Yang, Xiao-wei; Liu, Jin-wen; Zhang, Ru-chao; Yin, Qian; Shen, Wen-zhuang; Yi, Ji-lin
2013-02-01
The roles of intermediate conductance Ca(2+)-activated K(+) channel (IKCa1) in the pathogenesis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCa1 protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCa1 mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCa1 in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCa1, was used to intervene with the function of IKCa1. As compared with para-carcinoma tissue, an over-expression of IKCa1 protein was detected in HCC tissue samples (P<0.05). The mRNA expression level of IKCa1 in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 μmol/L) in vitro (P<0.05). Our results suggested that IKCa1 may play a role in the proliferation of human HCC, and IKCa1 blockers may represent a potential therapeutic strategy for HCC.
Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara
2016-01-04
Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.
Sun, Feng-Kai; Sun, Qi; Fan, Yu-Chen; Gao, Shuai; Zhao, Jing; Li, Feng; Jia, Yi-Bin; Liu, Chuan; Wang, Li-Yuan; Li, Xin-You; Ji, Xiang-Fen; Wang, Kai
2016-02-01
Methylation of tissue factor pathway inhibitor 2 (TFPI2) gene has been detected in hepatocellular carcinoma (HCC). However, the clinicopathologcial significance and prognostic value of TFPI2 methylation in HCC remains largely unknown. This study aimed to investigate the prognostic value of TFPI2 methylation in HCC after hepatectomy. Methylation status of TFPI2 gene was examined in 178 surgical specimens of HCC and 20 normal liver samples using methylation-specific polymerase chain reaction. Methylation of TFPI2 gene was detected in 44.9% (80 of 178) of primary HCC samples, 10.7% (19 of 178) of the corresponding non-tumorous liver samples, and 5.0% (1/20) of the normal liver samples. The mRNA concentrations of TFPI2 in primary HCC tissues were significantly lower than those in corresponding non-tumorous liver tissues and those in normal liver tissues. TFPI2 methylation was significantly associated with higher TNM stage. Patients with TFPI2 methylation demonstrated a significantly poorer prognosis than those without TFPI2 methylation for both overall survival and disease-free survival (P < 0.001, respectively). Multivariate analyses confirmed that TFPI2 methylation was an independent prognostic factor for both overall survival (P = 0.002) and disease-free survival (P = 0.000) in HCC after hepatectomy. Moreover, TFPI2 methylation was found to be the only independent predictor for early tumor recurrence of HCC after resection based on multivariate analysis (P = 0.002). Methylation of TFPI2 predicts high risk of advanced tumor stage, early tumor recurrence, and poor prognosis, and it could be a potential prognostic biomarker in patients with HCC after hepatectomy. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Jin, Haojie; Zhang, Yurong; You, Haiyan; Tao, Xuemei; Wang, Cun; Jin, Guangzhi; Wang, Ning; Ruan, Haoyu; Gu, Dishui; Huo, Xisong; Cong, Wenming; Qin, Wenxin
2015-06-23
Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan degradation and plays a critical role in Huntington's and Alzheimer's diseases. This study aimed to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p < 0.05). Survival and recurrence analyses showed that KMO was an independent prognostic factor for overall survival (OS) and time to recurrence (TTR) (both p<0.01). And in vitro studies revealed that KMO positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in HCC.
Cai, Zhi-Xiong; Chen, Geng; Zeng, Yong-Yi; Dong, Xiu-Qing; Lin, Min-Jie; Huang, Xin-Hui; Zhang, Da; Liu, Xiao-Long; Liu, Jing-Feng
2017-09-01
Circulating tumor DNA (ctDNA) provides a potential non-invasive biomarker for cancer diagnosis and prognosis, but whether it could reflect tumor heterogeneity and monitor therapeutic responses in hepatocellular carcinoma (HCC) is unclear. Focusing on 574 cancer genes known to harbor actionable mutations, we identified the mutation repertoire of HCC tissues, and monitored the corresponding ctDNA features in blood samples to evaluate its clinical significance. Analysis of 3 HCC patients' mutation profiles revealed that ctDNA could overcome tumor heterogeneity and provide information of tumor burden and prognosis. Further analysis was conducted on the 4th HCC case with multiple lesion samples and sequential plasma samples. We identified 160 subclonal SNVs in tumor tissues as well as matched peritumor tissues with PBMC as control. 96.9% of this patient's tissue mutations could be also detected in plasma samples. These subclonal SNVs were grouped into 9 clusters according to their trends of cellular prevalence shift in tumor tissues. Two clusters constituted of tumor stem somatic mutations showed circulating levels relating with cancer progression. Analysis of tumor somatic mutations revealed that circulating level of such tumor stem somatic mutations could reflect tumor burden and even predict prognosis earlier than traditional strategies. Furthermore, HCK (p.V174M), identified as a recurrent/metastatic related mutation site, could promote migration and invasion of HCC cells. Taken together, study of mutation profiles in biopsy and plasma samples in HCC patients showed that ctDNA could overcome tumor heterogeneity and real-time track the therapeutic responses in the longitudinal monitoring. © 2017 UICC.
[Expression of ATAD2 in different liver lesions and its clinical significance].
Liu, F; Zhou, X; Ji, H H; Li, H; Xiang, F G
2017-05-20
Objective: To examine the expression of ATAD2 in different liver lesions and its clinical significance. Methods: ATAD2 expression in 60 hepatocellular carcinoma (HCC) surgical specimens (49 of which have concurrent liver cirrhosis), 43 HCC biopsy specimens, 2 high-grade liver dysplastic nodule specimens, 3 low-grade liver dysplastic nodule specimens, 50 liver cirrhosis tissue samples, and 20 normal liver tissue samples were measured using immunohistochemistry. The F-test, q-test, t-test, and chi-square test were used for statistical analysis of data. Results: ATAD2 was expressed in 56 HCC surgical specimens (93.33%), 35 HCC biopsy specimens (81.40%), and 2 high-grade liver dysplastic nodule specimens (2/2), but not in the low-grade liver dysplastic nodule, liver cirrhosis tissue, and normal liver tissue samples. The mean expression of ATAD2 was significantly higher in HCC tissues than in high-grade and low-grade liver dysplastic nodule tissues, liver cirrhosis tissue, and normal liver tissue ( F = 22.96, q = 3.138, 3.972, 12.272, and 9.101, respectively, all P < 0.01). There were no significant differences in the mean expression and positive expression rate of ATAD2 between HCC surgical and biopsy specimens ( t = 1.40, P > 0.05; χ ² = 3.47, P >0.05). Of the 35 HCC biopsy specimens that expressed ATAD2, the mean ATAD2 expression was ≥1% in 35 specimens (100%), ≥3% in 27 specimens (77.14%), and ≥5 % in 23 specimens (65.71%). In addition, among the pathological grade I-II HCC biopsy specimens, the mean ATAD2 expression was ≥1% in 28 specimens (100%), ≥3% in 22 specimens (62.86%), and ≥5% in 19 specimens (54.29%). Moreover, ATAD2 expression in HCC was associated with serum alpha-fetoprotein level, presence of hepatitis B virus surface antigen (HBsAg), and presence of concurrent liver cirrhosis ( t = 2.09, 2.30, and 2.18, respectively, all P < 0.05). Conclusion: ATAD2 may play an important role in HCC tumorigenesis, and may be involved in malignant transformation of cells. ATAD2 expression can be a valuable marker for differentiating the nature of lesions in liver biopsy tissues during clinical practice.
Aboushousha, Tarek; Mamdouh, Samah; Hamdy, Hussam; Helal, Noha; Khorshed, Fatma; Safwat, Gehan; Seleem, Mohamed
2018-01-01
Objective: To investigate the expression of TTF-1, RAGE, GLUT1 and SOX2 in HCV-associated HCCs and in surrounding non-tumorous liver tissue. Material and Methods: Tissue material from partial hepatectomy cases for HCC along with corresponding serum samples and 30 control serum samples from healthy volunteers were studied. Biopsies were classified into: non-tumor hepatic tissue (36 sections); HCC (33 sections) and liver cell dysplasia (LCD) (15 sections). All cases were positive for HCV. Immunohistochemistry (IHC), gene extraction and quantitative real-time reverse-transcription assays (qRT-PCR) were applied. Results: By IHC, LCD and HCC showed significantly high percentages of positive cases with all markers. SOX2 showed significant increase with higher HCC grades, while RAGE demonstrated an inverse relation and GLUT-1 and TTF-1 lacked any correlation. In nontumorous-HCV tissue, we found significantly high TTF-1, low RAGE and negative SOX2 expression. RAGE, GLUT-1 and SOX2 show non-significant elevation positivity in high grade HCV compared to low grade lesions. TTF-1, RAGE and SOX2 exhibited low expression in cirrhosis compared to fibrosis. Biochemical studies on serum and tissue extracts revealed significant down-regulation of RAGE, GLUT-1 and SOX2 genes, as well as significant up-regulation of the TTF-1 gene in HCC cases compared to controls. All studied genes show significant correlation with HCC grade. In non-tumor tissue, only TTF-1 gene expression had a significant correlation with the fibrosis score. Conclusion: Higher expression of TTF-1, RAGE, GLUT-1 and SOX2 in HCC and dysplasia compared to non-tumor tissues indicates up-regulation of these markers as early events during the development of HCV-associated HCC. PMID:29373917
Aboushousha, Tarek; Mamdouh, Samah; Hamdy, Hussam; Helal, Noha; Khorshed, Fatma; Safwat, Gehan; Seleem, Mohamed
2018-01-27
Objective: To investigate the expression of TTF-1, RAGE, GLUT1 and SOX2 in HCV-associated HCCs and in surrounding non-tumorous liver tissue. Material and Methods: Tissue material from partial hepatectomy cases for HCC along with corresponding serum samples and 30 control serum samples from healthy volunteers were studied. Biopsies were classified into: non-tumor hepatic tissue (36 sections); HCC (33 sections) and liver cell dysplasia (LCD) (15 sections). All cases were positive for HCV. Immunohistochemistry (IHC), gene extraction and quantitative real-time reverse-transcription assays (qRT-PCR) were applied. Results: By IHC, LCD and HCC showed significantly high percentages of positive cases with all markers. SOX2 showed significant increase with higher HCC grades, while RAGE demonstrated an inverse relation and GLUT-1 and TTF-1 lacked any correlation. In nontumorous-HCV tissue, we found significantly high TTF-1, low RAGE and negative SOX2 expression. RAGE, GLUT-1 and SOX2 show non-significant elevation positivity in high grade HCV compared to low grade lesions. TTF-1, RAGE and SOX2 exhibited low expression in cirrhosis compared to fibrosis. Biochemical studies on serum and tissue extracts revealed significant down-regulation of RAGE, GLUT-1 and SOX2 genes, as well as significant up-regulation of the TTF-1 gene in HCC cases compared to controls. All studied genes show significant correlation with HCC grade. In non-tumor tissue, only TTF-1 gene expression had a significant correlation with the fibrosis score. Conclusion: Higher expression of TTF-1, RAGE, GLUT-1 and SOX2 in HCC and dysplasia compared to non-tumor tissues indicates up-regulation of these markers as early events during the development of HCV-associated HCC. Creative Commons Attribution License
Jin, Haojie; Zhang, Yurong; You, Haiyan; Tao, Xuemei; Wang, Cun; Jin, Guangzhi; Wang, Ning; Ruan, Haoyu; Gu, Dishui; Huo, Xisong; Cong, Wenming; Qin, Wenxin
2015-01-01
Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan degradation and plays a critical role in Huntington’s and Alzheimer’s diseases. This study aimed to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p < 0.05). Survival and recurrence analyses showed that KMO was an independent prognostic factor for overall survival (OS) and time to recurrence (TTR) (both p<0.01). And in vitro studies revealed that KMO positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in HCC. PMID:26099564
[Elevated expression of CLOCK is associated with poor prognosis in hepatocellular carcinoma].
Li, Bo; Yang, Xiliang; Li, Jiaqi; Yang, Yi; Yan, Zhaoyong; Zhang, Hongxin; Mu, Jiao
2018-02-01
Objective To evaluate the expression of circadian locomotor output cycles kaput (CLOCK) and its effects on cell growth in hepatocellular carcinoma (HCC). Methods The expression of CLOCK in 158 pairs of human HCC tissues and matched noncancerous samples was detected by immunohistochemical (IHC) staining. The expression of CLOCK in HCC patients was also verified using the data from GEO and TCGA (a total of 356 cases). The relationship between CLOCK expression and clinicopathological features of HCC patients was analyzed by single factor statistical analysis. Kaplan-Meier survival curves of HCC patients were drawn to study the relationship between the expression level of CLOCK and the survival state. The effect of CLOCK on the growth of HepG2 cells was detected by MTS assay. Results The expression of CLOCK in HCC tissues was significantly higher than that in the adjacent tissues, and the up-regulation of CLOCK expression in HCC tissue was also confirmed in the public data of HCC (356 cases). HCC patients were divided into low CLOCK expression group and high CLOCK expression group. Univariate analysis showed that the expression of CLOCK was related to tumor size, TNM stage, and portal vein invasion in HCC patients. HCC patients with low CLOCK expression had longer overall survival time and relapse-free survival time than those with high CLOCK expression. The proliferation of cells significantly decreased after the expression of CLOCK was knocked down in HepG2 cells. Conclusion The expression of CLOCK in HCC tissues was much higher than that in normal liver tissues, and the high expression of CLOCK indicated the poor prognosis. The knockdown of CLOCK in HCC cells could inhibit the proliferation of HepG2 cells.
Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma
De Giorgi, Valeria; Monaco, Alessandro; Worchech, Andrea; Tornesello, MariaLina; Izzo, Francesco; Buonaguro, Luigi; Marincola, Francesco M; Wang, Ena; Buonaguro, Franco M
2009-01-01
Background Hepatitis C virus (HCV) infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The molecular mechanisms of HCV-induced hepatocarcinogenesis are not yet fully elucidated. Besides indirect effects as tissue inflammation and regeneration, a more direct oncogenic activity of HCV can be postulated leading to an altered expression of cellular genes by early HCV viral proteins. In the present study, a comparison of gene expression patterns has been performed by microarray analysis on liver biopsies from HCV-positive HCC patients and HCV-negative controls. Methods Gene expression profiling of liver tissues has been performed using a high-density microarray containing 36'000 oligos, representing 90% of the human genes. Samples were obtained from 14 patients affected by HCV-related HCC and 7 HCV-negative non-liver-cancer patients, enrolled at INT in Naples. Transcriptional profiles identified in liver biopsies from HCC nodules and paired non-adjacent non-HCC liver tissue of the same HCV-positive patients were compared to those from HCV-negative controls by the Cluster program. The pathway analysis was performed using the BRB-Array- Tools based on the "Ingenuity System Database". Significance threshold of t-test was set at 0.001. Results Significant differences were found between the expression patterns of several genes falling into different metabolic and inflammation/immunity pathways in HCV-related HCC tissues as well as the non-HCC counterpart compared to normal liver tissues. Only few genes were found differentially expressed between HCV-related HCC tissues and paired non-HCC counterpart. Conclusion In this study, informative data on the global gene expression pattern of HCV-related HCC and non-HCC counterpart, as well as on their difference with the one observed in normal liver tissues have been obtained. These results may lead to the identification of specific biomarkers relevant to develop tools for detection, diagnosis, and classification of HCV-related HCC. PMID:19821982
GPX4 and GPX7 Over-Expression in Human Hepatocellular Carcinoma Tissues
Guerriero, E.; Capone, F.; Accardo, M.; Sorice, A.; Costantini, M.; Colonna, G.; Castello, G.
2015-01-01
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is still one of the most fatal cancers. Hence, it needs to identify always new putative markers to improve its diagnosis and prognosis. The selenium is an essential trace mineral implicated as a key factor in the early stage of cancer and exerts its biological function through the selenoproteins. In the last years our group has been studying the involvement of some selenoproteins in HCC. However, no many data are reported in literature about the correlation between HCC and the glutathione peroxidases (GPXs), both selenium and non selenium-containing GPXs. In this paper we have evaluated the GPX4 and GPX7 expression in some paraffin-embedded tissues from liver biopsy of patients with hepatitis C virus (HCV)-related cirrhosis and HCC by immunohistochemistry and RT-qPCR analysis. Our results evidenced that i) GPX4 and GPX7 had a statistically significant over-expression in HCC tissues compared to cirrhotic counterparts used as non tumor tissues, and ii) their expression was higher in grade III HCC tissues with respect to grade I-II samples. Therefore, we propose to use GPX4 and GPX7 as possible markers for improving HCC diagnosis/prognosis. PMID:26708178
Hu, Kunpeng; Wang, Jiani; Yao, Zhicheng; Liu, Bo; Lin, Yuan; Liu, Lei; Xu, Lihua
2014-05-01
The molecular mechanisms of the development and progression of hepatocellular carcinoma (HCC) are poorly understood. The main objective of this study was to analyze the expression of Enabled [mammalian Ena (Mena)] protein and its clinical significance in human HCC. The Mena expression was examined at mRNA and protein levels by real-time quantitative polymerase chain reaction and Western blotting analysis in ten paired HCC tissues and the adjacent normal tissues. The expression of Mena protein in 81 specimens of HCC tissues was determined by immunohistochemistry. Associations of Mena expression with the clinicopathological features were analyzed, and prognosis of HCC patients was evaluated. The result shows the expression of Mena mRNA and protein was higher in HCC than in the adjacent normal tissues in ten paired samples. Mena was mainly accumulated in the cytoplasm of tumor cells and over-expressed in 40.74% (33/81) patients by immunohistochemical staining. Over-expression of Mena was significantly associated with poor cellular differentiation (P = 0.025), advanced tumor stage (P = 0.003) and worse disease-free survival (DFS, P < 0.001). In addition, Mena is an independent prognostic factor for DFS in multivariate analysis (HR 2.309, 95% CI 1.104-4.828; P = 0.026). Mena is up-regulated in HCC and associated with tumor differentiation and clinical stage. Mena may be an independent prognostic marker for DFS of HCC patients.
Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma.
Qin, Meilin; Liu, Gang; Huo, Xisong; Tao, Xuemei; Sun, Xiaomeng; Ge, Zhouhong; Yang, Juan; Fan, Jia; Liu, Lei; Qin, Wenxin
2016-01-01
It has been shown that circular RNA (circRNA) is associated with human cancers, however, few studies have been reported in hepatocellular carcinoma (HCC). To estimate clinical values of a circular RNA, Hsa_circ_0001649, in HCC. Expression level of hsa_circ_0001649 was detected in HCC and paired adjacent liver tissues by real-time quantitative reverse transcription-polymerase chain reactions (qRT-PCRs). Differences in expression level of hsa_circ_0001649 were analyzed using the paired t-test. Tests were performed between clinical information and hsa_circ_0001649 expression level by analysis of variance (ANOVA) or welch t-test and a receiver operating characteristics (ROC) curve was established to estimate the value of hsa_circ_0001649 expression as a biomarker in HCC. hsa_circ_0001649 expression was significantly downregulated in HCC tissues (p = 0.0014) based on an analysis of 89 paired samples of HCC and adjacent liver tissues and the area under the ROC curve (AUC) was 0.63. Furthermore, hsa_circ_0001649 expression was correlated with tumor size (p = 0.045) and the occurrence of tumor embolus (p = 0.017) in HCC. We first found hsa_circ_0001649 was significantly downregulated in HCC. Our findings indicate hsa_circ_0001649 might serve as a novel potential biomarker for HCC and may function in tumorigenesis and metastasis of HCC.
Spermine oxidase is up-regulated and promotes tumor growth in hepatocellular carcinoma.
Hu, Tingting; Sun, Dalong; Zhang, Jie; Xue, Ruyi; Janssen, Harry L A; Tang, Wenqing; Dong, Ling
2018-06-20
The polyamine catabolic enzyme, spermine oxidase (SMOX) is up-regulated in chronic inflammatory conditions and linked to increased reactive oxygen species (ROS) and DNA damage in various forms of cancers. The present study aims to explore the expression pattern and biological function of SMOX in hepatocellular carcinoma (HCC). We used qRT-PCR, Western blotting and immunohistochemistry to examine SMOX expression in four HCC cell lines and 120 cases of HCC clinical samples, and the clinical significance of SMOX was analyzed. The biological function of SMOX on HCC cells were detected both in vitro and in vivo. It showed that SMOX was overexpressed in HCC cell lines and clinical HCC tissues. Moreover, SMOX expression levels were gradually increased in normal liver, chronic hepatitis and HCC tissues. Increased SMOX expression was correlated with poor clinical features of HCC. Patients with positive SMOX expression in tumor tissues indicated worse overall survival (P = 0.008) and shorter relapse-free survival (P = 0.002). Knockdown of SMOX inhibited HCC cell proliferation, arrested cell cycle at S phase and resulted in an increase of apoptosis. The in vivo study showed that inhibition of SMOX in HCC cells significantly repressed tumor growth in nude mice. Furthermore, we demonstrated that SMOX may exert its function by regulating PI3K/Akt signaling pathway. Our data indicated that SMOX upregulation may be a critical oncogene in HCC and might serve as a valuable prognostic marker and potential therapeutic target for HCC. This article is protected by copyright. All rights reserved.
Zhang, Rui; Lin, Peng; Yang, Hong; He, Yun; Dang, Yi-Wu; Feng, Zhen-Bo; Chen, Gang
2017-12-12
To investigate the clinical role and biological function of cyclin-dependent kinase 5 (CDK5) in hepatocellular carcinoma (HCC), 412 surgically resected tissue samples (HCC, n=171; non-HCC=241) were obtained and analyzed with immunohistochemistry. The diagnostic and prognostic values of CDK5 expression levels in HCC were clarified. Moreover, RNA-seq data or microarray datasets from The Cancer Genome Atlas (TCGA) (HCC, n=374; normal, n=50) or other public databases (HCC, n=1864; non-tumor=1995) regarding CDK5 in HCC were extracted and examined. Several bioinformatic methods were performed to identify CDK5-regulated pathways. In vitro experiments were adopted to measure proliferation and apoptosis in HCC cells after CDK5 mRNA was inhibited in the HCC cell lines HepG2 and HepB3. Based on immunohistochemistry, CDK5 expression levels were notably increased in HCC tissues (n=171) compared with normal (n=33, P <0.001), cirrhosis (n=37, P <0.001), and adjacent non-cancerous liver (n=171, P <0.001) tissues. The up-regulation of CDK5 was associated with higher differentiation ( P <0.001), metastasis ( P <0.001), advanced clinical TNM stages ( P <0.001), portal vein tumor embolus ( P =0.003) and vascular invasion ( P =0.004). Additionally, TCGA data analysis also revealed significantly increased CDK5 expression in HCC compared with non-cancerous hepatic tissues ( P <0.001). The pooled standard mean deviation (SMD) based on 36 included datasets (HCC, n=2238; non-cancerous, n=2045) indicated that CDK5 was up-regulated in HCC (SMD=1.23, 95% CI: 1.00-1.45, P <0.001). The area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve was 0.88. Furthermore, CDK5 knock-down inhibited proliferation and promoted apoptosis. In conclusion, CDK5 plays an essential role in the initiation and progression of HCC, most likely via accelerating proliferation and suppressing apoptosis in HCC cells by regulating the cell cycle and DNA replication pathways.
Yang, Lian-Yue; Tao, Yi-Ming; Ou, Di-Peng; Wang, Wei; Chang, Zhi-Gang; Wu, Fan
2006-10-01
Because of its role in cell migration, the Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) 2 has been implicated in cancer metastasis. Evidence to support such a role of WAVE2 in human cancer, however, is lacking. We thus examined the expression of WAVE2 in hepatocellular carcinoma (HCC) tissues to test whether the levels of WAVE2 expression correlated to the progression of HCC. Samples of 112 HCC patients were determined immunohistochemically for WAVE2 expression and the correlation of WAVE2 levels with prognosis was analyzed. Among the 112 cases, 31 paired HCC and paracarcinomatous liver tissue specimens were analyzed for WAVE2 levels by reverse transcription-PCR and Western blotting, respectively. Among 112 cases of HCCs, the immunohistochemistry data indicated significant increase of WAVE2 expression levels in 71 cases. Importantly, the increased WAVE2 expression correlated with the multiple tumor nodules (P = 0.008), the absence of capsular formation (P = 0.035), Edmondson-Steiner grade (P = 0.009), vein invasion (P = 0.023), and a shortened median survival time (326 versus 512 days; P = 0.003). Multivariable Cox regression analysis revealed the WAVE2 expression level was an independent factor for prognosis. The immunohistochemistry data were further confirmed by results of reverse transcription-PCR and Western analysis of 31 HCC cases, in which the WAVE2 mRNA and protein in HCC tissues were significantly elevated when compared with paracarcinomatous liver tissue (P < 0.001). WAVE2 expression is elevated in HCC tissues, which correlates with a poor prognosis, suggesting WAVE2 as a candidate prognostic marker of HCC.
Shen, Sijia; Lin, Yuxin; Yuan, Xuye; Shen, Li; Chen, Jiajia; Chen, Luonan; Qin, Lei; Shen, Bairong
2016-01-01
Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors with high incidence and mortality rate. Precision and effective biomarkers are therefore urgently needed for the early diagnosis and prognostic estimation. MicroRNAs (miRNAs) are important regulators which play functions in various cellular processes and biological activities. Accumulating evidence indicated that the abnormal expression of miRNAs are closely associated with HCC initiation and progression. Recently, many biomarker miRNAs for HCC have been identified from blood or tissues samples, however, the universality and specificity on clinicopathological features of them are less investigated. In this review, we comprehensively surveyed and compared the diagnostic, prognostic, and therapeutic roles of HCC biomarker miRNAs in blood and tissues based on the cancer hallmarks, etiological factors as well as ethnic groups, which will be helpful to the understanding of the pathogenesis of biomarker miRNAs in HCC development and further provide accurate clinical decisions for HCC diagnosis and treatment. PMID:27917899
Overexpression of the RD RNA binding protein in hepatitis C virus-related hepatocellular carcinoma.
Iida, Michihisa; Iizuka, Norio; Tsunedomi, Ryouichi; Tsutsui, Masahiro; Yoshida, Shin; Maeda, Yoshinari; Tokuhisa, Yoshihiro; Sakamoto, Kazuhiko; Yoshimura, Kiyoshi; Tamesa, Takao; Oka, Masaaki
2012-08-01
Hepatocellular carcinoma (HCC) often exhibits a poor prognosis due to metastatic spread caused by portal vein invasion (PVI). In the present study, we attempted to identify a novel therapeutic target related to PVI of HCC. Based on pooled genomic data, we identified RD RNA binding protein (RDBP), a member of the negative elongation factor (NELF) transcription elongation regulatory complex, to be preferentially overexpressed in HCC with PVI. We used quantitative reverse transcription polymerase chain reaction (RT-PCR) and immuno-histochemical analyses to investigate the relationship between RDBP mRNA and protein with metastatic potential in sample sets of hepatitis C virus (HCV)-related HCC and corresponding non-HCC liver tissues. We also used the small interfering RNA technique to examine the role of RDBP in invasion and proliferation of HCC cells in vitro. Our data showed that both mRNA and protein levels of RDBP were significantly higher in HCC compared to non-HCC liver tissue, and that these levels were also significantly higher in HCC with PVI compared to HCC without PVI. Multivariate analysis revealed that RDBP protein levels were an independent risk factor for early intrahepatic recurrence of HCC within 2 years of surgery. Knockdown of RDBP protein significantly inhibited the proliferation and invasion of cells in vitro. These data demonstrate that RDBP is related to the metastatic potential of HCC, suggesting a possible candidate for prevention of HCC cell metastasis.
Yang, Hua; Lin, Ming; Xiong, Fu Xia; Yang, Yu; Nie, Xiu; Zhou, Rou Li
2010-01-01
Argininosuccinate synthetase (ASS) has previously been proven to be reductively expressed in hepatocellular carcinoma (HCC) and various types of HCC cell lines. Arginine, the product of ASS, has been used as a target in HCC by recombinant human arginase or arginine deiminase, which is now in the phase II clinical trial stage. This study aimed to present the levels of ASS expression in HCCs and its correlation with clinicopathological features and prognosis of HCC patients. Immunohistochemical detection of ASS was performed on samples from 71 patients with HCC. Positive staining was found in 21 HCCs, with a score of 2, as well as in normal liver tissues. Reduced ASS staining was found in 70.4% (50/71) of HCC tissues, including 21 with a score of 0 and 29 with a score of 1. The staining score in cancer tissues was significantly associated with gender, background liver, histopathological differentiation, recurrence, TNM staging and portal vein invasion (P<0.05), but not with age, viral status, tumor size and serum α-fetoprotein level. Patients with a high ASS expression had significantly poorer overall and disease-free survival (P<0.001 and P<0.001, respectively). These data showed that ASS was reductively or negatively expressed in a large portion of HCC, and that ASS levels in HCCs correlated inversely with prognosis. In conclusion, a high expression of ASS may be a novel marker of poor prognosis of patients presenting with HCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fangyi; Dong, Lei, E-mail: dlleidong@126.com; Xing, Rong
2014-02-07
Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC.more » HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.« less
Expression of K19 and K7 in dysplastic nodules and hepatocellular carcinoma.
Bae, Jun Sang; Choi, Ha Na; Noh, Sang Jae; Park, Byung Hyun; Jang, Kyu Yun; Park, Cheol Keun; Moon, Woo Sung
2012-08-01
Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors characterized by a multistep process of tumor development. Nodular lesions that differ from the surrounding liver parenchyma and are characterized by cytological or structural atypia are termed dysplastic nodules (DNs). DNs are well-known precancerous HCC lesions. Expression of keratin (K) 19 and K7, molecular markers of hepatic progenitor cells and cholangiocytes, has been reported in certain HCCs. However, it remains unclear whether K19-positive HCC cells are derived from true hepatic progenitor cells or mature cells that have undergone a dedifferentiation or a transdifferentiation process. In total, 107 tissue sections (13 low-grade DNs, 15 high-grade DNs, 27 small HCCs and 52 large HCCs) from resected liver samples and 132 HCC tissue microarray (TMA) cores were subjected to immunohistochemical analysis for K19 and K7. Clinicopathological data of the HCC patients were evaluated. K19 expression was found in 0% of DNs, 19% of small HCCs (≤2 cm), 8% of large HCCs (>2 cm) and 8% of TMA samples. K7 expression was found in 14% of DNs, 41% of small HCCs, 15% of large HCCs and 6% of TMA samples. Among the five K19-positive small HCCs, four were distinctly nodular and one tumor was an infiltrative type. No vaguely nodular HCC was positive for K19. K19 expression was significantly associated with histological grade (P=0.023), serum α-fetoprotein level (P=0.001) and K7 expression (P=0.001) in HCC. K19 expression was an independent prognostic factor for overall survival in non-viral HCC patients (P=0.003). K19 expression is extremely rare in DNs and occurs in progressed small HCCs. Our results suggest that K19 expression may be an acquired feature of carcinoma cells during HCC progression in certain HCCs.
Li, Yue-Hui; Liu, Yan; Li, Yan-Dong; Liu, Yan-Hong; Li, Feng; Ju, Qiang; Xie, Ping-Li; Li, Guan-Cheng
2012-01-01
AIM: To investigate the function of gamma-aminobutyric acid (GABA) and gamma-aminobutyric acid A receptor θ subunit (GABRQ) in hepatocellular carcinoma (HCC). METHODS: Semiquantitative polymerase chain reaction was used for detecting the expression of GABRQ receptor among HCC cell line HepG2, normal liver cell line L-02, non-malignant Chang’s liver cells, 8 samples of HCC tissues and paired non-cancerous tissues. HepG2 cells were treated with GABA at serial concentrations (0, 1, 10, 20, 40 and 60 μmol/L), and their proliferating abilities were analyzed with the methyl thiazolyl tetrazolium assay, cell cycle analysis and tumor implanted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRQ in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed. RESULTS: We identified the overexpression of GABRQ in HCC cell lines and half of the tested HCC tissues. Knockdown of endogenous GABRQ expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We studied the effect of GABA in the proliferation of GABRQ-positive cell lines in vitro and in vivo, and found that GABA increased HCC growth in a dose-dependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRQ-expressing HepG2 cells, but not GABRQ-knockdown HepG2 cells, which means that GABA stimulates HepG2 cell growth through GABRQ. CONCLUSION: GABRQ play important roles in HCC development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of HCC. PMID:22690081
2013-01-01
Background To detect genes correlated with hepatocellular carcinoma (HCC), we developed a triple combination array consisting of methylation array, gene expression array and single nucleotide polymorphism (SNP) array analysis. Methods A surgical specimen obtained from a 68-year-old female HCC patient was analyzed by triple combination array, which identified doublecortin domain-containing 2 (DCDC2) as a candidate tumor suppressor gene of HCC. Subsequently, samples from 48 HCC patients were evaluated for their DCDC2 methylation and expression status using methylation specific PCR (MSP) and semi-quantitative reverse transcriptase (RT) PCR, respectively. Then, we investigated the relationship between clinicopathological factors and methylation status of DCDC2. Results DCDC2 was revealed to be hypermethylated (methylation value 0.846, range 0–1.0) in cancer tissue, compared with adjacent normal tissue (0.212) by methylation array in the 68-year-old female patient. Expression array showed decreased expression of DCDC2 in cancerous tissue. SNP array showed that the copy number of chromosome 6p22.1, in which DCDC2 resides, was normal. MSP revealed hypermethylation of the promoter region of DCDC2 in 41 of the tumor samples. DCDC2 expression was significantly decreased in the cases with methylation (P = 0.048). Furthermore, the methylated cases revealed worse prognosis for overall survival than unmethylated cases (P = 0.048). Conclusions The present study indicates that triple combination array is an effective method to detect novel genes related to HCC. We propose that DCDC2 is a tumor suppressor gene of HCC. PMID:24034596
Circular RNA 0068669 as a new biomarker for hepatocellular carcinoma metastasis.
Yao, Ting; Chen, Qingqing; Shao, Zhouwei; Song, Zhihua; Fu, Liyun; Xiao, Bingxiu
2018-05-21
Circular RNAs (circRNAs) play important roles in disease occurrence. However, the roles of circRNAs in the diagnosis of hepatocellular carcinoma (HCC) are largely unknown. The aim of this study is to investigate the clinical diagnostic values of hsa_circ_0068669 (Alias: hsa_circ_103561), one of the representative HCC-associated circRNAs. Hsa_circ_0068669 expression levels in HCC tissues, HCC cell lines, and chronic hepatitis tissues were detected by real-time quantitative reverse transcription-polymerase chain reaction. Its expression levels between HCC tissues and adjacent non-tumorous tissues were analyzed using paired t test. Independent t test and one-way analysis of variance (ANOVA) were performed to analyze the relationships between hsa_circ_0068669 expression levels and clinicopathological factors of patients with HCC. A receiver operating characteristic (ROC) curve was established to estimate the value of hsa_circ_0068669 as a biomarker in HCC. Hsa_circ_0068669 expression was significantly downregulated in HCC tissues and HCC cell lines compared with paired non-tumorous tissues and normal hepatic cell line, respectively. Moreover, hsa_circ_0068669 expression in HCC tissues was decreased comparing with chronic hepatitis tissues. Furthermore, hsa_circ_0068669 expression was correlated with microvascular invasion and TNM stages. Our findings indicate that hsa_circ_0068669 might be served as a novel potential biomarker for HCC metastasis. © 2018 Wiley Periodicals, Inc.
Naboulsi, Wael; Bracht, Thilo; Megger, Dominik A; Reis, Henning; Ahrens, Maike; Turewicz, Michael; Eisenacher, Martin; Tautges, Stephanie; Canbay, Ali E; Meyer, Helmut E; Weber, Frank; Baba, Hideo A; Sitek, Barbara
2016-11-01
The majority of poorly differentiated hepatocellular carcinomas (HCCs) develop from well-differentiated tumors. Endocytosis is a cellular function which is likely to take part in this development due to its important role in regulating the abundances of vital signaling receptors. Here, we aimed to investigate the abundance of endocytosis-associated proteins in HCCs with various differentiation grades. Therefore, we analyzed 36 tissue specimens from HCC patients via LC-MS/MS-based label-free quantitative proteomics including 19 HCC tissue samples with different degrees of histological grades and corresponding non-tumorous tissue controls. As a result, 277 proteins were differentially regulated between well-differentiated tumors and controls. In moderately and poorly differentiated tumors, 278 and 1181 proteins, respectively, were significantly differentially regulated compared to non-tumorous tissue. We explored the regulated proteins based on their functions and identified thirty endocytosis-associated proteins, mostly overexpressed in poorly differentiated tumors. These included proteins that have been shown to be up-regulated in HCC like clathrin heavy chain-1 (CLTC) as well as unknown proteins, such as secretory carrier-associated membrane protein 3 (SCAMP3). The abundances of SCAMP3 and CLTC were immunohistochemically examined in tissue sections of 84 HCC patients. We demonstrate the novel association of several endocytosis-associated proteins, in particular, SCAMP3 with HCC progression. Copyright © 2016 Elsevier B.V. All rights reserved.
Saber, Mohamed A; MM AbdelHafiz, Samah; Khorshed, Fatma E; Aboushousha, Tarek S; Hamdy, Hussam EM; Seleem, Mohamed I; Soliman, Amira H
2017-01-01
Background: Increasing evidence indicates that in hepatocellular carcinomas (HCCs) abnormal gene expression, for example of glypican-3 (GPC-3) and insulin-like growth factor-II (IGF-II), are associated with the occurrence and progression of HCC. The objective of this study was to evaluate the differential expression of GPC-3 and IGF-II mRNAs in HCC tissues with a background of chronic hepatitis C virus (HCV) genotype 4 cirrhosis, in relation to Ki-67 and alpha-feto protein (AFP) tissue markers. Methods: One hundred and five patients with HCCs who had undergone hepatectomy, were included, after obtaining informed consent. Total RNA was extracted from malignant and corresponding peri-malignant liver tissues, and GPC-3 and IGF-II mRNAs in addition to beta-actin mRNA as an internal control, were evaluated in all samples by reverse transcriptase-polymerase chain reactions (RT-PCR). Routine histopathological diagnosis as well as immunohistochemical (IHC) staining using monoclonal antibodies for Ki-67 and AFP were also performed. Result: Expression of GPC-3 mRNA was positive in all HCC malignant tissue, with overexpression in 86/105 (81.9%); in respect to the grade of the tumor (1-3 grades), while in peri-malignant tissue it was over expressed only in 20/105 (19%). The IGF-II mRNA was over expressed in only 10/105 (9.5%) malignant and peri-malignant samples. AFP was expressed in 33.3% of malignant samples but absent in peri-malignant tissues. Ki-67 expression was significantly increased in malignant compared to peri-malignant tissue. Conclusion: GPC-3 and IGF II mRNAs may be good molecular markers for HCC, especially with a background of cirrhosis due to chronic HCV infection. Significant correlations were noted with the pattern of AFP and Ki-67 expression. Creative Commons Attribution License
Liu, Furong; Zeng, Gucheng; Zhou, Shaotang; He, Xiaoshun; Sun, Nianfeng; Zhu, Xiaofeng; Hu, Anbin
2018-05-01
The immunosuppression of tumor-infiltrating lymphocytes (TILs) is associated with rapid progression of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). T cell Ig- and mucin-domain-containing molecule-3 (Tim-3) and programmed cell death 1 (PD-1) are important inhibitory molecules expressed on the surface of T cells, but their roles in the function of TILs in HBV-HCC are poorly understood. We aimed to study the roles of these two markers in HBV-HCC. Ninety patients with pathologically confirmed HBV-associated HCC were enrolled in our study. Blood samples, paired fresh tumor tissues and adjacent tissues were collected, and isolating peripheral blood mononuclear cells, TILs and adjacent-infiltrating lymphocytes were isolated from these samples. The patients were followed-up to allow survival analysis. Tim-3 or/and PD-1 was up-regulated expressed on CD4 + and CD8 + TILs in HBV-HCC patients and a higher proportion of TILs expressed PD-1 alone. Tim-3 + and PD-1 + TILs greatly decreased secretion of IFN-? and TNF-a. Expression of Tim-3 and PD-1 on TILs negatively correlated with disease-free survival of HCC patients. Direct blockade of Tim-3 and PD-1 in vitro significantly enhanced TILs proliferation and secretion of IFN-? and TNF-a. Expression of Tim-3 and/or PD-1 on TILs impairs their function and correlates negatively with disease-free survival in HBV-HCC. Direct blockade of Tim-3 and PD-1 restores anti-tumor effects of TILs, which suggests a potential target for novel immunotherapy in HBV-HCC. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Xu, Qiuran; Zhu, Qiaojuan; Zhou, Zhenyu; Wang, Yufeng; Liu, Xin; Yin, Guozhi; Tong, Xiangmin; Tu, Kangsheng
2018-07-01
Our previous study has reported that BCL6 corepressor like 1 (BCORL1) plays an oncogenic role in hepatocellular carcinoma (HCC) via promoting epithelial-mesenchymal transition (EMT) and tumor metastasis. However, the regulation of BCORL1 mediated by microRNAs (miRNAs) remains poorly known. The analysis of our clinical samples indicated that BCORL1 expression was markedly higher in HCC tissues than that in tumor-adjacent normal tissues. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed that high BCORL1 expression associated with high tumor grade, advanced tumor stage and poor survival of HCC patients. miR-875-5p expression was down-regulated and negatively correlated with BCORL1 mRNA expression in HCC tissues. Furthermore, miR-876-5p inversely regulated BCORL1 abundance in HCC cells by directly targeting the 3'-untranslated region (3'-UTR) of BCORL1. Ectopic expression of miR-876-5p suppressed cell migration and invasion in both HCCLM3 and MHCC97H cells. In accordance, miR-876-5p knockdown promoted the metastatic behaviors of Hep3B cells. Mechanistically, miR-876-5p suppressed the EMT progression of HCC cells. HCC tissues with high miR-876-5p level showed a higher E-cadherin staining compared to cases with low miR-876-5p level. Moreover, the repression of cell metastasis mediated by miR-876-5p was rescued by BCORL1 restoration in HCCLM3 cells. Notably, low miR-876-5p expression associated with venous infiltration, high tumor grade and advanced tumor stage. HCC patients with low miR-876-5p expression had a significant poorer overall survival and disease-free survival. To conclude, miR-876-5p inhibits EMT progression, migration and invasion of HCC cells by targeting BCORL1. Therefore, miR-876-5p/BCORL1 axis may represent as a novel therapeutic target for HCC treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenyao, E-mail: wangwy117@163.com; Zhang, Hongfei; Wang, Lichao
microRNAs (miRNAs) play key regulatory roles in various biological processes. In this study, we aimed to determine the expression and biological roles of miR-613 in hepatocellular carcinoma (HCC). Compared with non-cancerous liver tissues, miR-613 was significantly downregulated in HCC tissues. Ectopic expression of miR-613 significantly suppressed the proliferation and invasion of Hep3B and SMMC-7721 HCC cells. Bioinformatic and luciferase reporter analysis identified doublecortin-like kinase 1 (DCLK1) as a direct target of miR-613. Overexpression of miR-613 inhibited the expression of DCLK1 in HCC cells. There was a significant inverse correlation between miR-613 and DCLK1 protein expression in HCC samples. Small interferingmore » RNA-mediated silencing of DCLK1 phenocopied the suppressive effects of miR-613 in HCC cells. Rescue experiments demonstrated that co-transfection of DCLK1 lacking the 3′-untranslated region partially prevented miR-613-induced suppression of HCC cell proliferation and invasion. In vivo studies confirmed that miR-613 overexpression retarded the growth of Hep3B xenograft tumors in nude mice, coupled with a reduction in the percentage of Ki67-positive tumor cells and DCLK1 protein expression. In conclusion, we provide first evidence for the suppressive activity of miR-613 in HCC, which is causally linked to targeting of DCLK1. Restoration of miR-613 may provide a potential therapeutic strategy for HCC. - Highlights: • miR-613 inhibits the aggressive phenotypes of HCC cells. • DCLK1 is a direct target of miR-613 in HCC. • miR-613 impairs HCC tumorigenesis in vivo.« less
Onaga, Masaaki; Ido, Akio; Hasuike, Satoru; Uto, Hirofumi; Moriuchi, Akihiro; Nagata, Kenji; Hori, Takeshi; Hayash, Katsuhiro; Tsubouchi, Hirohito
2003-11-01
Hepatocellular carcinoma (HCC) is closely associated with chronic liver diseases, particularly cirrhosis. However, the genes involved in hepatocarcinogenesis in the context of developing cirrhosis remain unknown. This study aims to identify genes associated with early cirrhosis-associated hepatocarcinogenesis. We examined genes differentially expressed between the livers of normal rats and rats fed a choline-deficient, L-amino acid-defined (CDAA) diet using suppression subtractive hybridization. We examined both the expression in the liver and HCC tissues of osteoactivin (OA), isolated in this screen, and its effect on invasiveness and metastasis. OA mRNA was strongly expressed in the livers of rats fed the CDAA diet for 1-3 months. Moderate expression was sustained for 18 months. OA overexpression increased the invasiveness and metastasis of rat hepatoma cells in vitro and in vivo. In humans, OA expression was not detectable in normal liver tissues. While OA transcripts were detectable in cirrhotic nontumorous liver tissues surrounding HCCs, the majority of HCC tissue samples exhibited higher levels of OA expression than the surrounding normal tissue. These results indicate that OA is a novel factor involved in the progression of HCC via stimulation of tumor invasiveness and metastatic potential.
Cai, Lizhi; Cai, Xi
2014-12-31
MicroRNAs (miRNAs) are endogenous small (19-24 nt long) noncoding RNAs that regulate gene expression in a sequence specific manner. An increasing association between miRNA and cancer has been recently reported. Hepatocellular carcinoma (HCC), as the fifth most common cancer and the most common cause of death in men, has become the third leading cause of cancer-related deaths globally. In this study, we investigated the miR-9 expression in HCC to evaluate their value in prognosis of this tumor. The expression of miR-9 in matched normal and tumor tissues of HCC was evaluated using a quantitative real-time RT-PCR. A Kaplan-Meier survival curve was generated following a log-rank test. It was observed that miR-9 expression was upregulated in HCC tissues compared with noncancerous liver tissues (7.26 ± 1.30 vs. 3.14 ± 1.08, P < 0.001). The up-regulation of miR-9 in HCC cancer tissues was also significantly correlated with aggressive clinicopathological features. We found that the patients with high miR-9 expression have a higher tumor staging (P = 0.0389) and are in higher risk of venous infiltration (P < 0.0001). Moreover, the results of Kaplan-Meier analyses showed that HCC patients with the high miR-9 expression tend to have shorter overall survival (P < 0.0001). The multivariate analysis clearly indicated that the high miR-9 expression in biopsy samples may be considered as an independent prognostic factor in HCC for decreased survival (4.28; 95%CI, 2.77-7.23, P < 0.001). Our data indicate the potential of miR-9 as a novel prognostic biomarker for HCC. Large well-designed studies with diverse populations and functional evaluations are warranted to confirm and extend our findings. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_228.
The liver tissue bank and clinical database in China.
Yang, Yuan; Liu, Yi-Min; Wei, Ming-Yue; Wu, Yi-Fei; Gao, Jun-Hui; Liu, Lei; Zhou, Wei-Ping; Wang, Hong-Yang; Wu, Meng-Chao
2010-12-01
To develop a standardized and well-rounded material available for hepatology research, the National Liver Tissue Bank (NLTB) Project began in 2008 in China to make well-characterized and optimally preserved liver tumor tissue and clinical database. From Dec 2008 to Jun 2010, over 3000 individuals have been enrolled as liver tumor donors to the NLTB, including 2317 cases of newly diagnosed hepatocellular carcinoma (HCC) and about 1000 cases of diagnosed benign or malignant liver tumors. The clinical database and sample store can be managed easily and correctly with the data management platform used. We believe that the high-quality samples with detailed information database will become the cornerstone of hepatology research especially in studies exploring the diagnosis and new treatments for HCC and other liver diseases.
Global PROTOMAP profiling to search for biomarkers of early-recurrent hepatocellular carcinoma.
Taoka, Masato; Morofuji, Noriaki; Yamauchi, Yoshio; Ojima, Hidenori; Kubota, Daisuke; Terukina, Goro; Nobe, Yuko; Nakayama, Hiroshi; Takahashi, Nobuhiro; Kosuge, Tomoo; Isobe, Toshiaki; Kondo, Tadashi
2014-11-07
This study used global protein expression profiling to search for biomarkers to predict early recurrent hepatocellular carcinoma (HCC). HCC tissues surgically resected from patients with or without recurrence within 2 years (early recurrent) after surgery were compared with adjacent nontumor tissue and with normal liver tissue. We used the PROTOMAP strategy for comparative profiling, which integrates denaturing polyacrylamide gel electrophoresis migratory rates and high-resolution, semiquantitative mass-spectrometry-based identification of in-gel-digested tryptic peptides. PROTOMAP allows examination of global changes in the size, topography, and abundance of proteins in complex tissue samples. This approach identified 8438 unique proteins from 45 708 nonredundant peptides and generated a proteome-wide map of changes in expression and proteolytic events potentially induced by intrinsic apoptotic/necrotic pathways. In the early recurrent HCC tissue, 87 proteins were differentially expressed (≥20-fold) relative to the other tissues, 46 of which were up-regulated or specifically proteolyzed and 41 of which were down-regulated. This data set consisted of proteins that fell into various functional categories, including signal transduction and cell organization and, notably, the major catalytic pathways responsible for liver function, such as the urea cycle and detoxification metabolism. We found that aberrant proteolysis appeared to occur frequently during recurrence of HCC in several key signal transducers, including STAT1 and δ-catenin. Further investigation of these proteins will facilitate the development of novel clinical applications.
Zhou, Guoying; Sprengers, Dave; Boor, Patrick P C; Doukas, Michail; Schutz, Hannah; Mancham, Shanta; Pedroza-Gonzalez, Alexander; Polak, Wojciech G; de Jonge, Jeroen; Gaspersz, Marcia; Dong, Haidong; Thielemans, Kris; Pan, Qiuwei; IJzermans, Jan N M; Bruno, Marco J; Kwekkeboom, Jaap
2017-10-01
Ligand binding to inhibitory receptors on immune cells, such as programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4), down-regulates the T-cell-mediated immune response (called immune checkpoints). Antibodies that block these receptors increase antitumor immunity in patients with melanoma, non-small-cell lung cancer, and renal cell cancer. Tumor-infiltrating CD4 + and CD8 + T cells in patients with hepatocellular carcinoma (HCC) have been found to be functionally compromised. We analyzed HCC samples from patients to determine if these inhibitory pathways prevent T-cell responses in HCCs and to find ways to restore their antitumor functions. We collected HCC samples from 59 patients who underwent surgical resection from November 2013 through May 2017, along with tumor-free liver tissues (control tissues) and peripheral blood samples. We isolated tumor-infiltrating lymphocytes (TIL) and intra-hepatic lymphocytes. We used flow cytometry to quantify expression of the inhibitory receptors PD-1, hepatitis A virus cellular receptor 2 (TIM3), lymphocyte activating 3 (LAG3), and CTLA4 on CD8 + and CD4 + T cells from tumor, control tissue, and blood; we studied the effects of antibodies that block these pathways in T-cell activation assays. Expression of PD-1, TIM3, LAG3, and CTLA4 was significantly higher on CD8 + and CD4 + T cells isolated from HCC tissue than control tissue or blood. Dendritic cells, monocytes, and B cells in HCC tumors expressed ligands for these receptors. Expression of PD-1, TIM3, and LAG3 was higher on tumor-associated antigen (TAA)-specific CD8 + TIL, compared with other CD8 + TIL. Compared with TIL that did not express these inhibitory receptors, CD8 + and CD4 + TIL that did express these receptors had higher levels of markers of activation, but similar or decreased levels of granzyme B and effector cytokines. Antibodies against CD274 (PD-ligand1 [PD-L1]), TIM3, or LAG3 increased proliferation of CD8 + and CD4 + TIL and cytokine production in response to stimulation with polyclonal antigens or TAA. Importantly, combining antibody against PD-L1 with antibodies against TIM3, LAG3, or CTLA4 further increased TIL functions. The immune checkpoint inhibitory molecules PD-1, TIM3, and LAG3 are up-regulated on TAA-specific T cells isolated from human HCC tissues, compared with T cells from tumor-free liver tissues or blood. Antibodies against PD-L1, TIM3, or LAG3 restore responses of HCC-derived T cells to tumor antigens, and combinations of the antibodies have additive effects. Strategies to block PD-L1, TIM3, and LAG3 might be developed for treatment of primary liver cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Grinchuk, Oleg V; Yenamandra, Surya P; Iyer, Ramakrishnan; Singh, Malay; Lee, Hwee Kuan; Lim, Kiat Hon; Chow, Pierce Kah-Hoe; Kuznetsov, Vladamir A
2018-01-01
Currently, molecular markers are not used when determining the prognosis and treatment strategy for patients with hepatocellular carcinoma (HCC). In the present study, we proposed that the identification of common pro-oncogenic pathways in primary tumors (PT) and adjacent non-malignant tissues (AT) typically used to predict HCC patient risks may result in HCC biomarker discovery. We examined the genome-wide mRNA expression profiles of paired PT and AT samples from 321 HCC patients. The workflow integrated differentially expressed gene selection, gene ontology enrichment, computational classification, survival predictions, image analysis and experimental validation methods. We developed a 24-ribosomal gene-based HCC classifier (RGC), which is prognostically significant in both PT and AT. The RGC gene overexpression in PT was associated with a poor prognosis in the training (hazard ratio = 8.2, P = 9.4 × 10 -6 ) and cross-cohort validation (hazard ratio = 2.63, P = 0.004) datasets. The multivariate survival analysis demonstrated the significant and independent prognostic value of the RGC. The RGC displayed a significant prognostic value in AT of the training (hazard ratio = 5.0, P = 0.03) and cross-validation (hazard ratio = 1.9, P = 0.03) HCC groups, confirming the accuracy and robustness of the RGC. Our experimental and bioinformatics analyses suggested a key role for c-MYC in the pro-oncogenic pattern of ribosomal biogenesis co-regulation in PT and AT. Microarray, quantitative RT-PCR and quantitative immunohistochemical studies of the PT showed that DKK1 in PT is the perspective biomarker for poor HCC outcomes. The common co-transcriptional pattern of ribosome biogenesis genes in PT and AT from HCC patients suggests a new scalable prognostic system, as supported by the model of tumor-like metabolic redirection/assimilation in non-malignant AT. The RGC, comprising 24 ribosomal genes, is introduced as a robust and reproducible prognostic model for stratifying HCC patient risks. The adjacent non-malignant liver tissue alone, or in combination with HCC tissue biopsy, could be an important target for developing predictive and monitoring strategies, as well as evidence-based therapeutic interventions, that aim to reduce the risk of post-surgery relapse in HCC patients. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Th22 cells are associated with hepatocellular carcinoma development and progression
Qin, Shanyu; Ma, Shijia; Huang, Xiaoli; Lu, Donghong
2014-01-01
Objective IL-22-producing CD4+ T helper cells (Th22 cells) have been identified as major inducers of tissue inflammation and immune responses. Currently, no previous study explored the role of Th22 cells in the pathogenesis of hepatocellular carcinoma (HCC). The study aimed to determine the biological function of Th22 cells and its effector IL-22 in HCC patients. Methods Forty-five HCC patients and 19 healthy controls were recruited and their peripheral blood was collected. The fresh HCC tissues, adjacent HCC tissues and ten normal liver tissues were also collected. Flow cytometry analysis was used to determine the frequencies of circulating Th22 cells and Th17 cells. Serum IL-22 levels were tested by enzyme-linked immunosorbent assay (ELISA). Immunohistochemical staining and real-time polymerase chain reaction (PCR) were used to detect IL-22 protein and mRNA in tissues specimens, respectively. Results Circulating Th22 cells, Th17 cells and serum IL-22 levels were significantly elevated in HCC patients compared with those of healthy controls (P<0.001). Th22 cells were showed to be positively correlated with IL-22 in HCC patients (P<0.05), but not in healthy controls. No significant differences were found in HCC patients with HBeAg positivity or negativity in term of Th22 cells and serum IL-22 levels. The expression of IL-22 protein and mRNA was highest in HCC tissues, followed by adjacent HCC tissues and normal liver tissues. Furthermore, Th22 cells, serum IL-22 levels and IL-22 mRNA were elevated at stage III-IV compared with stage I-II of HCC (P<0.05). Conclusions Elevation of circulating Th22 cells and IL-22 may be implicated in the pathogenesis of HCC, and potentially be cellular targets for therapeutic intervention. PMID:24826053
Yoo, Seungyeul; Wang, Wenhui; Wang, Qin; Fiel, M Isabel; Lee, Eunjee; Hiotis, Spiros P; Zhu, Jun
2017-12-07
Chronic hepatitis B virus (HBV) infection leads to liver fibrosis, which is a major risk factor in hepatocellular carcinoma (HCC) and an independent risk factor of recurrence after HCC tumor resection. The HBV genome can be inserted into the human genome, and chronic inflammation may trigger somatic mutations. However, how HBV integration and other genomic changes contribute to the risk of tumor recurrence with regards to the different degree of liver fibrosis is not clearly understood. We sequenced mRNAs of 21 pairs of tumor and distant non-neoplastic liver tissues of HBV-HCC patients and performed comprehensive genomic analyses of our RNAseq data and public available HBV-HCC sequencing data. We developed a robust pipeline for sensitively identifying HBV integration sites based on sequencing data. Simulations showed that our method outperformed existing methods. Applying it to our data, 374 and 106 HBV host genes were identified in non-neoplastic liver and tumor tissues, respectively. When applying it to other RNA sequencing datasets, consistently more HBV integrations were identified in non-neoplastic liver than in tumor tissues. HBV host genes identified in non-neoplastic liver samples significantly overlapped with known tumor suppressor genes. More significant enrichment of tumor suppressor genes was observed among HBV host genes identified from patients with tumor recurrence, indicating the potential risk of tumor recurrence driven by HBV integration in non-neoplastic liver tissues. We also compared SNPs of each sample with SNPs in a cancer census database and inferred samples' pathogenic SNP loads. Pathogenic SNP loads in non-neoplastic liver tissues were consistently higher than those in normal liver tissues. Additionally, HBV host genes identified in non-neoplastic liver tissues significantly overlapped with pathogenic somatic mutations, suggesting that HBV integration and somatic mutations targeting the same set of genes are important to tumorigenesis. HBV integrations and pathogenic mutations showed distinct patterns between low and high liver fibrosis patients with regards to tumor recurrence. The results suggest that HBV integrations and pathogenic SNPs in non-neoplastic tissues are important for tumorigenesis and different recurrence risk models are needed for patients with low and high degrees of liver fibrosis.
Jian, Jianbo; Zhang, Wenxue; Yang, Hao; Zhao, Xinyan; Xuan, Ruijiao; Li, Dongyue; Hu, Chunhong
2017-01-01
Capillarization of sinusoids and change of trabecular thickness are the main histologic features in hepatocellular carcinoma (HCC). Of particular interest are the three-dimensional (3D) visualization and quantitative evaluation of such alterations in the HCC progression. X-ray phase-contrast computed tomography (PCCT) is an emerging imaging method that provides excellent image contrast for soft tissues. This study aimed to explore the potential of in-line PCCT in microstructure imaging of capillarized sinusoids and trabecular structure in human HCC tissues and to quantitatively evaluate the alterations of those fine structures during the development of HCC. This project was designed as an ex vivo experimental study. The study was approved by the institutional review board, and informed consent was obtained from the patients. Eight human resected HCC tissue samples were imaged using in-line PCCT. After histologic processing, PCCT images and histopathologic data were matched. Fine structures in HCC tissues were revealed. Quantitative analyses of capillarized sinusoids (ie, percentage of sinusoidal area [PSA], sinusoidal volume) and trabecular structure (ie, trabecular thickness, surface-area-to-volume ratio [SA/V]) in low-grade (well or moderately differentiated) and high-grade (poorly differentiated) HCC groups were performed. Using PCCT, the alterations of capillarized sinusoids and trabecular structure were clearly observed in 3D geometry, which was confirmed by the corresponding histologic sections. The 3D qualitative analyses of sinusoids in the high-grade HCC group were significantly different (P < 0.05) in PSA (7.8 ± 2.5%) and sinusoidal volume (2.9 ± 0.6 × 10 7 µm 3 ) from those in the low-grade HCC group (PSA, 12.9 ± 2.2%; sinusoidal volume, 2.4 ± 0.3 × 10 7 µm 3 ). Moreover, the 3D quantitative evaluation of the trabecular structure in the high-grade HCC group showed a significant change (P < 0.05) in the trabecular thickness (87.8 ± 15.6 µm) and SA/V (2.2 ± 1.3 × 10 3 µm - 1 ) compared to the low-grade HCC group (trabecular thickness, 75.9 ± 7.1 µm; SA/V, 7.5 ± 1.3 × 10 3 µm - 1 ). This study provides insights into the 3D alterations of microstructures such as capillarized sinusoids and the trabecular structure at a micrometer level, which might allow for an improved understanding of the development of HCC. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Zhang, Changsong; Ling, Yang; Zhang, Chenghui; Xu, Yun; Gao, Lu; Li, Rong; Zhu, Jing; Fan, Lieying; Wei, Lixin
2012-01-01
Background: To evaluate the promoter methylation status of RECK gene and mRNA expression in patients with hepatocellular carcinoma (HCC). Methods: We analyzed RECK methylation by MSP, and RECK mRNA by real-time PCR in 74 HCC. The liver cell lines (7721, Chang and Hep-G2) were treated with 5-Aza-CdR and TSA. Results: RECK mRNA were lower in HCC tissues (Mean -∆Ct = -3.29) than that in Non-Hcc tissues (Mean -∆Ct = -2.42). Expression of RECK was elevated in only 24 (32.43%) of the 74 HCC patients but decreased (-∆∆Ct<0) in 50 (67.57%) of the patients. RECK promoter was hypermethylated in 55.4% (41/74) of HCCs, and in only 17.6% (13/74) of Non-Hcc samples. RECK mRNA were lower in HCC patients with hypermethylation (∆MI>=0.5) (Mean -∆∆Ct = -1.75) than those with demethylation (∆MI<0.5) (Mean -∆∆Ct = 0.05), and there is a decreased tendency for RECK mRNA in HCC patients with promoter hypermethylation (p = 0.002). There was a significantly correlation found between RECK mRNA and poor survival after surgery. After treated by 5-Aza-CdR and TSA, we found that RECK mRNA induced different changes in 7721, Chang and Hep-G2 cells. And RECK demethylation also induced by epigenetic inhibitors. Conclusion: The results suggested that the hypermethylation may lead to promoter silencing of RECK mRNA and associated with poor survival in HCC. PMID:22419890
A Novel Predictive Equation for Potential Diagnosis of Cholangiocarcinoma
Kraiklang, Ratthaphol; Pairojkul, Chawalit; Khuntikeo, Narong; Imtawil, Kanokwan; Wongkham, Sopit; Wongkham, Chaisiri
2014-01-01
Cholangiocarcinoma (CCA) is the second most common-primary liver cancer. The difficulties in diagnosis limit successful treatment of CCA. At present, histological investigation is the standard diagnosis for CCA. However, there are some poor-defined tumor tissues which cannot be definitively diagnosed by general histopathology. As molecular signatures can define molecular phenotypes related to diagnosis, prognosis, or treatment outcome, and CCA is the second most common cancer found after hepatocellularcarcinoma (HCC), the aim of this study was to develop a predictive model which differentiates CCA from HCC and normal liver tissues. An in-house PCR array containing 176 putative CCA marker genes was tested with the training set tissues of 20 CCA and 10 HCC cases. The molecular signature of CCA revealed the prominent expression of genes involved in cell adhesion and cell movement, whereas HCC showed elevated expression of genes related to cell proliferation/differentiation and metabolisms. A total of 69 genes differentially expressed in CCA and HCC were optimized statistically to formulate a diagnostic equation which distinguished CCA cases from HCC cases. Finally, a four-gene diagnostic equation (CLDN4, HOXB7, TMSB4 and TTR) was formulated and then successfully validated using real-time PCR in an independent testing set of 68 CCA samples and 77 non-CCA controls. Discrimination analysis showed that a combination of these genes could be used as a diagnostic marker for CCA with better diagnostic parameters with high sensitivity and specificity than using a single gene marker or the usual serum markers (CA19-9 and CEA). This new combination marker may help physicians to identify CCA in liver tissues when the histopathology is uncertain. PMID:24586698
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong; Han, Sheng; Peng, Rui
2015-03-06
Publicly available microarray data suggests that the expression of FAM83D (Family with sequence similarity 83, member D) is elevated in a wide variety of tumor types, including hepatocellular carcinoma (HCC). However, its role in the pathogenesis of HCC has not been elucidated. Here, we showed that FAM83D was frequently up-regulated in HCC samples. Forced FAM83D expression in HCC cell lines significantly promoted their proliferation and colony formation while FAM83D knockdown resulted in the opposite effects. Mechanistic analyses indicated that FAM83D was able to activate the MEK/ERK signaling pathway and promote the entry into S phase of cell cycle progression. Takenmore » together, these results demonstrate that FAM83D is a novel oncogene in HCC development and may constitute a potential therapeutic target in HCC. - Highlights: • FAM83D is up-regulated in HCC tissues and cell lines. • Ectopic expression of FAM83D promotes HCC cell proliferation and colony formation. • Depletion of FAM83D inhibits HCC cell proliferation and colony formation. • FAM83D activates the MEK/ERK signaling pathway in HCC.« less
Yu, Hai-Ying; Zhu, Man-Hua; Xiang, Dai-Rong; Li, Jun; Sheng, Ji-Fang
2014-01-01
Background Augmenter of liver regeneration (ALR) is an important polypeptide that participates in the process of liver regeneration. Two forms of ALR proteins are expressed in hepatocytes. Previous data have shown that ALR is essential for cell survival and has potential antimetastatic properties in hepatocellular carcinoma (HCC). Aims The study aimed to evaluate the expression levels of two forms of ALR proteins in HCC and their possible significance in HCC development. Methods Balb/c mouse monoclonal antibody against ALR protein was prepared in order to detect the ALR protein in HCC by Western blotting and immunohistochemistry. ALR mRNA expression levels were measured by real-time polymerase chain reaction in HCC tissues and compared to paracancerous liver tissues in 22 HCC patients. Results ALR mRNA expression in HCC liver tissues (1.51×106 copies/μL) was higher than in paracancerous tissues (1.04×104 copies/μL). ALR protein expression was also enhanced in HCC liver tissues. The enhanced ALR protein was shown to be 23 kDa by Western blotting. Immunohistochemical analysis showed that the 23 kDa ALR protein mainly existed in the hepatocyte cytosol. Conclusion The 23 kDa ALR protein was highly expressed in HCC and may play an important role in hepatocarcinogenesis. PMID:24940072
Wang, Jianguo; Xie, Haiyang; Li, Jie; Cao, Jili; Zhou, Lin; Zheng, Shusen
2016-01-01
The more accurate biomarkers have long been desired for hepatocellular carcinoma (HCC). Here, we characterized global large-scale proteomics of multistep hepatocarcinogenesis in an attempt to identify novel biomarkers for HCC. Quantitative data of 37874 sequences and 3017 proteins during hepatocarcinogenesis were obtained in cohort 1 of 75 samples (5 pooled groups: normal livers, hepatitis livers, cirrhotic livers, peritumoral livers, and HCC tissues) by iTRAQ 2D LC-MS/MS. The diagnostic performance of the top six most upregulated proteins in HCC group and HSP70 as reference were subsequently validated in cohort 2 of 114 samples (hepatocarcinogenesis from normal livers to HCC) using immunohistochemistry. Of seven candidate protein markers, PARP1, GS and NDRG1 showed the optimal diagnostic performance for HCC. PARP1, as a novel marker, showed comparable diagnostic performance to that of classic markers GS and NDRG1 in HCC (AUCs = 0.872, 0.856 and 0.792, respectively). A significant higher AUC of 0.945 was achieved when three markers combined. For diagnosis of HCC, the sensitivity and specificity were 88.2% and 81.0% when at least two of the markers were positive. Similar diagnostic values of PARP1, GS and NDRG1 were confirmed by immunohistochemistry in cohort 3 of 180 HCC patients. Further analysis indicated that PARP1 and NDRG1 were associated with some clinicopathological features, and the independent prognostic factors for HCC patients. Overall, global large-scale proteomics on spectrum of multistep hepatocarcinogenesis are obtained. PARP1 is a novel promising diagnostic/prognostic marker for HCC, and the three-marker panel (PARP1, GS and NDRG1) with excellent diagnostic performance for HCC was established. PMID:26883192
Liu, Xiaomin; Zhang, Yingjian; Wang, Ping; Wang, Hongyun; Su, Huanhuan; Zhou, Xin; Zhang, Lamei
2016-07-16
BACKGROUND This study was designed to improve our understanding of the role of miR-18a and its target (connective tissue growth factor (CTGF), which are mediators in HBX-induced hepatocellular carcinoma (HCC). MATERIAL AND METHODS We first investigated the expression of several candidate microRNAs (miRNAs) reported to have been aberrantly expressed between HepG2 and HepG2.2.15, which is characterized by stable HBV infection, while the CTGF is identified as a target of miR-18a. Furthermore, the expression of CTGF evaluated in HepG2 was transfected with HBX, while the HepG2.2.15 was transfected with miR-18a and CTGF siRNA. We examined the cell cycle at the same time. RESULTS We found that the expression of miR-18a was abnormally reduced in the HBV-positive HCC tissue samples compared with HBV-negative HCC samples. Through the use of a luciferase reporter system, we also identified CTGF 3'UTR (1046-1052 bp) as the exact binding site for miR-18a. We also observed a clear increase in CTGF mRNA and protein expression levels in HBV-positive HCC human tissue samples in comparison with the HBV-negative controls, indicating a possible negatively associated relationship between miR-18a and CTGF. Furthermore, we investigated the effect of HBX overexpression on miR-18a and CTGF, as well as the viability and cell cycle status of HepG2 cells. In addition, we found that HBX introduction downregulated miR-18a, upregulated CTGF, elevated the viability, and promoted cell cycle progression. We transfected HepG2.2.15 with miR-18a mimics and CTGF siRNA, finding that upregulated miR-18a and downregulated CTGF suppress the viability and cause cell cycle arrest. CONCLUSIONS Our study shows the role of the CTGF gene as a target of miR-18a, and identifies the function of HBV/HBX/miR-18a/CTGF as a key signaling pathway mediating HBV infection-induced HCC.
Transformation of primary human hepatocytes in hepatocellular carcinoma.
Montalbano, Mauro; Rastellini, Cristiana; Wang, Xiaofu; Corsello, Tiziana; Eltorky, Mahmoud A; Vento, Renza; Cicalese, Luca
2016-03-01
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Currently, there is limited knowledge of neoplastic transformation of hepatocytes in HCC. In clinical practice, the high rate of HCC local recurrence suggests the presence of different hepatocyte populations within the liver and particularly in the tumor proximity. The present study investigated primary human hepatocyte cultures obtained from liver specimens of patients affected by cirrhosis and HCC, their proliferation and transformation. Liver samples were obtained from seven HCC cirrhotic patients and from three patients with normal liver (NL). Immediately after surgery, cell outgrowth and primary cultures were obtained from the HCC lesion, the cirrhotic tissue proximal (CP, 1-3 cm) and distal (CD, >5 cm) to the margin of the neoplastic lesion, or from NL. Cells were kept in culture for 16 weeks. Morphologic analyses were performed and proliferation rate of the different cell populations compared over time. Glypican-3, Heppar1, Arginase1 and CD-44 positivity were tested. The degree of invasiveness of cells acquiring neoplastic characteristics was studied with a transwell migration assay. We observed that HCC cells maintained their morphology and unmodified neoplastic characteristics when cultured. Cells isolated from CP, showed a progressive morphologic transformation in HCC-like cells accompanied by modification of markers expression with signs of invasiveness. Absence of HCC contamination in the CP isolates was confirmed. In CD samples some of these characteristics were present and at significantly lower levels. With the present study, we are the first to have identified and describe the existence of human hepatocytes near the cancerous lesion that can transform in HCC in vitro.
Ye, Weikang; Li, Jieke; Fang, Guan; Cai, Xiupeng; Zhang, Yan; Zhou, Chaojun; Chen, Lei; Yang, Wenjun
2018-05-01
The aim of the present study was to determine the expression profile of microRNA 638 (miR-638) and sex-determining region Y-box 2 (SOX2) in hepatocellular carcinoma (HCC), and to investigate their association with clinicopathological features and survival. Reverse transcription-quantitative polymerase chain reaction analysis was used to investigate miR-638 and SOX2 expression in 78 patients with HCC. Western blot and immunohistochemical analyses were performed in order to determine SOX2 protein expression in HCC samples. Combined with the clinical postoperative follow-up data, the expression of miR-638 and SOX2 and the association between this and the prognostic values of patients with HCC were statistically analyzed. The results of the present study confirmed that miR-638 expression in tumor tissues was significantly downregulated (P<0.001), while SOX2 expression was significantly increased, compared with healthy control tissues (P<0.05). In addition, a significant inverse correlation between miR-638 and SOX2 expression was also observed in the HCC tissues (r=-0.675; P<0.05). Clinicopathological correlation analysis demonstrated that reduced miR-638 and elevated SOX2 expression was significantly associated with the Tumor-Node-Metastasis stage and portal vascular invasion (P<0.05). However, no significant differences were observed in other clinicopathological features, including age, sex, tumor size, tumor differentiation and hepatitis status (P>0.05). Notably, follow-up analysis revealed that patients with HCC with low miR-638 expression and high SOX2 expression tended to have a significantly shorter postoperative survival time (P<0.001). It was concluded that miR-638 may serve a vital role in the occurrence and progression of HCC by regulating SOX2 expression and thus, that miR-638 and SOX2 may be critical as novel diagnostic and prognostic biomarkers for HCC.
STAT3 activation in monocytes accelerates liver cancer progression.
Wu, Wen-Yong; Li, Jun; Wu, Zheng-Sheng; Zhang, Chang-Le; Meng, Xiang-Ling
2011-12-05
Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor infiltrating inflammatory cells may an attractive target for liver cancer therapy.
Liu, Miao; Du, Lingyao; He, Zhiliang; Yan, Libo; Shi, Ying; Shang, Jin; Tang, Hong
2017-01-01
Aim. ERp57 is involved in virus induced endoplasmic reticulum stress (ERS) and plays an important role in tumorigenesis. This study aimed to find whether HBV infection altered ERp57 expression and whether ERp57 regulation was involved in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) genesis. Materials and Methods. HBV-HCC tissues, chronic hepatitis B (CHB) liver tissues, and normal liver tissues were acquired. ERp57 expressions in these tissues were detected through immunohistochemistry (IHC). And ERp57 expression in liver cell line L02, HBV replicative liver cell line L02-pHBV4.1, and HCC cell lines were detected through western blot for verification. Then medical data on patients providing HCC tissues were collected and analyzed along with ERp57 expression. Results. Higher ERp57 expression was found in HCC and CHB tissues ( p < 0.001). And HCC cell lines and L02-pHBV4.1 presented higher ERp57 expression as well. In patients, ERp57 expression showed significant differences between death and survival groups ( p = 0.037). And cumulative survival in patients with higher ERp57 (score ⩾ 8.75) is significantly lower ( p = 0.009). Conclusion. Our study found increased expression of ERp57 in HBV-HCC. Such altered expression could be related to HBV infection and high ERp57 expression may lead to poor prognosis of HBV-HCC patients.
Liu, Xirui; Liang, Yingjian; Song, Ruipeng; Yang, Guangchao; Han, Jihua; Lan, Yaliang; Pan, Shangha; Zhu, Mingxi; Liu, Yao; Wang, Yan; Meng, Fanzheng; Cui, Yifeng; Wang, Jiabei; Zhang, Bo; Song, Xuan; Lu, Zhaoyang; Zheng, Tongsen; Liu, Lianxin
2018-05-15
Abnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of the lipolytic pathway in HCC has not been elucidated. We compared levels of adipose triglyceride lipase (ATGL) in human HCC and healthy liver tissues by real time PCR, western blot and immunohistochemistry. We measured diacylglycerol(DAG) and free fatty acid (FFA) levels in HCC cells driven by the NEAT1-ATGL axis and in HCC tissues. We also assessed the effects of ATGL, DAG, FFA, and NEAT1 on HCC cells proliferation in vitro and in an orthotopic xenograft HCC mouse model. We also performed a luciferase reporter assay to investigate the interaction between NEAT1/ATGL and miR-124-3p. We found that the lipolytic enzyme, ATGL is highly expressed in human HCC tissues and predicts poor prognosis. We also found that high levels of DAG and FFA are present in HCC tissues. Furthermore, the lncRNA-NEAT1 was found to modulate ATGL expression and disrupt lipolysis in HCC cells via ATGL. Notably, ATGL and its products, DAG and FFA, were shown to be responsible for NEAT1-mediated HCC cell growth. NEAT1 regulated ATGL expression by binding miR-124-3p. Additionally, NEAT1 knockdown attenuated HCC cell growth through miR-124-3p/ATGL/DAG+FFA/PPARα signaling. Our results reveal that NEAT1-modulates abnormal lipolysis via ATGL to drive HCC proliferation.
Zhang, Yu; Liu, Huiying; Sun, Bin; Zhao, Linlin; Ge, Naijian; Qian, Haihua; Yang, Yefa; Wu, Mengchao; Yin, Zhengfeng
2014-01-01
Background Asialoglycoprotein receptor (ASGPR)-ligand-based separation combined with identification with Hep Par 1 or pan-cytokeratin (P-CK) antibody have been demonstrated to detect circulating tumor cells (CTCs) in hepatocellular carcinoma (HCC). The aim of this study was to develop an improved enrichment and identification system that allows the detection of all types of HCC CTCs. Methods The specificity of the prepared anti-ASGPR monoclonal antibody was characterized. HCC cells were bound by ASGPR antibody and subsequently magnetically isolated by second antibody-coated magnetic beads. Isolated HCC cells were identified by immunofluorescence staining using a combination of anti-P-CK and anti-carbamoyl phosphate synthetase 1 (CPS1) antibodies. Blood samples spiked with HepG2 cells were used to determine recovery and sensitivity. CTCs were detected in blood samples from HCC patients and other patients. Results ASGPR was exclusively expressed in human hepatoma cell line, normal hepatocytes and HCC cells in tissue specimens detected by the ASGPR antibody staining. More HCC cells could be identified by the antibody cocktail for CPS1 and P-CK compared with a single antibody. The current approach obtained a higher recovery rate of HepG2 cells and more CTC detection from HCC patients than the previous method. Using the current method CTCs were detected in 89% of HCC patients and no CTCs were found in the other test subjects. Conclusions Our anti-ASGPR antibody could be used for specific and efficient HCC CTC enrichment, and anti-P-CK combined with anti-CPS1 antibodies is superior to identification with one antibody alone in the sensitivity for HCC CTC detection. PMID:24763545
Yan, Xiaohua; Wu, Jingyi; Jiang, Quanlong; Cheng, Hao; Han, Jing-Dong J; Chen, Ye-Guang
2018-02-01
Evading TGF-β-mediated growth inhibition is often associated with tumorigenesis in liver, including hepatocellular carcinoma (HCC). To better understand the functions and the underlying molecular mechanisms of TGF-β in HCC initiation and progression, we carried out transcriptome sequencing (RNA-Seq) to identify the target genes of TGF-β. CXXC5, a member of the CXXC-type zinc finger domain-containing protein family, was identified as a novel TGF-β target gene in Hep3B HCC cells. Knockdown of CXXC5 attenuated the expression of a substantial portion of TGF-β target genes and ameliorated TGF-β-induced growth inhibition or apoptosis of Hep3B cells, suggesting that CXXC5 is required for TGF-β-mediated inhibition of HCC progression. Analysis of the TCGA database indicated that CXXC5 expression is reduced in the majority of HCC tissue samples in comparison to that in normal tissues. Furthermore, CXXC5 associates with the histone deacetylase HDAC1 and competes its interaction with Smad2/3, thereby abolishing the inhibitory effect of HDAC1 on TGF-β signaling. These observations together suggest that CXXC5 may act as a tumor suppressor by promoting TGF-β signaling via a positive feedback loop, and reveal a strategy for HCC to bypass TGF-β-mediated cytostasis by disrupting the positive feedback regulation. Our findings shed new light on TGF-β signaling regulation and demonstrate the function of CXXC5 in HCC development.
Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress
Huang, De; Li, Tingting; Wang, Lin; Zhang, Long; Yan, Ronghui; Li, Kui; Xing, Songge; Wu, Gongwei; Hu, Lan; Jia, Weidong; Lin, Sheng-Cai; Dang, Chi V; Song, Libing; Gao, Ping; Zhang, Huafeng
2016-01-01
Cancer cells are known for their capacity to rewire metabolic pathways to support survival and proliferation under various stress conditions. Ketone bodies, though produced in the liver, are not consumed in normal adult liver cells. We find here that ketone catabolism or ketolysis is re-activated in hepatocellular carcinoma (HCC) cells under nutrition deprivation conditions. Mechanistically, 3-oxoacid CoA-transferase 1 (OXCT1), a rate-limiting ketolytic enzyme whose expression is suppressed in normal adult liver tissues, is re-induced by serum starvation-triggered mTORC2-AKT-SP1 signaling in HCC cells. Moreover, we observe that enhanced ketolysis in HCC is critical for repression of AMPK activation and protects HCC cells from excessive autophagy, thereby enhancing tumor growth. Importantly, analysis of clinical HCC samples reveals that increased OXCT1 expression predicts higher patient mortality. Taken together, we uncover here a novel metabolic adaptation by which nutrition-deprived HCC cells employ ketone bodies for energy supply and cancer progression. PMID:27644987
Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma
NASA Astrophysics Data System (ADS)
Xu, Rui-Hua; Wei, Wei; Krawczyk, Michal; Wang, Wenqiu; Luo, Huiyan; Flagg, Ken; Yi, Shaohua; Shi, William; Quan, Qingli; Li, Kang; Zheng, Lianghong; Zhang, Heng; Caughey, Bennett A.; Zhao, Qi; Hou, Jiayi; Zhang, Runze; Xu, Yanxin; Cai, Huimin; Li, Gen; Hou, Rui; Zhong, Zheng; Lin, Danni; Fu, Xin; Zhu, Jie; Duan, Yaou; Yu, Meixing; Ying, Binwu; Zhang, Wengeng; Wang, Juan; Zhang, Edward; Zhang, Charlotte; Li, Oulan; Guo, Rongping; Carter, Hannah; Zhu, Jian-Kang; Hao, Xiaoke; Zhang, Kang
2017-11-01
An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive `liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.
Cyclophilin A Is Overexpressed in Hepatocellular Carcinoma and Is Associated with the Cell Cycle.
Gong, Zhaohua; Chi, Cheng; Huang, Xiaojuan; Chu, Hongjin; Wang, Jiahui; Du, Fengcai; Jiang, Lixin; Chen, Jian
2017-08-01
To investigate the expression of cyclophilin A (CypA) in human hepatocellular carcinoma (HCC) and explore the effects of CypA on the cell cycle in HCC. CypA expression was assessed by immunohistochemistry in 48 cases of HCC tissues and paired adjacent tissues. CypA plasmid was transfected into HCC cells and the cell cycle was analyzed. Positivity for CypA was higher in HCC tissues than in adjacent tissues (79.1% vs. 12.5%, p<0.05). Positivity for CypA was significantly higher in stage III and IV HCC than in stage I and II (p<0.05). Elevated CypA induced an increase of the percentage of S-phase cells (from 34.79% to 42.14%) and a decrease of G 0 -G 1 phase cells (from 58.10% to 50.64%). CypA is overexpressed in HCC and is associated with TNM stage. CypA also appears to promote the transition of the cell cycle from G 1 to S phase. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua
Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared tomore » matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.« less
2014-01-01
Background Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death especially among Asian and African populations. It is urgent that we identify carcinogenesis-related genes to establish an innovative treatment strategy for this disease. Methods Triple-combination array analysis was performed using one pair each of HCC and noncancerous liver samples from a 68-year-old woman. This analysis consists of expression array, single nucleotide polymorphism array and methylation array. The gene encoding collagen type 1 alpha 1 (COL1A1) was identified and verified using HCC cell lines and 48 tissues from patients with primary HCC. Results Expression array revealed that COL1A1 gene expression was markedly decreased in tumor tissues (log2 ratio –1.1). The single nucleotide polymorphism array showed no chromosomal deletion in the locus of COL1A1. Importantly, the methylation value in the tumor tissue was higher (0.557) than that of the adjacent liver tissue (0.008). We verified that expression of this gene was suppressed by promoter methylation. Reactivation of COL1A1 expression by 5-aza-2′-deoxycytidine treatment was seen in HCC cell lines, and sequence analysis identified methylated CpG sites in the COL1A1 promoter region. Among 48 pairs of surgical specimens, 13 (27.1%) showed decreased COL1A1 mRNA expression in tumor sites. Among these 13 cases, 10 had promoter methylation at the tumor site. The log-rank test indicated that mRNA down-regulated tumors were significantly correlated with a poor overall survival rate (P = 0.013). Conclusions Triple-combination array analysis successfully identified COL1A1 as a candidate survival-related gene in HCCs. Epigenetic down-regulation of COL1A1 mRNA expression might have a role as a prognostic biomarker of HCC. PMID:24552139
miR-133b Regulation of Connective Tissue Growth Factor
Gjymishka, Altin; Pi, Liya; Oh, Seh-Hoon; Jorgensen, Marda; Liu, Chen; Protopapadakis, Yianni; Patel, Ashnee; Petersen, Bryon E.
2017-01-01
miRNAs are involved in liver regeneration, and their expression is dysregulated in hepatocellular carcinoma (HCC). Connective tissue growth factor (CTGF), a direct target of miR-133b, is crucial in the ductular reaction (DR)/oval cell (OC) response for generating new hepatocyte lineages during liver injury in the context of hepatotoxin-inhibited hepatocyte proliferation. Herein, we investigate whether miR-133b regulation of CTGF influences HCC cell proliferation and migration, and DR/OC response. We analyzed miR-133b expression and found it to be down-regulated in HCC patient samples and induced in the rat DR/OC activation model of 2-acetylaminofluorene with partial hepatectomy. Furthermore, overexpression of miR-133b via adenoviral system in vitro led to decreased CTGF expression and reduced proliferation and Transwell migration of both HepG2 HCC cells and WBF-344 rat OCs. In vivo, overexpression of miR-133b in DR/OC activation models of 2-acetylaminofluorene with partial hepatectomy in rats, and 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mice, led to down-regulation of CTGF expression and OC proliferation. Collectively, these results show that miR-133b regulation of CTGF is a novel mechanism critical for the proliferation and migration of HCC cells and OC response. PMID:26945106
Lin, Jinduan; Cao, Shunwang; Wang, Yu; Hu, Yanwei; Liu, Hongwei; Li, Jiehua; Chen, Jing; Li, Pan; Liu, Jumei; Wang, Qian; Zheng, Lei
2018-06-04
Angiogenesis is considered as an important process in the development of malignancies and is associated with cancer progression and metastasis. Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and is recognized as a typical angiogenic tumor. Thus, it is of great importance to study the underlying mechanism of angiogenesis in HCC. The long non-coding RNA (lncRNA) ubiquitin conjugating enzyme E2C pseudogene 3 (UBE2CP3) has been reported as an oncogene that promotes tumor metastasis in HCC. However, the role and underlying mechanisms of UBE2CP3 in HCC angiogenesis are still unclear. We measured the expression levels of UBE2CP3 by in situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) in HCC patient samples. We also concomitantly used CD31/PAS double-staining to measure endothelial vessel (EV) density and used qRT-PCR to measure the CD31 mRNA level. HepG2 and SMMC-7721 cells were transfected with Lv-UBE2CP3 or Sh-UBE2CP3 virus to obtain stably over-expressing or knocking-down UBE2CP3 cell lines. The indirect effects of UBE2CP3 on ECs were studied by establishing a co-culture system using Transwell chambers with a 0.4-μm pore size. HCC cells and ECs in the co-culture system were separated, but the cytokines and growth factors were able to communicate with each other. Following exposed to HCC cells, ECs were collected for functional studies. Finally, we studied the function of UBE2CP3 in vivo by chick embryo chorioallantoic membrane (CAM) angiogenesis assays and nude mouse tumorigenicity assays. In this study, we found that UBE2CP3 expression was higher in HCC tissues than in para-tumor tissues and was up-regulated in tissues with high EV density. Functionally, we found that in the co-culture systems, HCC cells overexpressing UBE2CP3 promoted HUVEC proliferation, migration and tube formation via the activation of ERK/HIF-1α/p70S6K/VEGFA signalling, increasing the level of VEGFA in HCC cell supernatant. In addition, the opposite results appeared when the expression of UBE2CP3 in HCC cells was knocked down. Consistent with these results, CAM angiogenesis assays and nude mouse tumorigenicity assays showed that UBE2CP3 expression up-regulated EV density in vivo. Our study suggests that UBE2CP3 can enhance the interaction between HCC tumor cells and HUVECs and promote HCC tumorigenicity by facilitating angiogenesis.
Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping
2011-11-01
We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.
Tremblay, Marie-Pier; Armero, Victoria E S; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Bisaillon, Martin
2016-08-26
Dysregulations in alternative splicing (AS) patterns have been associated with many human diseases including cancer. In the present study, alterations to the global RNA splicing landscape of cellular genes were investigated in a large-scale screen from 377 liver tissue samples using high-throughput RNA sequencing data. Our study identifies modifications in the AS patterns of transcripts encoded by more than 2500 genes such as tumor suppressor genes, transcription factors, and kinases. These findings provide insights into the molecular differences between various types of hepatocellular carcinoma (HCC). Our analysis allowed the identification of 761 unique transcripts for which AS is misregulated in HBV-associated HCC, while 68 are unique to HCV-associated HCC, 54 to HBV&HCV-associated HCC, and 299 to virus-free HCC. Moreover, we demonstrate that the expression pattern of the RNA splicing factor hnRNPC in HCC tissues significantly correlates with patient survival. We also show that the expression of the HBx protein from HBV leads to modifications in the AS profiles of cellular genes. Finally, using RNA interference and a reverse transcription-PCR screening platform, we examined the implications of cellular proteins involved in the splicing of transcripts involved in apoptosis and demonstrate the potential contribution of these proteins in AS control. This study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in hepatocellular carcinoma. Moreover, these data allowed us to identify unique signatures of genes for which AS is misregulated in the different types of HCC.
Chen, Yong; Wang, Lijuan; Xu, Hexiang; Liu, Xingxiang; Zhao, Yingren
2013-10-01
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the third primary cause of cancer-related mortality worldwide. The molecular mechanisms underlying the initiation and formation of HCC remain obscure. In the present study, we performed exome sequencing using tumor and normal tissues from 3 hepatitis B virus (HBV)-positive BCLC stage A HCC patients. Bioinformatic analysis was performed to find candidate protein-altering somatic mutations. Eighty damaging mutations were validated and 59 genes were reported to be mutated in HBV-related HCCs for the first time here. Further analysis using whole genome sequencing (WGS) data of 88 HBV-related HCC patients from the European Genome-phenome Archive database showed that mutations in 33 of the 59 genes were also detected in other samples. Variants of two newly found genes, ZNF717 and PARP4, were detected in more than 10% of the WGS samples. Several other genes, such as FLNA and CNTN2, are also noteworthy. Thus, the exome sequencing analysis of three BCLC stage A patients provides new insights into the molecular events governing the early steps of HBV-induced HCC tumorigenesis.
Albersen, Maarten; Linsen, Loes; Tinel, Hanna; Sandner, Peter; Van Renterghem, Koenraad
2013-05-01
Overall efficacy rates of phosphodiesterase type 5 inhibitors (PDE5-i) for erectile dysfunction (ED) are 60-70%. PDE5-i treatment failures currently have to resort to invasive treatment options for restoration of erectile function. AIMS.: To assess changes in the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/protein kinase (PKG) pathway in human corpus cavernosum (HCC) of PDE5-i nonresponders compared with healthy controls. To evaluate the effects of BAY 60-4552, a stimulator of soluble guanylate cyclase (sGC), and vardenafil on relaxation of HCC strips from PDE5-i nonresponders. mRNA expression, morphological localization of the NO/cGMP/PKG pathway, and relaxant capacity of both compounds alone or combined. Analysis of variance, t-test or Mann-Whitney test based upon number of groups and normality of data. HCC tissues were harvested after consent from individuals undergoing penile prosthesis implantation (patients) and potent patients undergoing transurethral surgery (healthy controls, needle biopsy). HCC tissues of patients were compared with those of healthy controls for the expression of mRNA coding for PDE5A, eNOS, PKGα1, PKG2, sGCα1, sGCα2, sGCβ1, sGCβ2, α-smooth muscle actin (aSMA) and β-actin by quantitative polymerase chain reaction (qPCR). The respective proteins were localized using immunofluorescence. Tissue strips of patients were precontracted with phenylepinephrine followed by incubation with 1 μM of either vardenafil or BAY 60-4552, or both simultaneously. The main targets in the NO/cGMP/sGC pathway were downregulated in PDE5-i nonresponders. The pathway was morphologically located to HCC smooth muscle, of which the overall content was preserved in ED patients based on aSMA expression. BAY 60-4552 and vardenafil have synergistic effects on relaxation of HCC of PDE5-i nonresponders. The main limitation is the small amount of control tissue precluding functional testing on these samples. Despite downregulation of the NO/cGMP/PKG pathway, combining BAY 60-4552 with vardenafil significantly enhanced relaxation HCC strips of PDE5-i nonresponders. © 2013 International Society for Sexual Medicine.
Hatazawa, Yuri; Yano, Yoshihiko; Okada, Rina; Tanahashi, Toshihito; Hayashi, Hiroki; Hirano, Hirotaka; Minami, Akihiro; Kawano, Yuki; Tanaka, Motofumi; Fukumoto, Takumi; Murakami, Yoshiki; Yoshida, Masaru; Hayashi, Yoshitake
2018-01-01
Hepatocellular carcinoma (HCC) can develop in patients who are negative for the hepatitis B surface antigen (HBsAg) in serum but positive for hepatitis B virus (HBV) DNA in the liver, referred to as occult HBV infection (OBI). Previous reports showed that HBV variants in OBI-related HCC are different from those in HBsAg-positive HCC. In the present study, HBV quasispecies based on the pre-S/S gene in OBI-related HCC patients were examined by high throughput sequencing and compared with those in HBsAg-positive HCC. Nineteen tissue samples (9 OBI-related and 10 HBsAg-positive non-cancerous tissues) were collected at the time of surgery at Kobe University Hospital. The quasispecies with more than 1% variation in the pre-S/S region were isolated and analysed by ultra-deep sequencing. There were no significant differences in the major HBV populations, which exhibit more than 20% variation within the entire pre-S/S region, between OBI-related HCC and HBsAg-positive HCC. However, the prevalences of major populations with pre-S2 region mutations and of minor populations with polymerized human serum albumin-binding domain mutations were significantly higher in OBI-related HCC than in HBsAg-positive HCC. Moreover, the major variant populations associated with the B-cell epitope, located within the pre-S1 region, and the a determinant domain, located in the S region, were detected frequently in HBsAg-positive HCC. The minor populations of variants harbouring the W4R, L30S, Q118R/Stop, N123D and S124F/P mutations in the pre-S region and the L21F/S and L42F/S mutations in the S region were detected more frequently in OBI-related HCC than in HBsAg-positive HCC. Ultra-deep sequencing revealed that the B-cell epitope domain in the pre-S1 region and alpha determinant domain in the S region were variable in HBsAg-positive HCC, although the quasispecies associated with the pre-S2 region were highly prevalent in OBI-related HCC. Ref: R000034382/UMIN000030113; Retrospectively registered 25 November 2017.
Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity
Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus
2014-01-01
P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor. PMID:25337260
Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity.
Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus
2014-01-01
P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor.
Analysis of differentially co-expressed genes based on microarray data of hepatocellular carcinoma.
Wang, Y; Jiang, T; Li, Z; Lu, L; Zhang, R; Zhang, D; Wang, X; Tan, J
2017-01-01
Hepatocellular carcinoma (HCC) is the third leading cause of cancer related death worldwide. Although great progress in diagnosis and management of HCC have been made, the exact molecular mechanisms remain poorly understood. The study aims to identify potential biomarkers for HCC progression, mainly at transcription level. In this study, chip data GSE 29721 was utilized, which contains 10 HCC samples and 10 normal adjacent tissue samples. Differentially expressed genes (DEGs) between two sample types were selected by t-test method. Following, the differentially co-expressed genes (DCGs) and differentially co-expressed Links (DCLs) were identified by DCGL package in R with the threshold of q < 0.25. Afterwards, pathway enrichment analysis of the DCGs was carried out by DAVID. Then, DCLs were mapped to TRANSFAC database to reveal associations between relevant transcriptional factors (TFs) and their target genes. Quantitative real-time RT-PCR was performed for TFs or genes of interest. As a result, a total of 388 DCGs and 35,771 DCLs were obtained. The predominant pathways enriched by these genes were Cytokine-cytokine receptor interaction, ECM-receptor interaction and TGF-β signaling pathway. Three TF-target interactions, LEF1-NCAM1, EGR1-FN1 and FOS-MT2A were predicted. Compared with control, expressions of the TF genes EGR1, FOS and ETS2 were all up-regulated in the HCC cell line, HepG2; while LEF1 was down-regulated. Except NCAM1, all the target genes were up-regulated in HepG2. Our findings suggest these TFs and genes might play important roles in the pathogenesis of HCC and may be used as therapeutic targets for HCC management.
Zhong, Sheng; Yeo, Winnie; Tang, Mandy W; Wong, Nathalie; Lai, Paul B S; Johnson, Phillip J
2003-08-15
The human Ras association domain family 1A gene (RASSF1A) is a newly isolated tumor suppressor gene. In this study, we analyzed the methylation status of the promoter region of RASSF1A using bisulfite sequencing and PCR-RFLP in four liver cancer cell lines (Hep3B, HepG(2), SK-HEP-1, and Huh-7) and a cohort of 43 hepatitis B virus-associated hepatocellular carcinoma (HCC) tissues and their corresponding nontumor tissue specimens. The methylation of the CpG islands in the RASSF1A promoter was not detected in 4 samples of normal liver tissue or 10 samples of peripheral blood mononuclear cells from normal subjects. However, the CpG islands were completely methylated, and transcription of the RASSF1A was silenced in the four cell lines. Treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine reactivated the expression of RASSF1A in the Hep3B and HepG2 cells. In 41 of 43 (95%) HCC specimens studied, the promoter region of RASSF1A was intensively methylated at its CpG sites. Although heterogeneous methylation was also detected in 16 of the 23 (70%) corresponding nontumorous tissues analyzed, the level of methylation was significantly lower than in the corresponding tumor tissues. HCC has the highest incidence of promoter methylation of RASSF1A among all malignancies yet reported suggesting that hypermethylation of the CpG island promoter of RASSF1A may play an important pathological role in this tumor.
Simon, Frank; Bockhorn, Maximilian; Praha, Christian; Baba, Hideo A; Broelsch, Christoph E; Frilling, Andrea; Weber, Frank
2010-04-01
The aim of this study was to elucidate the role of HIF1A expression in hepatocellular carcinoma (HCC) and the corresponding non-malignant liver tissue and to correlate it with the clinical outcome of HCC patients after curative liver resection. HIF1A expression was determined by quantitative RT-PCR in HCC and corresponding non-malignant liver tissue of 53 patients surgically treated for HCC. High-density gene expression analysis and pathway analysis was performed on a selected subset of patients with high and low HIF1A expression in the non-malignant liver tissue. HIF1A over-expression in the apparently non-malignant liver tissue was a predictor of tumor recurrence and survival. The estimated 1-year and 5-year disease-free survival was significantly better in patients with low HIF1A expression in the non-malignant liver tissue when compared to those patients with high HIF1 expression (88.9% vs. 67.9% and 61.0% vs. 22.6%, respectively, p = 0.008). Based on molecular pathway analysis utilizing high-density gene-expression profiling, HIF1A related molecular networks were identified that contained genes involved in cell migration, cell homing, and cell-cell interaction. Our study identified a potential novel mechanism contributing to prognosis of HCC. The deregulation of HIF1A and its related pathways in the apparently non-malignant liver tissue provides for a modulated environment that potentially enhances or allows for HCC recurrence after curative resection.
Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao
2005-01-01
AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039
Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma
Wachsmann, Jason; Peng, Fangyu
2016-01-01
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872
Involvement of miR-485-5p in hepatocellular carcinoma progression targeting EMMPRIN.
Sun, Xiangjun; Liu, Yonglei; Li, Ming; Wang, Mingchun; Wang, Yutong
2015-05-01
EMMPRIN plays important roles in cancer development, which includes EMMPRIN 1, 2, 3, and 4 isoforms. EMMPRIN2 is the main component in human cancers, but its regulation by miRNAs is still unclear. In this study, we will investigate the mechanism of EMMPRIN regulation in hepatocellular carcinoma (HCC) by miRNAs. Through RT-PCR, we found that EMMPRIN2 was the main isoform in HCC cells. EMMPRIN2 was down-regulated significantly by predicted miRNAs and miR-485-5p was one of the miRNA that regulated EMMPRIN in HCC cell lines. It was verified that EMMPRIN was a target gene of miR-485-5p by using luciferase analysis assay. We found that miR-485-5p was significantly downregulated in HCC tissues and that its expression was inversely correlated with the TNM stage and metastasis in HCC samples. Results of cellular functions in HCC showed that miR-485-5p could inhibit cell proliferation and metastasis. Additionally, miR-485-5p overexpression suppressed HCC growth in vivo by down-regulation of EMMPRIN. Our study for the first time demonstrated that miR-485-5p represses HCC invasive and metastatic capacities by targeting EMMPRIN expression. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ren, Ya-Jun; Huang, Tao; Yu, Hong-Lu; Zhang, Li; He, Qian-Jin; Xiong, Zhi-Fan; Peng, Hua
2016-12-01
This study aimed to investigate the expression of β-catenin in hepatocellular carcinoma (HCC) tissues and its relationship with α-fetoprotein (AFP) in HCC. Immunohistochemistry was used to determine the expression of β-catenin in normal liver tissues (n=10), liver cirrhosis tissues (n=20), and primary HCC tissues (n=60). The relationship between β-catenin expression and clinical parameters of HCC was investigated. Real-time PCR and Western blotting were used to detect the mRNA and protein expression levels of β-catenin in the liver cancer cell line SMMC-7721 transfected with a plasmid encoding AFP, and also the mRNA and protein expression levels of β-catenin were measured in the liver cancer cell line Huh7 before and after the transfection with AFP shRNA plasmids. The results showed that β-catenin was only expressed on the cell membrane in normal liver tissues. Its localization to the cytoplasm and nucleus of cells was observed in a small proportion of cirrhotic tissues or adjacent HCC tissues, and such ectopic expression of β-catenin was predominant in HCC tissues. The abnormal expression of β-catenin was correlated with serum AFP levels, cancer cell differentiation and vascular invasion (P<0.05). Additionally, the increased expression of AFP resulted in the upregulation of β-catenin mRNA and protein levels, while knockdown of AFP with AFP shRNA led to significantly decreased β-catenin mRNA and protein levels (P<0.05). It was suggested that the abnormal expression of β-catenin is implicated in hepatic carcinogenesis and development. AFP can lead to increased expression of β-catenin, which may account for the poor prognosis of AFP-associated HCC patients.
Koit, Andre; Ounpuu, Lyudmila; Klepinin, Aleksandr; Chekulayev, Vladimir; Timohhina, Natalja; Tepp, Kersti; Puurand, Marju; Truu, Laura; Heck, Karoliina; Valvere, Vahur; Guzun, Rita
2017-01-01
We conducted quantitative cellular respiration analysis on samples taken from human breast cancer (HBC) and human colorectal cancer (HCC) patients. Respiratory capacity is not lost as a result of tumor formation and even though, functionally, complex I in HCC was found to be suppressed, it was not evident on the protein level. Additionally, metabolic control analysis was used to quantify the role of components of mitochondrial interactosome. The main rate-controlling steps in HBC are complex IV and adenine nucleotide transporter, but in HCC, complexes I and III. Our kinetic measurements confirmed previous studies that respiratory chain complexes I and III in HBC and HCC can be assembled into supercomplexes with a possible partial addition from the complex IV pool. Therefore, the kinetic method can be a useful addition in studying supercomplexes in cell lines or human samples. In addition, when results from culture cells were compared to those from clinical samples, clear differences were present, but we also detected two different types of mitochondria within clinical HBC samples, possibly linked to two-compartment metabolism. Taken together, our data show that mitochondrial respiration and regulation of mitochondrial membrane permeability have substantial differences between these two cancer types when compared to each other to their adjacent healthy tissue or to respective cell cultures. PMID:28781720
Wang, Ting; Liu, Mei; Zheng, Su-Jun; Bian, Dan-Dan; Zhang, Jin-Yan; Yao, Jia; Zheng, Qing-Fen; Shi, A-Meng; Li, Wen-Han; Li, Lu; Chen, Yu; Wang, Jin-Hai; Duan, Zhong-Ping; Dong, Lei
2017-05-21
To determine the prevalence and diagnostic value of autoantibodies in α-fetoprotein (AFP)-negative hepatocellular carcinoma (HCC). Fifty-six serum samples from AFP-negative HCC cases, 86 from AFP-positive HCC cases, 168 from chronic liver disease cases, and 59 from normal human controls were included in this study. Autoantibodies to nucleophosmin (NPM)1, 14-3-3zeta and mouse double minute 2 homolog (MDM2) proteins in AFP-negative HCC serum were evaluated by enzyme-linked immunosorbent assay. Partially positive sera were further evaluated by western blotting. Immunohistochemistry was used to detect the expression of three tumor-associated antigens (TAAs) in AFP-negative HCC and normal control tissues. The frequency of autoantibodies to the three TAAs in AFP-negative HCC sera was 21.4%, 19.6% and 19.6%, which was significantly higher than in the chronic liver disease cases and normal human controls ( P < 0.01) as well as AFP-positive HCC cases. The sensitivity of the three autoantibodies for diagnosis of AFP-negative HCC ranged from 19.6% to 21.4%, and the specificity was approximately 95%. When the three autoantibodies were combined, the sensitivity reached 30.4% and the specificity reached 91.6%. Autoantibodies to NPM1, 14-3-3zeta and MDM2 may be useful biomarkers for immunodiagnosis of AFP-negative HCC.
Wang, Ting; Liu, Mei; Zheng, Su-Jun; Bian, Dan-Dan; Zhang, Jin-Yan; Yao, Jia; Zheng, Qing-Fen; Shi, A-Meng; Li, Wen-Han; Li, Lu; Chen, Yu; Wang, Jin-Hai; Duan, Zhong-Ping; Dong, Lei
2017-01-01
AIM To determine the prevalence and diagnostic value of autoantibodies in α-fetoprotein (AFP)-negative hepatocellular carcinoma (HCC). METHODS Fifty-six serum samples from AFP-negative HCC cases, 86 from AFP-positive HCC cases, 168 from chronic liver disease cases, and 59 from normal human controls were included in this study. Autoantibodies to nucleophosmin (NPM)1, 14-3-3zeta and mouse double minute 2 homolog (MDM2) proteins in AFP-negative HCC serum were evaluated by enzyme-linked immunosorbent assay. Partially positive sera were further evaluated by western blotting. Immunohistochemistry was used to detect the expression of three tumor-associated antigens (TAAs) in AFP-negative HCC and normal control tissues. RESULTS The frequency of autoantibodies to the three TAAs in AFP-negative HCC sera was 21.4%, 19.6% and 19.6%, which was significantly higher than in the chronic liver disease cases and normal human controls (P < 0.01) as well as AFP-positive HCC cases. The sensitivity of the three autoantibodies for diagnosis of AFP-negative HCC ranged from 19.6% to 21.4%, and the specificity was approximately 95%. When the three autoantibodies were combined, the sensitivity reached 30.4% and the specificity reached 91.6%. CONCLUSION Autoantibodies to NPM1, 14-3-3zeta and MDM2 may be useful biomarkers for immunodiagnosis of AFP-negative HCC. PMID:28596685
Yang, Mei; Wang, Danhua; Yu, Lingxiang; Guo, Chaonan; Guo, Xiaodong; Lin, Na
2013-01-01
Aim To screen novel markers for hepatocellular carcinoma (HCC) by a combination of expression profile, interaction network analysis and clinical validation. Methods HCC significant molecules which are differentially expressed or had genetic variations in HCC tissues were obtained from five existing HCC related databases (OncoDB.HCC, HCC.net, dbHCCvar, EHCO and Liverome). Then, the protein-protein interaction (PPI) network of these molecules was constructed. Three topological features of the network ('Degree', 'Betweenness', and 'Closeness') and the k-core algorithm were used to screen candidate HCC markers which play crucial roles in tumorigenesis of HCC. Furthermore, the clinical significance of two candidate HCC markers growth factor receptor-bound 2 (GRB2) and GRB2-associated-binding protein 1 (GAB1) was validated. Results In total, 6179 HCC significant genes and 977 HCC significant proteins were collected from existing HCC related databases. After network analysis, 331 candidate HCC markers were identified. Especially, GAB1 has the highest k-coreness suggesting its central localization in HCC related network, and the interaction between GRB2 and GAB1 has the largest edge-betweenness implying it may be biologically important to the function of HCC related network. As the results of clinical validation, the expression levels of both GRB2 and GAB1 proteins were significantly higher in HCC tissues than those in their adjacent nonneoplastic tissues. More importantly, the combined GRB2 and GAB1 protein expression was significantly associated with aggressive tumor progression and poor prognosis in patients with HCC. Conclusion This study provided an integrative analysis by combining expression profile and interaction network analysis to identify a list of biologically significant HCC related markers and pathways. Further experimental validation indicated that the aberrant expression of GRB2 and GAB1 proteins may be strongly related to tumor progression and prognosis in patients with HCC. The overexpression of GRB2 in combination with upregulation of GAB1 may be an unfavorable prognostic factor for HCC. PMID:24391994
The nanomechanical signature of liver cancer tissues and its molecular origin
NASA Astrophysics Data System (ADS)
Tian, Mengxin; Li, Yiran; Liu, Weiren; Jin, Lei; Jiang, Xifei; Wang, Xinyan; Ding, Zhenbin; Peng, Yuanfei; Zhou, Jian; Fan, Jia; Cao, Yi; Wang, Wei; Shi, Yinghong
2015-07-01
Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus distribution of surgically removed liver cancer tissues can serve as a mechanical fingerprint to evaluate the malignancy of liver cancer. Cirrhotic tissues shared the same LEP as normal tissues. However, a noticeable downward shift in the LEP was detected when the cirrhotic tissues progressed to a malignant state, making the tumor tissues more prone to microvascular invasion. Cell-level mechanistic studies revealed that the expression level of a Rho-family effector (mDia1) was consistent with the mechanical trend exhibited by the tissue. Our findings indicate that the mechanical profiles of liver cancer tissues directly varied with tumor progression, providing an additional platform for the future diagnosis of HCC.Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus distribution of surgically removed liver cancer tissues can serve as a mechanical fingerprint to evaluate the malignancy of liver cancer. Cirrhotic tissues shared the same LEP as normal tissues. However, a noticeable downward shift in the LEP was detected when the cirrhotic tissues progressed to a malignant state, making the tumor tissues more prone to microvascular invasion. Cell-level mechanistic studies revealed that the expression level of a Rho-family effector (mDia1) was consistent with the mechanical trend exhibited by the tissue. Our findings indicate that the mechanical profiles of liver cancer tissues directly varied with tumor progression, providing an additional platform for the future diagnosis of HCC. Electronic supplementary information (ESI) available: Detailed experimental procedures and supplementary figures. See DOI: 10.1039/c5nr02192h
Megger, Dominik Andre; Rosowski, Kristin; Ahrens, Maike; Bracht, Thilo; Eisenacher, Martin; Schlaak, Jörg F; Weber, Frank; Hoffmann, Andreas-Claudius; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara
2017-03-01
Human hepatocellular carcinoma (HCC) is a severe malignant disease, and accurate and reliable diagnostic markers are still needed. This study was aimed for the discovery of novel marker candidates by quantitative proteomics. Proteomic differences between HCC and nontumorous liver tissue were studied by mass spectrometry. Among several significantly upregulated proteins, translocator protein 18 (TSPO) and Ras-related protein Rab-1A (RAB1A) were selected for verification by immunohistochemistry in an independent cohort. For RAB1A, a high accuracy for the discrimination of HCC and nontumorous liver tissue was observed. RAB1A was verified to be a potent biomarker candidate for HCC.
Gao, Qiang; Zhao, Ying-Jun; Wang, Xiao-Ying; Qiu, Shuang-Jian; Shi, Ying-Hong; Sun, Jian; Yi, Yong; Shi, Jie-Yi; Shi, Guo-Ming; Ding, Zhen-Bin; Xiao, Yong-Sheng; Zhao, Zhong-Hua; Zhou, Jian; He, Xiang-Huo; Fan, Jia
2012-07-15
CXC chemokines and their cognate receptors have been implicated widely in cancer pathogenesis. In this study, we report a critical causal relationship between CXCR6 expression and tumorigenesis in the setting of human hepatocellular carcinoma (HCC). Among the CXC chemokine receptors, only CXCR6 was detected in all the hepatoma cell lines studied. Moreover, in HCC tissue, CXCR6 expression was significantly higher than in noncancerous liver tissues. Reduction of CXCR6 or its ligand CXCL16 in cancer cells reduced cell invasion in vitro and tumor growth, angiogenesis, and metastases in vivo. Importantly, loss of CXCR6 led to reduced Gr-1+ neutrophil infiltration and decreased neoangiogenesis in hepatoma xenografts via inhibition of proinflammatory cytokine production. Clinically, high expression of CXCR6 was an independent predictor of increased recurrence and poor survival in HCCs. Human HCC samples expressing high levels of CXCR6 also contained an increased number of CD66b+ neutrophils and microvessels, and the combination of CXCR6 and neutrophils was a superior predictor of recurrence and survival than either marker used alone. Together, our findings suggest that elevated expression of CXCR6 promotes HCC invasiveness and a protumor inflammatory environment and is associated with poor patient outcome. These results support the concept that inhibition of the CXCR6-CXCL16 pathway may improve prognosis after HCC treatment.
Mu, Xiaoxin; Lin, Shu; Yang, Junhua; Chen, Chen; Chen, Yun; Herzig, Maryanne C; Washburn, Kenneth; Halff, Glenn A; Walter, Christi A; Sun, Beicheng; Sun, Lu-Zhe
2013-01-01
The role of transforming growth factor-beta (TGF-β) signaling in hepatocarcinogenesis remains controversial. We aimed to reveal TGF-β signaling status in human and murine tissues of hepatocellular carcinoma (HCC) and the mechanisms that mediate TGF-β's role in regulating HCC malignancy. Here, TGF-β pathway component expression and activation in human and murine HCC tissues were measured with quantitative RT-PCR and Western blotting assays. The role of TGF-β receptor and Smad signaling in the growth and survival of several HCC cell lines was determined with several in vitro and in vivo approaches. We found that TGF-β receptor II (TβRII) expression was downregulated in two different HCC patient cohorts. Consistently, Smad3 phosphorylation was also downregulated in HCC tissues in comparison to that in adjacent normal tissues. Interestingly, many HCC cell lines were sensitive to TGF-β and growth-inhibited by exogenous TGF-β. However, stable knockdown of TβRII inhibited cell growth on plastic and in soft agar, and induced apoptosis resulting in suppressed subcutaneous tumor growth and metastatic potential in vivo. Furthermore, knockdown of Smad4 also led to a significant inhibition of growth on plastic and in soft agar with concomitant increase of apoptosis, PTEN expression, and reduced nuclear accumulation of linker region-phosphorylated Smad3. Taken together, TGF-β signaling pathway plays a dichotomous role in hepatocellular carcinogenesis. It appears to suppress HCC development, but is retained for HCC cell survival and malignancy. Furthermore, Smad4 can mediate both growth inhibitory activity induced by exogenous TGF-β and the survival activity induced by autocrine TGF-β revealing a delicate selection of the two opposing activities of TGF-β during HCC evolution.
Du, Guang-Sheng; Wang, Jian-Ming; Lu, Jin-Xi; Li, Qiang; Ma, Chao-Qun; Du, Ji-Tao; Zou, Sheng-Quan
2009-06-01
Atypical protein kinase C iota (aPKC-iota) and its associated intracellular molecules, E-cadherin and beta-catenin, are important for cell polarization in tumorigenesis and progression. Expression of aPKC-iota, P-aPKC-iota (activated aPKC-iota), E-cadherin, and beta-catenin in hepatocellular carcinoma (HCC) was measured, and correlation with clinicopathological characteristics of HCC was analyzed. Paraffin-embedded tumor tissue was obtained from patients with HCC after resection without preoperative radiotherapy or chemotherapy. Gene expression was detected by polymerase chain reaction (PCR), and protein expression was detected by immunohistochemistry and Western blot analysis. Expressions of aPKC-iota, P-aPKC-iota, E-cadherin, and beta-catenin were analyzed with relation to the clinicopathological data. The gene and protein expression of aPKC-iota are obviously higher in HCC tissues than that in peritumoral tissues and normal tissues by semiquantitative PCR and immunohistochemistry methods. Accumulation of aPKC-iota in HCC cytoplasm and nucleolus inhibited the later formation of belt-like adherens junctions (AJs) and/or tight junctions (TJs) in cell-cell contact. E-cadherin was reduced and accumulation of cytoplasm beta-catenin was increased in HCC. The expression of aPKC-iota was closely related to pathological differentiation, tumor size, invasion, and metastasis of HCC. Accumulation of cytoplasm aPKC-iota may reflect pathological differentiation, invasion, and metastasis potential of HCC. In this regard, our study on HCC revealed the potential usefulness of aPKC-iota, E-cadherin, and beta-catenin as a prognostic marker, closely related to pathological differentiation, invasion, metastasis, and prognosis of HCC.
Huang, Jing-Tao; Yang, Ying; Hu, Yi-Min; Liu, Xing-Hui; Liao, Mei-Yan; Morgan, Roy; Yuan, Er-Feng; Li, Xia; Liu, Song-Mei
2018-05-01
Despite implications of persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in the development of hepatocellular carcinoma (HCC), little is known about serum cccDNA in HBV-infected diseases. We developed a cccDNA-selective droplet digital PCR (ddPCR) to assess cccDNA content and dynamics across different stages of HCC development. One hundred forty-seven serum samples and 35 formalin-fixed, paraffin-embedded tumor tissues were derived from patients with HCC or HBV hepatitis/cirrhosis. After specific amplification and selective digestion, probe-based ddPCR was used to quantify cccDNA copy numbers in single cells and clinical samples. The cccDNA in single HepG2.2.15 cells ranged from 0 to 10.8 copies/cell. Compared with non-HCC patients, HCC patients showed a higher cccDNA-positive rate (89.9% versus 53.2%; P = 4.22 × 10 -6 ) and increased serum cccDNA contents (P = 0.002 and P = 0.041 for hepatitis and cirrhosis patients, respectively). Serum cccDNA ranged from 84 to 1.07 × 10 5 copies/mL. Quantification of serum cccDNA and HBV-DNA was an effective way to discriminate HCC patients from non-HCC patients, with areas under the curve of receiver operating characteristic of 0.847 (95% CI, 0.759-0.935; sensitivity, 74.5%; specificity, 93.7%). cccDNA-selective ddPCR is sensitive to detect cccDNA in single cells and different clinical samples. Combined analysis of serum cccDNA and HBV-DNA may be a promising strategy for HBV-induced HCC surveillance and antiviral therapy evaluation. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Guan, Zheng; Tan, Jing; Gao, Wei; Li, Xin; Yang, Yuandong; Li, Xiaogang; Li, Yingchao; Wang, Qiang
2018-06-19
Recent studies have revealed that circular RNAs (circRNAs) play important roles in the tumorigenesis of human cancer, including hepatocellular carcinoma (HCC). In present study, we screen the circular RNA expression profiles in HCC tissue and investigate the molecular roles on HCC tumorigenesis. Human circRNA microarray analysis showed there were total 1,245 differently expressed circular RNAs, including 756 up-regulated circRNAs and 489 down-regulated circRNAs, in three pairs of HCC tissue and adjacent normal tissue. Hsa_circ_0016788 was identified to be up-regulated in both HCC tissue and cell lines. Loss-of-functional experiments in vivo and vitro revealed that hsa_circ_0016788 silencing inhibited the proliferation, invasion and promoted the apoptosis in vitro, and inhibited the tumor growth in vivo. Bioinformatics tools and luciferase reporter assay validated that miR-486 targeted hsa_circ_0016788 and CDK4 accompanying with negatively correlated expression, suggesting the hsa_circ_0016788/miR-486/CDK4 pathway. Receiver operating characteristic (ROC) curve showed that hsa_circ_0016788 had high diagnostic value (AUC = 0.851). In summary, results reveal the role of hsa_circ_0016788/miR-486/CDK4 in HCC tumorigenesis, providing a novel therapeutic target for HCC. © 2018 Wiley Periodicals, Inc.
Lin, Xiaoqi; Lin, Qingjun; Han, Ming; Guo, Guohu
2017-01-01
Stomatin-like protein 2 (SLP-2) gene was significantly upregulated in a variety of tumor tissues and found to be involved in proliferation and metastasis. However, its functional role in hepatocellular carcinoma (HCC) remains unknown. Our study was to investigate the function of SLP-2 in cell proliferation, migration, invasion, cell apoptosis, and the process of epithelial–mesenchymal transition (EMT) in HCC. SLP-2 mRNA and protein expression in HCC were assessed by qRT-PCR and immunohistochemical staining. In vitro, we determined cell proliferation, migration, invasion, and cell apoptosis by CCK-8, transwell, and flow cytometry assays, respectively. SLP-2 was found to be upregulated at both mRNA and protein levels in HCC tissues, and its aberrant overexpression was linked with poor prognosis in patients with HCC. SLP-2 downregulation by siRNAs significantly suppressed cell proliferation, migration, invasion, anti-apoptosis abilities, and inhibited EMT process in vitro. In conclusion, the present study demonstrated the overexpression of SLP-2 in HCC tissues for the first time. As an effective regulator involved in cell proliferation, migration, invasion, cell apoptosis, and EMT, SLP-2 could be a novel therapeutic target for patients with HCC who express high levels of SLP-2. PMID:29033585
Huang, Yijie; Chen, Yexi; Lin, Xiaoqi; Lin, Qingjun; Han, Ming; Guo, Guohu
2017-01-01
Stomatin-like protein 2 ( SLP-2 ) gene was significantly upregulated in a variety of tumor tissues and found to be involved in proliferation and metastasis. However, its functional role in hepatocellular carcinoma (HCC) remains unknown. Our study was to investigate the function of SLP-2 in cell proliferation, migration, invasion, cell apoptosis, and the process of epithelial-mesenchymal transition (EMT) in HCC. SLP-2 mRNA and protein expression in HCC were assessed by qRT-PCR and immunohistochemical staining. In vitro, we determined cell proliferation, migration, invasion, and cell apoptosis by CCK-8, transwell, and flow cytometry assays, respectively. SLP-2 was found to be upregulated at both mRNA and protein levels in HCC tissues, and its aberrant overexpression was linked with poor prognosis in patients with HCC. SLP-2 downregulation by siRNAs significantly suppressed cell proliferation, migration, invasion, anti-apoptosis abilities, and inhibited EMT process in vitro. In conclusion, the present study demonstrated the overexpression of SLP-2 in HCC tissues for the first time. As an effective regulator involved in cell proliferation, migration, invasion, cell apoptosis, and EMT, SLP-2 could be a novel therapeutic target for patients with HCC who express high levels of SLP-2.
He, Rong-Quan; Yang, Xia; Liang, Liang; Chen, Gang; Ma, Jie
2018-04-01
The present study aimed to explore the potential clinical significance of microRNA (miR)-124-3p expression in the hepatocarcinogenesis and development of hepatocellular carcinoma (HCC), as well as the potential target genes of functional HCC pathways. Reverse transcription-quantitative polymerase chain reaction was performed to evaluate the expression of miR-124-3p in 101 HCC and adjacent non-cancerous tissue samples. Additionally, the association between miR-124-3p expression and clinical parameters was also analyzed. Differentially expressed genes identified following miR-124-3p transfection, the prospective target genes predicted in silico and the key genes of HCC obtained from Natural Language Processing (NLP) were integrated to obtain potential target genes of miR-124-3p in HCC. Relevant signaling pathways were assessed with protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Annotation Through Evolutionary Relationships (PANTHER) pathway enrichment analysis. miR-124-3p expression was significantly reduced in HCC tissues compared with expression in adjacent non-cancerous liver tissues. In HCC, miR-124-3p was demonstrated to be associated with clinical stage. The mean survival time of the low miR-124-3p expression group was reduced compared with that of the high expression group. A total of 132 genes overlapped from differentially expressed genes, miR-124-3p predicted target genes and NLP identified genes. PPI network construction revealed a total of 109 nodes and 386 edges, and 20 key genes were identified. The major enriched terms of three GO categories included regulation of cell proliferation, positive regulation of cellular biosynthetic processes, cell leading edge, cytosol and cell projection, protein kinase activity, transcription activator activity and enzyme binding. KEGG analysis revealed pancreatic cancer, prostate cancer and non-small cell lung cancer as the top three terms. Angiogenesis, the endothelial growth factor receptor signaling pathway and the fibroblast growth factor signaling pathway were identified as the most significant terms in the PANTHER pathway analysis. The present study confirmed that miR-124-3p acts as a tumor suppressor in HCC. miR-124-3p may target multiple genes, exerting its effect spatiotemporally, or in combination with a diverse range of processes in HCC. Functional characterization of miR-124-3p targets will offer novel insight into the molecular changes that occur in HCC progression.
Autoantibody response to Sui1 and its tissue-specific expression in hepatocellular carcinoma.
Zhou, Jian-Wei; Li, Yuan; Yue, Li-Xia; Luo, Cheng-Lin; Chen, Yao; Zhang, Jian-Ying
2016-02-01
To investigate the immunogenicity of Homo sapiens putative translation initiation factor (Sui1) in hepatocellular carcinoma (HCC), enzyme-linked immunosorbent assay (ELISA) and Western blot were utilized to assess autoantibody responses to Sui1 in sera from HCC patients and healthy individuals. Indirect immunofluorescence (IIF) assay with cancer cells and immunohistochemistry (IHC) study with tissue array slides were performed to examine Sui1 expression profile in cancer cells and tissues. The data confirmed that the frequency of autoantibody to Sui1 in sera of HCC patients was 15.5 % (16/103), which was remarkably higher than that in sera of liver cirrhosis (LC) patients (3.3 %, 1/30), chronic hepatitis (CH) patients (0 %, 0/29), and normal human serum (NHS) (0 %, 0/82) (p < 0.01). IHC study showed that the Sui1 expression in HCC tissues was 26.7 % (16/60). The expression of Sui1 had the trend of increasing along with the cancer grades but no statistical significance (p > 0.05). In immunodiagnosis of HCC, the sensitivity and specificity of the anti-Sui1 antibody were 15.5 and 99.3 %, respectively. If both anti-Sui1 and alpha fetal protein (AFP) were simultaneously utilized as detective markers, 66.7 % (30/45) of HCC patients could be correctly distinguished. The results suggested that anti-Sui1 could be utilized as a supplementary serological marker for the detection of HCC and Sui1 might be associated to HCC carcinogenesis.
Li, Y-M; Xu, S-C; Li, J; Han, K-Q; Pi, H-F; Zheng, L; Zuo, G-H; Huang, X-B; Li, H-Y; Zhao, H-Z; Yu, Z-P; Zhou, Z; Liang, P
2013-01-01
The presence of circulating tumor cells (CTCs) in peripheral blood is associated with metastasis and prognosis in hepatocellular carcinoma (HCC) patients. The epithelial–mesenchymal transition (EMT) has a pivotal role in tumor invasion and dissemination. To identify more sensitive biomarkers for evaluating metastasis and prognosis, we investigated the expression of EMT markers, including vimentin, twist, ZEB1, ZEB2, snail, slug and E-cadherin in CTCs, primary HCC tumors and adjacent non-tumoral liver tissues. After isolating viable CTCs from the peripheral blood of HCC patients using asialoglycoprotein receptors (ASGPRs), the CTCs were identified with immunofluorescence staining. CTCs were detected in the peripheral blood obtained from 46 of 60 (76.7%) HCC patients. Triple-immunofluorescence staining showed that twist and vimentin expression could be detected in CTCs obtained from 39 (84.8%) and 37 (80.4%) of the 46 patients, respectively. The expression of both twist and vimentin in CTCs was significantly correlated with portal vein tumor thrombus. Coexpression of twist and vimentin in CTCs could be detected in 32 (69.6%) of the 46 patients and was highly correlated with portal vein tumor thrombus, TNM classification and tumor size. Quantitative fluorescence western blot analysis revealed that the expression levels of E-cadherin, vimentin and twist in HCC tumors were significantly associated with the positivity of isolated CTCs (P=0.013, P=0.012, P=0.009, respectively). However, there was no significant difference in ZEB1, ZEB2, snail and slug expression levels in CTCs, primary HCC tumors and adjacent non-tumoral liver tissues across samples with regard to the clinicopathological parameters. Our results demonstrate that the EMT has a role in promoting the blood-borne dissemination of primary HCC cells, and the twist and vimentin expression levels in CTCs could serve as promising biomarkers for evaluating metastasis and prognosis in HCC patients. PMID:24091674
TCP10L acts as a tumor suppressor by inhibiting cell proliferation in hepatocellular carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Jie; Cai, Hao; Wu, Yanhua
2014-03-28
Highlights: • TCP10L was down-regulated in clinical hepatocellular carcinoma (HCC). • Expression of TCP10L correlated significantly with tumor size and Milan criteria. • Overexpression of TCP10L attenuated growth of HCC cells both in vitro and in vivo. • Knocking down TCP10L promoted cell proliferation and tumorigenesis of HCC cells. - Abstract: TCP10L (T-complex 10 (mouse)-like) has been identified as a liver and testis-specific gene. Although a potential transcriptional suppression function of TCP10L has been reported previously, biological function of this gene still remains largely elusive. In this study, we reported for the first time that TCP10L was significantly down-regulated inmore » clinical hepatocellular carcinoma (HCC) samples when compared to the corresponding non-tumorous liver tissues. Furthermore, TCP10L expression was highly correlated with advanced cases exceeding the Milan criteria. Overexpression of TCP10L in HCC cells suppressed colony formation, inhibited cell cycle progression through G0/G1 phase, and attenuated cell growth in vivo. Consistently, silencing of TCP10L promoted cell cycle progression and cell growth. Therefore, our study has revealed a novel suppressor role of TCP10L in HCC, by inhibiting proliferation of HCC cells, which may facilitate the diagnosis and molecular therapy in HCC.« less
Liu, Zhuo; Ma, Min; Yan, Lei; Chen, Shilin; Li, Sha; Yang, Darong; Wang, Xiaohong; Xiao, Hua; Deng, Hongyu; Zhu, Haizhen; Zuo, Chaohui; Xia, Man
2018-05-05
Interferon-α (IFN-α) is an adjuvant to chemotherapy and radiotherapy for hepatocellular carcinoma (HCC), but some HCC patients do not respond to treatment with IFN-α. We performed loss-of-function and gain-of-function experiments to examine the role of ISG15 in the IFN-α sensitivity of LH86, HLCZ01, SMMC7721, and Huh7 cell lines and tumor samples. The overexpression of ISG15 reduced apoptosis in Huh7 and LH86 cells in the presence of IFN-α, whereas the shRNA-mediated knock down of ISG15 expression increased apoptosis in both Huh7 and LH86 cells. We identified a putative miR-370 target site in the 3'-UTR in the ISG15 mRNA, and the level of miR-370 expression in HCC cell lines reflected the level of IFN-α-induced apoptosis exhibited by each. Both HCC cell lines and tumor samples had significantly lower levels of miR-370 than the control cells and tissues (P< 0.05). The overexpression of miR-370 in IFN-α-treated LH86 and Huh7 cells increased apoptosis and reduced the volume of LH86- and Huh7-derived xenograft tumors in mice treated with IFN-α compared with the control tumors. Our findings suggest that miR-370 functions as an HCC tumor suppressor and regulator of IFN-α sensitivity and that miR-370 might be a useful prognostic marker for HCC patients.
Improved method increases sensitivity for circulating hepatocellular carcinoma cells
Liu, Hui-Ying; Qian, Hai-Hua; Zhang, Xiao-Feng; Li, Jun; Yang, Xia; Sun, Bin; Ma, Jun-Yong; Chen, Lei; Yin, Zheng-Feng
2015-01-01
AIM: To improve an asialoglycoprotein receptor (ASGPR)-based enrichment method for detection of circulating tumor cells (CTCs) of hepatocellular carcinoma (HCC). METHODS: Peripheral blood samples were collected from healthy subjects, patients with HCC or various other cancers, and patients with hepatic lesions or hepatitis. CTCs were enriched from whole blood by extracting CD45-expressing leukocytes with monoclonal antibody coated-beads following density gradient centrifugation. The remaining cells were cytocentrifuged on polylysine-coated slides. Isolated cells were treated by triple immunofluorescence staining with CD45 antibody and a combination of antibodies against ASGPR and carbamoyl phosphate synthetase 1 (CPS1), used as liver-specific markers, and costained with DAPI. The cell slide was imaged and stained tumor cells that met preset criteria were counted. Recovery, sensitivity and specificity of the detection methods were determined and compared by spiking experiments with various types of cultured human tumor cell lines. Expression of ASGPR and CPS1 in cultured tumor cells and tumor tissue specimens was analyzed by flow cytometry and triple immunofluorescence staining, respectively. RESULTS: CD45 depletion of leukocytes resulted in a significantly greater recovery of multiple amounts of spiked HCC cells than the ASGPR+ selection (Ps < 0.05). The expression rates of either ASGPR or CPS1 were different in various liver cancer cell lines, ranging between 18% and 99% for ASGPR and between 9% and 98% for CPS1. In both human HCC tissues and liver cancer cell lines, there were a few HCC cells that did not stain positive for ASGPR or CPS1. The mixture of monoclonal antibodies against ASGPR and CPS1 identified more HCC cells than either antibody alone. However, these antibodies did not detect any tumor cells in blood samples spiked with the human breast cancer cell line MCF-7 and the human renal cancer cell line A498. ASGPR+ or/and CPS1+ CTCs were detected in 29/32 (91%) patients with HCC, but not in patients with any other kind of cancer or any of the other test subjects. Furthermore, the improved method detected a higher CTC count in all patients examined than did the previous method (P = 0.001), and consistently achieved 12%-21% higher sensitivity of CTC detection in all seven HCC patients with more than 40 CTCs. CONCLUSION: Negative depletion enrichment combined with identification using a mixture of antibodies against ASGPR and CPS1 improves sensitivity and specificity for detecting circulating HCC cells. PMID:25780289
Wang, Tao; Ma, Sicong; Qi, Xingxing; Tang, Xiaoyin; Cui, Dan; Wang, Zhi; Chi, Jiachang; Li, Ping; Zhai, Bo
2016-01-01
Many long noncoding RNAs have been reported to play pivotal roles in cancer biology. Among them, the long noncoding RNA ZNFX1-AS1 has been confirmed to function in breast cancer progression, but the role of ZNFX1-AS1 in hepatocellular carcinoma (HCC) growth and the related molecular mechanisms still remains unknown. In the present study, we first identified the expression of ZNFX1-AS1 in HCC patients' specimens and HCC cell lines through quantitative reverse transcription polymerase chain reaction. Next, the effects of ZNFX1-AS1 on HCC cell growth and apoptosis were analyzed. MTT assay was used to measure the cell numbers, and fluorescence-activated cell sorting analysis was performed to evaluate cell apoptosis. Finally, the relationship between ZNFX1-AS1 and miR-9 in HCC was studied. Our results suggest that ZNFX1-AS1 was markedly downregulated in HCC samples and cell lines. Overexpression of ZNFX1-AS1 inhibited the cell proliferation and colony formation in HCC cell lines and also induced HCC cell apoptosis. Additionally, miR-9 was lowly expressed in HCC tissues and positively correlated with ZNFX1-AS1 expression. Meanwhile, significant upregulation of miR-9 and downregulation of the methylation of miR-9 promoter CpG island were observed when ZNFX1-AS1 was overexpressed. In summary, our results indicate that ZNFX1-AS1 plays a vital role in HCC progression via regulating the methylation of miR-9 and may be a potential tumor suppressor.
Xu, Dong; Jin, Junzhe; Yu, Hao; Zhao, Zheming; Ma, Dongyan; Zhang, Chundong; Jiang, Honglei
2017-03-20
Hexokinase-2(HK-2) plays dual roles in glucose metabolism and mediation of cell apoptosis, making it an attractive target for cancer therapy. Chrysin is a natural flavone found in plant extracts which are widely used as herb medicine in China. In the present study, we investigated the antitumor activity of chrysin against hepatocellular carcinoma (HCC) and the role of HK-2 played for chrysin to exert its function. The expression of HK-2 in HCC cell line and tumor tissue was examined by western blotting and immunohistochemistry staining. The activities of chrysin against HCC cell proliferation and tumor glycolysis were investigated. Chrysin-induced apoptosis was analyzed by flow cytometry. The effect of chrysin on HK-2 expression and the underlying mechanisms by which induced HCC cell apoptosis were studied. In HK-2 exogenous overexpression cell, the changes of chrysin-induced cell apoptosis and glycolysis suppression were investigated. HCC cell xenograft model was used to confirm the antitumor activity of chrysin in vivo and the effect on HK-2 was tested in chrysin-treated tumor tissue. In contrast with normal cell lines and tissue, HK-2 expression was substantially elevated in the majority of tested HCC cell lines and tumor tissue. Owing to the decrease of HK-2 expression, glucose uptake and lactate production in HCC cells were substantially inhibited after exposure to chrysin. After chrysin treatment, HK-2 which combined with VDAC-1 on mitochondria was significantly declined, resulting in the transfer of Bax from cytoplasm to mitochondria and induction of cell apoptosis. Chrysin-mediated cell apoptosis and glycolysis suppression were dramatically impaired in HK-2 exogenous overexpression cells. Tumor growth in HCC xenograft models was significantly restrained after chrysin treatment and significant decrease of HK-2 expression was observed in chrysin-treated tumor tissue. Through suppressing glycolysis and inducing apoptosis in HCC, chrysin, or its derivative has a promising potential to be a novel therapeutic for HCC management, especially for those patients with high HK-2 expression.
Fan, Qing; Yang, Liang; Zhang, Xiaodong; Ma, Yingbo; Li, Yan; Dong, Lei; Zong, Zhihong; Hua, Xiangdong; Su, Dongming; Li, Hangyu; Liu, Jingang
2018-01-19
Autophagy is a dynamic physiological process that can generate energy and nutrients for cell survival during stress. Autophagy can regulate the migration and invasive ability in cancer cells. However, the connection between autophagy and metabolism is unclear. Monocarboxylate transporter 1 (MCT1) plays an important role in lactic acid transport and H + clearance in cancer cells, and Wnt/β-catenin signaling can increase cancer cell glycolysis. We investigated whether autophagy promotes glycolysis in hepatocellular carcinoma (HCC) cells by activating the Wnt/β-catenin signaling pathway, accompanied by MCT1 upregulation. Autophagic activity was evaluated using western blotting, immunoblotting, and transmission electron microscopy. The underlying mechanisms of autophagy activation on HCC cell glycolysis were studied via western blotting, and Transwell, lactate, and glucose assays. MCT1 expression was detected using quantitative reverse transcription-PCR (real-time PCR), western blotting, and immunostaining of HCC tissues and the paired adjacent tissues. Autophagy promoted HCC cell glycolysis accompanied by MCT1 upregulation. Wnt/β-catenin signaling pathway activation mediated the effect of autophagy on HCC cell glycolysis. β-Catenin downregulation inhibited the autophagy-induced glycolysis in HCC cells, and reduced MCT1 expression in the HCC cells. MCT1 was highly expressed in HCC tissues, and high MCT1 expression correlated positively with the expression of microtubule-associated protein light chain 3 (LC3). Activation of autophagy can promote metastasis and glycolysis in HCC cells, and autophagy induces MCT1 expression by activating Wnt/β-catenin signaling. Our study describes the connection between autophagy and glucose metabolism in HCC cells and may provide a potential therapeutic target for HCC treatment.
Cai, Shao-Hang; Lu, Shi-Xun; Liu, Li-Li; Zhang, Chris Zhiyi; Yun, Jing-Ping
2017-10-01
Hepatocyte nuclear factor 4 alpha (HNF4α) plays an important role in tumourigenesis. There is growing evidence indicating that HNF4α transcribed by promoter 1 (P1-HNF4α) is expressed at relatively low levels in HCC and its presence predicts a favourable outcome for hepatocellular carcinoma (HCC) patients. However, the role of HNF4α transcribed by promoter 2 (P2-HNF4α) in HCC remains unclear. A total of 615 HCC specimens were obtained to construct tissue microarrays and perform immunohistochemistry. The relationship between P2-HNF4α and clinical features of HCC patients were analysed. Kaplan-Meier analysis was conducted to assess the prognostic value of P2-HNF4α. The results showed that the expression of P2-HNF4α in HCC was noticeably increased in HCC tissues compared with the nontumourous tissues. In addition, P1-HNF4α expression was negatively correlated with P2-HNF4α expression ( p = 0.023). High P2-HNF4α expression was significantly associated with poor differentiation of HCC ( p = 0.002) and vascular invasion ( p = 0.017). Kaplan-Meier analysis showed that P2-HNF4α expression was closely correlated with overall survival in the training group ( p = 0.01), validation group ( p = 0.034), and overall group of patients with HCC ( p < 0.001). Our data show that the role of HNF4α in cancer development needs to be further refined. P2-HNF4α, different from P1-HNF4α, is markedly upregulated and serves as an oncogene-associated protein in HCC. Our study therefore provides a promising biomarker for prognostic prediction and a potential therapeutic target for HCC.
Wang, Ruo-Chiau; Huang, Chien-Yu; Pan, Tai-Long; Chen, Wei-Yu; Ho, Chun-Te; Liu, Tsan-Zon; Chang, Yu-Jia
2015-01-01
To search for reliable biomarkers and drug targets for management of hepatocellular carcinoma (HCC), we performed a global proteomic analysis of a pair of HCC cell lines with distinct differentiation statuses using 2-DE coupled with MALDI-TOF MS. In total, 106 and 55 proteins were successfully identified from the total cell lysate and the cytosolic, nuclear and membrane fractions in well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) HCC clonal variants, respectively. Among these proteins, nine spots corresponding to proteins differentially expressed between HCC cell types were selected and confirmed by immunofluorescence staining and western blotting. Notably, Annexin 1 (ANX1), ANX-2, vimentin and stress-associated proteins, such as GRP78, HSP75, HSC-70, protein disulfide isomerase (PDI), and heat shock protein-27 (HSP27), were exclusively up-regulated in SK-Hep-1 cells. Elevated levels of ANX-4 and antioxidant/metabolic enzymes, such as MnSOD, peroxiredoxin, NADP-dependent isocitrate dehydrogenase, α-enolase and UDP-glucose dehydrogenase, were observed in HepG2 cells. We functionally demonstrated that ANX1 and HSP27 were abundantly overexpressed only in highly invasive types of HCC cells, such as Mahlavu and SK-Hep-1. Knockdown of ANX1 or HSP27 in HCC cells resulted in a severe reduction in cell migration. The in-vitro observations of ANX1 and HSP27 expressions in HCC sample was demonstrated by immunohistochemical stains performed on HCC tissue microarrays. Poorly differentiated HCC tended to have stronger ANX1 and HSP27 expressions than well-differentiated or moderately differentiated HCC. Collectively, our findings suggest that ANX1 and HSP27 are two novel biomarkers for predicting invasive HCC phenotypes and could serve as potential treatment targets.
Depletion of Pokemon gene inhibits hepatocellular carcinoma cell growth through inhibition of H-ras.
Zhang, Quan-Le; Tian, De-An; Xu, Xiang-Jiang
2011-01-01
Pokemon is a transcription repressor which plays a critical role in cell transformation and malignancy. However, little is known about its effect on the development and progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression of Pokemon in human HCC tissues and the biological behavior of Pokemon in HCC cells in which it is overexpressed. We also explored the expression of potential downstream cofactors of Pokemon. Reverse transcription polymerase chain reaction and Western blot analysis were used to investigate the expression of Pokemon in tissues of 30 HCC patients. We then examined cell proliferation or apoptosis and β-catenin or H-ras expression in Pokemon-depleted HepG(2) cells using DNA vector-based RNA interference technology. Pokemon was markedly expressed in 22/30 (73.3%) HCC tissues, with expression levels higher than in adjacent normal liver tissues (p < 0.05); expression is correlated with tumor size. In contrast, depletion of Pokemon inhibited proliferation of HepG(2) or induced apoptosis. Also, H-ras expression decreased to a large extent. Pokemon exerts its oncogenic activity in the development of HCC by promoting cancer cell growth and reducing apoptosis, and the effect may be mediated by H-ras. Copyright © 2011 S. Karger AG, Basel.
Weng, Li; Du, Juan; Zhou, Qinghui; Cheng, Binbin; Li, Jun; Zhang, Denghai; Ling, Changquan
2012-06-08
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Frequent tumor recurrence after surgery is related to its poor prognosis. Although gene expression signatures have been associated with outcome, the molecular basis of HCC recurrence is not fully understood, and there is no method to predict recurrence using peripheral blood mononuclear cells (PBMCs), which can be easily obtained for recurrence prediction in the clinical setting. According to the microarray analysis results, we constructed a co-expression network using the k-core algorithm to determine which genes play pivotal roles in the recurrence of HCC associated with the hepatitis B virus (HBV) infection. Furthermore, we evaluated the mRNA and protein expressions in the PBMCs from 80 patients with or without recurrence and 30 healthy subjects. The stability of the signatures was determined in HCC tissues from the same 80 patients. Data analysis included ROC analysis, correlation analysis, log-lank tests, and Cox modeling to identify independent predictors of tumor recurrence. The tumor-associated proteins cyclin B1, Sec62, and Birc3 were highly expressed in a subset of samples of recurrent HCC; cyclin B1, Sec62, and Birc3 positivity was observed in 80%, 65.7%, and 54.2% of the samples, respectively. The Kaplan-Meier analysis revealed that high expression levels of these proteins was associated with significantly reduced recurrence-free survival. Cox proportional hazards model analysis revealed that cyclin B1 (hazard ratio [HR], 4.762; p = 0.002) and Sec62 (HR, 2.674; p = 0.018) were independent predictors of HCC recurrence. These results revealed that cyclin B1 and Sec62 may be candidate biomarkers and potential therapeutic targets for HBV-related HCC recurrence after surgery.
Genome-wide identification of RNA editing in hepatocellular carcinoma.
Kang, Lin; Liu, Xiaoqiao; Gong, Zhoulin; Zheng, Hancheng; Wang, Jun; Li, Yingrui; Yang, Huanming; Hardwick, James; Dai, Hongyue; Poon, Ronnie T P; Lee, Nikki P; Mao, Mao; Peng, Zhiyu; Chen, Ronghua
2015-02-01
We did whole-transcriptome sequencing and whole-genome sequencing on nine pairs of Hepatocellular carcinoma (HCC) tumors and matched adjacent tissues to identify RNA editing events. We identified mean 26,982 editing sites with mean 89.5% canonical A→G edits in each sample using an improved bioinformatics pipeline. The editing rate was significantly higher in tumors than adjacent normal tissues. Comparing the difference between tumor and normal tissues of each patient, we found 7 non-synonymous tissue specific editing events including 4 tumor-specific edits and 3 normal-specific edits in the coding region, as well as 292 edits varying in editing degree. The significant expression changes of 150 genes associated with RNA editing were found in tumors, with 3 of the 4 most significant genes being cancer related. Our results show that editing might be related to higher gene expression. These findings indicate that RNA editing modification may play an important role in the development of HCC. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Lijie; Dong, Pingping; Liu, Longzi
Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstratedmore » that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.« less
Attallah, A M; El-Far, M; Abdelrazek, M A; Omran, M M; Attallah, A A; Elkhouly, A A; Elkenawy, H M; Farid, K
2017-10-01
Hepatocellular carcinoma (HCC) is a multistage process resulting from various genetic changes. We aimed to determine nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 expression and to evaluate their importance in HCC diagnosis. One hundred and twenty chronic hepatitis C (CHC) patients (60 non-HCC CHC patients and 60 HCC patients who had a single small (<5 cm) tumour) were recruited. The gene products of c-Myc and p53 were identified in liver tissues and serum samples using immunostaining, western blot and ELISA. Immunohistochemical detection of c-Myc and p53 with monospecific antibodies revealed intense and diffuse cytoplasmic staining patterns. Accumulated mutant proteins, released from tumour cells into the extracellular serum, were detected at 62 KDa, for c-Myc, and 53 KDa, for p53, using western blotting. In contrast to alpha feto-protein, there was a significant increase (p < 0.0001) in the positivity rate of c-Myc (86.7% vs. 6.7%) and p53 (78.3% vs. 8.3%) in the malignant vs. non-malignant patients. The parallel combination of c-Myc and p53 reach the absolute sensitivity (100%), for more accurate and reliable HCC detection (specificity was 87%). c-Myc and p53 are potential HCC diagnostic biomarkers, and convenient combinations of them could improve diagnostic accuracy of HCC.
Liu, Hongyan; Dong, Huijia; Robertson, Keith; Liu, Chen
2011-01-01
Carbamoyl phosphate synthetase 1 (CPS1) is a liver-specific, intramitochondrial, rate-limiting enzyme in the urea cycle. A previous study showed that CPS1 is the antigen for hepatocyte paraffin 1 antibody, a commonly used antibody in surgical pathology practice; and CPS1 expression appears to be down-regulated in liver cancer tissue and cell lines. The aim of this study is to understand how the CPS1 gene is regulated in liver carcinogenesis. In this report, we show that human hepatocellular carcinoma (HCC) cells do not express CPS1, whereas cultured human primary hepatocytes express abundant levels. In addition, CPS1 was silenced or down-regulated in liver tumor tissues compared with the matched noncancerous tissues. The expression of CPS1 in HCC cells was restored with a demethylation agent, 5-azacytidine. We show that two CpG dinucleotides, located near the transcription start site, and a CpG-rich region in the first intron were hypermethylated in HCC cells. The hypermethylation of the two CpG dinucleotides was also detected in HCC tumor tissues compared with noncancerous tissues. Further molecular analysis with mutagenesis indicated that the two CpG dinucleotides play a role in promoter activity of the CPS1 gene. In conclusion, our study demonstrates that DNA methylation is a key mechanism of silencing CPS1 expression in human HCC cells, and CPS1 gene hypermethylation of the two CpG dinucleotides is a potential biomarker for HCC. PMID:21281797
Berretta, Massimiliano; Cavaliere, Carla; Facchini, Gaetano; Balestreri, Luca; Perin, Tiziana; Canzonieri, Vincenzo
2017-01-01
HCC represents the sixth most common cancer worldwide and the second leading cause of cancer-related death. Despite the high incidence, treatment options for advanced HCC remain limited and unsuccessful, resulting in a poor prognosis. Despite the major advances achieved in the diagnostic management of HCC, only one third of the newly diagnosed patients are presently eligible for curative treatments. Advances in technology and an increased understanding of HCC biology have led to the discovery of novel biomarkers. Improving our knowledge about serum and tissutal markers could ultimately lead to an early diagnosis and better and early treatment strategies for this deadly disease. Serum biomarkers are striking potential tools for surveillance and early diagnosis of HCC thanks to the non-invasive, objective, and reproducible assessments they potentially enable. To date, many biomarkers have been proposed in the diagnosis of HCC. Cholangiocarcinoma (CCA) is an aggressive malignancy, characterized by early lymph node involvement and distant metastasis, with 5-year survival rates of 5%-10%. The identification of new biomarkers with diagnostic, prognostic or predictive value is especially important as resection (by surgery or combined with a liver transplant) has shown promising results and novel therapies are emerging. However, the relatively low incidence of CCA, high frequency of co-existing cholestasis or cholangitis (primary sclerosing cholangitis –PSC- above all), and difficulties with obtaining adequate samples, despite advances in sampling techniques and in endoscopic visualization of the bile ducts, have complicated the search for accurate biomarkers. In this review, we attempt to analyze the existing literature on this argument. PMID:28077782
Mamdouh, Samah; Khorshed, Fatma; Aboushousha, Tarek; Hamdy, Hussam; Diab, Ayman; Seleem, Mohamed; Saber, Mohamed
2017-11-26
HCV induced hepatitis and hepatocellular carcinoma as its sequel are major health problems world-wide and especially in Egypt. For diagnosis and during treatment of liver diseases, liver functions are monitored through determination of serum levels of liver enzymes and α-fetoprotein although the obtained information is generally not sufficient for either early detection of hepatic insult or effective follow up of therapeutic effects. More sensitive biomarkers may help to achieve these goals. MiRNAs are small non-coding RNAs that have an important role in gene expression and regulation. Many, such as miR-224, miR-215, miR-143 are correlated with tumor appearance and with the degree of fibrosis in lung, breast and colon cancer. This study was performed to estimate the level of these miRNAs in serum of patients with HCV-associated hepatitis and HCC in relation to grade of hepatitis, stage of fibrosis and differentiation of tumor tissue. In addition, correlations between serological and tissue levels were assessed. A total of 80 patients were examined, out of which 50 were included in the study. Blood samples and tissue specimens from malignant tumor and corresponding non-tumor tissue of HCV hepatitis patients were collected. Blood samples from 20 healthy volunteers were also obtained as controls. It was found that miRNAs profiles differed in HCC patients compared to controls and HCV-associated hepatitis cases. Distinction of tumor grade and fibrosis stage of patients as well as between different grades of tumor differentiation proved possible, making miRNAs promising biomarkers for diagnosis and assessment of treatment response of HCC patients. Creative Commons Attribution License
Liu, F; Yuan, J-H; Huang, J-F; Yang, F; Wang, T-T; Ma, J-Z; Zhang, L; Zhou, C-C; Wang, F; Yu, J; Zhou, W-P; Sun, S-H
2016-10-13
It has long been known that males are more susceptible than females to hepatocellular carcinoma (HCC), but the reason remains elusive. In this study, we investigated the expression and function of the long noncoding RNA FTX (lnc-FTX), an X-inactive-specific transcript (XIST) regulator transcribed from the X chromosome inactivation center, in both HCC and HCC gender disparity. lnc-FTX is expressed at higher levels in female livers than in male livers and is significantly downregulated in HCC tissues compared with normal liver tissues. Patients with higher lnc-FTX expression exhibited longer survival, suggesting that lnc-FTX is a useful prognostic factor for HCC patients. lnc-FTX inhibits HCC cell growth and metastasis both in vitro and in vivo. Mechanistically, lnc-FTX represses Wnt/β-catenin signaling activity by competitively sponging miR-374a and inhibits HCC cell epithelial-mesenchymal transition and invasion. In addition, lnc-FTX binds to the DNA replication licensing factor MCM2, thereby impeding DNA replication and inhibiting proliferation in HCC cells. In conclusion, these findings suggest that lnc-FTX may act as a tumor suppressor in HCC through physically binding miR-374a and MCM2. It may also be one of the reasons for HCC gender disparity and may potentially contribute to HCC treatment.
Hu, Kunpeng; Huang, Pinzhu; Luo, Hui; Yao, Zhicheng; Wang, Qingliang; Xiong, Zhiyong; Lin, Jizong; Huang, He; Xu, Shilei; Zhang, Peng; Liu, Bo
2017-08-01
Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.
Mitchell, Jennifer; Tinkey, Peggy T.; Avritscher, Rony; Van Pelt, Carolyn; Eskandari, Ghazaleh; George, Suraj Konnath; Xiao, Lianchun; Cressman, Erik; Morris, Jeffrey S.; Rashid, Asif; Kaseb, Ahmed O.; Amin, Hesham M.; Uthamanthil, Rajesh
2016-01-01
Objective The purpose of this study was to reduce time to tumor onset in a diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) swine model via partial liver embolization (PLE) and to characterize the model for use in translational research. Methods Eight Yucatan miniature pigs were injected intraperitoneally with either saline (n=2) or DEN (n=6) solution weekly for 12 weeks. Three of the DEN-treated pigs underwent PLE. Animals underwent periodic radiological evaluation, liver biopsy, and blood sampling, and full necropsy was performed at study termination (~29 months). Results All DEN-treated pigs developed hepatic adenoma and HCC. PLE accelerated the time to adenoma development but not to HCC development. Biomarker analysis results showed that IGF1 levels decreased in all DEN-treated pigs, as functional liver capacity decreased with progression of HCC. VEGF and IL-6 levels were positively correlated with disease progression. Immunohistochemical probing of HCC tissues demonstrated the expression of several important survival-promoting proteins. Conclusion To our knowledge, we are the first to demonstrate accelerated development of hepatic neoplasia in Yucatan miniature pigs. Our HCC swine model closely mimics the human condition (i.e., progressive disease stages and expression of relevant molecular markers) and is a viable translational model. PMID:27305144
Significance of genetic variants in DLC1 and their association with hepatocellular carcinoma
XIE, CHENG-RONG; SUN, HONG-GUANG; SUN, YU; ZHAO, WEN-XIU; ZHANG, SHENG; WANG, XIAO-MIN; YIN, ZHEN-YU
2015-01-01
DLC1 has been shown to be downregulated or absent in hepatocellular carcinoma (HCC) and is associated with tumorigenesis and development. However, only a small number of studies have focused on genetic variations of DLC1. The present study performed exon sequencing for the DLC1 gene in HCC tissue samples from 105 patients to identify functional genetic variation of DLC1 and its association with HCC susceptibility, clinicopathological features and prognosis. A novel missense mutation and four non-synonymous single nucleotide polymorphisms (SNPs; rs3816748, rs11203495, rs3816747 and rs532841) were identified. A significant correlation of rs3816747 polymorphisms with HCC susceptibility was identified. Compared to individuals with the GG genotype of rs3816747, those with the GA (odds ratio (OR)=0.486; P=0.037) or GA+AA genotype (OR=0.51; P=0.039) were associated with a significantly decreased HCC risk. Furthermore, patients with the GC+CC genotype of rs3816748, the TC+CC genotype of rs11203495 or the GA+AA genotype of rs3816747 had small-sized tumors compared with those carrying the wild-type genotype. No significant association of DLC1 SNPs with the patients' prognosis was found. These results indicated that genetic variations in the DLC1 gene may confer a risk for HCC. PMID:26095787
Gain of GRHL2 is associated with early recurrence of hepatocellular carcinoma.
Tanaka, Yasuo; Kanai, Fumihiko; Tada, Motohisa; Tateishi, Ryosuke; Sanada, Masashi; Nannya, Yasuhito; Ohta, Miki; Asaoka, Yoshinari; Seto, Motoko; Shiina, Shuichiro; Yoshida, Haruhiko; Kawabe, Takao; Yokosuka, Osamu; Ogawa, Seishi; Omata, Masao
2008-11-01
The aim of this study is to identify genomic changes that might be implicated in hepatocellular carcinoma (HCC) progression, and evaluate the associations with clinico-pathological features. The genomic DNA of 17 hepatoma cell lines was analyzed using Affymetrix GeneChip Human Mapping 50K high-density oligonucleotide arrays. We selected representative genes from recurrent amplified regions and measured the copy number of these genes in 70 HCC clinical samples. We found 10 recurrent high-grade gain regions spanning less than 3 Mb in at least two hepatoma cell lines, and selected 10 representative genes. The copy number was almost normal in non-cancerous tissue and frequently amplified in Edmondson grade II or III HCC compared to Edmondson grade I HCC. Gain of TAX1BP1 in 7p15.2-1 was associated with larger tumor size and positivity of HCV antibody, and gain of CCND1 in 11q13.2-3 was associated with larger tumor size by multivariate analysis. Furthermore, a gain of GRHL2 in 8q22.3 was associated with early recurrence of HCC, controlling for clinical parameters. Decreased GRHL2 expression by RNA interference inhibits the growth of hepatoma cells, suggesting its association with cell proliferation. A gain of GRHL2 might be a predictive marker for HCC recurrence.
