communities conduct collection programs for Household Hazardous Wastes (HHW). By keeping wastes like old cans of paint thinner, pesticides, waste oil and car batteries, out of the trash collection, the hypothesis is that leachate, air emissions and compost quality will be improved. While special HHW collection days are the most common technique used by local communities, there are varied perspectives and issues about the effort which include; low average participation rates, high cost of collection, liability of sponsoring communities, and environmental benefits from diverting a small portion of waste from the solid waste facility. The major benefits are clearly educational. As community recycling programs and material reclamation facilities develop, the public is becoming increasingly aware of the presence of HHW in their waste stream. This is a natural spinoff of source separation. The increased interest in solid waste composting facilities is also forcing communities to evaluate ways of producing compost with acceptable levels of contaminants.

  17. Evaluation and comparison of selected household hazardous waste collection facilities

    SciTech Connect

    Burke, M; Brogan, J.A.; Sepanski, L.M.

    1990-05-01

    In 1988 the City of Seattle's Office for Long-range Planning and the Solid Waste Utility implemented a permanent household hazardous waste collection program in an effort to decrease hazardous waste disposal in municipal solid and liquid waste streams. A detailed description of this program may be found in Household Hazardous Waste: Implementation of a Permanent Collection Facility,'' published by the Urban Consortium Energy Task Force. An integral part of Seattle's Household Hazardous Waste collection effort is a three part evaluation strategy that includes: an assessment of the effectiveness of the permanent facility; a comparison of the city's facility with other HHW collection programs; and a user survey to evaluate customer satisfaction and compare the Seattle and King County collection approaches. This evaluation strategy was conducted during Year 10 of the Urban Consortium Energy Task Force, and its results are document in this report. Several different collection programs were compared during the evaluation. 22 refs., 23 figs., 25 tabs.

  18. Impact of household hazardous wastes on landfill leachates. Master's thesis

    SciTech Connect

    Gapinski, D.P.

    1988-05-01

    Protective measures have been enacted to mitigate the deleterious effects of landfill leachate on ground and surface waters. One such measure has been to remove items classified as Household Hazardous Wastes from the solid-waste stream prior to landfill disposal. Even though the alternative methods of disposal may be very costly, no effort has been made to assess the impact of Household Hazardous Wastes on landfill leachates and, subsequently, on receiving waters. Therefore, a model is needed to assess this impact accurately and determine which, indeed if any, items should be removed from the solid-waste stream prior to landfill disposal. The model proposed to assess the impact of Household Hazardous Wastes is developed in two steps.

  19. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  20. Phytoremediation of hazardous wastes

    SciTech Connect

    McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.; Ou, T.Y.

    1995-11-01

    A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approach 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.

  1. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section...

  2. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2011-10-01 2011-10-01 false Hazardous waste. 171.3 Section...

  3. Hazardous Waste and You. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Ontario Waste Management Corp., Toronto.

    This teaching guide provides an interactive introduction to hazardous waste, with particular emphasis on personal responsibility and action. Nine lessons engage advanced grade 10 and grade 11-12 science students in group discussions and actions that help them develop awareness of hazardous waste, understanding of the hazardous waste situation in…

  4. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous waste. 171.3 Section...

  5. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2012-10-01 2012-10-01 false Hazardous waste. 171.3 Section...

  6. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have identification numbers which must be displayed on hazardous waste manifests. See 40 CFR parts 262...: In 40 CFR part 263, the EPA sets forth requirements for the cleanup of releases of hazardous wastes. ... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous waste. 171.3 Section...

  7. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  8. Hazardous waste landfill leachate characteristics

    SciTech Connect

    Pavelka, C. ); Loehr, R.C. . Environmental and Water Resources Engineering Program); Haikola, B. )

    1993-01-01

    Leachate data from 18 commercial hazardous waste landfills or cells were evaluated to determine overall leachate characteristics and parameters that may affect leachate generation and characteristics. The landfills studied have a wide range of practices, none of which are necessarily representative of the most current landfill design, operating or closure practice in the United States. The leachate samples were from landfills that represented varying waste types, waste age, geographic locations and climate. The parameters evaluated included chemical properties, co-disposal of hazardous and municipal solid wastes, climatic conditions, and waste age in the landfills. The leachate samples had been analyzed for 62 volatiles, 107 semi-volatiles, 16 metals, 28 pesticides, herbicides and insecticides, and 17 other chemicals. The results indicate that: (a) the organics in the leachate with high concentrations had high solubilities and low octanol-water coefficients, (b) landfills in arid climates produced less leachate than those in temperate and sub-tropical climates, and (c) leachate production appeared to be related to use of a cap or cover.

  9. Shedding a new light on hazardous waste

    SciTech Connect

    Reece, N.

    1991-02-01

    The sun's ability to detoxify waterborne chemicals has long been known; polluted streams, for example, become cleaner as they flow through sunlit areas. Solar detoxification harnesses this natural degradation process for beneficial ends, producing simple, nonhazardous substances from hazardous organic chemicals. Solar detoxification systems now being developed break down these chemicals without using the fossil fuels required by conventional technologies. Sunlight destroys hazardous waste because of the distinctive properties of photons, the packets of energy that make up sunlight. Low-energy photons add thermal energy that will heat toxic chemicals; high-energy photons add the energy needed to break the chemical bonds of these chemicals. The detoxification process discussed here takes advantage of this latter group of photons found in the ultraviolet portion of the solar spectrum. 4 figs.

  10. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ...) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... petitioned waste on human health and the environment. DATES: Comments must be received on or before...

  11. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste..., Tennessee from the lists of hazardous wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste is sediment generated in the Storm Water Basin. After careful...

  12. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  13. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-12-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy. Our approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The dielectric-barrier discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. During the first phase of the program we demonstrated that a variety of hazardous species could be detected by the technique of active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence. Species investigated included heavy metals, Hg, Cr, and Se, both chlorinated and non-chlorinated organics, and uranyl compounds. For most of these species we demonstrated sensitivity limits for their detection at parts per billion (ppb) levels. Our principal goals for this second phase of the program are to develop and breadboard test instrument components and to design a prototype instrument suitable for construction and evaluation in the final phase of the program. A secondary goal is to extend the ANET technology to encompass a greater number of hazardous species, primarily additional heavy metals and radionuclides.

  14. Ecotoxicological characterization of hazardous wastes.

    PubMed

    Wilke, B-M; Riepert, F; Koch, Christine; Kühne, T

    2008-06-01

    In Europe hazardous wastes are classified by 14 criteria including ecotoxicity (H 14). Standardized methods originally developed for chemical and soil testing were adapted for the ecotoxicological characterization of wastes including leachate and solid phase tests. A consensus on which tests should be recommended as mandatory is still missing. Up to now, only a guidance on how to proceed with the preparation of waste materials has been standardized by CEN as EN 14735. In this study, tests including higher plants, earthworms, collembolans, microorganisms, duckweed and luminescent bacteria were selected to characterize the ecotoxicological potential of a boiler slag, a dried sewage sludge, a thin sludge and a waste petrol. In general, the instructions given in EN 14735 were suitable for all wastes used. The evaluation of the different test systems by determining the LC/EC(50) or NOEC-values revealed that the collembolan reproduction and the duckweed frond numbers were the most sensitive endpoints. For a final classification and ranking of wastes the Toxicity Classification System (TCS) using EC/LC(50) values seems to be appropriate.

  15. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  16. Organic and inorganic hazardous waste stabilization utilizing fossil fuel combustion waste materials

    SciTech Connect

    Netzel, D.A.; Lane, D.C.; Brown, M.A.; Raska, K.A.; Clark, J.A.; Rovani, J.F.

    1993-09-01

    A laboratory study was conducted at the Western Research Institute to evaluate the ability of innovative clean coal technology (ICCT) waste to stabilize organic and inorganic constituents of hazardous wastes. The four ICCT wastes used in this study were: (1) the Tennessee Valley Authority (TVA) atmospheric fluidized bed combustor (AFBC) waste, (2) the TVA spray dryer waste, (3) the Laramie River Station spray dryer waste, and (4) the Colorado-Ute AFBC waste. Four types of hazardous waste stream materials were obtained and chemically characterized for use in evaluating the ability of the ICCT wastes to stabilize hazardous organic and inorganic wastes. The wastes included an API separator sludge, mixed metal oxide-hydroxide waste, metal-plating sludge, and creosote-contaminated soil. The API separator sludge and creosote-contaminated soil are US Environmental Protection Agency (EPA)-listed hazardous wastes and contain organic contaminants. The mixed metal oxide-hydroxide waste and metal-plating sludge (also an EPA-listed waste) contain high concentrations of heavy metals. The mixed metal oxide-hydroxide waste fails the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metal-plating sludge fails the TCLP for chromium. To evaluate the ability of the ICCT wastes to stabilize the hazardous wastes, mixtures involving varying amounts of each of the ICCT wastes with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest using the Toxicity Characteristic Leaching Procedure.

  17. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  18. Hazardous waste management in the Pacific basin

    SciTech Connect

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  19. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  20. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  1. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  2. Cities cooperate on household hazardous waste collection

    SciTech Connect

    Yost, K.D. )

    1994-03-01

    This article describes a household hazardous waste collection project. The project resulted from Missouri solid waste regulations and the recognition of five suburban cities of St. Louis that there was a need to provide residents with an environmentally sound method of disposing of household hazardous waste. The project was 90 percent funded by a state grant.

  3. Hazardous waste: 1998 Regulatory and judicial developments

    SciTech Connect

    Henry, M.E.; Wright, W.G. Jr.

    1998-12-31

    Every year, owners and operators of facilities generating, transporting, treating, storing, or disposing of hazardous waste, or persons held liable for past hazardous waste management practice through EPA`s Superfund program, are affected by changes in the application and interpretation of hazardous waste regulation. This paper will summarize the significant 1997 hazardous waste regulatory developments, including changes and additions to land disposal restrictions and treatment standards, hazardous waste determination procedures, used oil management practices. This paper will also summarize key judicial decisions addressing expanded definitions of solid and hazardous waste, activities constituting disposal, and circumstances constituting imminent and substantial endangerment. Finally, this paper will summarize new EPA Superfund guidance documents and judicial decisions addressing issues of liability and defenses to liability under Superfund.

  4. Flow rates and compositions of incinerated waste streams in the United States.

    PubMed

    Behmanesh, N; Allen, D T; Warren, J L

    1992-04-01

    The quantity and composition of RCRA hazardous wastes incinerated during 1986 were examined using the National Hazardous Waste Survey. This Survey, collected for U.S. EPA by the Research Triangle Institute, is the most extensive examination of hazardous waste generation and management available. The survey data show that although a wide variety of hazardous wastes were treated by incineration, more than 75 percent of incinerated waste streams were from chemical manufacturing. The survey data also show that more than 90 percent of the incinerated wastes were treated by incinerators located at the facility generating the waste. Despite the predominance of a single industrial sector in generating incinerated hazardous wastes, the compositional profile of the wastes is far from uniform. To illustrate this variability, the metals and chlorine content of the wastes are reported along with the sources of the metal and chlorine loadings.

  5. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of Direct Final Exclusion AGENCY: Environmental Protection Agency (EPA). ACTION: Removal of...

  6. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  7. The hazardous waste scene in India

    SciTech Connect

    Subrahmanyam, P.V.R.; Bhinde, A.D.; Sundaresan, B.B.

    1983-03-01

    India has made significant advances in the manufacture of basic organic chemicals, dyes, fertilizers, pesticides, drugs, and so forth during the last three decades, resulting in increased generation of hazardous wastes. Presently, these wastes are being indiscriminately disposed of into fallow land in the public domain. Legislation to control air and water pollution has not covered hazardous waste disposal. The magnitude of hazardous waste generation in general and the problems posed by such wastes from pesticide, dyes, and other industries are identified, and available data are presented and discussed.

  8. Hazardous waste operational plan for site 300

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  9. Waste streams in a crewed space habitat.

    PubMed

    Wydeven, T; Golub, M A

    1991-01-01

    A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future, long-duration, human space missions. Data for the constituents and chemical formulae of the following waste streams are presented and/or discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Data on dust generation are also presented and discussed.

  10. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann

    1992-03-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  11. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann.

    1992-01-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  12. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Refinery (Beaumont Refinery) to exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  13. Waste streams in a crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Golub, M. A.

    1991-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  14. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    EPA Science Inventory

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  15. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... sludge from the list of hazardous wastes under 40 CFR 261.31 and 261.32 (see 70 FR 41358). EPA is... released from the waste, plausible and specific types of management of the petitioned waste, the quantities... also eligible for exclusion and remain hazardous wastes until excluded. See 66 FR 27266 (May 16,...

  16. Leaching behaviour of hazardous demolition waste.

    PubMed

    Roussat, Nicolas; Méhu, Jacques; Abdelghafour, Mohamed; Brula, Pascal

    2008-11-01

    Demolition wastes are generally disposed of in unlined landfills for inert waste. However, demolition wastes are not just inert wastes. Indeed, a small fraction of demolition waste contains components that are hazardous to human health and the environment, e.g., lead-based paint, mercury-contained in fluorescent lamps, treated wood, and asbestos. The objective of this study is to evaluate the release potential of pollutants contained in these hazardous components when they are mixed with inert wastes in unlined landfills. After identification of the different building products which can contain hazardous elements and which can be potentially pollutant in landfill scenario, we performed leaching tests using three different lysimeters: one lysimeter containing only inert wastes and two lysimeters containing inert wastes mixed with hazardous demolition wastes. The leachates from these lysimeters were analysed (heavy metals, chlorides, sulphates fluoride, DOC (Dissolved Organic Carbon), phenol index, and PAH). Finally, we compared concentrations and cumulative releases of elements in leachates with the limits values of European regulation for the acceptance of inert wastes at landfill. Results indicate that limit values are exceeded for some elements. We also performed a percolation column test with only demolition hazardous wastes to evaluate the specific contribution of these wastes in the observed releases. PMID:18160273

  17. The Disposal of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  18. Hazardous Waste Compliance Program Plan

    SciTech Connect

    Potter, G.L.; Holstein, K.A.

    1994-05-01

    The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

  19. Hazardous waste status of discarded electronic cigarettes

    SciTech Connect

    Krause, Max J.; Townsend, Timothy G.

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  20. Hazardous waste in the Asian Pacific region.

    PubMed

    Prasad, Rajendra; Khwaja, Mahmood A

    2011-01-01

    The production and disposal of hazardous waste remains a substantial problem in the Asian Pacific region. Remediation of waste disposal sites, including landfill sites, is attracting considerable research attention within the region. A recognition of the need for community engagement in this process is also growing. This article reviews the work presented in the Hazardous Waste sessions at the Pacific Basin Consortium for Environment and Health held in November 2009 in Perth. PMID:21714379

  1. 75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... standards for owners and operators of hazardous waste treatment, storage and disposal facilities, the... generator requirements, the standards for owners and operators of hazardous waste treatment, storage and... bonds, Water supply. 40 CFR Part 266 Environmental protection, Energy, Hazardous waste,...

  2. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Commingling of waste streams. 434.61... STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams from...

  3. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Commingling of waste streams. 434.61... PERFORMANCE STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams...

  4. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Commingling of waste streams. 434.61... PERFORMANCE STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams...

  5. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Commingling of waste streams. 434.61... STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams from...

  6. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Commingling of waste streams. 434.61... PERFORMANCE STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams...

  7. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... approving? EPA is approving the delisting petition submitted by Eastman to have three waste streams... waste. These waste streams are the rotary kiln incinerator (RKI) bottom ash, RKI fly ash, and RKI... produced by the RKI's air pollution control equipment is also derived from the management of several F-,...

  8. Operational Waste Stream Assumption for TSLCC Estimates

    SciTech Connect

    S. Gillespie

    2000-09-01

    This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS M&O 2000a), and AP-3.11Q, ''Technical Reports''.

  9. Hazardous waste status of discarded electronic cigarettes.

    PubMed

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  10. Hazardous waste status of discarded electronic cigarettes.

    PubMed

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers. PMID:25746178

  11. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  12. GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES

    EPA Science Inventory

    This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...

  13. Electrochemical treatment of mixed and hazardous waste

    SciTech Connect

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-12-31

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study.

  14. Innovative waste stream analysis process for a utilities environmental laboratory

    SciTech Connect

    Stone, K.; Scherer, M.D.

    1997-08-01

    Compliance with government regulations for a vast multitude of chemical wastes streams can be a difficult undertaking. Under 40 CFR 261.11, a person who generates a solid waste must first determine if the waste is a hazardous waste to determine proper disposal. A common sense approach to meeting this requirement for a utility environmental laboratory has been developed at the Colorado Springs Utilities, Department of Water Resources, Environmental Quality Laboratory (EQL). The Colorado Springs Utilities, Water Resources Department, Environmental Quality Laboratory (EQL) operates a 10,000 square foot state-of-the-art laboratory facility. The EQL is a complete utilities environmental laboratory that conducts compliance analyses, process control analyses, and general environmental analyses. The EQL also provides inter-departmental analytical support analyses including polychlorinated biphenyl (PCB) transformer gas analysis for the electric department, hazard analyses for the Fire Department`s Haz-mat Unit, and compressor oil analyses for the Gas Department. The EQL has an excellent record of quality performance and is the only municipally owned laboratory in Colorado with Class 100 Clean Room capability. The EQL developed an innovative waste stream analysis process for its laboratory operations.

  15. 75 FR 16037 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    .... Individual waste streams may vary, however, depending on raw materials, industrial processes, and other... FR 27266 (May 16, 2001). III. EPA's Evaluation of the Waste Information and Data A. What Waste Did... contamination resulting from disposal of the petitioned waste in a landfill, and that a reasonable...

  16. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  17. Hazardous waste disposal and the clinical laboratory.

    PubMed

    Armbruster, D A

    1990-01-01

    Negligent, unregulated hazardous waste management has resulted in real and potential threats to public health and safety. The federal government has responded with laws and regulations aimed at the producers of hazardous waste, including clinical laboratories. Clinical laboratory managers must understand how the requirements apply to their facilities and how to comply with them, or risk violating the law. The Resources Conservation and Recovery Act (RCRA) imposes controls on hazardous waste management through the Code of Federal Regulations (CFR). The Environmental Protection Agency (EPA) and the Department of Transportation (DOT) regulate these activities through 40 CFR and 49 CFR, respectively. 49 CFR specifies the characteristics of hazardous waste and lists more than 400 toxic chemicals, including several commonly used in clinical laboratories. Laboratories must conduct chemical inventories to determine if they should obtain an EPA identification number as a hazardous waste generator. Most clinical laboratories can operate satellite accumulation points and accumulate, store, transport, and dispose of waste in accordance with EPA and DOT regulations. Regulations pertaining to infectious waste, sure to affect many clinical laboratories, are being developed now by the EPA. The tracking system mandated by the federal government can be supplemented by state and local authorities and poses a significant regulatory challenge to clinical laboratory managers.

  18. Hazardous Educational Waste Collections in Illinois.

    ERIC Educational Resources Information Center

    Illinois State Environmental Protection Agency, Springfield.

    This report presents the status of programs designed to manage hazardous educational waste collections in secondary schools in the state of Illinois. Laboratory wastes, expired chemicals, unstable compounds, and toxic or flammable materials are accounted for in this document. The report contains an executive summary, a review of Illinois statutes…

  19. Special Report: Hazardous Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  20. Air emissions from the incineration of hazardous waste.

    PubMed

    Oppelt, E T

    1990-10-01

    In the United States over the last ten years, concern over important disposal practices of the past has manifested itself in the passage of a series of federal and state-level hazardous waste clean-up and control statutes of unprecedented scope. The impact of these various statutes will be a significant modification of waste management practices. The more traditional and lowest cost methods of direct landfilling, storage in surface impoundments and deep-well injection will be replaced, in large measure, by waste minimization at the source of generation, waste reuse, physical/chemical/biological treatment, incineration and chemical stabilization/solidification methods. Of all of the "terminal" treatment technologies, properly-designed incineration systems are capable of the highest overall degree of destruction and control for the broadest range of hazardous waste streams. Substantial design and operational experience exists and a wide variety of commercial systems are available. Consequently, significant growth is anticipated in the use of incineration and other thermal destruction methods. The objective of this paper is to examine the current state of knowledge regarding air emissions from hazardous waste incineration in an effort to put the associated technological and environmental issues into perspective.

  1. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na[sub 2]O) - Lime (CaO) - Silica (SiO[sub 2]) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  2. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-10-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na{sub 2}O) - Lime (CaO) - Silica (SiO{sub 2}) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  3. Hazardous combustion products from municipal waste incineration.

    PubMed

    Marty, M A

    1993-01-01

    Metropolitan areas are experiencing waste management problems due to the considerable volume of municipal waste generated and the limited space for landfills. Some communities are including incineration as part of their waste management strategy. Incineration is the destruction of materials by the controlled application of heat and is a chemically complex process that leads to the de novo formation of a large number of compounds, many of which have known toxicologic properties. This article explores some of the de novo toxicants formed during incineration of municipal waste and hazardous waste.

  4. Hazard ranking systems for chemical wastes and chemical waste sites. Hazardous waste ranking systems

    SciTech Connect

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-12-31

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  5. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  6. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  7. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.

    1984-01-01

    This book is a review and evaluation of vadose (unsaturated) zone monitoring. It describes the applicability of selected monitoring methods to hazardous waste disposal sites. Topics covered include: geohydrologic framework of the vadose zone; premonitoring of storage at disposal sites; premonitoring of water movement at disposal sites; active and abandoned site monitoring methods; waste source pollutant characterization; geohydrologic settings for waste disposals and conceptual vadose zone monitoring descriptions.

  8. Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience

    SciTech Connect

    Not Available

    1991-10-01

    The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the ``normal`` municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan`s programs. Focusing on the Plan`s household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

  9. Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience

    SciTech Connect

    Seeberger, Donald A.

    1991-10-01

    The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

  10. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  11. E-waste hazard: The impending challenge

    PubMed Central

    Pinto, Violet N.

    2008-01-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981

  12. Hazardous waste regulations: an interpretive guide

    SciTech Connect

    Mallow, A.

    1981-01-01

    Compliance with hazardous-waste laws has been made difficult by new, lengthy, and complicated Environmental Protection Agency regulations. This book analyzes and reorganizes the 150 pages of three-column regulations, clarifying all aspects of the requirements. Paralleling the related sections of the law (Subtitle C of the Resources Act), the book begins with an overview of the law and regulations and an identification and listing of hazardous wastes. There are guidelines for authorized state programs along with notification requirements for those in hazardous-waste activities. A checklist format, using five different scenarios offers a practical approach to analyzing the unique requirements for generators and transporters as well as owners and operators. 3 figures.

  13. Hazardous and Mixed Waste Transportation Program

    SciTech Connect

    Hohnstreiter, G. F.; Glass, R. E.; McAllaster, M. E.; Nigrey, P. J.; Trennel, A. J.; Yoshimura, H. R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas.

  14. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  15. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    .... See Reynolds Metals Company at 62 FR 37694 and 62 FR 63458 where the delisted waste leached at greater... (that is, ignitability, corrosivity, reactivity, and toxicity), (2) the wastes meet the criteria for... any of the hazardous waste characteristics (that is, ignitability, reactivity, corrosivity,...

  16. Hazardous household wastes need careful disposal

    SciTech Connect

    Mackin, J.

    1988-01-01

    Hazardous wastes are everywhere, including the average American household.Some cleaners, automobile products, pesticides and paint products can be potentially hazardous substances. Such products may contain solvents, petroleum products, heavy metals, or other toxic chemicals. Chemicals found in the kitchen, bathroom, garage, garden shed to workshop can poison, corrode, explode, or burst into flames if improperly handled. If improperly discarded, they can injure people and pollute the environment. The author then lists the major classes of household wastes and outlines their proper use, storage, and disposal.

  17. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... purposes of this paragraph: (1) An analysis of each feed stream, including hazardous waste, other fuels... chapter, a quantitative analysis of the scrubber water (if any), ash residues, other residues, and... waste. When an owner or operator of a cement kiln, lightweight aggregate kiln, solid fuel boiler,...

  18. 75 FR 12989 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... on May 14, 2009 (74 FR 22741) and thus the program's incentives, including the hazardous waste... 63 FR 28599-29600, May 26, 1998, EPA removed these K- listed wastes from Sec. 261.32, but failed to... hazardous waste and owners and operators of hazardous waste treatment, storage and disposal...

  19. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  20. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  1. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  2. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  3. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  4. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  5. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Imports of hazardous waste. 262.60 Section 262.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60...

  6. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  7. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  8. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that—...

  9. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Hazardous waste incinerator permits... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of...

  10. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect

    Albert, R.

    1992-06-30

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  11. Ground freezing for containment of hazardous waste

    SciTech Connect

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  12. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  13. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  14. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.; Wilson, L.G.; Hoylman, E.W.

    1983-10-01

    This book describes the applicability of vadose zone monitoring techniques to hazardous waste site investigations. More than 70 different sampling and nonsampling vadose zone monitoring techniques are described in terms of their advantages and disadvantages. Physical, chemical, geologic, topographic, geohydrologic, and climatic constraints for vadose zone monitoring are quantitatively determined. Vadose zone monitoring techniques are categorized for premonitoring, active, and postclosure site assessments. Waste disposal methods are categorized for piles, landfills, impoundments, and land treatment. Conceptual vadose zone monitoring approaches are developed for specific waste disposal method categories.

  15. Legislative aspects of hazardous waste management.

    PubMed

    Friedman, M

    1983-02-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management.

  16. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  17. A generic hazardous waste management training program

    SciTech Connect

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref.

  18. Management of uncontrolled hazardous waste sites

    SciTech Connect

    Not Available

    1985-01-01

    This book is a compilation of papers presented at a conference on the management of uncontrolled hazardous waste sites. Papers were presented in the following topics: federal and state programs; sampling and monitoring; leaking tanks; in-situ treatment; site remediation; banner technology; storage/disposal; endangerment assessment; risk assessment techniques; and research and development.

  19. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  20. Management of hazardous medical waste in Croatia

    SciTech Connect

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  1. Integrating waste management with Job Hazard analysis

    SciTech Connect

    2007-07-01

    The web-based Automated Job Hazard Analysis (AJHA) system is a tool designed to help capture and communicate the results of the hazard review and mitigation process for specific work activities. In Fluor Hanford's day-to-day work planning and execution process, AJHA has become the focal point for integrating Integrated Safety Management (ISM) through industrial health and safety principles; environmental safety measures; and involvement by workers, subject-matter experts and management. This paper illustrates how AJHA has become a key element in involving waste-management and environmental-control professionals in planning and executing work. To support implementing requirements for waste management and environmental compliance within the core function and guiding principles of an integrated safety management system (ISMS), Fluor Hanford has developed the a computer-based application called the 'Automated Job Hazard Analysis' (AJHA), into the work management process. This web-based software tool helps integrate the knowledge of site workers, subject-matter experts, and safety principles and requirements established in standards, and regulations. AJHA facilitates a process of work site review, hazard identification, analysis, and the determination of specific work controls. The AJHA application provides a well-organized job hazard analysis report including training and staffing requirements, prerequisite actions, notifications, and specific work controls listed for each sub-task determined for the job. AJHA lists common hazards addressed in the U.S. Occupational, Safety, and Health Administration (OSHA) federal codes; and State regulations such as the Washington Industrial Safety and Health Administration (WISHA). AJHA also lists extraordinary hazards that are unique to a particular industry sector, such as radiological hazards and waste management. The work-planning team evaluates the scope of work and reviews the work site to identify potential hazards. Hazards

  2. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Cord, Scottsburg (64 FR 3869, January 26, 1999). On April 22, 2010, the Agency was notified that...(d). ] List of Subjects in 40 CFR Part 261 Environmental protection, Hazardous waste, Recycling,...

  3. Plasma destruction of North Carolina`s hazardous waste based on hazardous waste generated between the years of 1989 and 1992

    SciTech Connect

    Williams, D.L.

    1994-12-31

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day`s average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina`s primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail.

  4. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999

    SciTech Connect

    Bechtel Jacobs Company LLC

    2000-03-01

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

  5. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 2000

    SciTech Connect

    Bechtel Jacobs Company LLC

    2001-03-01

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 2000. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 2000). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 2000, these goals were extended to CY 2001 for all waste streams that generated waste in 2000. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 50 waste streams met or exceeded their reduction goal based on the CY 2000 data.

  6. Hazards associated with retrieval and storage of legacy waste at the Transuranic Waste Inspectable Storage Project

    SciTech Connect

    Pannell, M.A.; Grogin, P.W.; Langford, R.R.

    1998-03-01

    Approximately 17,000 containers of solid transuranic and hazardous waste have been stored beneath earthen cover for nearly twenty years at Technical Area 4 of the Los Alamos National Laboratory. The mission of the Transuranic Waste Inspectable Storage Project (TWISP) is to retrieve, vent, and place these containers into an inspectable storage configuration in compliance with the Resource Conservation and Recovery Act, prior to final disposition at the Waste Isolation Pilot Plant. Significant hazards currently identified with TWISP activities include: (1) the pressurization of drums; (2) volatilization of organic compounds (VOCs) within the drums; and (3) the generation of elevated hydrogen levels by certain waste streams. Based on the retrieval of 15% of the waste containers, the following preliminary conclusions are presented to better protect personnel and the environment: (1) the likelihood of unvented drums becoming pressurized increases when environmental conditions change; (2) pressurized drums must be vented before they become bulging drums; (3) vented drums present the potential for VOC emissions and personnel exposure; (4) the vapor pressure and boiling points of waste stream constituents may be an indication of the likelihood of VOC emissions from stored hazardous waste containers; (5) large numbers of co-located vented drums may present the potential of increased hydrogen and VOC concentrations within unventilated storage domes; (6) monitoring and sampling vented drum storage domes is necessary to ensure that the levels of risk to drum handlers and inspection personnel are acceptable; (7) identifying, tagging, and segregating special case drums is necessary to prevent personnel overexposures and preclude environmental contamination; (8) applying rust inhibitor prolongs the useful life of waste containers stored under earthen cover; (9) acoustic drum pressure detection may be a viable tool in assessing elevated drum pressures.

  7. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... notice removes the proposed rule published in 76 FR 5110 (January 28, 2011) for public review and comment... Landfill (Gulf West) located in Anahuac, TX, published on January 28, 2011 (76 FR 5110). EPA subsequently... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  8. Decision analysis for INEL hazardous waste storage

    SciTech Connect

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  9. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  10. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  11. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  12. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) hazardous waste manifest (manifest) is prepared in accordance with 40 CFR 262.20 and is signed, carried, and... in accordance with 40 CFR 263.22. (5) Before accepting hazardous waste from a rail transporter, a non.... (h) A hazardous waste manifest required by 40 CFR part 262, containing all of the...

  13. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  14. Hazard ranking systems for chemical wastes and chemical waste sites

    SciTech Connect

    Waters, R.D.; Parker, F.L. ); Crutcher, M.R. and Associates, Inc., Columbia, IL )

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.

  15. The Scientific Management of Hazardous Wastes

    NASA Astrophysics Data System (ADS)

    Porter, Keith S.

    According to the jacket of this book, three independent scientists carefully define the limits of scientific knowledge applicable to the management of hazardous wastes. It is claimed that the extrapolation and application of this knowledge is examined, significant areas of uncertainty are identified, and the authors reveal “the fallibility of certain interpretations.” It would be more accurate to claim these as possible goals of the book rather than its accomplishments.Chapter 1, Hazardous Wastes and Their Recycling Potential, includes 11 pages of lists of chemicals, some of which are poorly reproduced. The remaining pages describe, superficially, several recycling schemes. Connections between the chemicals previously listed and the recycling schemes are not given. Concerning the potential for recycling, the last sentence of the chapter reads, “Indeed, the concept of waste recycling, itself a contradiction in terms, is better politics than business.” Taken literally, this assertion itself contradicts venerable practice, as the farmer might observe as he transfers waste from his cows to the crops in his field. More pertinently, it can be argued that the recovery of solvents, metals, and oil from waste flows is much more than a political gesture.

  16. Biological treatment of hazardous aqueous wastes

    SciTech Connect

    Opatken, E.J.; Howard, H.K.; Bond, J.J.

    1987-06-01

    Studies were conducted with a rotating biological conractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous-waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protection Agency's Testing and Evaluation Facility. A series of batches were run with primary effluent from Cincinnati's Mill Creek Sewage Treatment Facility. The paper reports on the results from these experiments and the effectiveness of an RBC to adequately treat leachates from Superfund sites.

  17. Technological innovation in hazardous waste remediation.

    PubMed

    Kovalick, W W; Cummings, J B

    1991-03-01

    The following is the first in a series of articles on various efforts to encourage and support innovation in hazardous waste treatment technologies for sites and affected groundwater. This article provides a brief discussion of the origins of the U.S. EPA's Office of Solid Waste and Emergency Response (OSWER) Technology Innovation Office (TIO), its mission, and the major initiatives underway or under contemplation. Subsequent articles will provide progress reports on these initiatives and other activities related to technology innovation by federal and state regulators, technology developers, responsible parties, the engineering community, and other interested parties.

  18. Assessment of hazardous wastes for genotoxicity

    SciTech Connect

    DeMarini, D.M.; Houk, V.S.

    1987-09-01

    The authors have evaluated a group of short-term bioassays to identify those that may be suitable for screening large numbers of diverse hazardous industrial wastes for genotoxicity. Fifteen wastes (and dichloromethane extracts of these wastes) from a variety of manufacturing processes were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 with and without Aroclor 1254-induced rat-liver S9. Ten of these wastes were fed by gavage to F-344 male rats, and the raw urines were assayed for mutagenicity in the presence of beta-glucuronidase in strain TA98 with S9. Six of these urines were extracted by C18/methanol elution, incubated with beta-glucuronidase, and evaluated in strain TA98 with S9 and beta-glucuronidase. Fourteen of the wastes were examined for their ability to induce prophage lambda in Escherichia coli in a microsuspension assay. A second set of wastes, consisting of four industrial wastes, were evaluated in Salmonella and in a series of mammalian cell assays to measure mutagenicity, cytogenetic effects, and transformation.

  19. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  20. OSHA training requirements for hazardous waste operations

    SciTech Connect

    Not Available

    1991-12-01

    This guidance addresses training requirements for personnel working, auditing, touring, and visiting DOE hazardous waste areas, including treatment, storage and disposal (TSD) facilities regulated under the Resource Conservation and Recovery Act (RCRA), and environmental restoration sites regulated under RCRA corrective action authority and/or the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Applicable DOE Orders and the OSHA regulations should be consulted to ensure full compliance with all requirements.

  1. Frozen soil barriers for hazardous waste confinement

    SciTech Connect

    Dash, J.G.; Leger, R.; Fu, H.Y.

    1997-12-31

    Laboratory and full field measurements have demonstrated the effectiveness of artificial ground freezing for the containment of subsurface hazardous and radioactive wastes. Bench tests and a field demonstration have shown that cryogenic barriers are impenetrable to aqueous and non aqueous liquids. As a result of the successful tests the US Department of Energy has designated frozen ground barriers as one of its top ten remediation technologies.

  2. Membrane for Olefin Recovery from Chemical Waste Streams -

    SciTech Connect

    2003-03-01

    Membrane Separation Recovers Olefins from Gaseous Waste Streams for Use as Chemical Feedstocks. Selective polymer membranes are being developed to allow recovery of olefins from petrochemicals by-product and vent streams.

  3. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS...

  4. Special case waste hazard categorization. Revision 1

    SciTech Connect

    Armstrong, D.L.

    1995-02-02

    In this document, the hazard categorization is determined for activities associated with Project W-272, Special Case Waste (SWC) Storage Modules that will be placed on concrete slabs in the Solid Waste Operations Complex (SWOC) in the 200 West Area of the Hanford site. In this categorization, the activities that take place within the boundaries of the SWOC are addressed; therefore, only the receipt, offloading, handling, and storing of the Special Case Waste at the SWOC are of concern. This revision updates the radioactive material inventory, reverses the assumption that the SCW meets the criteria of Packaging and Transportation of Radioactive Materials (10 CFR 71), Section 71.75, Qualification of Special Form Radioactive Material, and evaluates the project based upon the criteria and guidance provided by US Department of Energy (DOE)-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. The Pacific Northwest Laboratory Building 324 B-Cell waste inventory consists of reactor fuel, irradiated fuel, fuel cladding, and vitrified forms of these fuel elements. The waste contains no toxic chemicals or hydrogenous materials. The proposed storage method is placement of the SCW in special waste overpacks (SWOs) that are then placed in a vendor-provided canister that is then placed in prefabricated, reinforced-concrete structures. These structures meet the requirements of Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste (10 CFR 72) and serve as a monitored retrievable storage (MRS) installation.

  5. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  6. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  7. Transportation of RCRA hazardous wastes. RCRA Information Brief

    SciTech Connect

    Not Available

    1994-04-01

    The Resource Conservation and Recovery Act (RCRA) and the Hazardous Materials Transportation Act (HMTA) regulate the transport of hazardous wastes. Under these statutes, specific pretransport regulatory requirements must be met by DOE before the shipment of hazardous wastes, including radioactive mixed wastes. The pretransport requirements are designed to help reduce the risk of loss, leakage, or exposure during shipment of hazardous materials and to communicate information on potential hazards posed by the hazardous material in transport. These goals are accomplished through the tracking of shipments, correctly packaging and labeling containers, and communicating potential hazards. Specific requirements include manifesting, packaging, marking and labeling waste packages; placarding transport vehicles; choosing appropriate waste transporters and shipment destinations; and record keeping and reporting. This information Brief focuses primarily on the transporter requirements both for transportation within a DOE facility and using a commercial transporter to transport RCRA hazardous wastes off-site.

  8. Evaluating the quality and effectiveness of hazardous waste training programs

    SciTech Connect

    Kolpa, R.L.; Haffenden, R.A.; Weaver, M.A.

    1996-05-01

    An installation`s compliance with Resource Conservation and Recovery Act (RCRA) hazardous waste regulations is strongly dependent on the knowledge, skill, and behavior of all individuals involved in the generation and management of hazardous waste. Recognizing this, Headquarters Air Force Materiel Command (HQ/AFMC) determined that an in-depth evaluation of hazardous waste training programs at each AFMC installation was an appropriate element in assessing the overall effectiveness of installation hazardous waste management programs in preventing noncompliant conditions. Consequently, pursuant to its authority under Air Force Instruction (AFI) 32-7042, Solid and Hazardous Waste Compliance (May 12, 1994) to support and maintain hazardous waste training, HQ/AFMC directed Argonne National Laboratory to undertake the Hazardous Waste Training Initiative. This paper summarizes the methodology employed in performing the evaluation and presents the initiative`s salient conclusions.

  9. Hazardous waste incineration: Evaluating the human health and environmental risks

    SciTech Connect

    Roberts, S.M.; Teaf, C.M.; Bean, J.A.

    1999-11-01

    this book investigates the issues regarding human health impacts from hazardous waste incinerators. It details the characterization of hazardous waste emissions; ways to model the atmospheric dispersion of these emissions; and steps to conduct a comprehensive risk assessment. This book also reviews epidemiology to study the effects of hazardous waste incineration. Background information on the fundamentals of hazardous incineration, and the regulations affecting operation of its facilities is provided.

  10. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored.

  11. Minnesota Mining and Manufacturing Company's hazardous waste program.

    PubMed

    Van Noordwyk, H J; Santoro, M A

    1978-12-01

    This paper discusses the present hazardous waste program of 3M Company (Minnesota Mining and Manufacturing Company). 3M's definition of hazardous waste and the company's position on hazardous waste disposal are first considered. The company position is that wherever and whenever the disposal of a waste material threatens the environment or public safety, then that waste should be considered a hazardous waste and treated accordingly in terms of its handling and ultimate disposal. The generation of hazardous wastes and the differentiation of "hazardous" and "nonhazardous" wastes are described next. Handling of hazardous wastes from their generation to their disposal is then covered. This includes a definition of internal 3M terminology and a description of the hazard rating system used by the company. Finally, 3M disposal practices are presented. It is 3M's position that thermal destruction of hazardous wastes, where appropriate, is the best method for their disposal. With this in mind, 3M has constructed incineration facilities throughout the country. The rotary kiln incinerator at the 3M Chemolite plant in Cottage Grove, Minnesota is briefly described. Disposal of certain hazardous wastes in controlled secure land disposal sites is then briefly discussed.

  12. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  13. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  14. Chemical fixation increases options for hazardous waste treatment

    SciTech Connect

    Indelicato, G.J.; Tipton, G.A.

    1996-05-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) govern the manner in which hazardous materials are managed. Disposing RCRA hazardous wastes on or in the land is no longer an accepted remedial option. This land disposal restriction requires that all listed and characteristic hazardous wastes must be treated according to specified standards before they are disposed. These treatment standards define technologies and concentration limits. Hazardous wastes that do not meet the standards are prohibited from being disposed on land, such as in landfills, surface impoundments, land treatment units, injection wells, and mines or caves.

  15. Medical aspects of the hazardous waste problem.

    PubMed

    Ozonoff, D

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, (1) causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. (2) This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem. PMID:7165025

  16. Medical aspects of the hazardous waste problem

    SciTech Connect

    Ozonoff, D.

    1982-12-01

    Although no one knows exactly how much toxic material continues to be released into our environment, most observers believe the amount is substantial. In the last few years, in the state of Massachusetts alone, 22 communities have had their municipal water supplies seriously compromised by chemical contamination, causing alarm and dismay among water users. Nation-wide, public concern has reached the point that in some opinion polls, hazardous waste ranks second only behind inflation as a cause of serious worry. Despite widespread anxiety, shared by public health officials, few studies have shown conclusive evidence of health consequences from toxic materials in the environment. Even in the case of such gross contamination as in the Love Canal area of Niagara Falls, New York, health effects have been difficult to establish. This is partly due to intrusion of the adversary process in cases where liability is involved; it is also a result, however, of inherent technical problems that plague any determination of health hazard. This paper reviews some of these problems, considers some current risk assessment approaches, and touches on medicolegal and regulatory aspects of the hazardous waste problem.

  17. Vegetative soil covers for hazardous waste landfills

    NASA Astrophysics Data System (ADS)

    Peace, Jerry L.

    Shallow land burial has been the preferred method for disposing of municipal and hazardous wastes in the United States because it is the simplest, cheapest, and most cost-effective method of disposal. Arid and semiarid regions of the western United States have received considerable attention over the past two decades in reference to hazardous, radioactive, and mixed waste disposal. Disposal is based upon the premise that low mean annual precipitation, high evapotranspiration, and low or negligible recharge, favor waste isolation from the environment for long periods of time. The objective of this study is to demonstrate that containment of municipal and hazardous wastes in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers utilizing natural soils and native vegetation i.e., vegetative soil covers, will meet the technical equivalency criteria prescribed by the U.S. Environmental Protection Agency for hazardous waste landfills. Vegetative soil cover design combines layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem that maintains the natural water balance. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards' equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data from 1919 to 1996 are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 1 m (3 ft) cover is the minimum design thickness necessary to meet the U.S. Environmental Protection Agency

  18. Evaluation of health effects from hazardous waste sites

    SciTech Connect

    Andelman, J.B.; Underhill, D.W.

    1986-01-01

    This information and data for evaluating health effects from hazardous waste sites stems from the efforts of specialists representing leading research centers, hospitals, universities, government agencies and includes consultant as well as corporate viewpoints. The work evolved from the Fourth Annual Symposium on Environmental Epidemiology sponsored by the Center for Environmental Epidemiology at the University of Pittsburgh and the U.S. EPA. Contents-One: Scope of the Hazardous Wastes Problems. Evaluating Health Effects at Hazardous Waste Sites. Historical Perspective on Waste Disposal. Two: Assessment of Exposure to Hazardous Wastes. Chemical Emissions Assessment for Hazardous Waste Sites. Assessing Pathways to Human Populations. Methods of Defining Human Exposures. Three: Determining Human Health Effects. Health Risks of Concern. Expectations and Limitations of Human Health Studies and Risk Assessment. Four: Case Studies. Love Canal. Hardeman County, Tennessee. Cannonsburg, Pennsylvania. Five: Defining Health Risks at Waste Sites. Engineering Perspectives from an Industrial Viewpoint. Role of Public Groups. Integration of Governmental Resources in Assessment of Hazards.

  19. Hazardous-waste analysis plan for LLNL operations

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  20. Hurricane Andrew: Impact on hazardous waste management

    SciTech Connect

    Kastury, S.N. )

    1993-03-01

    On August 24, 1992, Hurricane Andrew struck the eastern coast of South Florida with winds of 140 mph approximately and a storm surge of 15 ft. The Florida Department of Environmental Regulation finds that the Hurricane Andrew caused a widespread damage throughout Dade and Collier County as well as in Broward and Monroe County and has also greatly harmed the environment. The Department has issued an emergency final order No. 92-1476 on August 26, 1992 to address the environmental cleanup and prevent any further spills of contaminants within the emergency area. The order authorizes the local government officials to designate certain locations in areas remote from habitation for the open burning in air certain incinerators of hurricane generated yard trash and construction and demolition debris. The Department staff has assisted the county and FEMA staff in establishing procedures for Hazardous Waste Management, Waste Segregation and disposal and emergency responses. Local governments have issued these burn permits to public agencies including FDOT and Corps of Engineering (COE). Several case studies will be discussed on the Hazardous Waste Management at this presentation.

  1. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    SciTech Connect

    Ebert, William; Pereira, Candido; Heltemes, Thad A.; Youker, Amanda; Makarashvili, Vakhtang; Vandegrift, George F.

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  2. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  3. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    SciTech Connect

    Elicio, Andy U.

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  4. Mixed waste removal from a hazardous waste storage tank

    SciTech Connect

    Geber, K.R.

    1993-06-01

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations.

  5. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    SciTech Connect

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  6. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  7. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  8. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  9. Characterizing soils for hazardous waste site assessments.

    PubMed

    Breckenridge, R P; Keck, J F; Williams, J R

    1994-04-01

    This paper provides a review and justification of the minimum data needed to characterize soils for hazardous waste site assessments and to comply with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Scientists and managers within the regulatory agency and the liable party need to know what are the important soil characteristics needed to make decisions about risk assessment, what areas need remediation and what remediation options are available. If all parties involved in characterizing a hazardous waste site can agree on the required soils data set prior to starting a site investigation, data can be collected in a more efficient and less costly manner. Having the proper data will aid in reaching decisions on how to address concerns at, and close-out, hazardous waste sites.This paper was prepared to address two specific concerns related to soil characterization for CERCLA remedial response. The first concern is the applicability of traditional soil classification methods to CERCLA soil characterization. The second is the identification of soil characterization data type required for CERCLA risk assessment and analysis of remedial alternatives. These concerns are related, in that the Data Quality Objective (DQO) process addresses both. The DQO process was developed in part to assist CERCLA decision-makers in identifying the data types, data quality, and data quantity required to support decisions that must be made during the remedial investigation/feasibility study (RI/FS) process. Data Quality Objectives for Remedial Response Activities: Development Process (US EPA, 1987a) is a guidebook on developing DQOs. This process as it relates to CERCLA soil characterization is discussed in the Data Quality Objective Section of this paper. PMID:24213742

  10. Potentially hazardous waste produced at home

    PubMed Central

    2013-01-01

    Background The purpose of this study was to identify the sources of waste generation household consisting of biological material and to investigate the knowledge presented by those responsible for the generation of waste in the home environment on the potential health risk human and environmental. Method It is a quantitative survey performed in Parque Capuava, Santo André (SP). The questionnaire was administered by the community employers and nursing students during the consultation with nursing supervision through interview question/answer. The exclusion criteria were patients who were not in the area served by the Basic Health Unit which covers the area of Pq Capuava. The sample was consisted of 99 persons and the data collection a questionnaire was used. Results We observed that 63.3% of people said to use disposables, with the majority (58.7%) of these use the public collection as the final destination of these materials. It was reported that 73.7% of those surveyed reported having knowledge about the risk of disease transmission. Public awareness of the importance of proper packaging and disposal of potentially hazardous household waste may contribute significantly to the preservation of human and environmental health and this procedure can be performed and supervised by professional nurses. Conclusion We suggest implementation of workshops for community health workers and the general population in order to enhance their knowledge about the storage and disposal of potentially infectious waste generated at home, thereby reducing the potential risk of disease transmission by improper management. PMID:23806043

  11. In-plant management of hazardous waste

    SciTech Connect

    Hall, M.W.; Howell, W.L. Jr. |

    1995-12-31

    One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interests within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.