Regulation and function of the atypical cadherin FAT1 in hepatocellular carcinoma.
Valletta, Daniela; Czech, Barbara; Spruss, Thilo; Ikenberg, Kristian; Wild, Peter; Hartmann, Arndt; Weiss, Thomas S; Oefner, Peter J; Müller, Martina; Bosserhoff, Anja-Katrin; Hellerbrand, Claus
2014-06-01
In human cancers, giant cadherin FAT1 may function both, as an oncogene and a tumor suppressor. Here, we investigated the expression and function of FAT1 in hepatocellular carcinoma (HCC). FAT1 expression was increased in human HCC cell lines and tissues compared with primary human hepatocytes and non-tumorous liver tissue as assessed by quantitative PCR and western blot analysis. Combined immunohistochemical and tissue microarray analysis showed a significant correlation of FAT1 expression with tumor stage and proliferation. Suppression of FAT1 expression by short hairpin RNA impaired proliferation and migration as well as apoptosis resistance of HCC cells in vitro. In nude mice, tumors formed by FAT1-suppressed HCC cells showed a delayed onset and more apoptosis compared with tumors of control cells. Both hepatocyte growth factor and hypoxia-mediated hypoxia-inducible factor 1 alpha activation were identified as strong inducers of FAT1 in HCC. Moreover, demethylating agents induced FAT1 expression in HCC cells. Hypoxia lead to reduced levels of the methyl group donor S-adenosyl-L-methionine (SAM) and hypoxia-induced FAT1 expression was inhibited by SAM supplementation in HCC cells. Together, these findings indicate that FAT1 expression in HCC is regulated via promotor methylation. FAT1 appears as relevant mediator of hypoxia and growth receptor signaling to critical tumorigenic pathways in HCC. This knowledge may facilitate the rational design of novel therapeutics against this highly aggressive malignancy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Jain, Surbhi; Boldbaatar, Batbold; Hamilton, James P.; Lin, Selena Y.; Chang, Ting-Tsung; Chen, Shun-Hua; Song, Wei; Meltzer, Stephen J.; Block, Timothy M.; Su, Ying-Hsiu
2012-01-01
Hypermethylation of the glutathione S-transferase π 1 (GSTP1) gene promoter region has been reported to be a potential biomarker to distinguish hepatocellular carcinoma (HCC) from other liver diseases. However, reports regarding how specific a marker it is have ranged from 100% to 0%. We hypothesized that, to a large extent, the variation of specificity depends on the location of the CpG sites analyzed. To test this hypothesis, we compared the methylation status of the GSTP1 promoter region of the DNA isolated from HCC, cirrhosis, hepatitis, and normal liver tissues by bisulfite–PCR sequencing. We found that the 5′ region of the position −48 nt from the transcription start site of the GSTP1 gene is selectively methylated in HCC, whereas the 3′ region is methylated in all liver tissues examined, including normal liver and the HCC tissue. Interestingly, when DNA derived from fetal liver and 11 nonhepatic normal tissue was also examined by bisulfite-PCR sequencing, we found that methylation of the 3′ region of the promoter appeared to be liver-specific. A methylation-specific PCR assay targeting the 5′ region of the promoter was developed and used to quantify the methylated GSTP1 gene in various diseased liver tissues including HCC. When we used an assay targeting the 3′ region, we found that the methylation of the 5′-end of the GSTP1 promoter was significantly more specific than that of the 3′-end (97.1% vs. 60%, p<0.0001 by Fisher's exact test) for distinguishing HCC (n = 120) from hepatitis (n = 35) and cirrhosis (n = 35). Encouragingly, 33.8% of the AFP-negative HCC contained the methylated GSTP1 gene. This study clearly demonstrates the importance of the location of CpG site methylation for HCC specificity and how liver-specific DNA methylation should be considered when an epigenetic DNA marker is studied for detection of HCC. PMID:22536438
Cao, Jinyu; Zhang, Deyuan; Zeng, Liangtao; Liu, Fanrong
2018-06-01
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are aberrantly expressed in many cancer types, including hepatocellular carcinoma (HCC). lncRNA MYC-induced long non-coding RNA (MINCR) were revealed to be markedly up-regulated in gallbladder cancer and Burkitt lymphoma cells. However, the biological role and function of MINCR in HCC progression are still unknown. The expression of MINCR in HCC tissues and cell lines was determined using quantitative real-time polymerase chain reaction assays. The effects of MINCR in HCC cell proliferation, migration, and invasion were determined using cell-counting kit 8 (CCK8) assay, wound healing assay, and Transwell assays in vitro. MINCR expression was up-regulated in HCC tissues and cell lines as compared with that in the negative control. The decreased expression of MINCR in vitro markedly inhibited HCC cell proliferation, migration, and invasion. Our results showed that MINCR is important in HCC development and may act as a therapeutic target that regulates HCC cellular proliferation, migration, and invasion, which are involved in HCC tumorigenesis. To the best of our know ledge, MINCR in HCC has not been studied. Our findings showed that this study is the first to reveal that MINCR may act as a therapeutic target in HCC. The in-depth exploration of the molecular mechanism is required to illuminate the molecular mechanisms of MINCR in HCC development. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Xu, J M; Weng, M Z; Song, F B; Chen, J Y; Zhang, J Y; Wu, J Y; Qin, J; Jin, T; Wang, X L
2014-01-01
Chemokines have been shown to play a critical role in tumor development and progression. However, little is known about the function and molecular mechanisms of CXCR6 in multiple malignancies. In the present study, we aimed to investigate the role of CXCR6 in human hepatocellular carcinoma (HCC). The expression of CXCR6 was examined by immunohistochemical assay using a tissue microarray procedure. A loss-of-function experiment was performed to explore the effects of lentivirus-mediated CXCR6 shRNA (shCXCR6) on cell proliferation and invasive potential by MTT and Transwell assays in HCC cell line (SMMC-7721). It was found that the expression of CXCR6 protein was significantly increased in HCC tissues compared with that in adjacent non-cancerous tissues (ANCT) (63.04% vs 36.96%, P=0.019), and correlated with the lymph-vascular space invasion in HCC patients (P=0.038). Knockdown of CXCR6 repressed cell proliferation and invasion of HCC cells followed by the down-regulation of vascular endothelial growth factor (VEGF). Taken together, our findings show that high expression of CXCR6 is positively associated with distant invasion of HCC patients, and blockade of CXCR6 signaling suppresses the growth and invasion of HCC cells through inhibition of the VEGF expression, suggesting that CXCR6 may represent a promising therapeutic target for the treatment of HCC.
Guo, Qingping; Wang, Jiale; Cao, Zeyu; Tang, Yongchang; Feng, Chao; Huang, Feizhou
2018-06-05
Despite advances in surgery and chemotherapy, the prognosis of patients with hepatocellular carcinoma (HCC) remains poor. In the present study, the role of S100A1 in the progression of HCC was investigated. Immunohistochemical staining was used to measure the expression of S100A1 in HCC tissues. S100A1 was knocked down by siRNA. A battery of experiments was used to evaluate the biology functions of S100A1. It was found that S100A1 was upregulated in HCC tissues, and its upregulation was associated with a large tumor size, low differentiation and shorter survival time. The biological experiments demonstrated that S100A1 functions as an oncogene in HCC. It was also found that S100A1 knockdown enhanced the inhibitory effects of cisplatin on HCC cells. The results showed that the downregulation of S100A1 induced the phosphorylation of yes‑associated protein (YAP), and treatment with CHX demonstrated that the downregulation of S100A1 accelerated YAP protein degradation. The downregulation of S100A1 did not alter the expression of mammalian sterile 20‑like kinase (MST)1/2 or phosphorylated MST1/2, but upregulated the phosphorylation of large tumor suppressor kinase 1 (LATS1). It was further confirmed that S100A1 interacted with LATS1. LATS1 depletion significantly reduced the effects of S100A1 on cell growth rate and apoptosis, and there was a positive correlation between phosphorylated LATS1 and S100A1 in clinical samples, indicating that LATS1 was responsible for the S100A1-induced changes in cancer cell growth and Hippo signaling. In conclusion, the results of the present study indicated that S100A1 functions as an oncogene and may be a biomarker for the prognosis of patients with HCC. S100A1 exerted its oncogenic function by interacting with LATS1 and activating YAP. S100A1 may serve as a target for novel therapies in HCC.
Wang, Chunping; Lu, Yinying; Chen, Yan; Feng, Yongyi; An, Linjing; Wang, Xinzhen; Su, Shuhui; Bai, Wenlin; Zhou, Lin; Yang, Yongping; Xu, Dongping
2009-01-01
To determine the long-term prognosis of hepatocellular carcinoma (HCC) after argon-helium cryoablation and identify the risk factors that predict metastasis and recurrence. A total of 156 patients with hepatitis B-related HCC less than 5 cm in diameter who underwent curative cryoablation were followed up prospectively for tumor metastasis and recurrence. Immunohistochemistry was used to analyze the expression of vascular endothelial growth factor (VEGF). HBV basal core promoter (BCP) and precore mutations were detected by DNA sequence analysis. Post-treatment prognostic factors influencing survival, tumor metastasis and recurrence were assessed by univariate and multivariate analyses. The variables included the expression of VEGF in HCC tissues, clinical and pathologic characteristics of patients, and HBV features (HBV DNA level, HBV genotype, BCP mutation). The median follow-up period of the 156 patients was 37 months (range 8-48 months). The 1-, 2-, and 3-year overall survival rates were 92, 82 and 64%, respectively. The 1-, 2-, and 3-year recurrence-free survival rates were 72, 56 and 43%, respectively. Eighty-five patients (54.5%) had tumor recurrence or metastasis. The multivariate analysis showed that Child-Pugh class and the expression of VEGF in HCC tissues could be used as independent prognostic factors for overall survival. Meanwhile, the expression of VEGF in HCC tissues and HBV BCP mutations were found to be independent prognostic factors for recurrence-free survival. Strong expression of VEGF in HCC tissues and HBV BCP mutations are important risk predictors for recurrence or metastasis of HCC smaller than 5 cm in diameter.
Lung microenvironment promotes the metastasis of human hepatocellular carcinoma cells to the lungs.
Jin, Yun; Ai, Junhua; Shi, Jun
2015-01-01
Cancer metastasis is a highly tissue-specific and organ-selective process. It has been shown that the affected tissues and/or organs play a major role in this complex process. The lung is the most common target organ of extrahepatic hepatocellular carcinoma (HCC) metastasis, but the precise molecular mechanism underlying this organ-specific metastasis remains unclear. We hypothesized that lung microenvironment was able to promote the metastasis of HCC cells to the lungs leading to distant metastases. In support of our hypothesis, we provided evidence from targeted metastasis in various types of cancer and contributing factors in the microenvironment of targeted tissues/organs. A better understanding of the steps involved in the interplay between HCC cells and lung microenvironment may offer new perspectives for the medical management of lung metastases of HCC.
Minuk, Gerald Y; Zhang, Manna; Gong, Yuewen; Minuk, Leonard; Dienes, Hans; Pettigrew, Norman; Kew, Michael; Lipschitz, Jeremy; Sun, Dongfeng
2007-03-01
To determine whether hepatocyte membrane potential differences (PDs) are depolarized in human HCC and whether depolarization is associated with changes in GABAA receptor expression, hepatocyte PDs and gamma-aminobutyric acid (GABA)A receptor messenger RNA (mRNA) and protein expression were documented in HCC tissues via microelectrode impalement, real-time reverse-transcriptase polymerase chain reaction, and Western blot analysis, respectively. HCC tissues were significantly depolarized (-19.8+/-1.3 versus -25.9+/-3.2 mV, respectively [P<0.05]), and GABAA-beta3 expression was down-regulated (GABAA-beta3 mRNA and protein expression in HCC; 5,693+/-1,385 and 0.29+/-0.11 versus 11,046+/-4,979 copies/100 mg RNA and 0.62+/-0.16 optical density in adjacent tumor tissues, respectively [P=0.002 and P<0.0001, respectively]) when compared with adjacent nontumor tissues. To determine the physiological relevance of the down-regulation, human malignant hepatocytes deficient in GABAA-beta3 receptor expression (Huh-7 cells) were transfected with GABAA-beta3 complementary DNA (cDNA) or vector alone and injected into nu/nu nude mice (n=16-17 group). Tumors developed after a mean (+/-SD) of 51+/-6 days (range: 41-60 days) in 7/16 (44%) mice injected with vector-transfected cells and 70+/-12 days (range: 59-86 days) in 4/17 (24%) mice injected with GABAA-beta3 cDNA-transfected cells (P<0.005). The results of this study indicate that (1) human HCC tissues are depolarized compared with adjacent nontumor tissues, (2) hepatic GABAA-beta3 receptor expression is down-regulated in human HCC, and (3) restoration of GABAA-beta3 receptor expression results in attenuated in vivo tumor growth in nude mice.
Jin, Qiao; Li, Xiangjun; Cao, Peiguo
2015-10-01
This experiment was conducted to investigate the role of EPH receptor A2 (EphA2) in the modulation of radiosensitivity of hepatic cellular cancer (HCC) cells and to determine whether p38/mitogen-activated protein kinase (p38MAPK) signaling mediated EphA2 function in this respect. The protein expressions of EphA2 and phosphorylated p38MAPK were tested in HCC and normal hepatic tissues. In HCC 97H cells, EphA2 was overexpressed and knocked out by transfection with EphA2 expression vector and EphA2-ShRNA, respectively, prior to cell exposure to low-dose irradiation. Significantly upregulated EphA2 and phosphorylated p38MAPK were observed in HCC tissues, compared with those in normal hepatic tissues. Low-dose irradiation (1 Gy) only caused minor damage to HCC 97H cells, as assessed by alterations in cell viability, apoptosis rate, and cell healing capacity (p = 0.072, p = 0.078, and p = 0.069 respectively). However, EphA2 knock-out in HCC 97H cells induced significant reduction in cell viability and cell healing capacity after these cells were subjected to low-dose irradiation. Apoptosis rate underwent dramatic increase (p < 0.01). By contrast, EphA2 overexpression in HCC 97H cells reversed these effects and enhanced cell colony formation rate, thus displaying remarkable attenuation of radiosensitivity of HCC 97H cells. Further, SB203580, a specific inhibitor of p38MAPK, was added to HCC 97H cells over-expressing EphA2. The effect of EphA2 overexpression on the radiosensitivity of HCC 97H cells was abrogated. Thus, the present study indicates that EphA2 have the ability to negatively regulate the radiosensitivity of HCC 97H cells, which mainly depends on 38MAPK-mediated signal pathways. Copyright © 2015. Published by Elsevier Taiwan.
Cai, Shao-hang; Lu, Shi-xun; Liu, Li-li; Zhang, Chris Zhiyi; Yun, Jing-ping
2017-01-01
Background: Hepatocyte nuclear factor 4 alpha (HNF4α) plays an important role in tumourigenesis. There is growing evidence indicating that HNF4α transcribed by promoter 1 (P1-HNF4α) is expressed at relatively low levels in HCC and its presence predicts a favourable outcome for hepatocellular carcinoma (HCC) patients. However, the role of HNF4α transcribed by promoter 2 (P2-HNF4α) in HCC remains unclear. Methods: A total of 615 HCC specimens were obtained to construct tissue microarrays and perform immunohistochemistry. The relationship between P2-HNF4α and clinical features of HCC patients were analysed. Kaplan–Meier analysis was conducted to assess the prognostic value of P2-HNF4α. Results: The results showed that the expression of P2-HNF4α in HCC was noticeably increased in HCC tissues compared with the nontumourous tissues. In addition, P1-HNF4α expression was negatively correlated with P2-HNF4α expression (p = 0.023). High P2-HNF4α expression was significantly associated with poor differentiation of HCC (p = 0.002) and vascular invasion (p = 0.017). Kaplan–Meier analysis showed that P2-HNF4α expression was closely correlated with overall survival in the training group (p = 0.01), validation group (p = 0.034), and overall group of patients with HCC (p < 0.001). Conclusions: Our data show that the role of HNF4α in cancer development needs to be further refined. P2-HNF4α, different from P1-HNF4α, is markedly upregulated and serves as an oncogene-associated protein in HCC. Our study therefore provides a promising biomarker for prognostic prediction and a potential therapeutic target for HCC. PMID:29051787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zijian; Huang, Shanzhou; Wang, Huanyu
Rapid progress and metastasis remain the major treatment failure modes of hepatocarcinoma (HCC). Unfortunately, the underlying molecular mechanisms of hepatoma cell proliferation and migration are poorly understood. Metabolic abnormalities play critical roles in tumorigenesis and progression. Hexokinase domain containing 1 (HKDC1) catalyzes the phosphorylation of glucose. However, the functions and mechanisms of HKDC1 in cancer remain unknown. In this study, real-time RT-PCR and Western blotting assays were used to detect the HKDC1 expression levels in HCC tissues and cell lines. The Oncomine™ Cancer Microarray Database was applied to analysis the correlations between HKDC1 expression and HCC clinical characteristics. MTT andmore » Transwell migration assays were performed to determine the functions of HKDC1 in HCC cells. The effect of HKDC1 on Wnt/β-catenin signaling pathway was assessed using Western blotting assay. In this study, we found that HKDC1 expression levels were elevated in HCC tissues compared with the adjacent tissues. HCC patients with high expression levels of HKDC1 had poor overall survival (OS). Furthermore, higher HKDC1 levels also predicted a worse OS of patients within solitary, elevated pre-operated serum alpha fetoprotein (AFP) level and higher tumor diameter. Moreover, silencing HKDC1 suppressed HCC cells proliferation and migration in vitro. Downregulated HKDC1 expression repressed β-Catenin and c-Myc expression, which indicates that silencing HKDC1 may reduce proliferation and migration via inhibiting the Wnt/β-catenin signaling pathway in HCC. In summary, HKDC1 provides further insight into HCC tumor progression and may provide a novel prognostic biomarker and therapeutic target for HCC treatment. -- Highlights: •HKDC1 is upregulated in HCC. •Patients with high HKDC1 expressions perform worse OS. •Silencing HKDC1 suppresses proliferation and migration. •Silencing HKDC1 represses Wnt/β-catenin signaling pathway.« less
Wu, J; Lu, M; Li, Y; Shang, Y-K; Wang, S-J; Meng, Y; Wang, Z; Li, Z-S; Chen, H; Chen, Z-N; Bian, H
2016-10-20
Cellular plasticity has an important role in the progression of hepatocellular carcinoma (HCC). In this study, the involvement of a TGF-β1-CD147 self-sustaining network in the regulation of the dedifferentiation progress was fully explored in HCC cell lines, hepatocyte-specific basigin/CD147-knockout mice and human HCC tissues. We demonstrated that TGF-β1 stimulation upregulated CD147 expression and mediated the dedifferentiation of HCC cells, whereas all-trans-retinoic acid induced the downregulation of CD147 and promoted differentiation in HCC cells. Overexpression of CD147 induced the dedifferentiation and enhanced the malignancy of HCC cells, and increased the transcriptional expression of TGF-β1 by activating β-catenin. CD147-induced matrix metalloproteinase (MMP) production activated pro-TGF-β1. The activated TGF-β1 signaling subsequently repressed the HNF4α expression via Smad-Snail1 signaling and enhanced the dedifferentiation progress. Hepatocyte-specific basigin/CD147-knockout mice decreased the susceptibility to N-nitrosodiethylamine-induced tumorigenesis by suppressing TGF-β1-CD147 signaling and inhibiting dedifferentiation in hepatocytes during tumor progression. CD147 was positively correlated with TGF-β1 and negatively correlated with HNF4α in human HCC tissues. Positive CD147 staining and lower HNF4α levels in tumor tissues were significantly associated with poor survival of patients with HCC. The overexpression of HNF4α and Smad7 and the deletion of CD147 by lentiviral vectors jointly reprogrammed the expression profile of hepatocyte markers and attenuated malignant properties including proliferation, cell survival and tumor growth of HCC cells. Our results highlight the important role of the TGF-β1-CD147 self-sustaining network in driving HCC development by regulating differentiation plasticity, which provides a strong basis for further investigations of the differentiation therapy of HCC targeting TGF-β1 and CD147.
Yin, Guozhi; Liu, Zhikui; Wang, Yufeng; Dou, Changwei; Li, Chao; Yang, Wei; Yao, Yingmin; Liu, Qingguang; Tu, Kangsheng
2016-02-15
The deregulation of E-cadherin has been considered as a leading cause of hepatocellular carcinoma (HCC) metastasis. BCL6 corepressor-like 1 (BCORL1) is a transcriptional corepressor and contributes to the repression of E-cadherin. However, the clinical significance of BCORL1 and its role in the metastasis of HCC remain unknown. Differentially expressed BCORL1 between HCC and matched tumor-adjacent tissues, HCC cell lines and normal hepatic cell line were detected by Western blot. The expression of BCORL1 was altered by siRNAs or lentivirus-mediated vectors. Transwell assays were performed to determine HCC cell invasion and migration. Increased expression of BCORL1 protein was detected in HCC specimens and cell lines. Clinical association analysis showed that BCORL1 protein was expressed at significant higher levels in HCC patients with multiple tumor nodes, venous infiltration and advanced TNM tumor stage. Survival analysis indicated that high expression of BCORL1 protein conferred shorter overall survival (OS) and recurrence-free survival (RFS) of HCC patients. Multivariate Cox regression analysis disclosed that BCORL1 expression was an independent prognostic marker for predicting survival of HCC patients. Our in vitro studies demonstrated that BCORL1 prominently promoted HCC cell migration and invasion. Otherwise, an inverse correlation between BCORL1 and E-cadherin expression was observed in HCC tissues. BCORL1 inversely regulated E-cadherin abundance and subsequently facilitated epithelial-mesenchymal transition (EMT) in HCC cells. Notably, the effect of BCORL1 knockdown on HCC cells was abrogated by E-cadherin silencing. BCORL1 may be a novel prognostic factor and promotes cell migration and invasion through E-cadherin repression-induced EMT in HCC.
Tao, Yiming; Hu, Kuan; Tan, Fengbo; Zhang, Sai; Zhou, Ming; Luo, Jia; Wang, Zhiming
2016-01-01
SH3-domain binding protein-1 (SH3BP1) specifically inactivating Rac1 and its target WAVE2 is required for cell motility. The present study shows SH3BP1 expression patterns in human HCC tissues and cell lines were examined. The regulation of SH3BP1 on HCC cell migration and invasion related to Rac1-WAVE2 signaling was characterized using in vitro and in vivo models. SH3BP1 overexpressed in HCC tissues and highly metastatic HCC cells was significantly associated vascular invasion (VI). SH3BP1 promoted VEGF secretion via Rac1-WAVE2 signaling, so as to exert an augmentation on cell invasion and microvessel formation. In three study cohorts with a total of 516 HCC patients, high SH3BP1 expression combined with high microvessel density (MVD) was confirmed as a powerful independent predictor of HCC prognosis in both training cohorts and validation cohort. Being an important angiogenic factor of HCC through Rac1-WAVE2 signaling, SH3BP1 promotes tumor invasion and microvessel formation contributing to HCC metastasis and recurrence. SH3BP1 is a novel WAVE2 regulator, a prognostic marker and a potential therapeutic target of HCC. PMID:26933917
Tao, Yiming; Hu, Kuan; Tan, Fengbo; Zhang, Sai; Zhou, Ming; Luo, Jia; Wang, Zhiming
2016-04-05
SH3-domain binding protein-1 (SH3BP1) specifically inactivating Rac1 and its target WAVE2 is required for cell motility. The present study shows SH3BP1 expression patterns in human HCC tissues and cell lines were examined. The regulation of SH3BP1 on HCC cell migration and invasion related to Rac1-WAVE2 signaling was characterized using in vitro and in vivo models. SH3BP1 overexpressed in HCC tissues and highly metastatic HCC cells was significantly associated vascular invasion (VI). SH3BP1 promoted VEGF secretion via Rac1-WAVE2 signaling, so as to exert an augmentation on cell invasion and microvessel formation. In three study cohorts with a total of 516 HCC patients, high SH3BP1 expression combined with high microvessel density (MVD) was confirmed as a powerful independent predictor of HCC prognosis in both training cohorts and validation cohort. Being an important angiogenic factor of HCC through Rac1-WAVE2 signaling, SH3BP1 promotes tumor invasion and microvessel formation contributing to HCC metastasis and recurrence. SH3BP1 is a novel WAVE2 regulator, a prognostic marker and a potential therapeutic target of HCC.
A standardized procedure for using human corpus cavernosum strips to evaluate drug activity.
Mirone, V; Sorrentino, R; di Villa Bianca, R; Imbimbo, C; Palmieri, A; Fusco, F; Tajana, G; Cirino, G
2000-01-01
The main problem of using human corpus cavernosum (HCC) tissue to perform bioassay is linked to its limited availability further complicated by the heterogeneous source of the tissues used. Here, we show that gender reassignment is a reliable source of human tissue without major ethical problems. Indeed, the entire corpus cavernosum is obtained from the surgery procedure, which allows creating a standardized procedure to prepare HCC strip. In addition, human tissue, if kept in the fridge in the condition described, does not loose its ability to contract to phenylephrine (PE; alpha agonist), angiotensin II (AG II) and KCl up to 4 days. Furthermore, once contracted with PE, HCC relaxes to acetylcholine (endothelium-dependent mechanism); sodium nitroprusside (endothelium-independent mechanism); cromakalim (CRK), a K(ATP) channel opener; or alprostadil, a synthetic PGE2 (ALPR). In conclusion, we have standardized a procedure that allows the use of HCC strips to evaluate drug activity and/or to study pathophysiological mechanisms with an intact functional human tissue up to 4 days from the surgery procedure.
Xing, Xiaohua; Huang, Yao; Wang, Sen; Chi, Minhui; Zeng, Yongyi; Chen, Lihong; Li, Ling; Zeng, Jinhua; Lin, Minjie; Han, Xiao; Liu, Xiaolong; Liu, Jingfeng
2015-10-14
In clinical practices, the therapeutic outcomes and prognosis of hepatocellular carcinoma (HCC) patients with different tumor numbers after surgery are very different; however, the underlying mechanisms of the tumorigenesis and development of HCC with different tumor numbers are still not well understood. Here, we systematically compared the overall proteome profiles between the primary HCC with single and multiple lesions using iTRAQ-based quantitative proteomics approach. We identified that 107 and 330 proteins were dysregulated in HCC tissue with multiple lesions (MC group) and HCC tissue with a single lesion (SC group), compared with their non-cancerous tissue (MN and SN groups) respectively. The dysregulated proteins in MC group are concentrated in UBC signaling pathway and NFκB signaling pathway, but the dysregulated proteins in SC group are more concentrated in ERK signaling pathway and the NFκB signaling pathway. These information revealed that there might be different molecular mechanisms of the tumorigenesis and development of the HCC with single and multiple lesions. Furthermore, HSD17B13 were only down-regulated in MC group while HK2 were only up-regulated in SC group among these dysregulated proteins. Therefore, the protein HSD17B13 and HK2 might be potential biomarkers for the primary HCC with single and multiple lesions. Copyright © 2015 Elsevier B.V. All rights reserved.
Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy
Sun, Cheng; Sun, Hao-yu; Xiao, Wei-hua; Zhang, Cai; Tian, Zhi-gang
2015-01-01
The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%–50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment. PMID:26073325
Overexpression of p42.3 promotes cell growth and tumorigenicity in hepatocellular carcinoma
Sun, Wei; Dong, Wei-Wei; Mao, Lin-Lin; Li, Wen-Mei; Cui, Jian-Tao; Xing, Rui; Lu, You-Yong
2013-01-01
AIM: To investigate the association of p42.3 expression with clinicopathological characteristics and the biological function of p42.3 in human hepatocellular carcinoma (HCC). METHODS: We used reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR and western blotting to detect p42.3 mRNA and protein expression in hepatic cell lines. We examined primary HCC samples and matched adjacent normal tissue by immunohistochemistry to investigate the correlation between p42.3 expression and clinicopathological features. HepG2 cells were transfected with a pIRES2-EGFP-p42.3 expression vector to examine the function of the p42.3 gene. Transfected cells were analyzed for their viability and malignant transformation abilities by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, and tumorigenicity assay in nude mice. RESULTS: p42.3 is differentially expressed in primary HCC tumors and cell lines. Approximately 69.6% (96/138) of cells were p42.3-positive in hepatic tumor tissues, while 30.7% (35/114) were p42.3-positive in tumor-adjacent normal tissues. Clinicopathological characteristics of the HCC specimens revealed a significant correlation between p42.3 expression and tumor differentiation (P = 0.031). However, p42.3 positivity was not related to tumor tumor-node-metastasis classification, hepatitis B virus status, or hepatoma type. Regarding p42.3 overexpression in stably transfected HepG2 cells, we discovered significant enhancement of cancer cell growth and colony formation in vitro, and significantly enhanced tumorigenicity in nude mice. Western blot analysis of cell cycle proteins revealed that enhanced p42.3 levels promote upregulation of proliferating cell nuclear antigen, cyclin B1 and mitotic arrest deficient 2. CONCLUSION: p42.3 promotes tumorigenicity and tumor growth in HCC and may be a potential target for future clinical cancer therapeutics. PMID:23704824
Chen, Dawei; Zhang, Chenyue; Lin, Jiamao; Song, Xinyu; Wang, Haiyong
2018-01-01
The aim of this study was to analyze the diagnostic and prognostic values of the circular RNA (circRNA) hsa_circ_0128298 in hepatocellular carcinoma (HCC). The global circRNA expression was measured using circRNA microarray using three pairs of cancer and noncancerous tissues from HCC patients. The microarray analysis revealed that two circRNAs were differentially expressed in the three pairs of cancerous and noncancerous tissues. The higher levels of two representative circRNAs, such as hsa_circ_0128298 and hsa_circ_0091582, were further confirmed by real-time polymerase chain reaction. In addition, the association between the expression level of hsa_circ_0128298 and the clinicopathological features of patients with HCC was further analyzed. The clinical diagnosis value was confirmed by receiver operating characteristic (ROC) curve analysis. Independent prognostic factors of patient outcome were identified using the Cox regression model. The survival data were analyzed by the Kaplan-Meier method, and the differences were evaluated using log-rank tests. Two-sided P -values <0.05 were considered statistically significant. The expression levels of hsa_circ_0128298 in HCC were significantly higher than those of paratumorous tissues ( P <0.001). Additionally, hsa_circ_0128298 was a diagnostic factor, with the area under the ROC curve of 0.668 (95% CI =0.503-0.794, P <0.001). The sensitivity and specificity values were 0.716 and 0.815, respectively. The AFP and hsa_circ_0128298 expression levels were independent prognostic factors. The overall survival of patients with low hsa_circ_0128298 expression was significantly higher than that of patients with high hsa_circ_0128298 expression. hsa_circ_0128298 may promote proliferation and metastasis and potentially represents a novel diagnostic and prognostic biomarker for HCC patients. However, studies with larger sample size are needed to confirm our conclusion.
Tak, Hyosun; Kang, Hoin; Ji, Eunbyul; Hong, Youlim; Kim, Wook; Lee, Eun Kyung
2018-03-18
Precise and early diagnosis is critical to improve the survival rate of hepatocellular carcinoma (HCC) patients. Although several genetic and protein markers have been developed and are currently used for diagnosis, prognosis, risk stratification, and therapeutic monitoring, application of these markers still needs to be improved for better specificity and efficacy. In this study, we investigated the relative expression of mitochondrial dynamics-regulating factors including T-cell intercellular antigen protein-1 (TIA-1), mitochondrial fission factor (MFF), microRNA (miR)-200a-3p, and miR-27a/b in the liver tissues from HCC patients. The expressions of TIA-1 and MFF were augmented in the cancerous liver tissues compared to the corresponding non-tumor tissues at mRNA and protein level, while the levels of miR-200a-3p and miR-27a/b were relatively lower in the cancerous liver tissues. In addition, high levels of TIA-1 and MFF mRNA were related to the poor survival rate of HCC patients. Our results indicated that the expressions of TIA-1, MFF, miR-200a-3p, and miR-27a/b in the cancerous liver tissues differed to these in non-cancerous tissues of HCC patients, demonstrating that these gene expressions could be potential markers for the diagnosis and prognosis of HCC. Copyright © 2018 Elsevier Inc. All rights reserved.
Downregulation of FOXP2 promoter human hepatocellular carcinoma cell invasion.
Yan, Xia; Zhou, Huiling; Zhang, Tingting; Xu, Pan; Zhang, Shusen; Huang, Wei; Yang, Linlin; Gu, Xingxing; Ni, Runzhou; Zhang, Tianyi
2015-12-01
Hepatocellular carcinoma (HCC) is a major health concern with a high morbidity and mortality rate worldwide. However, the mechanism underlying hepatocarcinogenesis remains unclear. Forkhead box P2 (FOXP2) has been implicated in various human cancer types. However, the role of FOXP2 in HCC remains unknown. Western blot and immunohistochemistry were used to measure the expression of FOXP2 protein in HCC and adjacent normal tissues in 50 patients. Wound healing and transwell assays were used to determine the cell invasion ability. We showed that the level of FOXP2 was significantly reduced in HCC compared with the adjacent non-tumorous tissue. There was statistical significance between the expression of FOXP2 and vein invasion (P = 0.017), number of tumor nodes (P = 0.028), and AFP (P = 0.033). Low expression of FOXP2 correlated with poor survival. Moreover, wound healing and transwell assays showed that FOXP2 could decrease cell invasion and affect the expression of vimentin and E-cadherin. Our results suggested that FOXP2 expression was downregulated in HCC tumor tissues, and reduced FOXP2 expression was associated with poor overall survival. In addition, downregulation of FOXP2 significantly enhanced cell invasiveness. These findings uncover that FOXP2 might be a new prognostic factor and be closely correlated with HCC cell invasion.
Zhao, Na-Na; Wang, Cheng; Lai, Cheng-Cai; Cheng, Si-Jie; Yan, Jin; Hong, Zhi-Xian; Yu, Lin-Xiang; Zhu, Zhen-Yu; Zhang, Pei-Rui; Wang, Zhao-Hai; Wang, Xi-Liang; Zhang, Shao-Geng; Yang, Peng-Hui
2018-05-01
Long non-coding RNAs (lncRNAs) have been investigated as a novel class of regulators of cellular processes, including cell growth, apoptosis and carcinogenesis. lncRNA BRAF-activated non-protein coding RNA (BANCR) has recently been revealed to be involved in tumorigenesis of numerous types of cancer, including papillary thyroid carcinoma, melanoma, non-small cell lung cancer and colorectal cancer. However, the expression profiles and biological relevance of lncRNA BANCR in hepatocellular carcinoma (HCC) has not yet been reported. In the present study, the expression level of BANCR in tumor tissues and para-cancerous tissues was determined by reverse transcription-quantitative polymerase chain reaction in patients with hepatitis B virus (HBV)-associated HCC, and its association with clinicopathological characteristics of patients was analyzed. The results demonstrated that the expression level of BANCR was significantly reduced in tumor tissues in comparison with in para-cancerous tissues (P<0.001). Furthermore, the present study demonstrated that BANCR expression level was closely associated with serum α-fetoprotein levels (P<0.01) and HCC tumor number (P<0.05). To the best of our knowledge, these results revealed for the first time that BANCR downregulated in patients with HBV-associated HCC and BANCR expression level may be a potential valuable diagnosis and therapeutic biomarker in HCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Quanjun, E-mail: quanjun_d@126.com; Xie, Liqun; Li, Hua
2015-11-27
Recent studies have shown that miR-506 plays important roles in human cancer progression. However, little is known about the function of miR-506 in hepatocellular carcinoma (HCC). In this study, we found that miR-506 significantly inhibits HCC cell proliferation in vitro and tumorigenicity in vivo. Moreover, miR-506 induced G1/S cell cycle arrest and apoptosis in HCC cells. Rho-associated protein kinase 1(ROCK1) was identified as a novel target of miR-506; overexpression of ROCK1 reversed the suppressive effects of miR-506 in HCC cells. Additionally, ROCK1 was found up-regulated and inversely correlated with miR-506 in HCC tissues. Therefore, our findings collectively suggest that miR-506 acts asmore » a tumor suppressor via regulation of ROCK1 expression and may thus be a promising therapeutic target for HCC. - Highlights: • miR-506 inhibits HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-506 induced G1/S cell cycle arrest and apoptosis in HCC cells. • ROCK1 was identified as a novel target of miR-506. • ROCK1 was found up-regulated and inversely correlated with miR-506 in HCC tissues.« less
Lv, J; Zhu, P; Yang, Z; Li, M; Zhang, X; Cheng, J; Chen, X; Lu, F
2015-01-01
Several members of protocadherins have been found involved in human carcinogenesis, but little is known about PCDH20 in HCC. Here in this study, using quantitative real-time RT-PCR assay, we demonstrated the downregulation of PCDH20 expression in 6 of 7 HCC cell lines tested. Similarly, PCDH20 expression in primary HCC tissues was also significantly downregulated in comparison with that in either disease-free normal liver tissues or the adjacent nontumour liver tissues (P < 0.001, respectively). Among HCC tumour tissues studied, about 48% (51/107) of them showed reduced PCDH20 mRNA level. Further statistic analysis revealed that the reduced PCDH20 mRNA level in tumour tissues was much more common in younger patients group (aged <50 years) than that in older group (≥50 years) (60% vs 33%, P = 0.0303). Loss of heterozygosity (LOH) and promoter hypermethylation analysis revealed that deletion and/or aberrant epigenetic modulation of PCDH20 gene account for its downregulation, at least in a fraction of tumour specimens. Moreover, ectopic expression of PCDH20 in HCC cells significantly suppressed cell proliferation, clonogenicity, migration and tumour formation. Notably, we proved for the first time that, via activating GSK-3β, PCDH20 could inhibit Wnt/β-catenin signalling pathway. Furthermore, our data suggest that PCDH20 may conduct its Wnt/β-catenin signalling antagonizing function through suppressing Akt and Erk activities and promoting GSK-3β signalling activities. However, the detailed mechanism remained undiscovered. In conclusion, our data here strongly suggested that PCDH20 may act as a candidate tumour suppressor in HCC. PMID:24910204
Akahoshi, Keiichi; Tanaka, Shinji; Mogushi, Kaoru; Shimada, Shu; Matsumura, Satoshi; Akiyama, Yoshimitsu; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru
2016-09-01
The incidence of hepatocellular carcinoma (HCC) associated with metabolic risk factors, such as diabetes and obesity, has been increasing. However, the underlying mechanism that links these diseases remains unclear. We performed genome-wide expression analysis of human liver tissues of non-viral HCC patients with or without metabolic risk factors. The upregulated genes that associated with diabetes and obesity were investigated by in vitro and in vivo experiments, and immunohistochemistry of human liver tissues was performed. Among the upregulated genes, connective tissue growth factor (CTGF) expression was induced to a greater extent by combined glucose and insulin administration to human hepatoma cells. Genome-wide expression analysis revealed upregulation of a chemokine network in CTGF-overexpressing hepatoma cells, which displayed an increased ability to induce in vitro activation of macrophages, and in vivo infiltration of liver macrophages. Immunohistochemistry of human liver tissues validated the correlations between CTGF expression and diabetes or obesity as well as activation of liver macrophages in patients with non-viral HCC. Recurrence-free survival was significantly poorer in the CTGF-positive patients compared with the CTGF-negative patients (p = 0.002). Multivariate analysis determined that CTGF expression (HR 2.361; 95 % CI 1.195-4.665; p = 0.013) and vascular invasion (HR 2.367; 95 % CI 1.270-4.410; p = 0.007) were independent prognostic factors for recurrence of non-viral HCC. Our data suggest that CTGF could be involved in oncogenic pathways promoting non-viral HCC associated with metabolic risk factors via induction of liver inflammation and is expected to be a novel HCC risk biomarker and potential therapeutic target.
Nam, Soo Jeong; Yeo, Hyun Yang; Chang, Hee Jin; Kim, Bo Hyun; Hong, Eun Kyung; Park, Joong-Won
2016-10-01
We developed a new method of detecting circulating tumor cells (CTCs) in liver cancer patients by constructing cell blocks from peripheral blood cells, including CTCs, followed by multiple immunohistochemical analysis. Cell blockswere constructed from the nucleated cell pellets of peripheral blood afterremoval of red blood cells. The blood cell blocks were obtained from 29 patients with liver cancer, and from healthy donor blood spikedwith seven cell lines. The cell blocks and corresponding tumor tissues were immunostained with antibodies to seven markers: cytokeratin (CK), epithelial cell adhesion molecule (EpCAM), epithelial membrane antigen (EMA), CK18, α-fetoprotein (AFP), Glypican 3, and HepPar1. The average recovery rate of spiked SW620 cells from blood cell blocks was 91%. CTCs were detected in 14 out of 29 patients (48.3%); 11/23 hepatocellular carcinomas (HCC), 1/2 cholangiocarcinomas (CC), 1/1 combined HCC-CC, and 1/3 metastatic cancers. CTCs from 14 patients were positive for EpCAM (57.1%), EMA (42.9%), AFP (21.4%), CK18 (14.3%), Gypican3 and CK (7.1%, each), and HepPar1 (0%). Patients with HCC expressed EpCAM, EMA, CK18, and AFP in tissue and/or CTCs, whereas CK, HepPar1, and Glypican3 were expressed only in tissue. Only EMA was significantly associated with the expressions in CTC and tissue. CTC detection was associated with higher T stage and portal vein invasion in HCC patients. This cell block method allows cytologic detection and multiple immunohistochemical analysis of CTCs. Our results show that tissue biomarkers of HCC may not be useful for the detection of CTC. EpCAM could be a candidate marker for CTCs in patients with HCC.
Huang, Chen-Song; Zhai, Jing-Ming; Zhu, Xiao-Xu; Cai, Jian-Peng; Chen, Wei; Li, Jian-Hui; Yin, Xiao-Yu
2017-12-01
Our previous study found that B cell translocation gene 2 (BTG2) was hyper-methylated and down-regulated in side population (SP) cells of hepatocellular carcinoma (HCC) cell line. However, its clinical significances and biological impacts on HCC SP cells remained unclear. To investigate the prognostic value of BTG2 gene in HCC and its influences on cancer stem cells (CSCs)-like traits of HCC cell line SP cells. BTG2 expression in human HCC and adjacent non-cancerous tissues was detected by immunohistochemical staining and quantitative real-time PCR, and also obtained from GEO and TCGA data. Its prognostic values were assessed. Its biological influences on HCC cell line SP cells were evaluated using cell viability, cell cycle, plate clone-forming assay, and chemoresistance in vitro and tumorigenicity in vivo. BTG2 expression was significantly suppressed in human HCC compared to adjacent non-cancerous tissues. BTG2 expression was correlated with TNM stage, tumor size and vascular invasion. Lower expression of BTG2 was associated with poorer overall survival and disease-free survival. In vitro, overexpression of BTG2 substantially suppressed cell proliferation and accumulation of HCC cell line SP cells in G0/G1 phase. Colony formation ability was markedly suppressed by BTG2 overexpression. Moreover, sensitivity of HCC cell line SP cells to 5-fluorouracil was substantially increased by overexpression of BTG2. Furthermore, tumorigenicity of HCC cell line SP cells transfected with BTG2 plasmids was significantly reduced in vivo. BTG2 gene could regulate the CSC-like traits of HCC cell line SP cells, and it represented as a molecular prognostic marker for HCC.
USP39 promotes the growth of human hepatocellular carcinoma in vitro and in vivo.
Yuan, Xianwen; Sun, Xitai; Shi, Xiaolei; Jiang, Chunping; Yu, Decai; Zhang, Weiwei; Guan, Wenxian; Zhou, Jianxin; Wu, Yafu; Qiu, Yudong; Ding, Yitao
2015-08-01
Ubiquitin specific protease 39 (USP39) plays an important role in mRNA splicing. In the present study, we investigated the role of USP39 in regulating the growth of hepatocellular carcinoma (HCC). We detected USP39 expression in more than 100 HCC clinical samples. The USP39 expression was significantly higher in the tumor tissues compared to the adjacent normal tissues, and was strongly associated with the pathological grade of HCC. USP39 knockdown inhibited cell proliferation and colony formation in vitro in the HepG2 cells, while upregulation of USP39 promoted tumor cell growth. FCM assay showed that USP39 knockdown led to G2/M arrest and induced apoptosis in the HepG2 cells. USP39 knockdown by shRNA inhibited xenograft tumor growth in nude mice. Moreover, USP39 knockdown led to the upregulation of p-Cdc2 and downregulation of p-Cdc25c and p-myt1, while the expression of total Cdc2, Cdc25c and myt1 was not changed in the USP39-knockdown cells. We also found that p-Cdc2 was decreased in the USP39-overexpressing cells and was upregulated in the xenografted tumors derived from the HepG2/KD cells from nude mice. Meanwhile, the expression levels of FoxM1 and its target genes PLK1 and cyclin B1 were decreased in the USP39-knockdown cells. These results suggest that USP39 may contribute to FoxM1 splicing in HCC tumor cells. Our data indicate that USP39 knockdown inhibited the growth of HCC both in vitro and in vivo through G2/M arrest, which was partly achieved via the inhibition of FoxM1 splicing.
Lamb, John R.; Zhang, Chunsheng; Xie, Tao; Wang, Kai; Zhang, Bin; Hao, Ke; Chudin, Eugene; Fraser, Hunter B.; Millstein, Joshua; Ferguson, Mark; Suver, Christine; Ivanovska, Irena; Scott, Martin; Philippar, Ulrike; Bansal, Dimple; Zhang, Zhan; Burchard, Julja; Smith, Ryan; Greenawalt, Danielle; Cleary, Michele; Derry, Jonathan; Loboda, Andrey; Watters, James; Poon, Ronnie T. P.; Fan, Sheung T.; Yeung, Chun; Lee, Nikki P. Y.; Guinney, Justin; Molony, Cliona; Emilsson, Valur; Buser-Doepner, Carolyn; Zhu, Jun; Friend, Stephen; Mao, Mao; Shaw, Peter M.; Dai, Hongyue; Luk, John M.; Schadt, Eric E.
2011-01-01
Background In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN) and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of tumorigenesis and disease progression remains unclear. Methodology/Principal Findings Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy number variation and survival using ∼250 AN and TU samples representing, respectively, the pre-cancer state, and the result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and genes differentially correlated between AN and TU. Conclusions/Significance This suggests that the process of tumor evolution involves rate-limiting steps related to the background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be a causal driver of tumor evolution in HCC and perhaps many solid tumor types. PMID:21750698
microRNA‑196b promotes cell migration and invasion by targeting FOXP2 in hepatocellular carcinoma.
Yu, Zhaoxiang; Lin, Xiaobo; Tian, Ming; Chang, Weiping
2018-02-01
Accumulating evidence indicates that microRNAs (miRNAs) play important roles in tumorigenesis and metastasis. Recent research has shown that miR‑196b is implicated in metastasis by regulating the migration and invasion of cancer cells. However, the clinical significance of miR‑196b and its role as well as the underlying mechanisms in hepatocellular carcinoma (HCC) remain largely unknown. Here, we detected miR‑196b expression in HCC and matched non-tumor tissues with qRT‑PCR. We found that miR‑196b displayed higher expression in HCC patient tissues and cells. Clinical analysis revealed that high miR‑196 expression was correlated with venous infiltration, advanced TNM stage and poor prognosis. Functionally, we demonstrated that miR‑196b promoted the migration and invasion of HCC cells in vitro. Moreover, miR‑196b knockdown restrained pulmonary metastasis in vivo. Mechanistically, we confirmed that miR‑196b could directly bind to 3'UTR of forkhead box P2 (FOXP2) mRNA and repress its expression. miR‑196b and FOXP2 showed a negative correlation in HCC tissues. More importantly, upregulation of FOXP2 antagonized miR‑196b‑mediated migration and invasion in Hep3B cells. Furthermore, FOXP2 knockdown partially reversed the anti‑metastatic function of the miR‑196b inhibitor on HCCLM3 cells. Taken together, we demonstrated that miR‑196b may function as a prognostic biomarker and suppressed FOXP2 expression, subsequently leading to the metastasis of HCC. Our findings highlight a novel mechanism of miR‑196b in the progression of HCC and identify miR‑196b/FOXP2 axis as a promising target for HCC.
Potential involvement of leptin in carcinogenesis of hepatocellular carcinoma.
Wang, Xiu-Jie; Yuan, Shu-Lan; Lu, Qing; Lu, Yan-Rong; Zhang, Jie; Liu, Yan; Wang, Wen-Dong
2004-09-01
To investigate the potential involvement of leptin in carcinogenesis of hepatocellular carcinoma (HCC) and to elucidate the etiology, carcinogenesis and progress of HCC. Expressions of Ob gene product, leptin and its receptor, Ob-R were investigated in 36 cases of HCC specimens and corresponding adjacent non-tumorous liver tissues with immunohistochemical staining. The effect of leptin on proliferation of Chang liver cell line and liver cancer cell line SMMC-7721 was studied with cell proliferation assay (MTT). Leptin expression was detected in 36 cases of adjacent non-tumorous liver tissues (36/36, 100%) with moderate (++) to strong (+++) intensity; and in 72.22%(26/36) of HCC with weaker (+) intensity (P<0.05). Thirty of 36 (83.33%) cases of adjacent non-tumorous liver tissues were positive for Ob-R, with moderate (++) to strong (+++) intensity. In HCC, 11/36 (30.56%) cases were positive, with weak (+) intensity (P<0.05). In cell proliferation assay, leptin inhibited the proliferation of Chang liver cells. The cell survival rate was 10-13% lower than that of the untreated cells (P>0.05). Leptin had little effect on the proliferation of liver cancer cells (P>0.05). High level expression and decreased or absent expression of leptin and its receptor in adjacent non-tumorous liver cells and HCC cells, inhibitory effect of leptin on the proliferation of normal Chang liver cells and no effect of leptin on proliferation of liver cancer cells, may provide new insights into the carcinogenesis and progression of human HCC. It could be assumed that leptin acting as an inhibitor and/or promoter, is involved in the process of carcinogenesis and progress of human HCC. Copyright 2004 The WJG Press ISSN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Li, Xiao-Na; Li, Xing-Guang
Highlights: • DNAJC6 is up-regulated in hepatocellular carcinoma tissues. • DNAJC6 promotes hepatocellular carcinoma cell proliferation and invasion. • DNAJC6 induces epithelial–mesenchymal transition by activating transforming growth factor β signaling. - Abstract: Epithelial–mesenchymal transition (EMT) is a developmental program, which is associated with hepatocellular carcinoma (HCC) development and progression. DNAJC6 (DNA/HSP40 homolog subfamily C member 6) encodes auxilin, which is responsible for juvenile Parkinsonism with phenotypic variability. However, the role of DNAJC6 in HCC development and progression is limited. Here, we report that DNAJC6 is up-regulated in HCC tissues and up-regulation of DNAJC6 expression predicts poor outcome in patients withmore » HCC. Furthermore, overexpression of DNAJC6 enhances the ability for acquisition of mesenchymal traits, enhanced cell proliferation and invasion. DNAJC6 positively regulated expression of EMT-related transcription factor, also activating transforming growth factor β (TGF-β) pathway to contribute to EMT. Our findings demonstrated an important function of DNAJC6 in the progression of HCC by induction of EMT, and they implicate DNAJC6 as a marker of poor outcome in HCC.« less
The expression of Egfl7 in human normal tissues and epithelial tumors.
Fan, Chun; Yang, Lian-Yue; Wu, Fan; Tao, Yi-Ming; Liu, Lin-Sen; Zhang, Jin-Fan; He, Ya-Ning; Tang, Li-Li; Chen, Guo-Dong; Guo, Lei
2013-04-23
To investigate the expression of Egfl7 in normal adult human tissues and human epithelial tumors. RT-PCR and Western blot were employed to detect Egfl7 expression in normal adult human tissues and 10 human epithelial tumors including hepatocellular carcinoma (HCC), lung cancer, breast cancer, prostate cancer, colorectal cancer, gastric cancer, esophageal cancer, malignant glioma, ovarian cancer and renal cancer. Immunohistochemistry and cytoimmunofluorescence were subsequently used to determine the localization of Egfl7 in human epithelial tumor tissues and cell lines. ELISA was also carried out to examine the serum Egfl7 levels in cancer patients. In addition, correlations between Egfl7 expression and clinicopathological features as well as prognosis of HCC and breast cancer were also analyzed on the basis of immunohistochemistry results. Egfl7 was differentially expressed in 19 adult human normal tissues and was overexpressed in all 10 human epithelial tumor tissues. The serum Egfl7 level was also significantly elevated in cancer patients. The increased Egfl7 expression in HCC correlated with vein invasion, absence of capsule formation, multiple tumor nodes and poor prognosis. Similarly, upregulation of Egfl7 in breast cancer correlated strongly with TNM stage, lymphatic metastasis, estrogen receptor positivity, Her2 positivity and poor prognosis. Egfl7 is significantly upregulated in human epithelial tumor tissues, suggesting Egfl7 to be a potential biomarker for human epithelial tumors, especially HCC and breast cancer.
Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma
Qi, Jiahui; Wang, Jin; Katayama, Hiroshi; Sen, Subrata; Liu, Song-mei
2013-01-01
Incidence and mortality associated with hepatocellular carcinoma (HCC) is rising throughout the world. Accurate, noninvasive biomarkers for the early detection of HCC are urgently needed to reduce worldwide morbidity and mortality related to HCC. MicroRNAs (miRNAs), 17- to 25-nucleotide noncoding RNAs that are frequently dysregulated in HCC, have shown great promise as tissue-based markers for HCC diagnosis and prognosis. Moreover, they are stably expressed in serum and urine, and these circulating microRNAs (cmiRNAs) are emerging as novel noninvasive biomarkers for the early detection and prognosis of HCC. This article summarizes the latest findings on the role of circulating miRNAs as potential minimally invasive diagnostic and prognostic biomarkers for HCC. PMID:23259781
Shang, Runze; Zhou, Liang; Wang, Xing; Duan, Juanli; Ruan, Bai; Gao, Yuan; Dai, Bin; Qu, Shibin; Liu, Wei; Ding, Rui; Wang, Lin; Wang, Desheng; Dou, Kefeng
2016-01-01
MicroRNA-150 (miR-150) is frequently dysregulated in cancer and is involved in carcinogenesis and cancer progression. In this study, we found that miR-150 was significantly downregulated in hepatocellular carcinoma (HCC) tissues compared to adjacent noncancerous tissues. Low levels of miR-150 were significantly associated with worse clinicopathological characteristics and a poor prognosis for patients with HCC. miR-150 overexpression inhibited cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. Further experiments indicated that Grb2-associated binding protein 1 (GAB1) was a direct target of miR-150 in HCC cells. In addition, GAB1 expression was increased in HCC tissues and inversely correlated with miR-150 levels. Knockdown of GAB1 mimicked the tumor-suppressive effects of miR-150 overexpression on HCC cells, whereas restoration of GAB1 expression partially abolished the inhibitory effects. Moreover, miR-150 overexpression decreased GAB1 expression, subsequently downregulated phospho-ERK1/2 and suppressed epithelial-mesenchymal-transition (EMT). These effects caused by miR-150 overexpression were alleviated by exogenous GAB1 expression. Taken together, this study demonstrates that miR-150 may be useful as a prognostic marker and that the identified miR-150-GAB1-ERK axis is a potential therapeutic target for HCC. PMID:26871477
RITA inhibits growth of human hepatocellular carcinoma through induction of apoptosis.
Wang, Haihe; Chen, Guofu; Wang, Hongzhi; Liu, Chunbo
2013-01-01
RBP-J-interacting and tubulin-associated (RITA) is a novel RBP-J-interacting protein that downregulates Notch-mediated transcription. The current study focuses on the antitumor effect of RITA in human hepatocellular carcinoma (HCC) and aims to explore its molecular mechanism. Thirty paired HCC and adjacent non-tumoral liver samples were analyzed by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). RITA overexpression was induced by transfection of a pcDNA3.1-Flag-RITA plasmid into HepG2 cells. RITA knockdown was achieved by siRNA transfection. mRNA and protein expression of target genes were quantified by qRT-PCR and Western blotting, respectively. Cell proliferation and apoptosis were measured using MTT assay and flow cytometry. Our results demonstrate that adjacent nontumoral liver samples exhibited increased RITA expression compared to HCC tissues (p < 0.05); RITA levels were associated with tumor differentiation status. Overexpression of RITA suppressed cell proliferation and promoted early apoptosis, while its silencing promoted cell growth dramatically (p < 0.05). RITA overexpression upregulated p53 and reduced cyclin E levels, whereas silencing of RITA had the opposite effect on p53 and cyclin E expression. Our in vitro results represent the first evidence that RITA might suppress tumor growth and induce apoptosis in HCCs, and may be a potent antitumoral agent for HCC treatment that deserves further exploration.
Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon.
Lukasiak, S; Schiller, C; Oehlschlaeger, P; Schmidtke, G; Krause, P; Legler, D F; Autschbach, F; Schirmacher, P; Breuhahn, K; Groettrup, M
2008-10-09
The mRNA of the ubiquitin-like modifier FAT10 has been reported to be overexpressed in 90% of hepatocellular carcinoma (HCC) and in over 80% of colon, ovary and uterus carcinomas. Elevated FAT10 expression in malignancies was attributed to transcriptional upregulation upon the loss of p53. Moreover, FAT10 induced chromosome instability in long-term in vitro culture, which led to the hypothesis that FAT10 might be involved in carcinogenesis. In this study we show that interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha synergistically upregulated FAT10 expression in liver and colon cancer cells 10- to 100-fold. Real-time RT-PCR revealed that FAT10 mRNA was significantly overexpressed in 37 of 51 (72%) of human HCC samples and in 8 of 15 (53%) of human colon carcinomas. The FAT10 cDNA sequences in HCC samples were not mutated and intact FAT10 protein was detectable. FAT10 expression in both cancer tissues correlated with expression of the IFN-gamma- and TNF-alpha-dependent proteasome subunit LMP2 strongly suggesting that proinflammatory cytokines caused the joint overexpression of FAT10 and LMP2. NIH3T3 transformation assays revealed that FAT10 had no transforming capability. Taken together, FAT10 qualifies as a marker for an interferon response in HCC and colon carcinoma but is not significantly overexpressed in cancers lacking a proinflammatory environment.
Ma, Li‐Jie; Wang, Xiao‐Ying; Duan, Meng; Liu, Long‐Zi; Shi, Jie‐Yi; Dong, Liang‐Qing; Yang, Liu‐Xiao; Wang, Zhi‐Chao; Ding, Zhen‐Bin; Ke, Ai‐Wu; Cao, Ya; Zhang, Xiao‐Ming; Zhou, Jian; Fan, Jia
2017-01-01
Abstract The role of telomere dysfunction and aberrant telomerase activities in hepatocellular carcinoma (HCC) has been overlooked for many years. This study aimed to delineate the variation and prognostic value of telomere length in HCC. Telomere‐specific fluorescence in situ hybridization (FISH) and qPCR were used to evaluate telomere length in HCC cell lines, tumor tissues, and isolated non‐tumor cells within the tumor. Significant telomere attrition was found in tumor cells and cancer‐associated fibroblasts (CAFs) compared to their normal counterparts, but not in intratumor leukocytes or bile duct epithelial cells. Clinical relevance and prognostic value of telomere length were investigated on tissue microarrays of 257 surgically treated HCC patients. Reduced intensity of telomere signals in tumor cells or CAFs correlated with larger tumor size and the presence of vascular invasion (p < 0.05). Shortened telomeres in tumor cells or CAFs associated with reduced survival and increased recurrence, and were identified as independent prognosticators for HCC patients (p < 0.05). These findings were validated in an independent HCC cohort of 371 HCC patients from The Cancer Genome Atlas (TCGA) database, confirming telomere attrition and its prognostic value in HCC. We also showed that telomerase reverse transcriptase promoter (TERTp) mutation correlated with telomere shortening in HCC. Telomere variation in tumor cells and non‐tumor cells within the tumor microenvironment of HCC was a valuable prognostic biomarker for this fatal malignancy. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:28833123
Schnabl, Bernd; Valletta, Daniela; Kirovski, Georgi; Hellerbrand, Claus
2011-12-01
Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulates diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 mRNA is up-regulated in liver cirrhosis, which is the main risk factor for hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in human HCC cells and tissue specimens and found a significant up-regulation compared to primary human hepatocytes and corresponding non-tumorous liver tissue. Over-expression of the transcription factor Ets-1 further enhanced ZNF267 expression, and reporter gene assays revealed that mutation of the Ets-1 binding site to the ZNF267 promotor markedly inhibited ZNF267 promotor activity. Hypoxic conditions induced Ets-1 in HCC cells via HIF1alpha activation, and hypoxia induced ZNF267 expression while HIF1alpha inhibition significantly reduced both hypoxia-induced as well as basal ZNF267 expression in HCC cells. It is known that hypoxic conditions in tumorous tissues induce the formation of reactive oxygen species (ROS), and ROS have been identified as important factor in the regulation of Ets-1 expression in tumor cells. Here, we found that ROS induction induced and ROS scavenging reduced ZNF267 expression in HCC cells, respectively. Loss and gain of function analysis applying siRNA directed against ZNF267 or transient transfection revealed that ZNF267 promotes proliferation and migration of HCC cells in vitro. These findings indicate Ets-1 and HIF1alpha as critical regulators of basal and hypoxia- or ROS-induced ZNF267 expression in HCC, and further suggest that the pro-tumorigenic effect of these factors is at least in part mediated via increased ZNF267 expression in HCC. Since ZNF267 is already elevated in cirrhosis, ZNF267 appears as promising target for both prevention as well as treatment of HCC in patients with chronic liver disease. Copyright © 2011 Elsevier Inc. All rights reserved.
Schnabl, Bernd; Valletta, Daniela; Kirovski, Georgi; Hellerbrand, Claus
2012-01-01
Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulates diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 mRNA is up-regulated in liver cirrhosis, which is the main risk factor for hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in human HCC cells and tissue specimens and found a significant up-regulation compared to primary human hepatocytes and corresponding non-tumorous liver tissue. Over-expression of the transcription factor Ets-1 further enhanced ZNF267 expression, and reporter gene assays revealed that mutation of the Ets-1 binding site to the ZNF267 promotor markedly inhibited ZNF267 promotor activity. Hypoxic conditions induced Ets-1 in HCC cells via HIF1alpha activation, and hypoxia induced ZNF267 expression while HIF1alpha inhibition significantly reduced both hypoxia-induced as well as basal ZNF267 expression in HCC cells. It is known that hypoxic conditions in tumorous tissues induce the formation of reactive oxygen species (ROS), and ROS have been identified as important factor in the regulation of Ets-1 expression in tumor cells. Here, we found that ROS induction induced and ROS scavenging reduced ZNF267 expression in HCC cells, respectively. Loss and gain of function analysis applying siRNA directed against ZNF267 or transient transfection revealed that ZNF267 promotes proliferation and migration of HCC cells in vitro. These findings indicate Ets-1 and HIF1alpha as critical regulators of basal and hypoxia- or ROS-induced ZNF267 expression in HCC, and further suggest that the pro-tumorigenic effect of these factors is at least in part mediated via increased ZNF267 expression in HCC. Since ZNF267 is already elevated in cirrhosis, ZNF267 appears as promising target for both prevention as well as treatment of HCC in patients with chronic liver disease. PMID:21840307
Jiang, Weidong; Wen, Dacheng; Gong, Lulu; Wang, Yu; Liu, Zefeng; Yin, Fangying
2018-06-02
The importance of circular RNAs (circRNAs) in human cancers has gradually been acknowledged. In hepatocellular carcinoma (HCC), several circRNAs have been reported to regulate tumor growth and metastasis. However, the role of hsa_circ_0000673 in HCC remains largely unknown. In this study, we found that hsa_circ_0000673 was significantly upregulated in HCC tissues compared to adjacent non-tumor tissues. Moreover, we found that hsa_circ_0000673 knockdown markedly inhibited the proliferation and invasion of HCC cells in vitro. Besides, hsa_circ_0000673 silence led to delayed tumor growth in vivo. In terms of mechanism, we showed that hsa_circ_0000673 directly associated with miR-767-3p in HCC cells. Via inhibiting miR-767-3p, hsa_circ_0000673 promoted HCC cell proliferation and invasion. Furthermore, we demonstrated that SET was a downstream effector of hsa_circ_0000673/miR-767-3p signaling. We showed that miR-767-3p could significantly promote SET expression by sponging miR-767-3p in HCC cells. Finally, rescue assays indicated that SET expression was essential for the effects of hsa_circ_0000673/miR-767-3p signaling on HCC cell proliferation and invasion. Taken together, our findings demonstrated that hsa_circ_0000673 promoted HCC malignant behaviors via regulating miR-767-3p/SET pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
Yan, Weiwei; Zhu, Zhenyu; Pan, Fei; Huang, Ang; Dai, Guang-Hai
2018-01-01
To explore new biomarkers for indicating the recurrence and prognosis in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients after tumor resection, we investigated the expression and prognostic value of c-kit(CD117) in HBV-related HCC. Immunohistochemistry was used to estimate the expression of c-kit(CD117) and CD34 in the liver cancer tissues. The correlations between the expression of these biomarkers and the clinicopathologic characteristics were analyzed. The positive rate of c-kit(CD117) expression in 206 HCC cases was 48.1%, and c-kit expression was significantly related with CD34-positive microvessel density. CD34-microvessel density numbers were much higher in c-kit(+) HCC tissues than in c-kit(-) HCC tissues (44.13±17.01 vs 26.87±13.16, P =0.003). The expression of c-kit was significantly higher in patients with Edmondson grade III-IV ( P <0.001) and TNM stage III ( P <0.001). Moreover, Kaplan-Meier survival analysis showed that c-kit ( P <0.001) expression was correlated with reduced disease-free survival (DFS). Multivariate analysis identified c-kit as an independent poor prognostic factor of DFS in HCC patients ( P <0.001). Increased c-kit expression could be considered as an independent unfavorable prognostic factor for predicting DFS in HBV-related HCC patients after surgery. These results could be used to identify patients at a higher risk of early tumor recurrence and poor prognosis.
Endothelial precursor cells promote angiogenesis in hepatocellular carcinoma.
Sun, Xi-Tai; Yuan, Xian-Wen; Zhu, Hai-Tao; Deng, Zheng-Ming; Yu, De-Cai; Zhou, Xiang; Ding, Yi-Tao
2012-09-21
To investigate the role of bone marrow-derived endothelial progenitor cells (EPCs) in the angiogenesis of hepatocellular carcinoma (HCC). The bone marrow of HCC mice was reconstructed by transplanting green fluorescent protein (GFP) + bone marrow cells. The concentration of circulating EPCs was determined by colony-forming assays and fluorescence-activated cell sorting. Serum and tissue levels of vascular endothelial growth factor (VEGF) and colony-stimulating factor (CSF) were quantified by enzyme-linked immunosorbent assay. The distribution of EPCs in tumor and tumor-free tissues was detected by immunohistochemistry and real-time polymerase chain reaction. The incorporation of EPCs into hepatic vessels was examined by immunofluorescence and immunohistochemistry. The proportion of EPCs in vessels was then calculated. The HCC model was successful established. The flow cytometry analysis showed the mean percentage of CD133CD34 and CD133VEGFR2 double positive cells in HCC mice was 0.45% ± 0.16% and 0.20% ± 0.09% respectively. These values are much higher than in the sham-operation group (0.11% ± 0.13%, 0.05% ± 0.11%, n = 9) at 14 d after modeling. At 21 d, the mean percentage of circulating CD133CD34 and CD133VEGFR2 cells is 0.23% ± 0.19%, 0.25% ± 0.15% in HCC model vs 0.05% ± 0.04%, 0.12% ± 0.11% in control. Compared to the transient increase observed in controls, the higher level of circulating EPCs were induced by HCC. In addition, the level of serum VEGF and CSF increased gradually in HCC, reaching its peak 14 d after modeling, then slowly decreased. Consecutive sections stained for the CD133 and CD34 antigens showed that the CD133+ and CD34+ VEGFR2 cells were mostly recruited to HCC tissue and concentrated in tumor microvessels. Under fluorescence microscopy, the bone-marrow (BM)-derived cells labeled with GFP were concentrated in the same area. The relative levels of CD133 and CD34 gene expression were elevated in tumors, around 5.0 and 3.8 times that of the tumor free area. In frozen liver sections from HCC mice, cells co-expressing CD133 and VEGFR2 were identified by immunohistochemical staining using anti-CD133 and VEGFR2 antibodies. In tumor tissue, the double-positive cells were incorporated into vessel walls. In immunofluorescent staining. These CD31 and GFP double positive cells are direct evidence that tumor vascular endothelial cells (VECs) come partly from BM-derived EPCs. The proportion of GFP CD31 double positive VECs (out of all VECs) on day 21 was around 35.3% ± 21.2%. This is much higher than the value recorded on day 7 group (17.1% ± 8.9%). The expression of intercellular adhesion molecule 1, vascular adhesion molecule 1, and VEGF was higher in tumor areas than in tumor-free tissues. Mobilized EPCs were found to participate in tumor vasculogenesis of HCC. Inhibiting EPC mobilization or recruitment to tumor tissue may be an efficient strategy for treating HCC.
Dai, Rongjuan; Peng, Feng; Xiao, Xinqiang; Gong, Xing; Jiang, Yongfang; Zhang, Min; Tian, Yi; Xu, Yun; Ma, Jing; Li, Mingming; Luo, Yue; Gong, Guozhong
2017-09-22
The HBx protein of hepatitis B virus (HBV) is widely recognized to be a critical oncoprotein contributing to the development of HBV-related hepatocellular carcinoma (HCC). In addition, cationic amino acid transporter 1 (CAT-1) gene is a target of miR-122. In this study, we found that CAT-1 protein levels were higher in HBV-related HCC carcinomatous tissues than in para-cancerous tumor tissues, and that CAT-1 promoted HCC cell growth, proliferation, and metastasis. Moreover, HBx-induced decreases in Gld2 and miR-122 levels that contributed to the upregulation of CAT-1 in HCC. These results indicate that a Gld2/miR-122/CAT-1 pathway regulated by HBx likely participates in HBV-related hepatocellular carcinogenesis.
Liu, Jessica; Hu, Hui-Han; Lee, Mei-Hsuan; Korenaga, Masaaki; Jen, Chin-Lan; Batrla-Utermann, Richard; Lu, Sheng-Nan; Wang, Li-Yu; Mizokami, Masashi; Chen, Chien-Jen; Yang, Hwai-I
2017-10-30
This study examines the role of M2BPGi, a novel seromarker for chronic hepatitis, in predicting hepatocellular carcinoma (HCC) among untreated chronic hepatitis B (CHB) patients. In this nested case-control study, 1070 samples were assayed for M2BPGi, including 357 samples from HCC cases, and 713 samples from non-HCC controls, collected at various times throughout follow-up. HCC case samples were stratified according to years prior to diagnosis. Associations between M2BPGi and HCC were examined with multivariate logistic regression. M2BPGi, α-fetoprotein (AFP), and hepatitis B surface antigen (HBsAg) levels were significant independent short-term predictors of HCC, while M2BPGi was insignificant in long-term analyses. Compared to M2BPGi levels <1.0 cut-off index (COI), those with levels ≥2.0 COI had multivariate odds ratios (95% CI) for HCC of 7.40 (2.40-22.78), 6.46 (2.58-16.18), and 2.24 (0.97-5.15), respectively, for prediction of HCC within 1-2, 2-5, and ≥5 years. Higher proportions of individuals had M2BPGi levels ≥2.0 COI in samples closer to HCC diagnosis. Areas under receiver operating characteristic curves for models with M2BPGi, AFP, and HBsAg levels predicting HCC within 1-2, 2-5, and >5 years were 0.84, 0.81, and 0.75. M2BPGi is a strong and independent short-term predictor of HCC in CHB patients.
Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.
Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii
2017-10-17
Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.
Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells
Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii
2017-01-01
Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones—HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells. PMID:29156827
Changes in arginase isoenzymes pattern in human hepatocellular carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrzanowska, Alicja; Krawczyk, Marek; Baranczyk-Kuzma, Anna
2008-12-12
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide affecting preferentially patients with liver cirrhosis. The studies were performed on tissues obtained during surgery from 50 patients with HCC, 40 with liver cirrhosis and 40 control livers. It was found that arginase activity in HCC was nearly 5- and 15-fold lower than in cirrhotic and normal livers, respectively. Isoenzymes AI (so-called liver-type arginase) and AII (extrahepatic arginase) were identified by Western blotting in all studied tissues, however the amount of AI, as well as the expression of AI-mRNA were lower in HCC, in comparison with normal liver, andmore » those of AII were significantly higher. Since HCC is arginine-dependent, and arginine is essential for cells growth, the decrease of AI may preserve this amino acid within tumor cells. Concurrently, the rise of AII can increase the level of polyamines, compounds crucial for cells proliferation. Thus, both arginase isoenzymes seem to participate in liver cancerogenesis.« less
Lamarca, Angela; Mendiola, Marta; Bernal, Elsa; Heredia, Victoria; Díaz, Esther; Miguel, María; Pastrian, Laura G; Burgos, Emilio; Feliu, Jaime; Barriuso, Jorge
2015-01-01
Hepatocellular carcinoma (HCC) tends to develop in the liver when there is a high level of background inflammation (cirrhosis). Treatment options are limited and mainly based on systemic therapies such as anti-angiogenic drugs (e.g. sorafenib). Connective tissue growth factor (CTGF) is a matricellular protein involved in inflammation, tumour growth and angiogenesis. The aim of this study is to determine the expression of CTGF and hypoxia inducible factors (HIF) in HCC and to clarify its impact on relapse and survival. Eligibility criteria for the study consisted of patients with a diagnosis of HCC, formalin-fixed and paraffin-embedded (FFPE) biopsy tissue, as well as relapse and available survival data. A tissue microarray was constructed from ≥ 70% tumoural sections. The expressions of CTGF, HIF1α and HIF2α were analysed by immunohistochemistry. The relationship between expression of CTGF/HIF1α and CTGF/HIF2α were analysed. Univariate and multivariate analyses were performed. Fifty-three patients were screened; 39 patients were eligible for this study. Patients were treated with radical intent. At the end of follow up, 59% patients relapsed (28.2% locally, 10.3% multicentric liver relapse and 7.7% distant metastases). Estimated median disease-free survival (DFS) and overall survival (OS) were 23.4 (95%CI 7.18-39.66) and 38.6 months (95%CI 30.7-46.6), respectively. Expression of CTGF was: negative 23.1%, focal 48.7% and diffuse 23.1%. A non-statistically significant relationship between expression of CTGF and HIF was shown supporting an alternative pathway for CTGF expression in HCC. In multivariate analysis CTGF expression was an independent factor related to OS, with shorter survival in those patients with focal/diffuse CTGF expression (HR 2.46; 95%CI 1.18-5.15). Our results support that expression of CTGF is an independent factor associated with shorter OS in HCC. Further analysis of CTGF expression in a larger series of HCC patients is required to confirm CTGF as a prognostic biomarker in HCC.
Zhao, Jinyan; Liu, Liya; Wan, Yun; Zhang, Yuchen; Zhuang, Qunchuan; Zhong, Xiaoyong; Hong, Zhenfeng; Peng, Jun
2015-07-01
We evaluated the effects of total alkaloids of Rubus alceifolius Poir (TARAP) on the migration and invasion of hepatocellular carcinoma (HCC) and furthermore investigated the possible molecular mechanisms mediating its anticancer activity. We implanted nude mice with human HCC HepG2 cells and fed them with vehicle (physiological saline) or 3 g/kg/day dose of TARAP 5 days per week for 21 days. We determined the in vitro effect of TARAP on the migration and invasion of HepG2 cells by transwell assay. We evaluated SHH signaling components' (SHH, PTCH, SMO, and Gli1) expression levels by reverse transcriptase-polymerase chain reaction and immunohistochemistry. Activity of the matrix metalloproteinases (MMPs) in supernatants was analyzed by zymography. The expression of the MMPs and their specific tissue inhibitor (tissue inhibitor of matrix metalloproteinases, TIMP-1, 2) in HCC tissues was detected by immunohistochemistry. We discovered that TARAP inhibited hepatocellular migration and invasion in a dose-dependent manner in vitro. In addition, TARAP decreased the expression of SHH, PTCH, SMO, and Gli1 in HCC mouse tumors at both transcriptional and translational levels. Moreover, TARAP inhibited the activity of MMP2 and MMP9. We found that TARAP reduced the expression of MMP2 and MMP9, as well as the tissue inhibitor of MMPs. Our study showed that TARAP inhibits HCC migration and invasion likely through suppression of the hedgehog pathway. This may, in part, explain its anticancer properties. These results suggest that total alkaloids in Rubus alceifolius may have potential as a novel antimetastasis drug in the treatment of HCC. © The Author(s) 2015.
MicroRNA-361-5p Inhibits Cancer Cell Growth by Targeting CXCR6 in Hepatocellular Carcinoma.
Sun, Jian-Jun; Chen, Guo-Yong; Xie, Zhan-Tao
2016-01-01
A growing body of evidence supports the notion that MicroRNAs (miRNAs) function as key regulators of tumorigenesis. In the present study, the expression and roles of miRNA-361-5p were explored in hepatocellular carcinoma (HCC). Quantitative real-time PCR was used to detect the expression miR-361-5p in HCC tissues and pair-matched adjacent normal tissues. MTT and BrdU assays were used to identify the role of miR-361-5p in the regulation of proliferation and invasion of HCC cells. Using bioinformatics analysis, luciferase reporter assays and Western blots were used to identify the molecular target of miR-361-5p. nude mice were used to detect the anti-tumor role of miR-361-5p in vivo. miR-361-5p was down-regulated in HCC tissues in comparison to adjacent normal tissues, due to hypermethylation at its promoter region. Overexpression of miR-361-5p suppressed proliferation and invasion of HCC cells. Chemokine (C-X-C Motif) receptor 6 (CXCR6) was identified as a target of miR-361-5p. Indeed, knockdown of CXCR6 photocopied, while overexpression of CXCR6 largely attenuated the anti-proliferative effect of miR-361-5p. More importantly, in vivo studies demonstrated that forced expression of miR-361-5p significantly inhibited tumor growth in the nude mice. Our results indicate that miR-361-5p acts as a tumor suppressor and might serve as a novel therapeutic target for the treatment of HCC patients. © 2016 The Author(s) Published by S. Karger AG, Basel.
A Targetable Molecular Chaperone Hsp27 Confers Aggressiveness in Hepatocellular Carcinoma.
Zhang, Yurong; Tao, Xuemei; Jin, Guangzhi; Jin, Haojie; Wang, Ning; Hu, Fangyuan; Luo, Qin; Shu, Huiqun; Zhao, Fangyu; Yao, Ming; Fang, Jingyuan; Cong, Wenming; Qin, Wenxin; Wang, Cun
2016-01-01
Heat shock protein 27 (Hsp27) is an ATP-independent molecular chaperone and confers survival advantages and resistance to cancer cells under stress conditions. The effects and molecular mechanisms of Hsp27 in HCC invasion and metastasis are still unclear. In this study, hepatocellular carcinoma (HCC) tissue array (n = 167) was used to investigate the expression and prognostic relevance of Hsp27 in HCC patients. HCC patients with high expression of Hsp27 exhibited poor prognosis. Overexpression of Hsp27 led to the forced invasion of HCC cells, whereas silencing Hsp27 attenuated invasion and metastasis of HCC cells in vitro and in vivo. We revealed that Hsp27 activated Akt signaling, which in turn promoted MMP2 and ITGA7 expression and HCC metastasis. We further observed that targeting Hsp27 using OGX-427 obviously suppressed HCC metastasis in two metastatic models. These findings indicate that Hsp27 is a useful predictive factor for prognosis of HCC and it facilitates HCC metastasis through Akt signaling. Targeting Hsp27 with OGX-427 may represent an attractive therapeutic option for suppressing HCC metastasis.