  12. 76 FR 72311 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... FR at 58319. Response 1. The electronic docket for this rule only contained the proposed rule and... conditions in an active municipal landfill with decomposing organic wastes, and yet it appears that the... select a relatively short list of hazardous constituents for analysis and delisting levels. 75 FR...

  13. Hazardous-waste minimization assessment: Fort Campbell, Kentucky. Final report

    SciTech Connect

    Dharmavaram, S.; Knowlton, D.A.; Heflin, C.; Donahue, B.A.

    1991-03-01

    Waste minimization is the process of reducing the net outflow of hazardous materials that may be solid, liquid, or gaseous effluents from a given source or generating process. It involves reducing air pollution emissions, contamination of surface and ground water, and land disposal by means of source reduction, waste recycling processes, and treatment leading to complete destruction. Among Federal regulations is a requirement that every generator of hazardous wastes producing in excess of 2205 pounds per month certify that a hazardous waste minimization program is in operation. Generators are required to submit biennial reports to the USEPA that describe efforts taken to reduce the volume and toxicity of waste generated during the year. The objective of this research was to develop a hazardous waste minimization plan for Fort Campbell, Kentucky, to include actions necessary to reduce the generation of hazardous wastes. Reduction should be in both volume and toxicity.

  14. Commercial innovative technologies for hazardous waste

    SciTech Connect

    Cudahy, J.J.

    1998-12-31

    A number of innovative technologies have been developed since the late 1980`s for the treatment of Resource Conservation and Recovery Act (RCRA) hazardous wastes. The development of these technologies has been encouraged by the Environmental Protection Agency (EPA), the Department of Energy (DOE) and the Department of Defense (DOD). As part of the Superfund Innovative Technology Evaluation program, the EPA has evaluated some of these technologies for the treatment of soils contaminated with RCRA hazardous constituents. The DOE has extensively studied and evaluated these technologies for the treatment of mixed (RCRA plus radioactive) waste. The DOD has also studied these technologies for the chemical demilitarization of chemical warfare agents. The following five innovative technologies have been demonstrated on a full-scale commercial basis: (1) Eco Logic Gas Phase Chemical Reduction Reactor; (2) GTS Duratek Electric, Joule-Heated Glass Melter; (3) Molten Metals Catalytic Extraction Process; (4) Retech Plasma Arc Centrifugal Treatment Process; and (5) Scientific Ecology Group (SEG) Steam Reforming Process. The technology experience and performance of these innovative technologies will be discussed.

  15. Fire hazards analysis of transuranic waste storage and assay facility

    SciTech Connect

    Busching, K.R., Westinghouse Hanford

    1996-07-31

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  16. Hazardous waste and environmental trade: China`s issues

    SciTech Connect

    Ma Jiang

    1996-12-31

    By presenting some case studies, this paper analyzes China`s situation with regard to hazardous waste: its environmental trade, treatment, and management. The paper describes China`s experiences with the environmental trade of hazardous waste in both the internal and international market. Regulations for managing the import of waste are discussed, as are China`s major approaches to the trading of hazardous waste both at home and overseas. The major reasons for setting up the Asian-Pacific Regional Training Center for Technology Transfer and Environmental Sound Management of Wastes in China and the activities involved in this effort are also described. 1 tab.

  17. Using Financial Incentives to Manage the Solid Waste Stream.

    ERIC Educational Resources Information Center

    Spindler, Charles J.

    1991-01-01

    This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…

  18. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-12-31

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  19. Hazardous waste shipment data collection from DOE sites

    SciTech Connect

    Page, L.A.; Kirkpatrick, T.D. ); Stevens, L. )

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste.

  20. Method for disposing of hazardous wastes

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  1. Fire hazards analysis for solid waste burial grounds

    SciTech Connect

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  2. SEMINAR PUBLICATION: OPERATIONAL PARAMETERS FOR HAZARDOUS WASTE COMBUSTION DEVICES

    EPA Science Inventory

    The information in the document is based on presentations at the EPA-sponsored seminar series on Operational Parameters for Hazardous Waste Combustion Devices. This series consisted of five seminars held in 1992. Hazardous waste combustion devices are regulated under the Resource...

  3. HAZ-ED Classroom Activities for Understanding Hazardous Waste.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Federal Superfund Program investigates and cleans up hazardous waste sites throughout the United States. Part of this program is devoted to informing the public and involving people in the process of cleaning up hazardous waste sites from beginning to end. The Haz-Ed program was developed to assist the Environmental Protection Agency's (EPA)…

  4. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  5. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  6. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  7. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports... except that: (1) In place of the generator's name, address and EPA identification number, the name and address of the foreign generator and the importer's name, address and EPA identification number must...

  8. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    SciTech Connect

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  9. Hazardous waste research and development in the Pacific Basin

    SciTech Connect

    Cirillo, R.R.; Carpenter, R.A.; Environment and Policy Inst., Honolulu, HI )

    1989-01-01

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

  10. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect

    COVEY, L.I.

    2000-11-28

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  11. Vitrification: Destroying and immobilizing hazardous wastes

    SciTech Connect

    Chapman, C.C.; Peters, R.D.; Perez, J.M.

    1994-04-01

    Researchers at the US Department of Energy`s Pacific Northwest Laboratory (PNL) have led the development of vitrification a versatile adaptable process that transforms waste solutions, slurries, moist powder and/or dry solids into a chemically durable glass form. The glass form can be safely disposed or used for other purposes, such as construction material if non-radioactive. The feed used in the process can be either combustible or non-combustible. Organic compounds are decomposed in the melters` plenum, while the inorganic residue melts into a molten glass pool. The glass produced by this process is a chemically durable material comparable to natural obsidian. Its properties typically allow it to pass the EPA Toxicity (TCLP) test as non-hazardous. To date, no glass produced by vitrification has failed the TCLP test. Vitrification is thus an ideal method of treating DOE`s mixed waste because of its ability to destroy organic compounds and bind toxic or radioactive elements. This article provides an overview of the technology.

  12. 40 CFR 63.1093 - Does this subpart apply to my waste streams?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Does this subpart apply to my waste... Waste Operations Applicability for Waste Requirements § 63.1093 Does this subpart apply to my waste streams? The waste stream provisions of this subpart apply to your waste streams if you own or operate...

  13. 40 CFR 63.1093 - Does this subpart apply to my waste streams?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Does this subpart apply to my waste... Waste Operations Applicability for Waste Requirements § 63.1093 Does this subpart apply to my waste streams? The waste stream provisions of this subpart apply to your waste streams if you own or operate...

  14. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect

    1988-04-01

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  15. Helping the auto repair industry manage hazardous wastes: an education project in King County, Washington.

    PubMed

    McKenrick, Laurence L; Ii, Keiko; Lawrence, Bill; Kaufmann, Michael; Marshall, Mark

    2003-11-01

    From January 1, 2000, to August 31, 2001, a team of environmental health specialists from Public Health-Seattle & King County, a partner in King County's Local Hazardous Waste Management Program, made educational visits to 981 automotive repair shops. The purpose was to give the auto repair industry technical assistance on hazardous waste management without using enforcement action. Through site inspections and interviews, the environmental health staff gathered information on the types and amounts of conditionally exempt small-quantity generator (CESQG) hazardous wastes and how they were handled. Proper methods of hazardous waste management, storage, and disposal were discussed with shop personnel. The environmental health staff measured the impact of these educational visits by noting changes made between the initial and follow-up visits. This report focuses on nine major waste streams identified in the auto repair industry. Of the 981 shops visited, 497 were already practicing proper hazardous waste management and disposal. The remaining 484 shops exhibited 741 discrepancies from proper practice. Environmental health staff visited these shops again within six months of the initial visit to assess changes in their practices. The educational visits and technical assistance produced a 76 percent correction of all the discrepancies noted.

  16. Pollution due to hazardous glass waste.

    PubMed

    Pant, Deepak; Singh, Pooja

    2014-02-01

    Pollution resulting from hazardous glass (HG) is widespread across the globe, both in terms of quantity and associated health risks. In waste cathode ray tube (CRT) and fluorescent lamp glass, mercury and lead are present as the major pollutants. The current review discusses the issues related to quantity and associated risk from the pollutant present in HG and proposes the chemical, biological, thermal, hybrid, and nanotechniques for its management. The hybrid is one of the upcoming research models involving the compatible combination of two or more techniques for better and efficient remediation. Thermal mercury desorption starts at 100 °C but for efficient removal, the temperature should be >460 °C. Involvement of solar energy for this purpose makes the research more viable and ecofriendly. Nanoparticles such as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formulation can immobilize heavy metals present in HG by involving a redox mechanism. Straight-line equation from year-wise sale can provide future sale data in comparison with lifespan which gives future pollutant approximation. Waste compact fluorescent lamps units projected for the year 2015 is 9,300,000,000 units and can emit nearly 9,300 kg of mercury. On the other hand, CRT monitors have been continuously replaced by more improved versions like liquid crystal display and plasma display panel resulting in the production of more waste. Worldwide CRT production was 83,300,000 units in 2002 and can approximately release 83,000 metric tons of lead. PMID:24281678

  17. Pollution due to hazardous glass waste.

    PubMed

    Pant, Deepak; Singh, Pooja

    2014-02-01

    Pollution resulting from hazardous glass (HG) is widespread across the globe, both in terms of quantity and associated health risks. In waste cathode ray tube (CRT) and fluorescent lamp glass, mercury and lead are present as the major pollutants. The current review discusses the issues related to quantity and associated risk from the pollutant present in HG and proposes the chemical, biological, thermal, hybrid, and nanotechniques for its management. The hybrid is one of the upcoming research models involving the compatible combination of two or more techniques for better and efficient remediation. Thermal mercury desorption starts at 100 °C but for efficient removal, the temperature should be >460 °C. Involvement of solar energy for this purpose makes the research more viable and ecofriendly. Nanoparticles such as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formulation can immobilize heavy metals present in HG by involving a redox mechanism. Straight-line equation from year-wise sale can provide future sale data in comparison with lifespan which gives future pollutant approximation. Waste compact fluorescent lamps units projected for the year 2015 is 9,300,000,000 units and can emit nearly 9,300 kg of mercury. On the other hand, CRT monitors have been continuously replaced by more improved versions like liquid crystal display and plasma display panel resulting in the production of more waste. Worldwide CRT production was 83,300,000 units in 2002 and can approximately release 83,000 metric tons of lead.

  18. Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS.

    PubMed

    Torrance, Keith W; Keenan, Helen E; Hursthouse, Andrew S; Stirling, David

    2010-01-01

    The chemistry of semiconductor wafer processing liquid waste, contaminated by heavy metals, was investigated to determine arsenic content. Arsenic and gallium concentrations were determined for waste slurries collected from gallium arsenide (GaAs) wafer processing at three industrial sources and compared to slurries prepared under laboratory conditions. The arsenic and gallium content of waste slurries was analyzed using inductively coupled plasma mass-spectrometry (ICP-MS) and it is reported that the arsenic content of the waste streams was related to the wafer thinning process, with slurries from wafer polishing having the highest dissolved arsenic content at over 1,900 mgL(-1). Lapping slurries had much lower dissolved arsenic (< 90 mgL(-1)) content, but higher particulate contents. It is demonstrated that significant percentage of GaAs becomes soluble during wafer lapping. Grinding slurries had the lowest dissolved arsenic content at 15 mgL(-1). All three waste streams are classified as hazardous waste, based on their solids content and dissolved arsenic levels and treatment is required before discharge or disposal. It is calculated that as much as 93% of material is discarded through the entire GaAs device manufacturing process, with limited recycling. Although gallium can be economically recovered from waste slurries, there is little incentive to recover arsenic, which is mostly landfilled. Options for treating GaAs processing waste streams are reviewed and some recommendations made for handling the waste. Therefore, although the quantities of hazardous waste generated are miniscule in comparison to other industries, sustainable manufacturing practices are needed to minimize the environmental impact of GaAs semiconductor device fabrication.

  19. Hazardous waste in Mexico: Just how much is there?

    SciTech Connect

    Wood, H.

    1994-12-31

    Mexico will probably follow the same basic regulatory path that was followed in the US, but at a faster pace to achieve equivalent protection of the environment. The redefinition of hazardous waste currently underway in both US and Mexico will require more stringent controls and less latitude in the available technology for disposal or recycling. Mexico`s General Law of Ecological Equilibrium and Environmental Protection became effective March 1, 1988. It surpassed most preceding regulations and decrees regarding hazardous wastes generated in, imported to, or exported from Mexico. The law is comprehensive and unifies various environmental statutes. An earlier Presidential decree continues to regulate certain hazardous materials not considered to be hazardous wastes by the new regulations. The new hazardous waste regulations govern the following activities: management of hazardous wastes; permitting of generators and transporters; and permitting of the construction and operation of facilities for the treatment, storage, or disposal of hazardous wastes. The environmental laws which address hazardous waste issues in Mexico were enacted in 1988 and new technical regulations have recently been added. Most of these laws and regulations have been inspired by US law and environmental experience.

  20. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  1. Hazardous-waste technical-assistance survey, McChord AFB, Washington. Final report, 22-26 Oct 90

    SciTech Connect

    Albrecht, L.B.

    1991-03-01

    A hazardous waste survey was conducted at McChord AFB, Washington, from 22-26 Oct 90 which addressed hazardous waste management and waste disposal practices, explored opportunities for waste minimization, and determined waste-streams. Recommendations include: (1) Shops using aircraft soap should switch to a milder soap; (2) Consider using a siliceous-based absorbant; (3) Use a contractor who accepts wet batteries or neutralize the acid; (4) Accumulation point managers should maintain a log; (5) Conduct frequent refresher training; (6) Upgrade accumulation sites; (7) Analyze used paint filters; (8) Dispose of anti-freeze in the sanitary sewer; (9) Sample NDI chemicals to determine if hazardous; (10) Update the Waste Analysis Plan; (11) Find a method to recover solvent from the washrack; (12) Entomology needs to comply with FIFRA; (13) Triple-rinse pesticide containers; (14) List all accumulation sites and managers in the hazardous waste management plan; (15) Use an off-the-shelf filtration unit in the waterfall paint booths; (16) Label all hazardous waste drums; (17) Dispose of waste latex paint as municiple waste; (18) Disposal of old hazardous waste drums; and (19) Analyze shop rags from CATM to determine toxicity.

  2. Hazardous waste identification: A guide to changing regulations

    SciTech Connect

    Stults, R.G. )

    1993-03-01

    The Resource Conservation and Recovery Act (RCRA) was enacting in 1976 and amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA). Since then, federal regulations have generated a profusion of terms to identify and describe hazardous wastes. Regulations that5 define and govern management of hazardous wastes are codified in Title 40 of the code of Federal Regulations, Protection of the environment''. Title 40 regulations are divided into chapters, subchapters and parts. To be defined as hazardous, a waste must satisfy the definition of solid waste any discharged material not specifically excluded from regulation or granted a regulatory variance by the EPA Administrator. Some wastes and other materials have been identified as non-hazardous and are listed in 40 CFR 261.4(a) and 261.4(b). Certain wastes that satisfy the definition of hazardous waste nevertheless are excluded from regulation as hazardous if they meet specific criteria. Definitions and criteria for their exclusion are found in 40 CFR 261.4(c)-(f) and 40 CFR 261.5.

  3. Towards sets of hazardous waste indicators. Essential tools for modern industrial management.

    PubMed

    Peterson, Peter J; Granados, Asa

    2002-01-01

    Decision-makers require useful tools, such as indicators, to help them make environmentally sound decisions leading to effective management of hazardous wastes. Four hazardous waste indicators are being tested for such a purpose by several countries within the Sustainable Development Indicator Programme of the United Nations Commission for Sustainable Development. However, these indicators only address the 'down-stream' end-of-pipe industrial situation. More creative thinking is clearly needed to develop a wider range of indicators that not only reflects all aspects of industrial production that generates hazardous waste but considers socio-economic implications of the waste as well. Sets of useful and innovative indicators are proposed that could be applied to the emerging paradigm shift away from conventional end-of-pipe management actions and towards preventive strategies that are being increasingly adopted by industry often in association with local and national governments. A methodological and conceptual framework for the development of a core-set of hazardous waste indicators has been developed. Some of the indicator sets outlined quantify preventive waste management strategies (including indicators for cleaner production, hazardous waste reduction/minimization and life cycle analysis), whilst other sets address proactive strategies (including changes in production and consumption patterns, eco-efficiency, eco-intensity and resource productivity). Indicators for quantifying transport of hazardous wastes are also described. It was concluded that a number of the indicators proposed could now be usefully implemented as management tools using existing industrial and economic data. As cleaner production technologies and waste minimization approaches are more widely deployed, and industry integrates environmental concerns at all levels of decision-making, it is expected that the necessary data for construction of the remaining indicators will soon become available.

  4. 40 CFR 261.3 - Definition of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste was listed (in 40 CFR 261 appendix VII) of this part; and the constituents in the table “Treatment Standards for Hazardous Wastes” in 40 CFR 268.40 for which each waste has a treatment standard (i.e., Land...-treatment system or provided the wastes, combined annualized average concentration does not exceed one...

  5. 40 CFR 261.32 - Hazardous wastes from specific sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... delivery of waste to landfill, etc.) that the terms of the exclusion were met (T) K175 Wastewater treatment... testing requirements are reinstated if the manufacturing or waste treatment processes generating the... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous wastes from specific...

  6. Hydrothermal Oxidation Hazardous Waste Pilot Plant Test Bed

    SciTech Connect

    Welland, H.; Reed, W.; Valentich, D.; Charlton, T.

    1995-03-01

    The Idaho National Engineering Laboratory (INEL) is fabricating a Hydrothermal Oxidation (HTO) Hazardous Waste Pilot Plant Test Bed to evaluate and test various HTO reactor concepts for initial processing of the U.S. Department of Energy (DOE) mixed wastes. If the HTO process is successful it will significantly reduce the volume of DOE mixed wastes by destroying the organic constituents.

  7. The MODAR process for the destruction of hazardous organic wastes

    SciTech Connect

    Swallow, K.C.; Killilea, W.R.; Malinowski, K.C.; Staszak, C.N.

    1989-01-01

    The MODAR process for destruction of hazardous organic waste materials employs an oxidation reaction to convert organic compounds to CO/sub 2/, H/sub 2/O and, when heteroatoms are present, inorganic compounds. The reaction is carried out in a flowing aqueous stream heated and pressurized above the critical point of water. Residence times of less than one minute are usually sufficient to reduce the concentrations of all organic compounds to levels below analytical detection limits. The pilot-scale MODAR unit is skid-mounted and transportable by truck. It measures 12.2 m x 2.6 m x 2.9 m and can process 190 liters of organic liquid or 1900 liters of a 10% organic in water solution per day. In-house testing with pure chemicals and mixtures of chemicals confirmed that the pilot-scale unit met or exceeded the destruction efficiencies achieved with a laboratory-scale unit. A pilot-scale field test, conducted on toxic waste material, demonstrated that the MODAR process could destroy organic compounds with greater than 99.99% efficiency.

  8. Physical and chemical methods for the characterization of hazardous wastes

    NASA Astrophysics Data System (ADS)

    Francis, C. W.; Maskarinec, M. P.; Lee, D. W.

    Numerous test methods have been proposed and developed to evaluate the hazards associated with handling and disposal of wastes in landfills. The major concern is the leaching of toxic constituents from the wastes. The fate of hazardous constituents in landfilled wastes is highly dependent on the physical and chemical characteristics of the waste. Thus, the primary objective in the selection of waste characterization procedures should be focused on those methods that gauge the fate of the waste's hazardous constituents in a specific landfill environment. Waste characterization in the United States has centered around the characteristics of ignitability, corrosivity, reactivity, and toxicity. The strategy employed in the development of most regulatory waste characterization procedures has been a pass or fail approach, usually tied to some form of a mismanagement scenario for that waste. For example, USEPA has chosen the disposal of a waste in a municipal waste landfill as a mismanagement scenario for the development of the waste leaching tests to determine the toxicity characteristic. Many wastes, such as large-volume utility wastes or mining wastes, are not disposed of in municipal waste landfills. As a consequence, more effort is needed in the development of waste leaching tests that determine the long-term leaching characteristics of that waste in the landfill environment in which the waste is to be disposed. Waste leaching models also need to be developed and tested as to their ability to simulate actual disposal environments. These models need to be compared with laboratory leaching tests, and, if practical, coupled with groundwater transport models.

  9. Potential Impacts of Organic Wastes on Small Stream Water Quality

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  10. Hazardous waste treatment using fungus enters marketplace

    SciTech Connect

    Illman, D.L.

    1993-07-01

    When the announcement was made eight years ago that a common fungus had been found that could degrade a variety of environmental pollutants, the news stirred interest in the scientific community, the private sector, and the general public. Here was the promise of a new technology that might be effective and economical in treating hazardous waste, especially the most recalcitrant of toxic pollutants. Today, commercialization is beginning amid a mixture of optimism and skepticism. The organism in question is white rot fungus, or Phanerochaete chrysosporium, and it belongs to a family of woodrotting fungi common all over North America. The fungi secrete enzymes that break down lignin in wood to carbon dioxide and water--a process called mineralization. These lignin-degrading enzymes are not very discriminating, however. The white rot fungi have been shown to degrade such materials as DDT, the herbicide (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T), 2,4,6-trinitrotoluene (TNT), pentachlorophenol (PCP), creosote, coal tars, and heavy fuels, in many cases mineralizing these pollutants to a significant extent.

  11. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  12. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  13. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  14. An aggregate fuzzy hazardous index for composite wastes.

    PubMed

    Musee, N; Lorenzen, L; Aldrich, C

    2006-09-21

    In this paper, a fuzzy waste index for evaluating the hazard posed by composite wastes generated from industrial processes is proposed. Within this methodology, a fuzzy index as a measure of hazardousness of a given composite waste is derived from the crisp inputs of its component's flammability, corrosivity, toxicity and reactivity attributes based on the National Fire Protection Association (NFPA) hazard rankings. The novelty of this work lies in establishing an integrated fuzzy hazardous waste index (FHWI) which provides a single-value representing the hazard ranking of a composite waste. This is contrary to current techniques which do not provide a final aggregated hazard index. The efficacy of the new proposed approach is illustrated through several worked examples. The results demonstrate that the fuzzy algorithm can be useful in aiding policy and decision-makers in conducting comprehensive initial evaluation of the status of waste hazardous status without the need for costly laboratory experiments. As such, the approach offers a robust and transparent decision-making methodology. PMID:16701941

  15. Use of physical processes for treatment of hazardous wastes: Removing oil from water

    SciTech Connect

    Irvin, S.R.

    1984-08-01

    In many U.S. municipal sewerage systems, oils, greases and fats are now being regarded as hazardous wastes. In this study, the authors discuss the need for complete oil removal and progression towards recycle of wastestreams. The use of ultrafiltration is recommended to clean emulsified oil streams, and also the use of absorption media to polish the ultrafiltration product water to a point where recycle is both feasible and within a reasonable economic realm.