A Targetable Molecular Chaperone Hsp27 Confers Aggressiveness in Hepatocellular Carcinoma
Zhang, Yurong; Tao, Xuemei; Jin, Guangzhi; Jin, Haojie; Wang, Ning; Hu, Fangyuan; Luo, Qin; Shu, Huiqun; Zhao, Fangyu; Yao, Ming; Fang, Jingyuan; Cong, Wenming; Qin, Wenxin; Wang, Cun
2016-01-01
Heat shock protein 27 (Hsp27) is an ATP-independent molecular chaperone and confers survival advantages and resistance to cancer cells under stress conditions. The effects and molecular mechanisms of Hsp27 in HCC invasion and metastasis are still unclear. In this study, hepatocellular carcinoma (HCC) tissue array (n = 167) was used to investigate the expression and prognostic relevance of Hsp27 in HCC patients. HCC patients with high expression of Hsp27 exhibited poor prognosis. Overexpression of Hsp27 led to the forced invasion of HCC cells, whereas silencing Hsp27 attenuated invasion and metastasis of HCC cells in vitro and in vivo. We revealed that Hsp27 activated Akt signaling, which in turn promoted MMP2 and ITGA7 expression and HCC metastasis. We further observed that targeting Hsp27 using OGX-427 obviously suppressed HCC metastasis in two metastatic models. These findings indicate that Hsp27 is a useful predictive factor for prognosis of HCC and it facilitates HCC metastasis through Akt signaling. Targeting Hsp27 with OGX-427 may represent an attractive therapeutic option for suppressing HCC metastasis. PMID:26941848
Fang, Feng; Chang, Rui-min; Yu, Lei; Lei, Xiong; Xiao, Shuai; Yang, Hao; Yang, Lian-Yue
2015-10-01
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, the detailed molecular mechanisms underlying HCC progression are still not completely clear. Given the crucial role of microRNAs (miRNAs) in cancer metastasis, we aimed to analyze the expression and function of a metastasis-associated miRNA named miR-188-5p in HCC. miRNA array analysis was performed to search for metastasis-associated miRNAs in HCC. miR-188-5p expressions in tumor tissues and adjacent non-tumorous liver tissues of HCC patients and cell lines were evaluated by real-time PCR. The protein expression levels were analyzed by Western blot and immunohistochemistry. Luciferase reporter assays was used to validate the target of miR-188-5p. The effect of miR-188-5p on HCC progression was studied in vitro and in vivo. miR-188-5p was significantly decreased in HCC and its expression levels were highly correlated with multiple nodules, microvascular invasion, overall and disease-free survival of HCC. Ectopic expression of miR-188-5p suppressed HCC cell proliferation and metastasis in vitro and in vivo. Fibroblast growth factor 5 (FGF5) was identified as a major target of miR-188-5p. Enforced expression of miR-188-5p inhibited the expression of FGF5 significantly and the restoration of FGF5 expression reversed the inhibitory effects of miR-188-5p on HCC cell proliferation and metastasis. These findings collectively demonstrate a tumor suppressor role of miR-188-5p in HCC progression via targeting FGF5, suggesting that miR-188-5p could serve as a potential prognostic biomarker and therapeutic target for HCC. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Yao, Bowen; Xu, Meng; Ding, Linglong; Wang, Yufeng; Jia, Yuli; Li, Qing; Zhang, Hongyong; Tu, Kangsheng; Song, Tao; Liu, Qingguang
2016-01-01
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Accumulating studies have demonstrated that aberrant expression of several lncRNAs was found to be involved in the hepatocarcinogenesis. In this study, a lncRNA Ftx was chosen to investigate its effects on HCC cells, and clarify the possible mechanism. We demonstrated that the lncRNA Ftx and Ftx-derived miR-545 were up-regulated in both HCC tissues and cells. MiR-545 was positively correlated with lncRNA Ftx expression. Notably, clinical association analysis revealed that the high expression of lncRNA Ftx and miR-545 was associated with poor prognostic features, and conferred a reduced 5-year overall survival (OS) and disease-free survival (DFS) of HCC patients. We found that miR-545 was a pivotal mediator in Ftx-induced promotion of HCC cell growth. Subsequently, we identified RIG-I as a direct target of miR-545. The expression of RIG-I was downregulated in HCC tissues and was inversely correlated with miR-545 expression. Our data revealed that ectopic expression of RIG-I abrogated the effects of lncRNA Ftx or miR-545 on HCC cells. LncRNA Ftx/miR-545-mediated downregulation of RIG-I led to increased Akt phosphorylation in vitro and in vivo. Inhibition of Akt phosphorylation abolished the effects of lncRNA Ftx/miR-545 on HCC cells. In conclusion, our study demonstrates that the novel pathway lncRNA Ftx/miR-545/RIG-I promotes HCC development by activating PI3K/Akt signaling, and it may serve as a novel prognostic biomarker and therapeutic target for HCC. PMID:26992218
Liu, Zhikui; Dou, Changwei; Yao, Bowen; Xu, Meng; Ding, Linglong; Wang, Yufeng; Jia, Yuli; Li, Qing; Zhang, Hongyong; Tu, Kangsheng; Song, Tao; Liu, Qingguang
2016-05-03
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Accumulating studies have demonstrated that aberrant expression of several lncRNAs was found to be involved in the hepatocarcinogenesis. In this study, a lncRNA Ftx was chosen to investigate its effects on HCC cells, and clarify the possible mechanism. We demonstrated that the lncRNA Ftx and Ftx-derived miR-545 were up-regulated in both HCC tissues and cells. MiR-545 was positively correlated with lncRNA Ftx expression. Notably, clinical association analysis revealed that the high expression of lncRNA Ftx and miR-545 was associated with poor prognostic features, and conferred a reduced 5-year overall survival (OS) and disease-free survival (DFS) of HCC patients. We found that miR-545 was a pivotal mediator in Ftx-induced promotion of HCC cell growth. Subsequently, we identified RIG-I as a direct target of miR-545. The expression of RIG-I was downregulated in HCC tissues and was inversely correlated with miR-545 expression. Our data revealed that ectopic expression of RIG-I abrogated the effects of lncRNA Ftx or miR-545 on HCC cells. LncRNA Ftx/miR-545-mediated downregulation of RIG-I led to increased Akt phosphorylation in vitro and in vivo. Inhibition of Akt phosphorylation abolished the effects of lncRNA Ftx/miR-545 on HCC cells. In conclusion, our study demonstrates that the novel pathway lncRNA Ftx/miR-545/RIG-I promotes HCC development by activating PI3K/Akt signaling, and it may serve as a novel prognostic biomarker and therapeutic target for HCC.
Cui, Shiyun; Zhang, Kai; Li, Chen; Chen, Jing; Pan, Yan; Feng, Bing; Lu, Lei; Zhu, Ziman; Wang, Rui; Chen, Longbang
2016-11-22
Metastasis and recurrence has become one major obstacle for further improving the survival of hepatocelluar cancer (HCC) patients. Therefore, it is critical to elucidate the mechanisms involved in HCC metastasis. This study aimed to investigate the roles of microRNA (miR)-129-3p in HCC metastasis and its possible molecular mechanisms. By using microarray analysis to compare levels of different miRNAs in HCC tissues with or without lymph node metastasis (LNM), we showed that HCC tissues with LNM had reduced levels of miR-129-3p, which was related to its promoter hypermethylation and correlated with tumor metastasis, recurrence and poor prognosis. Gain - and loss - of - function assays indicated that re-expression of miR-129-3p could reverse epithelial-mesenchymal transition (EMT), and reduce in vitro invasion and in vivo metastasis of HCC cells. Aurora-A, a serine/threonine protein kinase, was identified as a direct target of miR-129-3p. Knockdown of Aurora-A phenocopied the effect of miR-129-3p overexpression on HCC metastasis. In addition, Aurora-A upregulation could partially rescue the effect of miR-129-3p. We further demonstrated that activation of PI3K/Akt and p38-MAPK signalings were involved in miR-129-3p-mediated HCC metastasis. These findings suggest that methylation-mediated miR-129-3p downregulation promotes EMT, in vitro invasion and in vivo metastasis of HCC cells via activation of PI3K/Akt and p38-MAPK signalings partially by targeting Aurora-A. Therefore, miR-129-3p may be a novel prognostic biomarker and potential therapeutic target for HCC.
Ma, Li-Jie; Wang, Xiao-Ying; Duan, Meng; Liu, Long-Zi; Shi, Jie-Yi; Dong, Liang-Qing; Yang, Liu-Xiao; Wang, Zhi-Chao; Ding, Zhen-Bin; Ke, Ai-Wu; Cao, Ya; Zhang, Xiao-Ming; Zhou, Jian; Fan, Jia; Gao, Qiang
2017-12-01
The role of telomere dysfunction and aberrant telomerase activities in hepatocellular carcinoma (HCC) has been overlooked for many years. This study aimed to delineate the variation and prognostic value of telomere length in HCC. Telomere-specific fluorescence in situ hybridization (FISH) and qPCR were used to evaluate telomere length in HCC cell lines, tumor tissues, and isolated non-tumor cells within the tumor. Significant telomere attrition was found in tumor cells and cancer-associated fibroblasts (CAFs) compared to their normal counterparts, but not in intratumor leukocytes or bile duct epithelial cells. Clinical relevance and prognostic value of telomere length were investigated on tissue microarrays of 257 surgically treated HCC patients. Reduced intensity of telomere signals in tumor cells or CAFs correlated with larger tumor size and the presence of vascular invasion (p < 0.05). Shortened telomeres in tumor cells or CAFs associated with reduced survival and increased recurrence, and were identified as independent prognosticators for HCC patients (p < 0.05). These findings were validated in an independent HCC cohort of 371 HCC patients from The Cancer Genome Atlas (TCGA) database, confirming telomere attrition and its prognostic value in HCC. We also showed that telomerase reverse transcriptase promoter (TERTp) mutation correlated with telomere shortening in HCC. Telomere variation in tumor cells and non-tumor cells within the tumor microenvironment of HCC was a valuable prognostic biomarker for this fatal malignancy. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Dai, Rongjuan; Peng, Feng; Xiao, Xinqiang; Gong, Xing; Jiang, Yongfang; Zhang, Min; Tian, Yi; Xu, Yun; Ma, Jing; Li, Mingming; Luo, Yue; Gong, Guozhong
2017-01-01
The HBx protein of hepatitis B virus (HBV) is widely recognized to be a critical oncoprotein contributing to the development of HBV-related hepatocellular carcinoma (HCC). In addition, cationic amino acid transporter 1 (CAT-1) gene is a target of miR-122. In this study, we found that CAT-1 protein levels were higher in HBV-related HCC carcinomatous tissues than in para-cancerous tumor tissues, and that CAT-1 promoted HCC cell growth, proliferation, and metastasis. Moreover, HBx-induced decreases in Gld2 and miR-122 levels that contributed to the upregulation of CAT-1 in HCC. These results indicate that a Gld2/miR-122/CAT-1 pathway regulated by HBx likely participates in HBV-related hepatocellular carcinogenesis. PMID:28977838
Kang, Jingting; Wang, Jie; Cheng, Jin; Cao, Zhiliang; Chen, Ran; Li, Huiyu; Liu, Shuang; Chen, Xiangmei; Sui, Jianhua; Lu, Fengmin
2017-01-01
The sodium-dependent taurocholate cotransporter polypeptide (NTCP) has been identified as a liver specific functional receptor for the hepatitis B virus (HBV). Previous studies indicated that the expression of NTCP may be associated with the proliferation status of hepatocytes. However, the involvement of NTCP in hepatocellular carcinoma (HCC) cells proliferation remains unclear. In this study, we confirmed that NTCP was down-regulated in HCC tumor tissues compared with that in the adjacent non-tumor tissues (P < 0.0001). Clinically, lower expression of NTCP was correlated with poor post-surgery survival rate (P = 0.0009) and larger tumor tissue mass (P = 0.003) of HCC patients. This was supported by the finding that ectopic expression of NTCP in both HepG2 and Huh-7 cells could significantly suppress hepatocytes growth by arresting cells in G0/G1 phase. We also discovered that cyclin D1 could transcriptionally suppress NTCP expression by inhibiting the activity of NTCP promoter, while arresting HCC cells in G0/G1 phase by serum starvation could upregulate NTCP mRNA levels. This is the first study to report that the transcriptional inhibition of NTCP expression during cell cycle progression was mediated by cyclin D1. The down-regulated NTCP expression was associated with poor prognosis and lower HBV cccDNA level in HCC patients. Therefore, NTCP expression levels might serve as a novel prognostic predictive marker for post-surgery survival rate of HCC patients. PMID:28915572
Kang, Jingting; Wang, Jie; Cheng, Jin; Cao, Zhiliang; Chen, Ran; Li, Huiyu; Liu, Shuang; Chen, Xiangmei; Sui, Jianhua; Lu, Fengmin
2017-08-22
The sodium-dependent taurocholate cotransporter polypeptide (NTCP) has been identified as a liver specific functional receptor for the hepatitis B virus (HBV). Previous studies indicated that the expression of NTCP may be associated with the proliferation status of hepatocytes. However, the involvement of NTCP in hepatocellular carcinoma (HCC) cells proliferation remains unclear. In this study, we confirmed that NTCP was down-regulated in HCC tumor tissues compared with that in the adjacent non-tumor tissues ( P < 0.0001). Clinically, lower expression of NTCP was correlated with poor post-surgery survival rate ( P = 0.0009) and larger tumor tissue mass ( P = 0.003) of HCC patients. This was supported by the finding that ectopic expression of NTCP in both HepG2 and Huh-7 cells could significantly suppress hepatocytes growth by arresting cells in G0/G1 phase. We also discovered that cyclin D1 could transcriptionally suppress NTCP expression by inhibiting the activity of NTCP promoter, while arresting HCC cells in G0/G1 phase by serum starvation could upregulate NTCP mRNA levels. This is the first study to report that the transcriptional inhibition of NTCP expression during cell cycle progression was mediated by cyclin D1. The down-regulated NTCP expression was associated with poor prognosis and lower HBV cccDNA level in HCC patients. Therefore, NTCP expression levels might serve as a novel prognostic predictive marker for post-surgery survival rate of HCC patients.
Sohn, Bo Hwa; Shim, Jae-Jun; Kim, Sang-Bae; Jang, Kyu Yun; Kim, Soo Mi; Kim, Ji Hoon; Hwang, Jun Eul; Jang, Hee-Jin; Lee, Hyun-Sung; Kim, Sang-Cheol; Jeong, Woojin; Kim, Sung Soo; Park, Eun Sung; Heo, Jeonghoon; Kim, Yoon Jun; Kim, Dae-Ghon; Leem, Sun-Hee; Kaseb, Ahmed; Hassan, Manal M; Cha, Minse; Chu, In-Sun; Johnson, Randy L; Park, Yun-Yong; Lee, Ju-Seog
2016-03-01
The Hippo pathway is a tumor suppressor in the liver. However, the clinical significance of Hippo pathway inactivation in HCC is not clearly defined. We analyzed genomic data from human and mouse tissues to determine clinical relevance of Hippo pathway inactivation in HCC. We analyzed gene expression data from Mst1/2(-/-) and Sav1(-/-) mice and identified a 610-gene expression signature reflecting Hippo pathway inactivation in the liver [silence of Hippo (SOH) signature]. By integrating gene expression data from mouse models with those from human HCC tissues, we developed a prediction model that could identify HCC patients with an inactivated Hippo pathway and used it to test its significance in HCC patients, via univariate and multivariate Cox analyses. HCC patients (National Cancer Institute cohort, n = 113) with the SOH signature had a significantly poorer prognosis than those without the SOH signature [P < 0.001 for overall survival (OS)]. The significant association of the signature with poor prognosis was further validated in the Korean (n = 100, P = 0.006 for OS) and Fudan University cohorts (n = 242, P = 0.001 for OS). On multivariate analysis, the signature was an independent predictor of recurrence-free survival (HR, 1.6; 95% confidence interval, 1.12-2.28: P = 0.008). We also demonstrated significant concordance between the SOH HCC subtype and the hepatic stem cell HCC subtype that had been identified in a previous study (P < 0.001). Inactivation of the Hippo pathway in HCC is significantly associated with poor prognosis. ©2015 American Association for Cancer Research.
Harouaka, Djamila; Engle, Ronald E; Wollenberg, Kurt; Diaz, Giacomo; Tice, Ashley B; Zamboni, Fausto; Govindarajan, Sugantha; Alter, Harvey; Kleiner, David E; Farci, Patrizia
2016-02-02
Analysis of hepatitis C virus (HCV) replication and quasispecies distribution within the tumor of patients with HCV-associated hepatocellular carcinoma (HCC) can provide insight into the role of HCV in hepatocarcinogenesis and, conversely, the effect of HCC on the HCV lifecycle. In a comprehensive study of serum and multiple liver specimens from patients with HCC who underwent liver transplantation, we found a sharp and significant decrease in HCV RNA in the tumor compared with surrounding nontumorous tissues, but found no differences in multiple areas of control non-HCC cirrhotic livers. Diminished HCV replication was not associated with changes in miR-122 expression. HCV genetic diversity was significantly higher in livers containing HCC compared with control non-HCC cirrhotic livers. Tracking of individual variants demonstrated changes in the viral population between tumorous and nontumorous areas, the extent of which correlated with the decline in HCV RNA, suggesting HCV compartmentalization within the tumor. In contrast, compartmentalization was not observed between nontumorous areas and serum, or in controls between different areas of the cirrhotic liver or between liver and serum. Our findings indicate that HCV replication within the tumor is restricted and compartmentalized, suggesting segregation of specific viral variants in malignant hepatocytes.
Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi
2010-02-01
Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.
Zhang, Ying; Li, Tao; Guo, Pengbo; Kang, Jia; Wei, Qing; Jia, Xiaoqing; Zhao, Wei; Huai, Wanwan; Qiu, Yumin; Sun, Lei; Han, Lihui
2014-01-01
Resistance to anoikis and Epithelial-mesenchymal transition (EMT) are two processes critically involved in cancer metastasis. In this study, we demonstrated that after anchorage deprival, hepatocellular carcinoma (HCC) cells not only resisted anoikis, but also exhibited EMT process. Microarray expression profiling revealed that expression of miR-424-5p was significantly decreased in anoikis-resistant HCC cells. Ectopic overexpression of miR-424-5p was sufficient to reverse resistance to anoikis, block EMT process and inhibit malignant behaviors of HCC cells. Target analysis showed that a potent β-catenin inhibitor, ICAT/CTNNBIP1 was a direct target of miR-424-5p. Further study demonstrated that miR-424-5p reversed resistance to anoikis and EMT of HCCs by directly targeting ICAT and further maintaining the E-cadherin/β-catanin complex on the cellular membrance. In vivo study further demonstrated that miR-424-5p significantly inhibited the tumorigenicity of HCC cells in nude mice. Clinical investigation demonstrated that miR-424-5p was significantly downregulated in HCC tissues compared with that of the non-cancerous liver tissues, and this decreased expression of miR-424-5p was significantly correlated with higher pathological grades and more advanced TNM stages. Therefore, aberrant expression of miR-424-5p is critically involved in resistance to anoikis and EMT during the metastatic process of HCC, and its downregulation significantly contributes to liver cancer progression. PMID:25175916
SHAO, QING; REN, PENGFEI; LI, YANG; PENG, BO; DAI, LIPING; LEI, NINGJING; YAO, WU; ZHAO, GANG; LI, LINGGEN; ZHANG, JIANYING
2012-01-01
Hepatocellular carcinoma (HCC) is a type of cancer with a very poor prognosis. Although α-fetoprotein (AFP) is the most effective marker available to detect HCC, the sensitivity and specificity are not optimal. Therefore, there is a need for the development of more sensitive and specific methods that can supplement AFP in the early detection of this cancer. In this study, autoantibody responses to glucose-regulated protein 78 (GRP78) were evaluated by enzyme-linked immunosorbent assay (ELISA), western blotting and indirect immunofluorescence assay in sera from patients with HCC, liver cirrhosis (LC) and chronic hepatitis (CH), as well as from normal human individuals. Immunohistochemistry (IHC) with tissue array slides was also preformed to analyze protein expression profiles of GRP78 in HCC and control tissues. The prevalence of autoantibodies against GRP78 was 35.5% (27/76) in HCC, which was significantly higher than that in LC, CH and normal human sera (NHS; P<0.01). The average titer of autoantibodies against GRP78 in HCC sera was higher compared to that in LC, CH and NHS(P<0.01). When both autoantibodies against GRP78 and AFP were used simultaneously as diagnostic markers, sensitivity reached 71.4%. Our data indicate that anti-GRP78 autoantibodies may be potential diagnostic markers for HCC, especially in conjunction with AFP. PMID:22692946
Molecular Signature and Mechanisms of Hepatitis D Virus-Associated Hepatocellular Carcinoma.
Diaz, Giacomo; Engle, Ronald E; Tice, Ashley; Melis, Marta; Montenegro, Stephanie; Rodriguez-Canales, Jaime; Hanson, Jeffrey; Emmert-Buck, Michael R; Bock, Kevin W; Moore, Ian N; Zamboni, Fausto; Govindarajan, Sugantha; Kleiner, David; Farci, Patrizia
2018-06-01
There is limited data on the molecular mechanisms whereby hepatitis D virus (HDV) promotes liver cancer. Therefore, serum and liver specimens obtained at the time of liver transplantation from well-characterized patients with HDV-HCC (n-5) and with non-HCC HDV cirrhosis (n=7) were studied using an integrated genomic approach. Transcriptomic profiling was performed using laser capture-microdissected (LCM) malignant and non-malignant hepatocytes, tumorous and non-tumorous liver tissue from patients with HDV-HCC, and liver tissue from patients with non-HCC HDV cirrhosis. HDV-HCC was also compared with hepatitis B virus (HBV) HBV-HCC alone and hepatitis C virus (HCV) HCV-HCC. HDV malignant hepatocytes were characterized by an enrichment of up-regulated transcripts associated with pathways involved in cell cycle/DNA replication, damage and repair (sonic hedgehog, GADD45, DNA-damage-induced 14-3-3σ, cyclins and cell cycle regulation, cell cycle: G2/M DNA-damage checkpoint regulation, and hereditary breast cancer). Moreover, a large network of genes identified functionally relate to DNA repair, cell cycle, mitotic apparatus and cell division, including 4 cancer testis antigen genes, attesting to the critical role of genetic instability in this tumor. Besides being over-expressed, these genes were also strongly co-regulated. Gene co-regulation was high not only when compared to non-malignant hepatocytes, but also to malignant hepatocytes from HBV-HCC alone or HCV-HCC. Activation and co-regulation of genes critically associated with DNA replication, damage, and repair point to genetic instability as an important mechanism of HDV hepatocarcinogenesis. This specific HDV-HCC trait emerged also from the comparison of the molecular pathways identified for each hepatitis virus-associated HCC. Despite the dependence of HDV on HBV, these findings suggest that HDV and HBV promote carcinogenesis by distinct molecular mechanisms. This study identifies a molecular signature of HDV-associated hepatocellular carcinoma and suggests the potential for new biomarkers for early diagnostics. Copyright ©2018, American Association for Cancer Research.
Metastatic hepatocellular carcinoma to the skin staining positive with HMB-45.
Gross, Joshua A; Perniciaro, Charles; Gross, David J; Barksdale, Sarah K
2012-02-01
Hepatocellular carcinoma (HCC) is uncommonly observed as a cutaneous metastasis. We report a 76-year-old man with metastatic HCC to the skin of the nasal ala, diagnosed antecedent to the primary tumor. HCC was confirmed by positive immunostaining with Hep Par 1 in tissue from the metastasis and from a needle biopsy of the primary lesion. In addition, tumor cells from both the metastasis and liver stained positive with HMB-45. To our knowledge, HMB-45 positive staining has not been reported in either primary or metastatic HCC.
STARD13 promotes hepatocellular carcinoma apoptosis by acting as a ceRNA for Fas.
Zhang, Hai; Wang, Fang; Hu, Yahua
2017-02-01
To study the roles of STARD13 in cellular apoptosis of hepatocellular carcinoma (HCC). Quantitative real-time PCR and immunohistochemistry analyses showed that the expression levels of STARD13 and Fas were lower in clinical HCC tissues than in normal tissues and were positively correlated, which is consistent with the results analyzed by The Cancer Genome Atlas (TCGA) data. Patients with higher STARD13 or Fas expression levels had longer overall survival. Additionally, STARD13 3'-UTR enhanced cellular apoptosis and the 3'-UTRs of STARD13 and Fas were predicted to harbor nine similar miRNA binding sites. And STARD13 3'-UTR promoted Fas expression in a 3'-UTR- and miRNA-dependent way and increased the sensitivity of HCC cells to chemotherapy. Importantly, the coding sequence of STARD13 did not increase Fas expression. STARD13 3'-UTR promotes HCC apoptosis through acting as a ceRNA for Fas.
Gao, Hua-Jun; Chen, Ya-Jing; Zuo, Duo; Xiao, Ming-Ming; Li, Ying; Guo, Hua; Zhang, Ning; Chen, Rui-Bing
2015-01-01
Objective Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Methods Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. Results A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. Conclusion A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC. PMID:26487969
Ahmed, Hanaa H; Shousha, Wafaa Gh; El-Mezayen, Hatem A; El-Toumy, Sayed A; Sayed, Alaa H; Ramadan, Aesha R
2017-01-01
Hepatocellular carcinoma (HCC) is one of the deadliest primary cancers, with a 5-year survival rate of 10% or less. This study was undertaken to elucidate the underlying biochemical and molecular mechanisms in favor of N-nitrosodiethylamine-induced hepatocellular carcinoma. Furthermore, the aim of this work was extended to explore the efficacy of Ginkgo biloba leaves extract in deterioration of HCC in rats. In the current study, HCC group experienced significant downregulation of ING-3 gene expression and upregulation of Foxp-1 gene expression in liver. Treatment of HCC groups with Ginkgo biloba leaves extract resulted in upregulation of ING-3 and downregulation of Foxp-1 gene expression in liver. In addition, there was significant increase in serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and glypican-3 (GPC-3) levels in HCC group versus the negative control group. In contrast, the groups with HCC subjected to either high or low dose of Ginkgo biloba leaves extract elicited significant reduction (P<0.05) of AFP, CEA and GPC-3 in serum compared to the untreated HCC rats. Besides, histological examination of liver tissue sections of rats in HCC group revealed typical anaplasia. Interestingly, treatment with Ginkgo biloba leaves extract elicited marked improvement in the histological feature of liver tissue in HCC groups. In conclusion, this research indicated that the carcinogenic potency of N-nitrosodiethylamine targeted multiple systems on the cellular and molecular levels. In addition, the results of the current study shed light on the promising anticancer activity of Ginkgo biloba leaves extract in treatment of hepatocellular carcinoma induced chemically in the experimental model through its apoptotic and antiproliferative properties.
Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis.
Bozkaya, Giray; Korhan, Peyda; Cokaklı, Murat; Erdal, Esra; Sağol, Ozgül; Karademir, Sedat; Korch, Christopher; Atabey, Neşe
2012-09-11
Hepatocyte growth factor (HGF) induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC). MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s) is in hepatocarcinogenesis. MUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion. These findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC.
Tang, Zhao-You; Sun, Fan-Xian; Tian, Jian; Ye, Sheng-Long; Liu, Yin-Kun; Liu, Kang-Da; Xue, Qiong; Chen, Jie; Xia, Jing-Lin; Qin, Lun-Xiu; Sun, Hui-Chuan; Wang, Lu; Zhou, Jian; Li, Yan; Ma, Zeng-Chen; Zhou, Xin-Da; Wu, Zhi-Quan; Lin, Zhi-Ying; Yang, Bing-Hui
2001-01-01
Metastatic human HCC model is needed for the studies on mechanism and interven tion of metastatic recurrence. By using orthotopic implantation of histologically intact tissues of 30 surgical specimens, a patient-like metastatic model of hu man HCC in nude mice (LCI-D20) and a low metastatic model of human HCC in nude mice (LCI-D35) have been established. All mice with transplanted LCI-D20 tumors exhibited extremely high metastatic ability including spontaneous metasta sis to liver, lungs, lymph nodes and peritoneal seeding. Remarkable difference was also found in expression of some of the invasiveness related genes and growth factors between the LCI-D20 and LCI-D35 tumors. PAI-1 increased gradually following tumor progression in LCI-D20 model, and correlated with tumor size and AFP level. Phasic expression of tissue intercellular adhesio nmolecule-1 in this model was also observed. Using corneal micropocket model, it was demonstrated that the vascular response induced by LCI-D20 tumor was stronger than that induced by LCI-D35 tumor. Similar report on metastatic human HCC model in nude mice and human HCC cell line with metastatic potential was rarely found in the literature. This LCI-D20 model has been widely used for the studies on intervention of metastasis, including anti-angiogenesis, antisense approach, metallopro teinase inhibitor, differentiation inducer, etc. It is concluded that the establ ishment of metastatic human HCC model in nude mice and human HCC cell line with metastatic potential will provide important models for the in vivo and in vitro study of HCC invasiveness, angiogenesis as well as intervention of HCC recurrence. PMID:11819839
Tang, Ling; Zeng, Jun; Geng, Pengyu; Fang, Chengnan; Wang, Yang; Sun, Mingju; Wang, Changsong; Wang, Jiao; Yin, Peiyuan; Hu, Chunxiu; Guo, Lei; Yu, Jane; Gao, Peng; Li, Enyou; Zhuang, Zhengping; Xu, Guowang; Liu, Yang
2018-01-15
Purpose: Metabolic reprogramming is frequently identified in hepatocellular carcinoma (HCC), which is the most common type of liver malignancy. The reprogrammed cellular metabolisms promote tumor cell survival, proliferation, angiogenesis, and metastasis. However, the mechanisms of this process remain unclear in HCC. Experimental Design: The global nontargeted metabolic study in 69 paired hepatic carcinomas and adjacent tissue specimens was performed using capillary electrophoresis-time of flight mass spectrometry-based approach. Key findings were validated by targeted metabolomic approach. Biological studies were also performed to investigate the role of proline biosynthesis in HCC pathogenesis. Results: Proline metabolism was markedly changed in HCC tumor tissue, characterized with accelerated consumption of proline and accumulation of hydroxyproline, which significantly correlated with α-fetoprotein levels and poor prognosis in HCC. In addition, we found that hydroxyproline promoted hypoxia- and HIF-dependent phenotype in HCC. Moreover, we demonstrated that hypoxia activated proline biosynthesis via upregulation of ALDH18A1 , subsequently leading to accumulation of hydroxyproline via attenuated PRODH2 activity. More importantly, we showed that glutamine, proline, and hydroxyproline metabolic axis supported HCC cell survival through modulating HIF1α stability in response to hypoxia. Finally, inhibition of proline biosynthesis significantly enhanced cytotoxicity of sorafenib in vitro and in vivo Conclusions: Our results demonstrate that hypoxic microenvironment activates proline metabolism, resulting in accumulation of hydroxyproline that promotes HCC tumor progression and sorafenib resistance through modulating HIF1α. These findings provide the proof of concept for targeting proline metabolism as a potential therapeutic strategy for HCC. Clin Cancer Res; 24(2); 474-85. ©2017 AACR . ©2017 American Association for Cancer Research.
Dong, Ya-Lu; Zhang, Jing; Wang, Yong-Qiang; Liu, Lili; Zhang, He-Long; Huang, Jian-Guo; Liao, Cheng-Gong
2016-01-01
Accumulating evidence suggests that the tumor suppressor gene Krüppel-like factor 6 (KLF6) plays important roles in both development and progression of cancer. However, the role of KLF6 in hepatocellular carcinoma (HCC) remains unclear. Cancer-related molecule basigin-2 plays an important role in HCC progression and metastasis. Sp1, one of Sp/KLFs family members, regulates basigin-2 expression in HCC. The involvement of KLFs in basigin-2 regulation and HCC progression and metastasis has not been investigated. We first measured KLF6 expression levels in 50 pairs of HCC and adjacent normal tissues (ANTs) by immunohistochemistry. Specifically, low KLF6 expression but high Sp1 and basigin-2 expression were found in HCC tissues. By contrast, the ANTs showed high KLF6 expression but low Sp1 and basigin-2 expression. Kaplan–Meier analysis showed that higher expression of KLF6 was associated with better overall survival. The survival rate of KLF6-negative patients was lower than that of KLF6-positive patients (P = 0.015). We also found that KLF6 binds to the basigin-2 and Sp1 promoters and decreases their expression. Thus, we identified a microcircuitry mechanism in which KLF6 can repress basigin-2 expression directly by binding to its promoter or indirectly by inhibiting the expression of the transcription factor Sp1 to block gene expression. Additionally, overexpression of KLF6 suppressed the invasion, metastasis and proliferation of HCC cells in vitro and in vivo by targeting basigin-2. Our study provides new evidence that interaction of KLF6 and Sp1 regulates basigin-2 expression in HCC and that KLF6 represses the invasive and metastatic capacities of HCC through basigin-2. PMID:27057625
NASA Astrophysics Data System (ADS)
Liao, Zhijun; Wang, Xinrui; Zeng, Yeting; Zou, Quan
2016-12-01
The Dishevelled/EGL-10/Pleckstrin (DEP) domain-containing (DEPDC) proteins have seven members. However, whether this superfamily can be distinguished from other proteins based only on the amino acid sequences, remains unknown. Here, we describe a computational method to segregate DEPDCs and non-DEPDCs. First, we examined the Pfam numbers of the known DEPDCs and used the longest sequences for each Pfam to construct a phylogenetic tree. Subsequently, we extracted 188-dimensional (188D) and 20D features of DEPDCs and non-DEPDCs and classified them with random forest classifier. We also mined the motifs of human DEPDCs to find the related domains. Finally, we designed experimental verification methods of human DEPDC expression at the mRNA level in hepatocellular carcinoma (HCC) and adjacent normal tissues. The phylogenetic analysis showed that the DEPDCs superfamily can be divided into three clusters. Moreover, the 188D and 20D features can both be used to effectively distinguish the two protein types. Motif analysis revealed that the DEP and RhoGAP domain was common in human DEPDCs, human HCC and the adjacent tissues that widely expressed DEPDCs. However, their regulation was not identical. In conclusion, we successfully constructed a binary classifier for DEPDCs and experimentally verified their expression in human HCC tissues.
Liao, W-W; Zhang, C; Liu, F-R; Wang, W-J
2018-03-01
MiR-155 has been shown to be up-regulated in hepatocellular carcinoma (HCC) patients. B-cell lymphoma-2 (Bcl-2) interacting mediator of cell death (BIM) regulates cell proliferation and apoptosis, as its down-regulation is involved in HCC onset. Transcriptional factor FoxO3a mediates BIM expression and is related to HCC pathogenesis. Bioinformatics analysis showed targeted regulation of FoxO3a by miR-155. This study aims to investigate whether miR-155 plays a role in mediating FoxO3a/BIM signal pathway and HCC occurrence. HCC patients were collected for tumor and adjacent tissues, in which microRNA-155 (miR-155) and FoxO3a expressions were examined. In vitro cultured HCCLM3, HepG2 and L-02 cells were tested for basal apoptotic rate by flow cytometry and were compared for miR-155 and FoxO3a expression. Dual-luciferase reporter gene assay demonstrated the targeted relationship between miR-155 and FoxO3a. HCCLM3 cells were treated with miR-155 inhibitor and/or FoxO3a-pMD18-T. Cell apoptosis and proliferation were examined by using flow cytometry and MTT assays, respectively. Western blot and spectrometry assay were employed to quantify the FoxO3a, BIM expressions, and caspase activity. Compared to adjacent tissues, HCC tissues had significantly higher miR-155 and significantly lower FoxO3a expression (p<0.05). HCCLM3 and HepG2 cells had significantly lower FoxO3a expression and basal apoptotic rate compared to L02 cells, whilst miR-155 level was significantly higher (p<0.05). MiR-155 targeted and inhibited 3'-UTR of FoxO3a, increasing BIM expression, caspase-3, and caspase-9 activities, and enhancing cell apoptosis and weakening proliferation. HCC tissues elevated the miR-155 and suppressed the FoxO3a expressions. MiR-155 targeted and inhibited FoxO3a expression to suppress the BIM, depress caspase-3 and caspase-9 activities, therefore inhibiting the HCC cell apoptosis and facilitating proliferation.
Hu, Baoying; Jiang, Dawei; Chen, Yuyan; Wei, Lixian; Zhang, Shusen; Zhao, Fengbo; Ni, Runzhou; Lu, Cuihua; Wan, Chunhua
2015-04-01
Charged multivesicular body protein 4B (CHMP4B), a subunit of the endosomal sorting complex required for transport (ESCRT)-III complex, plays an important part in cytokinetic membrane abscission and the late stage of mitotic cell division. In this study, we explored the prognostic significance of CHMP4B in human hepatocellular carcinoma (HCC) and its impact on the physiology of HCC cells. Western blot and immunohistochemistrical analyses showed that CHMP4B was significantly upregulated in HCC tissues, compared with adjacent non-tumorous tissues. Meanwhile, clinicopathological analysis revealed that high CHMP4B expression was correlated with multiple clinicopathological variables, including AFP, cirrhosis, AJCC stage, Ki-67 expression, and poor prognosis. More importantly, univariate and multivariate survival analyses demonstrated that CHMP4B served as an independent prognostic factor for survival of HCC patients. Using HCC cell cultures, we found that the expression of CHMP4B was progressively upregulated after the release from serum starvation. To verify whether CHMP4B could regulate the proliferation of HCC cells, CHMP4B was knocked down through the transfection of CHMP4B-siRNA oligos. Flow cytometry and CCK-8 assays indicated that interference of CHMP4B led to cell cycle arrest and proliferative impairment of HCC cells. Additionally, depletion of CHMP4B expression could increase the sensitivity to doxorubicin in HepG2 and Huh7 cells. Taken together, our results implied that CHMP4B could be a promising prognostic biomarker as well as a potential therapeutic target of HCC.
Tin, Lamtin; Wu, Yiqi; Jin, Yinji; Jin, Xiaoming; Zhang, Fengmin
2016-01-01
Diphenyl difluoroketone (EF24), a curcumin analog, is a promising anticancer compound that exerts its effects by inhibiting cell proliferation and inducing apoptosis. However, the efficacy of EF24 against cancer metastasis, particularly in hepatocellular carcinoma (HCC), remains elusive. In this study, the effect of EF24 on HCCLM-3 and HepG2 cell migration and invasion was detected by wound healing and transwell assay, respectively. The results revealed that EF24 suppressed the migration and invasion of both HCCLM-3 and HepG2 cells. Furthermore, EF24 treatment decreased the formation of filopodia on the cell surface and inhibited the phosphorylation of Src in both cell lines, which may help contribute towards understanding the mechanism underlying the suppressive effect of EF24 on HCC migration and invasion. Additionally, the expression of total- and phosphorylated-Src in primary HCC tissues and their paired lymph node metastatic tissues was detected, and phosphorylated-Src was found to be associated with HCC lymph node metastasis. The results of this study suggest that Src is a novel and promising therapeutic target in HCC and provide evidence to support the hypothesis that EF24 may be a useful therapeutic agent for the treatment of HCC. PMID:27999817
Zhao, Ran; Tin, Lamtin; Zhang, Yuhua; Wu, Yiqi; Jin, Yinji; Jin, Xiaoming; Zhang, Fengmin; Li, Xiaobo
2016-01-01
Diphenyl difluoroketone (EF24), a curcumin analog, is a promising anticancer compound that exerts its effects by inhibiting cell proliferation and inducing apoptosis. However, the efficacy of EF24 against cancer metastasis, particularly in hepatocellular carcinoma (HCC), remains elusive. In this study, the effect of EF24 on HCCLM-3 and HepG2 cell migration and invasion was detected by wound healing and transwell assay, respectively. The results revealed that EF24 suppressed the migration and invasion of both HCCLM-3 and HepG2 cells. Furthermore, EF24 treatment decreased the formation of filopodia on the cell surface and inhibited the phosphorylation of Src in both cell lines, which may help contribute towards understanding the mechanism underlying the suppressive effect of EF24 on HCC migration and invasion. Additionally, the expression of total- and phosphorylated-Src in primary HCC tissues and their paired lymph node metastatic tissues was detected, and phosphorylated-Src was found to be associated with HCC lymph node metastasis. The results of this study suggest that Src is a novel and promising therapeutic target in HCC and provide evidence to support the hypothesis that EF24 may be a useful therapeutic agent for the treatment of HCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jianxin; Yu, Chao; Chen, Meiyuan
Hepatocellular carcinoma (HCC) is the most common cancer in the world especially in East Asia and Africa. Advanced stage, metastasis and frequent relapse are responsible for the poor prognosis of HCC. However, the precise mechanisms underlying HCC remained unclear. So it is urgent to identify the pathological processes and relevant molecules of HCC. TRIM37 is an E3 ligase and has been observed deregulated expression in various tumors. Recent studies of TRIM37 have implicated that TRIM37 played critical roles in cell proliferation and other processes. In the present study, we demonstrated that TRIM37 expression was notably up-regulated in HCC samples andmore » was associated with advanced stage and tumor volume, which all indicating the poor outcomes. We also found that TRIM37 could serve as an independent prognostic factor of HCC. During the course of in vitro and in vivo work, we showed that TRIM37 promoted HCC cells migration and metastasis by inducing EMT. Furthermore, we revealed that the effect of TRIM37 mediated EMT in HCC cells was achieved by the activation of Wnt/β-catenin signaling. These finding may provide insight into the understanding of TRIM37 as a novel critical factor of HCC and a candidate target for HCC treatment. - Highlights: • Highly expression of TRIM37 is found in HCC samples compared with nontumorous samples. • TRIM37 expression is correlated with advanced HCC stages and could be an independent prognostic factor. • TRIM37 promotes cell proliferation and metastasis. • We report an E3 ligase TRIM37 affects Wnt/β-catenin signaling.« less
Xiu, Ming; Liu, Ya-Hui; Brigstock, David R; He, Fang-Hui; Zhang, Rui-Juan; Gao, Run-Ping
2012-12-21
To determine the expression characteristics of connective tissue growth factor (CTGF/CCN2) in human hepatocellular carcinoma (HCC) in histology and to elucidate the roles of CCN2 on hepatoma cell cycle progression and metastasis in vitro. Liver samples from 36 patients (who underwent hepatic resection for the first HCC between 2006 and 2011) and 6 normal individuals were examined for transforming growth factor β1 (TGF-β1) or CCN2 mRNA by in situ hybridization. Computer image analysis was performed to measure integrated optimal density of CCN2 mRNA-positive cells in carcinoma foci and the surrounding stroma. Fibroblast-specific protein-1 (FSP-1) and E-cadherin were examined to evaluate the process of epithelial to mesenchymal transition, α-smooth muscle actin and FSP-1 were detected to identify hepatic stellate cells, and CD34 was measured to evaluate the extent of vascularization in liver tissues by immunohistochemical staining. CCN2 was assessed for its stimulation of HepG2 cell migration and invasion using commercial kits while flow cytometry was used to determine CCN2 effects on HepG2 cell-cycle. In situ hybridization analysis showed that TGF-β1 mRNA was mainly detected in connective tissues and vasculature around carcinoma foci. In comparison to normal controls, CCN2 mRNA was enhanced 1.9-fold in carcinoma foci (12.36 ± 6.08 vs 6.42 ± 2.35) or 9.4-fold in the surrounding stroma (60.27 ± 28.71 vs 6.42 ± 2.35), with concomitant expression of CCN2 and TGF-β1 mRNA in those areas. Epithelial-mesenchymal transition phenotype related with CCN2 was detected in 12/36 (33.3%) of HCC liver samples at the edges between carcinoma foci and vasculature. Incubation of HepG2 cells with CCN2 (100 ng/mL) resulted in more of the cells transitioning into S phase (23.85 ± 2.35 vs 10.94 ± 0.23), and induced a significant migratory (4.0-fold) and invasive (5.7-fold) effect. TGF-β1-induced cell invasion was abrogated by a neutralizing CCN2 antibody showing that CCN2 is a downstream mediator of TGF-β1-induced hepatoma cell invasion. These data support a role for CCN2 in the growth and metastasis of HCC and highlight CCN2 as a potential novel therapeutic target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chenlin; Song, Guangyuan; Xiang, Jue
AURKA (aurora kinase A) has been confirmed as an oncogene in cancer development; however, its role and underlying mechanisms in the metastasis of hepatocellular carcinoma (HCC) remain unknown. In this study, We found that AURKA was up-regulated in HCC tissues and correlated with pathological stage and distant metastasis. Further found that AURKA was involved in the cancer metastases after radiation in HCC. While overexpression of AURKA induced epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) behaviors though PI3K/AKT pathway, silencing AURKA suppressed radiation-enhanced cell invasiveness of HCC. Taken together, our results suggested that AURKA contributed in metastasis of irradiated residulmore » HCC though facilitating EMT and CSC properties, suggesting the potential clinical application of AURKA inhibitors in radiotherapy for patients with HCC. - Highlights: • First reported overexpression of AURKA in HCC and correlation with poor OS. • AURKA was involved in the cancer metastases after radiation in HCC. • Further found AURKA promoted EMT and CSC behaviors though PI3K/AKT pathway. • Silencing AURKA suppressed radiation-enhanced cell invasiveness of HCC. • AURKA may be potential therapeutic target of HCC.« less
Martínez-Salamanca, Juan I; La Fuente, José M; Cardoso, José; Fernández, Argentina; Cuevas, Pedro; Wright, Harold M; Angulo, Javier
2014-05-01
The efficacy of oral pharmacotherapy for erectile dysfunction (ED) (i.e., type 5 phosphodiesterase[PDE5] inhibitors) is significantly reduced in diabetic patients. Nebivolol is a selective β1-blocker used for treatinghy pertension that has been shown to increase the efficacy of sildenafil to reverse ED in diabetic rats. To evaluate the effects of nebivolol on the efficacy of the PDE5 inhibitors, sildenafil, tadalafil, and vardenafil to relax human corpus cavernosum (HCC) and vasodilate human penile resistance arteries (HPRA) from diabetic patients with ED (DMED). The influence of nebivolol on the capacity of these three PDE5 inhibitors to stimulate cyclic guanosine monophosphate (cGMP) production in HCC was also evaluated. HCC and HPRA were obtained from organ donors without ED (NEND; n = 18) or patients with diabetes undergoing penile prosthesis implantation (DMED; n = 19). Relaxations of HCC strips and HPRA to sildenafil,tadalafil, and vardenafil were evaluated in organ chambers and wire myographs. cGMP content in HCC was determined by ether extraction and quantification by ELISA. Effects of nebivolol on PDE5 inhibitor-induced relaxation of HCC, vasodilation ofHPRA and cGMP accumulation in HCC. Treatment with nebivolol (1 μM) significantly potentiated sildenafil-, tadalafil- and vardenafil-induced relaxations of HCC and vasodilations of HPRA from both NEND and DMED. Enhancement of relaxant capacity by nebivolol resulted in reversion of the impairment of PDE5 inhibition-induced responses in DMED and it was accompanied by enhancing the ability of PDE5 inhibitors to increase cGMP in HCC restoring reduced cGMP levelsin HCC from DMED. Nebivolol potentiated the capacity of PDE5 inhibitors to relax vascular structures of erectile tissue from diabetic patients by enhancing the nitric oxide (NO)/cGMP pathway in these tissues. These effects suggest a potential therapeutic utility of nebivolol as an adjunct to PDE5 inhibitors for the treatment of ED associated with diabetes.
Hung, Tzu-Min; Ho, Cheng-Maw; Liu, Yen-Chun; Lee, Jia-Ling; Liao, Yow-Rong; Wu, Yao-Ming; Ho, Ming-Chih; Chen, Chien-Hung; Lai, Hong-Shiee; Lee, Po-Huang
2014-01-01
Background & Aims Insulin-like growth factor, (IGF)-1, is produced mainly by the liver and plays important roles in promoting growth and regulating metabolism. Previous study reported that development of hepatocellular carcinoma (HCC) was accompanied by a significant reduction in serum IGF-1 levels. Here, we hypothesized that dysregulation of microRNAs (miRNA) in HCC can modulate IGF-1 expression post-transcriptionally. Methods The miRNAs expression profiles in a dataset of 29 HCC patients were examined using illumina BeadArray. Specific miRNA (miR)-190b, which was significantly up-regulated in HCC tumor tissues when compared with paired non-tumor tissues, was among those predicted to interact with 3′-untranslated region (UTR) of IGF-1. In order to explore the regulatory effects of miR-190b on IGF-1 expression, luciferase reporter assay, quantitative real-time PCR, western blotting and immunofluorecence analysis were performed in HCC cells. Results Overexpression of miR-190b in Huh7 cells attenuated the expression of IGF-1, whereas inhibition of miR-190b resulted in up-regulation of IGF-1. Restoration of IGF-1 expression reversed miR-190b-mediated impaired insulin signaling in Huh7 cells, supporting that IGF-1 was a direct and functional target of miR-190b. Additionally, low serum IGF-1 level was associated with insulin resistance and poor overall survival in HCC patients. Conclusions Increased expression of miR-190 may cause decreased IGF-1 in HCC development. Insulin resistance appears to be a part of the physiopathologic significance of decreased IGF-1 levels in HCC progression. This study provides a novel miRNA-mediated regulatory mechanism for controlling IGF-1 expression in HCC and elucidates the biological relevance of this interaction in HCC. PMID:24586785
Konu, Ozlen; Yuzugullu, Haluk; Gursoy-Yuzugullu, Ozge; Ozturk, Nuri; Ozen, Cigdem; Ozdag, Hilal; Erdal, Esra; Karademir, Sedat; Sagol, Ozgul; Mizrak, Dilsa; Bozkaya, Hakan; Ilk, Hakki Gokhan; Ilk, Ozlem; Bilen, Biter; Cetin-Atalay, Rengul; Akar, Nejat; Ozturk, Mehmet
2013-01-01
Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become “immortal”) by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism. PMID:23691139
Cortes-Mancera, Fabian; Loureiro, Carmen Luisa; Hoyos, Sergio; Restrepo, Juan-Carlos; Correa, Gonzalo; Jaramillo, Sergio; Norder, Helene; Pujol, Flor Helene; Navas, Maria-Cristina
2011-01-01
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are the principal risk factor associated to end-stage liver diseases in the world. A study was carried out on end-stage liver disease cases admitted to an important hepatology unit in Medellin, the second largest city in Colombia. From 131 patients recruited in this prospective study, 71% of cases were diagnosed as cirrhosis, 12.2% as HCC, and 16.8% as cirrhosis and HCC. Regarding the risk factors of these patients, alcohol consumption was the most frequent (37.4%), followed by viral etiology (17.6%). Blood and/or hepatic tissue samples from patients with serological markers for HCV or HBV infection were characterized; on the basis of the phylogenetic analysis of HCV 5′ UTR and HBV S gene, isolates belonged to HCV/1 and HBV/F3, respectively. These results confirm the presence of strains associated with poor clinical outcome, in patients with liver disease in Colombia; additionally, HBV basal core promoter double mutant was identified in HCC cases. Here we show the first study of cirrhosis and/or HCC in Colombian and HBV and HCV molecular characterization of these patients. Viral aetiology was not the main risk factor in this cohort but alcohol consumption. PMID:21941645
Fischer, H-P
2005-05-01
High dosage regional chemotherapy, chemoembolization and other methods of regional treatment are commonly used to treat unresectable primary liver malignancies and liver metastases. In liver malignancies of childhood neoadjuvant chemotherapy is successfully combined with surgical treatment. Chemotherapy and local tumor ablation lead to characteristic histomorphologic changes: Complete destruction of the tumor tissue and its vascular bed is followed by encapsulated necroses. After selective eradication of the tumor cells under preservation of the fibrovasular bed the tumor is replaced by hypocellular edematous and fibrotic tissue. If completely damaged tumor tissue is absorbed quickly, the tumor area is replaced by regenerating liver tissue. Obliterating fibrohyalinosis of tumor vessels, and perivascular edema or necrosis indicate tissue damage along the vascular bed. Degenerative pleomorphism of tumor cells, steatosis, hydropic swelling and Malloryhyalin in HCC can represent cytologic findings of cytotoxic cellular damage. Macroscopic type of HCC influences significantly the response to treatment. Multinodular HCC often contain viable tumor nodules close to destroyed nodules after treatment. Encapsulated uninodular tumors undergo complete necrosis much easier. Large size and a tumor capsule limitate the effect of percutaneous injection of ethanol into HCC. In carcinomas with an infiltrating border, especially in metastases of adenocarcinomas and hepatic cholangiocarcinoma cytostatic treatment damages the tumor tissue mainly in the periphery. Nevertheless the infiltrating rim, portal veins, lymphatic spaces and bile ducts as well as the angle between liver capsule, tumor nodule and bordering parenchyma are the main refugees of viable tumor tissue even after high dosage regional chemotherapy. This local resistance is caused by special local conditions of vascularization and perfusion. These residues are the source of local tumor progression and distant metastases. Besides intrinsic cellular mechanisms architectural, and microenvironmental factors relevantly limitate the effect of intensive locoregional therapy.
Methylation of S100A8 is a promising diagnosis and prognostic marker in hepatocellular carcinoma.
Liu, Kun; Zhang, Yuening; Zhang, Chengdong; Zhang, Qinle; Li, Jiatong; Xiao, Feifan; Li, Yingfang; Zhang, Ruoheng; Dou, Dongwei; Liang, Jiezhen; Qin, Jian; Lin, Zhidi; Zhao, Dong; Jiang, Min; Liang, Zhenxin; Su, Jie; Gupta, Vanaparthy Pranay; He, Min; Yang, Xiaoli
2016-08-30
The abnormality of DNA methylation is one of the major epigenetic alterations in the human hepatocellular carcinoma (HCC). We have assessed the global genomic DNA methylation profiles in human HCC patients by using the Infinium Human Methylation27 BeadChip. A CpG loci of S100A8 was found to be significantly hypomethylated in HCC.Pooled meta-analysis of five validation public datasets demonstrated its methylation level was significantly lower for HCC compared to paired adjacent normal tissues. Quantitative pyrosequencing analysis also showed that the S100A8 methylation level was decreased in cancer tissues (31.90%±13.31%) than that in the paired adjacent normal tissues (65.33%±3.64%, p<0.01). The area under the ROC curve (AUC) value was 0.950 (p<0.01). Kaplan-Meier survival curves revealed that hypomethylation of S100A8 was associated with shortened overall survival (OS) and progression-free survival (PFS) (log rank p<0.05). Multivariate Cox proportional hazards model also indicated significantly shorter OS (HR, 1.709; 95 % CI, 1.127-2.591) and PFS (HR, 1.767; 95 % CI, 1.168-2.974) were observed in the low-methylation-level group compared to the high-methylation-level group. Furthermore, S100A8 overexpression in Huh7 and MHCC-97H hepatoma cell lines led to increased cell proliferation, migration, invasion, and tumor growth. These findings suggested S100A8 methylation to be served as potential diagnosis and prognosis marker for HCC. S100A8 also may play as a tumor promoter in HCC.
Methylation of S100A8 is a promising diagnosis and prognostic marker in hepatocellular carcinoma
Xiao, Feifan; Li, Yingfang; Zhang, Ruoheng; Dou, Dongwei; Liang, Jiezhen; Qin, Jian; Lin, Zhidi; Zhao, Dong; Jiang, Min; Liang, Zhenxin; Su, Jie; Gupta, Vanaparthy Pranay; He, Min; Yang, Xiaoli
2016-01-01
The abnormality of DNA methylation is one of the major epigenetic alterations in the human hepatocellular carcinoma (HCC). We have assessed the global genomic DNA methylation profiles in human HCC patients by using the Infinium Human Methylation27 BeadChip. A CpG loci of S100A8 was found to be significantly hypomethylated in HCC. Pooled meta-analysis of five validation public datasets demonstrated its methylation level was significantly lower for HCC compared to paired adjacent normal tissues. Quantitative pyrosequencing analysis also showed that the S100A8 methylation level was decreased in cancer tissues (31.90%±13.31%) than that in the paired adjacent normal tissues (65.33%±3.64%, p<0.01). The area under the ROC curve (AUC) value was 0.950 (p<0.01). Kaplan-Meier survival curves revealed that hypomethylation of S100A8 was associated with shortened overall survival (OS) and progression-free survival (PFS) (log rank p<0.05). Multivariate Cox proportional hazards model also indicated significantly shorter OS (HR, 1.709; 95 % CI, 1.127–2.591) and PFS (HR, 1.767; 95 % CI, 1.168–2.974) were observed in the low-methylation-level group compared to the high-methylation-level group. Furthermore, S100A8 overexpression in Huh7 and MHCC-97H hepatoma cell lines led to increased cell proliferation, migration, invasion, and tumor growth. These findings suggested S100A8 methylation to be served as potential diagnosis and prognosis marker for HCC. S100A8 also may play as a tumor promoter in HCC. PMID:27462864
Deregulation of RB1 expression by loss of imprinting in human hepatocellular carcinoma.
Anwar, Sumadi Lukman; Krech, Till; Hasemeier, Britta; Schipper, Elisa; Schweitzer, Nora; Vogel, Arndt; Kreipe, Hans; Lehmann, Ulrich
2014-08-01
The tumour suppressor gene RB1 is frequently silenced in many different types of human cancer, including hepatocellular carcinoma (HCC). However, mutations of the RB1 gene are relatively rare in HCC. A systematic screen for the identification of imprinted genes deregulated in human HCC revealed that RB1 shows imprint abnormalities in a high proportion of primary patient samples. Altogether, 40% of the HCC specimens (16/40) showed hyper- or hypomethylation at the CpG island in intron 2 of the RB1 gene. Re-analysis of publicly available genome-wide DNA methylation data confirmed these findings in two independent HCC cohorts. Loss of correct DNA methylation patterns at the RB1 locus leads to the aberrant expression of an alternative RB1-E2B transcript, as measured by quantitative real-time PCR. Demethylation at the intron 2 CpG island by DNMT1 knock-down or aza-deoxycytidine (DAC) treatment stimulated expression of the RB1-E2B transcript, accompanied by diminished RB1 main transcript expression. No aberrant DNA methylation was found at the RB1 locus in hepatocellular adenoma (HCA, n = 10), focal nodular hyperplasia (FNH, n = 5) and their corresponding adjacent liver tissue specimens. Deregulated RB1 expression due to hyper- or hypomethylation in intron 2 of the RB1 gene is found in tumours without loss of heterozygosity and is associated with a decrease in overall survival (p = 0.032) if caused by hypermethylation of CpG85. This unequivocally demonstrates that loss of imprinting represents an important additional mechanism for RB1 pathway inactivation in human HCC, complementing well-described molecular defects. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Hepatitis B core protein promotes liver cancer metastasis through miR-382-5p/DLC-1 axis.
Du, Juan; Bai, Fuxiang; Zhao, Peiqing; Li, Xiaoyan; Li, Xueen; Gao, Lifen; Ma, Chunhong; Liang, Xiaohong
2018-01-01
The hepatitis B virus core protein (HBc), also named core antigen, is well-known for its key role in viral capsid formation and virus replication. Recently, studies showed that HBc has the potential to control cell biology activity by regulating host gene expression. Here, we utilized miRNA microarray to identify 24 upregulated miRNAs and 21 downregulated miRNAs in HBc-expressed HCC cells, which were involved in multiple biological processes, including cell motility. Consistently, the in vitro transwell assay and the in vivo tail-vein injection model showed HBc promotion on HCC metastasis. Further, the miRNA-target gene network analysis displayed that the deleted in liver cancer (DLC-1) gene, an important negative regulator for cell motility, was potentially targeted by several differentially expressed miRNAs in HBc-introduced cells. Introduction of miRNAs mimics or inhibitors and 3'UTR luciferase activity assay proved that miR-382-5p efficiently suppressed DLC-1 expression and its 3'-UTR luciferase reporter activity. Importantly, cotransfection of miR-382-5p mimics/inhibitors and the DLC-1 expression vector almost abrogated HBc promotion on cell motility, indicating that the miR-382-5p/DLC-1 axis is important for mediating HBc-enhanced HCC motility. Clinical HCC samples also showed a negative correlation between miR-382-5p and DLC-1 expression level. Furthermore, HBc-positive HCC tissues showed high miR-382-5p level and reduced DLC-1 expression. In conclusion, our findings revealed that HBc promoted HCC motility by regulating the miR-382-5p/DLC-1 axis, which might provide a novel target for clinical diagnosis and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Fumio, E-mail: fnomura@faculty.chiba-u.jp; Sogawa, Kazuyuki; Noda, Kenta
Highlights: Black-Right-Pointing-Pointer Overexpression of Ku86 in human liver cancer was shown by immunohistochemistry. Black-Right-Pointing-Pointer Serum anti-Ku86 was significantly elevated in early hepatocellular carcinoma. Black-Right-Pointing-Pointer Anti-Ku86 may be more sensitive than the conventional markers for early detection. Black-Right-Pointing-Pointer Serum anti-Ku86 significantly decreased after surgical resection of liver tumors. Black-Right-Pointing-Pointer Elevation of serum anti-Ku86 in other non-liver solid tumors was minimal. -- Abstract: Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is one of the most common cancers worldwide and the third most common cause of cancer-related death. Imaging studies including ultrasound and computed tomography are recommended for early detectionmore » of HCC, but they are operator dependent, costly and involve radiation. Therefore, there is a need for simple and sensitive serum markers for the early detection of hepatocellular carcinoma (HCC). In our recent proteomic studies, a number of proteins overexpressed in HCC tissues were identified. We thought if the serum autoantibodies to these overexpressed proteins were detectable in HCC patients. Of these proteins, we focused on Ku86, a nuclear protein involved in multiple biological processes and aimed to assess the diagnostic value of serum anti-Ku86 in the early detection of HCC. Serum samples were obtained prior to treatment from 58 consecutive patients with early or relatively early hepatitis C virus (HCV)-related HCC and 137 patients with HCV-related liver cirrhosis without evidence of HCC. Enzyme immunoassays were used to measure serum levels of autoantibodies. Serum levels of anti-Ku86 antibodies were significantly elevated in HCC patients compared to those in liver cirrhosis patients (0.41 {+-} 0.28 vs. 0.18 {+-} 0.08 Abs at 450 nm, P < 0001). Setting the cut-off level to give 90% specificity, anti-Ku86 was positive in 60.7% of stage I solitary tumor <2 cm in diameter, whereas the sensitivities of alpha-fetoprotein (AFP) and protein induced by vitamin K absence or antagonist II (PIVKA-II) were 17.8% and 21.4%, respectively. The results of ROC analyses indicated the better performance of anti-Ku86 for early detection of HCC. Serum anti-Ku86 levels decreased after surgical resection of the tumors in the 12 HCC cases tested, Elevation of anti-Ku86 in solid tumors other than liver was minimal. Serum anti-Ku86 is a potential biomarker for early detection of HCV-related HCC. Further studies in a larger number of HCC patients with various etiologies are needed to further evaluate the diagnostic and pathophysiological roles of elevation of serum anti-Ku86 in early HCC.« less
Kwee, Sandi A; Sato, Miles M; Kuang, Yu; Franke, Adrian; Custer, Laurie; Miyazaki, Kyle; Wong, Linda L
2017-06-01
[ 18 F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [ 18 F]fluorocholine positron emission tomography (PET)/x-ray computed tomography (CT) to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [ 18 F]fluorocholine PET/CT before tumor resection. Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80 % of total profile variation. Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [ 18 F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [ 18 F]fluorocholine uptake ratio was 93 % while sensitivity for HCC based on increased tumor [ 18 F]fluorocholine uptake was 84 %, with lower levels of highly saturated phosphatidylcholines in tumors showing low [ 18 F]fluorocholine uptake. Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de novo fatty acid metabolism for phospholipid membrane synthesis. While [ 18 F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC and a weaker lipogenic phenotype in some tumors.
Loss of heterozygosity at D8S262: an early genetic event of hepatocarcinogenesis.
Zhu, Qiao; Gong, Li; Liu, Xiaoyan; Wang, Jun; Ren, Pin; Zhang, Wendong; Yao, Li; Han, Xiujuan; Zhu, Shaojun; Lan, Miao; Li, Yanhong; Zhang, Wei
2015-06-16
Hepatocellular carcinoma (HCC) is a multi-factor, multi-step, multi-gene and complicated process resulting from the accumulation of sequential genetic and epigenetic alterations. An important change among them is from precancerous lesions to HCC. However, only few studies have been reported about the sequential genetic changes during hepatocarcinogenesis. We observed firstly molecular karyotypes of 10 matched HCC using Affymetrix single-nucleotide polymorphism (SNP) 6.0 arrays, and found chromosomal fragments with high incidence (more than 70%) of loss of heterozygosity (LOH). Then, we selected 28 microsatellite markers at some gene spanning these chromosomal fragments, and examined the frequency of LOH of 128 matched HCC and 43 matched precancerous lesions-dysplastic nodules (DN) by a PCR-based analysis. Finally, we investigated the expression of proteins encoded by these genes in HCC, DN and the surrounding hepatic tissues. The result of Affymetrix SNP6.0 arrays demonstrated that more than 70% (7/10) cases had chromosomal fragment deletion on 4q13.3-35.1, 8p23.2-21.2, 16q11.2-24.3, and 17p13.3-12. Among 28 microsatellite markers selected, LOH frequencies at D8S262 for DN and HCC were found to be the highest, 51.2% and 72.7%, respectively. Immunohistochemically, the positive rate of its adjacent gene CSMD1 in HCC, DN, and the surrounding hepatic tissues were 27.3% (35/128), 75% (33/44), and 82% (105/128), respectively. LOH at D8S262 may be associated with an early genetic event of hepatocarcinogenesis, and a predictor for the monitor and prevention of HCC. The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1557074981159099 .
Yao, Zhicheng; Xiong, Zhiyong; Li, Ruixi; Liang, Hao; Jia, Changchang; Deng, Meihai
2018-05-14
Dysregulation of long non-coding RNAs is a newly identified mechanism for tumour progression. Previous studies have suggested that the nuclear factor of activated T cells (NFAT) gene plays a very important role in cancer growth and metastasis. However, lncNRON is a newly identified repressor of NFAT, and its function is largely unknown, especially in hepatocellular carcinoma (HCC). Therefore, the expression levels of lncNRON in 215 pairs of HCC tissue were evaluated by qRT-PCR, and its relationship to clinicopathological parameters, recurrence, and survival was analysed. Furthermore, stably overexpressing lncNRON cell lines were constructed and evaluated for cell phenotype. Finally, we detected epithelial-to-mesenchymal transition (EMT) proteins to determine the underlying mechanism involved in lncNRON function. We observed that lncNRON was downregulated in HCC tumour tissues; low lncNRON expression was associated with poor tumour differentiation and the presence of vascular tumour thrombus, which tended to result in poor clinical outcomes, as demonstrated by the recurrence rate and survival curves. Functional analysis showed that lncNRON overexpression impaired colony formation and cell viability and inhibited cell migration and invasion. A study using tumour-bearing mice showed that lncNRON markedly limited tumour growth and lung metastasis in vivo. Importantly, western blot analysis revealed that the expression of the EMT-related epithelial marker, E-cadherin, increased, whereas the expression of mesenchymal markers N-cadherin, snail, and vimentin was attenuated by lncNRON overexpression in HCC cells. Therefore, lower lncNRON expression indicates a poorer clinical outcome in HCC. LncNRON overexpression can suppress HCC growth and metastasis via inhibiting the EMT, and lncNRON may function as a new HCC prognostic marker. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Kwee, Sandi A; Sato, Miles M; Kuang, Yu; Franke, Adrian; Custer, Laurie; Miyazaki, Kyle; Wong, Linda L
2017-01-01
BACKGROUND [18F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [18F]fluorocholine PET/CT to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [18F]fluorocholine PET/CT before tumor resection. METHODS Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80% of total profile variation. RESULTS Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly-saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly-saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [18F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [18F]fluorocholine uptake ratio was 93%, while sensitivity for HCC based on increased tumor [18F]fluorocholine uptake was 84%, with lower levels of highly-saturated phosphatidylcholines in tumors showing low [18F]fluorocholine uptake. CONCLUSION Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de-novo fatty acid metabolism for phospholipid membrane synthesis. While [18F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC and a weaker lipogenic phenotype in some tumors. PMID:27787742
Lin, Ling; Yang, Xiao-Mei; Li, Jun; Zhang, Yan-Li; Qin, Wenxin; Zhang, Zhi-Gang
2014-09-10
Mammalian enabled (MENA), usually known as a direct regulator of microfilament polymerization and bundling, promotes metastasis in various cancers. Here we focus on the role of MENA in hepatocellular carcinoma (HCC) metastasis and the relevant mechanism from the view of RhoA activity regulation. By HCC tissue microarray analysis, we found that MENA expression was positively associated with satellite lesions (P<0.01) and vascular invasion (P<0.01). Cases with membrane reinforcement of MENA staining in HCC tissues had significantly higher rates of early recurrence in the intermediate MENA expression group. Knockdown of MENA significantly suppressed HCC cell migration and invasion in vitro, as well as their intrahepatic and distant metastasis in vivo. Knockdown of MENA also decreased filopodia and stress fibers in SMMC-7721 cells. Furthermore, a decrease of RhoA activity was detected by a pull-down assay in SMMC-7721-shMENA cells. The ROCK inhibitor, Y-27632, suppressed migration of both MENA knockdown SMMC-7721 cells and control cells, but diminished their difference. Thus, our findings suggest that MENA promotes HCC cell motility by activating RhoA. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Haitao; Ma, Pei; Liu, Pengpeng; Chen, Baiyang; Liu, Zhisu
2018-06-02
Emerging evidence suggests that small nucleolar RNAs (snoRNAs) have malfunctioning roles in oncogenesis. In the present study, we investigated the role of box C/D small nucleolar RNA U2_19 (snoU2_19) in the tumorigenesis of hepatocellular carcinoma (HCC). Recently, we screened snoRNAs differential signatures by performing high-throughput small RNA sequence in HCC tissues and validated that upregulated snoU2_19 was associated with aggressive phenotypes in HCC patients. Aberrant snoU2_19 facilitated HCC cell proliferation, inhibited apoptosis and induced cell cycle progression in vitro analyses. We globally investigated the molecular mechanisms of snoU2_19 in HCC and found that snoU2_19 knockdown inhibited Wnt/β-catenin signaling pathway through inducing the translocation of β-catenin in cytoplasm. We concluded that snoU2_19 plays a pathological role in the development and progression of HCC, and is a potential therapeutic target for HCC. Copyright © 2018 Elsevier Inc. All rights reserved.
Novel Aspects of the Liver Microenvironment in Hepatocellular Carcinoma Pathogenesis and Development
Tu, Thomas; Budzinska, Magdalena A.; Maczurek, Annette E.; Cheng, Robert; Di Bartolomeo, Anna; Warner, Fiona J.; McCaughan, Geoffrey W.; McLennan, Susan V.; Shackel, Nicholas A.
2014-01-01
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer that is derived from hepatocytes and is characterised by high mortality rate and poor prognosis. While HCC is driven by cumulative changes in the hepatocyte genome, it is increasingly recognised that the liver microenvironment plays a pivotal role in HCC propensity, progression and treatment response. The microenvironmental stimuli that have been recognised as being involved in HCC pathogenesis are diverse and include intrahepatic cell subpopulations, such as immune and stellate cells, pathogens, such as hepatitis viruses, and non-cellular factors, such as abnormal extracellular matrix (ECM) and tissue hypoxia. Recently, a number of novel environmental influences have been shown to have an equally dramatic, but previously unrecognized, role in HCC progression. Novel aspects, including diet, gastrointestinal tract (GIT) microflora and circulating microvesicles, are now being recognized as increasingly important in HCC pathogenesis. This review will outline aspects of the HCC microenvironment, including the potential role of GIT microflora and microvesicles, in providing new insights into tumourigenesis and identifying potential novel targets in the treatment of HCC. PMID:24871369
Xie, Hui; Tian, Shengtao; Yu, Haipeng; Yang, Xueling; Liu, Jia; Wang, Huaming; Feng, Fan; Guo, Zhi
2018-01-01
Radiofrequency ablation (RFA) is the foremost treatment option for advanced hepatocellular carcinoma (HCC), however, rapid and aggressive recurrence of HCC often occurs after RFA due to epithelial-mesenchymal transition process. Although combination of RFA with sorafenib, a molecular targeted agent, could attenuate the recurrence of HCC, application of this molecular targeted agent poses a heavy medical burden and oral administration of sorafenib also brings severe side effects. In this study, we prepared an apatinib microcrystal formulation (Apa-MS) that sustainably releases apatinib, a novel molecular targeted agent, for advanced HCC treatment. We injected apatinib solution or Apa-MS into subcutaneous HCC tumors. It was found that Apa-MS exhibited slow apatinib release in vivo and in turn inhibited the epithelial-mesenchymal transition of HCC cells for extended time. Moreover, in rodent HCC model, Apa-MS enhanced the antitumor effect of RFA treatment. Based on these results, we conclude that Apa-MS, a slow releasing system of apatinib, allows apatinib to remain effective in tumor tissues for a long time and could enhance the antitumor effect of RFA on HCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Suling, E-mail: suling_chen86@163.com; Li, Fang; Chai, Haiyun
2015-08-21
MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeuticmore » gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.« less
The Hippo pathway in hepatocellular carcinoma: Non-coding RNAs in action.
Shi, Xuan; Zhu, Hai-Rong; Liu, Tao-Tao; Shen, Xi-Zhong; Zhu, Ji-Min
2017-08-01
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide. However, current strategies curing HCC are far from satisfaction. The Hippo pathway is an evolutionarily conserved tumor suppressive pathway that plays crucial roles in organ size control and tissue homeostasis. Its dysregulation is commonly observed in various types of cancer including HCC. Recently, the prominent role of non-coding RNAs in the Hippo pathway during normal development and neoplastic progression is also emerging in liver. Thus, further investigation into the regulatory network between non-coding RNAs and the Hippo pathway and their connections with HCC may provide new therapeutic avenues towards developing an effective preventative or perhaps curative treatment for HCC. Herein we summarize the role of non-coding RNAs in the Hippo pathway, with an emphasis on their contribution to carcinogenesis, diagnosis, treatment and prognosis of HCC. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Su Jin; Lim, Ho Yeong
2017-06-01
Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Over the last decade, sorafenib has been the only available therapeutic option for advanced HCC, although regorafenib recently showed a survival benefit compared with placebo in a second-line setting. Areas covered: This review discusses key published and ongoing studies with targeted agents in HCC, molecular targets of HCC, the mechanism of resistance to sorafenib, and the role of biomarker-enriched clinical trials. Expert opinion: The multiplicity of drivers and the existence of substantial molecular heterogeneity limit the benefits of targeted therapies in HCC. Based on molecular biology developments, a few biomarker-enriched clinical trials that target candidate driver genes are ongoing, and the outcomes of these are highly anticipated. Poor availability of tumor tissue and tumor heterogeneity in patients with HCC make liquid biopsy a very attractive option, although this technique remains to be validated.
Navas, Maria-Cristina; Suarez, Iris; Carreño, Andrea; Uribe, Diego; Rios, Wilson Alfredo; Cortes-Mancera, Fabian; Martel, Ghyslaine; Vieco, Beatriz; Lozano, Diana; Jimenez, Carlos; Gouas, Doriane; Osorio, German; Hoyos, Sergio; Restrepo, Juan Carlos; Correa, Gonzalo; Jaramillo, Sergio; Lopez, Rocio; Bravo, Luis Eduardo; Arbelaez, Maria Patricia; Scoazec, Jean-Yves; Abedi-Ardekani, Behnoush; Santella, Regina M.; Chemin, Isabelle; Hainaut, Pierre
2011-01-01
Hepatocellular Carcinoma (HCC) is a leading cause of cancer-related death worldwide. Globally, the most important HCC risk factors are Hepatitis B Virus (HBV) and/or Hepatitis C Virus (HCV), chronic alcoholism, and dietary exposure to aflatoxins. We have described the epidemiological pattern of 202 HCC samples obtained from Colombian patients. Additionally we investigated HBV/HCV infections and TP53 mutations in 49 of these HCC cases. HBV biomarkers were detected in 58.1% of the cases; HBV genotypes F and D were characterized in three of the samples. The HCV biomarker was detected in 37% of the samples while HBV/HCV coinfection was found in 19.2%. Among TP53 mutations, 10.5% occur at the common aflatoxin mutation hotspot, codon 249. No data regarding chronic alcoholism was available from the cases. In conclusion, in this first study of HCC and biomarkers in a Colombian population, the main HCC risk factor was HBV infection. PMID:22114738
Liver Full Reference Set Application: Hiro Yamada - Wako (2011) — EDRN Public Portal
Wako has received new 510(k) clearance for Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein (AFP-L3) and Des-gamma-carboxy prothrombin (DCP) tests on an innovative μTASWako i30 analyzer from FDA. The AFP-L3 and DCP assayed on an older platform LiBASys have been cleared with indication of use for risk assessment of hepatocellular carcinoma (HCC) in patient at risk for the liver malignancy. Wako believes that early detection of HCC is critical for improving HCC patient outcome. Therefore, Wako is currently seeking collaborative opportunities to retrospectively measure clinical samples using the AFP-L3 and DCP for further determining of effectiveness of the HCC biomarkers in early detection which are collected prospectively during HCC surveillance. The Reference Sample Set in the EDRN biorepository are well characterized and studied. Access to these samples would allow Wako to quickly determine the clinical effectiveness of AFP-L3 and DCP in detecting early HCC
Klingenberg, Marcel; Groß, Matthias; Goyal, Ashish; Polycarpou-Schwarz, Maria; Miersch, Thilo; Ernst, Anne-Sophie; Leupold, Jörg; Patil, Nitin; Warnken, Uwe; Allgayer, Heike; Longerich, Thomas; Schirmacher, Peter; Boutros, Michael; Diederichs, Sven
2018-05-23
The identification of viability-associated long non-coding RNAs (lncRNA) might be a promising rationale for new therapeutic approaches in liver cancer. Here, we applied the first RNAi screening approach in hepatocellular carcinoma (HCC) cell lines to find viability-associated lncRNAs. Among the multiple identified lncRNAs with a significant impact on HCC cell viability, we selected CASC9 (Cancer Susceptibility 9) due to the strength of its phenotype, expression, and upregulation in HCC versus normal liver. CASC9 regulated viability across multiple HCC cell lines as shown by CRISPR interference, single siRNA- and siPOOL-mediated depletion of CASC9. Further, CASC9 depletion caused an increase in apoptosis and decrease of proliferation. We identified the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a CASC9 interacting protein by RNA affinity purification (RAP) and validated it by native RNA immunoprecipitation (RIP). Knockdown of HNRNPL mimicked the loss-of-viability phenotype observed upon CASC9 depletion. Analysis of the proteome (SILAC) of CASC9- and HNRNPL-depleted cells revealed a set of co-regulated genes which implied a role of the CASC9:HNRNPL complex in AKT-signaling and DNA damage sensing. CASC9 expression levels were elevated in patient-derived tumor samples compared to normal control tissue and had a significant association with overall survival of HCC patients. In a xenograft chicken chorioallantoic membrane model, we measured a decreased tumor size after knockdown of CASC9. Taken together, we provide a comprehensive list of viability-associated lncRNAs in HCC. We identified the CASC9:HNRNPL complex as a clinically relevant viability-associated lncRNA/protein complex which affects AKT-signaling and DNA damage sensing in HCC. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Aberrant expression of microRNAs and the miR-1/MET pathway in canine hepatocellular carcinoma.