  16. Nuclear hazardous waste cost control management

    SciTech Connect

    Selg, R.A.

    1991-05-09

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes.

  17. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is not excluded from regulation as a hazardous waste under 40 CFR 261.4(b) or was not generated by a... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20......

  18. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is not excluded from regulation as a hazardous waste under 40 CFR 261.4(b) or was not generated by a... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20...

  19. Development of a Certified Low-Level Waste Stream from Analytical Laboratory Operations at Lawrence Livermore National Laboratory

    SciTech Connect

    Gaylord, R F; Drake, J A; Gallagher, P J

    2005-01-14

    Chemistry and Materials Science Environmental Services (CES) is LLNL's on-site environmental analytical laboratory, analyzing approximately 2500 samples annually generally for waste characterization purposes. Due to the lack of process knowledge for analyzed samples, the waste produced by CES has traditionally been characterized on a ''worst-case'' basis as RCRA-hazardous mixed waste. By instituting rigorous ''up-front'' waste characterization, including segregation of acutely/extremely hazardous materials, utilizing regulatory exemptions, and developing a novel radiological characterization strategy, CES was able to receive approval for a certified LLW waste stream, adequately characterized for disposal at the Nevada Test Site. In the 10 months of operating history, CES has diverted 33% of its waste (by mass) from mixed to LLW. This will result in significant cost savings and reduction in waste re-handling/personnel exposure.

  20. THE ROLE OF RISK ASSESSMENT IN ADDRESSING HAZARDOUS WASTE ISSUES

    EPA Science Inventory

    Risk assessment plays many important roles in addressing hazardous waste issues. In addition to providing a scientific framework and common health metric to evaluate risks. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or "Superfund") risk assessm...

  1. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect

    Not Available

    1990-12-01

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  2. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators....

  3. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators....

  4. Linking emerging hazardous waste technologies with the electronic information era

    SciTech Connect

    Anderson, B.E.; Suk, W.A.; Blackard, B.

    1996-12-31

    In looking to the future and the development of new approaches or strategies for managing hazardous waste, it is important to understand and appreciate the factors that have contributed to current successful approaches. In the United States, several events in the last two decades have had a significant impact in advancing remediation of hazardous waste, including environmental legislation, legislative reforms on licensing federally funded research, and electronic transfer of information. Similar activities also have occurred on a global level. While each of these areas is significant, the electronic exchange of information has no national boundaries and has become an active part of major hazardous waste research and management programs. It is important to realize that any group or society that is developing a comprehensive program in hazardous waste management should be able to take advantage of this advanced approach in the dissemination of information. 6 refs., 1 tab.

  5. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

  6. Technologies for environmental cleanup: Toxic and hazardous waste management

    SciTech Connect

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ``Technologies for Environmental Cleanup.`` To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste.

  7. 40 CFR 63.1093 - Does this subpart apply to my waste streams?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Does this subpart apply to my waste streams? 63.1093 Section 63.1093 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... streams? The waste stream provisions of this subpart apply to your waste streams if you own or operate...

  8. 40 CFR 63.1093 - Does this subpart apply to my waste streams?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Does this subpart apply to my waste streams? 63.1093 Section 63.1093 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... streams? The waste stream provisions of this subpart apply to your waste streams if you own or operate...

  9. 40 CFR 63.1093 - Does this subpart apply to my waste streams?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Does this subpart apply to my waste streams? 63.1093 Section 63.1093 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... streams? The waste stream provisions of this subpart apply to your waste streams if you own or operate...

  10. Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams

    SciTech Connect

    COZZI, ALEX

    2004-02-18

    At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

  11. Proceedings of the 6th national conference on hazardous wastes and hazardous materials

    SciTech Connect

    Not Available

    1989-01-01

    This book contained the proceedings of the 6th national Conference on Hazardous wastes and Hazardous materials. Topics covered include: federal and state policy papers, risk assessment, health and endangerment, contaminated groundwater control, treatment, spill control management and tank leakage control.

  12. 40 CFR 261.10 - Criteria for identifying the characteristics of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... characteristics of hazardous waste. 261.10 Section 261.10 Protection of Environment ENVIRONMENTAL PROTECTION... Identifying the Characteristics of Hazardous Waste and for Listing Hazardous Waste § 261.10 Criteria for identifying the characteristics of hazardous waste. (a) The Administrator shall identify and define...

  13. Pectin content and composition from different food waste streams.

    PubMed

    Müller-Maatsch, Judith; Bencivenni, Mariangela; Caligiani, Augusta; Tedeschi, Tullia; Bruggeman, Geert; Bosch, Montse; Petrusan, Janos; Van Droogenbroeck, Bart; Elst, Kathy; Sforza, Stefano

    2016-06-15

    In the present paper, 26 food waste streams were selected according to their exploitation potential and investigated in terms of pectin content. The isolated pectin, subdivided into calcium bound and alkaline extractable pectin, was fully characterized in terms of uronic acid and other sugar composition, methylation and acetylation degree. It was shown that many waste streams can be a valuable source of pectin, but also that pectin structures present a huge structural diversity, resulting in a broad range of pectin structures. These can have different physicochemical and biological properties, which are useful in a wide range of applications. Even if the data could not cover all the possible batch by batch and country variabilities, to date this represents the most complete pectin characterization from food waste streams ever reported in the literature with a homogeneous methodology.

  14. GUIDE TO TREATMENT TECHNOLOGIES FOR HAZARDOUS WASTES AT SUPERFUND SITES

    EPA Science Inventory

    Over the past fewyears, it has become increasinsly evident that land disposal of hazardous wastes is at least only a temporary solution for much of the wastes present at Superfund sites. The need for more Iong-term, permanent "treatment solutions as alternatives to land disposal ...

  15. Hazardous Waste Management: A View to the New Century, 2001.

    ERIC Educational Resources Information Center

    Burton, Gwen

    Like many parts of the United States, Colorado is facing a significant hazardous waste problem. Radioactive and chemical wastes generated by the Rocky Flats Nuclear Plant, the toxic Lowry Land Fill Site, industrial dumps, and heavy land and air traffic contribute to water, land, and air pollution in the state. As part of a statewide response…

  16. EXPERIMENTAL INVESTIGATION OF CRITICAL FUNDAMENTAL ISSUES IN HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    The report gives results of a laboratory-scale program investigating several fundamental issues involved in hazardous waste incineration. The key experiment for each study was the measurement of waste destruction behavior in a sub-scale turbulent spray flame. (1) Atomization Qual...

  17. INNOVATIVE PRACTICES FOR TREATING WASTE STREAMS CONTAINING HEAVY METALS: A WASTE MINIMIZATION APPROACH

    EPA Science Inventory

    Innovative practices for treating waste streams containing heavy metals often involve technologies or systems that either reduce the amount of waste generated or recover reusable resources. With the land disposal of metal treatment residuals becoming less of an accepted waste man...

  18. A conflict model for the international hazardous waste disposal dispute.

    PubMed

    Hu, Kaixian; Hipel, Keith W; Fang, Liping

    2009-12-15

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  19. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J.; Knecht, Dieter A.; Todd, Terry A.; Burchfield, Larry A.; Anshits, Alexander G.; Vereshchagina, Tatiana; Tretyakov, Alexander A.; Aloy, Albert S.; Sapozhnikova, Natalia V.

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  20. Which way is best to collect hazardous wastes

    SciTech Connect

    Johansson, M.

    1991-06-01

    This article evaluates municipal programs in Denmark for the collection of household hazardous materials. The average potential for this waste is approximately 11 pounds/household/year. The cost, efficiency, and participation of each approach is compared. Results show that permanent installations are least efficient and that the most efficient schemes are the most expensive. However, a significant part of the waste could be separated from regular household waste with less expensive schemes.

  1. Household hazardous waste and conditionally exempt small-quantity generators

    SciTech Connect

    Wray, T.K.

    1993-02-01

    Each year, US consumers buy millions of pounds of paint, disinfectant, toilet bowl cleaner; furniture polish, drain cleaner, bleach and other products designed to beautify and clean their homes. Many do-it-yourselfers also buy automotive supplies, such as brake fluid, batteries, starting fluid, oil and antifreeze. Unused portions of these products often find their way into local landfills as household hazardous waste (HHW). Untreated, these wastes represent a possible threat to landfill employees, and a potential source of groundwater and surface water contamination. Recognizing the potential hazards posed by these materials, most states have established HHW management programs. California, Florida, Minnesota, Washington and New Jersey have well-established programs serving state residents and conditionally exempt small-quantity generators (CESQGs). CESQGs are commercial facilities that generate less than 100 kilograms (220 pounds) of hazardous waste per calendar month. RCRA established the statutory framework for identifying and managing hazardous wastes. However, household waste, including HHW, a specifically is excluded from regulation as a hazardous waste under 40 CFR 261.4(b)(1). Therefore, there are no current federal regulations governing HHW. Implementing and enforcing pollution legislation aimed at private citizens is a complex, if not impossible, task.

  2. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    SciTech Connect

    Soukup, J.D.; Erpenbeck, G.J.

    1995-12-31

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection.

  3. Disposable products in the hospital waste stream.

    PubMed Central

    Gilden, D. J.; Scissors, K. N.; Reuler, J. B.

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were sorted and weighed, and potential waste reductions from recycling and substituting reusable items were calculated. Business paper, trash liners, diapers, custom surgical packs, paper gowns, plastic suction bottles, and egg-crate pads were among the 20 top items and were analyzed individually. Data from sorted trash documented potential waste reductions through recycling and substitution of 78, 41, and 18 tonnes per year (1 tonne = 1,000 kg = 1.1 tons) from administration, the operating room, and adult wards, respectively (total hospital waste was 939 tonnes per year). We offer specific measures to substantially reduce nonhazardous hospital waste through substitution, minimization, and recycling of select disposable products. Images PMID:1595242

  4. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  5. Modeling the economics of landfilling organic processing waste streams

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2005-11-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector are many examples of various liquid, sludge, and solid biological and organic waste streams that require remediation. Alternative disposal methods for food and other bio-organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. Landfilling, the traditional approach to waste remediation, however, should not be dismissed entirely. It does provide a baseline to which all other recycling and reprocessing options should be compared. This paper discusses the implementation of a computer model designed to examine the economics of landfilling bio-organic processing waste streams. Not only are these results applicable to food processing operations, but any industrial or manufacturing firm would benefit from examining the trends discussed here.

  6. Modelling animal waste pathogen transport from agricultural land to streams

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Soupir, Michelle L.; Ikenberry, Charles

    2014-03-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water.

  7. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous wastes or PCB wastes; (2) Records of any inspections; (3) Training of facility personnel to... States under Subtitle C of RCRA or the EPA Regional Administrator if in an unauthorized State if a..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that...

  8. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous wastes or PCB wastes; (2) Records of any inspections; (3) Training of facility personnel to... States under Subtitle C of RCRA or the EPA Regional Administrator if in an unauthorized State if a..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that...

  9. Transportation training: Focusing on movement of hazardous substances and wastes

    SciTech Connect

    Jones, E.; Moreland, W.M.

    1988-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Program at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, are developing and implementing a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 5 figs., 3 tabs.

  10. Waste streams in a typical crewed space habitat: An update

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Wydeven, T.

    1992-01-01

    A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat, reported in a prior NASA Technical Memorandum and a related journal article, was updated. This report augments that compilation by the inclusion of the following new data: those data uncovered since completion of the prior report; those obtained from Soviet literature relevant to life support issues; and those for various minor human body wastes not presented previously (saliva, flatus, hair, finger- and toenails, dried skin and skin secretions, tears, and semen), but included here for purposes of completeness. These waste streams complement those discussed previously: toilet waste (urine, feces, etc.), hygiene water (laundry, shower/handwash, dishwasher water and cleansing agents), trash, humidity condensate, perspiration and respiration water, trace contaminants, and dust generation. This report also reproduces the latest information on the environmental control and life support system design parameters for Space Station Freedom.

  11. Waste streams in a crewed space habitat II.

    PubMed

    Golub, M A; Wydeven, T

    1992-01-01

    A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat, reported in a prior NASA Technical Memorandum and a related journal article, has been updated. This paper augments that compilation by the inclusion of the following new data: those uncovered since completion of the prior report; those obtained from Soviet literature relevant to life support issues; and those for various minor human body wastes not presented previously (saliva, flatus, hair, finger- and toenails, dried skin and skin secretions, tears and semen), but included here for purposes of completeness. These waste streams complement those discussed previously: toilet waste (urine, feces, etc.), hygiene water (laundry, shower/handwash, dishwash water and cleansing agents), trash, humidity condensate, perspiration and respiration water, trace contaminants and dust generation. This paper also reproduces the latest information on the environmental control and life support system design parameters for Space Station Freedom.

  12. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  13. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  14. Visible and infrared remote imaging of hazardous waste: A review

    USGS Publications Warehouse

    Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry

    2010-01-01

    One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  15. Indoor household pesticides: hazardous waste concern or not?

    PubMed

    Owens, J M; Guiney, P D; Howard, P H; Aronson, D B; Gray, D A

    2000-01-01

    Many indoor household pesticides are efficient and useful tools for a variety of functions necessary to maintain clean, sanitary, and pleasant homes and institutional facilities, and to provide significant public health benefits. They do so by incorporating active ingredients and formulation technology that have not been associated with significant environmental impact in use or when disposed in landfills. Chemical and environmental fate properties, toxicological characteristics, and use patterns of indoor household pesticides that distinguish them from other categories of pesticides which have been associated with environmental contamination should be recognized when HHW policy is debated and established by governmental agencies. Most indoor household pesticides as defined here should not be considered hazardous waste or HHW because those relatively few containers, often no longer full, that have been disposed with MSW over the years have not been associated with environmental contamination. The tiny amounts of those product residues that will reach MSW landfills have been shown, in general, not to have chemical or environmental fate characteristics that would make them susceptible to leaching. Those that do have the potential to leach based on these characteristics, in most cases, do not represent a threat to human health based on toxicological considerations. However, compounds such as propoxur, which are very mobile and relatively persistent in soil and in addition have been associated with significant potential health effects, may be targeted by the screening process as described here and could be selected for further investigation as candidates for special waste management status (such as HHW). Our analysis and recommendations have not been extended to the many types of lawn and garden pesticides that are commonly used by homeowners and are frequently brought to HHW programs. However, their potential for groundwater contamination could also be judged using

  16. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

  17. Consumption patterns and household hazardous solid waste generation in an urban settlement in México.

    PubMed

    Otoniel, Buenrostro Delgado; Liliana, Márquez-Benavides; Francelia, Pinette Gaona

    2008-01-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442ton/day of domestic waste are produced, including 7.1ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.

  18. Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico

    SciTech Connect

    Delgado Otoniel, Buenrostro

    2008-07-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.

  19. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  20. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  1. ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of dissolved organic carbon(DOC) and dissolved oxygen (DO), and other parameters in 17 small streams of the South Fork Broad River watershed on a monthly basis for 15 months. Here we present estimates of the amounts of organic waste input to these wate...

  2. Hazardous waste management in Chilean main industry: an overview.

    PubMed

    Navia, Rodrigo; Bezama, Alberto

    2008-10-01

    The new "Hazardous Waste Management Regulation" was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a "Hazardous Waste Management Plan" if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory. PMID:18337002

  3. Proceedings of the seventeenth mid-Atlantic industrial waste conference on toxic and hazardous wastes

    SciTech Connect

    Kugelman, I.J.

    1985-01-01

    This book presents the papers given at a conference on hazardous and toxic materials. Topics considered at the conference included methane production using anaerobic fluidized beds, thermal sludge conditioning, phosphorus removal, cooling tower water treatment, groundwater modeling, dry fly ash landfills, resource recovery, industrial wastes, the assessment of waste disposal sites utilizing expert systems, and the agricultural use of industrial wastes.

  4. Stabilization solutions to hazardous metals laden waste

    SciTech Connect

    Kramer, M.

    1996-12-31

    This paper is limited to treatment of bottom and fly ash waste resulting from WTE and RTE Cogeneration plants, commonly known as trash burners. The body of the paper defines waste generation and conventional treatment schemes. This paper does not identify a best treatment, however, it does offer a general perspective of the treatments to lead the reader to further investigation. Advantages and disadvantages of the ash treatments is discussed in each treatment section. 29 refs., 1 fig.

  5. Hazardous wastes in Eastern and Central Europe [meeting report

    PubMed Central

    Carpenter, D O; Suk, W A; Blaha, K; Cikrt, M

    1996-01-01

    The countries of Eastern and Central Europe have emerged from a political system which for decades has ignored protection of human health from hazardous wastes. While the economies of the countries in this region are stretched, awareness and concern about hazardous waste issues are a part of the new realities. At a recent conference sponsored in part by the National Institute of Environmental Health Sciences, representatives of seven countries in the region described the status of hazardous waste programs, issues of major concern, and steps being taken to protect human health. This report summarizes the deliberations, outlines some of the problems remaining in dealing with the legacy of the past, addressing the problems of the present, and providing a framework for future research and collaborative efforts. PMID:8919756

  6. The coast guard's cleanup of hazardous waste sites

    SciTech Connect

    Rezendes, V.S.

    1989-11-01

    GAO concluded that the Coast Guard still has most of its major hazardous waste cleanup work to do - an effort that will cost millions and will take decades to complete. Yet the Coast Guard cannot confidently estimate long-term cleanup costs until it assesses and investigates potential hazardous waste locations. While Coast Guard data suggest that it is complying with hazardous waste regulations, this GAO report maintains that the Coast Guard may not be collecting the type of information needed to support long-term budget requests. The Coast Guard is planning to reissue reporting instructions in order to stress the importance of reporting violations and related costs. If successful, this effort could help ensure that the Coast Guard has the information necessary to estimate future funding needs.

  7. Hazardous Waste Site Remediation, Neighborhood Change, and Neighborhood Quality.

    PubMed Central

    Greenberg, M; Schneider, D

    1994-01-01

    We tested the hypothesis that neighborhoods with hazardous waste sites may no longer be undesirable places to live if they have been at least partly remediated. We collected 377 questionnaires (42% response rate) administered from within one-half mile of the number 1, 4, and 12 hazardous waste sites on the National Priority List (Superfund). These neighborhoods were rated higher quality than neighborhoods with unremediated hazardous waste sites and about the same as neighborhoods in northern New Jersey and the United States as a whole. Newer residents considered these formerly tainted areas to be opportunities to upgrade their housing and living conditions. Long-term residents retained the negative image of the blemished neighborhood. Images p542-a PMID:9679112

  8. Hazardous waste incineration in context with carbon dioxide.

    PubMed

    Reinhardt, Tim; Richers, Ulf; Suchomel, Horst

    2008-02-01

    The Kyoto Protocol of 1997 demands an emission reduction of climate-affecting gases in various industrial sectors. In this context CO2 is one of the relevant gases and waste management is one of the relevant sectors. Referring to the situation in Europe, waste incineration is one of the major sources of CO2 in the waste management sector. The Kyoto Protocol, however, only covers CO2-emissions originating from fossil fuels, whereas the incineration of renewable materials, e.g. wood, is considered to be climate-neutral since it does not make any net contribution to the CO2 inventory of the atmosphere. Unlike the situation with municipal waste, there is little if any information on the CO2-emissions caused by the incineration of hazardous waste in specialized plants, and the renewable fraction in these materials. The present paper focuses on this gap of knowledge. Taking the full-scale hazardous waste incineration plant in Biebesheim, Germany, as an example, a carbon balance was set up for the whole-plant taking into account all other material flows. Afterwards the determination of the proportion of renewable materials in the hazardous waste incinerated by means of the radiocarbon method (14C) is reported. On the basis of the results, optimization potentials are discussed.

  9. Redesigning Urban Carbon Cycles: from Waste Stream to Commodity

    NASA Astrophysics Data System (ADS)

    Brabander, D. J.; Fitzstevens, M. G.

    2013-12-01

    While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in

  10. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  11. Method of recovering hazardous waste from phenolic resin filters

    DOEpatents

    Meikrantz, David H.; Bourne, Gary L.; McFee, John N.; Burdge, Bradley G.; McConnell, Jr., John W.

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  12. Microwave-assisted chemical process for treatment of hazardous waste: Annual report

    SciTech Connect

    Varma, R.; Nandi, S.P.; Cleaveland, D.C.

    1987-10-01

    Microwave energy provides rapid in situ uniform heating and can be used to initiate chemical processes at moderate temperatures. We investigate the technical feasibility of microwave-assisted chemical processes for detoxification of liquid hazardous waste. Trichloroethylene, a major constituent of waste streams, was selected for this detoxification study. Experiments were performed to investigate the oxidative degradation of trichloroethylene over active carbons (with and without catalysts) in air streams with microwave in situ heating, and to examine the feasibility of regenerating the used carbons. This study established that trichloroethylene in a vapor stream can be adsorbed at room temperature on active carbon beds that are loaded with Cu and Cr catalysts. When the bed is heated by a microwave radiation to moderate temperatures (<400/sup 0/C) while a moist air stream is passed through it, the trichloroethylene is readily converted into less-noxious products such as HCl, CO, CO/sub 2/ and C/sub 2/H/sub 2/Cl/sub 2/. Conversion higher than 80% was observed. Furthermore, the used carbon bed can be conveniently regenerated by microwave heating while a moist-N/sub 2/ or moist-air stream is passed through the bed. 4 refs., 5 figs., 10 tabs.

  13. New hazardous waste management system: regulation of wastes or wasted regulation

    SciTech Connect

    Friedland, S.I.

    1981-01-01

    The unsound management of hazardous wastes, as exemplified by Love Canal, causes a variety of environmental and health problems. A review of present state controls reveals the need for the Federal regulation that was incorporated in the Resource Conservation and Recovery Act of 1976 (RCRA). A detailed description of RCRA, however, faults the Environmental Protection Agency (EPA) for deferring regulation and for its failure to meet deadlines, issue standards, or include many dangerous wastes in the prohibited list. EPA's interim standards of essentially voluntary guidelines will offer little protection from contamination until final permit regulations are established. 326 references. (DCK)

  14. A successful petition to delist a hazardous waste

    SciTech Connect

    Finch, A.J.; Cormier, S.L.

    1997-12-31

    The prospect of a favorable ruling in an effort to have a hazardous waste delisted is remote, and few have been granted. This paper recounts the successful procedure used to have materials from a hazardous waste site delisted. Other property owners with sites affected with hazardous wastes will find the methodology discussed here instructive if they are contemplating a delisting petition. The regulatory agency with jurisdiction was the Michigan Department of Environmental Quality through its Waste Management Division (MDEQ WMD). The state has accepted authority for this function from the USEPA. The materials from discontinued electroplating operations were considered hazardous based on their contact with a listed F006 waste sludge generated from the electroplating operations. The sludge had been stored in surface impoundments. To initiate the delisting procedure, the requirements of a USEPA document were followed: Petition to Delist Hazardous Wastes, a Guidance Manual. The MDEQ WMD sanctioned the use of this guidance. This document is issued by the Office of Solid Waste. In observing the guidance, the following actions were taken: (1) Collection of soil samples from the area proposed for delisting; (2) Evaluation of data and the feasibility of preparing a delisting petition; (3) Development of the petition. In developing the details of the petition, the data from the site were scrutinized. Analytical results of metals in the soil samples were compared with pre-established maximum allowable concentrations that had been calculated in a closure plan. These values were also compared with delisting levels calculated by USEPA`s Composite Model for Landfills (EPACML). The data indicated that the levels of chemical constituents were below the appropriate regulatory criteria. Therefore, the petition was launched. This paper discusses their effective procedure and contents of each section of the delisting petition.

  15. Locating hazardous waste facilities: The influence of NIMBY beliefs

    SciTech Connect

    Groothuis, P.A.; Miller, G. )

    1994-07-01

    The [open quote]Not-In-My-Backyard[close quote] (NIMBY) syndrome is analyzed in economic decision making. Belief statements that reflect specific NIMBY concerns are subjected to factor analysis and the structure reveals two dimensions: tolerance and avoidance. Tolerance reflects an acceptance of rational economic arguments regarding the siting of a hazardous waste facility and avoidance reflects a more personal fear-of-consequences. Analysis identifies demographic characteristics of individuals likely to exhibit these two beliefs. These beliefs also are shown to influence the acceptance of a hazardous waste disposal facility in ones neighborhood when compensation is offered.

  16. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE University Laboratories XL Project-Laboratory Environmental Management Standard § 262.106 When must a hazardous waste determination be made? (a) For laboratory waste sent from a laboratory to an on-site hazardous...

  17. Hazardous-waste degradation by wood-degrading fungi

    SciTech Connect

    Glaser, J.A.

    1992-01-01

    The persistence and toxicity of many hazardous waste constituents indicates that the environment has limited capacity to degrade such materials. The competence and presence of degrading organisms significantly effects one's ability to treat and detoxify these hazardous waste chemicals. Competence is often specified by the ability of the organisms to convert toxic chemicals to non toxic entities and most desirably to carbon dioxide. A wood degrading fungus, Phanerochaete chrysosporium has been investigated to determine its role as a degrader of toxic waste materials. Due to its widely recognized ability to degrade lignin, a persistent biogenic polymer, and the non specific enzyme systems supporting such activity, it was thought to have great promise as a toxic waste degrader.

  18. Long Term Stability Testing Results for Savannah River Site Organic and Aqueous Waste streams

    SciTech Connect

    Bickford, J.; Foote, M.; Burns, H.

    2008-07-01

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating the long-term stability of various commercially available sorbent materials to solidify two organic surrogate waste streams (both volatile and nonvolatile), a volatile organic waste stream with a residual aqueous phase, an aqueous waste stream, and an aqueous waste stream with a residual organic phase. The Savannah River Site (SRS) legacy plutonium/uranium extraction (PUREX) process waste and the F-Canyon PUREX waste constituted the volatile organic wastes and various oils constituted the nonvolatile organic waste stream. The aqueous waste streams included a rainwater waste stream and an aqueous organic waste stream. MSE also evaluated the PUREX waste stream with a residual aqueous component with and without aqueous-type sorbent materials. Based on testing performed at MSE, the rainwater waste stream was successfully solidified by SRS personnel using two different sorbents. Several small oil wastes were also successfully solidified by SRS personnel using granular clay sorbents based on information provided by MSE from the oils waste stream testing and 75,706 Liters (L) [20,000 gallons (gal)] of the F-Canyon PUREX waste was solidified at Waste Consolidation Specialists (WCS). Solidification of the various surrogate waste streams listed above was performed from 2004 to 2006 at the MSE testing and evaluation facility located at the Mike Mansfield Advanced Technology Center in Butte, Montana. This paper summarizes the comparison of the initial liquid release testing (LRT) values with LRT results obtained over three years later in an attempt to understand the long-term stability characteristics of the solidified waste streams. The paper also includes solidification results for B-25 box samples generated late in 2005. (authors)

  19. Future radioactive liquid waste streams study

    SciTech Connect

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  20. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  1. International mobility of hazardous products, industries, and wastes.

    PubMed

    Castleman, B I; Navarro, V

    1987-01-01

    The export of hazards to developing countries, frequently associated with the transfer of technology, is an increasing public health problem. It may arise from the export of hazardous products and wastes, or from the transfer of hazardous industries in the absence of appropriate safeguards. Multinational corporations bear a major responsibility for having lower standards of health protection in manufacturing and marketing in the developing countries than in home-country operations. These firms are coming under growing international pressure from concerned citizens, unions, environmental groups, national governments and international organizations, religious groups, the media, and public health professionals.

  2. Treatment of hazardous petrochemical and petroleum wastes

    SciTech Connect

    Burton, D.J. ); Ravishankar, K. )

    1989-01-01

    This book is a comparison of twenty-eight emerging technologies for the treatment of petrochemical wastes. It covers the full range of thermal, physical, chemical, and biological methods, providing information about processes, vendors, applications, state of development, and known or anticipated problems with each The most significant aspect of the book, however, is the detailed cost analysis and comparison. Each technology is evaluated in a table outlining: vendor and address, waste characteristics, system capacity, labor and supervision requirements, operating costs, capital costs, revenues generated, and total costs of operation on an annualized and a per unit basis.

  3. Hazards Associated with Legacy Nitrate Salt Waste Drums Managed under the Container Isolation Plan

    SciTech Connect

    Funk, David John; Clark, David Lewis

    2015-01-07

    At present, there are 29 drums of nitrate waste salts (oxidizers with potentially acidic liquid bearing RCRA characteristics D001 and D002) that are awaiting processing, specifically to eliminate these characteristics and to allow for ultimate disposition at WIPP. As a result of the Feb. 14th, 2014 drum breach at WIPP, and the subsequent identification of the breached drum as a product ofLANL TRU waste disposition on May 15th, 2014, these 29 containers were moved into the Perrnacon in Dome 231 at TA-54 Area G, as part of the New Mexico Environment Department (NMED) approved container isolation plan. The plan is designed to mitigate hazards associated with the nitrate salt bearing waste stream. The purpose of this document is to articulate the hazards associated with un-remediated nitrate salts while in storage at LANL. These hazards are distinctly different from the Swheat-remediated nitrate salt bearing drums, and this document is intended to support the request to remove the un-remediated drums from management under the container isolation plan. Plans to remediate and/or treat both of these waste types are being developed separately, and are beyond the scope of this document.

  4. Assessment of four calculation methods proposed by the EC for waste hazardous property HP 14 'Ecotoxic'.

    PubMed

    Hennebert, Pierre; Humez, Nicolas; Conche, Isabelle; Bishop, Ian; Rebischung, Flore

    2016-02-01

    Legislation published in December 2014 revised both the List of Waste (LoW) and amended Appendix III of the revised Waste Framework Directive 2008/98/EC; the latter redefined hazardous properties HP 1 to HP 13 and HP 15 but left the assessment of HP 14 unchanged to allow time for the Directorate General of the Environment of the European Commission to complete a study that is examining the impacts of four different calculation methods for the assessment of HP 14. This paper is a contribution to the assessment of the four calculation methods. It also includes the results of a fifth calculation method; referred to as "Method 2 with extended M-factors". Two sets of data were utilised in the assessment; the first (Data Set #1) comprised analytical data for 32 different waste streams (16 hazardous (H), 9 non-hazardous (NH) and 7 mirror entries, as classified by the LoW) while the second data set (Data Set #2), supplied by the eco industries, comprised analytical data for 88 waste streams, all classified as hazardous (H) by the LoW. Two approaches were used to assess the five calculation methods. The first approach assessed the relative ranking of the five calculation methods by the frequency of their classification of waste streams as H. The relative ranking of the five methods (from most severe to less severe) is: Method 3>Method 1>Method 2 with extended M-factors>Method 2>Method 4. This reflects the arithmetic ranking of the concentration limits of each method when assuming M=10, and is independent of the waste streams, or the H/NH/Mirror status of the waste streams. A second approach is the absolute matching or concordance with the LoW. The LoW is taken as a reference method and the H wastes are all supposed to be HP 14. This point is discussed in the paper. The concordance for one calculation method is established by the number of wastes with identical classification by the considered calculation method and the LoW (i.e. H to H, NH to NH). The discordance is

  5. RCRA, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 cfr part 261) updated July 1996

    SciTech Connect

    1996-07-01

    The module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. It analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of `hazardous waste.` It explains concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the `mixture` and `derived-from` rules, the `contained-in` policy, and the hazardous waste identification rules (HWIR).

  6. Impact of habitat variability on biological assessments at hazardous waste sites -- design and data interpretation considerations

    SciTech Connect

    Henry, R.

    1994-12-31

    Biological assessment methods that use aquatic macroinvertebrate communities to assess environmental impacts have been developed and used at hazardous waste sites. Shifts in community structure and function typically are attributed to the availability and toxicity of a contaminant, and information of this nature may be incorporated into remedial decisions. However, chemical stressors are often associated with habitat characteristics that may result in or contribute to an observed biological response. An ecological assessment focusing on benthic macroinvertebrates was conducted in a third order stream adjacent to a hazardous waste site. Habitat variability throughout the study area complicated the selection of sampling locations and equipment, and threatened to obscure potential ecological impairment associated with contaminants. For example, a 540 hectare impoundment exists approximately 100 meters upstream of the site which affects water quality, nutrient availability, and hydrology. Furthermore, portions of the stream adjacent to and immediately downstream of the site consist of a series of small, interconnecting braids that form the central core of a riparian wetland hydrosystem. Finally, historic and current riparian landaus includes mining, industrial, commercial, residential, and forested areas. Several reference areas, replicate and multihabitat samples, and careful habitat analysis were used to discriminate between habitat and contaminant effects. Although contaminants were detected in the stream, results of the macroinvertebrate survey and habitat analysis suggest that shifts in community structure and function were driven by habitat characteristics and that contaminants were not biologically available or present in toxic concentrations.

  7. Characterization and monitoring of 300 Area Facility liquid waste streams: Status report

    SciTech Connect

    Manke, K.L.; Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Ikenberry, A.S.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.

    1994-09-01

    This report summarizes the results of characterizing and monitoring the following sources during a portion of this year: liquid waste streams from Buildings 331, 320, and 3720; treated and untreated Columbia River water; and water at the confluence of the waste streams (that is, end-of-pipe). Characterization and monitoring data were evaluated for samples collected between March 22 and June 21, 1994, and subsequently analyzed for hazardous chemicals, radioactivity, and general parameters. Except for bis(2-ethylhexyl)phthalate, concentrations of chemicals detected and parameters measured at end-of-pipe were below the US Environmental Protection Agency existing and proposed drinking water standards. The source of the chemicals, except bis(2-ethylhexyl)phthalate, is not currently known. The bis(2-ethylhexyl)phthalate is probably an artifact of the plastic tubing used in the early stages of the sampling program. This practice was stopped. Concentrations and clearance times for contaminants at end-of-pipe depended strongly on source concentration at the facility release point, waste stream flow rates, dispersion, and the mechanical action of sumps. When present, the action of sumps had the greatest impact on contaminant clearance times. In the absence of sump activity, dispersion and flow rate were the controlling factors.

  8. Waste Minimization via Radiological Hazard Reduction

    SciTech Connect

    Stone, K.A.; Coffield, T.; Hooker, K.L.

    1998-03-01

    The Savannah River Site (SRS), a 803 km{sup 2} U.S. Department of Energy (DOE) facility in south-western South Carolina, incorporates pollution prevention as a fundamental component of its Environmental Management System. A comprehensive pollution prevention program was implemented as part of an overall business strategy to reduce waste generation and pollution releases, minimize environmental impacts, and to reduce future waste management and pollution control costs. In fiscal years 1995 through 1997, the Site focused on implementing specific waste reduction initiatives identified while benchmarking industry best practices. These efforts resulted in greater than $25 million in documented cost avoidance. While these results have been dramatic to date, the Site is further challenged to maximize resource utilization and deploy new technologies and practices to achieve further waste reductions. The Site has elected to target a site-wide reduction of contaminated work spaces in fiscal year 1998 as the primary source reduction initiative. Over 120,900 m{sup 2} of radiologically contaminated work areas (approximately 600 separate inside areas) exist at SRS. Reduction of these areas reduces future waste generation, minimizes worker exposure, and reduces surveillance and maintenance costs. This is a major focus of the Site`s As Low As Reasonably Achievable (ALARA) program by reducing sources of worker exposure. The basis for this approach was demonstrated during 1997 as part of a successful Enhanced Work Planning pilot conducted at several specific contamination areas at SRS. An economic-based prioritization process was utilized to develop a model for prioritizing areas to reclaim. In the H-Canyon Separation facility, over 3,900 m{sup 2} of potentially contaminated area was rolled back to a Radiation Buffer Area. The facility estimated nearly 420 m{sup 3} of low level radioactive waste will be avoided each year, and overall cost savings and productivity gains will reach

  9. What was leaking from a hazardous-waste dump

    SciTech Connect

    Hites, R.A.

    1988-05-15

    The city of Niagara Falls, N.Y., is the home of several toxic waste disposal sites, the most famous of which is Love Canal. Although less well known, the Hyde Park dump is equally noxious. This hazardous-waste dump was operated by the Hooker Chemical Company from about 1953 to 1975. Approximately 55,000 tons of halogenated waste were buried at this site, which is just north of the city. The Hyde Park dump is drained by Bloody Run Creek. Ronald A. Hites of Indiana University outlines the steps taken to identify the structures of organic compounds leaking from the Hyde Park dump.

  10. Sociological perspective on the siting of hazardous waste facilities

    SciTech Connect

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented.

  11. Cleaner production: Minimizing hazardous waste in Indonesia

    SciTech Connect

    Bratasida, D.L.

    1996-12-31

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmental management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.

  12. The Future of Hazardous Waste Tracking: Radio Frequency Identification (RFID)

    EPA Science Inventory

    The capability and performance of various RFID technologies to track hazardous wastes and materials (HAZMAT) across international borders will be verified in the El Paso, Texas-Ciudad Juarez, Mexico area under EPA's Environmental Technology Verification (ETV)/Environmental and S...

  13. BIOREMEDIATION OF HAZARDOUS WASTES - RESEARCH, DEVELOPMENT, AND FIELD EVALUATIONS - 1994

    EPA Science Inventory

    The proceedings of the 1994 Symposium on Bioremediation of Hazardous Wastes, hosted by the Office of Research and Development (ORD) of the EPA in San Francisco, California. The symposium was the seventh annual meeting for the presentation of research conducted by EPA's Biosystem...

  14. BIOREMEDIATION OF HAZARDOUS WASTES - RESEARCH, DEVELOPMENT, AND FIELD EVALUATIONS - 1993

    EPA Science Inventory

    The proceedings of the 1993 Symposium on Bioremediation of Hazardous Wastes, hosted by the Office of Research and Development (ORD) of the EPA in Dallas, Texas The symposium was the sixth annual meeting for the presentation of research conducts (by EPA's Biosystems Technology Dev...

  15. Hazardous Waste Management for the Small Quantity Generator. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructional package for teaching about the regulations imposed on small quantity generators by the Environmental Protection Agency (EPA) under the Resource Conservation Recovery Act is organized around ll program objectives: students will be able to (l) determine a hazardous waste from lists or by identifying characteristics; (2) identify…

  16. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potential hazard to human health or the environment when improperly treated, stored, transported or disposed... in ecosystems. (vii) The plausible types of improper management to which the waste could be subjected... basis. (ix) The nature and severity of the human health and environmental damage that has occurred as...

  17. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potential hazard to human health or the environment when improperly treated, stored, transported or disposed... in ecosystems. (vii) The plausible types of improper management to which the waste could be subjected... basis. (ix) The nature and severity of the human health and environmental damage that has occurred as...

  18. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potential hazard to human health or the environment when improperly treated, stored, transported or disposed... in ecosystems. (vii) The plausible types of improper management to which the waste could be subjected... basis. (ix) The nature and severity of the human health and environmental damage that has occurred as...

  19. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potential hazard to human health or the environment when improperly treated, stored, transported or disposed... in ecosystems. (vii) The plausible types of improper management to which the waste could be subjected... basis. (ix) The nature and severity of the human health and environmental damage that has occurred as...

  20. 40 CFR 261.11 - Criteria for listing hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potential hazard to human health or the environment when improperly treated, stored, transported or disposed... in ecosystems. (vii) The plausible types of improper management to which the waste could be subjected... basis. (ix) The nature and severity of the human health and environmental damage that has occurred as...

  1. Household Hazardous Waste and Automotive Products: A Pennsylvania Survey.

    ERIC Educational Resources Information Center

    Shorten, Charles V.; And Others

    1995-01-01

    A significant fraction of household hazardous waste (HHW) is generated by home mechanics who use such products as motor oil, cleaners and solvents, and batteries. This survey assessed the following aspects: (1) perceptions of their health-related effects; (2) perceptions of their pollution potential; and (3) their use and disposal. (LZ)

  2. Reliability analysis of common hazardous waste treatment processes

    SciTech Connect

    Waters, R.D.

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  3. Household Hazardous Waste: Everyone's Problem--Everyone's Solution.

    ERIC Educational Resources Information Center

    Evenson, Linda

    1985-01-01

    Examines the household hazardous waste problem, addressing several areas related to regulation, disposal, and control. Also gives a list of safer alternatives for household cleaners/disinfectants, paint products, and pesticides. Indicates that individuals can collectively make a difference in public exposure by changing purchases and practices.…

  4. BIOREMEDIATION OF HAZARDOUS WASTES - RESEARCH, DEVELOPMENT AND FIELD EVALUATIONS - 1995

    EPA Science Inventory

    The proceedings of the 1995 Symposium on Bioremediation of Hazardous Wastes, hosted by the Office of Research and Development (ORD) of the EPA in Rye Brook, New York. he symposium was the eighth annual meeting for the presentation of research conducted by EPA's Biosystems Technol...

  5. Children's Understandings Related to Hazardous Household Items and Waste

    ERIC Educational Resources Information Center

    Malandrakis, George N.

    2008-01-01

    This study focuses on children's understanding of hazardous household items (HHI) and waste (HHW). Children from grades 4, 5 and 6 (n=173) participated in a questionnaire and interview research design. The results indicate that: (a) on a daily basis the children used HHI and disposed of HHW, (b) the children did not realize the danger of these…

  6. 77 FR 22229 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... FR 31716). Today's final rule corrects the misspelled chemical name. 2. Conforming Change to 40 CFR... recyclable materials have undergone a chemical reaction in the course of producing the products so as to... Final rule entitled, Hazardous Waste Technical Corrections and Clarifications Rule (75 FR...

  7. TREATABILITY POTENTIAL FOR EPA LISTED HAZARDOUS WASTES IN SOIL

    EPA Science Inventory

    This study developed comprehensive screening data on the treatability in soil of: (a) specific listed hazardous organic chemicals, and (b) waste sludge from explosives production (K044) and related chemicals. Laboratory experiments were conducted using two soil types, an acidic s...

  8. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    EPA Science Inventory

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  9. Environmental biotechnology: biotechnology solutions for a global environmental problem, hazardous chemical wastes.

    PubMed

    Omenn, G S

    Biotechnology has a growing place in the remediation of hazardous waste sites throughout the world, and especially in Asia where population density is high and land and fresh water are scarce. In-situ bioremediation has been demonstrated already to be highly effective for petroleum hydrocarbons (alkanes, aromatics, polychlorophenols) and organophosphate pesticides in soils and for gasoline by-products (benzene, toluene, xylene) and chlorinated solvents (trichloroethylene) in groundwater. Heavy metals and PCBs are not suitable for bioremediation. Environmental biotechnology includes solid-phase and slurry-phase bioremediation for contaminated soils and site-specific bioreactors for contaminated groundwater. Specific examples are presented. From a policy point of view, accumulated wastes must be detoxified, preferably at sites where they already exist. We cannot continue to rely on their removal and disposal "elsewhere". For current waste streams, we must minimize the volumes and toxicity. Environmental biotechnology will play a key role.

  10. 40 CFR 63.1094 - What waste streams are exempt from the requirements of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false What waste streams are exempt from the requirements of this subpart? 63.1094 Section 63.1094 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Systems and Waste Operations Applicability for Waste Requirements § 63.1094 What waste streams are...

  11. 40 CFR 63.1094 - What waste streams are exempt from the requirements of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false What waste streams are exempt from the requirements of this subpart? 63.1094 Section 63.1094 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Systems and Waste Operations Applicability for Waste Requirements § 63.1094 What waste streams are...

  12. 40 CFR 63.1094 - What waste streams are exempt from the requirements of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false What waste streams are exempt from the requirements of this subpart? 63.1094 Section 63.1094 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Systems and Waste Operations Applicability for Waste Requirements § 63.1094 What waste streams are...

  13. 40 CFR 63.1094 - What waste streams are exempt from the requirements of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false What waste streams are exempt from the requirements of this subpart? 63.1094 Section 63.1094 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Systems and Waste Operations Applicability for Waste Requirements § 63.1094 What waste streams are...

  14. 40 CFR 63.1094 - What waste streams are exempt from the requirements of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false What waste streams are exempt from the requirements of this subpart? 63.1094 Section 63.1094 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Systems and Waste Operations Applicability for Waste Requirements § 63.1094 What waste streams are...

  15. Waste streams in a crewed space habitat. II

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore

    1992-01-01

    An update is presented of a compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat which was reported in the NASA Technical Memorandum. New topics under consideration include data obtained from Soviet literature on life support issues and data on various minor human body wastes not presented previously (saliva, Flatus, hair, finger- and toenails, dried skin and skin secretions, tears and semen). Attention is also given to the latest information on the environmental control and life support system design parameters for SSF.

  16. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes or PCB wastes; (2) Records of any inspections; (3) Training of facility personnel to recognize... Subtitle C of RCRA or the EPA Regional Administrator if in an unauthorized State if a regulated hazardous... waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is not...

  17. Groundwater stream experiment for the waste isolation pilot plant

    SciTech Connect

    Seitz, M.G.; Bowers, D.; Fortney, D.R.

    1981-08-01

    This project was conducted to evaluate the practicality of using laboratory groundwater stream experiments to model a hydraulic breach of a nuclear waste repository located deep in a bedded salt environment. A test plan is included in this report that gives details of the apparatus, rocks, solutions, and analyses to be used in a groundwater stream experiment. Preliminary experiments revealed the essential impermeability of halite; only a small concentration of water (about 75 ppM) moved in halite by diffusion, with a coefficient of 2.0 x 10/sup -7/ cm/sup 2//s. From work completed in this program, groundwater stream experiments appear to be a practical method of establishing the chemical interactions that would occur in a breached repository in bedded salt.

  18. Organic waste compounds as contaminants in Milwaukee-area streams

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Magruder, Christopher; Magruder, Matthew; Bruce, Jennifer L.

    2015-09-22

    Organic waste compounds (OWCs) are ingredients and by-products of common agricultural, industrial, and household substances that can contaminate our streams through sources like urban runoff, sewage overflows, and leaking septic systems. To better understand how OWCs are affecting Milwaukee-area streams, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District, conducted a three-year study to investigate the presence and potential toxicity of 69 OWCs in base flow, stormflow, pore water, and sediment at 14 stream sites and 3 Milwaukee harbor locations. This fact sheet summarizes the major findings of this study, including detection frequencies and concentrations, potential toxicity, the prevalence of polycyclic aromatic hydrocarbons (PAHs), and the influence of urbanization.

  19. Household hazardous waste quantification, characterization and management in China's cities: a case study of Suzhou.

    PubMed

    Gu, Binxian; Zhu, Weimo; Wang, Haikun; Zhang, Rongrong; Liu, Miaomiao; Chen, Yangqing; Wu, Yi; Yang, Xiayu; He, Sheng; Cheng, Rong; Yang, Jie; Bi, Jun

    2014-11-01

    A four-stage systematic tracking survey of 240 households was conducted from the summer of 2011 to the spring of 2012 in a Chinese city of Suzhou to determine the characteristics of household hazardous waste (HHW) generated by the city. Factor analysis and a regression model were used to study the major driving forces of HHW generation. The results indicate that the rate of HHW generation was 6.16 (0.16-31.74, 95% CI) g/person/day, which accounted for 2.23% of the household solid waste stream. The major waste categories contributing to total HHW were home cleaning products (21.33%), medicines (17.67%) and personal care products (15.19%). Packaging and containers (one-way) and products (single-use) accounted for over 80% of total HHW generation, implying a considerable potential to mitigate HHW generation by changing the packaging design and materials used by manufacturing enterprises. Strong correlations were observed between HHW generation (g/person/day) and the driving forces group of "household structure" and "consumer preferences" (among which the educational level of the household financial manager has the greatest impact). Furthermore, the HHW generation stream in Suzhou suggested the influence of another set of variables, such as local customs and culture, consumption patterns, and urban residential life-style. This study emphasizes that HHW should be categorized at its source (residential households) as an important step toward controlling the HHW hazards of Chinese cities.