Lai, Y-C; Ushio, N; Rahman, M M; Katanoda, Y; Ogihara, K; Naya, Y; Moriyama, A; Iwanaga, T; Saitoh, Y; Sogawa, T; Sunaga, T; Momoi, Y; Izumi, H; Miyoshi, N; Endo, Y; Fujiki, M; Kawaguchi, H; Miura, N
2018-06-01
Canine hepatocellular carcinoma (HCC) is the most common primary hepatic tumour in dogs. MicroRNA (miRNA) dysregulation has been reported in human HCC and shown to have diagnostic and prognostic value; however, there are no data on miRNA expression in canine HCC. The aim of the present study was to investigate differentially expressed miRNAs in canine HCC. Analysis of miRNA expression in canine HCC tissues and cell lines by quantitative reverse transcription PCR showed that miR-1, miR-122, let-7a, and let-7g were downregulated, whereas miR-10b and miR-21 were upregulated in canine HCC. MET is one of the target genes of miR-1. MET was upregulated in canine HCC at the gene and protein levels, and a significant correlation between the concomitant downregulation of miR-1 and upregulation of MET was observed. Fast/intermediate-proliferating canine HCC cell lines had higher MET gene and protein expression levels than the slow-proliferating cell line. These findings suggest that miRNAs are differentially expressed in canine HCC, and that the miR-1/MET pathway may be associated with canine HCC cell proliferation. © 2018 John Wiley & Sons Ltd.
Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis
2012-01-01
Background Hepatocyte growth factor (HGF) induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC). MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s) is in hepatocarcinogenesis. Results MUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion. Conclusions These findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC. PMID:22962849
Yan, Xin-Long; Jia, Ya-Li; Chen, Lin; Zeng, Quan; Zhou, Jun-Nian; Fu, Chun-Jiang; Chen, Hai-Xu; Yuan, Hong-Feng; Li, Zhi-Wei; Shi, Lei; Xu, Ying-Chen; Wang, Jing-Xue; Zhang, Xiao-Mei; He, Li-Juan; Zhai, Chao; Yue, Wen; Pei, Xue-Tao
2013-06-01
Cancer-associated mesenchymal stem cells (MSCs) play a pivotal role in modulating tumor progression. However, the interactions between liver cancer-associated MSCs (LC-MSCs) and hepatocellular carcinoma (HCC) remain unreported. Here, we identified the presence of MSCs in HCC tissues. We also showed that LC-MSCs significantly enhanced tumor growth in vivo and promoted tumor sphere formation in vitro. LC-MSCs also promoted HCC metastasis in an orthotopic liver transplantation model. Complementary DNA (cDNA) microarray analysis showed that S100A4 expression was significantly higher in LC-MSCs compared with liver normal MSCs (LN-MSCs) from adjacent cancer-free tissues. Importantly, the inhibition of S100A4 led to a reduction of proliferation and invasion of HCC cells, while exogenous S100A4 expression in HCC cells resulted in heavier tumors and more metastasis sites. Our results indicate that S100A4 secreted from LC-MSCs can promote HCC cell proliferation and invasion. We then found the expression of oncogenic microRNA (miR)-155 in HCC cells was significantly up-regulated by coculture with LC-MSCs and by S100A4 ectopic overexpression. The invasion-promoting effects of S100A4 were significantly attenuated by a miR-155 inhibitor. These results suggest that S100A4 exerts its effects through the regulation of miR-155 expression in HCC cells. We demonstrate that S100A4 secreted from LC-MSCs promotes the expression of miR-155, which mediates the down-regulation of suppressor of cytokine signaling 1, leading to the subsequent activation of STAT3 signaling. This promotes the expression of matrix metalloproteinases 9, which results in increased tumor invasiveness. S100A4 secreted from LC-MSCs is involved in the modulation of HCC progression, and may be a potential therapeutic target. (HEPATOLOGY 2013). Copyright © 2013 American Association for the Study of Liver Diseases.
Hair cortisol in relation to acute and post-traumatic stress symptoms in children and adolescents.
Straub, Joana; Klaubert, Lena Marie; Schmiedgen, Susann; Kirschbaum, Clemens; Goldbeck, Lutz
2017-11-01
We report on the preliminary results of two independent studies that (1) compare the hair cortisol concentrations (HCC) of healthy controls with patients displaying post-traumatic stress symptoms (PTSS, study 1+2), (2) investigate whether pre-trauma HCC are predictive for the development of acute stress symptoms (ASS) and PTSS (study 1) and (3) determine whether HCC correlate with PTSS in a clinical sample of children (study 2). In study 1, the clinical symptoms of 35 minors were examined one (T1) and seven weeks (T2) after surgery following an accident. Hair samples were taken after the accident that reflect cortisol secretion over the past three months before the accident (healthy controls). In study 2, HCC and PTSS symptoms were cross-sectionally assessed in 22 minors who had experienced a psychological trauma. The HCC of patients with PTSS were lower than the HCC of healthy controls (study 1+2). Secondary analyses showed that HCC were significantly lower in male PTSS patients than in male healthy controls, whereas the HCC in females were comparably low in both groups. Pre-trauma HCC did not predict the total ASS and PTSS scores (study 1) and HCC were not directly related to the total PTSS scores (study 2).
Torres-Mena, Julia Esperanza; Salazar-Villegas, Karla Noemí; Sánchez-Rodríguez, Ricardo; López-Gabiño, Belém; Del Pozo-Yauner, Luis; Arellanes-Robledo, Jaime; Villa-Treviño, Saúl; Gutiérrez-Nava, María Angélica; Pérez-Carreón, Julio Isael
2018-04-01
The intrinsic heterogeneity of hepatocellular carcinoma (HCC) represents a great challenge for its molecular classification and for detecting predictive biomarkers. Aldo-keto reductase (Akr) family members have shown differential expression in human HCC, while AKR1B10 overexpression is considered a biomarker; AKR7A3 expression is frequently reduced in HCC. To investigate the time-course expression of Akr members in the experimental hepatocarcinogenesis. Using DNA-microarray data, we analyzed the time-course gene expression profile from nodules to tumors (4-17 months) of 17 Akr members induced by the resistant hepatocyte carcinogenesis model in the rat. The expression of six members (Akr1c19, Akr1b10, Akr7a3, Akr1b1, Akr1cl1, and Akr1b8) was increased, comparable to that of Ggt and Gstp1, two well-known liver cancer markers. In particular, Akr7a3 and Akr1b10 expression also showed a time-dependent increment at mRNA and protein levels in a second hepatocarcinogenesis model induced with diethylnitrosamine. We confirmed that aldo-keto reductases 7A3 and 1B10 were co-expressed in nine biopsies of human HCC, independently from the presence of glypican-3 and cytokeratin-19, two well-known HCC biomarkers. Because it has been suggested that expression of Akr members is regulated through NRF2 activity at the antioxidant response element (ARE) sequences, we searched and identified at least two ARE sites in Akr1b1, Akr1b10, and Akr7a3 from rat and human gene sequences. Moreover, we observed higher NRF2 nuclear translocation in tumors as compared with non-tumor tissues. Our results demonstrate that Akr7a3 mRNA and protein levels are consistently co-expressed along with Akr1b10, in both experimental liver carcinogenesis and some human HCC samples. These results highlight the presence of AKR7A3 and AKR1B10 from early stages of the experimental HCC and introduce them as a potential application for early diagnosis, staging, and prognosis in human cancer.
Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma
Chauhan, Ranjit; Lahiri, Nivedita
2016-01-01
Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future. PMID:27398029
[Hepatocellular tumours in noncirrhotic liver tissue].
Goltz, D; Fischer, H-P
2015-11-01
In recent years, the spectrum of tissue-based diagnostics of hepatocellular tumours has changed due to novel molecular pathological findings. Innovative radiographics filter out small lesions and ambiguous tumours for bioptical sampling. The spectrum of these tumours includes hepatocellular carcinoma, hepatocellular adenomas, focal nodular hyperplasia and macroregenerative nodules. Primarily, morphological analysis should identify the dignity of a lesion. After exclusion of HCC and reactive liver cell nodules, hepatocellular adenomas should be further subclassified based on immunohistochemical/molecular pathological criteria according to the WHO classification of liver tumours. This procedure provides significant additional information regarding the prognosis and therapeutic implications of hepatocellular adenomas.
Cortactin is a sensitive biomarker relative to the poor prognosis of human hepatocellular carcinoma
2013-01-01
Background Cortactin is an important regulator involved in invasion and migration of hepatocellular carcinoma (HCC). The aim of this study was to elucidate the forecasting role of cortactin in resectable HCCs. Methods We compared the invasiveness and motility among liver epithelial cell line and HCC cell lines by using Transwell assay and wound healing assay. We further investigated the CTTN mRNA expression by real-time PCR. Next, 91 HCC and 20 normal liver tissue samples were detected by IHC and real-time PCR. Finally, we analyzed the clinicopathologic features and survival time of the HCC cases. Results We identified that HepG2, LM3, and SK-Hep-1 had more invasiveness and motility (P <0.05). Compared with liver epithelial cell line, CTTN expression was higher in LM3, HepG2, and MHCC97-L (P <0.01) and lower in SK-Hep-1 (P <0.05). IHC examination showed cortactin expression was closely relative to TNM stage (AJCC/UICC), cancer embolus, and metastasis (P <0.01). Cortactin overexpression indicated a longer survival time of 52 ± 8.62 months and low expression of a shorter survival time of 20 ± 4.95 months (P <0.01). Cortactin examination has more predictive power in patients with Child-Pugh grade A and BCLC stage 0-B. Conclusions Overexpression of cortactin is closely associated with poor human HCCs prognosis that caused by cancer embolus and metastasis. Cortactin and CTTN should be used for differentiating varieties of survival for patients after HCC resection. PMID:23518204
Ao, Lu; Guo, You; Song, Xuekun; Guan, Qingzhou; Zheng, Weicheng; Zhang, Jiahui; Huang, Haiyan; Zou, Yi; Guo, Zheng; Wang, Xianlong
2017-11-01
Concerns are raised about the representativeness of cell lines for tumours due to the culture environment and misidentification. Liver is a major metastatic destination of many cancers, which might further confuse the origin of hepatocellular carcinoma cell lines. Therefore, it is of crucial importance to understand how well they can represent hepatocellular carcinoma. The HCC-specific gene pairs with highly stable relative expression orderings in more than 99% of hepatocellular carcinoma but with reversed relative expression orderings in at least 99% of one of the six types of cancer, colorectal carcinoma, breast carcinoma, non-small-cell lung cancer, gastric carcinoma, pancreatic carcinoma and ovarian carcinoma, were identified. With the simple majority rule, the HCC-specific relative expression orderings from comparisons with colorectal carcinoma and breast carcinoma could exactly discriminate primary hepatocellular carcinoma samples from both primary colorectal carcinoma and breast carcinoma samples. Especially, they correctly classified more than 90% of liver metastatic samples from colorectal carcinoma and breast carcinoma to their original tumours. Finally, using these HCC-specific relative expression orderings from comparisons with six cancer types, we identified eight of 24 hepatocellular carcinoma cell lines in the Cancer Cell Line Encyclopedia (Huh-7, Huh-1, HepG2, Hep3B, JHH-5, JHH-7, C3A and Alexander cells) that are highly representative of hepatocellular carcinoma. Evaluated with a REOs-based prognostic signature for hepatocellular carcinoma, all these eight cell lines showed the same metastatic properties of the high-risk metastatic hepatocellular carcinoma tissues. Caution should be taken for using hepatocellular carcinoma cell lines. Our results should be helpful to select proper hepatocellular carcinoma cell lines for biological experiments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Liang, Hai-Wei; Yang, Xia; Wen, Dong-Yue; Gao, Li; Zhang, Xiang-Yu; Ye, Zhi-Hua; Luo, Jie; Li, Zu-Yun; He, Yun; Pang, Yu-Yan; Chen, Gang
2018-01-01
Increasing evidence has demonstrated that microRNA (miR)‑133a‑3p is an important regulator of hepatocellular carcinoma (HCC). In the present study, the diagnostic role of miR‑133a‑3p in HCC, and the potential functional pathways, were both explored based on publicly available data. Eligible microarray datasets were collected from NCBI Gene Expression Omnibus (GEO) database and ArrayExpress database. The data related to HCC and matched adjacent normal tissues were also downloaded from The Cancer Genome Atlas (TCGA). Published studies reporting the association between miR‑133a‑3p expression and HCC were reviewed from multiple databases. By combining the data derived from three sources (GEO, TCGA and published studies), the authors analyzed the comprehensive relationship between miR‑133a‑3p expression and clinicopathological features of HCC. Eventually, putative targets of miR‑133a‑3p in HCC were selected for further bioinformatics prediction. A total of eight published microarray datasets were gathered, and the pooled results demonstrated that the expression of miR‑133a‑3p in the tumor group was lower than that in normal groups [standardized mean difference (SMD)=‑0.54; 95% confidence interval (CI), ‑0.74 to ‑0.35; P<0.001]. Consistently, the level of miR‑133a‑1 in HCC was reduced markedly compared to normal tissues (P<0.001) based on TCGA data, and the AUC value of low miR‑133a‑1 expression for HCC diagnosis was 0.670 (P<0.001). Furthermore, the combined SMD of all datasets (GEO, TCGA and literature) suggested that significant difference was observed between the HCC group and the normal control group, and lower miR‑133a‑3p expression in HCC group was noted (SMD=‑0.69; 95% CI, ‑1.10 to ‑0.29; P=0.001). In addition, the authors discovered five key genes of the calcium signaling pathway (NOS1, ADRA1A, ADRA1B, ADRA1D and TBXA2R) that may probably be targeted by miR‑133a‑3p in HCC. The study reveals that miR‑133a‑3p may function as a tumor suppressor in HCC. The prospective novel pathways and key genes of miR‑133a‑3p could offer potential biomarkers for HCC; however, the predictions require further confirmation.
Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Guo, Junli; Li, Mengsen
2017-03-15
Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis. © 2016 UICC.
Yao, Zhicheng; Luo, Jingyan; Hu, Kunpeng; Lin, Jizong; Huang, He; Wang, Qiangliang; Zhang, Peng; Xiong, Zhiyong; He, Chonghua; Huang, Zejian; Liu, Bo; Yang, Yang
2017-04-01
There is increasing evidence that circular RNA (circRNA) are involved in cancer development, but the regulation and function of human circRNA remain largely unknown. In this study, we demonstrated that ZKSCAN1, a zinc finger family gene, is expressed in both linear and circular (circZKSCAN1) forms of RNA in human hepatocellular carcinoma (HCC) tissues and cell lines. Here, we analyzed a cohort of 102 patients and found that expression of both ZKSCAN1mRNA and circZKSCAN1 was significantly lower (P < 0.05) in the HCC samples compared with that in matched adjacent nontumorous tissues by reverse transcription PCR (RT-PCR). The low expression level of ZKSCAN1 was only associated with tumor size (P = 0.032), while the cirZKSCAN1 levels varied in patients with different tumor numbers (P < 0.01), cirrhosis (P = 0.031), vascular invasion (P = 0.002), or microscopic vascular invasion (P = 0.002), as well as with the tumor grade (P < 0.001). Silencing both ZKSCAN1mRNA and circZKSCAN1 promoted cell proliferation, migration, and invasion. In contrast, overexpression of both forms of RNA repressed HCC progression in vivo and in vitro. Silencing or overexpression of both forms of RNA did not interfere with each other. RNA-seq revealed a very different molecular basis for the observed effects; ZKSCAN1mRNA mainly regulated cellular metabolism, while circZKSCAN1 mediated several cancer-related signaling pathways, suggesting a nonredundant role for ZKSCAN1mRNA and circRNA. In conclusion, our results revealed two post-translational products (ZKSCAN1mRNA and circZKSCAN1) that cooperated closely with one another to inhibit growth, migration, and invasion of HCC. cirZKSCAN1 might be a useful marker for the diagnosis of HCC. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Liu, Haizhou; Wang, Shaoyang; Ma, Weimin; Lu, Youguang
2015-12-01
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a poor patient survival. Expression of TGF-β1 is up-regulated in HCC and is thought to play a crucial role in the occurrence and development of HCC. However, the mechanism of TGF-β1-mediated facilitation of malignant growth and invasion remains unclear, although some previous studies highlighted a potential involvement of the connective tissue growth factor (CTGF). Here we demonstrate that the in vitro migration of the HCC cell line SMMC-7721 is increased in the presence of recombinant TGF-β1, and that this effect is reversed by the specific inhibitor SB431542. Furthermore, TGF-β1 treatment up-regulated the expression of its own mRNA as well as the expression of CTGF mRNA. The TGF-β1-stimulated migration of SMMC-7721 cells was diminished by siRNA silencing of CTGF. These in vitro observations were validated in a murine xenograft model. In particular, silencing of CTFG diminished the TGF-β1-induced tumorigenesis in experimental animals. In conclusion, TGF-β1 plays a critical role in HCC migration and invasion, and this effect is dependent on CTGF.
Synergistic Effect of MiR-146a Mimic and Cetuximab on Hepatocellular Carcinoma Cells
Huang, Suning; Rong, Minhua; Dang, Yiwu
2014-01-01
Previously, we found that the expression of microRNA-146a (miR-146a) was downregulated in hepatocellular carcinoma (HCC) formalin-fixed paraffin-embedded (FFPE) tissues compared to the adjacent noncancerous hepatic tissues. In the current study, we have explored the in vitro effect of miR-146a on the malignant phenotypes of HCC cells. MiR-146a mimic could suppress cell growth and increase cellular apoptosis in HCC cell lines HepG2, HepB3, and SNU449, as assessed by spectrophotometry, fluorimetry, and fluorescence microscopy, respectively. Furthermore, western blot showed that miR-146a mimic downregulated EGFR, ERK1/2, and stat5 signalings. These effects were less potent compared to that of a siRNA targeting EGFR, a known target gene of miR-146a. Moreover, miR-146a mimic could enhance the cell growth inhibition and apoptosis induction impact of various EGFR targeting agents. The most potent combination was miR-146a mimic with cetuximab, presenting a synergistic effect. In conclusion, miR-146a plays a vital role in the cell growth and apoptosis of HCC cells and inducing miR-146a level might be a critical targeted molecular therapy strategy for HCC. PMID:24895573
Synergistic effect of MiR-146a mimic and cetuximab on hepatocellular carcinoma cells.
Huang, Suning; He, Rongquan; Rong, Minhua; Dang, Yiwu; Chen, Gang
2014-01-01
Previously, we found that the expression of microRNA-146a (miR-146a) was downregulated in hepatocellular carcinoma (HCC) formalin-fixed paraffin-embedded (FFPE) tissues compared to the adjacent noncancerous hepatic tissues. In the current study, we have explored the in vitro effect of miR-146a on the malignant phenotypes of HCC cells. MiR-146a mimic could suppress cell growth and increase cellular apoptosis in HCC cell lines HepG2, HepB3, and SNU449, as assessed by spectrophotometry, fluorimetry, and fluorescence microscopy, respectively. Furthermore, western blot showed that miR-146a mimic downregulated EGFR, ERK1/2, and stat5 signalings. These effects were less potent compared to that of a siRNA targeting EGFR, a known target gene of miR-146a. Moreover, miR-146a mimic could enhance the cell growth inhibition and apoptosis induction impact of various EGFR targeting agents. The most potent combination was miR-146a mimic with cetuximab, presenting a synergistic effect. In conclusion, miR-146a plays a vital role in the cell growth and apoptosis of HCC cells and inducing miR-146a level might be a critical targeted molecular therapy strategy for HCC.
Oncolytic reovirus as a combined antiviral and anti-tumour agent for the treatment of liver cancer.
Samson, Adel; Bentham, Matthew J; Scott, Karen; Nuovo, Gerard; Bloy, Abigail; Appleton, Elizabeth; Adair, Robert A; Dave, Rajiv; Peckham-Cooper, Adam; Toogood, Giles; Nagamori, Seishi; Coffey, Matthew; Vile, Richard; Harrington, Kevin; Selby, Peter; Errington-Mais, Fiona; Melcher, Alan; Griffin, Stephen
2018-03-01
Oncolytic viruses (OVs) represent promising, proinflammatory cancer treatments. Here, we explored whether OV-induced innate immune responses could simultaneously inhibit HCV while suppressing hepatocellular carcinoma (HCC). Furthermore, we extended this exemplar to other models of virus-associated cancer. Clinical grade oncolytic orthoreovirus (Reo) elicited innate immune activation within primary human liver tissue in the absence of cytotoxicity and independently of viral genome replication. As well as achieving therapy in preclinical models of HCC through the activation of innate degranulating immune cells, Reo-induced cytokine responses efficiently suppressed HCV replication both in vitro and in vivo. Furthermore, Reo-induced innate responses were also effective against models of HBV-associated HCC, as well as an alternative endogenous model of Epstein-Barr virus-associated lymphoma. Interestingly, Reo appeared superior to the majority of OVs in its ability to elicit innate inflammatory responses from primary liver tissue. We propose that Reo and other select proinflammatory OV may be used in the treatment of multiple cancers associated with oncogenic virus infections, simultaneously reducing both virus-associated oncogenic drive and tumour burden. In the case of HCV-associated HCC (HCV-HCC), Reo should be considered as an alternative agent to supplement and support current HCV-HCC therapies, particularly in those countries where access to new HCV antiviral treatments may be limited. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Zhong, Cheng-Qian; Zhang, Xiu-Ping; Ma, Ning; Zhang, Er-Bin; Li, Jing-Jing; Jiang, Ya-Bo; Gao, Yu-Zhen; Yuan, Yan-Mei; Lan, Shi-Qian; Xie, Dong; Cheng, Shu-Qun
2018-05-07
Adipocyte fatty acid-binding protein (FABP4) is abundant in macrophage and adipocyte. It is known to be involved in lipid metabolism. The role of FABP4 has been reported in various cancers, such as non-small cell lung cancer, breast cancer, ovarian cancer, and prostatic cancer. However, its role remains unclear in hepatocellular carcinoma (HCC). In our study, we investigated the expression of FABP4 at both mRNA and protein levels, and by examining 175 cases of patients with cancer of the liver tissue microarray, the significance between the expression of FABP4 and clinical characteristics had been discussed. We found that FABP4 was lowly expressed in HCC tissues compared to the corresponding tissue adjacent, and the expression of FABP4 was significantly associated with the tumor size, PVTT, recurrence-free survival and overall survival. Moreover, multivariate Cox regression analysis indicated that the expression of FABP4, Alb, AFP, HBsAg, and PVTT were independent risk factors for overall survival, and the expression of FABP4, AFP, GGT, tumor size, and encapsulation were independent risk factors for HCC recurrence. In addition, we revealed that FABP4 suppressed HCC cell proliferation and invasion in vitro. Moreover, overexpression of FABP4 led to inhibit tumor growth and decreased tumor volume in vivo. These phenotypes were associated with altered expression of Snail and p-STAT3. Our studies thus suggest that FABP4 could be a potential target for HCC chemotherapy. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Wang, Zhipeng; Yang, Huan; Ren, Lei
2015-09-04
MicroRNA-21 (miR-21) has been well-established and found to be over-expressed in various human cancers and has been associated with hepatocellular carcinoma (HCC) progression. However, the underlying mechanism of miR-21 involvement in the development and progression of HCC remains to be understood. In the present study, we firstly identified that the Navigator-3 (NAV-3) gene as a novel direct target of miR-21. Knock-down of NAV-3 using shRNA can rescue the effects of anti-miR-21 inhibitor in HCC cell lines, whereas re-expression of miR-21 using transfection with miR-21 mimics phenocopied the NAV-3 knock-down model. Additionally, miR-21 levels inversely correlated with NAV-3 both in HCC cells and tissues. Knock-down of NAV-3 promoted both the proliferation and migration in HCC cells. Together, our findings suggest an important role for miR-21 in the progression of HCC, which negatively regulated Navigator-3 in the migration of HCC. Copyright © 2015 Elsevier Inc. All rights reserved.
Elsemman, Ibrahim E; Mardinoglu, Adil; Shoaie, Saeed; Soliman, Taysir H; Nielsen, Jens
2016-04-26
Hepatitis C virus (HCV) infection is a worldwide healthcare problem; however, traditional treatment methods have failed to cure all patients, and HCV has developed resistance to new drugs. Systems biology-based analyses could play an important role in the holistic analysis of the impact of HCV on hepatocellular metabolism. Here, we integrated HCV assembly reactions with a genome-scale hepatocyte metabolic model to identify metabolic targets for HCV assembly and metabolic alterations that occur between different HCV progression states (cirrhosis, dysplastic nodule, and early and advanced hepatocellular carcinoma (HCC)) and healthy liver tissue. We found that diacylglycerolipids were essential for HCV assembly. In addition, the metabolism of keratan sulfate and chondroitin sulfate was significantly changed in the cirrhosis stage, whereas the metabolism of acyl-carnitine was significantly changed in the dysplastic nodule and early HCC stages. Our results explained the role of the upregulated expression of BCAT1, PLOD3 and six other methyltransferase genes involved in carnitine biosynthesis and S-adenosylmethionine metabolism in the early and advanced HCC stages. Moreover, GNPAT and BCAP31 expression was upregulated in the early and advanced HCC stages and could lead to increased acyl-CoA consumption. By integrating our results with copy number variation analyses, we observed that GNPAT, PPOX and five of the methyltransferase genes (ASH1L, METTL13, SMYD2, TARBP1 and SMYD3), which are all located on chromosome 1q, had increased copy numbers in the cancer samples relative to the normal samples. Finally, we confirmed our predictions with the results of metabolomics studies and proposed that inhibiting the identified targets has the potential to provide an effective treatment strategy for HCV-associated liver disorders.
2010-01-01
Background Hepatoma-derived growth factor (HDGF) is involved in the hepatocarcinogenesis. In this study, we investigated the HDGF expression in hepatocellular carcinoma (HCC) and its correlation with clinicopathologic features, including the survival of patients with HCC. Furthermore, we examined the biological processes regulated by HDGF during the development of using HepG2 cell line as a model system. Methods we used immunohistochemistry to compare HDGF protein expression in HCC and normal liver tissues and further analyze the HDGF protein expression in clinicopathologically characterized 137 HCC cases. We stably knocked down the endogenous expression level of HDGF in HepG2 cells with specific shRNA-expressing lentiviral vector. Following the successful establishment of stable cells, we examined in vitro cell growth by MTT assay, anchorage-independent growth by soft-agar colony formation assay and cell migration/invasion by transwell and boyden chamber assay. And in addition, we also investigated the in vivo tumor growth by xenograft transplantation of HepG2 cells into nude mice. Results Protein expression level of HDGF was markedly higher in HCC tissues than that in the normal liver tissues(P = 0.011). In addition, high expression of HDGF protein was positively correlated with T classification(p < 0.001), N classification (p < 0.001), and clinical stage (p < 0.001) of HCC patients. Patients with higher HDGF expression showed a significantly shorter overall survival time than did patients with low HDGF expression. Multivariate analysis suggested that HDGF expression might be an independent prognostic indicator(p < 0.001) for the survival of patients with HCC. HDGF-specific shRNA (shHDGF) successfully knocked down its endogenous expression in HepG2 cells. Compared to the parental and control shRNA-transfected (shCtrl) HepG2 cells, the shHDGF cells exhibited significantly reduced in vitro cell growth, anchorage-independent growth, cell migration and invasion (p < 0.05). In vivo, the xenograft transplants from shHDGF cells gave rise to much smaller tumors as compared to those from shCtrl cells. Conclusion High HDGF expression is associated with poor overall survival in patients with HCC. Down-regulation of HDGF inhibits the growth, anchorage-independent growth, migration and invasion of HepG2 cells. PMID:20846397
High ADAM8 expression is associated with poor prognosis in patients with hepatocellular carcinoma.
Zhang, Yun; Tan, Yong-Fei; Jiang, Chao; Zhang, Kai; Zha, Tian-Zhou; Zhang, Miao
2013-01-01
In this study,we investigated the ADAM8 expression in hepatocellular carcinoma (HCC) and its correlation with clinicopathologic features,including the survival of patients with HCC. Furthermore,we examined the biological processes regulated by ADAM8 during the development of using HepG2 cell line as a model system. We used immunohistochemistry to compare ADAM8 protein expression in HCC and normal liver tissues and further analyze the ADAM8 protein expression in clinicopathologically characterized 105 HCC cases.We stably knocked down the endogenous expression level of ADAM8 in HepG2 cells with specific shRNA-expressing lentiviral vector. Following the successful establishment of stable cells,we examined in vitro cell growth by MTT assay,anchorage-independent growth by soft-agar colony formation assay and cell migration/invasion by transwell and boyden chamber assay. And in addition,we also investigated the in vivo tumor growth by xenograft transplantation of HepG2 cells into nude mice. Protein expression level of ADAM8 was markedly higher in HCC tissues than that in the normal liver tissues (P = 0.0058).In addition,high expression of ADAM8 protein was positively correlated with serum AFP elevation,tumor size,histological differentiation,tumor recurrence,tumor metastasis,and tumor stage. Patients with higher ADAM8 expression showed a significantly shorter overall survival time than patients with low ADAM8 expression. Multivariate analysis suggested that ADAM8 expression might be an independent prognostic indicator (p = 0.016) for the survival of patients with HCC. ADAM8-specific shRNA (shADAM8) successfully knocked down its endogenous expression in HepG2 cells. Compared to the parental and control shRNA-transfected (shCtrl) HepG2 cells,the shADAM8 cells exhibited significantly reduced in vitro cell growth,anchorage-independent growth,cell migration and invasion (p < 0.05).In vivo,the xenograft transplants from shADAM8 cells gave rise to much smaller tumors as compared to those from shCtrl cells. High ADAM8 expression is associated with poor overall survival in patients with HCC. Down-regulation of ADAM8 inhibits the growth,anchorage-independent growth,migration and invasion of HepG2 cells. ADAM8 may be a potential target of antiangiogenic therapy for HCC.
Gheorghe, Liana; Iacob, Speranta; Iacob, Razvan; Dumbrava, Mona; Becheanu, Gabriel; Herlea, Vlad; Gheorghe, Cristian; Lupescu, Ioana; Popescu, Irinel
2009-12-01
Small nodules (under 3 cm) detected on ultrasound (US) in cirrhotics represent the most challenging category for noninvasive diagnosis of hepatocellular carcinoma (HCC). To evaluate real-time sonoelastography as a noninvasive tool for the diagnosis of small HCC nodules in cirrhotic patients. 42 cirrhotic patients with 58 nodules (1-3 cm) were evaluated with real-time elastography (Hitachi EUB-6500); the mean intensity of colors red, blue, green were measured using a semi-quantitative method. Analysis of histograms for each color of the sonoelastography images was performed for quantifying the elasticity of nodule tissue in comparison with the cirrhotic liver tissue. AUROC curves were constructed to define the best cut-off points to distinguish malignant features of the nodules. Univariate and multivariate logistic regression analysis was performed. 595 sonoelastography images from 42 patients (25 men; 17 women) were analyzed. The mean age was 56.4 +/- 0.7 years and 69% patients were in Child-Pugh class A, 19% class B, 11% class C. For the mean intensity of green color AUROC=0.81, a cut-off value under 108.7 being diagnostic for HCC with a Sp=91.1%, Se=50%, PPV=92.1%, NPV=47.1%. Mean intensity of blue color proved to be an excellent diagnostic tool for HCC (AUROC=0.94); for a cut-off value greater than 128.9, Sp=92.2%, Se=78.9%, PPV=95.4%, NPV=68%. Independent predictive factors of HCC for a small nodule in cirrhotic patients were: blue color over 128.9 at sonoelastography and hypervascular appearance at Doppler US. US elastography is a promising method for the non-invasive diagnosis of early HCC. Blue color at elastography and hypervascular aspects are independent predictors of HCC.
miR-34a: Multiple Opposing Targets and One Destiny in Hepatocellular Carcinoma.
Yacoub, Radwa Alaa; Fawzy, Injie Omar; Assal, Reem Amr; Hosny, Karim Adel; Zekri, Abdel-Rahman Nabawy; Esmat, Gamal; El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab
2016-12-28
Background and Aims: The role of miR-34a in hepatocellular carcinoma (HCC) is controversial and several unresolved issues remain, including its expression pattern and relevance to tumor etiology, tumor stage and prognosis, and finally, its impact on apoptosis. Methods: miR-34a expression was assessed in hepatitis C virus (HCV)-induced non-metastatic HCC tissues by RT-Q-PCR. Huh-7 cells were transfected with miR-34a mimics and the impact of miR-34a was examined on 84 pro-apoptotic/anti-apoptotic genes using PCR array; its net effect was tested on cell viability via MTT assay. Results: miR-34a expression was up-regulated in HCC tissues. Moreover, miR-34a induced a large set of pro-apoptotic/anti-apoptotic genes, with a net result of triggering apoptosis and repressing cell viability. Conclusions: HCC-related differential expression of miR-34a could be etiology-based or stage-specific, and low expression of miR-34a may predict poor prognosis. This study's findings also emphasize the role of miR-34a in apoptosis.
BAG3 regulates epithelial-mesenchymal transition and angiogenesis in human hepatocellular carcinoma.
Xiao, Heng; Cheng, Shaobing; Tong, Rongliang; Lv, Zheng; Ding, Chaofeng; Du, Chengli; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen
2014-03-01
Bcl2-associated athanogene 3 (BAG3) protein is a co-chaperone of heat-shock protein (Hsp) 70 and may regulate major physiological and pathophysiological processes. However, few reports have examined the role of BAG3 in human hepatocellular carcinoma (HCC). In this study, we show that BAG3 regulates epithelial-mesenchymal transition (EMT) and angiogenesis in HCC. BAG3 was overexpressed in HCC tissues and cell lines. BAG3 knockdown resulted in reduction in migration and invasion of HCC cells, which was linked to reversion of EMT by increasing E-cadherin expression and decreasing N-cadherin, vimentin and slug expression, as well as suppressing matrix metalloproteinase 2 (MMP-2) expression. In a xenograft tumorigenicity model, BAG3 knockdown effectively inhibited tumor growth and metastasis through reduction in CD34 and VEGF expression and reversal of the EMT pathway. In conclusion, BAG3 is associated with the invasiveness and angiogenesis in HCC, and the BAG3 gene may be a novel therapeutic approach against HCC.
Nogueira, Jeronimo A; Ono-Nita, Suzane K; Nita, Marcelo E; de Souza, Marcelo M T; do Carmo, Eliane P; Mello, Evandro S; Scapulatempo, Cristovan; Paranaguá-Vezozzo, Denise C; Carrilho, Flair J; Alves, Venancio A F
2009-06-26
Ser-249 TP53 mutation (249(Ser)) is a molecular evidence for aflatoxin-related carcinogenesis in Hepatocellular Carcinoma (HCC) and it is frequent in some African and Asian regions, but it is unusual in Western countries. HBV has been claimed to add a synergic effect on genesis of this particular mutation with aflatoxin. The aim of this study was to investigate the frequency of 249(Ser) mutation in HCC from patients in Brazil. We studied 74 HCC formalin fixed paraffin blocks samples of patients whom underwent surgical resection in Brazil. 249(Ser) mutation was analyzed by RFLP and DNA sequencing. HBV DNA presence was determined by Real-Time PCR. 249(Ser) mutation was found in 21/74 (28%) samples while HBV DNA was detected in 13/74 (16%). 249Ser mutation was detected in 21/74 samples by RFLP assay, of which 14 were confirmed by 249(Ser) mutant-specific PCR, and 12 by nucleic acid sequencing. All HCC cases with p53-249ser mutation displayed also wild-type p53 sequences. Poorly differentiated HCC was more likely to have 249(Ser) mutation (OR = 2.415, 95% CI = 1.001 - 5.824, p = 0.05). The mean size of 249(Ser) HCC tumor was 9.4 cm versus 5.5 cm on wild type HCC (p = 0.012). HBV DNA detection was not related to 249(Ser) mutation. Our results indicate that 249(Ser) mutation is a HCC important factor of carcinogenesis in Brazil and it is associated to large and poorly differentiated tumors.
Serum DHCR24 Auto-antibody as a new Biomarker for Progression of Hepatitis C
Ezzikouri, Sayeh; Kimura, Kiminori; Sunagozaka, Hajime; Kaneko, Shuichi; Inoue, Kazuaki; Nishimura, Tomohiro; Hishima, Tsunekazu; Kohara, Michinori; Tsukiyama-Kohara, Kyoko
2015-01-01
Background New biomarkers are needed to identify the stage of hepatitis C virus (HCV)-infected diseases in order to reduce the mortality rates. Herein, we investigated whether serum 3β-hydroxysterol Δ24-reductase antibody (DHCR24 Ab) may serve as a prognostic marker for hepatitis C infection progression to hepatocellular carcinoma (HCC). Methods Serum DHCR24 Abs from 395 HCV-positive patients, including 133 chronic hepatitis (CHC), 85 liver cirrhosis (LCC), and 177 HCC (HCC-C) patients; 232 hepatitis B virus (HBV)-positive patients, including 103 chronic hepatitis (CHB), 56 liver cirrhosis (LCB), and 73 HCC (HCC-B) patients; and 24 healthy controls, were measured using enzyme-linked immunosorbent assay. Results The serum DHCR24 Ab levels were significantly higher in patients with CHC than in healthy controls, in LCC than in CHC, and in LCC than in HCC-C (P < 0.0001 for all). The concentration of serum DHCR24 Ab in HCC-B patients showed no significant difference compared to CHB and LCB patients (P = 0.1247). The DHCR24 Ab levels were significantly higher in early HCC-C than CHC or LCC patients and in late HCC-C compared to early HCC-C patients. The sensitivity of the DHCR24 Ab for HCC-C detection (70.6%) was higher than that of alpha-fetoprotein (AFP; 54.8%) and protein induced by vitamin K absence or antagonist-II (PIVKA-II; 42 · 5%). Moreover, DHCR24 was up-regulated in HCV-positive, but not HBV-positive tissues or HBV-negative, HCV-negative HCC specimens. Conclusions DHCR24 auto-antibody represents a potential noninvasive biomarker for HCV-related liver disease and may facilitate the diagnosis of PIVKA-II and AFP-negative HCC. PMID:26288822
Huang, Jin-Lan; Cao, Shun-Wang; Ou, Qi-Shui; Yang, Bin; Zheng, Shi-Hao; Tang, Jing; Chen, Jing; Hu, Yan-Wei; Zheng, Lei; Wang, Qian
2018-05-26
Dysfunctions of long non-coding RNA (lncRNAs) have been associated with the initiation and progression of hepatocellular carcinoma (HCC), but the clinicopathologic significance and potential role of lncRNA PTTG3P (pituitary tumor-transforming 3, pseudogene) in HCC remains largely unknown. We compared the expression profiles of lncRNAs in 3 HCC tumor tissues and adjacent non-tumor tissues by microarrays. In situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to assess the level of PTTG3P and prognostic values of PTTG3P were assayed in two HCC cohorts (n = 46 and 90). Artificial modulation of PTTG3P (down- and over-expression) was performed to explore the role of PTTG3P in tumor growth and metastasis in vitro and in vivo. Involvement of PTTG1 (pituitary tumor-transforming 1), PI3K/AKT signaling and its downstream signals were validated by qRT-PCR and western blot. We found that PTTG3P was frequently up-regulated in HCC and its level was positively correlated to tumor size, TNM stage and poor survival of patients with HCC. Enforced expression of PTTG3P significantly promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, PTTG3P knockdown had opposite effects. Mechanistically, over-expression of PTTG3P up-regulated PTTG1, activated PI3K/AKT signaling and its downstream signals including cell cycle progression, cell apoptosis and epithelial-mesenchymal transition (EMT)-associated genes. Our findings suggest that PTTG3P, a valuable marker of HCC prognosis, promotes tumor growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in HCC and might represent a potential target for gene-based therapy.
Fang, Feng; Yang, Lianyue; Tao, Yiming; Qin, Wei
2012-01-01
The so-called factor that binds to inducer of short transcripts-1 (FBI-1) purportedly plays an important role in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) remains unknown. The objective of this study was to investigate the expression level, clinical relevance, and biologic function of FBI-1 in HCC. Real-time quantitative reverse transcriptase-polymerase chain reaction analysis, Western blot analysis, and immunohistochemical staining were used to detect expression levels of FBI-1 and to analyze its relation to clinicopathologic parameters and to the prognosis of patients with HCC. In addition, the biologic functions of FBI-1 in regulating cell proliferation, migration, and reaction to chemotherapy were detected by using HepG2 cells and SMMC-7721 cells; subsequently, the molecular mechanism of FBI-1 also was investigated. Finally, a xenograft mouse model was used to validate the observations obtained from in vitro studies. Expression levels of FBI-1 messenger RNA and protein were elevated significantly in HCC tissues compared with adjacent nontumorous liver tissues (ANLTs). Increased FBI-1 expression was correlated with multiple tumor nodes, Edmondson-Steiner grade, and a poor prognosis in patients with HCC (P < .05). In vitro studies revealed that FBI-1 was capable of promoting cell proliferation (but not cell migration) by regulating the cell cycle regulation proteins p53, p21, and p27. In addition, FBI-1 could inhibit cell death induced by 5-fluorouracil or doxorubicin through suppressing the activation of p53. Consistent with the in vitro data, FBI-1 was capable of promoting cell proliferation and enhancing chemotherapy resistance of HCC in vivo. The current findings indicated that FBI-1 plays an important role in HCC carcinogenesis and chemotherapy tolerance, and FBI-1 may served as a novel prognostic marker and therapeutic target for HCC. Copyright © 2011 American Cancer Society.
Yen, Chia-Hung; Lu, Yao-Cheng; Li, Chung-Hsien; Lee, Cheng-Ming; Chen, Chia-Yen; Cheng, Ming-Yuan; Huang, Shiu-Feng; Chen, Kuen-Feng; Cheng, Ann-Lii; Liao, Li-Ying; Lee, Yan-Hwa Wu; Chen, Yi-Ming Arthur
2012-01-01
Glycine N-methyltransferase (GNMT) is a tumor suppressor for hepatocellular carcinoma (HCC). High rates of Gnmt knockout mice developed HCC. Epigenetic alteration and dysregulation of several pathways including wingless-type MMTV integration site (Wnt), mitogen-activated protein kinase (MAPK) and Janus kinase and signal transducer and activator of transcription (JAK-STAT) are associated with HCC development in Gnmt knockout mice. We hypothesized that GNMT may regulate signal transduction through interacting with other proteins directly. In this report, we identified a mammalian target of rapamycin (mTOR) inhibitor (DEP domain containing MTOR-interacting protein [DEPDC6/DEPTOR]) as a GNMT-binding protein by using yeast two-hybrid screening. Fluorescence resonance energy transfer assay demonstrated that the C-terminal half of GNMT interact with the PSD-95/Dlg1/ZO-1 (PDZ) domain of DEPDC6/DEPTOR. Immunohistochemical staining showed that 27.5% (14/51) of HCC patients had higher expression levels of DEPDC6/DEPTOR in the tumorous tissues than in tumor-adjacent tissues, especially among HCC patients with hepatitis B viral infection (odds ratio 10.3, 95% confidence interval [CI] 1.05–11.3) or patients with poor prognosis (death hazard ratio 4.51, 95% CI 1.60–12.7). In terms of molecular mechanism, knockdown of DEPDC6/DEPTOR expression in HuH-7 cells caused S6K and 4E-BP activation, but suppressed Akt. Overexpression of DEPDC6/DEPTOR activated Akt and increased survival of HCC cells. Overexpression of GNMT caused activation of mTOR/raptor downstream signaling and delayed G2/M cell cycle progression, which altogether resulted in cellular senescence. Furthermore, GNMT reduced proliferation of HuH-7 cells and sensitized them to rapamycin treatment both in vitro and in vivo. In conclusion, GNMT regulates HCC growth in part through interacting with DEPDC6/DEPTOR and modulating mTOR/raptor signaling pathway. Both GNMT and DEPDC6/DEPTOR are potential targets for developing therapeutics for HCC. PMID:22160218
Zhong, Sheng; Tang, Mandy W; Yeo, Winnie; Liu, Cuiling; Lo, Y M Dennis; Johnson, Philip J
2002-04-01
Glutathione S-transferases, enzymes that defend cells against damage mediated by oxidant and electrophilic carcinogens, may be critical determinants of cancer pathogenesis. In this report, we assess the role of epigenetic silencing of the GSTP1 gene, a gene encoding the pi-class glutathione S-transferase, in the pathogenesis of hepatitis B virus (HBV)-associated hepatocellular carcinomas (HCC). The cell lines Hep3B, HepG2, and a cohort of 43 HBV-associated HCC tissue specimens and corresponding nontumor tissues were subjected to analysis for GSTP1 epigenetic alteration and expression. GSTP1 "CpG" island DNA hypermethylation in the liver cell lines, and the tissue specimens were determined by methylation-specific PCR and correlated with expression of the gene using reverse-transcription PCR, immunoblotting, and immunohistochemistry. GSTP1 CpG island DNA hypermethylation was detected in 28 of 43 (65.1%) HCC tissues and 4 of 40 (10%) corresponding nontumor tissues. GSTP1 protein was absent in those cases showing hypermethylation of the gene. Similarly, DNA from Hep3B and HepG2 cell lines displayed complete GSTP1 hypermethylation in the CpG island, and they failed to express GSTP1 mRNA and the corresponding protein product. Treatment of the cell lines with the DNA methyltransferase inhibitor 5-aza-deoxycytidine reversed the hypermethylation, and restored GSTP1 mRNA and polypeptide expression. These data indicate that epigenetic silencing of GSTP1 gene expression by CpG island DNA hypermethylation is common in human HBV-associated HCC. In addition, somatic GSTP1 inactivation via CpG island hypermethylation may contribute to the pathogenesis of this malignancy.
Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo.
Yan, Yuan; Liu, Na; Hou, Ni; Dong, Lei; Li, Jie
2017-08-01
Curative treatment of patients with hepatocellular carcinoma (HCC) is poor. There is an urgent need to develop more effective strategies for the chemoprevention of HCC. Chlorogenic acid (CGA), a type of polyphenol present in the diet, especially from coffee, has many biological activities. Patients with viral hepatitis who drank coffee everyday experienced a reduction in the incidence of HCC. In the present study, we evaluated the effects of CGA on HCC. CGA inhibited the proliferation of HepG2 cells in vitro and the progression of HepG2 xenograft in vivo. CGA induced the inactivation of ERK1/2 and suppressed the expression of MMP-2 and MMP-9 in HepG2 xenograft tissue. These data demonstrate that CGA can prevent the progression of HCC through multiple pathways. CGA appears to be an effective chemopreventive agent for hepatocellular carcinoma. Copyright © 2017 Elsevier Inc. All rights reserved.
Ahmed, Hanaa H; Khalil, Wagdy K B; Hamza, Amal H
2014-12-01
The possible molecular mechanisms of Nano-selenium (nano-se) in attenuating hepatocellular carcinoma (HCC) was investigated in this study. To achieve this target, the apoptotic/necrotic rate in hepatic cells was investigated morphologically by double staining with acridine orange/ethidium bromide to address the type of cell death induced by nano-Se in HCC-bearing rats. To predict the oxidative stress and DNA damage, the generation of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 2-deoxyguanosine (2-dG) was examined. Moreover, the expression of some HCC-related genes was investigated such as aldo-keto reductase 1B10 (Akr1b10), ING3 and Foxp1 genes. As well as the histopathological study of liver tissue sections was performed. The results obtained from this study revealed that (HCC+Nano Se) group shows the highest number of damaged cancerous cells. Furthermore, the necrotic/apoptotic rate was significantly higher in (nano-Se+HCC), (HCC+Doxo) and (HCC+Doxo+nano-se) compared to that in the untreated HCC group. Treatment of HCC group with nano-se decreased the ratio of 8-OHdG/2-dG generation significantly with respect to the untreated HCC group. The opposite was observed regarding the gene expression of AKr1b10 and ING3. The treatment of HCC group with nano-se elicited significant increase in the expression of Akr1b10 and ING3 genes compared with untreated HCC group. On the other hand, the expression of Foxp1 gene was significantly decreased in HCC group treated with nano-se in comparison with the untreated HCC group. The histopathological study provided a supportive evidence for the molecular genetics study. Our data shed light on the molecular mechanisms of nano-se in attenuating HCC in the experimental model.
CXCR4 expression affects overall survival of HCC patients whereas CXCR7 expression does not
Neve Polimeno, Maria; Ierano, Caterina; D'Alterio, Crescenzo; Simona Losito, Nunzia; Napolitano, Maria; Portella, Luigi; Scognamiglio, Giosuè; Tatangelo, Fabiana; Maria Trotta, Anna; Curley, Steven; Costantini, Susan; Liuzzi, Raffaele; Izzo, Francesco; Scala, Stefania
2015-01-01
Hepatocellular carcinoma (HCC) is a heterogeneous disease with a poor prognosis and limited markers for predicting patient survival. Because chemokines and chemokine receptors play numerous and integral roles in HCC disease progression, the CXCR4–CXCL12–CXCR7 axis was studied in HCC patients. CXCR4 and CXCR7 expression was analyzed by immunohistochemistry in 86 HCC patients (training cohort) and validated in 42 unrelated HCC patients (validation cohort). CXCR4 levels were low in 22.1% of patients, intermediate in 30.2%, and high in 47.7%, whereas CXCR7 levels were low in 9.3% of patients, intermediate in 44.2% and high in 46.5% of the patients in the training cohort. When correlated to patient outcome, only CXCR4 affected overall survival (P=0.03). CXCR4–CXCL12–CXCR7 mRNA levels were examined in 33/86 patients. Interestingly, the common CXCR4–CXCR7 ligand CXCL12 was expressed at significantly lower levels in tumor tissues compared to adjacent normal liver (P=0.032). The expression and function of CXCR4 and CXCR7 was also analyzed in several human HCC cell lines. CXCR4 was expressed in Huh7, Hep3B, SNU398, SNU449 and SNU475 cells, whereas CXCR7 was expressed in HepG2, Huh7, SNU449 and SNU475 cells. Huh7, SNU449 and SNU475 cells migrated toward CXCL12, and this migration was inhibited by AMD3100/anti-CXCR4 and by CCX771/anti-CXCR7. Moreover, SNU449 and Huh7 cells exhibited matrix invasion in the presence of CXCL12 and CXCL11, a ligand exclusive to CXCR7. In conclusion, CXCR4 affects the prognosis of HCC patients but CXCR7 does not. Therefore, the CXCR4–CXCL12–CXCR7 axis plays a role in the interaction of HCC with the surrounding normal tissue and represents a suitable therapeutic target. PMID:25363530
Li, Siqi; Jiang, Huiyan; Pang, Wenbo
2017-05-01
Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bortel, Nicola; Armeanu-Ebinger, Sorin; Schmid, Evi; Kirchner, Bettina; Frank, Jan; Kocher, Alexa; Schiborr, Christina; Warmann, Steven; Fuchs, Jörg; Ellerkamp, Verena
2015-01-01
In children with hepatocellular carcinoma (pHCC) the 5-year overall survival rate is poor. Effects of cytostatic therapies such as cisplatin and doxorubicin are limited due to chemoresistance and tumor relapse. In adult HCC, several antitumor properties are described for the use of curcumin. Curcumin is one of the best-investigated phytochemicals in complementary oncology without relevant side effects. Its use is limited by low bioavailability. Little is known about the influence of curcumin on pediatric epithelial hepatic malignancies. We investigated the effects of curcumin in combination with cisplatin on two pediatric epithelial liver tumor cell lines. As mechanisms of action inhibition of NFkappaB, beta-catenin, and decrease of cyclin D were identified. Using a mouse xenograft model we could show a significant decrease of alpha-fetoprotein after combination therapy of oral micellar curcumin and cisplatin. Significant concentrations of curcuminoids were found in blood samples, organ lysates, and tumor tissue after oral micellar curcumin administration. Micellar curcumin in combination with cisplatin can be a promising strategy for treatment of pediatric HCC. PMID:26515460
Wu, Long; Peng, Chun-Wei; Hou, Jin-Xuan; Zhang, Yan-Hua; Chen, Chuang; Chen, Liang-Dong; Li, Yan
2010-02-24
To better search for potential markers for hepatocellular carcinoma (HCC) invasion and metastasis, proteomic approach was applied to identify potential metastasis biomarkers associated with HCC. Membrane proteins were extracted from MHCC97L and HCCLM9 cells, with a similar genetic background and remarkably different metastasis potential, and compared by SDS-PAGE and identified by ESI-MS/MS. The results were further validated by western blot analysis, immunohistochemistry (IHC) of tumor tissues from HCCLM9- and MHCC97L-nude mice, and clinical specimens. Membrane proteins were extracted from MHCC97L and HCCLM9 cell and compared by SDS-PAGE analyses. A total of 14 differentially expressed proteins were identified by ESI-MS/MS. Coronin-1C, a promising candidate, was found to be overexpressed in HCCLM9 cells as compared with MHCC97L cells, and validated by western blot and IHC from both nude mice tumor tissues and clinical specimens. Coronin-1C level showed an abrupt upsurge when pulmonary metastasis occurred. Increasing coronin-1C expression was found in liver cancer tissues of HCCLM9-nude mice with spontaneous pulmonary metastasis. IHC study on human HCC specimens revealed that more patients in the higher coronin-1C group had overt larger tumor and more advanced stage. Coronin-1C could be a candidate biomarker to predict HCC invasive behavior.
Tumor angiogenesis and its clinical significance in pediatric malignant liver tumor
Sun, Xiao-Yi; Wu, Zai-De; Liao, Xiao-Feng; Yuan, Ji-Yan
2005-01-01
AIM: To investigate the expression of vascular endothelial growth factor (VEGF) and microvascular density (MVD) count in pediatric malignant liver tumor and their clinical significances. METHODS: Fourteen children with malignant liver tumors including seven hepatocellular carcinomas (HCCs), five hepatoblastomas, one malignant mesenchymoma and one rhabdomyosarcoma were studied. Twelve adult HCC samples served as control group. All samples were examined with streptavidin-biotin peroxidase (SP) immunohistochemical staining for VEGF expression and MVD count. RESULTS: VEGF positive expression in all pediatric malignant liver tumors was significantly higher than that in adult HCC (0.4971±0.14 vs 0.4027±0.03, P<0.05). VEGF expression in pediatric HCC group was also markedly higher than that in adult HCC group (0.5665±0.10 vs 0.4027±0.03, P<0.01) and pediatric non-HCC group (0.5665±0.10 vs 0.4276±0.15, P<0.05). The mean value of MVD in pediatric malignant liver tumors was significantly higher than that in adult HCC (33.66±12.24 vs 26.52±4.38, P<0.05). Furthermore, MVD in pediatric HCC group was significantly higher compared to that in adult HCC group (36.94±9.28 vs 26.52±4.38, P<0.05), but there was no significant difference compared to the pediatric non-HCC group (36.94±9.28 vs 30.37±14.61, P>0.05). All 7 children in HCC group died within 2 years, whereas the prognosis in pediatric non-HCC group was better, in which two patients survived more than 5 years. CONCLUSION: Children with malignant liver tumors, especially with HCC, may have extensive angiogenesis that induces a rapid tumor growth and leads to a poor prognosis. PMID:15655835
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Guangwen; Yang, Jing; Zhao, Wenhao
Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3more » signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.« less
Pan, Long; Xiao, Heng; Liao, Rui; Chen, Qingsong; Peng, Chong; Zhang, Yuchi; Mu, Tong; Wu, Zhongjun
2018-06-25
Tumor angiogenesis is an essential process for facilitating tumor growth and metastasis. Fatty acid binding protein 5(FABP5)is highly expressed in hepatocellular carcinoma (HCC). Thus, we investigated the role of FABP5 in tumor angiogenesis during HCC development. In this study, the protein and mRNA levels of FABP5 in matched HCC and adjacent noncancerous liver tissues from 43 patients were determined using immunohistochemistry and real-time quantitative PCR, respectively. Two HCC cell lines (Huh7 and SMMC-7721) and human umbilical vein endothelial cells (HUVECS) were used to investigate the pro-angiogenic effect of FABP5 by tube formation, CCK8 and Transwell migration assays. The expression levels of interleukin 6 (IL6) and vascular endothelial growth factor A (VEGFA) secreted from HCC cells were detected by enzyme-linked immunosorbent assay (ELISA). In 43 HCC patients, the expression of FABP5 mRNA was positively correlated with intratumoral VEGFA mRNA expression. FABP5 mRNA expression was also associated with adverse HCC characteristics. In vitro, cell viability, cell migration and tube formation in HUVECs were enhanced with increasing expression of FABP5 in HCC cells. Downregulation of FABP5 expression inhibited the IL6/STAT3/VEGFA pathway in HCC cells and inhibited tumor angiogenesis. FABP5 was shown to promote angiogenesis and activate the IL6/STAT3/VEGFA pathway in HCC. FABP5 may be a potential antiangiogenic target in the treatment of HCC. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhipeng, E-mail: dr_zpwang@163.com; Yang, Huan; Ren, Lei
2015-09-04
MicroRNA-21 (miR-21) has been well-established and found to be over-expressed in various human cancers and has been associated with hepatocellular carcinoma (HCC) progression. However, the underlying mechanism of miR-21 involvement in the development and progression of HCC remains to be understood. In the present study, we firstly identified that the Navigator-3 (NAV-3) gene as a novel direct target of miR-21. Knock-down of NAV-3 using shRNA can rescue the effects of anti-miR-21 inhibitor in HCC cell lines, whereas re-expression of miR-21 using transfection with miR-21 mimics phenocopied the NAV-3 knock-down model. Additionally, miR-21 levels inversely correlated with NAV-3 both in HCCmore » cells and tissues. Knock-down of NAV-3 promoted both the proliferation and migration in HCC cells. Together, our findings suggest an important role for miR-21 in the progression of HCC, which negatively regulated Navigator-3 in the migration of HCC. - Highlights: • Navigator-3 (NAV-3) suppresses proliferation, migration and tumorigenesis of HCC cells. • NAV-3 was a novel target of miR-21. • MiR-21 negatively regulates NAV-3 in HCC.« less
Huang, Kuan-Wei; Lai, Yu-Tsung; Chern, Guann-Jen; Huang, Shao-Feng; Tsai, Chia-Lung; Sung, Yun-Chieh; Chiang, Cheng-Chin; Hwang, Pi-Bei; Ho, Ting-Lun; Huang, Rui-Lin; Shiue, Ting-Yun; Chen, Yunching; Wang, Sheng-Kai
2018-05-29
Successful siRNA therapy requires suitable delivery systems with targeting moieties such as small molecules, peptides, antibodies, or aptamers. Galactose (Gal) residues recognized by the asialoglycoprotein receptor (ASGPR) can serve as potent targeting moieties for hepatocellular carcinoma (HCC) cells. However, efficient targeting to HCC via galactose moieties rather than normal liver tissues in HCC patients remains a challenge. To achieve more efficient siRNA delivery in HCC, we synthesized various galactoside derivatives and investigated the siRNA delivery capability of nanoparticles modified with those galactoside derivatives. In this study, we assembled lipid/calcium/phosphate nanoparticles (LCP NPs) conjugated with eight types of galactoside derivatives and demonstrated that phenyl β-d-galactoside-decorated LCP NPs (L4-LCP NPs) exhibited a superior siRNA delivery into HCC cells compared to normal hepatocytes. VEGF siRNAs delivered by L4-LCP NPs downregulated VEGF expression in HCC in vitro and in vivo and led to a potent antiangiogenic effect in the tumor microenvironment of a murine orthotopic HCC model. The efficient delivery of VEGF siRNA by L4-LCP NPs that resulted in significant tumor regression indicates that phenyl galactoside could be a promising HCC-targeting ligand for therapeutic siRNA delivery to treat liver cancer.
Heparanase mRNA expression and point mutation in hepatocellular carcinoma
Chen, Xiao-Peng; Liu, Yin-Bib; Rui, Jing; Peng, Shu-You; Peng, Cheng-Hong; Zhou, Zi-Yan; Shi, Liang-Hui; Shen, Hong-Wei; Xu, Bin
2004-01-01
AIM: To explore the expression of heparanase mRNA and point mutation in hepatocellular carcinoma (HCC). METHODS: Reverse transcription polymerase chain reaction was used to measure the expression of heparanase mRNA in the primary tumor tissues and surrounding liver tissues of 33 HCC patients. T-A cloning and sequencing were used to detect whether there was any mutation in the amplified PCR products. RESULTS: The expression of heparanase mRNA was positive in 16 primary tumor tissues of HCC, and the positive rate was 48.5%, which was significantly higher than that in the surrounding liver parenchyma (P < 0.01). The positive rate for heparanase gene in high-tendency to metastatic recurrence group (71.4%, 10/14) was obviously higher than that in low-tendency to metastatic recurrence group (31.6%, 6/19) (P = 0.023). The positive rate for heparanase gene in patients with metastatic recurrence during postoperative follow-up (78.6%, 11/14) was also significantly higher than that in those without metastatic recurrence (21.4%, 3/14) (P = 0.003). Sequence analysis of the HPA PCR products was made in 7 patients, and 2-point mutations were found in 4 patients, one of which was sense mutation, neither base insertion nor deletion was detected. The mutation rate was 57.1% (4/7). CONCLUSION: The expression rate of heparanase mRNA increases in HCC, and HPA mRNA may be one of the reliable markers for the metastatic activity gained by the liver tumor cells and could be used clinically in predicting metastatic recurrence of HCC. Point mutation may be one of the causes for enhanced heparanase mRNA expression. PMID:15334672
Sorafenib Action in Hepatitis B Virus X-Activated Oncogenic Androgen Pathway in Liver through SHP-1.
Wang, Sheng-Han; Yeh, Shiou-Hwei; Shiau, Chung-Wai; Chen, Kuen-Feng; Lin, Wei-Hsiang; Tsai, Ting-Fen; Teng, Yuan-Chi; Chen, Ding-Shinn; Chen, Pei-Jer
2015-10-01
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) shows a higher incidence in men, mainly because of hepatitis B X (HBx)-mediated enhancement of androgen receptor (AR) activity. We aimed to examine this pathway in hepatocarcinogenesis and to identify drug(s) specifically blocking this carcinogenic event in the liver. HBx transgenic mice that spontaneously develop HCC (n = 28-34 per group) were used, either by knockout of hepatic AR or by castration. Efficacy of several HCC-targeted drugs in suppressing HBx-induced AR activity was evaluated, and cellular factors mediating suppression were investigated in cultured cells. Tissue specificity of the candidate drug was validated using mouse tissues. Data were analyzed with Chi-square and Student's t tests. All statistical tests were two-sided. The androgen pathway was shown to be important in early stage hepatocarcinogenesis of HBx transgenic mice. The tumor incidence was decreased from 80% to 32% by AR knockout (P < .001) and from 90% to 25% by early castration (P < .001). Sorafenib markedly inhibited the HBx-enhanced AR activity through activating the SHP-1 phosphatase, which antagonized the activation of Akt/GSK3β and c-Src by HBx. Moreover, SHP-1 protein level was much higher in the liver than in testis, which enabled sorafenib to inhibit aberrant AR activity in the HBx-expressing liver, while not affecting the physiological AR function in normal liver or testis. The androgen pathway may be a druggable target for the chemoprevention of HBV-related HCC, and sorafenib might be used as a tissue- and disease-specific regimen for the chemoprevention of HBV-related HCC. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
BLZF1 expression is of prognostic significance in hepatocellular carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Run-Yue, E-mail: ry_huang@hotmail.com; Su, Shu-Guang; Wu, Dan-Chun
2015-11-20
BLZF1, a member of b-ZIP family, has been implicated in epigenetic regulation and Wnt/β-catenin signaling. Its expression and clinical significance in human cancers remain largely unknown. In this study, we showed that BLZF1 expression was reduced in hepatocellular carcinoma (HCC) tissues, compared to the paracarcinoma tissues, at both mRNA and protein levels. Results of immunohistochemistry revealed that BLZF1 was presented in both nuclear and cytoplasm. Decreased expression of nuclear and cytosolic BLZF1 in HCC was depicted in 68.2% and 79.2% of the 634 cases. Nuclear BLZF1 expression was significantly associated with tumor multiplicity (P = 0.048) and tumor capsule (P = 0.028), while cytosolicmore » BLZF1 expression was correlated with serum AFP level (P = 0.017), tumor differentiation (P = 0.001) and tumor capsule (P = 0.003). Kaplan–Meier analysis indicated both nuclear and cytosolic BLZF1 expression was associated with poor overall survival. Low nuclear BLZF1 also indicated unfavorable disease-free survival and high tendency of tumor recurrence. Furthermore, multiple Cox regression analysis revealed nuclear BLZF1 as an independent factor for overall survival (Hazard Ratio (HR) = 0.827, 95% confident interval (95%CI): 0.697–0.980, P = 0.029). The prognostic value of BLZF1 was further confirmed by stratified analyses. Collectively, our data suggest BLZF1 is a novel unfavorable biomarker for prognosis of patients with HCC. - Highlights: • BLZF1 expression was much lower in HCC tissues. • Low BLZF1 expression was associated with poor outcomes in a cohort of 634 HCC patients. • Multiple Cox regression analysis indicated nuclear BLZF1 as an independent predictor for overall survival.« less
Wen, Dong-Yue; Lin, Peng; Pang, Yu-Yan; Chen, Gang; He, Yun; Dang, Yi-Wu; Yang, Hong
2018-05-05
BACKGROUND Long non-coding RNAs (lncRNAs) have a role in physiological and pathological processes, including cancer. The aim of this study was to investigate the expression of the long intergenic non-protein coding RNA 665 (LINC00665) gene and the cell cycle in hepatocellular carcinoma (HCC) using database analysis including The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and quantitative real-time polymerase chain reaction (qPCR). MATERIAL AND METHODS Expression levels of LINC00665 were compared between human tissue samples of HCC and adjacent normal liver, clinicopathological correlations were made using TCGA and the GEO, and qPCR was performed to validate the findings. Other public databases were searched for other genes associated with LINC00665 expression, including The Atlas of Noncoding RNAs in Cancer (TANRIC), the Multi Experiment Matrix (MEM), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) networks. RESULTS Overexpression of LINC00665 in patients with HCC was significantly associated with gender, tumor grade, stage, and tumor cell type. Overexpression of LINC00665 in patients with HCC was significantly associated with overall survival (OS) (HR=1.47795%; CI: 1.046-2.086). Bioinformatics analysis identified 469 related genes and further analysis supported a hypothesis that LINC00665 regulates pathways in the cell cycle to facilitate the development and progression of HCC through ten identified core genes: CDK1, BUB1B, BUB1, PLK1, CCNB2, CCNB1, CDC20, ESPL1, MAD2L1, and CCNA2. CONCLUSIONS Overexpression of the lncRNA, LINC00665 may be involved in the regulation of cell cycle pathways in HCC through ten identified hub genes.
Pott, Leona L; Hagemann, Sascha; Reis, Henning; Lorenz, Kristina; Bracht, Thilo; Herold, Thomas; Skryabin, Boris V; Megger, Dominik A; Kälsch, Julia; Weber, Frank; Sitek, Barbara; Baba, Hideo A
2017-01-01
Hepatocellular carcinoma is a cancer with increasing incidence and largely refractory to current anticancer drugs. Since Sorafenib, a multikinase inhibitor has shown modest efficacy in advanced hepatocellular carcinoma additional treatments are highly needed. Protein phosphorylation via kinases is an important post-translational modification to regulate cell homeostasis including proliferation and apoptosis. Therefore kinases are valuable targets in cancer therapy. To this end we performed 2D differential gel electrophoresis and mass spectrometry analysis of phosphoprotein-enriched lysates of tumor and corresponding non-tumorous liver samples to detect differentially abundant phosphoproteins to screen for novel kinases as potential drug targets. We identified 34 differentially abundant proteins in phosphoprotein enriched lysates. Expression and distribution of the candidate protein eEF2 and its phosphorylated isoform was validated immunohistochemically on 78 hepatocellular carcinoma and non-tumorous tissue samples. Validation showed that total eEF2 and phosphorylated eEF2 at threonine 56 are prognostic markers for overall survival of HCC-patients. The activity of the regulating eEF2 kinase, compared between tumor and non-tumorous tissue lysates by in vitro kinase assays, is more than four times higher in tumor tissues. Functional analyzes regarding eEF2 kinase were performed in JHH5 cells with CRISPR/Cas9 mediated eEF2 kinase knock out. Proliferation and growth is decreased in eEF2 kinase knock out cells. Conclusion eEF2 and phosphorylated eEF2 are prognostic markers for survival of hepatocellular carcinoma patients and the regulating eEF2 kinase is a potential drug target for tumor therapy. PMID:28060762
Pott, Leona L; Hagemann, Sascha; Reis, Henning; Lorenz, Kristina; Bracht, Thilo; Herold, Thomas; Skryabin, Boris V; Megger, Dominik A; Kälsch, Julia; Weber, Frank; Sitek, Barbara; Baba, Hideo A
2017-02-14
Hepatocellular carcinoma is a cancer with increasing incidence and largely refractory to current anticancer drugs. Since Sorafenib, a multikinase inhibitor has shown modest efficacy in advanced hepatocellular carcinoma additional treatments are highly needed. Protein phosphorylation via kinases is an important post-translational modification to regulate cell homeostasis including proliferation and apoptosis. Therefore kinases are valuable targets in cancer therapy. To this end we performed 2D differential gel electrophoresis and mass spectrometry analysis of phosphoprotein-enriched lysates of tumor and corresponding non-tumorous liver samples to detect differentially abundant phosphoproteins to screen for novel kinases as potential drug targets. We identified 34 differentially abundant proteins in phosphoprotein enriched lysates. Expression and distribution of the candidate protein eEF2 and its phosphorylated isoform was validated immunohistochemically on 78 hepatocellular carcinoma and non-tumorous tissue samples. Validation showed that total eEF2 and phosphorylated eEF2 at threonine 56 are prognostic markers for overall survival of HCC-patients. The activity of the regulating eEF2 kinase, compared between tumor and non-tumorous tissue lysates by in vitro kinase assays, is more than four times higher in tumor tissues. Functional analyzes regarding eEF2 kinase were performed in JHH5 cells with CRISPR/Cas9 mediated eEF2 kinase knock out. Proliferation and growth is decreased in eEF2 kinase knock out cells. eEF2 and phosphorylated eEF2 are prognostic markers for survival of hepatocellular carcinoma patients and the regulating eEF2 kinase is a potential drug target for tumor therapy.
Xiang, Xue-Lian; Yang, Xia; Liang, Hai-Wei; Qiu, Xiao-Hui; Yang, Li-Hua; Peng, Zhi-Gang; Chen, Gang
2018-01-01
Mounting evidence has shown that miR-23b-3p, which is associated with cell proliferation, invasion, and apoptosis, acts as a biomarker for diagnosis and outcomes in numerous cancers. However, the clinicopathological implication of miR-23b-3p in hepatocellular carcinoma (HCC) remains unclear. Our study evaluated the role of miR-23b-3p in HCC and investigated its potential application as a marker for preliminary diagnosis and therapy in HCC. High-throughput data from the NCBI Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were collected and analyzed. One hundred and one tissue sections of HCC were paired with adjacent non-cancerous HCC as further supplements. miR-23b-3p expression was detected using quantitative real-time PCR. Additionally, the relationship between miR-23b-3p expression and HCC progression and Time-to-recurrence (months) was explored. Ten algorithms were applied to predict the prospective target genes of miR-23b-3p. Next, we conducted bioinformatics analysis for further study. miR-23b-3p expression was pronouncedly decreased in HCC tissues in contrast with their paired adjacent non-cancerous HCC (P<0.001) with RT-qPCR. In total, 405 targets, acquired with consistent prediction from at least five databases, were used for the bioinformatics analysis. According to the Gene Ontology (GO) analysis, all targets were classified into biological processes, cellular components and molecular functions. In the pathway analysis, targets of miR-23b-3p were primarily enriched in the signaling pathways of renal cell carcinoma, hepatitis B and pancreatic cancer (corrected P-value <0.05). In the protein-protein interaction (PPI) network for miR-23b-3p, a total of 8 targets, including SRC, AKT1, EGFR, CTNNB1, BCL2, SMAD3, PTEN and KDM6A, were located in the key nodes with high degree (>35). In conclusion, this study provides impressive illumination of the potential role of miR-23b-3p in HCC tumorigenesis and progression. Furthermore, miR-23b-3p may act as a predictor of HCC and could be a new treatment target. PMID:29484429
Mishra, Alita; Otgonsuren, Munkhzul; Venkatesan, Chapy; Afendy, Mariam; Erario, Madeline; Younossi, Zobair M
2013-09-01
Hepatocellular carcinoma (HCC) is an important complication of cirrhosis. Our aim was to assess the inpatient economic and mortality of HCC in the USA METHODS: Five cycles of Nationwide Inpatient Sample (NIS) conducted from 2005 to 2009 were used. Demographics, inpatient mortality, severity of illness, payer type, length of stay (LoS) and charges were available. Changes and associated factors related to inpatient HCC were assessed using simple linear regression. Odds ratios and 95% CIs for hospital mortality were analysed using log-linked regression model. To estimate the sampling variances for complex survey data, we used Taylor series approach. SAS(®) v.9.3 was used for statistical analysis. From 2005 to 2009, 32,697,993 inpatient cases were reported to NIS. During these 5 years, primary diagnosis of HCC increased from 4401 (2005), 4170 (2006), 5065 (2007), 6540 (2008) to 6364 (2009). HCC as any diagnosis increased from 68 per 100,000 discharges (2005) to 99 per 100,000 (2009). However, inpatient mortality associated with HCC decreased from 12% (2005) to 10% (2009) (P < 0.046) and LoS remained stable. However, median inflation-adjusted charges at the time of discharge increased from $29,466 per case (2005) to $31,656 per case (2009). Total national HCC charges rose from $1.0 billion (2005) to $2.0 billion (2009). In multivariate analysis, hospital characteristic was independently associated with decreasing in-hospital mortality (all P < 0.05). Liver transplantation for HCC was the main contributor to high inpatient charges. Longer LoS and other procedures also contributed to higher inpatient charges. There is an increase in the number of inpatient cases of HCC. Although inpatient mortality is decreasing and the LoS is stable, the inpatient charges associated with HCC continue to increase. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wang, Who-Whong; Ang, Soo Fan; Kumar, Rajneesh; Heah, Charmain; Utama, Andi; Tania, Navessa Padma; Li, Huihua; Tan, Sze Huey; Poo, Desmond; Choo, Su Pin; Chow, Wan Cheng; Tan, Chee Kiat; Toh, Han Chong
2013-01-01
Early diagnosis of hepatocellullar carcinoma (HCC) remains a challenge. The current practice of serum alpha-fetoprotein (AFP) measurement is inadequate. Here we utilized a proteomic approach to identify novel serum biomarkers for distinguishing HCC patients from non-cancer controls. We profiled the serum proteins in a group of 58 resectable HCC patients and 11 non-HCC chronic hepatitis B (HBV) carrier samples from the Singapore General Hospital (SGH) using the RayBio® L-Series 507 Antibody Array and found 113 serum markers that were significantly modulated between HCC and control groups. Selected potential biomarkers from this list were quantified using a multiplex sandwich enzyme-linked immunosorbent assay (ELISA) array in an expanded SGH cohort (126 resectable HCC patients and 115 non-HCC chronic HBV carriers (NC group)), confirming that serum prolactin and monocyte chemoattractant protein-1 (MCP-1) were significantly upregulated in HCC patients. This finding of serum MCP-1 elevation in HCC patients was validated in a separate cohort of serum samples from the Mochtar Riady Institute for Nanotechnology, Indonesia (98 resectable HCC, 101 chronic hepatitis B patients and 100 asymptomatic HBV/HCV carriers) by sandwich ELISA. MCP-1 and prolactin levels were found to correlate with AFP, while MCP-1 also correlated with disease stage. Subsequent receiver operating characteristic (ROC) analysis of AFP, prolactin and MCP-1 in the SGH cohort and comparing their area under the ROC curve (AUC) indicated that neither prolactin nor MCP-1 on their own performed better than AFP. However, the combination of AFP+MCP-1 (AUC, 0.974) had significantly superior discriminative ability than AFP alone (AUC, 0.942; p<0.001). In conclusion, prolactin and MCP-1 are overexpressed in HCC and are conveniently quantifiable in patients' sera by ELISA. MCP-1 appears to be a promising complementary biomarker for HCC diagnosis and this MCP-1+AFP model should be further evaluated as potential biomarker on a larger scale in patients at-risk of HCC.
Kumar, Rajneesh; Heah, Charmain; Utama, Andi; Tania, Navessa Padma; Li, Huihua; Tan, Sze Huey; Poo, Desmond; Choo, Su Pin; Chow, Wan Cheng; Tan, Chee Kiat; Toh, Han Chong
2013-01-01
Early diagnosis of hepatocellullar carcinoma (HCC) remains a challenge. The current practice of serum alpha-fetoprotein (AFP) measurement is inadequate. Here we utilized a proteomic approach to identify novel serum biomarkers for distinguishing HCC patients from non-cancer controls. We profiled the serum proteins in a group of 58 resectable HCC patients and 11 non-HCC chronic hepatitis B (HBV) carrier samples from the Singapore General Hospital (SGH) using the RayBio® L-Series 507 Antibody Array and found 113 serum markers that were significantly modulated between HCC and control groups. Selected potential biomarkers from this list were quantified using a multiplex sandwich enzyme-linked immunosorbent assay (ELISA) array in an expanded SGH cohort (126 resectable HCC patients and 115 non-HCC chronic HBV carriers (NC group)), confirming that serum prolactin and monocyte chemoattractant protein-1 (MCP-1) were significantly upregulated in HCC patients. This finding of serum MCP-1 elevation in HCC patients was validated in a separate cohort of serum samples from the Mochtar Riady Institute for Nanotechnology, Indonesia (98 resectable HCC, 101 chronic hepatitis B patients and 100 asymptomatic HBV/HCV carriers) by sandwich ELISA. MCP-1 and prolactin levels were found to correlate with AFP, while MCP-1 also correlated with disease stage. Subsequent receiver operating characteristic (ROC) analysis of AFP, prolactin and MCP-1 in the SGH cohort and comparing their area under the ROC curve (AUC) indicated that neither prolactin nor MCP-1 on their own performed better than AFP. However, the combination of AFP+MCP-1 (AUC, 0.974) had significantly superior discriminative ability than AFP alone (AUC, 0.942; p<0.001). In conclusion, prolactin and MCP-1 are overexpressed in HCC and are conveniently quantifiable in patients’ sera by ELISA. MCP-1 appears to be a promising complementary biomarker for HCC diagnosis and this MCP-1+AFP model should be further evaluated as potential biomarker on a larger scale in patients at-risk of HCC. PMID:23874805
YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression.
Fitamant, Julien; Kottakis, Filippos; Benhamouche, Samira; Tian, Helen S; Chuvin, Nicolas; Parachoniak, Christine A; Nagle, Julia M; Perera, Rushika M; Lapouge, Marjorie; Deshpande, Vikram; Zhu, Andrew X; Lai, Albert; Min, Bosun; Hoshida, Yujin; Avruch, Joseph; Sia, Daniela; Campreciós, Genís; McClatchey, Andrea I; Llovet, Josep M; Morrissey, David; Raj, Lakshmi; Bardeesy, Nabeel
2015-03-10
Defective Hippo/YAP signaling in the liver results in tissue overgrowth and development of hepatocellular carcinoma (HCC). Here, we uncover mechanisms of YAP-mediated hepatocyte reprogramming and HCC pathogenesis. YAP functions as a rheostat in maintaining metabolic specialization, differentiation, and quiescence within the hepatocyte compartment. Increased or decreased YAP activity reprograms subsets of hepatocytes to different fates associated with deregulation of the HNF4A, CTNNB1, and E2F transcriptional programs that control hepatocyte quiescence and differentiation. Importantly, treatment with small interfering RNA-lipid nanoparticles (siRNA-LNPs) targeting YAP restores hepatocyte differentiation and causes pronounced tumor regression in a genetically engineered mouse HCC model. Furthermore, YAP targets are enriched in an aggressive human HCC subtype characterized by a proliferative signature and absence of CTNNB1 mutations. Thus, our work reveals Hippo signaling as a key regulator of the positional identity of hepatocytes, supports targeting of YAP using siRNA-LNPs as a paradigm of differentiation-based therapy, and identifies an HCC subtype that is potentially responsive to this approach. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Li, Shaohua; Li, Hui; Yang, Xiqin; Wang, Wei; Huang, Aixue; Li, Jie; Qin, Xingliang; Li, Fei; Lu, Guanyi; Ding, Hongmei; Su, Xueting; Hou, Lvbin; Xia, Wei; Shi, Ming; Zhang, Hongwen; Zhao, Qiang; Dong, Jie; Ge, Xingfeng; Sun, Leqiao; Bai, Chenjun; Wang, Chaonan; Shen, Xuelian; Fang, Tao; Wang, Fusheng; Zhang, Heqiu; Shao, Ningsheng
2015-04-30
We report a new biomarker of hepatocarcinoma, vasorin (VASN), screened by a subtractive EMSA-SELEX strategy from AFP negative serum of hepatocellular carcinoma (HCC) patients with extrahepatic metastases. VASN was verified to be highly expressed in sera of 100 cases of HCC patients compared with 97 cases of normal persons and 129 cases of hepatitis patients. Further validation by Q-PCR,IFA and Western blot showed higher expression of VASN at mRNA and protein levels in HCC cell lines and HCC tissues than in normal controls. RNA interference and forced overexpression assays verified that VASN promotes cell proliferation and migration and inhibits apoptosis. Down-regulation of microRNA miR145 and miR146a is an important mechanism leading to high expression of VASN. As a membrane protein and/or as free protein, VASN may be an effective target for biological treatment of liver cancer and is a potential biomarker for HCC diagnosis. Small molecular nucleotides targeting VASN are promising biological therapies to HCC.