  20. Household hazardous waste quantification, characterization and management in China's cities: a case study of Suzhou.

    PubMed

    Gu, Binxian; Zhu, Weimo; Wang, Haikun; Zhang, Rongrong; Liu, Miaomiao; Chen, Yangqing; Wu, Yi; Yang, Xiayu; He, Sheng; Cheng, Rong; Yang, Jie; Bi, Jun

    2014-11-01

    A four-stage systematic tracking survey of 240 households was conducted from the summer of 2011 to the spring of 2012 in a Chinese city of Suzhou to determine the characteristics of household hazardous waste (HHW) generated by the city. Factor analysis and a regression model were used to study the major driving forces of HHW generation. The results indicate that the rate of HHW generation was 6.16 (0.16-31.74, 95% CI) g/person/day, which accounted for 2.23% of the household solid waste stream. The major waste categories contributing to total HHW were home cleaning products (21.33%), medicines (17.67%) and personal care products (15.19%). Packaging and containers (one-way) and products (single-use) accounted for over 80% of total HHW generation, implying a considerable potential to mitigate HHW generation by changing the packaging design and materials used by manufacturing enterprises. Strong correlations were observed between HHW generation (g/person/day) and the driving forces group of "household structure" and "consumer preferences" (among which the educational level of the household financial manager has the greatest impact). Furthermore, the HHW generation stream in Suzhou suggested the influence of another set of variables, such as local customs and culture, consumption patterns, and urban residential life-style. This study emphasizes that HHW should be categorized at its source (residential households) as an important step toward controlling the HHW hazards of Chinese cities. PMID:25022547

  1. Waste stream utilisation for sustainable viticulture.

    PubMed

    Agnew, R H; Mundy, D C; Spiers, T M; Greven, M M

    2005-01-01

    Field trials were established at four vineyards in January 1999 to evaluate the effects of four mulch mixtures on different soil and plant parameters. Mulches were made from wine industry and other commercially available plant and animal wastes. Soil, grape petioles, grape leaves and grape juice were analysed over three seasons. The mulches applied released considerable quantities of nutrients, which were available for use by the grapevines. Generally, the type of mulch used had little impact on the parameters that were measured and the greatest differences occurred between non-mulched and mulch treatments. Soil pH showed an increase at three of the four sites after application of mulch. Soil phosphorus increased moderately at one site and substantially at the other three sites in the first year and soil potassium levels increased dramatically at all sites in the first year. After the application of mulches in 1999 the petiole nitrate levels increased dramatically at all sites, however there were no differences in the second year. In the third year petiole nitrate levels were again high indicating that the differences between years was probably largely attributable to differences in rainfall received among the three seasons. Petiole potassium levels also increased after the application of mulch, however the increase was nowhere near as large as the increase in soil potassium. The use of mulch increased leaf nitrogen and potassium levels but not phosphorus levels. The use of mulch did increase juice potassium, however there was greater seasonal and site variation than variation due to the effect of mulch.

  2. Hazardous-waste incineration in a rotary kiln

    SciTech Connect

    Owens, W.D. Jr.

    1991-01-01

    A rotary-kiln simulator was used to develop a better understanding of how hazardous materials are removed from sorbent clays. Experimental results and associated numerical modeling on the combustion and desorption of toluene from a montmorillonite clay sorbent are presented. The purpose of these tests was to understand the mass and heat transfer characteristics of the material in a rotary kiln environment. The experiments were done in a batch mode, simulating a control volume of solids moving down the length of a full-scale rotary kiln, exchanging time for distance as the independent variable. Studies investigating the effect of oxygen concentration, charge size, rotational velocity, and kiln cavity temperature on the desorption rate were completed. Also, effects of water in the montmorillonite were examined. Two comprehensive models were developed to predict the thermal and mass desorption characteristics of the bed, respectively. Another series of studies in the rotary kiln simulator was focused on NO, formation from nitrogenous waste constituents. These tests were performed to simulate materials (plastics, nylons, dyes, and process waste) usually destroyed in hazardous-waste incinerators. Four surrogate wastes, Aniline, Pyridine, Malononitrile, and Ethylenediamine, were absorbed onto the montmorillonite clay sorbent. A detailed discussion regarding the design, construction and operation of the rotary-kiln simulator for research on the destruction of hazardous waste materials is presented in the Appendices. All facility calibration techniques and calculations in addition to data acquisition and reduction algorithms are also discussed there.

  3. National annual dioxin emissions estimate for hazardous waste incinerators

    SciTech Connect

    Cudahy, J.J.; Rigo, H.G.

    1997-12-31

    On April 19, 1996, the EPA proposed Maximum Achievable Control [MACT] Standards for Hazardous Waste Combustors. In that preamble, the EPA stated that annual estimated emissions of dioxins from the nation`s hazardous waste incinerators [HWIs] expressed as an equivalent amount of 2,3,7,8 TCDD (international toxic equivalents) are 77 grams. Commentors on EPA dioxin emission estimates from medical waste incinerators and cement kilns found them significantly overestimated. This paper presents an independent dioxin emissions estimate that takes advantage of correcting the errors in EPA`s HWI emissions database, an updated inventory of HWIs in the United States and statistical imputation techniques that maximum the information extractable from the limited dioxin emissions data for HWIs. Actual HWI dioxin emissions are probably between a quarter and half the HWC preamble estimate.

  4. Separation of technetium from nuclear waste stream simulants. Final report

    SciTech Connect

    Strauss, S.H.

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  5. Artificial streams in the assessment of environmental hazard of chemicals.

    PubMed

    Coffinet, S; Cossu-Leguille, C; Bassères, A; Gonnet, J-F; Vasseur, P

    2006-10-01

    Artificial streams are dynamic mesocosms, simulating aquatic systems and rivers. They are useful to study ecotoxicity of chemicals and their effects on flora and fauna colonizing the streams or introduced into the channels. These artificial rivers can also be used to study the influence of ecological and hydrodynamic parameters, such as the kind of substrate of river and flow rate. Responses of the bivalve Unio tumidus to substrate type (silt, sand, and pebbles) and water flow rate (high and low) were investigated after 15 and 35 days in the channels, in order to optimize the experimental conditions for ecotoxicity study with methyl methacrylate (MMA). The toxicological effects of different concentrations of MMA on bivalves and on communities of invertebrates and diatoms were determined after several weeks of exposure at a high flow rate. Biomarkers responses measured in the digestive gland and the gills of U. tumidus were the activities of detoxification systems as early indicators of toxicity and lipid peroxidation as a marker of cytotoxicity. Effects of MMA resulted in a decrease in antioxidant activities. Disturbances in bivalves appeared at lower concentrations than in communities. This indicates sensitivity of the biomarkers studied, which are predictive indicators of ecotoxicity.

  6. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart or to the RCRA hazardous waste regulations. (b) If an unwanted material does not meet the definition of hazardous waste in § 261.3, it is no longer subject to this subpart or to the RCRA...

  7. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subpart or to the RCRA hazardous waste regulations. (b) If an unwanted material does not meet the definition of hazardous waste in § 261.3, it is no longer subject to this subpart or to the RCRA...

  8. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart or to the RCRA hazardous waste regulations. (b) If an unwanted material does not meet the definition of hazardous waste in § 261.3, it is no longer subject to this subpart or to the RCRA...

  9. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart or to the RCRA hazardous waste regulations. (b) If an unwanted material does not meet the definition of hazardous waste in § 261.3, it is no longer subject to this subpart or to the RCRA...

  10. A COMPARISON: ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS VERSUS THE 1990 TOXICS RELEASE INVENTORY AIR RELEASES.

    EPA Science Inventory

    Incineration is often the preferred technology for disposing of hazardous waste, and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition `to hazardous waste' incineration HWI). One of the reasons cited for...

  11. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect

    Arnold, P.

    2012-10-31

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  12. Hazardous waste management system; identification and listing of hazardous waste--EPA. Final rule and response to comments.

    PubMed

    1992-01-01

    On May 19, 1980, as part of its regulations implementing section 3001 of the Resource Conservation and Recovery Act (RCRA). EPA promulgated a series of criteria for listing wastes as hazardous. On July 19, 1991, the Agency proposed to conform the language of the regulation to reflect the Agency's intent and consistent interpretation of that regulation. Today's rule finalizes the proposed rule.

  13. Evaluating and controlling the characteristics of the nuclear waste in the FWMS using Waste Stream Analysis Model

    SciTech Connect

    Andress, D.; Joy, D.S.; McLeod, N.B.

    1990-10-01

    This paper discusses the waste stream analysis (WSA) model used by the Department of Energy to model the time and location dependent properties of the nuclear waste stream in the Federal Waste Managements System and at utility spent fuel storage facilities. It`s abilities are described.

  14. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... 21, 2010 (75 FR 35128). Additional information on the proposed rule can be found at http://www.epa... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the...

  15. Economic incentives for hazardous-waste management: Deposit-refunded systems and used lubricating oil

    SciTech Connect

    Belzer, R.B.

    1989-01-01

    Economic incentives have been widely advocated for controlling environmental externalities. There has been increasing interest in devising such incentives to reduce the generation of hazardous waste. It is demonstrated that since firms comply with existing disposal rules, there is no efficiency basis for additional incentives. In contrast, incentives may be appropriate for firms that do not comply with existing rules. A range of regulatory instruments is compared, including taxes on inputs and waste generation, and subsidies for safe disposal and waste minimization. Each instrument has undesirable properties. Waste-end taxes encourage illegal disposal; safe-disposal subsides stimulate waste generation; and waste-minimization subsidies cannot be effectively targeted. The economic incentive instrument proposed is a combination of input taxes and safe-disposal subsidies, sometime manifest in the deposit-refund system. This instrument is efficiency-enhancing under plausible real-world conditions. The theoretical results are applied to the case of used lubricating oil, a large-volume waste stream that has vexed regulators for many years. An empirical model is developed that enables the simulation of prices, quantities, and net social benefits resulting from the establishment of a tax-subsidy or deposit-refund system. This model accounts for variations in: price-responsiveness; residual external damage from disposal; ex ante rates of regulatory compliance; and the level of transactions costs implied by the program. The instrument offers positive net social benefits, but only under a narrow range of conditions. The model is modified to apply to a generic hazardous waste problem that emphasizes illegal dumping. The existence of positive net social benefits depends on differences in risk across disposal options, the ex ante level of regulatory compliance, and the magnitude of unit transactions costs.

  16. Hazardous solid waste from metallurgical industries.

    PubMed Central

    Leonard, R P

    1978-01-01

    Types of land disposed residuals from selected metal smelting and refining industries are described, as are the origin and disposition of land disposed residuals from the primary copper industry as an example. Quantities of land-disposed or stored residuals, including slags, sludges, and dusts, are given per unit of metal production for most primary and secondary metal smelting and refining industries. Assessments of the hazard potential of residuals are given. Present treatment and disposal of residuals are discussed and assessed for health and environmental protection. Possible technologies for protection of ground and surface water contamination are presented. These include lined lagoons, chemical fixation of sludge, and ground sealing. Possibilities of resource recovery from residuals are discussed. Data are presented showing attenuation of heavy metal ions and fluorides in selected soils. The leachability and mobility of smelting and refining residuals constituents, including heavy metals and fluorides, and other potential toxicants in specific soil, geologic, and hydrologic disposal environments must be carefully considered in setting disposal requirements. PMID:738242

  17. EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash.

    PubMed

    Donatello, S; Tyrer, M; Cheeseman, C R

    2010-01-01

    A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.

  18. 75 FR 43409 - Rhode Island: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ...-- ] Standards for Hazardous Waste Storage and Treatment Tank Systems, 51 FR 25422-25486, July 14, 1986 and 51 FR..., 1987; CL 52--Standards for Hazardous Waste Storage and Treatment Tank Systems, 53 FR 34079, Sept. 2... Ground-Water Monitoring Data from Hazardous Waste Facilities, 53 FR 39720, Oct. 11, 1988; CL...

  19. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Kilns, and Lightweight Aggregate Kilns § 63.1220 What are the replacement standards for hazardous waste burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  20. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... Kilns, and Lightweight Aggregate Kilns § 63.1220 What are the replacement standards for hazardous waste burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must...

  1. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    ERIC Educational Resources Information Center

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  2. 76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ..., effective August 1, 1992 (57 FR 32726), to implement the RCRA hazardous waste management program. EPA... (LDR) Treatment Standards for Listed Hazardous Wastes from Carbamate Production; (10) Extension of... AGENCY 40 CFR Part 271 California: Final Authorization of State Hazardous Waste Management...

  3. 76 FR 6561 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ..., effective December 31, 1984 (49 FR 48694) to implement its base hazardous waste management program. EPA....0112(b), (c). Cosmetic Colorants. 207--Uniform Hazardous Waste 70 FR 10776, 03/ 15A NCAC 13A.0102(b... AGENCY 40 CFR Part 271 North Carolina: Final Authorization of State Hazardous Waste Management...

  4. 76 FR 36879 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ..., 1991 (56 FR 41164) Liners and Leak Detection Systems for Hazardous Waste Land Disposal Units, Checklist 100, January 29, 1992 (57 FR 3462) Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Toxicity Characteristic; Corrections, Checklist 108, July 10, 1992 (57 FR 30657)...

  5. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  6. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge. PMID:15626384

  7. Attenuation of heavy metal leaching from hazardous wastes by co-disposal of wastes

    SciTech Connect

    Bae, Wookeun; Shin, Eung Bai; Lee, Kil Chul; Kim, Jae Hyung

    1996-12-31

    The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, the latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.

  8. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    SciTech Connect

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  9. Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    SciTech Connect

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  10. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... CFR 261.31 and 261.32 (see 73 FR 54760). EPA is finalizing the decision to grant OxyChem's delisting... and specific types of management of the petitioned waste, the quantities of waste generated, and waste.... Statutory and Executive Order Reviews Under Executive Order 12866, ``Regulatory Planning and Review'' (58...

  11. Method for solidification of radioactive and other hazardous waste

    DOEpatents

    Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  12. Bioremediation of hazardous wastes. Research, development, and field evaluations, 1995

    SciTech Connect

    Kremer, F.

    1995-09-01

    The U.S. Environmental Protection Agency`s (EPA`s) Office of Research and Development (ORD) hosted the eighth annual Symposium on Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations in Rye Brook, New York, August 8-10, 1995. In this document, abstracts of paper and poster presentations from the symposium are organized within five key research and program areas: Bioremediation Field Initiative; Field research; Performance evaluation; Pilot-scale research; and Process research. The last section of the document includes abstracts of presentations on bioremediation research performed as part of the Hazardous Substance Research Center (HSRC) program.

  13. Simulation tools for hazardous waste removal

    SciTech Connect

    Bills, K.C.; Love, L.J.

    1997-03-01

    The primary mission of Oak Ridge National Laboratory (ORNL) during World War 2 was the processing of pure plutonium metal in support of the Manhattan Project. By-products of this process include radioactive cesium-137 and strontium-90. Between 1943 and 1951, the Gunite and Associated Tanks (GAAT) at ORNL were built to collect, neutralize, and storage these by-products. Currently, twelve gunite tanks and four stainless steel tanks are located on the ORNL complex. Characterization studies of these tanks in 1994 indicated that the structural integrity of some of the tanks is questionable. These risks provided the motivation for remediation and relocation of waste stored in the ORNL tanks. A number of factors complicate the remediation process. The material stored in these tanks ranges from liquid to sludge and solid and is composed of organic materials, heavy metals, and radionuclides. Furthermore, the tanks, which range from 12 to 50 ft in diameter, are located below ground and in the middle of the ORNL complex. The only access to these tanks is through one of three access ports that are either 12 or 24 in. in diameter. These characteristics provide a daunting challenge: how can material be safely removed from such a confined structure? This paper describes the existing strategy and hardware projected for use in the remediation process. This is followed by a description of an integrated hardware system model. This investigation has isolated a few key areas where further work may be needed.

  14. Hazard property classification of waste according to the recent propositions of the EC using different methods.

    PubMed

    Hennebert, Pierre; van der Sloot, Hans A; Rebischung, Flore; Weltens, Reinhilde; Geerts, Lieve; Hjelmar, Ole

    2014-10-01

    Hazard classification of waste is a necessity, but the hazard properties (named "H" and soon "HP") are still not all defined in a practical and operational manner at EU level. Following discussion of subsequent draft proposals from the Commission there is still no final decision. Methods to implement the proposals have recently been proposed: tests methods for physical risks, test batteries for aquatic and terrestrial ecotoxicity, an analytical package for exhaustive determination of organic substances and mineral elements, surrogate methods for the speciation of mineral elements in mineral substances in waste, and calculation methods for human toxicity and ecotoxicity with M factors. In this paper the different proposed methods have been applied to a large assortment of solid and liquid wastes (>100). Data for 45 wastes - documented with extensive chemical analysis and flammability test - were assessed in terms of the different HP criteria and results were compared to LoW for lack of an independent classification. For most waste streams the classification matches with the designation provided in the LoW. This indicates that the criteria used by LoW are similar to the HP limit values. This data set showed HP 14 'Ecotoxic chronic' is the most discriminating HP. All wastes classified as acute ecotoxic are also chronic ecotoxic and the assessment of acute ecotoxicity separately is therefore not needed. The high number of HP 14 classified wastes is due to the very low limit values when stringent M factors are applied to total concentrations (worst case method). With M factor set to 1 the classification method is not sufficiently discriminating between hazardous and non-hazardous materials. The second most frequent hazard is HP 7 'Carcinogenic'. The third most frequent hazard is HP 10 'Toxic for reproduction' and the fourth most frequent hazard is HP 4 "Irritant - skin irritation and eye damage". In a stepwise approach, it seems relevant to assess HP 14 first, then, if

  15. Hazard property classification of waste according to the recent propositions of the EC using different methods.

    PubMed

    Hennebert, Pierre; van der Sloot, Hans A; Rebischung, Flore; Weltens, Reinhilde; Geerts, Lieve; Hjelmar, Ole

    2014-10-01

    Hazard classification of waste is a necessity, but the hazard properties (named "H" and soon "HP") are still not all defined in a practical and operational manner at EU level. Following discussion of subsequent draft proposals from the Commission there is still no final decision. Methods to implement the proposals have recently been proposed: tests methods for physical risks, test batteries for aquatic and terrestrial ecotoxicity, an analytical package for exhaustive determination of organic substances and mineral elements, surrogate methods for the speciation of mineral elements in mineral substances in waste, and calculation methods for human toxicity and ecotoxicity with M factors. In this paper the different proposed methods have been applied to a large assortment of solid and liquid wastes (>100). Data for 45 wastes - documented with extensive chemical analysis and flammability test - were assessed in terms of the different HP criteria and results were compared to LoW for lack of an independent classification. For most waste streams the classification matches with the designation provided in the LoW. This indicates that the criteria used by LoW are similar to the HP limit values. This data set showed HP 14 'Ecotoxic chronic' is the most discriminating HP. All wastes classified as acute ecotoxic are also chronic ecotoxic and the assessment of acute ecotoxicity separately is therefore not needed. The high number of HP 14 classified wastes is due to the very low limit values when stringent M factors are applied to total concentrations (worst case method). With M factor set to 1 the classification method is not sufficiently discriminating between hazardous and non-hazardous materials. The second most frequent hazard is HP 7 'Carcinogenic'. The third most frequent hazard is HP 10 'Toxic for reproduction' and the fourth most frequent hazard is HP 4 "Irritant - skin irritation and eye damage". In a stepwise approach, it seems relevant to assess HP 14 first, then, if

  16. The PERC{trademark} process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment

    SciTech Connect

    Blutke, A.S.; Vavruska, J.S.; Serino, J.F.

    1996-12-31

    Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC){trademark} treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC{trademark} treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream`s form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment.

  17. Managing the Department of Energy's hazardous and mixed defense wastes

    SciTech Connect

    Daly, G.H.; Sharples, F.E.; McBrayer, J.F.

    1986-04-01

    Like other large and complex industries, the nuclear weapons programs produce hazardous chemical wastes, many of which require special handling for the protection of health, safety, and the environment. This requires the interaction of a multiplicity of organizational entities. The HAZWRAP was established to provide centralized planning and technical support for DP RCRA- and CERCLA-related activities. The benefits of a centralized program integrator include DP-wide consistency in regulatory compliance, effective setting and execution of priorities, and development of optimal long-term waste management strategies for the DP complex.

  18. Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.

    PubMed

    Yang, Yongxiang; Pijnenborg, Marc J A; Reuter, Markus A; Verwoerd, Joep

    2005-01-01

    Hazardous wastes have complex physical forms and chemical compositions and are normally incinerated in rotary kilns for safe disposal and energy recovery. In the rotary kiln, the multifeed stream and wide variation of thermal, physical, and chemical properties of the wastes cause the incineration system to be highly heterogeneous, with severe temperature fluctuations and unsteady combustion chemistry. Incomplete combustion is often the consequence, and the process is difficult to control. In this article, modeling of the waste combustion is described by using computational fluid dynamics (CFD). Through CFD simulation, gas flow and mixing, turbulent combustion, and heat transfer inside the incinerator were predicted and visualized. As the first step, the waste in various forms was modeled to a hydrocarbon-based virtual fuel mixture. The combustion of the simplified waste was then simulated with a seven-gas combustion model within a CFD framework. Comparison was made with previous global three-gas combustion model with which no chemical behavior can be derived. The distribution of temperature and chemical species has been investigated. The waste combustion model was validated with temperature measurements. Various operating conditions and the influence on the incineration performance were then simulated. Through this research, a better process understanding and potential optimization of the design were attained.

  19. Review of commercial innovative technologies for hazardous waste

    SciTech Connect

    Cudahy, J.J.

    1999-12-31

    A number of Innovative Technologies have been developed since the late 1980's for the treatment of Resource Conservation and Recovery Act (RCRA) hazardous wastes. The development of these technologies has been encouraged by the Environmental Protection Agency (EPA), the Department of Energy (DOE) and the Department of Defense (DOD). As part of the Superfund Innovative Technology Evaluation program, the EPA has evaluated some of these technologies for the treatment of soils contaminated with RCRA hazardous constituents. The DOE has extensively studied and evaluated these technologies for the treatment of mixed (RCRA plus radioactive) waste. The DOD has also studied these technologies for the chemical demilitarization of chemical warfare agents. The technology experience and performance of five Innovative Technologies that have been demonstrated on a full-scale commercial basis are discussed.

  20. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    SciTech Connect

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

  1. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    SciTech Connect

    Arnold, Patrick

    2014-02-14

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  2. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  3. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  4. 1996 hazardous waste management survey in selected Asian countries

    SciTech Connect

    Nelson, D.; Christie, K.; Tao, Hong-lei

    1996-12-31

    This report documents the results of a 42-question survey submitted to countries in Asia concerning their hazardous waste management programs and other issues. The same survey questions were distributed in 1992. This report compares the 1992 and 1996 responses. The respondents were Australia, New Zealand, Malaysia, Philippines, Hong Kong, People`s Republic of China, Taiwan, Japan, Korea, Singapore, Thailand, and Indonesia. 7 figs.

  5. Composting: Dirty riches. [Composting organic wastes from the municiple solid waste stream

    SciTech Connect

    Sachs, A.

    1993-08-01

    Up to three-quarters of municiple solid waste (MSW) is organic, readily biodegradable material, such as food, leaves, and paper. If this waste were allowed to root properly, the solid waste crisis would be less serious. However, rotting isn't easy in a tightly packed mountain of garbage at a typical landfill. The last few years have at least established composing as a rising green industry, especially in the most populous regions of the developed world. However, the variety of composting programs is too inefficient to divert any more than a tiny fraction of the compostable waste stream away from landfills and incinerators. This article discusses the problems of mixed municiple solid wastes and composting organic wastes, and possible solutions.