Wang, Wei; Huang, Aixue; Li, Jie; Qin, Xingliang; Li, Fei; Lu, Guanyi; Ding, Hongmei; Su, Xueting; Hou, Lvbin; Xia, Wei; Shi, Ming; Zhang, Hongwen; Zhao, Qiang; Dong, Jie; Ge, Xingfeng; Sun, Leqiao; Bai, Chenjun; Wang, Chaonan; Shen, Xuelian; Fang, Tao; Wang, Fusheng; Zhang, Heqiu; Shao, Ningsheng
2015-01-01
We report a new biomarker of hepatocarcinoma, vasorin (VASN), screened by a subtractive EMSA-SELEX strategy from AFP negative serum of hepatocellular carcinoma (HCC) patients with extrahepatic metastases. VASN was verified to be highly expressed in sera of 100 cases of HCC patients compared with 97 cases of normal persons and 129 cases of hepatitis patients. Further validation by Q-PCR, IFA and Western blot showed higher expression of VASN at mRNA and protein levels in HCC cell lines and HCC tissues than in normal controls. RNA interference and forced overexpression assays verified that VASN promotes cell proliferation and migration and inhibits apoptosis. Down-regulation of microRNA miR145 and miR146a is an important mechanism leading to high expression of VASN. Conclusion: As a membrane protein and/or as free protein, VASN may be an effective target for biological treatment of liver cancer and is a potential biomarker for HCC diagnosis. Small molecular nucleotides targeting VASN are promising biological therapies to HCC. PMID:25826090
Bösmüller, Hans; Pfefferle, Vanessa; Bittar, Zeid; Scheble, Veit; Horger, Marius; Sipos, Bence; Fend, Falko
2018-06-19
Microvessel density is an indicator of tumor-driven neoangiogenesis. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) have distinct vascular patterns, which are also reflected in their imaging characteristics. Since a significant proportion of HCC are treated without biopsy confirmation, it is essential to discriminate HCC and ICC radiologically. The aim of our study was therefore to compare microvessel density and expression of VEGFR-2 in HCC and ICC, since these data may ultimately help us to better understand their imaging characteristics. Whereas CD31 documents vessel density, VEGFR-2 expression is an indicator of tumor-related neoangiogenesis. CD31 and VEGFR-2 expressing microvessels were quantified on tissue microarrays of 95 resection specimens of HCC and 47 cases of ICC. Microvessel density was evaluated by counting immuno-reactive vascular structures both within the tumor and adjacent liver control tissue, respectively. Further 16 cases of ICC were immunostained for CD31 and VEGFR-2 on full sections. The frequency of VEGFR-2 (46.2/HPF; range 0-150) and CD31 (61.2/HPF; range 2.6-140) expressing vascular structures was significantly increased in HCC compared to adjacent liver parenchyma (VEGFR-2 33.3/HPF, range 0-87, CD31 21.4/HPF, range 0-78, both p < 0,001). ICC revealed significantly less VEGFR2-positive microvessels (15.4/HPF; range 2-77) compared to matched control tissue (42.3/HPF; range 4.6-109), whereas microvessel density with CD31 was comparable between ICC and adjacent liver (32.1/HPF; range 5.3-78 versus 28.0/HPF; range 5.3-57; p = 0.89). In ICC, the tumor-to-normal microvessel density ratio was 0.38 for VEGFR-2 and 1.24 for CD31. These ratios were nearly identical (VEGFR: 0.38; CD31: 0,97) for the 16 cases of ICC studied on whole sections, confirming the validity of the TMA approach. In contrast, ratios of VEGFR-2 and CD31 in HCC vs. adjacent liver were significantly higher (VEGFR: 2.23; CD31: 6.57). Expression of VEGFR-2 by tumor cells was not observed in any of the cases. HCC and ICC differ significantly in their microvessel density, confirming the hypovascular nature of ICC as compared to the hypervascularity of HCC. Of note, inverse tumor-to-normal ratios of microvascular VEGFR-2 expression between the two neoplasms indicate distinct features of neoangiogenesis. Whether these differences can be exploited for improvements in imaging of hepatic tumors and may play a role for anti-angiogenic treatment strategies requires further studies. Copyright © 2018 Elsevier GmbH. All rights reserved.
Lorente, Leonardo; Rodriguez, Sergio T.; Sanz, Pablo; Abreu-González, Pedro; Díaz, Dácil; Moreno, Antonia M.; Borja, Elisa; Martín, María M.; Jiménez, Alejandro; Barrera, Manuel A.
2016-01-01
Previous studies have found higher levels of serum malondialdehyde (MDA) in hepatocellular carcinoma (HCC) patients compared to healthy controls and higher MDA concentrations in tumoral tissue of HCC patients than in non-tumoral tissue. However, the association between pre-transplant serum levels of MDA and survival in HCC patients after liver transplantation (LT) has not been described, and the aim of the present study was to determine whether such an association exists. In this observational study we measured serum MDA levels in 127 patients before LT. We found higher pre-LT serum MDA levels in 15 non-surviving than in 112 surviving patients one year after LT (p = 0.02). Exact binary logistic regression analysis revealed that pre-LT serum levels of MDA over 3.37 nmol/mL were associated with mortality after one year of LT (Odds ratio = 5.38; 95% confidence interval (CI) = from 1.580 to infinite; p = 0.007) adjusting for age of the deceased donor. The main finding of our study was that there is an association between serum MDA levels before LT for HCC and 1-year survival after LT. PMID:27058525
Song, Yeonhwa; Kim, Jin-Sun; Choi, Eun Kyung; Kim, Joon; Kim, Kang Mo; Seo, Haeng Ran
2017-03-28
Hepatocellular carcinoma (HCC) is resistant to conventional chemotherapeutic agents and remains an unmet medical need. Here, we demonstrate a mechanism of cell adhesion-mediated drug resistance using a variety of HCC spheroid models to overcome environment-mediated drug resistance in HCC. We classified spheroids into two groups, tightly compacted and loosely compacted aggregates, based on investigation of dynamics of spheroid formation. Our results show that compactness of HCC spheroids correlated with fibroblast-like characteristics, collagen 1A1 (COL1A1) content, and capacity for chemoresistance. We also showed that ablation of COL1A1 attenuated not only the capacity for compact-spheroid formation, but also chemoresistance. Generally, connective tissue growth factor (CTGF) acts downstream of transforming growth factor (TGF)-β and promotes collagen I fiber deposition in the tumor microenvironment. Importantly, we found that TGF-β-independent CTGF is upregulated and regulates cell adhesion-mediated drug resistance by inducing COL1A1 in tightly compacted HCC spheroids. Furthermore, losartan, which inhibits collagen I synthesis, impaired the compactness of spheroids via disruption of cell-cell contacts and increased the efficacy of anticancer therapeutics in HCC cell line- and HCC patient-derived tumor spheroids. These results strongly suggest functional roles for CTGF-induced collagen I expression in formation of compact spheroids and in evading anticancer therapies in HCC, and suggest that losartan, administered in combination with conventional chemotherapy, might be an effective treatment for liver cancer.
Zhao, Qi; Li, Tao; Qi, Jianni; Liu, Juan; Qin, Chengyong
2014-01-01
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a poor prognosis, and monitoring sera levels of miR-545/374a may be a useful diagnostic marker for HCC.
Chen, Jian; Liu, Jie; Luo, Zhongguang; Jiang, Weiru; Huang, Jianping; Qiu, Zhibing; Yue, Wenjie; Wu, Lijun
2017-01-01
Let-7a miRNA is downregulated in various cancers. However, in hepatocellular carcinoma (HCC) patients infected with hepatitis B virus (HBV), the relationship between let-7a and HBV replication has not been fully elucidated. Liver specimens were collected from 23 HCC patients with chronically active HBV. The serum levels of the HBV antigens hepatitis B surface antigen (HBsAg) and hepatitis B virus e antigen (HBeAg), and the HBV antibodies, anti-HBs, anti-HBe and anti-hepatitis B core antigen (anti-HBc) were measured using the microparticle enzyme immunoassay. Let-7a levels and HBV DNA copy numbers were measured by quantitative real-time PCR (qRT-PCR) and analyzed statistically. A let-7a specific antisense oligonucleotide was introduced to the HBV-producing cell line HepG2.2.15 and a change in HBV DNA copy numbers was assessed by qRT-PCR. HCC patients with highly active HBV replication (>106 DNA copies/mL) showed higher levels of serum HBsAg and anti-HBc than patients with less active HBV replication (<103 DNA copies/mL). The level of let-7a was lower in malignant tissues than in adjacent normal tissues. However, patients with highly active HBV replication demonstrated a significantly higher level of let-7a in hepatocarcinoma tissue than patients with less active HBV replication (P < 0.05). A higher level of let-7a was observed in the HBV-producing cell line HepG2.2.15 than in HepG2 cells (P < 0.05), and let-7a down-regulation by antisense oligonucleotides led to a reduction in HBV DNA copy numbers (P < 0.05), indicating a correlation between the let-7a level and HBV replication. Down-regulation of let-7a reduces HBV replication and could prevent the development of HCC, suggesting it could be an effective therapeutic treatment for HBV infection. Impact statement Although interferon and nucleic acid analogues effectively suppress HBV replication in HBV patients, there is no treatment which eradicates the virus. Moreover, the therapeutic effect can be reduced by virus mutations or drug resistance. Let-7a is a miRNA initially found in the nematode as a master regulator of developmental processes, but also exists in humans. It has been reported that the transcription of let-7a was much lower in HCC than in normal liver tissues and specific miRNA could directly promote virus replication. Therefore we hypothesized that transcription of let-7a promotes HBV replication, which might compromise the therapeutic effects of antivirus treatments. In our present study, we demonstrated a correlation between let-7a transcription and HBV replication in surgical specimens obtained from patients with HCC, as well as in HCC cell lines. Our finding might be the base for a new approach to improve HBV infection treatments in the future. PMID:28440732
Chen, Jian; Chen, Shuai; Wang, Jiahui; Zhang, Mingjun; Gong, Zhaohua; Wei, Youheng; Li, Li; Zhang, Yuanyuan; Zhao, Xuemei; Jiang, Songmin; Yu, Long
2015-01-01
Cyclophilin J (CYPJ) is a new member of the peptidyl-prolyl cis/trans-isomerase (PPIase) identified with upregulated expression in human glioma. However, the biological function of CYPJ remained unclear. We aimed to study the role of CYPJ in hepatocellular carcinoma (HCC) carcinogenesis and its therapeutic potential. We determined the expression of CYPJ in HCC/adjacent normal tissues using Western blot, Northern blot and semi-quantitative RT-PCR, analyzed the biochemical characteristics of CYPJ, and resolved the 3D-structure of CYPJ/Cyclosporin A (CsA) complex. We also studied the roles of CYPJ in cell cycle, cyclin D1 regulation, in vitro and in vivo tumor growth. We found that CYPJ expression was upregulated in over 60% HCC tissues. The PPIase activity of CYPJ could be inhibited by the widely used immunosuppressive drug CsA. CYPJ was found expressed in the whole cell of HCC with preferential location at the cell nucleus. CYPJ promoted the transition of cells from G1 phase to S phase in a PPIase-dependent manner by activating cyclin D1 promoter. CYPJ overexpression accelerated liver cell growth in vitro (cell growth assay, colony formation) and in vivo (xenograft tumor formation). Inhibition of CYPJ by its inhibitor CsA or CYPJ-specific RNAi diminished the growth of liver cancer cells in vitro and in vivo. In conclusion, CYPJ could facilitate HCC growth by promoting cell cycle transition from G1 to S phase through the upregulation of cyclin D1. Suppression of CYPJ could repress the growth of HCC, which makes CYPJ a potential target for the development of new strategies to treat this malignancy. PMID:26020957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuqin; Zheng, Lin; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province
2015-08-01
Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Aktmore » pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.« less
Robich, Michael P.; Osipov, Robert M.; Nezafat, Reza; Feng, Jun; Clements, Richard T.; Bianchi, Cesario; Boodhwani, Munir; Coady, Michael A.; Laham, Roger J.; Sellke, Frank W.
2010-01-01
Introduction Resveratrol may provide protection against coronary artery disease. We hypothesized that supplemental resveratrol will improve cardiac perfusion in the ischemic territory of swine with hypercholesterolemia and chronic myocardial ischemia. Methods and Results Yorkshire swine were fed either a normal diet (control, n=7), a hypercholesterolemic diet (HCC, n=7), or a hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/day orally, HCRV, n=7). Four weeks later, an ameroid constrictor was placed on the left circumflex artery. Animals underwent cardiac magnetic resonance imaging and coronary angiography 7 weeks later, prior to sacrifice and tissue harvest. Total cholesterol was lowered about 30% in HCRV animals (p<0.001). Regional wall motion analysis demonstrated a significant decrease in inferolateral function from baseline to 7 weeks in HCC swine (p=0.04). There was no significant change in regional function in HCRV swine from baseline to 7 weeks (p=0.32). Tissue blood flow during stress was 2.8 fold greater in HCRV swine when compared to HCC swine (p=0.04). Endothelial dependent microvascular relaxation response to Substance P was diminished in HCC swine which was rescued by resveratrol treatment (p=0.004). Capillary density (PECAM-1 staining) demonstrated fewer capillaries in both HCC and HCRV swine v. control swine (p=0.02). Immunoblot analysis demonstrated significantly greater expression in HCRV v. HCC swine of the following markers of angiogenesis: VEGF (p=0.002), peNOS(ser1177)(p=0.04), NFkB (p=0.004), and pAkt(thr308)(p=0.001). Conclusion Supplemental resveratrol attenuates regional wall motion abnormalities, improves myocardial perfusion in the collateral dependent region, preserves endothelial dependent coronary vessel function, and upregulates markers of angiogenesis associated with the VEGF signaling pathway. PMID:20837905
Wu, Bo; Zhou, Yang; Wang, Yu; Yang, Xiang-Min; Liu, Zhen-Yu; Li, Jiang-Hua; Feng, Fei; Chen, Zhi-Nan; Jiang, Jian-Li
2016-01-01
Hepatocellular carcinoma (HCC) is currently the third most common cause of cancer-related death in the Asia-Pacific region. Our previous work showed that knockdown of CD98 significantly inhibits malignant HCC cell phenotypes in vitro and in vivo. The level of CD98 in the membrane is tightly regulated to mediate complex processes associated with cell–cell communication and intracellular signaling. In addition, the intracellular domain of CD98 (CD98-ICD) seems to be of vital importance for recycling CD98 to the membrane after it is endocytosed. The intracellular and transmembrane domains of CD98 associate with β-integrins (primarily β1 but also β3), and this association is essential for CD98 mediation of integrin-like signaling and complements dominant suppression of β1-integrin. We speculated that isolated CD98-ICD would similarly suppress β1-integrin activation and inhibit the malignant behaviors of cancer cells. In particular, the exact role of CD98-ICD has not been studied independently in HCC. In this study, we found that ectopic expression of CD98-ICD inhibited the malignant phenotypes of HCC cells, and the mechanism possibly involves β1-integrin suppression. Moreover, the expression levels of CD98, β1-integrin-A (the activated form of β1-integrin) and Ki-67 were significantly increased in HCC tissues relative to those of normal liver tissues. Therefore, our preliminary study indicates that ectopic CD98-ICD has an inhibitory role in the malignant development of HCC, and shows that CD98-ICD acts as a dominant negative mutant of CD98 that attenuates β1-integrin activation. CD98-ICD may emerge as a promising candidate for antitumor treatment. PMID:27834933
2010-01-01
Background To better search for potential markers for hepatocellular carcinoma (HCC) invasion and metastasis, proteomic approach was applied to identify potential metastasis biomarkers associated with HCC. Methods Membrane proteins were extracted from MHCC97L and HCCLM9 cells, with a similar genetic background and remarkably different metastasis potential, and compared by SDS-PAGE and identified by ESI-MS/MS. The results were further validated by western blot analysis, immunohistochemistry (IHC) of tumor tissues from HCCLM9- and MHCC97L-nude mice, and clinical specimens. Results Membrane proteins were extracted from MHCC97L and HCCLM9 cell and compared by SDS-PAGE analyses. A total of 14 differentially expressed proteins were identified by ESI-MS/MS. Coronin-1C, a promising candidate, was found to be overexpressed in HCCLM9 cells as compared with MHCC97L cells, and validated by western blot and IHC from both nude mice tumor tissues and clinical specimens. Coronin-1C level showed an abrupt upsurge when pulmonary metastasis occurred. Increasing coronin-1C expression was found in liver cancer tissues of HCCLM9-nude mice with spontaneous pulmonary metastasis. IHC study on human HCC specimens revealed that more patients in the higher coronin-1C group had overt larger tumor and more advanced stage. Conclusions Coronin-1C could be a candidate biomarker to predict HCC invasive behavior. PMID:20181269
Liao, Cheng-Gong; Kong, Ling-Min; Song, Fei; Xing, Jin-Liang; Wang, Long-Xin; Sun, Zhi-Jian; Tang, Hao; Yao, Hui; Zhang, Yang; Wang, Li; Wang, Yu; Yang, Xiang-Min; Li, Yu; Chen, Zhi-Nan
2011-01-01
Basigin, which has four isoforms, plays an important role in invasion of hepatocellular carcinoma (HCC). Detailed transcriptional regulation and functions of the basigin isoforms have not been reported except in the case of the predominant isoform basigin-2, which act as inducer of matrix metalloproteinases (MMPs). Here we determined that basigin-2, basigin-3, and basigin-4 were the most abundant transcript variants in human cell lines. GeneRacer PCR and luciferase reporter assays showed that basigin-3 and basigin-4 were initiated from an alternative promoter. Basigin-3 and basigin-4 were widely expressed in various normal human tissues at the mRNA level and were upregulated in HCC tissues compared to in normal tissues. Western blotting and confocal imaging showed that glycosylated basigin-3 and basigin-4 were expressed and localized to the plasma membrane. However, in cultured cell lines, only native basigin-3, and not basigin-4, was detected at protein level. Overexpression of basigin-3 inhibited HCC cell proliferation, MMP induction, and cell invasion in vitro and in vivo. Bimolecular fluorescence complementation assays and nuclear magnetic resonance (NMR) analysis indicated that basigin-3 interacted with basigin-2 to form hetero-oligomers. In conclusion, we systematically investigated the alternative splicing of basigin and found that basigin-3 could inhibit HCC proliferation and invasion, probably through interaction with basigin-2 as an endogenous inhibitor via hetero-oligomerization. PMID:21536654
Xiao, Wenjing; Zhao, Shufen; Shen, Fangzhen; Liang, Jun; Chen, Jing
2017-01-01
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. The aim of the present study was to reveal the prognostic significance of CD147 and to preliminarily explore the molecular mechanisms involved. Blood and tumor tissue specimens were obtained from 133 HCC patients. All patients were followed up for 4 years. The serum and tissue levels of CD147 were analyzed using ELISA and immunohistochemistry, respectively. The SMMC-7721 hepatoma carcinoma cell line was transfected with CD147 overexpression vector and cell migration was evaluated using a wound healing assay. Extracellular signal-regulated kinase (ERK) inhibitor UO126 was applied to study the role of the ERK pathway in cell migration. CD147 expression in HCC tissue was associated with poor prognosis of patients [odds ratio (OR): 3.13, 95% confidence interval (CI): 1.52–6.43], and patients with no CD147 expression had a significantly survival advantage (P=0.016). However, serum CD147 levels had no such prognostic significance (OR: 1.94, 95% CI: 0.96–3.91; P=0.097). In the wound healing assay, the wound distance in the non-transfected cell group was wider than that in the transfected cell group without UO126 treatment (178.0±31.1 vs. 106.0±20.7 µm; P=0.003), but similar to that in the transfected cell group with 10 µM UO126 treatment (170.4±13.2 µm; P=0.629). The present study revealed that the expression of CD147 in HCC tissue is an independent prognostic indicator. In addition CD147 overexpression may be associated with tumor cell migration and ERK signaling pathway activation. PMID:28962206
Fischer, Susanne; Duncko, Roman; Hatch, Stephani L; Papadopoulos, Andrew; Goodwin, Laura; Frissa, Souci; Hotopf, Matthew; Cleare, Anthony J
2017-02-01
Hypothalamic-pituitary-adrenal (HPA) measures are crucial for research into stress and stress-related disorders. Most HPA measures fluctuate depending on diurnal rhythms and state confounders. Hair cortisol concentrations (HCC) are less susceptible to such fluctuations, but less is known about trait-like confounders. Using a community sample, we tested the relationship between HCC and a range of variables including demographic variables, hair treatment, and medication, as well as psychosocial variables, namely childhood trauma, critical life events, and depressive symptoms. Hair samples were collected from 144 individuals from the South East London Community Health (SELCoH) study. Childhood trauma, life events, and depressive symptoms were measured, together with age, sex, ethnicity, relationship status, educational attainment, employment status, occupational social class, hair washing frequency, hair treatments, season reflected in the hair sample, hazardous drinking, smoking, medication intake, and body mass index. Hair samples reflecting the past 3 months were collected and analysed using immunoassays. First, correlations (continuous variables) and simple linear regressions (dichotomous variables) were conducted to identify sociodemographic, hair-related, and lifestyle determinants of HCC. Next, multiple linear regressions were conducted to test the relationship between psychosocial variables and HCC when controlling for the identified confounders. Age (r=-0.17, p=0.050), White British ethnicity (β=-0.19, p=0.023), heat-based treatments (β=-0.22, p=0.010), and winter season (β=-0.18, p=0.024) were associated with lower HCC, whereas summer season (β=0.24, p=0.024), painkillers (β=0.25, p=0.003), anxiolytics/antidepressants (β=0.21, p=0.014), and hormonal contraceptives (β=0.27, p=0.006) were associated with higher HCC. Controlling for these confounders, physical neglect during childhood (β=-0.17, p=0.057), war-related experiences (β=0.20, p=0.027), separation (β=0.18, p=0.054), and being the victim of a serious crime (β=-0.17, p=0.062) were linked with altered HCC. Our findings suggest that variation in HCC occurs according to sociodemographic, hair-related, and lifestyle variables, and that certain associations between stress and altered HCC can only be revealed when accounting for these confounders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma
Choi, Jinah; Corder, Nicole L. B.; Koduru, Bhargav; Wang, Yiyan
2014-01-01
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase 2 (Nox2) of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include: genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV was mediated by transforming growth factor beta. This review summarizes mechanisms of oncogenesis by HCV, highlighting the role of oxidative stress and hepatic Nox enzymes in HCC. PMID:24816297
Liu, Haiou; Liu, Weisi; Liu, Zheng; Liu, Yidong; Zhang, Weijuan; Xu, Le; Xu, Jiejie
2015-07-01
The family of type 2 purinergic (P2) receptors, especially P2X7, is responsible for the direct tumor-killing functions of extracellular adenosine triphosphate (ATP), but the precise role of P2X7 in the progression of hepatocellular carcinoma (HCC) remains elusive. This study aims to evaluate prognostic value of P2X7 expression in HCC patients after surgical resection. Expression of P2X7 was assessed by immunohistochemistry in tissue microarrays containing paired tumor and peritumoral liver tissues from 273 patients with HCC who had undergone hepatectomy between 2006 and 2007. Prognostic value of P2X7 expression and clinical outcomes were evaluated. Peritumoral P2X7 expression was significantly higher than intratumoral P2X7 expression. No significant prognostic difference was observed for overall survival for intratumoral P2X7 density, whereas peritumoral P2X7 density indicates unfavorable overall survival in training set and BCLC stage 0-A subset. Besides, peritumoral P2X7 density, which correlated with tumor size, venous invasion, and BCLC stage, was identified as an independent poor prognosticator for overall survival and recurrence-free survival. The association was further validated in validation set. Peritumoral P2X7 is a potential unfavorable prognosticator for overall survival and recurrence free survival in HCC patients after surgical resection. Further external validation and functional analysis should be pursued to evaluate its potential prognostic value and therapeutic significance for HCC patients.
An evaluation of distal hair cortisol concentrations collected at delivery.
Orta, Olivia R; Tworoger, Shelley S; Terry, Kathryn L; Coull, Brent A; Gelaye, Bizu; Kirschbaum, Clemens; Sanchez, Sixto E; Williams, Michelle A
2018-04-04
Distal hair segments collected at delivery may allow for the assessment of maternal cortisol secretion in early pregnancy, an important time window for fetal development. Therefore, an investigation of the validity of distal hair cortisol concentrations is warranted. We examined the concordance between proximal and distal hair cortisol concentrations (HCC), both representing the first trimester of pregnancy. The study population was comprised of a random sample of 97 women participating in the Pregnancy Outcomes Maternal and Infant Study, a prospective cohort study of pregnant women attending prenatal clinics in Lima, Peru. Each participant provided two hair samples: once at enrollment [mean gestational age (GA) = 13.1 weeks] and again at full-term delivery (mean GA = 39.0 weeks). Hair segments reflecting the first trimester were: 3 cm hair segments closest to the scalp on the first hair sample (proximal) and 6-9 cm from the scalp on the second hair sample (distal). HCC was determined using Luminescence Immunoassay. A subset (N = 28) had both hair segments additionally analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). HCC values were log-transformed (logHCC), and proximal-distal differences tested using paired sample t-tests. Concordance was evaluated within and across assay types. LogHCC, measured using immunoassay, in distal hair segments was lower compared to proximal hair segments (1.35 versus 1.64 respectively; p = .02). No difference was observed using LC-MS/MS (1.99 versus 1.83, respectively; p=.33). Proximal-distal concordance was low within assay (immunoassay: Pearson = 0.27 and κ = 0.10; LC-MS/MS: Pearson = 0.37 and κ = 0.07). High correlation was observed across assays for both distal (Pearson = 0.78, p < .001; κ = 0.64) and proximal segments (Pearson = 0.96, p < .001; κ = 0.75). In conclusion, distal first-trimester hair segments collected at delivery have lower absolute HCC compared to HCC in proximal first trimester hair segments collected in early pregnancy, and are poorly concordant with HCC in proximal segments. Findings may inform the design of future studies.
Is hypercortisolism in anorexia nervosa detectable using hair samples?
Ritschel, Franziska; Clas, Sabine; Geisler, Daniel; Haas, Verena; Seidel, Maria; Steding, Julius; Roessner, Veit; Kirschbaum, Clemens; Ehrlich, Stefan
2018-03-01
Anorexia nervosa (AN) is a severe mental disorder accompanied by extensive metabolic and endocrine abnormalities. It has been associated with hypercortisolism using short-term measurement methods such as 24 h-urine, saliva, and blood. The aim of this study was to examine whether the proposed hypercortisolism in acutely underweight AN (acAN) is also reflected in a long-term measure: hair cortisol (HCC). To gain further insight, we compared hair cortisol to a well-established classical cortisol measure (24 h-urine; UCC) longitudinally in acAN. Hair samples were collected and analyzed using a LC-MS/MS-based method to provide a monthly cortisol value. We compared HCC in samples of 40 acAN with 40 pairwise age-matched healthy controls (HC) as well as 23 long-term recovered AN participants (recAN) with 23 pairwise age-matched HC (cross-sectional design). In the second part, UCC collected weekly during 14 weeks of weight-restoration therapy in 16 acAN was compared with the (time-corresponding) HCC using linear mixed models and bivariate correlations (longitudinal design). No group differences in HCC occurred comparing acAN and recAN to HC (cross-sectional study). The longitudinal analysis revealed a decrease of UCC but not HCC with weight gain. Furthermore, there was no overall significant association between UCC and HCC. Only in the last four weeks of weight-restoration therapy we found a significant moderate correlation between UCC and HCC. HCC did not reflect the expected hypercortisolism in acAN and did not decrease during short-term weight-restoration. Time-corresponding measurements of UCC and HCC were not consistently associated in our longitudinal analysis of acAN undergoing inpatient treatment. Given the drastic metabolic disturbances in acutely underweight AN our findings could be interpreted as disturbed cortisol incorporation or altered activity of 11-β-HSD-enzymes in the hair follicle. Copyright © 2017. Published by Elsevier Ltd.
SEN virus infection in patients with hepatocellular carcinoma.
Momosaki, S; Umemura, T; Scudamore, C H; Kojiro, M; Alter, H J; Tabor, E
2005-07-01
Although most cases of hepatocellular carcinoma (HCC) are associated with either the hepatitis B or C viruses (HBV, HCV), about 10-20% of HCCs occur in patients with chronic hepatitis that is aetiologically undefined. The aim of the present study was to determine the prevalence of the transfusion-transmitted SEN virus (SEN-V) in patients with HCC, including those patients who do not otherwise appear to be infected with HBV or HCV. Fragments of SEN-V subtypes D and H were amplified separately by PCR from the sera of 50 patients with HCC (31 from Canada and 19 from Japan) as well as from HCC and adjacent nontumourous liver tissues from eight of the Canadian patients. SEN-V DNA was found in the serum of 10 of 31 (32%) Canadian patients and eight of 19 (42%) Japanese patients [overall, 18 of 50 (36%) HCC patients]. SEN-V DNA was detected in the serum of 10 of 23 (43%) HCC patients with antibody to HCV (anti-HCV), six of 11 (55%) with hepatitis B surface antigen (HBsAg), and two of 16 (12%) without detectable anti-HCV or HBsAg. Twenty-three HCC patients in this study had 'silent HBV,' characterized by the detection of HBV DNA in the absence of HBsAg; eight of these (35%) also had SEN-V infections. SEN-V DNA was detected in HCC patients most typically in those with coexistent HBV or HCV infection. SEN-V was found in only one of seven HCC patients without HBV (without HBsAg or HBV DNA) or HCV and thus does not appear to be an important cause of 'cryptogenic' HCC.
Thompson, Kyle J; Austin, Rebecca Garland; Nazari, Shayan S; Gersin, Keith S; Iannitti, David A; McKillop, Iain H
2017-11-24
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality. Risk factors for developing HCC include viral hepatitis, alcohol and obesity. Fatty acid-binding proteins (FABPs) bind long-chain free fatty acids (FFAs) and are expressed in a tissue-specific pattern; FABP1 being the predominant hepatic form, and FABP4 the predominant adipocyte form. The aims of this study were to investigate the expression and function of FABPs1-9 in human and animal models of obesity-related HCC. FABP1-9 expression was determined in a mouse model of obesity-promoted HCC. Based on these data, expression and function of FABP4 was determined in human HCC cells (HepG2 and HuH7) in vitro. Serum from patients with different underlying hepatic pathologies was analysed for circulating FABP4 levels. Livers from obese mice, independent of tumour status, exhibited increased FABP4 mRNA and protein expression concomitant with elevated serum FABP4. In vitro, FABP4 expression was induced in human HCC cells by FFA treatment, and led to FABP4 release into culture medium. Treatment of HCC cells with exogenous FABP4 significantly increased proliferation and migration of human HCC cells. Patient serum analysis demonstrated significantly increased FABP4 in those with underlying liver disease, particularly non-alcoholic fatty liver disease (NAFLD) and HCC. These data suggest FABP4, an FABP not normally expressed in the liver, can be synthesized and secreted by hepatocytes and HCC cells, and that FABP4 may play a role in regulating tumour progression in the underlying setting of obesity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tao, Qi-Fei; Yuan, Sheng-Xian; Yang, Fu; Yang, Sen; Yang, Yuan; Yuan, Ji-Hang; Wang, Zhen-Guang; Xu, Qing-Guo; Lin, Kong-Ying; Cai, Jie; Yu, Jian; Huang, Wei-Long; Teng, Xiao-Lei; Zhou, Chuan-Chuan; Wang, Fang; Sun, Shu-Han; Zhou, Wei-Ping
2015-09-17
Downregulation of Aldolase B (ALDOB) has been reported in hepatocellular carcinoma. However, its clinical significance and its role in pathogenesis of HCC remain largely unknown. We analyzed the expression of ALDOB and its clinical features in a large cohort of 313 HCC patients using tissue microarray and immunohistochemistry. Moreover, the function of stably overexpressed ALDOB in HCC cells was explored in vitro and in vivo. Gene expression microarray analysis was performed on ALDOB-overexpressing SMMC7721 cells to elucidate its mechanism of action. ALDOB downregulation in HCC was significantly correlated with aggressive characteristics including absence of encapsulation, increased tumor size (>5 cm) and early recurrence. ALDOB downregulation was indicative of a shorter recurrence-free survival (RFS) and overall survival (OS) for all HCC patients and early-stage HCC patients (BCLC 0-A and TNM I stage patients). Multiple analyses revealed that ALDOB downregulation was an independent risk factor of RFS and OS. Stable expression of ALDOB in HCC cell lines reduced cell migration in vitro and inhibited lung metastasis, intrahepatic metastasis, and reduced circulating tumor cells in vivo. Mechanistically, we found that cells stably expressing ALDOB show elevated Ten-Eleven Translocation 1 (TET1) expression. Moreover, ALDOB expressing cells have higher levels of methylglyoxal than do control cells, which can upregulate TET1 expression. The downregulation of ALDOB could indicate a poor prognosis for HCC patients, and therefore, ALDOB might be considered a prognostic biomarker for HCC, especially at the early stage. In addition, ALDOB inhibits the invasive features of cell lines partly through TET1 expression.
Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma.
Gu, De-Leung; Chen, Yen-Hsieh; Shih, Jou-Ho; Lin, Chi-Hung; Jou, Yuh-Shan; Chen, Chian-Feng
2013-12-21
High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.
Feng, Wendu; Yu, Decai; Li, Binghua; Luo, Ou-Yang; Xu, Tiancheng; Cao, Yajuan; Ding, Yitao
2017-04-30
In the present study, we used a small series of highly defined patients, where we had matched timed peripheral blood samples (PBS), as well as paired liver biopsies obtained during collection of blood samples from patients with diagnosed hepatocellular carcinoma (HCC) and compared the correlation between the changes of telomere lengths in these defined samples. Patients included had either HCC alone or in conjunction with either pre-existing hepatitis B virus (HBV) or hepatitis C virus (HCV) infection. PCR-based assay incorporating primers to the telomeric hexamer repeats to polymerize and detect telomeric DNA was used. The average telomere length for each independent assessment was measured by seeing the differences in the intensity of the sample's telomere signal (T) to the signal from a single-copy gene (S-, β-globin) to estimate the standard ratio. Our results provide the first convincing evidence that PBS may be utilized to assay telomere shortening as a predictor for disease persistence in HCC resulting after HBV or HCV infection, but not in non-infectious cause-stimulated HCC. These findings provide incipient opportunity to develop telomere length assessment as a biomarker tool for prediction of HCC in patients with HBV or HCV infection, as well as to gauge responses to chemotherapy and other treatment modalities. © 2017 The Author(s).
Haybaeck, Johannes; Zeller, Nicolas; Heikenwalder, Mathias
2011-10-24
In recent years, enormous progress has been made in identifying microRNAs (miRNAs) as important regulators of gene expression and their association with or control of various liver diseases such as fibrosis, hepatitis and hepatocellular carcinoma (HCC). Indeed, many genes encoding miRNAs as well as their targets have been described and their direct or indirect link to the respective liver diseases has been investigated in various experimental systems as well as in human tissue. Here we discuss current knowledge of miRNAs and their involvement in liver diseases, elaborating in particular on the contribution of miRNAs to hepatitis, fibrosis and HCC formation. We also debate possible prognostic, predictive and therapeutic values of respective miRNAs in liver diseases. The discovery of liver disease related miRNAs has constituted a major breakthrough in liver research and will most likely be of high relevance for future therapeutic strategies, especially when dealing with hepatitis, fibrosis and HCC.
Viggiani, Valentina; Palombi, Sara; Gennarini, Giuseppina; D'Ettorre, Gabriella; De Vito, Corrado; Angeloni, Antonio; Frati, Luigi; Anastasi, Emanuela
2016-10-01
As a marker for Hepatocellular Carcinoma (HCC), Protein Induced by Vitamin K Absence II (PIVKA-II) seems to be superior to alpha fetoprotein (AFP). To better characterize the role of PIVKA-II, both AFP and PIVKA-II have been measured in Italian patients with diagnosis of HCC compared with patients affected by non-oncological liver pathologies. Sixty serum samples from patients with HCC, 60 samples from patients with benign liver disease and 60 samples obtained from healthy blood donors were included in the study. PIVKA-II and AFP were measured by LUMIPULSE(®) G1200 (Fujirebio-Europe, Belgium). We considered as PIVKA-II cutoff 70 mAU/ml (mean +3SD) of the values observed in healthy subjects. The evaluation of PIVKA-II showed a positivity of 70% in patients with HCC and 5% in patients with benign diseases (p < 0.0001) whereas high levels of AFP were observed in 55% of HCC patients and in 47% of patients with benign diseases. The combined Receiver Operating Characteristic (ROC) analysis of the two analytes revealed a higher sensitivity (75%) compared to those observed for the individual biomarkers. In conclusion, we demonstrate that as a marker for HCC, PIVKA-II is more specific for HCC and less prone to elevation during chronic liver diseases. The combination of the two biomarkers, evaluated by the ROC analysis, improved the specificity compared to a single marker. These data suggest that the combined analysis of the two markers could be a useful tool in clinical practice.
Feng, Juerong; Zhou, Rui; Chang, Ying; Liu, Jing; Zhao, Qiu
2017-01-01
Hepatocellular carcinoma (HCC) has a high incidence and mortality worldwide, and its carcinogenesis and progression are influenced by a complex network of gene interactions. A weighted gene co-expression network was constructed to identify gene modules associated with the clinical traits in HCC (n = 214). Among the 13 modules, high correlation was only found between the red module and metastasis risk (classified by the HCC metastasis gene signature) (R2 = −0.74). Moreover, in the red module, 34 network hub genes for metastasis risk were identified, six of which (ABAT, AGXT, ALDH6A1, CYP4A11, DAO and EHHADH) were also hub nodes in the protein-protein interaction network of the module genes. Thus, a total of six hub genes were identified. In validation, all hub genes showed a negative correlation with the four-stage HCC progression (P for trend < 0.05) in the test set. Furthermore, in the training set, HCC samples with any hub gene lowly expressed demonstrated a higher recurrence rate and poorer survival rate (hazard ratios with 95% confidence intervals > 1). RNA-sequencing data of 142 HCC samples showed consistent results in the prognosis. Gene set enrichment analysis (GSEA) demonstrated that in the samples with any hub gene highly expressed, a total of 24 functional gene sets were enriched, most of which focused on amino acid metabolism and oxidation. In conclusion, co-expression network analysis identified six hub genes in association with HCC metastasis risk and prognosis, which might improve the prognosis by influencing amino acid metabolism and oxidation. PMID:28430663
Yun, J-P; Miao, J; Chen, G G; Tian, Q-H; Zhang, C-Q; Xiang, J; Fu, J; Lai, P B S
2007-01-01
Nucleophosmin (NPM, B23, numatrin, NO38) is an abundant nucleolar phosphoprotein involved in multiple cellular functions. Previous evidence indicates that high-level expression of NPM causes uncontrolled cell growth and suggests that NPM may have oncogenic potential. In this study, we examined NPM expression in 103 paired cases of hepatocellular carcinoma (HCC), 12 cases of hepatic focal nodular hyperplasia, 17 cases of liver tissue adjacent to a hepatic haemangioma, and series of array tissues from normal human organs and malignancies using a monoclonal antibody against NPM and reverse transcription–PCR techniques, Western blot analysis, immunohistochemistry, and immunocytofluorescence. Our data indicated that NPM expression was significantly higher in HCC than in the non-malignant hepatocytes (P<0.001). Nucleophosmin was weakly expressed in hepatocytes from a 5-month-old embryo and in stationary hepatocytes of healthy adults. Moreover, enhanced expression of NPM in HCC correlated with the level of PCNA (R2=0.5639) and with the clinical prognostic parameters such as serum alpha fetal protein level, tumour pathological grading, and liver cirrhosis (P<0.05). Our results suggest that NPM may play an important role in the progression of tumorigenesis and that NPM may serve as a potential marker for HCC. PMID:17245342
DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma
Anwar, Sumadi Lukman; Lehmann, Ulrich
2014-01-01
Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC. PMID:24976726
Comparison of hepatocellular carcinoma in American and Asian patients by tissue array analysis.
Song, Tae-Jin; Fong, Yuman; Cho, Sung-Jin; Gönen, Mithat; Hezel, Michael; Tuorto, Scott; Choi, Sang-Yong; Kim, Young-Chul; Suh, Sung-Ock; Koo, Bum-Hwan; Chae, Yang-Seok; Jarnagin, William R; Klimstra, David S
2012-07-01
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Although some epidemiologic and etiologic differences between Asian and Western HCC are known, detailed comparative studies with pathologic correlations have not been performed. Paraffin sections of resected HCC specimens from Memorial Sloan-Kettering Cancer Center and Korea University Medical Center were used to construct tissue microarrays. Immunohistochemical staining of microarray sections was performed using antibodies against markers of proliferation and regulators of cell cycle. Patient data were correlated with staining results. When comparing both cohorts, significant differences were found in expression of p53 and MDM2. In the Asian group, more frequent positive staining for p53 (24%) was observed compared with the American group (9%; P = 0.037). For MDM2, 26% of American cases stained positive compared with 2% of Asian cases (P = 0.0003). No significant differences were found in expression of Ki67, p21, p27, cyclin D1, or bcl2. Female gender, vascular invasion, and lack of viral hepatitis infection correlated with positive MDM2 staining. These data likely correlate with differences in molecular pathogenesis of HCC based on racial and regional differences. These findings may have implications in choice of molecular targeted therapies based on patient ethnicity. Copyright © 2012 Wiley Periodicals, Inc.
Shen, Song; Sun, Chun-Yang; Du, Xiao-Jiao; Li, Hong-Jun; Liu, Yang; Xia, Jin-Xing; Zhu, Yan-Hua; Wang, Jun
2015-11-01
As part of HCC tumor cellularity, cancer stem cells (CSCs) are considered a major obstacle to eradicate hepatocellular carcinoma (HCC), which is the third most common cause of cancer-related death worldwide, and the accumulation of chemotherapeutic drug-resistant CSCs invariably accounts for poor prognosis and HCC relapse. In the present study, we explored the efficacy of co-delivery of platinum drug and siRNA targeting Notch1 to treat CSCs-harboring HCC. To overcome the challenging obstacles of platinum drug and siRNA in the systemic administration, we developed a micellar nanoparticle (MNP) to deliver platinum(IV) prodrug and siNotch1, hereafter referred to as (Pt(IV))MNP/siNotch1. We demonstrated that (Pt(IV))MNP/siNotch1 was able to efficiently deliver two drugs into both non-CSCs and CSCs of SMMC7721, a HCC cell line. We further found that siRNA-mediated inhibition of Notch1 suppression can increase the sensitivity of HCC cells to platinum drugs and decrease the percentage of HCC CSCs, and consequently resulting in enhanced proliferation inhibition and apoptosis induction in HCC cells in vitro. Moreover, our results indicated that the combined drug delivery system can remarkably augment drug enrichment in tumor tissues, substantially suppressing the tumor growth while avoiding the accumulation of CSCs in a synergistic manner in the SMMC7721 xenograft model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reis, Henning; Padden, Juliet; Ahrens, Maike; Pütter, Carolin; Bertram, Stefanie; Pott, Leona L; Reis, Anna-Carinna; Weber, Frank; Juntermanns, Benjamin; Hoffmann, Andreas-C; Eisenacher, Martin; Schlaak, Joörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A
2015-10-01
The exact discrimination of lesions with true hepatocellular differentiation from secondary tumours and neoplasms with hepatocellular histomorphology like hepatoid adenocarcinomas (HAC) is crucial. Therefore, we aimed to identify ancillary protein biomarkers by using complementary proteomic techniques (2D-DIGE, label-free MS). The identified candidates were immunohistochemically validated in 14 paired samples of hepatocellular carcinoma (HCC) and non-tumourous liver tissue (NT). The candidates and HepPar1/Arginase1 were afterwards tested for consistency in a large cohort of hepatocellular lesions and NT (n = 290), non-hepatocellular malignancies (n = 383) and HAC (n = 13). Eight non-redundant, differentially expressed proteins were suitable for further immunohistochemical validation and four (ABAT, BHMT, FABP1, HAOX1) for further evaluation. Sensitivity and specificity rates for HCC/HAC were as follows: HepPar1 80.2%, 94.3% / 80.2%, 46.2%; Arginase1 82%, 99.4% / 82%, 69.2%; BHMT 61.4%, 93.8% / 61.4%, 100%; ABAT 84.4%, 33.7% / 84.4%, 30.8%; FABP1 87.2%, 95% / 87.2%, 69.2%; HAOX1 95.5%, 36.3% / 95.5%, 46.2%. The best 2×/3× biomarker panels for the diagnosis of HCC consisted of Arginase1/HAOX1 and BHMT/Arginase1/HAOX1 and for HAC consisted of Arginase1/FABP1 and BHMT/Arginase1/FABP1. In summary, we successfully identified, validated and benchmarked protein biomarker candidates of hepatocellular differentiation. BHMT in particular exhibited superior diagnostic characteristics in hepatocellular lesions and specifically in HAC. BHMT is therefore a promising (panel based) biomarker candidate in the differential diagnostic process of lesions with hepatocellular aspect.
Cui, Xianping; Wu, Yaguang; Wang, Zhiyi; Liu, Xin; Wang, Shikang; Qin, Chengkun
2015-05-01
The prognosis of hepatocellular carcinoma (HCC) treated by radiofrequency ablation (RFA) is mainly associated with tumor recurrence. So far, no tissue biomarker of recurrence has been confirmed in biopsy specimens. Previous studies have reported that aberrant expression of microRNA-34a (miR-34a) is involved in oncogenesis and progression of HCC. The aim of this study was to investigate the prognostic value of tissue miR-34a expression in patients with HCC treated with RFA. Patients with early-stage single-nodule HCC treated with RFA were included, and tissue expression of miR-34a were assessed by quantitative reverse-transcription polymerase chain reaction. Main clinical endpoints were overall and early recurrence. The Kaplan-Meier method was used to plot recurrence curves and univariable and multivariable Cox regression analyses were performed to assess independent predictive factors for recurrence. Of 120 patients, recurrence occurred in 67 patients (55.8 %) with a median follow-up of 31 months. Forty-one patients (34.2 %) recurred within 2 years after RFA. The median miR-34a level was 0.87 (range 0.06-21.54). Low miR-34a level was associated with larger tumor size (P = 0.033) and higher serum alpha-fetoprotein (AFP) level (P = 0.004). When analyzed with a Cox regression model, the two independent predictive factors for overall recurrence were high serum AFP level (hazard ratio [HR] = 1.21; 95 % confidence interval [CI] = 1.04-1.36; P = 0.039) and low miR-34a level (HR = 1.44; 95 % CI = 1.13-1.72; P = 0.011). The expression of miR-34a was also an independent predictive factor for early recurrence (HR = 1.49; 95 % CI = 1.15-1.79; P = 0.008). Taken together, this study suggests that the expression of miR-34a in HCC biopsy specimens has an independent predictive value of early recurrence after RFA.
Liver Rapid Reference Set Application: Hiro Yamada - Wako (2011) — EDRN Public Portal
Measure clinical effectiveness of AFP-L3 and DCP for early detection of HCC in patient samples collected prospectively during surveillance. However since such samples are not readily available in the USA the reference set samples are well characterized and studied, gaining access to these samples will allow Wako to quickly measure clinical effectiveness of AFP-L3 and DCP in detecting early HCC.
Wu, Jia-Ru; Hu, Chi-Tan; You, Ren-In; Ma, Pei-Ling; Pan, Siou-Mei; Lee, Ming-Che; Wu, Wen-Sheng
2015-01-01
Hepatocellular carcinoma (HCC) is among the most lethal cancers. Mounting studies highlighted the essential role of the HGF/c-MET axis in driving HCC tumor progression. Therefore, c-Met is a potential therapeutic target for HCC. However, several concerns remain unresolved in c-Met targeting. First, the status of active c-Met in HCC must be screened to determine patients suitable for therapy. Second, resistance and side effects have been observed frequently when using conventional c-Met inhibitors. Thus, a preclinical system for screening the status of c-Met signaling and identifying efficient and safe anti-HCC agents is urgently required. In this study, immunohistochemical staining of phosphorylated c-Met (Tyr1234) on tissue sections indicated that HCCs with positive c-Met signaling accounted for approximately 46% in 26 cases. Second, many patient-derived HCC cell lines were established and characterized according to motility and c-Met signaling status. Moreover, LZ8, a medicinal peptide purified from the herb Lingzhi, featuring immunomodulatory and anticancer properties, was capable of suppressing cell migration and slightly reducing the survival rate of both c-Met positive and negative HCCs, HCC372, and HCC329, respectively. LZ8 also suppressed the intrahepatic metastasis of HCC329 in SCID mice. On the molecular level, LZ8 suppressed the expression of c-Met and phosphorylation of c-Met, ERK and AKT in HCC372, and suppressed the phosphorylation of JNK, ERK, and AKT in HCC329. According to receptor array screening, the major receptor tyrosine kinase activated in HCC329 was found to be the epidermal growth factor receptor (EGFR). Moreover, tyrosine-phosphorylated EGFR (the active EGFR) was greatly suppressed in HCC329 by LZ8 treatment. In addition, LZ8 blocked HGF-induced cell migration and c-Met-dependent signaling in HepG2. In summary, we designed a preclinical trial using LZ8 to prevent the tumor progression of patient-derived HCCs with c-Met-positive or -negative signaling. PMID:25607934
Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa
2011-01-01
A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers. PMID:21474793
Hwang, Hai-Min; Heo, Chang-Kyu; Lee, Hye Jung; Kwak, Sang-Seob; Lim, Won-Hee; Yoo, Jong-Shin; Yu, Dae-Yuel; Lim, Kook Jin; Kim, Jeong-Yoon; Cho, Eun-Wie
2018-06-28
Tumor-associated (TA) autoantibodies, which are generated by the immune system upon the recognition of abnormal TA antigens, are promising biomarkers for the early detection of tumors. In order to detect autoantibody biomarkers effectively, antibody-specific epitopes in the diagnostic test should maintain the specific conformations that are as close as possible to those presenting in the body. However, when using patients' serum as a source of TA autoantibodies the characterization of the autoantibody-specific epitope is not easy due to the limited amount of patient-derived serum. To overcome these limits, we constructed a B cell hybridoma pool derived from a hepatocellular carcinoma (HCC) model HBx-transgenic mouse and characterized autoantibodies derived from them as tumor biomarkers. Their target antigens were identified by mass spectrometry and the correlations with HCC were examined. With the assumption that TA autoantibodies generated in the tumor mouse model are induced in human cancer patients, the enzyme-linked immunosorbent assays (ELISA) based on the characteristics of mouse TA autoantibodies were developed for the detection of autoantibody biomarkers in human serum. To mimic natural antigenic structures, the specific epitopes against autoantibodies were screened from the phage display cyclic random heptapeptide library, and the streptavidin antigens fused with the specific epitopes were used as coating antigens. In this study, one of HCC-associated autoantibodies derived from HBx-transgenic mouse, XC24, was characterized. Its target antigen was identified as splicing factor 3b subunit 1 (SF3B1) and the high expression of SF3B1 was confirmed in HCC tissues. The specific peptide epitopes against XC24 were selected and, among them, XC24p11 cyclic peptide (-CDATPPRLC-) was used as an epitope of anti-SF3B1 autoantibody ELISA. With this epitope, we could effectively distinguish between serum samples from HCC patients (n = 102) and healthy subjects (n = 85) with 73.53% sensitivity and 91.76% specificity (AUC = 0.8731). Moreover, the simultaneous detection of anti-XC24p11 epitope autoantibody and AFP enhanced the efficiency of HCC diagnosis with 87.25% sensitivity and 90.59% specificity (AUC = 0.9081). ELISA using XC24p11 peptide epitope that reacts against anti-SF3B1 autoantibody can be used as a novel test to enhance the diagnostic efficiency of HCC.
Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing
Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat
2012-01-01
Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes, such as GPC3 that are distinctly expressed in liver CD90+CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. PMID:22606345
Cigliano, Antonio; Zhou, Lili; Singh, Sucha; Jiang, Lijie; Fan, Biao; Terracciano, Luigi; Armeanu-Ebinger, Sorin; Ribback, Silvia; Dombrowski, Frank; Evert, Matthias; Chen, Xin; Monga, Satdarshan P. S.
2014-01-01
Background & Aims Aberrant activation of βcatenin and Yes-associated protein 1 (Yap1) signaling pathways have been associated with development of multiple tumor types. Yap functions as a transcriptional co-activator by interacting with TEAD DNA binding proteins. We investigated the interactions among these pathways during hepatic tumorigenesis. Methods We used immunohistochemical analysis to determine expression of β-catenin and Yap1 in liver cancer specimens collected from patients in Europe and the US, consisting of 104 hepatocellular carcinoma (HCC), 62 intrahepatic cholangiocarcinoma (ICC), and 94 hepatoblastoma samples. We assessed βcatenin and Yap1 signaling and interactions in hepatoblastoma cell lines ((HuH6, HepG2, HepT1, HC-AFW1, HepG2, and HC-AFW1); proteins were knocked down with small interfering (si)RNAs and effects on proliferation and cell death were measured. Sleeping beauty-mediated hydrodynamic transfection was used to overexpress constitutively active forms of β catenin ( N90-βcatenin) and Yap1 (YapS127A) in livers of mice; tissues were collected and histologic and immunohistochemical analyses were performed. Results We observed nuclear localization of βcatenin and Yap1 in 79% of hepatoblastoma samples, but not in most HCC or ICC tissues. Yap1 and β catenin co-precipitated in hepatoblastoma but not HCC cells. siRNA-mediated knockdown of Yap1 or β catenin in hepatoblastoma cells reduced proliferation in an additive manner. Knockdown of Yap1 reduced its ability to co-activate transcription with βcatenin; βcatenin inhibitors inactivated Yap1. Overexpression of constitutively active forms of Yap1 and βcatenin in mouse liver led to rapid tumorigenesis, with 100% mortality by 11 weeks. Tumors cells expressed both proteins, and human hepatoblastoma cells expressed common targets of their 2 signaling pathways. Yap1 binding of TEAD factors was required for tumorigenesis in mice. Conclusions β catenin and the transcriptional regulator Yap1 interact physically and are activated in most human hepatoblastoma tissues; overexpression of activated forms of these proteins in livers of mice leads to rapid tumor development. Further analysis of these mice will allow further studies of these pathways in hepatoblastoma pathogenesis and could lead to the identification of new therapeutic targets. PMID:24837480
Liver cancer diagnosis by fluorescence spectra of blood and urine
NASA Astrophysics Data System (ADS)
AlSalhi, Mohamad Saleh; Al Mehmadi, Abdulaziz Mayuof; Abdoo, Aiman; Masilamani, Vadivel
2012-03-01
Liver cancer or hepatocellular carcinoma (HCC) is a serious malady with only 10% survival rate. HCC incidence and mortality both are highest in China. This disease is detected and diagnosed by ultra sound, CT or MRI scans which are quite expensive. Also the discrimination between cirrhosis and HCC are poor by this imaging technique. The conventional tissue biopsy is quite invasive and painful. In this context, in the new diagnostic procedure presented in this paper, all the three liver malfunctions, particularly liver cancer, could be detected and discriminated by the spectral feature of blood and urine with accuracy about 80%. All that we need are 5 ml of blood and 5 ml of urine. Hence this inexpensive non invasive, optical technique will have significant impact in screening, diagnosis and also prognosis of HCC in large segment of people in the populous Asian countries.
Role of nonresolving inflammation in hepatocellular carcinoma development and progression.
Yu, Le-Xing; Ling, Yan; Wang, Hong-Yang
2018-01-01
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-related death, making the elucidation of its underlying mechanisms an urgent priority. Inflammation is an adaptive response to infection and tissue injury under strict regulations. When the host regulatory machine runs out of control, nonresolving inflammation occurs. Nonresolving inflammation is a recognized hallmark of cancer that substantially contributes to the development and progression of HCC. The HCC-associated inflammation can be initiated and propagated by extrinsic pathways through activation of pattern-recognition receptors (PRRs) by pathogen-associated molecule patterns (PAMPs) derived from gut microflora or damage-associated molecule patterns (DAMPs) released from dying liver cells. The inflammation can also be orchestrated by the tumor itself through secreting factors that recruit inflammatory cells to the tumor favoring the buildup of a microenvironment. Accumulating datas from human and mouse models showed that inflammation promotes HCC development by promoting proliferative and survival signaling, inducing angiogenesis, evading immune surveillance, supporting cancer stem cells, activating invasion and metastasis as well as inducing genomic instability. Targeting inflammation may represent a promising avenue for the HCC treatment. Some inhibitors targeting inflammatory pathways have been developed and under different stages of clinical trials, and one (sorafenib) have been approved by FDA. However, as most of the data were obtained from animal models, and there is a big difference between human HCC and mouse HCC models, it is challenging on successful translation from bench to bedside.
Xue, Wan-Jiang; Feng, Ying; Wang, Fei; Guo, Yi-Bing; Li, Peng; Wang, Lei; Liu, Yi-Fei; Wang, Zhi-Wei; Yang, Yu-Min; Mao, Qin-Sheng
2016-01-01
We developed a nanovector with double targeting properties for efficiently delivering the tumor suppressor gene RASSF1A specifically into hepatocellular carcinoma (HCC) cells by preparing galactosylated-carboxymethyl chitosan-magnetic iron oxide nanoparticles (Gal-CMCS-Fe3O4-NPs). After conjugating galactose and CMCS to the surface of Fe3O4-NPs, we observed that Gal-CMCS-Fe3O4-NPs were round with a relatively stable zeta potential of +6.5 mV and an mean hydrodynamic size of 40.1 ± 5.3 nm. Gal-CMCS-Fe3O4-NPs had strong DNA condensing power in pH 7 solution and were largely nontoxic. In vitro experiments demonstrated that Gal-CMCS-Fe3O4-NPs were highly selective for HCC cells and liver cells. In vivo experiments showed the specific accumulation of Gal-CMCS-Fe3O4-NPs in HCC tissue, especially with the aid of an external magnetic field. Nude mice with orthotopically transplanted HCC received an intravenous injection of the Gal-CMCS-Fe3O4-NPs/pcDNA3.1(+)RASSF1A compound and intraperitoneal injection of mitomycin and had an external magnetic field applied to the tumor area. These mice had the smallest tumors, largest percentage of TUNEL-positive cells, and highest caspase-3 expression levels in tumor tissue compared to other groups of treated mice. These results suggest the potential application of Gal-CMCS-Fe3O4-NPs for RASSF1A gene delivery for the treatment of HCC. PMID:26915683
NASA Astrophysics Data System (ADS)
Xue, Wan-Jiang; Feng, Ying; Wang, Fei; Guo, Yi-Bing; Li, Peng; Wang, Lei; Liu, Yi-Fei; Wang, Zhi-Wei; Yang, Yu-Min; Mao, Qin-Sheng
2016-02-01
We developed a nanovector with double targeting properties for efficiently delivering the tumor suppressor gene RASSF1A specifically into hepatocellular carcinoma (HCC) cells by preparing galactosylated-carboxymethyl chitosan-magnetic iron oxide nanoparticles (Gal-CMCS-Fe3O4-NPs). After conjugating galactose and CMCS to the surface of Fe3O4-NPs, we observed that Gal-CMCS-Fe3O4-NPs were round with a relatively stable zeta potential of +6.5 mV and an mean hydrodynamic size of 40.1 ± 5.3 nm. Gal-CMCS-Fe3O4-NPs had strong DNA condensing power in pH 7 solution and were largely nontoxic. In vitro experiments demonstrated that Gal-CMCS-Fe3O4-NPs were highly selective for HCC cells and liver cells. In vivo experiments showed the specific accumulation of Gal-CMCS-Fe3O4-NPs in HCC tissue, especially with the aid of an external magnetic field. Nude mice with orthotopically transplanted HCC received an intravenous injection of the Gal-CMCS-Fe3O4-NPs/pcDNA3.1(+)RASSF1A compound and intraperitoneal injection of mitomycin and had an external magnetic field applied to the tumor area. These mice had the smallest tumors, largest percentage of TUNEL-positive cells, and highest caspase-3 expression levels in tumor tissue compared to other groups of treated mice. These results suggest the potential application of Gal-CMCS-Fe3O4-NPs for RASSF1A gene delivery for the treatment of HCC.
Zhao, Qi; Li, Tao; Qi, Jianni; Liu, Juan; Qin, Chengyong
2014-01-01
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a poor prognosis, and monitoring sera levels of miR-545/374a may be a useful diagnostic marker for HCC. PMID:25299640
Overexpression of HOXA1 correlates with poor prognosis in patients with hepatocellular carcinoma.
Zha, Tian-Zhou; Hu, Ben-Shun; Yu, Hai-Feng; Tan, Yong-Fei; Zhang, Yun; Zhang, Kai
2012-12-01
HOXA1 overexpression is sufficient for malignant transformation of nontumorigenic epithelial cells. It is known that HOXA1, which was upregulated in squamous cell carcinomas, affects both cell growth and death. The forced expression of HOXA1 in human breast cancer cells results in increased cell growth activity. However, it has not been reported in hepatocellular carcinoma (HCC). In this study, we used immunohistochemistry to compare HOXA1 protein expression in HCC and normal liver tissues and further analyzed HOXA1 protein expression in 156 clinicopathologically characterized HCC cases. We stably knocked down the endogenous expression level of HOXA1 in HepG2 cells with specific shRNA-expressing lentiviral vector. Following the successful establishment of stable cells, we examined in vitro cell growth by the MTT assay, anchorage-independent growth through a soft agar colony formation assay and cell migration/invasion by transwell and Boyden chamber assay. In addition, we also investigated in vivo tumor growth by xenograft transplantation of HepG2 cells into nude mice. Our results showed that the protein expression level of HOXA1 was markedly higher in HCC tissues than that in normal liver tissue (P = 0.019). In addition, a high expression level of HOXA1 protein was positively correlated with the T classification (P < 0.001), the N classification (P < 0.001), distant metastasis (P = 0.004), and the clinical stage (P < 0.001) of HCC patients. Patients with higher HOXA1 expression showed a significantly shorter overall survival time compared with patients with low HOXA1 expression. Multivariate analysis suggested that HOXA1 expression might be an independent prognostic indicator (P < 0.001) for the survival of patients with HCC. HOXA1-specific shRNA (shHOXA1) successfully knocked down HOXA1 endogenous expression in HepG2 cells. Compared to the parental and control shRNA-transfected (shCtrl) HepG2 cells, the shHOXA1 cells exhibited significantly reduced in vitro cell growth, anchorage-independent growth, and cell migration and invasion (P < 0.05). In vivo, the xenograft transplants from shHOXA1 cells gave rise to much smaller tumors compared with those from shCtrl cells. Collectively, high HOXA1 expression is associated with poor overall survival in patients with HCC. The downregulation of HOXA1 inhibits growth, anchorage-independent growth, and migration and invasion of HepG2 cells.
Socioeconomic status, hair cortisol and internalizing symptoms in parents and children.
Ursache, Alexandra; Merz, Emily C; Melvin, Samantha; Meyer, Jerrold; Noble, Kimberly G
2017-04-01
Socioeconomic disadvantage is consistently linked with higher risk for internalizing problems, and stress is likely one important mechanism explaining this increased risk. Few studies have examined socioeconomic differences in hair cortisol, a novel biomarker of long-term adrenocortical activity and chronic stress. Moreover, no studies have examined whether differences in hair cortisol might explain socioeconomic disparities in internalizing problems. To address these gaps, we first examined relations of socioeconomic status (SES; family income and parental education) to variation in both parents' and children's hair cortisol concentrations (HCC) and then tested whether HCC and perceptions of stress mediated relations of SES to parents' and children's internalizing symptoms. Participants were a socioeconomically diverse sample of 35 parents and 26 children (ages 5-7). Parents completed questionnaires, and hair samples were collected from parents and children. Parents reported on children's internalizing symptoms on average 2 years after the initial visit. Results demonstrated that lower parental education was associated with higher HCC for both parents and children. Effects for child HCC held even after controlling for parent HCC. Lower family income was associated with higher parent HCC, but not child HCC. This relation was nonlinear, such that the relation between HCC and income was strongest among the most disadvantaged parents. Furthermore, associations of SES with parental anxiety were significantly mediated by parental perceptions of stress and marginally mediated by parent HCC. These findings suggest that socioeconomic disadvantage is associated with greater accumulation of cortisol in hair in parents and children, and that both perceived and biological markers of stress capture important facets of the experiences that underlie socioeconomic disparities in adult anxiety. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Pengxiang; Kim, Michelle M; Doshi, Jalpa A
2010-08-20
The Centers for Medicare and Medicaid Services (CMS) has implemented the CMS-Hierarchical Condition Category (CMS-HCC) model to risk adjust Medicare capitation payments. This study intends to assess the performance of the CMS-HCC risk adjustment method and to compare it to the Charlson and Elixhauser comorbidity measures in predicting in-hospital and six-month mortality in Medicare beneficiaries. The study used the 2005-2006 Chronic Condition Data Warehouse (CCW) 5% Medicare files. The primary study sample included all community-dwelling fee-for-service Medicare beneficiaries with a hospital admission between January 1st, 2006 and June 30th, 2006. Additionally, four disease-specific samples consisting of subgroups of patients with principal diagnoses of congestive heart failure (CHF), stroke, diabetes mellitus (DM), and acute myocardial infarction (AMI) were also selected. Four analytic files were generated for each sample by extracting inpatient and/or outpatient claims for each patient. Logistic regressions were used to compare the methods. Model performance was assessed using the c-statistic, the Akaike's information criterion (AIC), the Bayesian information criterion (BIC) and their 95% confidence intervals estimated using bootstrapping. The CMS-HCC had statistically significant higher c-statistic and lower AIC and BIC values than the Charlson and Elixhauser methods in predicting in-hospital and six-month mortality across all samples in analytic files that included claims from the index hospitalization. Exclusion of claims for the index hospitalization generally led to drops in model performance across all methods with the highest drops for the CMS-HCC method. However, the CMS-HCC still performed as well or better than the other two methods. The CMS-HCC method demonstrated better performance relative to the Charlson and Elixhauser methods in predicting in-hospital and six-month mortality. The CMS-HCC model is preferred over the Charlson and Elixhauser methods if information about the patient's diagnoses prior to the index hospitalization is available and used to code the risk adjusters. However, caution should be exercised in studies evaluating inpatient processes of care and where data on pre-index admission diagnoses are unavailable.
MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Angela M.; Department of Pharmacology and Department of Surgery, National University of Singapore, Singapore 117597; Poon, Ronnie T.P.
2010-04-09
Hepatocellular carcinoma (HCC) is a malignant form of liver cancer that ranks the second leading cause of cancer-related deaths in China and many Asia regions. The dismal outcome reflects the need for a better understanding of the transcriptional control of oncogenic signaling pathway. Our recent findings have identified yes-associated protein (YAP) is a potent oncogenic driver and independent prognostic risk factor of HCC. The present study aims to elucidate the transcriptional regulation of YAP targeted by microRNA (miRNA). miR-375 is a putative target and was found significantly down-regulated in the tumor versus adjacent non-tumor tissues of HCC patients (n =more » 48). As determined by luciferase reporter assay, we found ectopic expression of miR-375 could diminish the transcriptional activity of YAP. Furthermore, immunoblotting revealed miR-375 suppressed endogenous YAP protein level. Functional assays showed that miR-375 was able to inhibit proliferation and invasion of HCC cells. Conclusion: miR-375 is an important regulator of YAP oncogene, implicating a potential therapeutic role in HCC treatment.« less
Minami, Yasunori; Kudo, Masatoshi
2009-12-31
The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.
Xue, Huiying; Yu, Zhaoyang; Liu, Yong; Yuan, Weigang; Yang, Tan; You, Jia; He, Xingxing; Lee, Robert J; Li, Lei; Xu, Chuanrui
2017-01-01
Multidrug resistance (MDR) due to overexpression of P-glycoprotein (P-gp) is a major obstacle that hinders the treatment of hepatocellular carcinoma (HCC). It has been shown that miR-375 inhibits P-gp expression via inhibition of astrocyte elevated gene-1 (AEG-1) expression in HCC, and induces apoptosis in HCC cells by targeting AEG-1 and YAP1. In this study, we prepared lipid-coated hollow mesoporous silica nanoparticles (LH) containing doxorubicin hydrochloride (DOX) and miR-375 (LHD/miR-375) to deliver the two agents into MDR HCC cells in vitro and in vivo. We found that LHD/miR-375 overcame drug efflux and delivered miR-375 and DOX into MDR HepG2/ADR cells or HCC tissues. MiR-375 delivered by LHD/miR-375 was taken up through phagocytosis and clathrin- and caveolae-mediated endocytosis. Following release from late endosomes, it repressed the expression of P-gp in HepG2/ADR cells. The synergistic effects of miR-375 and hollow mesoporous silica nanoparticles (HMSN) resulted in a profound increase in the uptake of DOX by the HCC cells and prevented HCC cell growth. Enhanced antitumor effects of LHD/miR-375 were also validated in HCC xenografts and primary tumors; however, no significant toxicity was observed. Mechanistic studies also revealed that miR-375 and DOX exerted a synergistic antitumor effect by promoting apoptosis. Our study illustrates that delivery of miR-375 using HMSN is a feasible approach to circumvent MDR in the management of HCC. It, therefore, merits further development for potential clinical application. PMID:28769563
Imaging Tiny Hepatic Tumor Xenografts via Endoglin-Targeted Paramagnetic/Optical Nanoprobe.
Yan, Huihui; Gao, Xihui; Zhang, Yunfei; Chang, Wenju; Li, Jianhui; Li, Xinwei; Du, Qin; Li, Cong
2018-05-23
Surgery is the mainstay for treating hepatocellular carcinoma (HCC). However, it is a great challenge for surgeons to identify HCC in its early developmental stage. The diagnostic sensitivity for a tiny HCC with a diameter less than 1.0 cm is usually as low as 10-33% for computed tomography (CT) and 29-43% for magnetic resonance imaging (MRI). Although MRI is the preferred imaging modality for detecting HCC, with its unparalleled spatial resolution for soft tissue, the commercially available contrast agent, such as Gd 3+ -DTPA, cannot accurately define HCC because of its short circulation lifetime and lack of tumor-targeting specificity. Endoglin (CD105), a type I membrane glycoprotein, is highly expressed both in HCC cells and in the endothelial cells of neovasculature, which are abundant at the tumor periphery. In this work, a novel single-stranded DNA oligonucleotide-based aptamer was screened by systematic evolution of ligands in an exponential enrichment assay and showed a high binding affinity ( K D = 98 pmol/L) to endoglin. Conjugating the aptamers and imaging reporters on a G5 dendrimer created an HCC-targeting nanoprobe that allowed the successful visualization of orthotopic HCC xenografts with diameters as small as 1-4 mm. Significantly, the invasive tumor margin was clearly delineated, with a tumor to normal ratio of 2.7 by near-infrared (NIR) fluorescence imaging and 2.1 by T 1 -weighted MRI. This multimodal nanoprobe holds promise not only for noninvasively defining tiny HCC by preoperative MRI but also for guiding tumor excision via intraoperative NIR fluorescence imaging, which will probably gain benefit for the patient's therapeutic response and improve the survival rate.
Cai, Xue-Fei; Zhang, Wen-Lu; Ren, Ji-Hua; Zhou, Li; Chen, Xiang; Chen, Ke; Li, Wan-Yu; Liu, Bo; Yang, Qiu-Xia; Cheng, Sheng-Tao; Huang, Li-Xia; Huang, Ai-Long; Chen, Juan
2016-01-01
SIRT3, a class III histone deacetylase, has been implicated in various cancers as a novel therapeutic target. In hepatocellular carcinoma (HCC), we previously reported that SIRT3 induced cell apoptosis by regulating GSK-3β/Bax signaling pathway. Downregulation of SIRT3 in HCC cells facilitates tumor cell survival. In this study, we found that chemotherapeutic agents (doxorubicin, cisplatin and epirubicin) and sorafenib treatment downregulated SIRT3 mRNA and protein levels in three HCC cell lines. MTS assay found that SIRT3 overexpression sensitized liver cancer cells to chemotherapeutic agents and sorafenib in SMMC-7721, Huh-7 and PLC/PRF/5 cell lines. Moreover, SIRT3 overexpression promoted chemotherapeutic agents-induced or sorafenib-induced apoptosis as evidenced by flow cytometry, enhanced PARP cleavage and enhanced Caspase-9 cleavage in three HCC cells. In contrast, SIRT3 silencing increased drug resistance of HCC cells to chemotherapeutic agents. Mechanistic study found that SIRT3 downregulated the mRNA and protein levels of glutathione S-transferase pi 1 (GSTP1), which is a member of phase II detoxification enzymes families involved in metabolizing for chemotherapeutic agents. Moreover, SIRT3 decreased the amount of GSTP1 that was associated with JNK, which finally contributed the activation of JNK activity and activation of downstream target c-Jun and Bim. Importantly, GSTP1 overexpression or JNK inhibitor abolished SIRT3-induced apoptosis in HCC cells exposed to chemotherapeutic agents. Finally, there was a negative correlation between SIRT3 expression and GSTP1 expression in human HCC tissues. Together, our findings revealed SIRT3 could enhance the drug sensitivity of HCC cells to an array of chemotherapeutic agents. SIRT3 may serve as a potential target for improving the chemosensitivity of HCC patients. PMID:27367026
Tao, Na-Na; Zhou, Hong-Zhong; Tang, Hua; Cai, Xue-Fei; Zhang, Wen-Lu; Ren, Ji-Hua; Zhou, Li; Chen, Xiang; Chen, Ke; Li, Wan-Yu; Liu, Bo; Yang, Qiu-Xia; Cheng, Sheng-Tao; Huang, Li-Xia; Huang, Ai-Long; Chen, Juan
2016-08-02
SIRT3, a class III histone deacetylase, has been implicated in various cancers as a novel therapeutic target. In hepatocellular carcinoma (HCC), we previously reported that SIRT3 induced cell apoptosis by regulating GSK-3β/Bax signaling pathway. Downregulation of SIRT3 in HCC cells facilitates tumor cell survival. In this study, we found that chemotherapeutic agents (doxorubicin, cisplatin and epirubicin) and sorafenib treatment downregulated SIRT3 mRNA and protein levels in three HCC cell lines. MTS assay found that SIRT3 overexpression sensitized liver cancer cells to chemotherapeutic agents and sorafenib in SMMC-7721, Huh-7 and PLC/PRF/5 cell lines. Moreover, SIRT3 overexpression promoted chemotherapeutic agents-induced or sorafenib-induced apoptosis as evidenced by flow cytometry, enhanced PARP cleavage and enhanced Caspase-9 cleavage in three HCC cells. In contrast, SIRT3 silencing increased drug resistance of HCC cells to chemotherapeutic agents. Mechanistic study found that SIRT3 downregulated the mRNA and protein levels of glutathione S-transferase pi 1 (GSTP1), which is a member of phase II detoxification enzymes families involved in metabolizing for chemotherapeutic agents. Moreover, SIRT3 decreased the amount of GSTP1 that was associated with JNK, which finally contributed the activation of JNK activity and activation of downstream target c-Jun and Bim. Importantly, GSTP1 overexpression or JNK inhibitor abolished SIRT3-induced apoptosis in HCC cells exposed to chemotherapeutic agents. Finally, there was a negative correlation between SIRT3 expression and GSTP1 expression in human HCC tissues. Together, our findings revealed SIRT3 could enhance the drug sensitivity of HCC cells to an array of chemotherapeutic agents. SIRT3 may serve as a potential target for improving the chemosensitivity of HCC patients.
Song, Yeonhwa; Kim, Jin-Sun; Kim, Se-Hyuk; Park, Yoon Kyung; Yu, Eunsil; Kim, Ki-Hun; Seo, Eul-Ju; Oh, Heung-Bum; Lee, Han Chu; Kim, Kang Mo; Seo, Haeng Ran
2018-05-25
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and has poor prognosis. Specially, patients with HCC usually have poor tolerance of systemic chemotherapy, because HCCs develop from chronically damaged tissue that contains considerable inflammation, fibrosis, and cirrhosis. Since HCC exhibits highly heterogeneous molecular characteristics, a proper in vitro system is required for the study of HCC pathogenesis. To this end, we have established two new hepatitis B virus (HBV) DNA-secreting HCC cell lines from infected patients. Based on these two new HCC cell lines, we have developed chemosensitivity assays for patient-derived multicellular tumor spheroids (MCTSs) in order to select optimized anti-cancer drugs to provide more informative data for clinical drug application. To monitor the effect of the interaction of cancer cells and stromal cells in MCTS, we used a 3D co-culture model with patient-derived HCC cells and stromal cells from human hepatic stellate cells, human fibroblasts, and human umbilical vein endothelial cells to facilitate screening for optimized cancer therapy. To validate our system, we performed a comparison of chemosensitivity of the three culture systems, which are monolayer culture system, tumor spheroids, and MCTSs of patient-derived cells, to sorafenib, 5-fluorouracil, and cisplatin, as these compounds are typically standard therapy for advanced HCC in South Korea. In summary, these findings suggest that the MCTS culture system is the best methodology for screening for optimized treatment for each patients with HCC, because tumor spheroids not only mirror the 3D cellular context of the tumors but also exhibit therapeutically relevant pathophysiological gradients and heterogeneity of in vivo tumors.
Zhang, Xin; Ye, Zhi-Hua; Liang, Hai-Wei; Ren, Fang-Hui; Li, Ping; Dang, Yi-Wu; Chen, Gang
2017-04-01
Our previous research has demonstrated that miR-146a-5p is down-regulated in hepatocellular carcinoma (HCC) and might play a tumor-suppressive role. In this study, we sought to validate the decreased expression with a larger cohort and to explore potential molecular mechanisms. GEO and TCGA databases were used to gather miR-146a-5p expression data in HCC, which included 762 HCC and 454 noncancerous liver tissues. A meta-analysis of the GEO-based microarrays, TCGA-based RNA-seq data, and additional qRT-PCR data validated the down-regulation of miR-146a-5p in HCC and no publication bias was observed. Integrated genes were generated by overlapping miR-146a-5p-related genes from predicted and formerly reported HCC-related genes using natural language processing. The overlaps were comprehensively analyzed to discover the potential gene signatures, regulatory pathways, and networks of miR-146a-5p in HCC. A total of 251 miR-146a-5p potential target genes were predicted by bioinformatics platforms and 104 genes were considered as both HCC- and miR-146a-5p-related overlaps. RAC1 was the most connected hub gene for miR-146a-5p and four pathways with high enrichment (VEGF signaling pathway, adherens junction, toll-like receptor signaling pathway, and neurotrophin signaling pathway) were denoted for the overlapped genes. The down-regulation of miR-146a-5p in HCC has been validated with the most complete data possible. The potential gene signatures, regulatory pathways, and networks identified for miR-146a-5p in HCC could prove useful for molecular-targeted diagnostics and therapeutics.
Li, Feng; Wang, Feiran; Zhu, Changlai; Wei, Qun; Zhang, Tianyi; Zhou, You Lang
2018-01-01
MicroRNA-221(miR-221) is frequently dysregulated in cancer. The purpose of this study was to explore whether miR-221 can be used as a potential diagnostic marker or therapeutic target for hepatocellular carcinoma (HCC). In this study, we investigated whether miR-221 expression was associated with clini-copathological characteristics and prognosis in HCC patients, and we developed a nanoparticle-based miRNA delivery system and detected its therapeutic efficacy in vitro and in vivo. We found that miR-221 was upregulated in HCC tissues, cell lines and blood of HCC patients. Upregulated miR-221 was associated with clinical TNM stage and tumor capsular infiltration, and showed poor prognosis, suggesting that its suppression could serve as an effective approach for hepatocellular carcinoma therapy. Treatment of HCC cells with nanoparticle/miR-221 inhibitor complexes suppressed their growth, colony formation ability, migration and invasion. In vivo, the growth of the tumors treated by the nanoparticle/miR-221 inhibitor complexes were significantly less than those treated by the nanoparticle/miRNA scramble complexes. In addition, circulating miR-221 may act as a potential tumor biomarker for early diagnosis of HCC, and combined serum miR-221 and AFP detection gave a better performance than individual detection in early diagnosis of HCC. These findings suggest that a nanoparticle-based miRNA delivery system could potentially serve as a safe and effective treatment and miR-221 could also be a potential diagnostic marker for HCC.
You, Yang; Zheng, Qiongdan; Dong, Yinying; Wang, Yaohui; Zhang, Lan; Xue, Tongchun; Xie, Xiaoying; Hu, Chao; Wang, Zhiming; Chen, Rongxin; Wang, Yanhong; Cui, Jiefeng; Ren, Zhenggang
2015-01-01
Increased stromal stiffness is associated with hepatocellular carcinoma (HCC) development and progression. However, the molecular mechanism by which matrix stiffness stimuli modulate HCC progress is largely unknown. In this study, we explored whether matrix stiffness-mediated effects on osteopontin (OPN) expression occur in HCC cells. We used a previously reported in vitro culture system with tunable matrix stiffness and found that OPN expression was remarkably upregulated in HCC cells with increasing matrix stiffness. Furthermore, the phosphorylation level of GSK3β and the expression of nuclear β-catenin were also elevated, indicating that GSK3β/β-catenin pathway might be involved in OPN regulation. Knock-down analysis of integrin β1 showed that OPN expression and p-GSK3β level were downregulated in HCC cells grown on high stiffness substrate compared with controls. Simultaneously, inhibition of GSK-3β led to accumulation of β-catenin in the cytoplasm and its enhanced nuclear translocation, further triggered the rescue of OPN expression, suggesting that the integrin β1/GSK-3β/β-catenin pathway is specifically activated for matrix stiffness-mediated OPN upregulation in HCC cells. Tissue microarray analysis confirmed that OPN expression was positively correlated with the expression of LOX and COL1. Taken together, high matrix stiffness upregulated OPN expression in HCC cells via the integrin β1/GSK-3β/β-catenin signaling pathway. It highlights a new insight into a pathway involving physical mechanical signal and biochemical signal molecules which contributes to OPN expression in HCC cells.
Motoyama, Hiroyuki; Tamori, Akihiro; Kubo, Shoji; Uchida-Kobayashi, Sawako; Takemura, Shigekazu; Tanaka, Shogo; Ohfuji, Satoko; Teranishi, Yuga; Kozuka, Ritsuzo; Kawamura, Etsushi; Hagihara, Atsushi; Morikawa, Hiroyasu; Enomoto, Masaru; Murakami, Yoshiki; Kawada, Norifumi
2018-01-01
Background Hepatocellular carcinoma (HCC) develops in some patients who achieve sustained virological response (SVR) against hepatitis C virus (HCV) infection via anti-HCV therapy. To examine the pathogenesis of HCC development after HCV eradication, histopathological changes and clinical markers were evaluated in SVR patients. Methods Of 654 SVR patients treated with interferon (IFN)-based therapies, 34 patients who had undergone liver biopsy before initiating IFN therapy and after SVR achievement were enrolled: 11 patients with HCC and 23 patients without HCC (male/female, 9/2 and 8/15, respectively: age, 58 ± 5 and 54 ± 11 years, respectively). We compared the clinical and histopathological factors between the two groups. Immunohistochemistry for Cytoglobin (CYGB) and α smooth muscle actin (α-SMA) was also performed. Results At baseline, prior to initiating the IFN-based therapy, there were significant differences between the SVR-non-HCC and SVR-HCC groups in the male gender, HBc antibody positivity, prothrombin activity, and histological inflammatory grade. Histopathological evaluation, using the new Inuyama classification system, revealed an improvement in the inflammatory grade, from 2.1 ± 0.6 to 1.0 ± 0.6 (p < 0.0001), whereas the fibrosis stage remained unchanged, from 2.3 ± 0.9 to 2.0 ± 1.2 (p = 0.2749), during the 97 ± 72-month observation period in the SVR-HCC group. Both the grade and stage scores were significantly improved in the SVR-non-HCC group. The area of collagen deposition, evaluated using Sirius red staining, showed a marked decrease, from 18.6 ± 7.6% to 7.7 ± 4.6%, in the SVR-non-HCC group, with no change in the SVR-HCC group. CYGB- and α-SMA-positive hepatic stellate cells (HSCs), indicative of the HSC activated phenotype, remained in the fibrotic tissue of livers among patients in the SVR-HCC group. Conclusion Stagnation of fibrosis regression is associated with a high risk for HCC after SVR. HSC activation may inhibit improvement in fibrosis after SVR and potentially contribute to hepatocarcinogenesis. PMID:29534101
S-ADENOSYLMETHIONINE IN LIVER HEALTH, INJURY, AND CANCER
Lu, Shelly C.; Mato, José M.
2013-01-01
S-adenosylmethionine (AdoMet, also known as SAM and SAMe) is the principal biological methyl donor synthesized in all mammalian cells but most abundantly in the liver. Biosynthesis of AdoMet requires the enzyme methionine adenosyltransferase (MAT). In mammals, two genes, MAT1A that is largely expressed by normal liver and MAT2A that is expressed by all extrahepatic tissues, encode MAT. Patients with chronic liver disease have reduced MAT activity and AdoMet levels. Mice lacking Mat1a have reduced hepatic AdoMet levels and develop oxidative stress, steatohepatitis, and hepatocellular carcinoma (HCC). In these mice, several signaling pathways are abnormal that can contribute to HCC formation. However, injury and HCC also occur if hepatic AdoMet level is excessive chronically. This can result from inactive mutation of the enzyme glycine N-methyltransferase (GNMT). Children with GNMT mutation have elevated liver transaminases, and Gnmt knockout mice develop liver injury, fibrosis, and HCC. Thus a normal hepatic AdoMet level is necessary to maintain liver health and prevent injury and HCC. AdoMet is effective in cholestasis of pregnancy, and its role in other human liver diseases remains to be better defined. In experimental models, it is effective as a chemopreventive agent in HCC and perhaps other forms of cancer as well. PMID:23073625
Kim, Yeonghwan; Jang, Miran; Lim, Sangbin; Won, Hyeran; Yoon, Kyung-Sik; Park, Jae-Hoon; Kim, Hyo Jong; Kim, Byung-Ho; Park, Won-Sang; Ha, Joohun; Kim, Sung-Soo
2011-11-01
Cyclophilin B (CypB) performs diverse roles in living cells, but its role in hepatocellular carcinoma (HCC) is largely unclear. To reveal its role in HCC, we investigated the induction of CypB under hypoxia and its functions in tumor cells in vitro and in vivo. Here, we demonstrated that hypoxia-inducible factor 1α (HIF-1α) induces CypB under hypoxia. Interestingly, CypB protected tumor cells, even p53-defective HCC cells, against hypoxia- and cisplatin-induced apoptosis. Furthermore, it regulated the effects of HIF-1α, including those in angiogenesis and glucose metabolism, via a positive feedback loop with HIF-1α. The tumorigenic and chemoresistant effects of CypB were confirmed in vivo using a xenograft model. Finally, we showed that CypB is overexpressed in 78% and 91% of the human HCC and colon cancer tissues, respectively, and its overexpression in these cancers reduced patient survival. These results indicate that CypB induced by hypoxia stimulates the survival of HCC via a positive feedback loop with HIF-1α, indicating that CypB is a novel candidate target for developing chemotherapeutic agents against HCC and colon cancer. Copyright © 2011 American Association for the Study of Liver Diseases.
Liu, Shuang; Zhu, Pengfei; Zhang, Ling; Ding, Shanlong; Zheng, Sujun; Wang, Yang; Lu, Fengmin
2013-01-01
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) has been widely used to quantify relative gene expression because of the high specificity, sensitivity and accuracy of this technique. However, its reliability is strongly depends on the expression stability of reference gene used for data normalization. Therefore, identification of reliable and condition specific reference genes is critical for the success of RT-qPCR. Hepatitis B virus (HBV) infection, male gender and the presence of cirrhosis are widely recognized as the leading independent risk factors for the development of hepatocellular carcinoma (HCC). This study aimed to select reliable reference gene for RT-qPCR analysis in HCC patients with all of those risk factors. Six candidate reference genes were analyzed in 33 paired tumor and non-tumor tissues from untreated HCC patients. The genes expression stabilities were assessed by geNorm and NormFinder. C-terminal binding protein 1(CTBP1) was the most stable gene among the 6 candidate genes evaluated by both geNorm and NormFinder. The expression stability values were 0.08 for CTBP1 and UBC, 0.09 for HPRT1, 0.12 for HMBS, 0.14 for GAPDH and 0.18 for 18S with geNorm analysis. The stability values suggested by NormFinder software were CTBP1: 0.044, UBC: 0.063, HMBS: 0.072, HPRT1: 0.072, GAPDH: 0.098 and 18S rRNA: 0.161. This is the first systematic analysis which suggested CTBP1 as the highest expression-stable gene in human male HBV infection related-HCC with cirrhosis. We recommend CTBP1 as the best candidate reference gene when RT-qPCR was used to determine gene(s) expression in HCC. This may facilitate the relevant HBV related HCC studies in the future.
Van Renne, Nicolaas; Roca Suarez, Armando Andres; Duong, Francois H T; Gondeau, Claire; Calabrese, Diego; Fontaine, Nelly; Ababsa, Amina; Bandiera, Simonetta; Croonenborghs, Tom; Pochet, Nathalie; De Blasi, Vito; Pessaux, Patrick; Piardi, Tullio; Sommacale, Daniele; Ono, Atsushi; Chayama, Kazuaki; Fujita, Masashi; Nakagawa, Hidewaki; Hoshida, Yujin; Zeisel, Mirjam B; Heim, Markus H; Baumert, Thomas F; Lupberger, Joachim
2018-05-01
HCV infection is a leading risk factor of hepatocellular carcinoma (HCC). However, even after viral clearance, HCC risk remains elevated. HCV perturbs host cell signalling to maintain infection, and derailed signalling circuitry is a key driver of carcinogenesis. Since protein phosphatases are regulators of signalling events, we aimed to identify phosphatases that respond to HCV infection with relevance for hepatocarcinogenesis. We assessed mRNA and microRNA (miRNA) expression profiles in primary human hepatocytes, liver biopsies and resections of patients with HCC, and analysed microarray and RNA-seq data from paired liver biopsies of patients with HCC. We revealed changes in transcriptional networks through gene set enrichment analysis and correlated phosphatase expression levels to patient survival and tumour recurrence. We demonstrate that tumour suppressor protein tyrosine phosphatase receptor delta (PTPRD) is impaired by HCV infection in vivo and in HCC lesions of paired liver biopsies independent from tissue inflammation or fibrosis. In liver tissue adjacent to tumour, high PTPRD levels are associated with a dampened transcriptional activity of STAT3, an increase of patient survival from HCC and reduced tumour recurrence after surgical resection. We identified miR-135a-5p as a mechanistic regulator of hepatic PTPRD expression in patients with HCV. We previously demonstrated that STAT3 is required for HCV infection. We conclude that HCV promotes a STAT3 transcriptional programme in the liver of patients by suppressing its regulator PTPRD via upregulation of miR-135a-5p. Our results show the existence of a perturbed PTPRD-STAT3 axis potentially driving malignant progression of HCV-associated liver disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Identification and characterization of a novel human hepatocellular carcinoma-associated gene
Wang, Z-X; Wang, H-Y; Wu, M-C
2001-01-01
To investigate liver cancer-associated genes and to explore the molecular basis of liver cancer genesis, we have cloned a novel hepatocellular carcinoma (HCC)-related gene with a transcript of 2520 base pairs in length named HCCA2 by mRNA differential display polymerase chain reaction (DDPCR) and screening a placenta cDNA library. No significant homologous protein with known genes was found. Western blot analysis showed that HCCA2 could be expressed in transfected 293 cells. Northern hybridization analysis showed that HCCA2 mRNA was expressed in 79% (34/43) patients with HCC, most of whom had significantly high expression in HCC tissues, while not expressed in corresponding noncancerous liver tissues. The clinical pathological data showed that the HCCA2 was significantly associated with the invasion of tumour capsule (P= 0.0007) and the expression of ki-67 protein (P= 0.0022). Immunohistochemical staining confirmed that the HCCA2 protein was localized in cytoplasm of liver cancer tissues. According to amino acid analysis of the protein and its localization, it may play a role in a cascade of intracellular signal transduction because the protein was characterized with two Src homology 3 (SH3) binding-domains and several functional motifs of phophorylation. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11710830
Zhang, Aiying; Yin, Chengzeng; Wang, Zhenshun; Zhang, Yonghong; Zhao, Yuanshun; Li, Ang; Sun, Huanqin; Lin, Dongdong; Li, Ning
2016-12-01
Objective To develop a simple, effective, time-saving and low-cost fluorescence protein microarray method for detecting serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC). Method Non-contact piezoelectric print techniques were applied to fluorescence protein microarray to reduce the cost of prey antibody. Serum samples from patients with HCC and healthy control subjects were collected and evaluated for the presence of AFP using a novel fluorescence protein microarray. To validate the fluorescence protein microarray, serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA). Results A total of 110 serum samples from patients with HCC ( n = 65) and healthy control subjects ( n = 45) were analysed. When the AFP cut-off value was set at 20 ng/ml, the fluorescence protein microarray had a sensitivity of 91.67% and a specificity of 93.24% for detecting serum AFP. Serum AFP quantified via fluorescence protein microarray had a similar diagnostic performance compared with ELISA in distinguishing patients with HCC from healthy control subjects (area under receiver operating characteristic curve: 0.906 for fluorescence protein microarray; 0.880 for ELISA). Conclusion A fluorescence protein microarray method was developed for detecting serum AFP in patients with HCC.
Zhang, Aiying; Yin, Chengzeng; Wang, Zhenshun; Zhang, Yonghong; Zhao, Yuanshun; Li, Ang; Sun, Huanqin; Lin, Dongdong
2016-01-01
Objective To develop a simple, effective, time-saving and low-cost fluorescence protein microarray method for detecting serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC). Method Non-contact piezoelectric print techniques were applied to fluorescence protein microarray to reduce the cost of prey antibody. Serum samples from patients with HCC and healthy control subjects were collected and evaluated for the presence of AFP using a novel fluorescence protein microarray. To validate the fluorescence protein microarray, serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA). Results A total of 110 serum samples from patients with HCC (n = 65) and healthy control subjects (n = 45) were analysed. When the AFP cut-off value was set at 20 ng/ml, the fluorescence protein microarray had a sensitivity of 91.67% and a specificity of 93.24% for detecting serum AFP. Serum AFP quantified via fluorescence protein microarray had a similar diagnostic performance compared with ELISA in distinguishing patients with HCC from healthy control subjects (area under receiver operating characteristic curve: 0.906 for fluorescence protein microarray; 0.880 for ELISA). Conclusion A fluorescence protein microarray method was developed for detecting serum AFP in patients with HCC. PMID:27885040
Sideras, Kostandinos; Biermann, Katharina; Verheij, Joanne; Takkenberg, Bart R; Mancham, Shanta; Hansen, Bettina E; Schutz, Hannah M; de Man, Robert A; Sprengers, Dave; Buschow, Sonja I; Verseput, Maddy C M; Boor, Patrick P C; Pan, Qiuwei; van Gulik, Thomas M; Terkivatan, Turkan; Ijzermans, Jan N M; Beuers, Ulrich H W; Sleijfer, Stefan; Bruno, Marco J; Kwekkeboom, Jaap
2017-01-01
Novel systemic treatments for hepatocellular carcinoma (HCC) are strongly needed. Immunotherapy is a promising strategy that can induce specific antitumor immune responses. Understanding the mechanisms of immune resistance by HCC is crucial for development of suitable immunotherapeutics. We used immunohistochemistry on tissue-microarrays to examine the co-expression of the immune inhibiting molecules PD-L1, Galectin-9, HVEM and IDO, as well as tumor CD8 + lymphocyte infiltration in HCC, in two independent cohorts of patients. We found that at least some expression in tumor cells was seen in 97% of cases for HVEM, 83% for PD-L1, 79% for Gal-9 and 66% for IDO. In the discovery cohort (n = 94), we found that lack of, or low, tumor expression of PD-L1 ( p < 0.001), Galectin-9 ( p < 0.001) and HVEM ( p < 0.001), and low CD8 + TIL count ( p = 0.016), were associated with poor HCC-specific survival. PD-L1, Galectin-9 and CD8 + TIL count were predictive of HCC-specific survival independent of baseline clinicopathologic characteristics and the combination of these markers was a powerful predictor of HCC-specific survival (HR 0.29; p <0.001). These results were confirmed in the validation cohort (n = 60). We show that low expression levels of PD-L1 and Gal-9 in combination with low CD8 + TIL count predict extremely poor HCC-specific survival and it requires a change in two of these parameters to significantly improve prognosis. In conclusion, intra-tumoral expression of these immune inhibiting molecules was observed in the majority of HCC patients. Low expression of PD-L1 and Galectin-9 and low CD8 + TIL count are associated with poor HCC-specific survival. Combining immune biomarkers leads to superior predictors of HCC mortality.
Annexin A1: A new immunohistological marker of cholangiocarcinoma
Hongsrichan, Nuttanan; Rucksaken, Rucksak; Chamgramol, Yaovalux; Pinlaor, Porntip; Techasen, Anchalee; Yongvanit, Puangrat; Khuntikeo, Narong; Pairojkul, Chawalit; Pinlaor, Somchai
2013-01-01
AIM: To evaluate a new immunohistological marker, annexin A1 (ANXA1), in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC). METHODS: Expression of ANXA1 protein was investigated in liver tissues from patients with CCA and HCC by immunohistochemistry. Its expression on differences stages of tumor development was investigated in hamster CCA tissues induced by Opisthorchis viverrini and N-nitrosodimethylamine. Moreover, mRNA expression of ANXA1 was assessed in CCA cell lines by quantitative real-time polymerase chain reaction and silencing of ANXA1 gene expression using small interfering RNA. RESULTS: In human CCA tissue arrays, immunohistochemical analysis revealed that the positive expression of ANXA1 was 94.1% (64/68 cases) consisting of a high expression (66.2%, 45/68 cases) and a low expression (33.8%, 23/68 cases). However, expression of ANXA1 protein was negative in all histologic patterns for HCC (46/46 cases) and healthy individuals (6/6 cases). In hamster with opisthorchiasis-associated CCA, the expression of ANXA1 was observed in the cytoplasm of inflammatory cells, bile duct epithelia and tumor cells. Grading scores of ANXA1 expression were significantly increased with tumor progression. In addition, mRNA expression of ANXA1 significantly increased in all of the various CCA cell lines tested compared to an immortalized human cholangiocyte cell line (MMNK1). Suppressing the ANXA1 gene significantly reduced the matrix metalloproteinase (MMP) 2 and MMP9, and transforming growth factor-β genes, but increased nuclear factor-κB gene expression. CONCLUSION: ANXA1 is highly expressed in CCA, but low in HCC, suggesting it may serve as a new immunohistochemical marker of CCA. ANXA1 may play a role in opisthorchiasis-associated cholangiocarcinogenesis. PMID:23674846
Zhong, Huiqin; Xiao, Mengqing; Zarkovic, Kamelija; Zhu, Mingjiang; Sa, Rina; Lu, Jianhong; Tao, Yongzhen; Chen, Qun; Xia, Lin; Cheng, Shuqun; Waeg, Georg; Zarkovic, Neven; Yin, Huiyong
2017-01-01
Altered redox status in cancer cells has been linked to lipid peroxidation induced by reactive oxygen species (ROS) and subsequent formation of reactive lipid electrophiles, especially 4-hydroxy-nonenal (4-HNE). Emerging evidence suggests that cancer cells manipulate redox status to acquire anti-apoptotic phenotype but the underlying mechanisms are poorly understood. Cardiolipin (CL), a mitochondria-specific inner membrane phospholipid, is critical for maintaining mitochondrial function. Paradoxically, liver tissues contain tetralinoleoyl cardiolipin (TLCL) as the major CL in mitochondria yet emerging evidence suggests that ROS generated in mitochondria may lead to CL peroxidation and activation of intrinsic apoptosis. It remains unclear how CL oxidation leads to apoptosis and its relevance to the pathogenesis of hepatocellular carcinoma (HCC). We employed a mass spectrometry-based lipidomic approach to profile lipids in human tissues of HCC and found that CL was gradually decreased in tumor comparing to peripheral non-cancerous tissues, accompanied by a concomitant decrease of oxidized CL and its oxidation product, 4-HNE. Incubation of liver cancer cells with TLCL significantly restored apoptotic sensitivity accompanied by an increase of CL and its oxidation products when treated with staurosporine (STS) or Sorafenib (the standard treatment for late stage HCC patients). Our studies uncovered a novel mechanism by which cancer cells adopt to evade apoptosis, highlighting the importance of mitochondrial control of apoptosis through modulation of CL oxidation and subsequent 4-HNE formation in HCC. Thus manipulation of mitochondrial CL oxidation and lipid electrophile formation may have potential therapeutic value for diseases linked to oxidative stress and mitochondrial dysfunctions. Copyright © 2016 Elsevier Inc. All rights reserved.
Ong, Tina H.; Subramaniam, Aruljothi; Siveen, Kodappully Sivaraman; Perumal, Ekambaram; Samy, Ramar Perumal; Bist, Pradeep; Lim, Lina H. K.; Kumar, Alan Prem; Hui, Kam M.; Sethi, Gautam
2013-01-01
Accumulating evidence(s) indicate that CXCL12-CXCR4 signaling cascade plays an important role in the process of invasion and metastasis that accounts for more than 80% of deaths in hepatocellular carcinoma (HCC) patients. Thus, identification of novel agents that can downregulate CXCR4 expression and its associated functions have a great potential in the treatment of metastatic HCC. In the present report, we investigated an anthraquinone derivative, emodin for its ability to affect CXCR4 expression as well as function in HCC cells. We observed that emodin downregulated the expression of CXCR4 in a dose-and time-dependent manner in HCC cells. Treatment with pharmacological proteasome and lysosomal inhibitors did not have substantial effect on emodin-induced decrease in CXCR4 expression. When investigated for the molecular mechanism(s), it was observed that the suppression of CXCR4 expression was due to downregulation of mRNA expression, inhibition of NF-κB activation, and abrogation of chromatin immunoprecipitation activity. Inhibition of CXCR4 expression by emodin further correlated with the suppression of CXCL12-induced migration and invasion in HCC cell lines. In addition, emodin treatment significantly suppressed metastasis to the lungs in an orthotopic HCC mice model and CXCR4 expression in tumor tissues. Overall, our results show that emodin exerts its anti-metastatic effect through the downregulation of CXCR4 expression and thus has the potential for the treatment of HCC. PMID:23472074
miR-125/Pokemon auto-circuit contributes to the progression of hepatocellular carcinoma.
Kong, Jing; Liu, Xiaoping; Li, Xiangqian; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang
2016-01-01
Hepatocellular carcinoma (HCC) is a type of human malignant tumor occurring in hepatic tissues with high mortality. Patients benefit little from current therapeutic modalities, at least partially due to the lack of complete elucidation of molecular network regulating HCC. miR-125 and Pokemon are well-recognized tumor suppressor and oncogenes for HCC, respectively. However, the underlying mechanism by which the two genes exert their functions and the relationship between miR-125 and Pokemon is still unexplored yet. In this study, we found that there is an inverse association between miR-125 and Pokemon expression levels in HCC specimen and cell lines. Online database mining indicated that there are three putative mRNA recognition elements (MREs) of miR-125 within 3' untranslated region (3'UTR) of Pokemon. MREs of miR-125 confer the expression of luciferase with a miR-125-dependent fashion. The alteration in miR-125 abundance regulates the expression of Pokemon at both protein and mRNA levels. Overexpression of Pokemon is able to abrogate the inhibitory effect of miR-125 on HCC progression. Further study showed that Pokemon inhibits the expression of miR-125 by binding of recognition sites within its promoter. In conclusion, we found that there is an auto-regulatory circuit consisting of miR-125 and Pokemon, which promotes the progression of HCC and may be a promising therapeutic target in clinical HCC treatment.
Lu, Yu; Li, Shan; Ma, Liping; Li, Yan; Zhang, Xiaolian; Peng, Qiliu; Mo, Cuiju; Huang, Li; Qin, Xue; Liu, Yinkun
2016-01-01
Macrophages play important roles in the tumor microenvironment, driving cancer progression and metastasis, particularly in hepatocellular carcinoma (HCC). However, few studies have assessed the exact secretome composition in HCC. In the present study, the impact of different phenotype of macrophages on HCC cells was investigated. Alternatively activated macrophages (M2) were found to significantly increase the proliferation, migration, and invasion abilities of SMMC7721 cells (all P < 0.05). M2 were then co-cultured with SMMC7721 cells to reconstruct the tumor microenvironment. Conditioned medium from 3D single cultures of M2, SMMC7721 cells, and their co-culture system were analyzed using quantitative proteomics via iTRAQ labeling combined with mass spectrometric analysis. Secretome analysis revealed a total of 159 differential secreted proteins in the co-culture system compared to the single culture systems, with 63 being up-regulated (>1.3-fold) and 96 down-regulated (<0.7-fold). CXCL2 was confirmed to have higher expression in the co-culture system and HCC tissues, and was selected for further investigation. Functional effects data suggested that recombinant human CXCL2 significantly enhanced the migration, invasion ability of SMMC7721 cells, and weakened adhesion ability. While CXCL2 neutralization and CXCR2 blockage significantly inhibited the effects of CXCL2 on SMMC7721 cells, indicating that CXCL2 may play pivotal role in HCC metastasis. PMID:27117207
Squamous cell carcinoma antigen in human liver carcinogenesis.
Guido, M; Roskams, T; Pontisso, P; Fassan, M; Thung, S N; Giacomelli, L; Sergio, A; Farinati, F; Cillo, U; Rugge, M
2008-04-01
Squamous cell carcinoma antigen (SCCA) is a serine protease inhibitor that can be overexpressed in hepatocellular carcinoma (HCC) at both molecular and protein level, but no data are available on its expression in pre-malignant stages. To assess SCCA expression by immunohistochemistry in HCC and its nodular precursors in cirrhotic livers. 55 nodules from 42 explanted livers were evaluated: 7 large regenerative nodules (LRNs), 7 low-grade dysplastic nodules (LG-DNs), 10 high-grade DNs (HG-DNs), and 31 HCC. SCCA expression was semiquantitatively scored on a four-tiered scale. SCCA hepatocyte immunostaining was always restricted to the cytoplasm, mainly exhibiting a granular pattern. Stain intensity varied, ranging from weak to very strong. Within the nodules, positive cells were unevenly distributed, either scattered or in irregular clusters. The prevalence of SCCA expression was 29% in LRNs, 100% in DNs and 93% in HCC. A significant difference emerged in both prevalence and score for LRNs versus LG-DNs (p<0.039), HG-DNs (p = 0.001), and HCC (p = 0.000). A barely significant difference (p = 0.49) was observed between LG-DNs and HG-DNs, while no difference in SCCA expression was detected between HG-DNs and HCC. Cirrhotic tissue adjacent to the nodules was positive in 96% of cases, with a significant difference in the score (p = 0.000) between hepatocytes adjacent to HCC and those surrounding LRNs. This study provides the first evidence that aberrant SCCA expression is an early event in liver cell carcinomatous transformation.
Lu, Yu; Li, Shan; Ma, Liping; Li, Yan; Zhang, Xiaolian; Peng, Qiliu; Mo, Cuiju; Huang, Li; Qin, Xue; Liu, Yinkun
2016-04-27
Macrophages play important roles in the tumor microenvironment, driving cancer progression and metastasis, particularly in hepatocellular carcinoma (HCC). However, few studies have assessed the exact secretome composition in HCC. In the present study, the impact of different phenotype of macrophages on HCC cells was investigated. Alternatively activated macrophages (M2) were found to significantly increase the proliferation, migration, and invasion abilities of SMMC7721 cells (all P < 0.05). M2 were then co-cultured with SMMC7721 cells to reconstruct the tumor microenvironment. Conditioned medium from 3D single cultures of M2, SMMC7721 cells, and their co-culture system were analyzed using quantitative proteomics via iTRAQ labeling combined with mass spectrometric analysis. Secretome analysis revealed a total of 159 differential secreted proteins in the co-culture system compared to the single culture systems, with 63 being up-regulated (>1.3-fold) and 96 down-regulated (<0.7-fold). CXCL2 was confirmed to have higher expression in the co-culture system and HCC tissues, and was selected for further investigation. Functional effects data suggested that recombinant human CXCL2 significantly enhanced the migration, invasion ability of SMMC7721 cells, and weakened adhesion ability. While CXCL2 neutralization and CXCR2 blockage significantly inhibited the effects of CXCL2 on SMMC7721 cells, indicating that CXCL2 may play pivotal role in HCC metastasis.
Polo-like kinase 1, a new therapeutic target in hepatocellular carcinoma
Mok, Wei Chuen; Wasser, Shanthi; Tan, Theresa; Lim, Seng Gee
2012-01-01
AIM: To investigate the role of polo-like kinase 1 (PLK1) as a therapeutic target for hepatocellular carcinoma (HCC). METHODS: PLK1 gene expression was evaluated in HCC tissue and HCC cell lines. Gene knockdown with short-interfering RNA (siRNA) was used to study PLK1 gene and protein expression using real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting, and cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium (MTS) and bromodeoxyuridine (BrdU) assays. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and caspase-inhibition assay. Huh-7 cells were transplanted into nude mice and co-cultured with PLK1 siRNA or control siRNA, and tumor progression was compared with controls. RESULTS: RT-PCR showed that PLK1 was overexpressed 12-fold in tumor samples compared with controls, and also was overexpressed in Huh-7 cells. siRNA against PLK1 showed a reduction in PLK1 gene and protein expression of up to 96% in Huh-7 cells, and a reduction in cell proliferation by 68% and 92% in MTS and BrdU cell proliferation assays, respectively. There was a 3-fold increase in apoptosis events, and TUNEL staining and caspase-3 assays suggested that this was caspase-independent. The pan-caspase inhibitor Z-VAD-FMK was unable to rescue the apoptotic cells. Immnofluorescence co-localized endonuclease-G to fragmented chromosomes, implicating it in apoptosis. Huh-7 cells transplanted subcutaneously into nude mice showed tumor regression in siPLK1-treated mice, but not in controls. CONCLUSION: Knockdown of PLK1 overexpression in HCC was shown to be a potential therapeutic target, leading to apoptosis through the endonuclease-G pathway. PMID:22826617
Wang, Pingan; Guo, Lingyu; Li, Kaipeng; Ning, Shanglei; Shi, Weichen; Liu, Zhaochen; Chen, Yuxin
2018-02-14
This research was aimed to study the expression of Serine/arginine rich splicing factor 2 (SRSF2) in tissues of hepatocellular carcinoma, and explore the relationship between the expression and the clinic pathological and prognosis of human hepatocellular carcinoma (HCC). One hundred and fifty-three pairs HCC tissues and adjacent normal tissue were collected from January 2010 to March 2013. The expression of SRSF2 gene was detected by immunohistochemistry, western blotting and real-time quantitative polymerase chain reaction (PCR), and the relationship between the expression and the clinic pathological and prognosis of HCC being analyzed. In 153 cases of hepatocellular carcinoma, SRSF2 was highly expressed in 93 cases, low expression of 60 cases, immunohistochemistry score (6.50 ± 2.82), which was significantly higher than that in adjacent normal tissues (2.94 ± 1.23) (P< 0.05). The expression of SRSF2 in HCC was not associated with gender (χ2= 0.014, P= 0.906), age (χ2= 0.007, P= 0.931), tumor size (χ2= 3.566, P= 0.059) and T stage (χ2= 2.708, P= 0.100), and was significantly correlated with tumor differentiation (χ2= 9.687, P= 0.007), lymph node metastasis (χ2= 4.827, P= 0.028), distal metastasis (χ2= 9.235, P= 0.002), tumor, node, metastasis (TNM) stage (χ2= 3.978, P= 0.046), portal vein invasion and serum alpha-fetoprotein (χ2= 14.919, P= 0.000). The expression of SRSF2 protein in hepatocellular carcinoma was positively correlated (r = 0.704, P< 0.05) with serum alpha-fetoprotein through Pearson analysis. The survival rates of SRSF2 overexpressing hepatocellular carcinoma were 74.19%, 44.09%, 26.88%, 24.73% and 21.51% at 1 year, 2 years, 3 years, 4 years and 5 years respectively, which were lower than those of SRSF2 low expression group (93.33%, 71.67%, 56.67%, 51.67% and 50.00%). SRSF2 is highly expressed in hepatocellular carcinoma and its expression increases with the degree of tumor differentiation and TNM staging. It is related to lymph node metastasis and metastasis of tumor cells, and is positively related to serum alpha fetoprotein content, and affects the postoperative survival time of HCC patients.
He, Jian; Zeng, Zhao-Chong; Tang, Zhao-You; Fan, Jia; Zhou, Jian; Zeng, Meng-Su; Wang, Jian-Hua; Sun, Jing; Chen, Bing; Yang, Ping; Pan, Bai-Sheng
2009-06-15
The current study was performed to identify clinical features and independent predictors of survival in patients with bone metastases from hepatocellular carcinoma (HCC). Patients (n = 205) with bone metastases from HCC received external beam radiotherapy (EBRT) between 1997 and 2007. Demographic variables, laboratory values, tumor characteristics, and treatment modalities were determined before EBRT. The total radiation dose ranged from 32 to 66 grays (Gy) (median, 50 Gy) and was focused on the involved bone. In 80 of 205 (39.0%) patients with bone metastasis from HCC, tumors were characterized by osteolytic, expansile soft-tissue masses. Overall pain relief from EBRT occurred in 204 patients (99.5%). No consistent dose-response relation was found for palliation of bone metastases with doses between 32 and 66 Gy (P = .068), but the retreatment rate was higher in patients with expansile soft tissue. On univariate analysis, shorter survival was associated with poorer Karnofsky performance status (KPS), higher gamma-glutamyltransferase and alpha-fetoprotein levels, tumor size >5 cm, uncontrolled intrahepatic tumors, multifocal bone lesions, involvement of spinal vertebrae, extraosseous metastases, and a shorter disease-free interval after an initial diagnosis of HCC. On multivariate analysis, pretreatment-unfavorable predictors were associated with lower KPS, higher tumor markers, and uncontrolled intrahepatic tumor when KPS was considered. The median survival was 7.4 months. The results of the current study provide detailed information regarding clinical features, survival outcomes, and prognostic factors for HCC with bone metastases in a relatively large cohort of patients treated with EBRT. These prognostic factors will help in determining which dose and fraction are appropriate. (c) 2009 American Cancer Society.
Su, Kai; Chen, Fang; Yan, Wei-Ming; Zeng, Qi-Li; Xu, Li; Xi, Dong; Pi, Bin; Luo, Xiao-Ping; Ning, Qin
2008-01-01
AIM: To examine the role of Fibrinogen-like protein 2 (fgl2)/fibroleukin in tumor development. Fgl2 has been reported to play a vital role in the pathogenesis in MHV-3 (mouse hepatitis virus) induced fulminant and severe hepatitis, spontaneous abortion, allo- and xeno- graft rejection by mediating “immune coagulation”. METHODS: Tumor tissues from 133 patients with six types of distinct cancers and the animal tumor tissues from human hepatocellular carcinoma (HCC) model on nude mice (established from high metastasis HCC cell line MHCC97LM6) were obtained. RESULTS: Hfgl2 was detected in tumor tissues from 127 out of 133 patients as well as tumor tissues collected from human HCC nude mice. Hfgl2 was highly expressed both in cancer cells and interstitial inflammatory cells including macrophages, NK cells, and CD8+ T lymphocytes and vascular endothelial cells. Hfgl2 mRNA was localized in cells that expressed hfgl2 protein. Fibrin (nogen) co-localization with hfgl2 expression was determined by dual immunohistochemical staining. In vitro, IL-2 and IFN-γ increased hfgl2 mRNA by 10-100 folds and protein expression in both THP-1 and HUVEC cell lines. One-stage clotting assays demonstrated that THP-1 and HUVEC cells expressing hfgl2 had increased procoagulant activity following cytokines stimulation. CONCLUSION: The hfg12 contributes to the hypercoagulability in cancer and may induce tumor angiogenesis and metastasis via cytokine induction. PMID:18932275
Cirrhosis is Under-recognized in Patients Subsequently Diagnosed with Hepatocellular Cancer
Walker, Megan; El-Serag, Hashem B.; Sada, Yvonne; Mittal, Sahil; Ying, Jun; Duan, Zhigang; Richardson, Peter; Davila, Jessica A.; Kanwal, Fasiha
2015-01-01
Background Most clinical practice guidelines recommend screening for HCC in patients with cirrhosis. However, patients with compensated cirrhosis are often asymptomatic and may remain unrecognized for years. Aims To determine the extent to which cirrhosis is unrecognized in a US Veteran population with HCC and to evaluate the association between lack of cirrhosis recognition and stage of HCC at diagnosis. Methods We reviewed the electronic medical records of a random sample of HCC cases diagnosed in the national Veterans Affairs system between 2005 and 2011. We conducted multivariable analyses adjusting for patients’ demographics, comorbidity, etiology of underlying disease, and healthcare utilization including HCC surveillance. Results Of 1201 patients with HCC and cirrhosis, 24.6% had unrecognized cirrhosis prior to HCC diagnosis. Older patients (>65yr, odds ratio [OR] 2.32), African Americans (OR 1.93), patients with alcoholic or NAFLD liver disease (OR 1.69 and 4.77 respectively), HIV (OR 3.02), and fewer comorbidities (Deyo 0 vs. 3, OR 2.42) had significantly higher odds of having unrecognized cirrhosis than comparison groups. Furthermore, patients with unrecognized cirrhosis were 6.5 times more likely to have advanced stage HCC at diagnosis. The effect of cirrhosis recognition on HCC stage remained significant after adjusting for pre-specified covariates (OR 3.37). Conclusions In one fourth of patients, cirrhosis was unrecognized prior to HCC diagnosis, and this group was significantly more likely to have advanced stage HCC. These findings emphasize the importance of timely evaluation for cirrhosis in at-risk populations as a critical step to improving outcomes for HCC patients. PMID:26784271
Xiao, Heng; Tong, Rongliang; Cheng, Shaobing; Lv, Zhen; Ding, Chaofeng; Du, Chengli; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen
2014-01-01
The objective is to determine the effects of BAG3 and HIF-1 α expression on the prognosis of HCC patients after liver transplantation. Samples from 31 patients with HCC receiving liver transplantation were collected for this study. The immunohistochemistry was used to detect the expression of BAG3 and HIF-1 α of HCC samples. According to the immunohistochemistry results, BAG3 and HIF-1 α staining were significantly associated with tumor TNM stage (P = 0.004, P = 0.012). A significant association between high BAG3/HIF-1 α levels and a shorter overall survival was detected, so as the combined BAG3 and HIF-1 α analysis. The results suggested that the expression level of BAG3 and HIF-1 α is efficient prognostic parameters in patients with HCC after liver transplantation.
Wu, Weizhong; Liu, Sanguang; Liang, Yunfei; Zhou, Zegao; Bian, Wei; Liu, Xueqing
2017-12-01
The pathogenesis of hepatocellular carcinoma (HC) is unclear. It is suggested that psychological stress associates with the pathogenesis of liver cancer. Bcl2-like protein 12 (Bcl2L12) suppresses p53 protein. This study tests a hypothesis that the major stress hormone, cortisol, inhibits the expression of p53 in HC cells (HCC) via up regulating the expression of Bcl2L12. Peripheral blood samples were collected from patients with HC to be analyzed for the levels of cortisol. HCC were cultured to assess the role of cortisol in the regulation of the expression of Bcl2L12 and p53 in HCC. We observed that the serum cortisol levels were higher in HC patients. Expression of Bcl2L12 in HCC was correlated with serum cortisol. Cortisol enhanced the Bcl2L12 expression in HCC. Bcl2L12 binding to the TP53 promoter was correlated with p53 expression in HCC. Cortisol increased the Bcl2L12 expression in HCC to inhibit p53 expression. Stress hormone cortisol suppresses p53 in HCC via enhancing Bcl2L12 expression in HCC. The results suggest that cortisol may be a therapeutic target for the treatment of HC.
Föcker, Manuel; Stalder, Tobias; Kirschbaum, Clemens; Albrecht, Muriel; Adams, Frederike; de Zwaan, Martina; Hebebrand, Johannes; Peters, Triinu; Albayrak, Özgür
2016-11-01
In anorexia nervosa (AN) hypercortisolism has been described using urine, plasma and saliva samples as short-term markers for the hypothalamic-pituitary-adrenal (HPA)-axis. Here, for the first time, we analyse hair cortisol concentration (HCC) as a marker for long-term integrated cortisol secretion in female patients with AN compared to female healthy controls (HC) and female psychiatric controls (PC). HCC was assessed in 22 female adolescent psychiatric inpatients with AN compared to 20 female HC and to 117 female PC of the same age range. For further analyses we examined the associations of age and body mass index (BMI) with HCC. Log HCC was lower in AN-patients compared to HC (p = 0.030). BMI-standard deviation scores (SDS) but not age correlated with log HCC (BMI-SDS: r = 0.19, bias corrected accelerated 95% confidence interval: [.04, .34], p = 0.015; age: r = 0.10, bias corrected accelerated 95% confidence interval: [-.07, .25], p = 0.213) when combining AN, HC and PC samples. We find lower HCC in AN, compared to HC and PC, respectively. Based on the relationship between HCC and BMI-SDS across AN, HC and PC, we argue that HCC might not capture endocrine alterations because of AN pathology-related processes but rather shows consistent relationships with BMI, which extent even to the very low range of BMI values, as present in AN patients. Alternatively, incorporation of cortisol into the hair follicle might have been compromised because of trophic hair follicle disturbances that had been reported in AN patients, previously. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.
Schröder, Paul C; Segura, Víctor; Riezu, José Ignacio; Sangro, Bruno; Mato, José M; Prieto, Jesús; Santamaría, Enrique; Corrales, Fernando J
2011-09-01
Hepatocellular carcinoma (HCC) represents a major health problem as it afflicts an increasing number of patients worldwide. Albeit most of the risk factors for HCC are known, this is a deadly syndrome with a life expectancy at the time of diagnosis of less than 1 year. Definition of the molecular principles governing the neoplastic transformation of the liver is an urgent need to facilitate the clinical management of patients, based on innovative methods to detect the disease in its early stages and on more efficient therapies. In the present study, we have combined the analysis of a murine model and human samples of HCC to identify genes differentially expressed early in the process of hepatocarcinogenesis, using a microarray-based approach. Expression of 190 genes was impaired in murine HCC from which 65 were further validated by low-density array real-time polymerase chain reaction (RT-PCR). The expression of the best 45 genes was then investigated in human samples resulting in 18 genes in which expression was significantly modified in HCC. Among them, JUN, methionine adenosyltransferase 1A and 2A, phosphoglucomutase 1, and acyl CoA dehydrogenase short/branched chain indicate defective cell proliferation as well as one carbon pathway, glucose and fatty acid metabolism, both in HCC and cirrhotic liver, a well-known preneoplastic condition. These alterations were further confirmed in public transcriptomic datasets from other authors. In addition, vasodilator-stimulated phosphoprotein, an actin-associated protein involved in cytoskeleton remodeling, was also found to be increased in the liver and serum of cirrhotic and HCC patients. In addition to revealing the impairment of central metabolic pathways for liver homeostasis, further studies may probe the potential value of the reported genes for the early detection of HCC.
Wells, Samantha; Tremblay, Paul F; Flynn, Andrea; Russell, Evan; Kennedy, James; Rehm, Jürgen; Van Uum, Stan; Koren, Gideon; Graham, Kathryn
2014-07-01
A pooled database from diverse community samples was used to examine the associations of hair cortisol concentration (HCC) with self-reported stress and stress-linked mental health measures, including depression, anxiety, alcohol and drug use, disability and experiences with aggression. As part of innovative research using a mobile laboratory to study community mental health, data were pooled from five sub-studies: a random sample of the general population (n = 70), people who had received treatment for a mental health and/or substance use problem (n = 78), family members of people treated for mental health and/or substance use problems (n = 49), community volunteers who sometimes felt sad or blue or thought they drank too much (n = 83) and young adults in intimate partner relationships (n = 44). All participants completed a computerized questionnaire including standard measures of perceived stress, chronic stress, depression, anxiety, hazardous drinking, tobacco use, prescription drug use, illicit drug use, disability and intimate partner aggression. HCC was significantly associated with use of antidepressants, hazardous drinking, smoking and disability after adjusting for sub-study and potential confounders (sex, body-mass index, use of glucocorticoids and hair dyed). In addition, preliminary analyses suggest a significant curvilinear relationship between HCC and perceived stress; specifically, HCC increased with higher perceived stress but decreased at the highest level of stress. Overall, HCC was associated with mental health-related variables mainly reflecting substance use or experiencing a disability. The relationship between HCC and self-reported stress is unclear and needs further research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yunzhen; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025; Wang, Gaoxiong
Long non-coding RNAs (LncRNAs) have played very important roles in the malignancy behaviors of hepatocellular carcinoma (HCC). Linc-cdh4-2 (TCONS-00027978) is a novel LncRNA that has been identified in HCC tissues from our previous study. Overexpression of linc-cdh4-2 in HCC cell lines (SK-Hep-1 and Huh7) significantly decreases the migration and invasion abilities of these cells, while knockdown the expression of linc-cdh4-2 significantly increases the migration and invasion abilities. Interestingly, neither the over expression nor the knock down of linc-cdh4-2 could affect the viability and proliferation of HCC cells. Mechanistically, the linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct bindingmore » that might improve the protein stability. Over expression of linc-cdh4-2 could significantly increase the protein levels of R-cadherin and decrease the protein levels of small GTPase RAC1, and vice-versa. Further knockdown R-cadherin in linc-cdh4-2 stably overexpressed cells, could significantly upregulate the protein levels of RAC1 and improve the cell migration and invasion abilities. Taken together, the novel linc-cdh4-2 may negatively regulate the motility of the HCC cells through targeting R-cadherin-RAC1 signaling pathway. - Highlights: • Linc-cdh4-2 negatively related with the invasion and metastasis ability of HCC cells. • Linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct binding. • Knockdown of R-cadherin increases the migration and invasion abilities of HCC cell. • Knockdown of R-cadherin could significantly upregulate the protein levels of RAC1.« less
Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Hübner, Frank; Waidmann, Oliver; Zeuzem, Stefan; Korf, Horst-Werner; Terfort, Andreas; Gelperina, Svetlana; Vogl, Thomas J; Kreuter, Jörg; Piiper, Albrecht
2015-02-10
Nanoparticle (NP)-based contrast agents that enable high resolution anatomic T1-weighted magnetic resonance imaging (MRI) offer the prospect of improving differential diagnosis of liver tumors such as hepatocellular carcinoma (HCC). In the present study, we investigated the possibility of employing novel non-toxic human serum albumin nanoparticles conjugated with Gd-DTPA and rhodamine 123 (Gd-Rho-HSA-NPs) for the detection of HCC by T1-weighted MRI. In addition, the influence of surface coating of the NPs with poloxamine 908, which alters the absorptive behavior of NPs and changes their distribution between the liver and tumor was examined. MRI of transgenic mice with endogenously formed HCCs following intravenous injection of Gd-Rho-HSA-NPs revealed a strong negative contrast of the tumors. Contrasting of the HCCs by NP-enhanced MRI required less Gd as compared to gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid-enhanced MRI, which currently provides the most sensitive detection of HCC in patients. Immunohistochemical analyses revealed that the Gd-Rho-HSA-NPs were localized to macrophages, which were - similar to HCC in patients - fewer in number in HCC as compared to the liver tissue, which is in agreement with the negative contrasting of HCC in Gd-Rho-HSA-NP-enhanced MRI. Poloxamine-coated NPs showed lower accumulation in the tumor macrophages and caused a longer lasting enhancement of the MRI signal. These data indicate that Gd-Rho-HSA-NPs enable sensitive detection of HCC by T1-weighted MRI in mice with endogenous HCC through their uptake by macrophages. Poloxamine coating of the NPs delayed the tumor localization of the NPs. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritter, C. O., E-mail: ritter@roentgen.uni-wuerzburg.de; Wartenberg, M.; Mottok, A.
Spontaneous rupture of hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE) is a rare and life-threatening complication. Pathophysiologic mechanisms are not yet fully known; it is suggested that rupture is preceded by reactive tissue edema and intratumerous bleeding, leading to a rapid expansion of tumour mass with risk of extrahepatic bleeding in the case of subcapsular localisation. This case report discusses a sudden, unexpected lethal complication in a 74 year-old male patient treated with TACE using DC Bead loaded with doxorubicin (DEBDOX) in a progressive multifocal HCC.
Li, Shulian; Ma, Wanli; Fei, Teng; Lou, Qiang; Zhang, Yaqin; Cui, Xiukun; Qin, Xiaoming; Zhang, Jun; Liu, Guangchao; Dong, Zheng; Ma, Yuanfang; Song, Zhengshun; Hu, Yanzhong
2014-11-01
Heat shock factor 1 (HSF1) is associated with tissue‑specific tumorigenesis in a number of mouse models, and has been used a as prognostic marker of cancer types, including breast and prostatic cancer. However, its role in human hepatocellular carcinoma (HCC) is not well understood. Using immunoblotting and immunohistochemical staining, it was identified that HSF1 and its serine (S) 326 phosphorylation, a biomarker of HSF1 activation, are significantly upregulated in human HCC tissues and HCC cell lines compared with their normal counterparts. Cohort analyses indicated that upregulation of the expression of HSF1 and its phospho‑S326 is significantly correlated with HCC progression, invasion and patient survival prognosis (P<0.001); however, not in the presence of a hepatitis B virus infection and the expression of alpha-fetoprotein and carcinoembryonic antigen. Knockdown of HSF1 with shRNA induced the protein expression of tumor suppressor retinoblastoma protein, resulting in attenuated plc/prf5 cell growth and colony formation in vitro. Taken together, these data markedly support that HSF1 is a potential prognostic marker and therapeutic target for the treatment of HCC.
Lin, Li-Wu; Lin, Xue-Ying; He, Yi-Mi; Gao, Shang-Da; Lin, Xiao-Dong
2003-01-01
AIM: To probe the pathological biological characteristics of hepatocellular carcinoma (HCC) by the ultrasound-guided aspiration biopsy and assess the clinical application value of this method. METHODS: The biopsy and DNA analysis by flow cytometry (FCM) were taken in 46 cases with HCC nodules, including 26 cases and 20 cases with nodules ≤ 3 cm and > 3 cm in diameters respectively, and 12 cases with intrahepatic benign hyperplastic nodules. They were taken in 22 cases of 46 cases with HCC before and after the therapy. Fine-needles and automatic histological incised biopsy needles were used. The fresh biopsy tissue was produced into the single cell suspension, which was sent for DNA detection and ratio analysis of cell period. The ratio of each DNA period of cell proliferation of each group was calculated and compared with each other. The DNA aneuploid (AN) and apoptosis cell peak were observed and their percentages were calculated. RESULTS: The ratios of S and G2/M periods of DNA, which reflect cell hyperproliferation, in the group with HCC tumors > 3 cm in diameter were markedly higher than those of the group with HCC nodules ≤ 3 cm in diameter and the group with the benign hyperplastic nodules (P < 0.01 except A:B of S period, P < 0.05). The ratios of the middle group were also apparently higher than those of the latter group (P < 0.01). The ratio of DNA AN of 46 cases with HCC nodules was 34.8% (16/46). None of the cases with the intrahepatic hyperplastic nodules appeared AN. The DNA AN appeared more apparently with the growth of the tumors. The AN ratio of the group with tumors > 3 cm in diameter was 55% (11/20), markedly higher than that of the group with tumors ≤ 3 cm in diameter which was 19.2% (5/26) (P < 0.01). The FCM DNA analysis of 22 specimens of hepatic carcinoma tissue before therapy showed that the aneuploid peaks appeared in 5 cases (22.7%). The ratio of G1 period rose after therapy while the S period and G2/M ratios fell (P < 0.01). The aneuploid peak disappeared in the 5 cases after the therapy, while the apoptosis peaks in 12 cases (54.5%) appeared. CONCLUSION: Addition to supply the information of the pathological morphology of the tumor, the ultrasound-guided fine-needle aspiration tissue could be sent for FCM DNA analysis to comprehend its pathological biological characteristics. This can not only provide the clinic the reliable information about the occurrence, development, diagnosis, curative effect and prognosis of tumors but also supply biological information for clinic to choose therapeutic schemes. PMID:12717834
Aquino, Jorge B.; Malvicini, Mariana; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G.; Mazzolini, Guillermo
2014-01-01
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC. PMID:25147818
Bayo, Juan; Fiore, Esteban; Aquino, Jorge B; Malvicini, Mariana; Rizzo, Manglio; Peixoto, Estanislao; Alaniz, Laura; Piccioni, Flavia; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G; Mazzolini, Guillermo
2014-01-01
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yang, E-mail: yangshi_xz@126.com; Song, Qingwei; Hu, Dianhe
Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specificmore » IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation.« less
Li, Jiazhi; Yang, Xiaozhou; Yin, Huimin; Xiao, Congshu; Sheng, Jie; Li, Yang; Tang, Bo; Li, Rongkuan
2017-01-01
USP22, a member of the deubiquitinases (DUBs) family, is known to be a key subunit of the human Spt-Ada-Gcn5 acetyltransferase (hSAGA) transcriptional cofactor complex. Within hSAGA, USP22 removes ubiquitin from histone proteins, thus regulating the transcription and expression of downstream genes. USP22 plays important roles in many cancers; however, its effect and the mechanism underlying HCC chemoresistance remain unclear. In the present study, we found that USP22 was highly expressed in chemoresistant HCC tissues and cells and was correlated with the prognosis of HCC patients who received chemotherapy. Silencing USP22 in chemoresistant HCC Bel/Fu cells dramatically inhibited proliferation, migration, invasion and epithelial-mesenchymal transition in vitro; suppressed tumorigenic and metastatic capacities in vivo; and inhibited drug resistance-related proteins (MDR1, LRP, MRP1). Mechanistically, we found that USP22 knockdown exerts its function through down-regulating PI3K and activating Smad4, which inhibited phosphorylation of Akt. Silencing Smad4 blocked USP22 knockdown-induced Akt inhibition in Bel/Fu cells. Our results, for the first time, provide evidence that USP22 plays a critical role in the development of chemoresistant HCC cells and that high USP22 expression serves as a molecular marker for the prognosis of HCC patients who undergo chemotherapy. PMID:28445968
Zhang, Jing; Luo, Nan; Tian, Yu; Li, Jiazhi; Yang, Xiaozhou; Yin, Huimin; Xiao, Congshu; Sheng, Jie; Li, Yang; Tang, Bo; Li, Rongkuan
2017-04-11
USP22, a member of the deubiquitinases (DUBs) family, is known to be a key subunit of the human Spt-Ada-Gcn5 acetyltransferase (hSAGA) transcriptional cofactor complex. Within hSAGA, USP22 removes ubiquitin from histone proteins, thus regulating the transcription and expression of downstream genes. USP22 plays important roles in many cancers; however, its effect and the mechanism underlying HCC chemoresistance remain unclear. In the present study, we found that USP22 was highly expressed in chemoresistant HCC tissues and cells and was correlated with the prognosis of HCC patients who received chemotherapy. Silencing USP22 in chemoresistant HCC Bel/Fu cells dramatically inhibited proliferation, migration, invasion and epithelial-mesenchymal transition in vitro; suppressed tumorigenic and metastatic capacities in vivo; and inhibited drug resistance-related proteins (MDR1, LRP, MRP1). Mechanistically, we found that USP22 knockdown exerts its function through down-regulating PI3K and activating Smad4, which inhibited phosphorylation of Akt. Silencing Smad4 blocked USP22 knockdown-induced Akt inhibition in Bel/Fu cells. Our results, for the first time, provide evidence that USP22 plays a critical role in the development of chemoresistant HCC cells and that high USP22 expression serves as a molecular marker for the prognosis of HCC patients who undergo chemotherapy.
Wang, Meili; Zhao, Xiulan; Zhu, Dongwang; Liu, Tieju; Liang, Xiaohui; Liu, Fang; Zhang, Yanhui; Dong, Xueyi; Sun, Baocun
2017-04-27
The incidence and mortality rates of hepatocellular carcinoma (HCC) have steadily increased in recent years. A hypoxic microenvironment is one of the most important characteristics of solid tumors which has been shown to promote tumor metastasis, epithelial-mesenchymal transition and angiogenesis. Epithelial-mesenchymal transition and vasculogenic mimicry have been regarded as crucial contributing factors to cancer progression. HIF-1α functions as a master transcriptional regulator in the adaptive response to hypoxia. Lysyl oxidases like 2 (LOXL2) is a member of the lysyl oxidase family, which main function is to catalyze the covalent cross-linkages of collagen and elastin in the extracellular matrix. Recent work has demonstrated that HIF-1α promotes the expression of LOXL2, which is believed to amplify tumor aggressiveness. LOXL2 has shown to promote metastasis and is correlated with poor prognosis in hepatocellular carcinoma. The purpose of our study is to explore the role of HIF-1α in progression and metastasis of hepatocellular carcinoma by promoting the expression of LOXL2 as well as the potential regulatory mechanism. HIF-1α, LOXL2 expression and CD31/periodic acid-Schiff double staining in HCC patient samples were examined by immunohistochemical staining. shRNA plasmids against HIF-1α was used to determine whether LOXL2 been increased by HIF-1α. We monitored a series of rescue assays to demonstrate our hypothesis that LOXL2 is required and sufficient for HIF-1α induced EMT and VM formation, which mediates cellular transformation and takes effect in cellular invasion. Then we performed GeneChip® Human Transcriptome Array (HTA) 2.0 in HepG2 cells, HepG2 cells overexpressed LOXL2 and HepG2 cells treated with CoCl 2 . In clinical HCC tissues, it confirmed a positive relationship between HIF-1α and LOXL2 protein. Importantly, HIF-1α and LOXL2 high expression and the presence of vasculogenic mimicry were correlated to poor prognosis. HIF-1α was found to induce EMT, HCC cell migration, invasion and VM formation by regulating LOXL2. The results of microarray assays were analyzed. HIF-1α plays an important role in the development of HCC by promoting HCC metastasis, EMT and VM through up-regulating LOXL2. This study highlights the potential therapeutic value of targeting LOXL2 for suppression of HCC metastasis and progression.
Mustafa, Mehnaz G.; Petersen, John R.; Ju, Hyunsu; Cicalese, Luca; Snyder, Ned; Haidacher, Sigmund J.; Denner, Larry; Elferink, Cornelis
2013-01-01
Chronic hepatic disease damages the liver, and the resulting wound-healing process leads to liver fibrosis and the subsequent development of cirrhosis. The leading cause of hepatic fibrosis and cirrhosis is infection with hepatitis C virus (HCV), and of the patients with HCV-induced cirrhosis, 2% to 5% develop hepatocellular carcinoma (HCC), with a survival rate of 7%. HCC is one of the leading causes of cancer-related death worldwide, and the poor survival rate is largely due to late-stage diagnosis, which makes successful intervention difficult, if not impossible. The lack of sensitive and specific diagnostic tools and the urgent need for early-stage diagnosis prompted us to discover new candidate biomarkers for HCV and HCC. We used aptamer-based fractionation technology to reduce serum complexity, differentially labeled samples (six HCV and six HCC) with fluorescent dyes, and resolved proteins in pairwise two-dimensional difference gel electrophoresis. DeCyder software was used to identify differentially expressed proteins and spots picked, and MALDI-MS/MS was used to determine that ApoA1 was down-regulated by 22% (p < 0.004) in HCC relative to HCV. Differential expression quantified via two-dimensional difference gel electrophoresis was confirmed by means of 18O/16O stable isotope differential labeling with LC-MS/MS zoom scans. Technically independent confirmation was demonstrated by triple quadrupole LC-MS/MS selected reaction monitoring (SRM) assays with three peptides specific to human ApoA1 (DLATVYVDVLK, WQEEMELYR, and VSFLSALEEYTK) using 18O/16O-labeled samples and further verified with AQUA peptides as internal standards for quantification. In 50 patient samples (24 HCV and 26 HCC), all three SRM assays yielded highly similar differential expression of ApoA1 in HCC and HCV patients. These results validated the SRM assays, which were independently confirmed by Western blotting. Thus, ApoA1 is a candidate member of an SRM biomarker panel for early diagnosis, prognosis, and monitoring of HCC. Future multiplexing of SRM assays for other candidate biomarkers is envisioned to develop a biomarker panel for subsequent verification and validation studies. PMID:24008390
ALK gene copy number gain and its clinical significance in hepatocellular carcinoma.
Jia, Shou-Wei; Fu, Sha; Wang, Fang; Shao, Qiong; Huang, Hong-Bing; Shao, Jian-Yong
2014-01-07
To examine the status and clinical significance of anaplastic lymphoma kinase (ALK) gene alterations in hepatocellular carcinoma (HCC) patients. A total of 213 cases of HCC were examined by fluorescent in situ hybridization using dual color break-apart ALK probes for the detection of chromosomal translocation and gene copy number gain. HCC tissue microarrays were constructed, and the correlation between the ALK status and clinicopathological variables was assessed by χ(2) test or Fisher's exact test. Survival analysis was estimated using the Kaplan-Meier approach with a Log-rank test. Univariate and multivariate analyses of clinical variables were performed using the Cox proportional hazards regression model. ALK gene translocation was not observed in any of the HCC cases included in the present study. ALK gene copy number gain (ALK/CNG) (≥ 4 copies/cell) was detected in 28 (13.15%) of the 213 HCC patients. The 3-year progression-free-survival (PFS) rate for ALK/CNG-positive HCC patients was significantly poorer than ALK/CNG-negative patients (27.3% vs 42.5%, P = 0.048), especially for patients with advanced stage III/IV (0% vs 33.5%, P = 0.007), and patients with grade III disease (24.8% vs 49.9%, P = 0.023). ALK/CNG-positive HCC patients had a significantly poorer prognosis than ALK/CNG-negative patients in the subgroup that was negative for serum hepatitis B virus DNA, with significantly different 3-year overall survival rates (18.2% vs 63.6%, P = 0.021) and PFS rates (18.2% vs 46.9%, P = 0.019). Multivariate Cox proportional hazards regression analysis suggested that ALK/CNG prevalence can predict death in HCC (HR = 1.596; 95%CI: 1.008-2.526, P = 0.046). ALK/CNG, but not translocation of ALK, is present in HCC and may be an unfavorable prognostic predictor.
ALK gene copy number gain and its clinical significance in hepatocellular carcinoma
Jia, Shou-Wei; Fu, Sha; Wang, Fang; Shao, Qiong; Huang, Hong-Bing; Shao, Jian-Yong
2014-01-01
AIM: To examine the status and clinical significance of anaplastic lymphoma kinase (ALK) gene alterations in hepatocellular carcinoma (HCC) patients. METHODS: A total of 213 cases of HCC were examined by fluorescent in situ hybridization using dual color break-apart ALK probes for the detection of chromosomal translocation and gene copy number gain. HCC tissue microarrays were constructed, and the correlation between the ALK status and clinicopathological variables was assessed by χ2 test or Fisher’s exact test. Survival analysis was estimated using the Kaplan-Meier approach with a Log-rank test. Univariate and multivariate analyses of clinical variables were performed using the Cox proportional hazards regression model. RESULTS: ALK gene translocation was not observed in any of the HCC cases included in the present study. ALK gene copy number gain (ALK/CNG) (≥ 4 copies/cell) was detected in 28 (13.15%) of the 213 HCC patients. The 3-year progression-free-survival (PFS) rate for ALK/CNG-positive HCC patients was significantly poorer than ALK/CNG-negative patients (27.3% vs 42.5%, P = 0.048), especially for patients with advanced stage III/IV (0% vs 33.5%, P = 0.007), and patients with grade III disease (24.8% vs 49.9%, P = 0.023). ALK/CNG-positive HCC patients had a significantly poorer prognosis than ALK/CNG-negative patients in the subgroup that was negative for serum hepatitis B virus DNA, with significantly different 3-year overall survival rates (18.2% vs 63.6%, P = 0.021) and PFS rates (18.2% vs 46.9%, P = 0.019). Multivariate Cox proportional hazards regression analysis suggested that ALK/CNG prevalence can predict death in HCC (HR = 1.596; 95%CI: 1.008-2.526, P = 0.046). CONCLUSION: ALK/CNG, but not translocation of ALK, is present in HCC and may be an unfavorable prognostic predictor. PMID:24415871
Hassan, Hanaa A; Serag, Hanaa M; Qadir, Makwan S; Ramadan, Mohamed Fawzy
2017-10-01
Cape gooseberry (Physalis peruviana) fruit is highly nutritious with high content of health-promoting compounds including minerals, phenolic compounds, as well as vitamins A and C. Physalis peruviana fruits were used as mutagenic, antispasmodic, anticoagulant, and antileucemis agents. The objective of the present work was to study the role of cape gooseberry juice (CG) as a natural modulator agent for adverse aspects associated with hepatocellular carcinoma (HCC). The results recorded that HCC rats had a significant disturbance in blood indices. An elevation in serum level of the inflammatory (TNF-ά, CRP, and Argenase), hepatic apoptotic markers (P53, Bax, and Caspase 3) and a reduction of Blc2% were recorded in HCC rats. The results exhibited the significant disturbance and arrest in hepatic cell cycle (% of M1: SubG1 phase, M2: G0/1 phase of diploid cycle, M3: S phase, and M4: G2/M phase) as well as liver cell viability status in HCC rats. Numerous histopathological alterations were detected in hepatic tissues of HCC rats such as inflammation, damage of hepatocytes, dilated congested central vein with degenerated endothelial cells and congested blood sinusoids in addition to collagen fibers in hepatocytes and central vein indicating hepatic fibrosis. The tested parameters were little improved upon treatment of HCC rats with Adriamycin (ADR, Doxorubicin is a generic name of a drug). HCC rats received CG showed an improvement in all tested parameters. The effects of CG were through down regulation of p53 expression and up-regulation of Bcl2 domain protected hepatic structure from extensive damage. CG plus ADR exhibited an enhanced antitumor impact in HCC and this combination might have an important value in the treatment of HCC. CG was more effective than ADR, and it has a remarkable role in the management of hepatic disorders besides its success as a chemo-sensitizer for ADR treatment of hepatocellular carcinoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Cortright, Catherine C; Center, Sharon A; Randolph, John F; McDonough, Sean P; Fecteau, Kellie A; Warner, Karen L; Chiapella, Ann M; Pierce, Rhonda L; Graham, A Heather; Wall, Linda J; Heidgerd, John H; Degen, Melisa A; Lucia, Patricia A; Erb, Hollis N
2014-10-01
To characterize signalment, clinical features, clinicopathologic variables, hepatic ultrasonographic characteristics, endocrinologic profiles, treatment response, and age at death of Scottish Terriers with progressive vacuolar hepatopathy (VH) with or without hepatocellular carcinoma (HCC). Retrospective case series. 114 Scottish Terriers with progressive VH. Electronic databases from 1980 to 2013 were searched for adult (age > 1 year) Scottish Terriers with histopathologic diagnoses of diffuse glycogen-like VH. Available sections of liver specimens were histologically reevaluated to confirm diffuse VH with or without HCC; 8 dogs with HCC only had neoplastic tissue available. Physical examination, clinicopathologic, treatment, and survival data were obtained. 39 of 114 (34%) dogs with VH had HCC detected at surgery or necropsy or by abdominal ultrasonography. Histologic findings indicated that HCC was seemingly preceded by dysplastic hepatocellular foci. No significant differences were found in clinicopathologic variables or age at death between VH-affected dogs with or without HCC. Fifteen of 26 (58%) dogs with high hepatic copper concentrations had histologic features consistent with copper-associated hepatopathy. Although signs consistent with hyperadrenocorticism were observed in 40% (46/114) of dogs, definitive diagnosis was inconsistently confirmed. Assessment of adrenal sex hormone concentrations before and after ACTH administration identified high progesterone and androstenedione concentrations in 88% (22/25) and 80% (20/25) of tested dogs, respectively. Results suggested that VH in Scottish Terriers may be linked to adrenal steroidogenesis and a predisposition to HCC. In dogs with VH, frequent serum biochemical analysis and ultrasonographic surveillance for early tumor detection are recommended.
Tolerance of high-intensity focused ultrasound ablation in patients with hepatocellular carcinoma.
Cheung, Tan To; Chu, Ferdinand S K; Jenkins, Caroline R; Tsang, Dickson S F; Chok, Kenneth S H; Chan, Albert C Y; Yau, Thomas C C; Chan, See Ching; Poon, Ronnie T P; Lo, Chung Mau; Fan, Sheung Tat
2012-10-01
High-intensity focused ultrasound (HIFU) ablation is a relatively new, noninvasive way of ablation for treating hepatocellular carcinoma (HCC). Emerging evidence has shown that it is effective for the treatment of HCC, even in patients with poor liver function. There is currently no data on the safety limit of HIFU ablation in patients with cirrhosis. However, this information is vital for the selection of appropriate patients for the procedure. We analyzed HCC patients who had undergone HIFU ablation and determined the lower limit of liver function and other patient factors with which HCC patients can tolerate this treatment modality. Preoperative variables of 100 patients who underwent HIFU ablation for HCC were analyzed to identify the risk factors in HIFU intolerance in terms of stress-induced complications. Factors that may contribute to postablation complications were compared. Thirteen (13 %) patients developed a total of 18 complications. Morbidity was mainly due to skin and subcutaneous tissue injuries (n = 9). Five patients had first-degree skin burn, one had second-degree skin burn, and three had third-degree skin burn. Four complications were grade 3a in the Clavien classification and 14 were below this grade. Univariate analysis showed that age (p = 0.022) was the only independent factor in HIFU intolerance. HIFU ablation is generally well tolerated in HCC patients with cirrhosis. It is safe for Child-Pugh A and B patients and selected Child-Pugh C patients. With this new modality, HCC patients who were deemed unsalvageable by other surgical means in the past because of simultaneous Child-Pugh B or C disease now have a new hope.
Quintavalle, Cristina; Hindupur, Sravanth Kumar; Quagliata, Luca; Pallante, Pierlorenzo; Nigro, Cecilia; Condorelli, Gerolama; Andersen, Jesper Bøje; Tagscherer, Katrin Elisabeth; Roth, Wilfried; Beguinot, Francesco; Heim, Markus Hermann; Ng, Charlotte Kiu Yan; Piscuoglio, Salvatore; Matter, Matthias Sebastian
2017-01-01
Hepatocellular carcinoma (HCC) is the third-leading cause of cancer-related death with limited treatment options and frequent resistance to sorafenib, the only drug currently approved for first-line therapy. Therefore, better understanding of HCC tumor biology and its resistance to treatment is urgently needed. Here, we analyzed the role of phosphoprotein enriched in diabetes (PED) in HCC. PED has been shown to regulate cell proliferation, apoptosis and migration in several types of cancer. However, its function in HCC has not been addressed yet. Our study revealed that both transcript and protein levels of PED were significantly high in HCC compared with non-tumoral tissue. Clinico-pathological correlation revealed that PEDhigh HCCs showed an enrichment of gene signatures associated with metastasis and poor prognosis. Further, we observed that PED overexpression elevated the migration potential and PED silencing the decreased migration potential in liver cancer cell lines without effecting cell proliferation. Interestingly, we found that PED expression was regulated by a hepatocyte specific nuclear factor, HNF4α. A reduction of HNF4α induced an increase in PED expression and consequently, promoted cell migration in vitro. Finally, PED reduced the antitumoral effect of sorafenib by inhibiting caspase-3/7 activity. In conclusion, our data suggest that PED has a prominent role in HCC biology. It acts particularly on promoting cell migration and confers resistance to sorafenib treatment. PED may be a novel target for HCC therapy and serve as a predictive marker for treatment response against sorafenib. PMID:29072691
ZHENG, RUINIAN; YOU, ZHIJIAN; JIA, JUN; LIN, SHUNHUAN; HAN, SHUAI; LIU, AIXUE; LONG, HUIDONG; WANG, SENMING
2016-01-01
At present, the therapeutic treatment strategies for patients with hepatocellular carcinoma (HCC) remain unsatisfactory, and novel methods are urgently required to treat this disease. Members of the B cell lymphoma (Bcl)-2 family are anti-apoptotic proteins, which are commonly expressed at high levels in certain HCC tissues and positively correlate with the treatment resistance of patients with HCC. ABT-737, an inhibitor of Bcl-2 anti-apoptotic proteins, has been demonstrated to exhibit potent antitumor effects in several types of tumor, including HCC. However, treatment with ABT-737 alone also activates certain pro-survival signaling pathways, which attenuate the antitumor validity of ABT-737. Curcumin, which is obtained from Curcuma longa, is also an antitumor potentiator in multiple types of cancer. In the present study, the synergistic effect of curcumin and ABT-737 on HCC cells was investigated for the first time, to the best of our knowledge. It was found that curcumin markedly enhanced the antitumor effects of ABT-737 on HepG2 cells, which was partially dependent on the induction of apoptosis, according to western blot analysis and flow cytometric apoptosis analysis. In addition, the sustained activation of the ROS-ASK1-c-Jun N-terminal kinase pathway may be an important mediator of the synergistic effect of curcumin and ABT-737. Collectively, these results indicated that the combination of curcumin and ABT-737 can efficaciously induce the death of HCC cells, and may offer a potential treatment strategy for patients with HCC. PMID:26707143
Ho, Ming-Chih; Chen, Chiung-Nien; Lee, Hsinyu; Hsieh, Fon-Jou; Shun, Chia-Tung; Chang, Chi-Lun; Lai, Yeun-Tyng; Lee, Po-Huang
2007-06-08
The purpose of this study was to evaluate the relationship between the expression of PlGF in tumor tissue and clinical outcomes in HCC patients. Tumor PlGF and vascular endothelial growth factor (VEGF)-A and VEGF-C mRNA were analyzed. Results demonstrated that patients with PlGF expression levels higher than median tended to have early recurrence compared to patients with PlGF expression lower than median (P=.031). In patients with AJCC stage II-III disease, this difference was even more significant (P=.002). In contrast, VEGF-A and VEGF-C could not predict early recurrence-free survival. Since PlGF expression correlated with early recurrence of HCC, PlGF may be an important prognostic indicator in HCC.
Liu, Zhixin; Dai, Xuechen; Wang, Tianci; Zhang, Chengcheng; Zhang, Wenjun; Zhang, Wei; Zhang, Qi; Wu, Kailang; Liu, Fang; Liu, Yingle; Wu, Jianguo
2017-08-01
Hepatitis B virus (HBV) is a major etiologic agent of hepatocellular carcinoma (HCC). However, the molecular mechanism by which HBV infection contributes to HCC development is not fully understood. Here, we initially showed that HBV stimulates the production of cancer stem cells (CSCs)-related markers (CD133, CD117 and CD90) and CSCs-related genes (Klf4, Sox2, Nanog, c-Myc and Oct4) and facilitates the self-renewal of CSCs in human hepatoma cells. Cellular and clinical studies revealed that HBV facilitates hepatoma cell growth and migration, enhances white blood cell (WBC) production in the sera of patients, stimulates CD133 and CD117 expression in HCC tissues, and promotes the CSCs generation of human hepatoma cells and clinical cancer tissues. Detailed studies revealed that PreS1 protein of HBV is required for HBV-mediated CSCs generation. PreS1 activates CD133, CD117 and CD90 expression in normal hepatocyte derived cell line (L02) and human hepatoma cell line (HepG2 and Huh-7); facilitates L02 cells migration, growth and sphere formation; and finally enhances the abilities of L02 cells and HepG2 cells to induce tumorigeneses in nude mice. Thus, PreS1 acts as a new oncoprotein to play a key role in the appearance and self-renewal of CSCs during HCC development. Copyright © 2017 Elsevier B.V. All rights reserved.
Kohga, Keisuke; Tatsumi, Tomohide; Takehara, Tetsuo; Tsunematsu, Hinako; Shimizu, Satoshi; Yamamoto, Masashi; Sasakawa, Akira; Miyagi, Takuya; Hayashi, Norio
2010-06-01
Although CD133 expression is identified as a cancer stem cell marker of hepatocellular carcinoma (HCC), the detailed characteristics of HCC cells expressing CD133 remain unclear. We examined the malignant characteristics of CD133-expressing HCC cells. CD133-expressing cells could be detected with low frequency in 5 HCC tissues. We derived two different HCC cell lines by (1) transfection of CD133 siRNA in PLC/PRF/5 cells in (CD133si-PLC/PRF/5), and (2) by a magnetic cell sorting method that allowed to divide Huh7 cells into two CD133 positive (+) and negative (-) groups. CD133 knockdown in PLC/PRF/5 cells resulted in a decrease of the mRNA and protein expressions of matrix metalloproteinase (MMP)-2 and a disintegrin and metalloproteinase (ADAM)9. We next examined the malignant characteristics related to decreasing MMP-2 and ADAM9 in HCC cells. In CD133si-PLC/PRF/5 cells and CD133- Huh7 cells, invasiveness and vascular endothelial growth factor (VEGF) production, which are both related to the activity of MMP-2, were inhibited compared CD133-expressing HCC cells. We previously demonstrated that ADAM9 protease plays critical roles in the shedding of MHC class I-related chain A (MICA) which regulates the sensitivity of tumor cells to natural killer cells (NK). Decreasing ADAM9 expression in CD133si-PLC/PRF/5 cells and CD133- Huh7 cells resulted in an increase in membrane-bound MICA and a decrease in soluble MICA production. Both CD133si-PLC/PRF/5 cells and CD133- Huh7 cells were susceptible to NK activity, depending on the expression levels of membrane-bound MICA, but CD133-expressing HCC cells were not. These results demonstrate that CD133 expression in HCC cells confers malignant potential which may contribute to the survival of HCC cells. Copyright 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Yuan, Fuwen; Zhang, Yu; Ma, Liwei; Cheng, Qian; Li, Guodong; Tong, Tanjun
2017-08-01
The nucleolus is a key organelle that is responsible for the synthesis of rRNA and assembly of ribosomal subunits, which is also the center of metabolic control because of the critical role of ribosomes in protein synthesis. Perturbations of rRNA biogenesis are closely related to cell senescence and tumor progression; however, the underlying molecular mechanisms are not well understood. Here, we report that cellular senescence-inhibited gene (CSIG) knockdown up-regulated NOLC1 by stabilizing the 5'UTR of NOLC1 mRNA, and elevated NOLC1 induced the retention of NOG1 in the nucleolus, which is responsible for rRNA processing. Besides, the expression of NOLC1 was negatively correlated with CSIG in the aged mouse tissue and replicative senescent 2BS cells, and the down-regulation of NOLC1 could rescue CSIG knockdown-induced 2BS senescence. Additionally, NOLC1 expression was decreased in human hepatocellular carcinoma (HCC) tissue, and the ectopic expression of NOLC1 repressed the proliferation of HCC cells and tumor growth in a HCC xenograft model. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Yu, Su Jong; Jang, Eun Sun; Yu, Jiyoung; Cho, Geunhee; Yoon, Jung-Hwan; Kim, Youngsoo
2013-01-01
Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers and is associated with a poor survival rate. Clinically, the level of alpha-fetoprotein (AFP) has been used as a biomarker for the diagnosis of HCC. The discovery of useful biomarkers for HCC, focused solely on the proteome, has been difficult; thus, wide-ranging global data mining of genomic and proteomic databases from previous reports would be valuable in screening biomarker candidates. Further, multiple reaction monitoring (MRM), based on triple quadrupole mass spectrometry, has been effective with regard to high-throughput verification, complementing antibody-based verification pipelines. In this study, global data mining was performed using 5 types of HCC data to screen for candidate biomarker proteins: cDNA microarray, copy number variation, somatic mutation, epigenetic, and quantitative proteomics data. Next, we applied MRM to verify HCC candidate biomarkers in individual serum samples from 3 groups: a healthy control group, patients who have been diagnosed with HCC (Before HCC treatment group), and HCC patients who underwent locoregional therapy (After HCC treatment group). After determining the relative quantities of the candidate proteins by MRM, we compared their expression levels between the 3 groups, identifying 4 potential biomarkers: the actin-binding protein anillin (ANLN), filamin-B (FLNB), complementary C4-A (C4A), and AFP. The combination of 2 markers (ANLN, FLNB) improved the discrimination of the before HCC treatment group from the healthy control group compared with AFP. We conclude that the combination of global data mining and MRM verification enhances the screening and verification of potential HCC biomarkers. This efficacious integrative strategy is applicable to the development of markers for cancer and other diseases. PMID:23717429
Stress-related and basic determinants of hair cortisol in humans: A meta-analysis.