  6. Regulating the disposal of cigarette butts as toxic hazardous waste

    PubMed Central

    2011-01-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment. PMID:21504925

  7. Regulating the disposal of cigarette butts as toxic hazardous waste.

    PubMed

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment. PMID:21504925

  8. Regulating the disposal of cigarette butts as toxic hazardous waste.

    PubMed

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  9. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  10. National annual dioxin emissions estimate for hazardous waste incinerators

    PubMed

    Cudahy; Rigo

    1998-11-01

    Reducing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans, commonly known as dioxins, is a high priority for environmental regulatory bodies throughout much of the world. In the United States, Section 112 (c)(6) of the Clean Air Act (CAA) requires the Environmental Protection Agency (EPA) to identify and control emissions from sources that are responsible for at least 90% of the overall emissions of seven targeted hazardous air pollutants, including dioxins. On April 19, 1996, the EPA proposed Maximum Achievable Control Technology (MACT) Standards for Hazardous Waste Combustors (HWCs). In that preamble, the EPA estimated annual dioxin emissions from the nation's hazardous waste incinerators (HWIs) to be 79 grams expressed as 2,3,7,8 tetrachloro dibenzo-p-dioxins (TCDD) international toxic equivalents (ITEQs). However, early EPA dioxin emission estimates from medical waste incinerators and cement kilns were significantly overestimated; so, the following independent national dioxin emissions estimate for HWIs was prepared. This estimate corrects the errors in the EPA's HWI emissions database, uses an updated inventory of HWIs in the United States, and applies statistical imputation techniques that take maximum advantage of the limited dioxin emissions data for HWIs.

  11. In Brief: Hazardous waste and air regulation compliance data released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-11-01

    The U.S. Environmental Protection Agency (EPA) released, on 6 November, new information on the enforcement of hazardous waste and air regulations by the agency and states. The information includes new summary reports and data from 2004 through 2008 on federal and state enforcement program performance with Clean Air Act (CAA) and the Resource Conservation and Recovery Act (RCRA) requirements. The agency also updated its Enforcement and Compliance Online (ECHO) Web site. Information on facility compliance with water, air, and hazardous waste requirements provides the public with more information about the environmental footprint of each facility. EPA noted that the compliance data do not relate directly to overall hazardous waste management or air quality, which have improved in the United States over the past 30 years owing to the implementation of various environmental programs. More information is available at http://www.epa.gov/compliance/data/results/performance/rcra/index.html, http://www.epa.gov/compliance/data/results/performance/caa/index.html, and http://www.epa-echo.gov/echo/.

  12. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  13. Household hazardous waste disposal to landfill: using LandSim to model leachate migration.

    PubMed

    Slack, Rebecca J; Gronow, Jan R; Hall, David H; Voulvoulis, Nikolaos

    2007-03-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW. PMID:17046126

  14. Household hazardous waste disposal to landfill: using LandSim to model leachate migration.

    PubMed

    Slack, Rebecca J; Gronow, Jan R; Hall, David H; Voulvoulis, Nikolaos

    2007-03-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW.

  15. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-01

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  16. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-01

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. PMID:26921509

  17. Hazard potential ranking of hazardous waste landfill sites and risk of congenital anomalies

    PubMed Central

    Vrijheid, M; Dolk, H; Armstrong, B; Boschi, G; Busby, A; Jorgensen, T; Pointer, P

    2002-01-01

    Background: A 33% increase in the risk of congenital anomalies has been found among residents near hazardous waste landfill sites in a European collaborative study (EUROHAZCON). Aims: To develop and evaluate an expert panel scoring method of the hazard potential of EUROHAZCON landfill sites, and to investigate whether sites classified as posing a greater potential hazard are those with a greater risk of congenital anomaly among nearby residents relative to more distant residents. Methods: A total of 1270 cases of congenital anomaly and 2308 non-malformed control births were selected in 14 study areas around 20 landfill sites. An expert panel of four landfill specialists scored each site in three categories—overall, water, and air hazard—based on readily available, documented data on site characteristics. Tertiles of the average ranking scores defined low, medium, and high hazard sites. Calculation of odds ratios was based on distance of residence from the sites, comparing a 0–3 km "proximate" with a 3–7 km "distant" zone. Results: Agreement between experts measured by intraclass correlation coefficients was 0.50, 0.44, and 0.20 for overall, water, and air hazard before a consensus meeting and 0.60, 0.56, and 0.53 respectively after this meeting. There was no evidence for a trend of increasing odds ratios with increasing overall hazard or air hazard. For non-chromosomal anomalies, odds ratios by water hazard category showed an increasing trend of borderline statistical significance (p = 0.06) from 0.79 in the low hazard category, 1.43 in the medium, to 1.60 in the high water hazard category. Conclusions: There is little evidence for a relation between risk of congenital anomaly in proximate relative to distant zones and hazard potential of landfill sites as classified by the expert panel, but without external validation of the hazard potential scoring method interpretation is difficult. Potential misclassification of sites may have reduced our ability to

  18. 75 FR 20942 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... included saccharin and its salts (45 FR 33084, May 19, 1980 and 45 FR 78532, November 25, 1980). The... in 2007, approximately 137 million tons of municipal waste went to landfills and other disposal (see http://www.epa.gov/epawaste/nonhaz/municipal/msw99.htm ). 2. Factors Considered for Waste...

  19. 77 FR 56558 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... Remediation and Restoration, (Mail Code: OSRR07-01), EPA Region 1, 5 Post Office Square, Suite 100, Boston, MA... for IBM, EPA proposed, on July 16, 2012 (77 FR 41720), to exclude the waste from the lists of... authorization to delist federal listed wastes. See 58 FR 26243 (May 3, 1993). Instead, the Vermont...

  20. Determinants of risk perceptions of a hazardous waste site

    SciTech Connect

    Bord, R.J.; O`Conner, R.E.

    1992-09-01

    A before-stimulus-after quasi-experimental design is used to assess the factors relating to risk perceptions of a hazardous waste site. First, a pretest obtains measures of attitudes and beliefs about hazardous waste and waste sites. Second, a detailed hypothetical {open_quotes}Superfund{close_quotes} scenario, including a complex cleanup plan, is introduced. Finally, indices of health risk estimates, trust, knowledge, and other pertinent beliefs are obtained. levels of concern, both before and after cleanup, are the dependent variables. Independent variables include risk management options, health risk estimates, trust, and five sociodemographic characteristics. Concern is extremely high prior to cleanup and moderately high after cleanup. Concern is a clear function of health risk estimates. Toxic chemicals from waste sites are viewed as a major cause of multiple health problems, especially cancers. Accurate health risk estimates moderate fears and are linked to levels of education. Education, however, does not explain concern. Trust is a major factor explaining concern and health risk estimates. The implications of these findings for risk communication is discussed. 13 refs., 4 tabs.

  1. Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  2. Wood-degrading fungi as degraders of hazardous waste

    SciTech Connect

    Glaser, J.A.

    1988-11-01

    The biological detoxification of hazardous waste is largely an underdeveloped technology. Bacterial species are known to possess a variety of detoxification skills, apparently associated with the need to survive. Single bacterial species may not have the ability to convert a toxicant to carbon dioxide and water. With the use of bacterial communities, there is the feature that each species of the consortium plays a role in the overall degradation of the waste with the inadequacies of one covered by the abilities of another. The stability of such consortia is of some concern since there may be environmental effects that permit the selection of certain members over others resulting in the loss or slowing of the degradation process. The use of fungi to degrade waste materials has not been investigated to any extent until recently. From the perspective of sewage treatment, filamentous fungi were to be avoided due to processing problems and in some cases fungi found in sewage can be pathogenic.

  3. Electrochemical treatment of mixed (hazardous and radioactive) wastes

    SciTech Connect

    Dziewinski, J.; Zawodzinski, C.; Smith, W.H.

    1995-02-01

    Electrochemical treatment technologies for mixed hazardous waste are currently under development at Los Alamos National Laboratory. For a mixed waste containing toxic components such as heavy metals and cyanides in addition to a radioactive component, the toxic components can be removed or destroyed by electrochemical technologies allowing for recovery of the radioactive component prior to disposal of the solution. Mixed wastes with an organic component can be treated by oxidizing the organic compound to carbon dioxide and then recovering the radioactive component. The oxidation can be done directly at the anode or indirectly using an electron transfer mediator. This work describes the destruction of isopropanol, acetone and acetic acid at greater than 90% current efficiency using cobalt +3 or silver +2 as the electron transfer mediator. Also described is the destruction of cellulose based cheesecloth rags with electrochemically generated cobalt +3, at an overall efficiency of approximately 20%.

  4. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    SciTech Connect

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation

  5. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste listed in §§ 261.31 or 261.33(e) of this chapter is empty if: (i) All wastes have been... container that has held an acute hazardous waste listed in §§ 261.31 or 261.33(e) is empty if: (i) The... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Residues of hazardous waste in...

  6. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste listed in §§ 261.31 or 261.33(e) of this chapter is empty if: (i) All wastes have been... container that has held an acute hazardous waste listed in §§ 261.31 or 261.33(e) is empty if: (i) The... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Residues of hazardous waste in...

  7. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste listed in §§ 261.31 or 261.33(e) of this chapter is empty if: (i) All wastes have been... container that has held an acute hazardous waste listed in §§ 261.31 or 261.33(e) is empty if: (i) The... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Residues of hazardous waste in...

  8. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    SciTech Connect

    Dare, J. H.; Cournoyer, M. E.

    2002-02-26

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases.

  9. 76 FR 48073 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... maintain the CO 2 stream in a supercritical state. December 10, 2010 (75 FR at 77233). \\2\\ Carbon Dioxide... rule for UIC Class VI wells published on December 10, 2010 (75 FR 77230). B. Why is Geologic... final rule (74 FR 56260) that requires reporting by facilities with production process units...

  10. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment.

    PubMed

    Moustakas, K; Fatta, D; Malamis, S; Haralambous, K; Loizidou, M

    2005-08-31

    Plasma gasification/vitrification is a technologically advanced and environmentally friendly method of disposing of waste, converting it to commercially usable by-products. This process is a drastic non-incineration thermal process, which uses extremely high temperatures in an oxygen-starved environment to completely decompose input waste material into very simple molecules. The intense and versatile heat generation capabilities of plasma technology enable a plasma gasification/vitrification facility to treat a large number of waste streams in a safe and reliable manner. The by-products of the process are a combustible gas and an inert slag. Plasma gasification consistently exhibits much lower environmental levels for both air emissions and slag leachate toxicity than other thermal technologies. In the framework of a LIFE-Environment project, financed by Directorate General Environment and Viotia Prefecture in Greece, a pilot plasma gasification/vitrification system was designed, constructed and installed in Viotia Region in order to examine the efficiency of this innovative technology in treating industrial hazardous waste. The pilot plant, which was designed to treat up to 50kg waste/h, has two main sections: (i) the furnace and its related equipment and (ii) the off-gas treatment system, including the secondary combustion chamber, quench and scrubber.

  11. Voluntary approaches to solid waste management in small towns: a case study of community involvement in household hazardous waste recycling.

    PubMed

    Massawe, Ephraim; Legleu, Tye; Vasut, Laura; Brandon, Kelly; Shelden, Greg

    2014-06-01

    An enormous amount of household hazardous waste (HHW) is generated as part of municipal solid waste. This scenario presents problems during disposal, including endangering human health and the environment if improperly disposed. This article examines current HHW recycling efforts in Hammond, Louisiana, with the following objectives: (a) analyze factors and attitudes that motivate residents to participate in the program; (b) quantify various types of HHW; and (c) analyze the e-waste stream in the HHW. Residents and city officials who were surveyed and interviewed cited that commitment shown by local authorities and passion to protect the environment and human health were part of their active participation in the program. An awareness program has played a key role in the success of the program. A legislation specific to e-waste is encouraged. While knowledge and information on laws and permit application processes and the promotion of greener products are encouraged, provision of storage or collection facilities and communal transportation will further motivate more residents to participate in the recycling program.

  12. Hazardous Wastes and the Consumer Connection. A Guide for Educators and Citizens Concerned with the Role of Consumers in the Generation of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Assaff, Edith

    Many consumers do not see a strong connection between our lifestyles and buying decisions, and the amount of hazardous wastes generated in the United States. This guide was developed to be used by educators and citizens concerned with the role of consumers in the generation of hazardous wastes. It examines several products in terms of their…

  13. State Decision-Makers Guide for Hazardous Waste Management: Defining Hazardous Wastes, Problem Recognition, Land Use, Facility Operations, Conceptual Framework, Policy Issues, Transportation.

    ERIC Educational Resources Information Center

    Corson, Alan; And Others

    Presented are key issues to be addressed by state, regional, and local governments and agencies in creating effective hazardous waste management programs. Eight chapters broadly frame the topics which state-level decision makers should consider. These chapters include: (1) definition of hazardous waste; (2) problem definition and recognition; (3)…

  14. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  15. Control of aromatic-waste air streams by soil bioreactors

    SciTech Connect

    Miller, D.E.; Canter, L.W.

    1991-01-01

    Contamination of groundwater resources is a serious environmental problem which is continuing to increase in occurrence in the United States. It has been reported that leaking underground gasoline storage tanks may pose the most serious threat of all sources of groundwater contamination. Gasolines are comprised of a variety of aliphatic and aromatic hydrocarbons. The aromatic portion consists primarily of benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). BTEX compounds are also among the most frequency identified substances at Superfund sites. Pump and treat well systems are the most common and frequently used technique for aquifer restoration. Treatment is often in the form of air stripping to remove the volatile components from the contaminated water. Additionally, soil ventilation processes have been used to remove volatile components from the vadose zone. Both air stripping and soil ventilation produce a waste gas stream containing volatile compounds which is normally treated by carbon adsorption or incineration. Both treatment processes require a substantial capital investment and continual operation and maintenance expenditures. The objective of the study was to examine the potential of using soil bioreactors to treat a waste gas stream produced by air stripping or soil ventilation process. Previous studies have shown that various hydrocarbons can be successfully treated with soils. The study examined the removal of BTEX compounds within soil columns and the influence of soil type, inlet concentration, and inlet flow rate on the removal efficiency.

  16. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    SciTech Connect

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  17. Below regulatory concern owners group: Evaluation of candidate waste streams: Final report

    SciTech Connect

    Daloisio, G.S.; Deltete, C.P.; Crook, M.R.

    1988-03-01

    There are several waste streams produced at nuclear power plants that contain very low radioactivity concentrations and could be classified as Below Regulatory Concern (BRC), thus exempting that waste from low-level waste disposal requirements. The Electric Power Research Institute (EPRI) has embarked on a program to develop generic BRC exemptions for specific waste streams. In order to focus the finite resources of time and money on those waste streams which would provide the maximum benefit to the industry, an evaluation of potential BRC waste streams was performed. This evaluation provides a systematic and documented approach to identify candidate BRC waste streams for inclusion in the EPRI BRC program. The report identifies potential BRC waste streams, defines appropriate evaluation/selection criteria, and provides an evaluation of each waste stream with respect to these criteria. The final result of this evaluation is a prioritized list of BWR and PWR waste streams, in decreasing order of attractiveness, suitable for inclusion in the EPRI BRC program. 7 refs., 15 figs., 18 tabs.

  18. 66 FR 10059 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Paint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-02-13

    ... Substance Designation and Reportable Quantities; Designation of n-Butyl Alcohol, Ethyl Benzene, Methyl... the Treatment Standards of F039; and Designation of Styrene as an Underlying Hazardous Constituent... exclusively in tanks or containers prior to discharge to a publicly owned treatment works or discharged...

  19. 75 FR 78918 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... rule will not have a significant economic impact on a substantial number of small entities if the rule..., and Liability Act (CERCLA) to remove saccharin and its salts from the list of hazardous substances... Register notice. If you have questions regarding the applicability of this action to a particular...

  20. Attitudes toward environmental hazards: where do toxic wastes fit?

    PubMed

    Burger, J; Martin, M; Cooper, K; Gochfeld, M

    1997-06-01

    The public is continually faced with making decisions about the risks associated with environmental hazards, and, along with managers and government officials, must make informed decisions concerning possible regulation, mitigation, and restoration of degraded sites or other environmental threats. We explored the attitudes regarding several environmental hazards of six groups of people: undergraduate science majors, undergraduate nonscience majors, and graduate students in environmental health, in ecological risk assessment, and in nonscience disciplines, as well as nonstudents over 35 yr of age. We had predicted that there would be significant differences in attitudes between science and nonscience majors and as a function of age. Relative concerns could be divided into three discrete classes (in descending order of concern): (1) general ecological problems (cutting tropical forests, polluting groundwater, trash along the coasts, lead in drinking water, and acid rain), (2) radon and nuclear wastes, and finally (3) specific nuclear waste facilities, chromium, fertilizers and pesticides, and electromagnetic waves. For any hazard, attitudes were consistent across groups with regard to ranking the severity of the environmental problem and willingness to expend funds to solve the problems. Attitudes about spending money to develop methods to evaluate risk fell in the middle level of concern. There were no major differences among classes of college-age students, or between them and older nonstudents.

  1. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  2. 40 CFR 261.35 - Deletion of certain hazardous waste codes following equipment cleaning and replacement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manner that minimizes or eliminates the escape of hazardous waste or constituents, leachate, contaminated drippage, or hazardous waste decomposition products to the ground water, surface water, or atmosphere. (1... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Deletion of certain hazardous...

  3. 77 FR 69788 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... AGENCY 40 CFR Part 271 Colorado: Final Authorization of State Hazardous Waste Management Program... applied to the EPA for final authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). The EPA proposes to grant final authorization to the hazardous...

  4. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  5. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  6. Coal tar-containing asphalt - resource or hazardous waste?

    SciTech Connect

    Andersson-Skold, Y.; Andersson, K.; Lind, B.; Claesson, A.; Larsson, L.; Suer, P.; Jacobson, T.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.

  7. Imaging data analyses for hazardous waste applications. Final report

    SciTech Connect

    David, N.; Ginsberg, I.W.

    1995-12-01

    The paper presents some examples of the use of remote sensing products for characterization of hazardous waste sites. The sites are located at the Los Alamos National Laboratory (LANL) where materials associated with past weapons testing are buried. Problems of interest include delineation of strata for soil sampling, detection and delineation of buried trenches containing contaminants, seepage from capped areas and old septic drain fields, and location of faults and fractures relative to hazardous waste areas. Merging of site map and other geographic information with imagery was found by site managers to produce useful products. Merging of hydrographic and soil contaminant data aided soil sampling strategists. Overlays of suspected trench on multispectral and thermal images showed correlation between image signatures and trenches. Overlays of engineering drawings on recent and historical photos showed error in trench location and extent. A thermal image showed warm anomalies suspected to be areas of water seepage through an asphalt cap. Overlays of engineering drawings on multispectral and thermal images showed correlation between image signatures and drain fields. Analysis of aerial photography and spectral signatures of faults/fractures improved geologic maps of mixed waste areas.

  8. The Effect of Congress' Mandate to Create Greater Efficiencies in the Characterization of Transuranic Waste through the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit

    SciTech Connect

    Johnson, G.J.; Kehrman, R.F.

    2008-07-01

    Effective December 1, 2003, the U.S. Congress directed the Department of Energy (DOE) to file a permit modification request with the New Mexico Environment Department (NMED) to amend the Hazardous Waste Facility Permit (hereinafter 'the Permit') at the Waste Isolation Pilot Plant (WIPP). This legislation, Section 311 of the 2004 Energy and Water Development Appropriations Act, was designed to increase efficiencies in Transuranic (TRU) waste characterization processes by focusing on only those activities necessary to characterize waste streams, while continuing to protect human health and the environment. Congressionally prescribed changes would impact DOE generator site waste characterization programs and waste disposal operations at WIPP. With this legislative impetus, in early 2004 the DOE and Washington TRU Solutions (WTS), co-permittee under the Permit, submitted a permit modification request to the NMED pursuant to Section 311. After a lengthy process, including extensive public and other stakeholder input, the NMED granted the Permittees' request in October 2006, as part of a modification authorizing disposal of Remote-Handled (RH) TRU waste at WIPP. In conclusion: Implementation of the Permit under the revised Section 311 provisions is still in its early stages. Data are limited, as noted above. In view of these limited data and fluctuations in waste feed due to varying factors, at the current time it is difficult to determine with accuracy the impacts of Section 311 on the costs of characterizing TRU waste. It is safe to say, however, that the there have been many positive impacts flowing from Section 311. The generator sites now have more flexibility in characterizing waste. Also, RH TRU waste is now being disposed at WIPP - which was not possible before the 2006 Permit modification. As previously noted, the RH modification was approved at the same time as the Section 311 modification. Had the Section 311 changes not been implemented, RH TRU waste may not

  9. SB 1082 -- Unified hazardous materials/waste program: Local implementation

    SciTech Connect

    Jones, W.

    1995-12-31

    California Senate Bill 1082 was signed into law in the fall of 1993 because business and industry believed there were too many hazardous materials inspectors asking the same questions, looking at the same items and requiring similar information on several variations of the same form. Industry was not happy with the large diversity of programs, each with its own inspectors, permits and fees, essentially doing what industry believed was the same inspection. SB 1082 will allow local city and county agencies to apply to the California Environmental Protection Agency to become a Certified Unified Program Agency (CUPA) or work with a CUPA as a Participating Agency (PA) to manage specific program elements. The CUPA will unify six regulatory programs including hazardous waste/tiered permitting, aboveground storage tanks, underground storage tanks, business and area plans/inventory or disclosure, acutely hazardous materials/risk management prevention and Uniform Fire Code programs related to hazardous materials inventory/plan requirements. The bill requires the CUPA to (1) implement a permit consolidation program; (2) implement a single fee system with a state surcharge; (3) consolidate, coordinate and make consistent any local or regional requirements or guidance documents; and (4) implement a single unified inspection and enforcement program.

  10. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

  11. Hazardous waste management system: standards applicable to generators of hazardous waste and standards applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities--Environmental Protection Agency. Proposed rule.

    PubMed

    1982-10-12

    The Environmental Protection Agency (EPA) is today proposing amendments to its hazardous waste regulations under Subtitle C of the Resource Conservation and Recovery Act (RCRA). These amendments would replace the annual reporting requirements for hazardous waste generators and owners and operators of hazardous waste treatment, storage, ad disposal (TSD) facilities with a biennial survey of representative samples of those populations. This approach will provide verifiable data on a wider range of topics, better serve EPA's long term regulatory needs under RCRA, and reduce significantly the information burden on the regulated community.

  12. 75 FR 45583 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... provisions of the State regulations that are authorized and that EPA will enforce under the Solid Waste... AGENCY 40 CFR Part 272 New York: Incorporation by Reference of State Hazardous Waste Management Program... the codification of New York's authorized hazardous waste program which is set forth in...

  13. 78 FR 15338 - New York: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... applied to EPA for final authorization of changes to its hazardous waste program under the Solid Waste... From the Federal Register Online via the Government Publishing Office ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 New York: Final Authorization of State Hazardous Waste Management...

  14. 77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... Revisions AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste... limitations of the Hazardous and Solid Waste Amendments of 1984 (HSWA). New federal requirements and... November 2, 1984 (49 FR 41036), to implement the RCRA hazardous waste management program. We...

  15. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... under the Solid Waste Disposal Act, commonly referred to as the Resource Conversation and Recovery Act... AGENCY 40 CFR Part 272 Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program... in the regulations entitled ``Approved State Hazardous Waste Management Programs'',...

  16. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... held any hazardous waste, except a waste that is a compressed gas or that is identified as an acute... gallons in size. (2) A container that has held a hazardous waste that is a compressed gas is empty when... another method that has been shown in the scientific literature, or by tests conducted by the...

  17. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... held any hazardous waste, except a waste that is a compressed gas or that is identified as an acute... gallons in size. (2) A container that has held a hazardous waste that is a compressed gas is empty when... another method that has been shown in the scientific literature, or by tests conducted by the...

  18. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If...

  19. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provisions of 40 CFR Parts 260 through 270. ... wastes under RCRA and, if so, determine pursuant to § 262.11 (a) through (d) whether they are hazardous... must be managed as RCRA solid or hazardous waste. (b) For laboratory waste that will be sent from...

  20. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions of 40 CFR Parts 260 through 270. ... wastes under RCRA and, if so, determine pursuant to § 262.11 (a) through (d) whether they are hazardous... must be managed as RCRA solid or hazardous waste. (b) For laboratory waste that will be sent from...

  1. 77 FR 15273 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... in its revised program application, subject to the limitations of the Hazardous and Solid Waste... limitations of the Hazardous and Solid Waste Amendments of 1984 (HSWA). K. What is codification and is the EPA... 7004(b) of the Solid Waste Disposal Act as amended 42 U.S.C. 6912(a), 6926, 6974(b). Dated: March...

  2. HOUSEHOLD HAZARDOUS WASTE CHARACTERIZATION STUDY FOR PALM BEACH COUNTY, FLORIDA - A MITE PROGRAM EVALUATION

    EPA Science Inventory

    The objectives of the Household Hazardous Waste Characterization Study (the HHW Study) were to: 1) Quantity the annual household hazardous waste (HHW) tonnages disposed in Palm Beach County Florida’s (the County) residential solid waste (characterized in this study as municipal s...

  3. 76 FR 56708 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ..., effective June 30, 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted... Wastes; Checklist 50.1. Changes to Part 124 Not Accounted April 1, 1983, 48 FR 14146.... OAC 3745-50-21...; Checklist 203. Hazardous Waste--Nonwastewaters February 24, 2005, 70 FR 9138. OAC 3745-51-04;...

  4. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... documents must include the requirements of 40 CFR Part 3—(Electronic reporting) in their Program (except... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS...

  5. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... documents must include the requirements of 40 CFR Part 3—(Electronic reporting) in their Program (except... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS...

  6. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... documents must include the requirements of 40 CFR Part 3—(Electronic reporting) in their Program (except... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS...

  7. 75 FR 1235 - Revisions to the Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ..., 1996 (61 FR 16289). Since that time, the OECD has made a number of changes to the waste shipment regime... Shipments of Hazardous Wastes Between OECD Member Countries, Export Shipments of Spent Lead- Acid Batteries... Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD Member Countries, Export...

  8. Hazardous waste management system standards for owners and operators of hazardous waste treatment, storage, and disposal facilities and EPA administered permit programs; hazardous waste permit program. Environmental Protection Agency. Interim final amendments to rule.

    PubMed

    1982-02-25

    On May 19, 1980, EPA promulgated regulations applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities which prohibited the landfill disposal of most containerized liquid waste or waste containing free liquid on and after November 19, 1981. Further on June 29, 1981, EPA amended its hazardous waste management regulations so as to extend the compliance date of the restriction on the landfill disposal of containerized liquid ignitable wastes to coincide with the compliance data of the general restriction on landfill disposal of liquids. The Agency is today extending the compliance date on both these requirements until May 26, 1982, and, in a separate action, is proposing amendments to these restrictions. This extension of compliance dates is provided for the sole purpose of allowing time to complete the rulemaking action on today's proposed amendments. The Agency is also today exempting from the requirements of the hazardous waste management regulations, the acts of adding absorbent material to hazardous waste in containers and adding hazardous waste to absorbent material in a container, at the time waste is first placed in the container, in order to reduce the free liquids in a container.

  9. Disposal Analysis of I-129 Bearing Waste Streams at the Intermediate Level Vault

    SciTech Connect

    Collard, L.B.

    2001-01-25

    This report examines the effects of new waste-specific sorption characteristics reported for I-129 bearing wastes on inventory limits in the Intermediate Level Vault (ILV). Inventory limits are described based on the revised performance assessment model using the waste-specific Kd's. Results are compared with inventory projections of waste streams for the next ten years.

  10. Waste Information Management System with 2012-13 Waste Streams - 13095

    SciTech Connect

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D.

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  11. 77 FR 41720 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... waste using the Agency's Delisting Risk Assessment Software (DRAS) described in 65 FR 58015 (September 27, 2000), 65 FR 75637 (December 4, 2000), and 73 FR 28768 (May 19, 2008) to predict the maximum... in light of EPA's experience. See Reynolds Metals Company at 62 FR 37694 and 62 FR 63458 where...

  12. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... certain solid waste generated at its Mt. Athos facility near Lynchburg, Virginia. The Agency has... (wastewater treatment sludge from electroplating operations). On August 9, 1999 (64 FR 42317), EPA proposed, and on January 14, 2000 (65 FR 2337), EPA finalized, a conditional exclusion for the facility...

  13. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ...), in Owosso, Michigan to exclude (or ``delist'') up to 244 cubic yards of wastewater treatment sludge... permitted, licensed, or registered by a State to manage industrial solid waste. The rule also imposes... petitioned EPA to exclude an annual volume of 244 cubic yards of F006 wastewater treatment sludges...

  14. 77 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... water (F039) generated from its facility located in Baytown, Texas. The waste falls under the... final rule responds to the petition submitted by ExxonMobil to have the F039 underflow water generated at the North Landfarm (NLF) in Baytown, Texas excluded, or delisted, from the definition of...

  15. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... excluded. See 66 FR 27266 (May 16, 2001). III. EPA's Evaluation of the Waste Information and Data A. What... Beaumont Refinery's centrifuge solids. EPA applied the DRAS described in 65 FR 58015 (September 27, 2000), 65 FR 75637 (December 4, 2000) and 73 FR 28768 (May 19, 2008), to predict the maximum...

  16. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... leachate extract used in the testing for constituents of concern listed above. SW-846 Method 1330A must be... leachate extract of the waste measured in any sample must not exceed the following concentrations (mg/L... exceed the specified delisting levels, Phillips 66 must collect and analyze two composite samples of...

  17. The hazardous waste facility siting controversy: the Massachusetts experience.

    PubMed

    1987-01-01

    Intense local opposition has frequently frustrated efforts to site hazardous waste facilities. This Note examines states' attempts to balance the increasing need for such facilities with growing community opposition. The Note focuses on the Massachusetts response to this problem, and argues that the Massachusetts program has failed to adequately preempt a locality's power to block facility siting. The Note proposes an alternative model, based on the National Environmental Policy Act, which addresses local concerns while achieving its purpose of siting safe containment facilities for toxic substances.

  18. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  19. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... Rates EPA Environmental Protection Agency FR Federal Register HSWA Hazardous and Solid Waste Amendments... respective annual market share of 88 percent for reusable wipes and 12 percent for disposable wipes (68 FR... of the Common Sense Initiative (CSI) for the printing industry (59 FR 27295). The CSI...

  20. Treatability study of Tank E-3-1 waste: mixed waste stream SR-W049

    SciTech Connect

    Langton, C.A.

    1997-08-21

    Treatability studies were conducted for tank E-3-1 waste which was previously characterized in WSRC-RP-87-0078. The waste was determined to be mixed waste because it displayed the characteristic of metal toxicity for Hg and Cr and was also contaminated with low levels of radionuclides. Two types of treatments for qualifying this waste suitable for land disposal were evaluated: ion exchange and stabilization with hydraulic materials (portland cement, slag and magnesium phosphate cement). These treatments were selected for testing because: (1) Both treatments can be carried out as in-drum processes., (2) Cement stabilization is the RCRA/LDR best developed available technology (BDAT) for Hg (less than 280 mg/L) and for Cr., and (3) Ion exchange via Mag-Sep is a promising alternative technology for in drum treatment of liquid wastes displaying metal toxicity. Cement stabilization of the E-3-1 material ( supernate and settled solids) resulted in waste forms which passed the TCLP test for both Hg and Cr. However, the ion exchange resins tested were ineffective in removing the Hg from this waste stream. Consequently, cement stabilization is recommended for a treatment of the five drums of the actual waste.

  1. Waste minimization/pollution prevention study of high-priority waste streams

    SciTech Connect

    Ogle, R.B.

    1994-03-01

    Although waste minimization has been practiced by the Metals and Ceramics (M&C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division`s pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broad categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M&C staff members empowered by the Division Director to study specific waste streams.

  2. Hazardous solid waste from domestic wastewater treatment plants.

    PubMed Central

    Harrington, W M

    1978-01-01

    The treatment of liquid wastes in municipal sewage treatment plants creates significant quantities of solid residue for disposal. The potential hazard from these wastes requires that their characteristics be determined accurately to develop environmentally sound management criteria. It is readily recognized that the sludge characteristics vary with the type and degree of industrial activity within a wastewater collection system and that these characteristics play a significant role in determining whether the material has potential for beneficial reuse or if it must be directed to final disposal. This paper offers an overview of past and present practices of sewage sludge disposal, an indication of quantities produced, and experience with beneficial reuse. An estimated range of costs involved, expected environmental effects and potential for continued use is offered for each disposal or reuse system discussed. PMID:738239

  3. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  4. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  5. Development of consistent hazard controls for DOE transuranic waste operations

    SciTech Connect

    Woody, W.J.

    2007-07-01

    This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsite movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)

  6. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    SciTech Connect

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  7. 76 FR 55908 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ...: Environmental Protection Agency (EPA). ACTION: Notice of a final decision on a no migration petition reissuance... migration of hazardous constituents from the injection zone for as long as the waste remains hazardous....

  8. 77 FR 36447 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... excluded. See 66 FR 27266 (May 16, 2001). III. EPA's Evaluation of the Waste Information and Data A. What... concentration (mg/ TCLP delisting level L) (mg/L) Arsenic ND 1.64E-01 Barium 2.99E-02 1.00E+02 Benzene ND 5.00E... applied the Delisting Risk Assessment Software (DRAS) described in 65 FR 58015 (September 27, 2000) and...

  9. Biological treatment of habitation waste streams using full scale MABRs

    NASA Astrophysics Data System (ADS)

    Jackson, William; Barta, Daniel J.; Morse, Audra; Christenson, Dylan; Sevanthi, Ritesh

    Recycling waste water is a critical step to support sustainable long term habitation in space. Water is one of the largest contributors to life support requirements. In closed loop life support systems, membrane aerated biological reactors (MABRs) can reduce the dissolved organic carbon (DOC) and ammonia (NH3) concentration as well as decrease the pH, leading to a more stable solution with less potential to support biological growth or promote carryover of unionized ammonia as well as producing a higher quality brine. Over the last three years we have operated 3 full size MABRs ( 120L) treating a habitation type waste stream composed of urine, hygiene, and laundry water. The reactors varied in the specific surface area (260, 200, and 150 m2/m3) available for biofilm growth and gas transfer. The liquid side system was continually monitored for pH, TDS, and DO, and the influent and effluent monitored daily for DOC, TN, NOx, and NH4. The gas side system was continuously monitored for O2, CO2, and N2O in the effluent gas as well as pressure and flow rates. These systems have all demonstrated greater than 90% DOC reductions and ammonium conversion rates of 50-70% over a range of loading rates with effluent pH from 5-7.5. We have evaluated. In addition, to evaluating the impact of loading rates (10-70 l/d) we have also evaluated the impact of forced hibernation, the use of pure O2 on performance, the impact of pressurize operation to prevent de-gassing of N2 and to promote higher O2 transfer and a discontinuous feeding cycle to allow integration with desalination. Our analysis includes quantification of consumables (power and O2), waste products such as CO2 and N2O as well as solids production. Our results support the use of biological reactors to treat habitation waste streams as an alternative to the use of pretreatment and desalination alone.

  10. OC-ALC hazardous waste minimization strategy: Reduction of industrial biological sludge from industrial wastewater treatment facilities

    SciTech Connect

    Hall, F.E. Jr.

    1997-12-31

    Oklahoma City Air Logistics Center (OC-ALC) is one of five US Air Force Logistic Centers that perform depot level maintenance of aircraft. As part of the maintenance process, aircraft are cleaned, chemically depainted, repainted, and electroplated. These repair/maintenance processes generate large quantities of dilute liquid effluent which are collected and treated in the Industrial Waste Treatment Plant (IWTP) prior to hazardous waste disposal. OC-ALC is committed to reducing the use of hazardous materials in the repair and maintenance of aircraft and ancillary components. A major Air Force initiative is to reduce the amount of hazardous waste discharged off-site by 25% by the end of CY96 and 50% by CY99 end. During maintenance and repair operations, organic chemicals are employed. These organics are discharged to the IWTP for biological degradation. During the biological digestion process, a biological sludge is generated. OC-ALC engineers are evaluating the applicability of a biosludge acid/heat treatment process. In the acid hydrolysis process, an acid is added to the biosludge and processed through a hot, pressurized reactor where the majority of the biosolids are broken down and solubilized. The resulting aqueous product stream is then recycled back to the traditional biotreatment process for digestion of the solubilized organics. The solid waste stream is dewatered prior to disposal. The objective of the subsequent effort is to achieve a reduction in hazardous waste generation and disposal by focusing primarily on end-of-the-pipe treatment at the IWTP. Acid hydrolysis of biosludge is proving to be a practical process for use in industrial and municipal wastewater biotreatment systems that will lower environmental and economic costs by minimizing the production and disposal of biosludge.

  11. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    SciTech Connect

    Feo, Giovanni De; Gisi, Sabino De

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  12. Biological removal of carbon disulfide from waste air streams

    SciTech Connect

    Hugler, W.; Acosta, C.; Revah, S.

    1999-09-30

    A pilot-scale biological control system for the treatment of 3,400 m{sup 3} h{sup {minus}1} of a gaseous stream containing up to 7.8 g CS{sub 2} m{sup {minus}3} and trace amounts of hydrogen sulfide (H{sub 2}S) was installed in a cellulose sponge manufacturing facility. The objective was to demonstrate the capability of the process to attain sustained removal efficiencies of 90% for CS{sub 2} and 99% for H{sub 2}S. The system consisted of two sequential biotrickling reactors, which had been previously inoculated with an adapted microbial consortium. During the pilot test, stable removal efficiency and elimination capacity of +90% and 220g CS{sub 2} m{sup {minus}3} h{sup {minus}1}, respectively, were attained with an empty bed residence time (EBTR) of 33 seconds for a period of several weeks. Efficiencies greater than 99% were always obtained for H{sub 2}S. Based on the results, the system was determined to be an effective process to remediate waste air streams containing reduced sulfur compounds generated at cellulose sponge facilities.

  13. Transboundary hazardous waste management. Part I: Waste management policy of importing countries.

    PubMed

    Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa

    2005-12-01

    Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement.

  14. Transboundary hazardous waste management. Part I: Waste management policy of importing countries.

    PubMed

    Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa

    2005-12-01

    Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement. PMID:16379119

  15. Perceived risk impacts from siting hazardous waste facilities

    SciTech Connect

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-08-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioecconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts, resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed.

  16. Evaluation of volatile organic emissions from hazardous waste incinerators.

    PubMed Central

    Sedman, R M; Esparza, J R

    1991-01-01

    Conventional methods of risk assessment typically employed to evaluate the impact of hazardous waste incinerators on public health must rely on somewhat speculative emissions estimates or on complicated and expensive sampling and analytical methods. The limited amount of toxicological information concerning many of the compounds detected in stack emissions also complicates the evaluation of the public health impacts of these facilities. An alternative approach aimed at evaluating the public health impacts associated with volatile organic stack emissions is presented that relies on a screening criterion to evaluate total stack hydrocarbon emissions. If the concentration of hydrocarbons in ambient air is below the screening criterion, volatile emissions from the incinerator are judged not to pose a significant threat to public health. Both the screening criterion and a conventional method of risk assessment were employed to evaluate the emissions from 20 incinerators. Use of the screening criterion always yielded a substantially greater estimate of risk than that derived by the conventional method. Since the use of the screening criterion always yielded estimates of risk that were greater than that determined by conventional methods and measuring total hydrocarbon emissions is a relatively simple analytical procedure, the use of the screening criterion would appear to facilitate the evaluation of operating hazardous waste incinerators. PMID:1954928

  17. Property-close source separation of hazardous waste and waste electrical and electronic equipment--a Swedish case study.

    PubMed

    Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik

    2011-03-01

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  18. Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study

    SciTech Connect

    Bernstad, Anna; Cour Jansen, Jes la; Aspegren, Henrik

    2011-03-15

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  19. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    SciTech Connect

    Levin, V.

    1995-10-01

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.

  20. 40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns, and Lightweight Aggregate Kilns § 63.1219 What are the replacement standards for hazardous waste incinerators?...

  1. 40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns, and Lightweight Aggregate Kilns § 63.1219 What are the replacement standards for hazardous waste incinerators?...

  2. 40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns, and Lightweight Aggregate Kilns § 63.1219 What are the replacement standards for hazardous...

  3. 40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Waste Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns, and Lightweight Aggregate Kilns § 63.1219 What are the replacement standards for hazardous...

  4. Fire hazard analysis of the radioactive mixed waste trenchs

    SciTech Connect

    McDonald, K.M.

    1995-04-27

    This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

  5. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    PubMed

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe. PMID:27067099

  6. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    PubMed

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe.

  7. National information network and database system of hazardous waste management in China

    SciTech Connect

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry, and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.

  8. 78 FR 76294 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Exemption--Class I Hazardous Waste Injection; Mosaic Fertilizer, LLC Uncle Sam, LA AGENCY: Environmental... Waste Amendments to the Resource Conservation and Recovery Act, has been granted to Mosaic...

  9. Assessment of plasma gasification of high caloric waste streams.

    PubMed

    Lemmens, Bert; Elslander, Helmut; Vanderreydt, Ive; Peys, Kurt; Diels, Ludo; Oosterlinck, Michel; Joos, Marc

    2007-01-01

    Plasma gasification is an innovative technology for transforming high calorific waste streams into a valuable synthesis gas and a vitrified slag by means of a thermal plasma. A test program has been set up to evaluate the feasibility of plasma gasification and the impact of this process on the environment. RDF (refuse derived fuel) from carpet and textile waste was selected as feed material for semi-pilot gasification tests. The aim of the tests was: (1) to evaluate the technical feasibility of making a stable synthesis gas; (2) to characterize the composition of this synthesis gas; (3) to define a suitable after-treatment configuration for purification of the syngas and (4) to characterize the stability of the slag, i.e., its resistance to leaching for use as a secondary building material. The tests illustrate that plasma gasification can result in a suitable syngas quality and a slag, characterized by an acceptable leachability. Based on the test results, a further scale-up of this technology will be prepared and validation tests run.

  10. An investigation of halogens in Izmit hazardous and clinical waste incinerator.

    PubMed

    Cetin, Senay; Veli, Sevil; Ayberk, Savaş

    2004-01-01

    In the combustion facilities, halogens (Cl, F, Br, I) should be considered with regard to the control of the compounds such as polychlorinated dibenzodioxins (PCDD), polychlorinated dibenzofurans (PCDF), halogenated polyaromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and volatile heavy metals formed as a result of incomplete combustion and caused adverse environmental effects. In this study halogens were observed in Izmit Hazardous and Clinical Waste Incinerator (IZAYDAS). Halogen contents of the combustion menu, flue gas, fly ash, bottom ash and filter cake were measured and their distributions in these exit streams were determined. Results showed that the major part of the halogens was partitioned to solid residues, i.e., bottom ash and filter cake which represents the removal by wet scrubbers. Fly ash and flue gas fractions of halogens were much lower due to the reduced formation of volatile compounds.

  11. Preparation of waste oil for analysis to determine hazardous metals

    SciTech Connect

    Essling, A.M.; Huff, D.R.; Huff, E.A.; Fox, I.M.; Graczyk, D.G.

    1995-07-01

    Two methods for preparing waste-oil samples to permit measurement of their metals content were evaluated. For this evaluation, metals-in-oil standard reference materials were prepared by each method and the resulting solutions were analyzed for 20 metals, including those (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag) regulated as hazardous under the Resource Conservation and Recovery Act. One preparation method involved combustion of the waste oil under oxygen at 25 atm pressure, as described in the American Society for Testing and Materials test method E926-88. As we applied it, this method gave recoveries well under 90% for most of the metals that we examined and, hence, proved unsatisfactory for routine application to waste-oil analysis. With the other method, nitric acid decomposition in a sealed vessel heated with microwave energy (analogous to US Environmental Protection Agency Method 3051), recoveries of all 20 metal contaminants were within 90 to 110% of the certified values. This microwave digestion procedure was also more efficient since it allowed six samples to be prepared together, whereas the oxygen combustion approach allowed processing of only one sample at a time.

  12. Hazardous Wastes. Two Games for Teaching about the Problem. Environmental Communications Activities. Bulletin 703.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Cooperative Extension Service.

    Two games are presented which demonstrate the complexity of the hazardous waste problem through an introduction to the: (1) economics of waste disposal; (2) legislation surrounding waste disposal; (3) necessity to handle wastes with care; (4) damages to the environmental and human health resulting from improper disposal; (5) correct ways to…

  13. WHO collaboration in hazardous waste management in the Western Pacific Region

    SciTech Connect

    Ogawa, Hisashi

    1996-12-31

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects of WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.

  14. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  15. Waste disposal by hydrofracture and application of the technology to the management of hazardous wastes

    SciTech Connect

    Stow, S.H.; Haase, C.S.; Weeren, H.O.

    1985-01-01

    A unique disposal method, involving hydrofracturing, has been used for management of liquid low-level radioactive wastes at Oak Ridge National Laboratory (ORNL). Wastes are mixed with cement and other solids and injected along bedding plane fractures into highly impermeable shale at a depth of 300 m forming a grout sheet. The process has operated successfully for 20 years and may be applicable to disposal of hazardous wastes. The cement grout represents the primary barrier for immobilization of the wastes; the hydrologically isolated injection horizon represents a secondary barrier. At ORNL work has been conducted to characterize the geology of the disposal site and to determine its relationship to the injection process. The site is structurally quite complex. Research has also been conducted on the development of methods for monitoring the extent and orientation of the grout sheets; these methods include gamma-ray logging of cased observation wells, leveling surveys of benchmarks, tiltmeter surveys, and microseismic arrays. These methods, some of which need further development, offer promise for real-time and post-injection monitoring. Initial suggestions are offered for possible application of the technology to hazardous waste management and technical and regulatory areas needing attention are addressed. 11 refs., 1 fig.

  16. Garbage imperialism: health implications of dumping hazardous wastes in Third World countries.

    PubMed

    Stebbins, K R

    1992-11-01

    This paper calls for studies of the potential health implications of today's hazardous waste disposal practices, and suggests that such studies are urgently needed in Third World countries where industrial nations are increasingly dumping their unwanted waste materials. The United States produces enormous quantities of hazardous waste each year, and approximately 1,200 "priority hazardous waste sites" presently threaten the nation's health. Because of environmental regulations, landfill closings, and citizen opposition to local waste facilities, industrialized countries are increasingly disposing of their problematic materials by shipping them to the Third World, where they pose substantial threats to human health and the environment. From a political economy perspective, this paper suggests that global health would be better served by reducing hazardous waste production, encouraging reusing and recycling, and restricting or banning international shipment of toxic wastes.

  17. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  18. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  19. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    PubMed

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  20. Monitoring genetic damage to ecosystems from hazardous waste

    SciTech Connect

    Anderson, S.L.

    1992-03-01

    Applications of ecological toxicity testing to hazardous waste management have increased dramatically over the last few years, resulting in a greater awareness of the need for improved biomonitoring techniques. Our laboratory is developing advanced techniques to assess the genotoxic effects of environmental contamination on ecosystems. We have developed a novel mutagenesis assay using the nematode Caenorhabditis elegans, which is potentially applicable for multimedia studies in soil, sediment, and water. In addition, we are conducting validation studies of a previously developed anaphase aberration test that utilizes sea urchin embryos. Other related efforts include field validation studies of the new tests, evaluation of their potential ecological relevance, and analysis of their sensitivity relative to that of existing toxicity tests that assess only lethal effects, rather than genetic damage.