Stalder, Tobias; Steudte-Schmiedgen, Susann; Alexander, Nina; Klucken, Tim; Vater, Annika; Wichmann, Susann; Kirschbaum, Clemens; Miller, Robert
2017-03-01
The analysis of hair cortisol concentrations (HCC) is a relatively new strategy to measure long-term cumulative cortisol levels, which is increasingly used in psychoneuroendocrinological research. Here, we conduct a first comprehensive meta-analysis of HCC research based on aggregated data from a total of 124 (sub)samples (66 independent studies; total N=10,289). We seek to answer two central questions: (i) Which covariates and basic features of HCC need to be considered in future research? (ii) What are the main determinants of HCC in terms of chronic stress exposure and mental health? Concerning basic characteristics, our findings identify several covariates to be considered (age, sex, hair washing frequency, hair treatment, oral contraceptive use), confirm a decline of HCC from the first to the second proximal 3cm hair segment, and show positive associations between HCC and short-term salivary cortisol measures. Regarding chronic stress, we show that stress-exposed groups on a whole exhibit 22% increased HCC. This long-term cortisol hypersecretion emerges particularly when stress is still ongoing at the time of study (+43% HCC) but is not present in conditions of past/absent stress (-9% HCC, n.s.). We also report evidence for 17%-reduced HCC in anxiety disorders, such as PTSD. Interestingly, no consistent associations with mood disorders and self-reports of perceived stress, depressiveness or social support are found. However, our findings reveal positive associations of HCC with stress-related anthropometric (body mass index, waist-to-hip ratio) and hemodynamic measures (systolic blood pressure). These meta-analytic results are discussed in the light of their practical implications and important areas for future inquiry are outlined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Hyunsoo; Kim, Kyunggon; Yu, Su Jong; Jang, Eun Sun; Yu, Jiyoung; Cho, Geunhee; Yoon, Jung-Hwan; Kim, Youngsoo
2013-01-01
Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers and is associated with a poor survival rate. Clinically, the level of alpha-fetoprotein (AFP) has been used as a biomarker for the diagnosis of HCC. The discovery of useful biomarkers for HCC, focused solely on the proteome, has been difficult; thus, wide-ranging global data mining of genomic and proteomic databases from previous reports would be valuable in screening biomarker candidates. Further, multiple reaction monitoring (MRM), based on triple quadrupole mass spectrometry, has been effective with regard to high-throughput verification, complementing antibody-based verification pipelines. In this study, global data mining was performed using 5 types of HCC data to screen for candidate biomarker proteins: cDNA microarray, copy number variation, somatic mutation, epigenetic, and quantitative proteomics data. Next, we applied MRM to verify HCC candidate biomarkers in individual serum samples from 3 groups: a healthy control group, patients who have been diagnosed with HCC (Before HCC treatment group), and HCC patients who underwent locoregional therapy (After HCC treatment group). After determining the relative quantities of the candidate proteins by MRM, we compared their expression levels between the 3 groups, identifying 4 potential biomarkers: the actin-binding protein anillin (ANLN), filamin-B (FLNB), complementary C4-A (C4A), and AFP. The combination of 2 markers (ANLN, FLNB) improved the discrimination of the before HCC treatment group from the healthy control group compared with AFP. We conclude that the combination of global data mining and MRM verification enhances the screening and verification of potential HCC biomarkers. This efficacious integrative strategy is applicable to the development of markers for cancer and other diseases.
Verma, Amita; Singh, Deepika; Anwar, Firoz; Bhatt, Prakash Chandra; Al-Abbasi, Fahad; Kumar, Vikas
2018-02-01
The aerial part of Wedelia calendulacea have been used in Ayurveda, Unani, Tibetan, Siddha and other folk medicine systems to protect the liver and renal tissue. Liver is considered as primary metabolizing site of body, which is prone to damage by endogenous and exogenous toxicants. A reason for liver toxicity, and major causes of the hepatocellular carcinoma (HCC). 19-α-Hydroxyurs-12(13)-ene-28 oic acid-3-O-β-D-glucopyranoside (HEG), a triterpenoids found in the higher plants, has been known to possess protective effect against various toxicants. The aim of the current study was to scrutinize the hepatoprotective mechanism of HEG against DEN-induced oxidative stress, hyperproliferation, inflammation and apoptosis tissue injury in Wistar rats. Invitro cell lines study of HEG scrutinized against the Hep-G2 and HuH-7 cells. A single dose of DEN (200 mg/kg) and double dose of phenobarbitol were administered to induce the liver damage in rats; the dose treatment of HEG was terminated at the end of 22 weeks. Macroscopical study was performed for the confirmation of hepatic nodules. The serum and hepatic samples were collected for further biochemical and histopathological analysis. Hepatic; non-hepatic; Phase I and II antioxidant enzymes were also examined. Additionally, we also scrutinized the inflammatory cytokines viz., tumor necrosis factor-α, interlukin-6, interlukin-1β, and Nuclear factor kappa beta (NF-kB), respectively. Histopathological study was also performed for analyzing the changes during the HCC. HEG confirmed the reduction of growth and deoxyribonucleic acid synthesis of both cell lines. DEN successfully induced the HCC in all group, which was significantly (p < 0.001) altered by the HEG in a dose-dependent manner. The decreased level of pro-inflammatory cytokines and altered membrane-bound enzyme activity were also observed. HEG inhibits the phase I, II and antioxidant enzymes at the effective dose-dependent manner, which were considered as the precursor of the HCC. The alteration of phase I, II and antioxidant enzymes confirmed the inhibition of inflammatory reaction and oxidative stress, which directly or indirectly inhibited the NF-kB expression. Collectively, we can conclude that the HEG inhibited the growth of Hepatocellular carcinoma via attenuating the NF-kB pathway.
Aerobic biodegradation kinetics of solid organic wastes on earth and for applications in space
NASA Astrophysics Data System (ADS)
Ramirez Perez, Javier Christian
Aerobic biodegradation plays an important role in recycling organic matter and nutrients on earth. It is also a candidate technology for waste processing and resource recovery in Advanced Life Support (ALS) systems, such as a proposed planetary base on Mars. Important questions are how long should wastes be treated, and what is the quality (stability/maturity) of the product. To address these questions two aerobic composting systems were evaluated. One treated (252 days) horse manure and cranberry fruit in duplicate open windrows (HCC) as a reference earth application. The other was a pilot-scale (330 L) enclosed, in-vessel system treating (162 days) inedible biomass collected from plant growth systems at NASA, amended with food and human wastes simulant for potential space application (ALSC). Samples were taken from both systems over time and product quality assessed with a range of physical, chemical, biological, toxicological, respirometry and plant growth analyses that were developed and standardized. Because plant growth analyses take so long, a hypothesis was that some parameters could be used to predict compost quality and suitability for growing plants. Maximum temperatures in the thermophilic range were maintained for both systems (HCC > 60°C for >129 days, ALSC > 55°C for >40 days. Fecal streptococci were reduced by 4.8 log-units for HCC and 7.8 for ALSC. Volume/mass reductions achieved were 63%/62% for HCC and 79%/67% for ALSC. Phytotoxicity tests performed on aqueous extracts to recover plant nutrients found decreasing sensitivity: arabidopsis > lettuce > tomato > wheat > cucumber, corresponding with seed size and food reserve capacity. The germination index (GI) of HCC increased over composting time indicating decreasing phytotoxicity. However, GIs for ALSC leachate decreased or fluctuated over composting time. Selected samples of HCC at 31, 157 and 252 days alone and combined with promix (1:1), and of ALSC at 7, 14, 21, 28, 40 and 84 days, or fresh (FL) or dried and leached (DL), alone and combined with promix or "Martian" regolith simulant (1:1) were assessed as plant growth media. For HCC, plants were tallest and heaviest HCC-252 > HCC-157 > HCC-31 days for HCC and FL-ALSC:promix > DL-ALSC > ALSC:regolith > ALSC:promix > ALSC. Whereas phytotoxicity decreased for HCC over composting time, for ALSC it increased. A hypothesis that increasingly high free ammonia concentration in ALSC may have been the cause of toxicity was confirmed on promix adjusted to different NH4+-N concentrations and pHs. Very good, consistent correlations for selected HCC parameters with plant growth were found. However, poor and inconsistent correlations were found for ALSC due to ammonia toxicity. Maximum oxygen uptake rate (new parameter) and GI are recommended as the best indicators of compost stability/maturity and suitability for plant growth.
Amal, Haitham; Ding, Lu; Liu, Bin-bin; Tisch, Ulrike; Xu, Zhen-qin; Shi, Da-you; Zhao, Yan; Chen, Jie; Sun, Rui-xia; Liu, Hu; Ye, Sheng-Long; Tang, Zhao-you; Haick, Hossam
2012-01-01
Background: Hepatocellular carcinoma (HCC) is a common and aggressive form of cancer. Due to a high rate of postoperative recurrence, the prognosis for HCC is poor. Subclinical metastasis is the major cause of tumor recurrence and patient mortality. Currently, there is no reliable prognostic method of invasion. Aim: To investigate the feasibility of fingerprints of volatile organic compounds (VOCs) for the in-vitro prediction of metastasis. Methods: Headspace gases were collected from 36 cell cultures (HCC with high and low metastatic potential and normal cells) and analyzed using nanomaterial-based sensors. Predictive models were built by employing discriminant factor analysis pattern recognition, and the classification success was determined using leave-one-out cross-validation. The chemical composition of each headspace sample was studied using gas chromatography coupled with mass spectrometry (GC-MS). Results: Excellent discrimination was achieved using the nanomaterial-based sensors between (i) all HCC and normal controls; (ii) low metastatic HCC and normal controls; (iii) high metastatic HCC and normal controls; and (iv) high and low HCC. Several HCC-related VOCs that could be associated with biochemical cellular processes were identified through GC-MS analysis. Conclusion: The presented results constitute a proof-of-concept for the in-vitro prediction of the metastatic potential of HCC from VOC fingerprints using nanotechnology. Further studies on a larger number of more diverse cell cultures are needed to evaluate the robustness of the VOC patterns. These findings could benefit the development of a fast and potentially inexpensive laboratory test for subclinical HCC metastasis. PMID:22888249
Kastenhuber, Edward R.; Lalazar, Gadi; Houlihan, Shauna L.; Tschaharganeh, Darjus F.; Baslan, Timour; Chen, Chi-Chao; Requena, David; Tian, Sha; Bosbach, Benedikt; Wilkinson, John E.; Simon, Sanford M.; Lowe, Scott W.
2017-01-01
A segmental deletion resulting in DNAJB1–PRKACA gene fusion is now recognized as the signature genetic event of fibrolamellar hepatocellular carcinoma (FL-HCC), a rare but lethal liver cancer that primarily affects adolescents and young adults. Here we implement CRISPR-Cas9 genome editing and transposon-mediated somatic gene transfer to demonstrate that expression of either the endogenous fusion protein or a chimeric cDNA leads to the formation of indolent liver tumors in mice that closely resemble human FL-HCC. Notably, overexpression of the wild-type PRKACA was unable to fully recapitulate the oncogenic activity of DNAJB1–PRKACA, implying that FL-HCC does not simply result from enhanced PRKACA expression. Tumorigenesis was significantly enhanced by genetic activation of β-catenin, an observation supported by evidence of recurrent Wnt pathway mutations in human FL-HCC, as well as treatment with the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which causes tissue injury, inflammation, and fibrosis. Our study validates the DNAJB1–PRKACA fusion kinase as an oncogenic driver and candidate drug target for FL-HCC, and establishes a practical model for preclinical studies to identify strategies to treat this disease. PMID:29162699
Eugenio, Mélanie Simoes; Demey, Baptiste; Singh, Amrathlal Rabbind; Ossart, Christèle; Bagami, Mohammed Al; Regimbeau, Jean-Marc; Nguyen-Khac, Eric; Naassila, Mickael
2016-01-01
Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients. PMID:27081035
Fouquet, Grégory; Debuysscher, Véronique; Ouled-Haddou, Hakim; Eugenio, Mélanie Simoes; Demey, Baptiste; Singh, Amrathlal Rabbind; Ossart, Christèle; Al Bagami, Mohammed; Regimbeau, Jean-Marc; Nguyen-Khac, Eric; Naassila, Mickael; Marcq, Ingrid; Bouhlal, Hicham
2016-05-31
Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients.
Value of radiofrequency ablation in the treatment of hepatocellular carcinoma
Feng, Kai; Ma, Kuan-Sheng
2014-01-01
Hepatocellular carcinoma (HCC) is a malignant disease that substantially affects public health worldwide. It is especially prevalent in east Asia and sub-Saharan Africa, where the main etiology is the endemic status of chronic hepatitis B. Effective treatments with curative intent for early HCC include liver transplantation, liver resection (LR), and radiofrequency ablation (RFA). RFA has become the most widely used local thermal ablation method in recent years because of its technical ease, safety, satisfactory local tumor control, and minimally invasive nature. This technique has also emerged as an important treatment strategy for HCC in recent years. RFA, liver transplantation, and hepatectomy can be complementary to one another in the treatment of HCC, and the outcome benefits have been demonstrated by numerous clinical studies. As a pretransplantation bridge therapy, RFA extends the average waiting time without increasing the risk of dropout or death. In contrast to LR, RFA causes almost no intra-abdominal adhesion, thus producing favorable conditions for subsequent liver transplantation. Many studies have demonstrated mutual interactions between RFA and hepatectomy, effectively expanding the operative indications for patients with HCC and enhancing the efficacy of these approaches. However, treated tumor tissue remains within the body after RFA, and residual tumors or satellite nodules can limit the effectiveness of this treatment. Therefore, future research should focus on this issue. PMID:24876721
Subramaniam, Aruljothi; Shanmugam, Muthu K; Ong, Tina H; Li, Feng; Perumal, Ekambaram; Chen, Luxi; Vali, Shireen; Abbasi, Taher; Kapoor, Shweta; Ahn, Kwang Seok; Kumar, Alan Prem; Hui, Kam M; Sethi, Gautam
2013-01-01
BACKGROUND AND PURPOSE Aberrant activation of STAT3 is frequently encountered and promotes proliferation, survival, metastasis and angiogenesis in hepatocellular carcinoma (HCC). Here, we have investigated whether emodin mediates its effect through interference with the STAT3 activation pathway in HCC. EXPERIMENTAL APPROACH The effect of emodin on STAT3 activation, associated protein kinases and apoptosis was investigated using various HCC cell lines. Additionally, we also used a predictive tumour technology to analyse the effects of emodin. The in vivo effects of emodin were assessed in an orthotopic mouse model of HCC. KEY RESULTS Emodin suppressed STAT3 activation in a dose- and time-dependent manner in HCC cells, mediated by the modulation of activation of upstream kinases c-Src, JAK1 and JAK2. Vanadate treatment reversed emodin-induced down-regulation of STAT3, suggesting the involvement of a tyrosine phosphatase and emodin induced the expression of the tyrosine phosphatase SHP-1 that correlated with the down-regulation of constitutive STAT3 activation. Interestingly, silencing of the SHP-1 gene by siRNA abolished the ability of emodin to inhibit STAT3 activation. Finally, when administered i.p., emodin inhibited the growth of human HCC orthotopic tumours in male athymic nu/nu mice and STAT3 activation in tumour tissues. CONCLUSIONS AND IMPLICATIONS Emodin mediated its effects predominantly through inhibition of the STAT3 signalling cascade and thus has a particular potential for the treatment of cancers expressing constitutively activated STAT3. PMID:23848338
Liu, Feng; Zhang, Wen; Yang, Fusheng; Feng, Tingting; Zhou, Meng; Yu, Yuan; Yu, Xiuping; Zhao, Weiming; Yi, Fan; Tang, Wei; Lu, Yi
2016-02-16
This study aimed to determine the expression of progranulin (PGRN) in hepatocellular carcinoma (HCC) cells in response to interleukin 6 (IL-6), a non-cellular component of the tumor microenvironment, and the molecular mechanism of PGRN oncogenic activity in hepatocarcinogenesis. Levels of IL-6 and PGRN were increased and positively correlated in HCC tissues. IL-6 dose- and time-dependently increased PGRN level in HCC cells. IL-6-driven PGRN expression was at least in part mediated by Erk/C/EBPβ signaling, and reduced expression of PGRN impaired IL-6-stimulated proliferation, migration and invasion of HepG2 cells. PGRN activated mammalian target of rapamycin (mTOR) signaling, as evidenced by increased phosphorylation of p70S6K, 4E-BP1, and Akt-Ser473/FoxO1. Inhibition of mTOR signaling with rapamycin, an mTOR signaling inhibitor, disturbed PGRN- or IL-6-mediated proliferation, migration and invasion of HCC cells in vitro. Persistent activation of mTOR signaling by knockdown of TSC2 restored PGRN-knockdown-attenuated pro-proliferation effects of IL-6 in HepG2 cells. In addition, rapamycin treatment in vivo in mice slowed tumor growth stimulated by recombinant human PGRN. Our findings provide a better understanding of the biological activities of the IL-6/PGRN/mTOR cascade in the carcinogenesis of HCC, which may suggest a novel target in the treatment of HCC.
Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma.
Porcu, Cristiana; Antonucci, Laura; Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara
2018-02-06
Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies.
Identification of personalized dysregulated pathways in hepatocellular carcinoma.
Li, Hong; Jiang, Xiumei; Zhu, Shengjie; Sui, Lihong
2017-04-01
Hepatocellular carcinoma (HCC) is the most common liver malignancy, and ranks the fifth most prevalent malignant tumors worldwide. In general, HCC are detected until the disease is at an advanced stage and may miss the best chance for treatment. Thus, elucidating the molecular mechanisms is critical to clinical diagnosis and treatment for HCC. The purpose of this study was to identify dysregulated pathways of great potential functional relevance in the progression of HCC. Microarray data of 72 pairs of tumor and matched non-tumor surrounding tissues of HCC were transformed to gene expression data. Differentially expressed genes (DEG) between patients and normal controls were identified using Linear Models for Microarray Analysis. Personalized dysregulated pathways were identified using individualized pathway aberrance score module. 169 differentially expressed genes (DEG) were obtained with |logFC|≥1.5 and P≤0.01. 749 dysregulated pathways were obtained with P≤0.01 in pathway statistics, and there were 93 DEG overlapped in the dysregulated pathways. After performing normal distribution analysis, 302 pathways with the aberrance probability≥0.5 were identified. By ranking pathway with aberrance probability, the top 20 pathways were obtained. Only three DEGs (TUBA1C, TPR, CDC20) were involved in the top 20 pathways. These personalized dysregulated pathways and overlapped genes may give new insights into the underlying biological mechanisms in the progression of HCC. Particular attention can be focused on them for further research. Copyright © 2017 Elsevier GmbH. All rights reserved.
Song, Pei-Pei; Xia, Ju-Feng; Inagaki, Yoshinori; Hasegawa, Kiyoshi; Sakamoto, Yoshihiro; Kokudo, Norihiro; Tang, Wei
2016-01-01
The prevalence of hepatocellular carcinoma (HCC) worldwide parallels that of persistent infection with the hepatitis B virus (HBV) and/or hepatitis C virus (HCV). According to recommendations by the World Health Organization guidelines for HBV/HCV, alpha-fetoprotein (AFP) testing and abdominal ultrasound should be performed in routine surveillance of HCC every 6 mo for high-risk patients. These examinations have also been recommended worldwide by many other HCC guidelines over the past few decades. In recent years, however, the role of AFP in HCC surveillance and diagnosis has diminished due to advances in imaging modalities. AFP was excluded from the surveillance and/or diagnostic criteria in the HCC guidelines published by the American Association for the Study of Liver Diseases in 2010, the European Association for the Study of the Liver in 2012, and the National Comprehensive Cancer Network in 2014. Other biomarkers, including the Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3), des-γ-carboxyprothrombin, Dickkopf-1, midkine, and microRNA, are being studied in this regard. Furthermore, increasing attention has focused on the clinical utility of biomarkers as pre-treatment predictors for tumor recurrence and as post-treatment monitors. Serum and tissue-based biomarkers and genomics may aid in the diagnosis of HCC, determination of patient prognosis, and selection of appropriate treatment. However, further studies are needed to better characterize the accuracy and potential role of these approaches in clinical practice. PMID:26755875
MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma
Ranjan, Atul; Iyer, Swathi V.; Ward, Christopher; Link, Tim; Diaz, Francisco J.; Dhar, Animesh; Tawfik, Ossama W.; Weinman, Steven A.; Azuma, Yoshiaki; Izumi, Tadahide; Iwakuma, Tomoo
2018-01-01
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk. PMID:29765550
In vivo imaging of hepatocellular carcinoma using a glypican-3-binding peptide based probe
NASA Astrophysics Data System (ADS)
Zhang, Qi; Han, Zhihao; Zhang, Wancun; Qian, Zhiyu; Gu, Yueqing
2017-02-01
Hepatocellular carcinoma (HCC) has been the third most common cause of cancer-related death worldwide. Glypican-3 (GPC3) is a heparin sulfate proteoglycan linked to the cell membrane by a glycosyl-phosphatidylinositol anchor (GPI) and is expressed by 75% of all hepatocellular carcinomas but undetectable in healthy liver tissue or liver with focal lesions. What's more, GPC3 has been gradually applied in clinical applications as a specific indicator for the early detection and prognosis of HCC. As GPC3 can also regulate many pathways in HCC pathogenesis including Wnt, Hh and Yap signaling, it has been shown that GPC3 knockdown can inhibit HCC growth, reinforcing the important roles of GPC3 in HCC development. For HCC early detection, we designed a peptide targeting GPC3 that allows to establish a fluorescent dyes-labeled probe. Firstly, according to the structure of the GPC3 antibody GC33 and the positive peptide reported in the literature, we generated a peptide consisting of twelve amino acids named 12P that may bind to GPC3 with tight binding ability and specificity. In vitro testing, we utilized FCM and laser confocal microscopy to verify its specificity of targeting to the high expression cells of GPC3. What's more, we linked 12P with a near infrared dye to verify its in vivo targeting ability. All results indicated that 12P possessed potent binding capacity which could be used as a targeting module in GPC3 detection probe.
NASA Astrophysics Data System (ADS)
Zhai, Weiwei; Lim, Tony Kiat-Hon; Zhang, Tong; Phang, Su-Ting; Tiang, Zenia; Guan, Peiyong; Ng, Ming-Hwee; Lim, Jia Qi; Yao, Fei; Li, Zheng; Ng, Poh Yong; Yan, Jie; Goh, Brian K.; Chung, Alexander Yaw-Fui; Choo, Su-Pin; Khor, Chiea Chuen; Soon, Wendy Wei-Jia; Sung, Ken Wing-Kin; Foo, Roger Sik-Yin; Chow, Pierce Kah-Hoe
2017-02-01
Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using multi-regional sampling of nine resected HCC with different aetiologies, here we construct phylogenetic relationships of these sectors, showing diverse levels of genetic sharing, spanning early to late diversification. Unlike the variegated pattern found in colorectal cancers, a large proportion of HCC display a clear isolation-by-distance pattern where spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases showed genetic divergence occurring before and after primary tumour diversification, respectively. Metastatic tumours had much higher variability than their primary tumours, suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant location. The presence of co-existing mutations offers the possibility of drug repositioning for HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a comprehensive understanding of the evolutionary trajectories of HCC and suggest novel avenues for personalized therapy.
Ye, Jian; Yao, Yufeng; Song, Qixue; Li, Sisi; Hu, Zhenkun; Yu, Yubing; Hu, Changqing; Da, Xingwen; Li, Hui; Chen, Qiuyun; Wang, Qing K.
2016-01-01
Hepatocellular carcinoma (HCC) is one of the most common malignant cancers. To elucidate new regulatory mechanisms for heptocarcinogenesis, we investigated the regulation of p21, a cyclin-dependent kinase (CDK) inhibitor encoded by CDKN1A, in HCC. The expression level of p21 is decreased with the progression of HCC. Luciferase assays with a luciferase-p21-3′ UTR reporter and its serial deletions identified a 15-bp repressor element at the 3′-UTR of CDKN1A, which contains a binding site for miR-95-3p. Mutation of the binding site eliminated the regulatory effect of miR-95-3p on p21 expression. Posttranscriptional regulation of p21 expression by miR-95-3p is mainly on the protein level (suppression of translation). Overexpression of miR-95-3p in two different HCC cell lines, HepG2 and SMMC7721, significantly promoted cell proliferation, cell cycle progression and cell migration, whereas a miR-95-3p specific inhibitor decreased cell proliferation, cell cycle progression and cell migration. The effects of miR-95-3p on cellular functions were rescued by overexpression of p21. Overexpression of miR-95-3p promoted cell proliferation and tumor growth in HCC xenograft mouse models. Expression of miR-95-3p was significantly higher in HCC samples than in adjacent non-cancerous samples. These results demonstrate that miR-95-3p is a potential new marker for HCC and regulates hepatocarcinogenesis by directly targeting CDKN1A/p21 expression. PMID:27698442
Lai, Hao; Mo, Xianwei; Yang, Yang; He, Ke; Xiao, Jun; Liu, Chao; Chen, Jiansi; Lin, Yuan
2014-10-01
The aim of this study was to determine the airway exposure of sugar and papermaking factory workers to aflatoxin B1 (AFB1) and to explore the potential association between AFB1 airway exposure and the risk of hepatocellular carcinoma (HCC) in a case-control study. Dust samples were collected from the sugarcane bagasse warehouse, and presser and paper production workshops. Blood samples were collected from 181 workshop employees and 203 controls who worked outside the workshop. AFB1 albumin adducts were detected using a double antibody sandwich enzyme-linked immunosorbent assay (ELISA). To explore the association between AFB1 airway exposure and the risk of HCC, the medical records of 68 HCC patients who worked in a sugar and papermaking factory between January 1994 and December 2013 were analyzed. A questionnaire was used to collect information from 150 healthy controls who worked for the same company and lived near the factory. AFB1 was detected in the dust samples, but could not be detected in any of the rice samples. An analysis of serum samples revealed serum AFB1 albumin adducts in 102 (56.35 %) of the study participants. However, in the control group, only 12 (5.9 %) individuals had detectable levels of AFB1 albumin adducts. Those with airway exposure to Aspergillus flavus-contaminated dust had an elevated risk of HCC compared to those without exposure (odds ratio, 5.24; 95 % confidence interval, 2.77-9.88; P = 0.00). The findings of this study indicate that occupational AFB1 airway exposure might be associated with the risk of AFB1-related HCC among the population that was used in this study. Intervention programs aimed at reducing exposure to inhalational AFB1 are needed urgently. Additional suitably designed, multicenter, prospective studies using large samples are needed to further confirm the results.
Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang
2015-02-28
Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy.
Elevated serum alpha fetoprotein levels promote pathological progression of hepatocellular carcinoma
Li, Peng; Wang, Shan-Shan; Liu, Hui; Li, Ning; McNutt, Michael A; Li, Gang; Ding, Hui-Guo
2011-01-01
AIM: To investigate the biological role of alpha fetoprotein (AFP) and its clinical significance in carcinogenesis of hepatocellular carcinoma (HCC). METHODS: Clinical analysis of HCC patients and immunohistochemical examination were conducted to evaluate the relationship between serum AFP level and patient mortality. Confocal microscopy, Western blotting, dimethylthiahzolyl-2,5-diphenyl-tetrazolium bromide, Cell Counting Kit-8 assays and flow cytometry were performed to explore the possible mechanism. RESULTS: Among the 160 HCC patients enrolled in this study, 130 patients survived 2 years (81.25%), with a survival rate of 86.8% in AFP < 2 0 μg/L group, 88.9% in AFP 20-250 μg/L group, and 69.6% in AFP > 250 μg/L group, demonstrating a higher mortality rate in HCC patients with higher AFP levels. Surgical treatment was beneficial only in patients with low AFP levels. The mortality rate of HCC patients with high AFP levels who were treated surgically was apparently higher than those treated with conservative management. The results of immunohistochemistry showed that AFP and AFP receptor were merely expressed in tissues of HCC patients with positive serum AFP. Consistently, in vitro analysis showed that AFP and AFPS were expressed in HepG2 but not in HLE cells. AFP showed a capability to promote cell growth, and this was more apparent in HepG2 cells, in which the proliferation was increased by 3.5 folds. Cell cycle analysis showed that the percentage of HepG2 cells in S phase after exposure to AFP was modestly increased. CONCLUSION: HCC patients with higher AFP levels show a higher mortality rate, which appears to be attributable to the growth promoting properties of AFP. PMID:22147961
Jeon, Yejoo; Jang, Eun Sun; Choi, Yun Suk; Kim, Jin-Wook; Jeong, Sook-Hyang
2016-09-01
Glypican-3 (GPC3) protein is highly expressed in hepatocellular carcinoma (HCC) tissue. It has been suggested as a diagnostic biomarker, but its inconsistent performance means that it requires further assessment. We therefore investigated the diagnostic value of the plasma GPC3 level compared to the alpha-fetoprotein (AFP) level as a diagnostic biomarker of HCC. We enrolled 157 consecutive patients with newly diagnosed HCC and 156 patients with liver cirrhosis (LC) as the control group. GPC3 plasma levels were measured using two commercially available enzyme-linked immunosorbent assays (ELISAs, named as Assay 1 and 2), and AFP levels were measured using an enzyme-linked chemiluminescent immunoassay. The diagnostic accuracy was analyzed using the receiver operating characteristics (ROC) curve. Plasma GPC3 levels in HCC patients were very low (0-3.09 ng/mL) in Assay 1, while only 3 of the 157 patients (1.9%) showed detectable GPC3 levels in Assay 2. The median GPC3 level was not significantly elevated in the HCC group (0.80 ng/mL) compared with the LC group (0.60 ng/mL). The area under the ROC curve (AUC) for GPC3 was 0.559 in Assay 1. In contrast, the median AFP level was significantly higher in HCC (27.72 ng/mL) than in LC (4.74 ng/mL), with an AUC of 0.729. The plasma level of GPC3 is a poor diagnostic marker for HCC, being far inferior to AFP. The development of a consistent detection system for the blood level of GPC3 is warranted.
Methylation analysis of p16, SLIT2, SCARA5, and Runx3 genes in hepatocellular carcinoma
Sun, Gaofeng; Zhang, Chen; Feng, Min; Liu, Wensheng; Xie, Huifang; Qin, Qin; Zhao, E.; Wan, Li
2017-01-01
Abstract This study is to investigate the methylation status of multiple tumor suppressor 1 (p16), secreted glycoprotein 2 (SLIT2), scavenger receptor class A, member 5 putative (SCARA5), and human runt-related transcription factor 3 (Runx3) genes in the peripheral blood of hepatocellular carcinoma (HCC). This is a case–control study. The peripheral blood samples were collected from 25 HCC patients, 25 patients with high risk of HCC (defined as “internal control group”), and 25 healthy individuals (defined as “external control group”), respectively. Then the methylation status of p16, SLIT2, SCARA5, and Runx3 genes in the blood samples were analyzed by pyrosequencing. The relationship between the methylation and the clinical features of HCC patients were evaluated. The methylation levels in the 7 CpG loci of p16 gene in HCC patients were low and without statistically significant difference (P > .05) compared to the control groups. Although the methylation levels of CpG3 and CpG4 in SLIT2 gene loci were higher than those of the control groups, there was no statistically significant difference (P > .05). However, the methylation rate of CpG2 locus in SCARA5 gene in HCC patients was significantly higher (P < .05). And the methylation rates of CpG1, CpG2, CpG3, CpG4, CpG5, and CpG8 in Runx3 gene in HCC patients were significantly different to that of control groups (P < .05). We also have analyzed the correlations between the CpG islands methylation of Runx3 or SCARA5 genes and the age, gender, hepatitis B, liver cirrhosis, alpha fetal protein, or hepatitis B surface antigen (HBsAg) of the HCC patients, which all showed no significant correlations (P > .05). The methylation status of SCARA5 and Runx3 genes are abnormal in HCC patients, which may further be used as molecular markers for early auxiliary diagnosis of liver cancer. PMID:29019900
Chronic liver inflammation and hepatocellular carcinogenesis are independent of S100A9.
De Ponti, Aurora; Wiechert, Lars; Stojanovic, Ana; Longerich, Thomas; Marhenke, Silke; Hogg, Nancy; Vogel, Arndt; Cerwenka, Adelheid; Schirmacher, Peter; Hess, Jochen; Angel, Peter
2015-05-15
The S100A8/A9 heterodimer (calprotectin) acts as a danger signal when secreted into the extracellular space during inflammation and tissue damage. It promotes proinflammatory responses and drives tumor development in different models of inflammation-driven carcinogenesis. S100A8/A9 is strongly expressed in several human tumors, including hepatocellular carcinoma (HCC). Apart from this evidence, the role of calprotectin in hepatocyte transformation and tumor microenvironment is still unknown. The aim of this study was to define the function of S100A8/A9 in inflammation-driven HCC. Mice lacking S100a9 were crossed with the Mdr2(-/-) model, a prototype of inflammation-induced HCC formation. S100a9(-/-) Mdr2(-/-) (dKO) mice displayed no significant differences in tumor incidence or multiplicity compared to Mdr2(-/-) animals. Chronic liver inflammation, fibrosis and oval cell activation were not affected upon S100a9 deletion. Our data demonstrate that, although highly upregulated, calprotectin is dispensable in the onset and development of HCC, and in the maintenance of liver inflammation. © 2014 UICC.
Shu, Guangwen; Yue, Ling; Zhao, Wenhao; Xu, Chan; Yang, Jing; Wang, Shaobing; Yang, Xinzhou
2015-10-14
Isoliensinine (isolie) is an alkaloid produced by the edible plant Nelumbo nucifera. Here, we unveiled that isolie was able to provoke HepG2, Huh-7, and H22 hepatocellular carcinoma (HCC) cell apoptosis. Isolie decreased NF-κB activity and constitutive phosphorylation of NF-κB p65 subunit at Ser536 in HCC cells. Overexpression of p65 Ser536 phosphorylation mimics abrogated isolie-mediated HCC cell apoptosis. Furthermore, intraperitoneal injection of isolie inhibited the growth of Huh-7 xenografts in nude mice. Additionally, isolie given by both intraperitoneal injection and gavage diminished the proliferation of transplanted H22 cells in Kunming mice. Reduced tumor growth in vivo was associated with inhibited p65 phosphorylation at Ser536 and declined NF-κB activity in tumor tissues. Finally, we revealed that isolie was bioavailable in the blood of mice and exhibited no detectable toxic effects on tumor-bearing mice. Our data provided strong evidence for the anti-HCC effect of isolie.
Okajima, Wataru; Komatsu, Shuhei; Ichikawa, Daisuke; Miyamae, Mahito; Ohashi, Takuma; Imamura, Taisuke; Kiuchi, Jun; Nishibeppu, Keiji; Arita, Tomohiro; Konishi, Hirotaka; Shiozaki, Atsushi; Morimura, Ryo; Ikoma, Hisashi; Okamoto, Kazuma; Otsuji, Eigo
2017-01-01
Hepatocellular carcinoma (HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called “liquid biopsy” is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma. PMID:28883691
Okajima, Wataru; Komatsu, Shuhei; Ichikawa, Daisuke; Miyamae, Mahito; Ohashi, Takuma; Imamura, Taisuke; Kiuchi, Jun; Nishibeppu, Keiji; Arita, Tomohiro; Konishi, Hirotaka; Shiozaki, Atsushi; Morimura, Ryo; Ikoma, Hisashi; Okamoto, Kazuma; Otsuji, Eigo
2017-08-21
Hepatocellular carcinoma (HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called "liquid biopsy" is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.
O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis.
Duan, Fangfang; Wu, Hao; Jia, Dongwei; Wu, Weicheng; Ren, Shifang; Wang, Lan; Song, Shushu; Guo, Xinying; Liu, Fenglin; Ruan, Yuanyuan; Gu, Jianxin
2018-06-01
Aberrant oncogenic mRNA translation and protein O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) are general features during tumorigenesis. Nevertheless, whether and how these two pathways are interlinked remain unknown. Our previous study indicated that ribosomal receptor for activated C-kinase 1 (RACK1) promoted chemoresistance and growth in hepatocellular carcinoma (HCC). The aim of this study is to examine the role of RACK1 O-GlcNAcylation in oncogene translation and HCC carcinogenesis. The site(s) of RACK1 for O-GlcNAcylation was mapped by mass spectrometry analysis. HCC cell lines were employed to examine the effects of RACK1 O-GlcNAcylation on the translation of oncogenic factors and behaviors of tumor cells in vitro. Transgenic knock-in mice were used to detect the role of RACK1 O-GlcNAcylation in modulating HCC tumorigenesis in vivo. The correlation of RACK1 O-GlcNAcylation with tumor progression and relapse were analyzed in clinical HCC samples. We found that ribosomal RACK1 was highly modified by O-GlcNAc at Ser122. O-GlcNAcylation of RACK1 enhanced its protein stability, ribosome binding and interaction with PKCβII (PRKCB), leading to increased eukaryotic translation initiation factor 4E phosphorylation and translation of potent oncogenes in HCC cells. Genetic ablation of RACK1 O-GlcNAcylation at Ser122 dramatically suppressed tumorigenesis, angiogenesis, and metastasis in vitro and in diethylnitrosamine (DEN)-induced HCC mouse model. Increased RACK1 O-GlcNAcylation was also observed in HCC patient samples and correlated with tumor development and recurrence after chemotherapy. These findings demonstrate that RACK1 acts as key mediator linking O-GlcNAc metabolism to cap-dependent translation during HCC tumorigenesis. Targeting RACK1 O-GlcNAcylation provides promising options for HCC treatment. O-GlcNAcylation of ribosomal receptor for activated C-kinase 1 at the amino acid serine122 promotes its stability, ribosome localization and interaction with the protein kinase, PKCβII, thus driving the translation of oncogenes and tumorigenesis of hepatocellular carcinoma. Increased O-GlcNAcylation of ribosomal receptor for activated C-kinase 1 is positively correlated with tumor growth, metastasis and recurrence in patients with hepatocellular carcinoma. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Genomic and epigenomic heterogeneity of hepatocellular carcinoma
Lin, De-Chen; Mayakonda, Anand; Dinh, Huy Q.; Huang, Pinbo; Lin, Lehang; Liu, Xiaoping; Ding, Ling-wen; Wang, Jie; Berman, Benjamin P.; Song, Er-Wei; Yin, Dong; Koeffler, H. Phillip
2017-01-01
Understanding the intratumoral heterogeneity of hepatocellular carcinoma (HCC) is instructive for developing personalized therapy and identifying molecular biomarkers. Here we applied whole-exome sequencing to 69 samples from 11 patients to resolve the genetic architecture of subclonal diversification. Spatial genomic diversity was found in all 11 HCC cases, with 29% of driver mutations being heterogeneous, including TERT, ARID1A, NOTCH2, and STAG2. Similar with other cancer types, TP53 mutations were always shared between all tumor regions i.e. located on the “trunk” of the evolutionary tree. In addition, we found that variants within several drug targets such as KIT, SYK and PIK3CA were mutated in a fully clonal manner, indicating their therapeutic potentials for HCC. Temporal dissection of mutational signatures suggested that mutagenic processes associated with exposure to aristolochic acid and aflatoxin might play a more important role in early, as opposed to late, stages of HCC development. Moreover, we observed extensive intratumoral epigenetic heterogeneity in HCC based on multiple independent analytical methods and showed that intratumoral methylation heterogeneity might play important roles in the biology of HCC cells. Our results also demonstrated prominent heterogeneity of intratumoral methylation even in a stable HCC genome. Together, these findings highlight widespread intratumoral heterogeneity at both the genomic and epigenomic levels in HCC and provide an important molecular foundation for better understanding the pathogenesis of this malignancy. PMID:28302680
The anti-hepatocellular carcinoma cell activity by a novel mTOR kinase inhibitor CZ415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou medical College, Hangzhou; Chen, Bingyu
Dysregulation of mammalian target of rapamycin (mTOR) in hepatocellular carcinoma (HCC) represents a valuable treatment target. Recent studies have developed a highly-selective and potent mTOR kinase inhibitor, CZ415. Here, we showed that nM concentrations of CZ415 efficiently inhibited survival and induced apoptosis in HCC cell lines (HepG2 and Huh-7) and primary-cultured human HCC cells. Meanwhile, CZ415 inhibited proliferation of HCC cells, more potently than mTORC1 inhibitors (rapamycin and RAD001). CZ415 was yet non-cytotoxic to the L02 human hepatocytes. Mechanistic studies showed that CZ415 disrupted assembly of mTOR complex 1 (mTORC1) and mTORC2 in HepG2 cells. Meanwhile, activation of mTORC1 (p-S6K1)more » and mTORC2 (p-AKT, Ser-473) was almost blocked by CZ415. In vivo studies revealed that oral administration of CZ415 significantly suppressed HepG2 xenograft tumor growth in severe combined immuno-deficient (SCID) mice. Activation of mTORC1/2 was also largely inhibited in CZ415-treated HepG2 tumor tissue. Together, these results show that CZ415 blocks mTORC1/2 activation and efficiently inhibits HCC cell growth in vitro and in vivo. - Highlights: • CZ415 is anti-survival and pro-apoptotic to hepatocellular carcinoma (HCC) cells. • CZ415 inhibits HCC cell proliferation, more efficiently than mTORC1 inhibitors. • CZ415 blocks assembly and activation of both mTORC1 and mTORC2 in HCC cells. • CZ415 oral administration inhibits HepG2 tumor growth in SCID mice. • mTORC1/2 activation in HepG2 tumor is inhibited with CZ415 administration.« less
Cha, Jung Hoon; Bae, Si Hyun; Kim, Hye Lim; Park, Na Ri; Choi, Eun Suk; Jung, Eun Sun; Choi, Jong Young; Yoon, Seung Kew
2013-01-01
Purpose Recent studies have revealed that branched-chain amino acids (BCAA) reduce the development of hepatocellular carcinoma (HCC) in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR). The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN)-induced HCC and liver cirrhosis in a rat model. Methods Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight) for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. Results The mean area and number of dysplastic nodules (DNs) and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. Conclusions BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level. PMID:24223741
Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma.
Yu, Jian; Xu, Qing-Guo; Wang, Zhen-Guang; Yang, Yuan; Zhang, Ling; Ma, Jin-Zhao; Sun, Shu-Han; Yang, Fu; Zhou, Wei-Ping
2018-06-01
In recent years, circular RNAs (circRNAs) have been shown to have critical regulatory roles in cancer biology. However, the contributions of circRNAs to hepatocellular carcinoma (HCC) remain largely unknown. cSMARCA5 (a circRNA derived from exons 15 and 16 of the SMARCA5 gene, hsa_circ_0001445) was identified by RNA-sequencing and validated by quantitative reverse transcription PCR. The role of cSMARCA5 in HCC progression was assessed both in vitro and in vivo. circRNAs in vivo precipitation, luciferase reporter assay, biotin-coupled microRNA capture and fluorescence in situ hybridization were conducted to evaluate the interaction between cSMARCA5 and miR-17-3p/miR-181b-5p. The expression of cSMARCA5 was lower in HCC tissues, because of the regulation of DExH-Box Helicase 9, an abundant nuclear RNA helicase. The downregulation of cSMARCA5 in HCC was significantly correlated with aggressive characteristics and served as an independent risk factor for overall survival and recurrence-free survival in patients with HCC after hepatectomy. Our in vivo and in vitro data indicated that cSMARCA5 inhibits the proliferation and migration of HCC cells. Mechanistically, we found that cSMARCA5 could promote the expression of TIMP3, a well-known tumor suppressor, by sponging miR-17-3p and miR-181b-5p. These results reveal an important role of cSMARCA5 in the growth and metastasis of HCC and provide a fresh perspective on circRNAs in HCC progression. Herein, we studied the role of cSMARCA5, a circular RNA, in hepatocellular carcinoma. Our in vitro and in vivo data showed that cSMARCA5 inhibits the growth and migration of hepatocellular carcinoma cells, making it a potential therapeutic target. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Park, Seong Ji; Lee, Seung Koo; Lim, Chae Rin; Park, Hye Won; Liu, Fang; Kim, Seong-Jin; Kim, Byung-Chul
2018-04-06
Heme oxygenase-1 (HO-1) has been implicated in tumor progression, but the underlying molecular mechanisms remain largely unknown. Transforming growth factor-β1 (TGF-β1) exhibits cytostatic and apoptotic effects in hepatocytes and several types of hepatocellular carcinoma (HCC) cell lines, and deregulation of its signaling pathway is linked to hepatic tumorigenesis. In the present study, we observed that HO-1 is expressed at higher levels in HCC tissues than in paired normal tissues. Moreover, TGF-β1-induced cell cycle arrest and up-regulation of cyclin-dependent kinase inhibitors in HCC cell lines were significantly attenuated by overexpression of HO-1 or treatment with tricarbonyldichlororuthenium(II) dimer ([Ru(CO) 3 Cl 2 ] 2 , suggesting an inhibitory role of the HO-1/CO axis in TGF-β signaling to growth inhibition in HCC cell lines. Interestingly, we observed that [Ru(CO) 3 Cl 2 ] 2 inhibits TGF-β1-induced Smad3-dependent reporter activity without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation. Additional experiments revealed that HO-1/CO axis selectively induces phosphorylation of Smad3 at Thr-179 residue in the linker region through activation of extracellular signal-activated kinase (ERK) 1/2. Transfection with a phospho-deficient Smad3 (T179A) mutant or treatment with FR180204, a specific inhibitor for ERK1/2, significantly reversed the inhibitory effects of HO-1 and [Ru(CO) 3 Cl 2 ] 2 on cell cycle arrest induced by TGF-β1. These findings for the first time demonstrate that HO-1/CO axis confer resistance of HCC cells to TGF-β growth inhibitory signal by increasing Smad3 phosphorylation at Thr-179 via ERK1/2 pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Xiao-Feng; Dai, Dong; Song, Xiu-Yu; Liu, Jian-Jing; Zhu, Lei; Zhu, Xiang; Ma, Wenchao; Xu, Wengui
2017-05-01
Natural T cells [cluster of differentiation (CD) 3 + CD56 + ] and natural killer (NK) cells (CD3 - CD56 + ) are particularly abundant in the human liver and serve an important role in immune responses in the liver. The aim of the present study was to extensively determine the phenotypic and functional characteristics of natural T and NK cells in human hepatocellular carcinoma (HCC). Tumorous and non-tumorous tissue infiltrating lymphocytes (TILs and NILs, respectively) and peripheral blood mononuclear cells (PBMCs) from patients with hepatocellular carcinoma (HCC) were obtained to determine the frequency and phenotype of natural T/NK cells by a multicolor fluorescence activated cell sorting analysis. The abundance of natural T cells and NK cells was decreased in TILs vs. NILs (natural T cells, 6.315±1.002 vs. 17.16±1.804; NK cells, 6.324±1.559 vs. 14.52±2.336, respectively). However such results were not observed in PBMCs from HCC patients vs. that of healthy donors. Notably, a substantial fraction of the natural T cells (21.96±5.283) in TILs acquired forkhead box P3 (FOXP3) expression, and the FOXP3 + natural T cells lost the expression of interferon-γ and perforin. Conversely, being similar to the conventional FOXP3 + regulatory T cells, the FOXP3 + natural T cells assumed a specific phenotype that was characteristic of CD25 + , CD45RO + and cytotoxic T-lymphocyte-associated protein 4 + . Consistent with the phenotypic conversion, the present functional results indicate that FOXP3 expression in natural T cells contributes to the acquisition of a potent immunosuppressive capability. In conclusion, the present study describes a different representation of natural T cells and NK cells in local tumor tissues and in the periphery blood of patients with HCC, and identified a new type of FOXP3-expressing natural T cell spontaneously arising in the TILs of HCC.
Braren, Rickmer; Altomonte, Jennifer; Settles, Marcus; Neff, Frauke; Esposito, Irene; Ebert, Oliver; Schwaiger, Markus; Rummeny, Ernst; Steingoetter, Andreas
2011-11-01
The hepatocellular carcinoma (HCC) exhibits varying degrees of vascularization with more poorly differentiated carcinoma commonly exhibiting high amounts of vascularization. Transcatheter arterial embolization (TAE) of HCC tumor nodules results in varying amounts of tumor necrosis. Reliable quantification of necrosis after TAE, would aid in treatment planning and testing of novel combinatorial treatment regimen. The aim of this work was to validate different imaging parameters as individual or combined predictors of tumor necrosis after TAE in an orthotopic rat HCC tumor model. Unifocal rat HCC was imaged by T(2)-weighted MRI, quantitative dynamic contrast enhanced (DCE) MRI, diffusion weighted MRI (DWI) and [(18)F]-FDG PET imaging before (day-1) and after (days 1 and 3) TAE. Univariate and multivariate regression analyses were carried out to analyze the ability of each imaging parameter to predict the percent residual vital tumor (vtu) and vital tissue (vti) as determined by quantitative histopathology. TAE induced a wide range of tumor necrosis. Tumor volume was the only parameter showing a correlation with vti (r(2) = 0.63) before TAE. After TAE, moderate correlations were found for FDG tracer uptake (r(2) = 0.56) and plasma tissue transfer constant (r(2) = 0.55). Correlations were higher for the extravascular extracellular volume fraction (v(e), r(2) = 0.68) and highest for the apparent diffusion coefficient (ADC, r(2) = 0.86). Multivariate analyses confirmed highest correlation of ADC and v(e) with vtu and vti. DWI and DCE-MRI with the respective parameters ADC (day 3) and v(e) (day 1) were identified as the most promising imaging techniques for the prediction of necrosis. This study validates a preclinical platform allowing for the improved tumor stratification after TAE and thus the testing of novel combinatorial therapy approaches in HCC. Copyright © 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Sato, Fumiaki; Hatano, Etsuro; Kitamura, Koji; Myomoto, Akira; Fujiwara, Takeshi; Takizawa, Satoko; Tsuchiya, Soken; Tsujimoto, Gozoh; Uemoto, Shinji; Shimizu, Kazuharu
2011-01-01
Objective Hepatocellular carcinoma (HCC) is difficult to manage due to the high frequency of post-surgical recurrence. Early detection of the HCC recurrence after liver resection is important in making further therapeutic options, such as salvage liver transplantation. In this study, we utilized microRNA expression profiling to assess the risk of HCC recurrence after liver resection. Methods We examined microRNA expression profiling in paired tumor and non-tumor liver tissues from 73 HCC patients who satisfied the Milan Criteria. We constructed prediction models of recurrence-free survival using the Cox proportional hazard model and principal component analysis. The prediction efficiency was assessed by the leave-one-out cross-validation method, and the time-averaged area under the ROC curve (ta-AUROC). Results The univariate Cox analysis identified 13 and 56 recurrence-related microRNAs in the tumor and non-tumor tissues, such as miR-96. The number of recurrence-related microRNAs was significantly larger in the non-tumor-derived microRNAs (N-miRs) than in the tumor-derived microRNAs (T-miRs, P<0.0001). The best ta-AUROC using the whole dataset, T-miRs, N-miRs, and clinicopathological dataset were 0.8281, 0.7530, 0.7152, and 0.6835, respectively. The recurrence-free survival curve of the low-risk group stratified by the best model was significantly better than that of the high-risk group (Log-rank: P = 0.00029). The T-miRs tend to predict early recurrence better than late recurrence, whereas N-miRs tend to predict late recurrence better (P<0.0001). This finding supports the concept of early recurrence by the dissemination of primary tumor cells and multicentric late recurrence by the ‘field effect’. Conclusion microRNA profiling can predict HCC recurrence in Milan criteria cases. PMID:21298008
Bufalin attenuates the stage and metastatic potential of hepatocellular carcinoma in nude mice
2014-01-01
Background Advanced hepatocellular carcinoma (HCC) patients undergo significant tumor growth and metastasis. Here, we investigated bufalin for treating HCC, which exhibits anti-tumor activities in many tumor cell lines. Method In our experiment, HCCLM3-R cells were injected into nude mice to form subcutaneous human HCC tumors that were implanted into the liver to establish orthotopic transplantation tumor models. Bufalin was injected intraperitoneally at 1 or 1.5 mg/kg. LY294002 (100 mg/kg), a potent inhibitor of Akt which reduced the levels of pAkt in HCCLM3 cell lines, was injected intraperitoneally into one group thrice weekly. The control was injected with an equal volume of saline. Morphological alterations were evaluated in the liver and lung by stereomicroscopy, the apoptotic rate was measured by TUNEL staining, and expression of AKT/GSK3β/β-catenin/E-cadherin signaling pathway-related proteins was detected by immunohistochemistry (IHC) and western blot analysis. Results These results suggested that the sizes and qualities of orthotopic transplanted tumors as well as pulmonary metastasis decreased markedly at the highest bufalin dose compared with that in the control. Orthotopic transplanted tumor tissues were necrotic in bufalin-treated groups and the apoptotic cell number was markedly higher at the highest bufalin dose compared with that in the control. Certain changes of expression of AKT/GSK3β/β-catenin/E-cadherin signaling pathway-related proteins were in tumor tissues, which were related to the bufalin dose. Similar results were observed in the LY294002-treated group. Conclusion Based on the above, one can draw conclusions that bufalin has significant anti-tumor activities and reduces the metastatic potential in an orthotopic transplantation tumor model of human HCC. Inhibition of AKT/GSK3β/β-catenin/E-cadherin signaling pathways by bufalin may show therapeutic effects in advanced HCC patients. PMID:24581171
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiao-xi; Liu, Chang; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049
2013-08-15
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and often forms metastases, which are the most important prognostic factors. For further elucidation of the mechanism underlying the progression and metastasis of HCC, a culture system mimicking the in vivo tumor microenvironment is needed. In this study, we investigated the metastatic ability of HCC cells cultured within alginate gel (ALG) beads. In the culture system, HCC cells formed spheroids by proliferation and maintained in nuclear abnormalities. The gene and protein expression of metastasis-related molecules was increased in ALG beads, compared with the traditional adhesion culture. Furthermore, several gene expressionmore » levels in ALG bead culture system were even closer to liver cancer tissues. More importantly, in vitro invasion assay showed that the invasion cells derived from ALG beads was 7.8-fold higher than adhesion cells. Our results indicated that the in vitro three-dimensional (3D) model based on ALG beads increased metastatic ability compared with adhesion culture, even partly mimicked the in vivo tumor tissues. Moreover, due to the controllable preparation conditions, steady characteristics and production at large-scale, the 3D ALG bead model would become an important tool used in the high-throughput screening of anti-metastasis drugs and the metastatic mechanism research. -- Highlights: •We established a 3D metastasis model mimicking the metastatic ability in vivo. •The invasion ability of cells derived from our model was increased significantly. •The model is easy to reproduce, convenient to handle, and amenable for large-scale.« less
PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiajun; Shao, Miaomiao; Liu, Min
2015-08-07
Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα,more » but not PKCβI or βII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment. - Highlights: • PKCα promotes the generation of ROS in hepatocellular carcinoma. • PKCα induces ROS production by up-regulating DUOX2 at post-transcriptional level. • DUOX2 is required for PKCα-induced AKT/MAPK activation and tumor progression in HCC. • The expression of PKCα is positively correlated with DUOX2 in HCC.« less
Feasibility of α-fetoprotein as a diagnostic tool for hepatocellular carcinoma in Korea
Ahn, Dae Geon; Kim, Hyung Joon; Kang, Hyun; Lee, Hyun Woong; Bae, Si Hyun; Lee, Joon Hyoek; Paik, Yong Han; Lee, June Sung
2016-01-01
Background/Aims: The aim of this study was to evaluate the feasibility of α-fetoprotein (AFP) as a diagnostic tool for hepatocellular carcinoma (HCC) in Korean patients. Methods: We retrospectively reviewed the medical records of HCC and cirrhosis patients at three hospitals. For each HCC patient, a cirrhosis patient matched for age, sex, etiology, and Child-Pugh classification was selected by simple random sampling. The performance of AFP in the diagnosis of HCC was determined using receiver operating characteristic curve analysis. Results: A total of 732 patients with HCC or cirrhosis were selected for each case and the control groups. The mean age was 54 years, and 72.4% of patients were male. The mean serum AFP levels in the HCC group and cirrhosis group were 3,315.6 and 117.2 ng/mL, respectively (p < 0.001). The area under the receiver operating characteristic curve for all HCC patients was 0.757. The sensitivity, specificity, and positive predictive value of AFP was 50.55%, 87.70%, and 80.43%, respectively, at a cut-off of 20 ng/mL; 37.70%, 95.90%, and 90.20%, respectively, at a cut-off of 100 ng/mL, and 30.05%, 97.27%, and 91.67%, respectively, at a cut-off of 200 ng/mL. A cut-off of 100 ng/mL was more sensitive than one of 200 ng/mL with equivalent specificity and positive predictive value. Conclusions: The cut-off AFP value for early-stage HCC was 17.4 ng/mL. Our study cautiously suggests that AFP has a role in the diagnosis of HCC, and that the appropriate value of AFP for the diagnosis of HCC may be 100 ng/mL rather than 200 ng/mL. PMID:26767857
Feasibility of α-fetoprotein as a diagnostic tool for hepatocellular carcinoma in Korea.
Ahn, Dae Geon; Kim, Hyung Joon; Kang, Hyun; Lee, Hyun Woong; Bae, Si Hyun; Lee, Joon Hyoek; Paik, Yong Han; Lee, June Sung
2016-01-01
The aim of this study was to evaluate the feasibility of α-fetoprotein (AFP) as a diagnostic tool for hepatocellular carcinoma (HCC) in Korean patients. We retrospectively reviewed the medical records of HCC and cirrhosis patients at three hospitals. For each HCC patient, a cirrhosis patient matched for age, sex, etiology, and Child-Pugh classification was selected by simple random sampling. The performance of AFP in the diagnosis of HCC was determined using receiver operating characteristic curve analysis. A total of 732 patients with HCC or cirrhosis were selected for each case and the control groups. The mean age was 54 years, and 72.4% of patients were male. The mean serum AFP levels in the HCC group and cirrhosis group were 3,315.6 and 117.2 ng/mL, respectively (p < 0.001). The area under the receiver operating characteristic curve for all HCC patients was 0.757. The sensitivity, specificity, and positive predictive value of AFP was 50.55%, 87.70%, and 80.43%, respectively, at a cut-off of 20 ng/mL; 37.70%, 95.90%, and 90.20%, respectively, at a cut-off of 100 ng/mL, and 30.05%, 97.27%, and 91.67%, respectively, at a cut-off of 200 ng/mL. A cut-off of 100 ng/mL was more sensitive than one of 200 ng/mL with equivalent specificity and positive predictive value. The cut-off AFP value for early-stage HCC was 17.4 ng/mL. Our study cautiously suggests that AFP has a role in the diagnosis of HCC, and that the appropriate value of AFP for the diagnosis of HCC may be 100 ng/mL rather than 200 ng/mL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qingqing; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province; Tao, Tao
As an essential post-translational modification, O-GlcNAcylation has been thought to be able to modulate various nuclear and cytoplasmic proteins and is emerging as a key regulator of multiple biological processes, such as transcription, cell growth, signal transduction, and cell motility. Recently, authoritative glycomics analyses have reported extensive crosstalk between O-GlcNAcylation and phosphorylation, which always dynamically interplay with each other and regulate signaling, transcription, and other cellular processes. Also, plentiful studies have shown close correlation between YB-1 phosphorylation and tumorigenesis. Therefore, our study aimed to determine whether YB-1 was O-GlcNAc modified and whether such modification could interact with its phosphorylation duringmore » the process of HCC development. Western blot and immunohistochemistry were firstly conducted to reveal obvious up-regulation of YB-1, OGT and O-GlcNAc modification in HCC tissues. What is more, not only YB-1 was identified to be O-GlcNAcylated but hyper-O-GlcNAcylation was demonstrated to facilitate HCC cell proliferation in a YB-1 dependent manner. Moreover, we detected four specific O-GlcNAc sites and confirmed T126A to be the most effective mutant in HCC cell proliferation via close O-GlcNAcylation-phosphorylation interaction. Even more interestingly, we discovered that T126A-induced HCC cell retardation and subdued transcriptional activity of YB-1 could be partially reversed by T126A/S102E mutant. From all above, it is not difficult to find that glycosylated-YB-1 mainly enhanced cell proliferation through congenerous actions with YB-1 phosphorylation and thus played indispensable roles in fine-tuning cell proliferation and procession of HCC. - Highlights: • YB-1 and OGT are associated with HCC prognosis. • YB-1 is O-GlcNAc modified in HCC. • Hyper-O-GlcNAcylation promotes HCC cell proliferation in dependent of YB-1. • The proliferating role of O-GlcNAcylation is based on Ser102 phosphorylation of YB-1.« less
Li, Hongdan; Wang, Haoqi; Ren, Zhen
2018-01-01
This study aims to explore the effects of microRNA-214-5p (miR-214-5p) on the invasion and migration of Hepatocellular Carcinoma cells (HCC). Hepatocellular Carcinoma tissues and adjacent normal tissues from 44 hepatocellular carcinoma patients were prepared for this study. The HepG2 and BEL-7402 cells were transfected with miR-214-5p mimic and inhibitor. qRT-PCR was performed to detect the expressions of miR-214-5p. Transwell assays were used to detect the invasion and migration assays in HepG2 and BEL-7402 cells. A dual-luciferase reporter assay was conducted to examine the effect of miR-214-5p on Wiskott-Aldrich Syndrome Like (WASL/ N-WASP). Western blot and qRT-PCR were used to measure the expressions of the E-cadherin, N-cadherin and Vimentin proteins. Transwell chamber assays were performed to detect cell invasion and migration. Compared with normal tissues, HCC tissues demonstrated significantly lower expression of miR-214-5p. Overexpression of miR-214-5p significantly inhibited the migration and invasion of HCC cells and inhibition of miR-214-5p promoted the migration and invasion. Additionally, miR-214-5p suppressed the epithelial-mesenchymal transition (EMT). Further study showed WASL was a putative target gene of miR-214-5p. Up-regulating the expression of WASL could reverse the inhibition effect of miR-214-5p on invasion and migration. Our data suggested that miR-214-5p inhibited the invasion and migration of HepG2 and BEL-7402 by targeting WASL in Hepatocellular carcinoma. © 2018 The Author(s). Published by S. Karger AG, Basel.
Bax Inhibitor-1 down-regulation in the progression of chronic liver diseases
2010-01-01
Background Bax inhibitor-1 (BI-1) is an evolutionary conserved endoplasmic reticulum protein that, when overexpressed in mammalian cells, suppresses the apoptosis induced by Bax, a pro-apoptotic member of the Bcl-2 family. The aims of this study were: (1) to clarify the role of intrinsic anti- and pro-apoptotic mediators, evaluating Bax and BI-1 mRNA and protein expressions in liver tissues from patients with different degrees of liver damage; (2) to determine whether HCV and HBV infections modulate said expression. Methods We examined 62 patients: 39 with chronic hepatitis (CH) (31 HCV-related and 8 HBV-related); 7 with cirrhosis (6 HCV-related and 1 HBV-related); 13 with hepatocellular carcinoma (HCC) [7 in viral cirrhosis (6 HCV- and 1 HBV-related), 6 in non-viral cirrhosis]; and 3 controls. Bax and BI-1 mRNAs were quantified by real-time PCR, and BI-1 protein expression by Western blot. Results CH tissues expressed significantly higher BI-1 mRNA levels than cirrhotic tissues surrounding HCC (P < 0.0001) or HCC (P < 0.0001). Significantly higher Bax transcripts were observed in HCV-genotype-1-related than in HCV-genotype-3-related CH (P = 0.033). A positive correlation emerged between BI-1 and Bax transcripts in CH tissues, even when HCV-related CH and HCV-genotype-1-related CH were considered alone (P = 0.0007, P = 0.0005 and P = 0.0017, respectively). Conclusions BI-1 expression is down-regulated as liver damage progresses. The high BI-1 mRNAs levels observed in early liver disease may protect virus-infected cells against apoptosis, while their progressive downregulation may facilitate hepatocellular carcinogenesis. HCV genotype seems to have a relevant role in Bax transcript expression. PMID:20359348
Leone, Angelique M; Crawshaw, Graham J; Garner, Michael M; Frasca, Salvatore; Stasiak, Iga; Rose, Karrie; Neal, Dan; Farina, Lisa L
2016-03-01
Egyptian fruit bats (Rousettus aegyptiacus) are one of many species within zoologic collections that frequently develop iron storage disease. The goals of this retrospective multi-institutional study were to determine the tissue distribution of iron storage in captive adult Egyptian fruit bats and the incidence of intercurrent neoplasia and infection, which may be directly or indirectly related to iron overload. Tissue sections from 83 adult Egyptian fruit bats were histologically evaluated by using tissue sections stained with hematoxylin and eosin, trichrome, and Prussian blue techniques. The liver and spleen consistently had the largest amount of iron, but significant amounts of iron were also detected in the pancreas, kidney, skeletal muscle, and lung. Hepatocellular carcinoma (HCC; 11) was the most common neoplasm, followed by cholangiocarcinoma (4). Extrahepatic neoplasms included bronchioloalveolar adenoma (3), pulmonary carcinosarcoma (1), oral sarcoma (1), renal adenocarcinoma (1), transitional cell carcinoma of the urinary bladder (1), mammary gland adenoma (1), and parathyroid adenoma (1). There were also metastatic neoplasms of undetermined primary origin that included three poorly differentiated carcinomas, a poorly differentiated sarcoma, and a neuroendocrine tumor. Bats with hemochromatosis were significantly more likely to have HCC than bats with hemosiderosis (P = 0.032). Cardiomyopathy was identified in 35/77 bats with evaluable heart tissue, but no direct association was found between cardiac damage and the amount of iron observed within the liver or heart. Hepatic abscesses occurred in multiple bats, although a significant association was not observed between hemochromatosis and bacterial infection. To the authors' knowledge, this is the first publication providing evidence of a positive correlation between hemochromatosis and HCC in any species other than humans.
Ishizawa, Takeaki; Masuda, Koichi; Urano, Yasuteru; Kawaguchi, Yoshikuni; Satou, Shouichi; Kaneko, Junichi; Hasegawa, Kiyoshi; Shibahara, Junji; Fukayama, Masashi; Tsuji, Shingo; Midorikawa, Yutaka; Aburatani, Hiroyuki; Kokudo, Norihiro
2014-02-01
Although clinical applications of intraoperative fluorescence imaging of liver cancer using indocyanine green (ICG) have begun, the mechanistic background of ICG accumulation in the cancerous tissues remains unclear. In 170 patients with hepatocellular carcinoma cells (HCC), the liver surfaces and resected specimens were intraoperatively examined by using a near-infrared fluorescence imaging system after preoperative administration of ICG (0.5 mg/kg i.v.). Microscopic examinations, gene expression profile analysis, and immunohistochemical staining were performed for HCCs, which showed ICG fluorescence in the cancerous tissues (cancerous-type fluorescence), and HCCs showed fluorescence only in the surrounding non-cancerous liver parenchyma (rim-type fluorescence). ICG fluorescence imaging enabled identification of 273 of 276 (99%) HCCs in the resected specimens. HCCs showed that cancerous-type fluorescence was associated with higher cancer cell differentiation as compared with rim-type HCCs (P < 0.001). Fluorescence microscopy identified the presence of ICG in the canalicular side of the cancer cell cytoplasm, and pseudoglands of the HCCs showed a cancerous-type fluorescence pattern. The ratio of the gene and protein expression levels in the cancerous to non-cancerous tissues for Na(+)/taurocholate cotransporting polypeptide (NTCP) and organic anion-transporting polypeptide 8 (OATP8), which are associated with portal uptake of ICG by hepatocytes that tended to be higher in the HCCs that showed cancerous-type fluorescence than in those that showed rim-type fluorescence. Preserved portal uptake of ICG in differentiated HCC cells by NTCP and OATP8 with concomitant biliary excretion disorders causes accumulation of ICG in the cancerous tissues after preoperative intravenous administration. This enables highly sensitive identification of HCC by intraoperative ICG fluorescence imaging.
Chiu, Yung-Tuen; Wong, John K L; Choi, Shing-Wan; Sze, Karen M F; Ho, Daniel W H; Chan, Lo-Kong; Lee, Joyce M F; Man, Kwan; Cherny, Stacey; Yang, Wan-Ling; Wong, Chun-Ming; Sham, Pak-Chung; Ng, Irene O L
2016-06-01
Hepatitis B virus (HBV) integration is common in HBV-associated hepatocellular carcinoma (HCC) and may play an important pathogenic role through the production of chimeric HBV-human transcripts. We aimed to screen the transcriptome for HBV integrations in HCCs. Transcriptome sequencing was performed on paired HBV-associated HCCs and corresponding non-tumorous liver tissues to identify viral-human chimeric sites. Validation was further performed in an expanded cohort of human HCCs. Here we report the discovery of a novel pre-mRNA splicing mechanism in generating HBV-human chimeric protein. This mechanism was exemplified by the formation of a recurrent HBV-cyclin A2 (CCNA2) chimeric transcript (A2S), as detected in 12.5% (6 of 48) of HCC patients, but in none of the 22 non-HCC HBV-associated cirrhotic liver samples examined. Upon the integration of HBV into the intron of the CCNA2 gene, the mammalian splicing machinery utilized the foreign splice sites at 282nt. and 458nt. of the HBV genome to generate a pseudo-exon, forming an in-frame chimeric fusion with CCNA2. The A2S chimeric protein gained a non-degradable property and promoted cell cycle progression, demonstrating its potential oncogenic functions. A pre-mRNA splicing mechanism is involved in the formation of HBV-human chimeric proteins. This represents a novel and possibly common mechanism underlying the formation of HBV-human chimeric transcripts from intronically integrated HBV genome with functional impact. HBV is involved in the mammalian pre-mRNA splicing machinery in the generation of potential tumorigenic HBV-human chimeras. This study also provided insight on the impact of intronic HBV integration with the gain of splice sites in the development of HBV-associated HCC. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Long, Xi-Dai; Ma, Yun; Zhou, Yuan-Feng; Ma, Ai-Min; Fu, Guo-Hui
2010-10-01
Genetic polymorphisms in DNA repair genes may influence individual variations in DNA repair capacity, and this may be associated with the risk and outcome of hepatocellular carcinoma (HCC) related to aflatoxin B1 (AFB1) exposure. In this study, we focused on the polymorphism of xeroderma pigmentosum complementation group C (XPC) codon 939 (rs#2228001), which is involved in nucleotide excision repair. We conducted a case-control study including 1156 HCC cases and 1402 controls without any evidence of hepatic disease to evaluate the associations between this polymorphism and HCC risk and prognosis in the Guangxi population. AFB1 DNA adduct levels, XPC genotypes, and XPC protein levels were tested with a comparative enzyme-linked immunosorbent assay, TaqMan polymerase chain reaction for XPC genotypes, and immunohistochemistry, respectively. Higher AFB1 exposure was observed among HCC patients versus the control group [odds ratio (OR) = 9.88 for AFB1 exposure years and OR = 6.58 for AFB1 exposure levels]. The XPC codon 939 Gln alleles significantly increased HCC risk [OR = 1.25 (95% confidence interval = 1.03-1.52) for heterozygotes of the XPC codon 939 Lys and Gln alleles (XPC-LG) and OR = 1.81 (95% confidence interval = 1.36-2.40) for homozygotes of the XPC codon 939 Gln alleles (XPC-GG)]. Significant interactive effects between genotypes and AFB1 exposure status were also observed in the joint-effects analysis. This polymorphism, moreover, was correlated with XPC expression levels in cancerous tissues (r = -0.369, P < 0.001) and with the overall survival of HCC patients (the median survival times were 30, 25, and 19 months for patients with homozygotes of the XPC codon 939 Lys alleles, XPC-LG, and XPC-GG, respectively), especially under high AFB1 exposure conditions. Like AFB1 exposure, the XPC codon 939 polymorphism was an independent prognostic factor influencing the survival of HCC. Additionally, this polymorphism multiplicatively interacted with the xeroderma pigmentosum complementation group D codon 751 polymorphism with respect to HCC risk (OR(interaction) = 1.71). These results suggest that the XPC codon 939 polymorphism may be associated with the risk and outcome of AFB1-related HCC in the Guangxi population and may interact with AFB1 exposure in the process of HCC induction by AFB1.
Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma
Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara
2018-01-01
Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies. PMID:29507693
[Radiofrequency ablation of hepatocellular carcinoma].
Widmann, Gerlig; Schullian, Peter; Bale, Reto
2013-03-01
Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.
Wang, Yuliang; Shen, Zhongyang; Zhu, Zhijun; Han, Ruifa; Huai, Mingsheng
2011-03-01
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Annually, about 200,000 patients died of HCC in China. Liver transplantation (LT) holds great theoretical appeal in treating HCC. However, the high recurrence rate after transplantation is the most important limiting factor for long-term survival. To assess the value of alpha-fetoprotein (AFP) messenger RNA (mRNA), Glypican-3 (GPC3) mRNA-expressing cells in the peripheral blood (PB) for prediction of HCC recurrence following orthotopic liver transplantation (OLT). 29 patients with HCC who underwent OLT with a minimum clinical follow-up of 12 months were included in this retrospective study. We detected AFP mRNA, GPC3 mRNA-expressing cells in the PB by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR), pre-, intra- and post-operatively. The early recurrence of patients was evaluated. 8 (28%), 15 (52%), and 9 (31%) patients had AFP mRNA detected pre-, intra-, and post-operatively, respectively. With 12 months of follow-up, HCC recurred in 7 (24%) patients. Univariate analysis revealed that positive pre- and post-operative AFP mRNA, TNM stage as well as vascular invasion were significant predictors for the HCC recurrence. Multivariate analysis revealed that being positive for AFP mRNA pre-operatively remained a significant risk factor for HCC recurrence after OLT. GPC3 mRNA was expressed in all PB samples. There was no significant difference in the expression levels of GPC3 mRNA between the HCC and control groups. There were no significant differences in GPC3 mRNA expression values between those patients with and without tumor recurrence. The pre-operative detection of circulating AFP mRNA-expressing cells could be a useful predictor for HCC recurrence following OLT. GPC3 mRNA-expressing cells in PB seem to have no diagnostic value.
Kim, Hye Min
2017-01-01
Purpose Although currently classified as variants of follicular neoplasms (FNs), Hürthle cell neoplasms (HCNs) exhibit distinct biological characteristics. Hence, the metabolism of both neoplasms may also be different. The aims of this study were to investigate and compare the expression of glycolysis-related proteins in HCNs and FNs and to determine the clinical implications of such expression. Methods Tissue microarrays were constructed with 265 samples of FNs (112 follicular carcinomas (FCs) and 153 follicular adenomas (FAs)) as well as 108 samples of HCNs (27 Hürthle cell carcinomas (HCCs) and 81 Hürthle cell adenomas (HCAs)). Immunohistochemical staining for the glycolysis-related molecules Glut-1, hexokinase II, CAIX, and MCT4 was performed. Results The expression levels of Glut-1, hexokinase II, CAIX, and MCT4 were significantly higher in HCNs than in FNs (p < 0.001). Glut-1, hexokinase II, CAIX, and MCT4 expression levels were highest in HCC, followed by HCA, FC, and FA (all p < 0.001). In HCC, hexokinase II positivity was associated with large tumor size (>4 cm) (p = 0.046), CAIX positivity with vascular invasion (p = 0.005), and MCT4 positivity with extrathyroidal extension (p = 0.030). Conclusion The expression levels of the glycolysis-related proteins Glut-1, hexokinase II, CAIX, and MCT4 were higher in HCNs than in FNs and in HCCs than in HCAs. PMID:28790533
Cocciadiferro, Letizia; Miceli, Vitale; Granata, Orazia M; Carruba, Giuseppe
2017-09-01
The product of neurofibromatosis type 2 (NF2) gene, also known as Merlin/neurofibromin 2, homeostatically regulates liver stem cells by controlling abundance and signaling of epidermal growth factor receptor (EGFR), with a mechanism independent of the Hippo pathway. We have reported that locally elevated estrogen formation, driven by abnormally high expression and function of aromatase, may be implicated in development and progression of human hepatocellular carcinoma (HCC) through activation of a rapid signaling pathway mediated by amphiregulin (AREG) and EGFR. We have recently presented a model by which the aromatase-estrogen-amphiregulin-EGFR axis is activated in response to tissue injury and/or inflammatory disease, with its alteration eventually leading to development of major human tumors (liver, breast, prostate) and other chronic diseases (diabetes, obesity, Alzheimer's and heart disease). In this study, we investigated NF2 expression in liver cancer cells and tissues in relation to aromatase expression/function, estrogen receptor (ER) status and amphiregulin. Our data indicate that NF2 expression is associated with aromatase and AREG expression, being elevated in HCC tissues and HepG2 cells, intermediate in cirrhotic tissues and Huh7 cells, and lower in nontumoral liver and HA22T cells. In addition, NF2 expression is inversely related to wild type hERα66 and proportional to the expression of the membrane-associated hERα36 splice variant, as measured by exon-specific RT-PCR analysis, both in vivo and in vitro. Furthermore, incubation with estradiol induced a significant decrease of NF2 expression in both HA22T and Huh7 cells (over 54% and 22%, respectively), while no change could be observed in HepG2 cells, this effect being inversely related to aromatase expression and activity in HCC cell lines. Based on the above combined evidence, we hypothesize that NF2 behaves as a protein sensing tissue damage and aromatase-driven local estrogen formation, eventually leading to regulation of stem cells differentiation and tissue repair. Copyright © 2016 Elsevier Ltd. All rights reserved.
Expression of the extracellular matrix protein periostin in liver tumours and bile duct carcinomas.
Riener, Marc-Oliver; Fritzsche, Florian R; Soll, Christopher; Pestalozzi, Bernhard C; Probst-Hensch, Nicole; Clavien, Pierre-Alain; Jochum, Wolfram; Soltermann, Alex; Moch, Holger; Kristiansen, Glen
2010-04-01
To study the relevance of periostin, known to be involved in epithelial-mesenchymal transition (EMT), in hepatocellular and bile duct cancer. Immunohistochemical periostin expression was semiquantitatively analysed in normal liver tissue (n = 20), hepatocellular carcinoma (HCC; n = 91), liver-cell adenoma (n = 9), focal nodular hyperplasia (n = 13) and bile duct carcinomas (BDC; n = 116) using tissue microarrays. Normal bile ducts, gallbladder epithelium and hepatocytes showed weak cytoplasmic periostin expression. In HCC, there was strong epithelial periostin expression in 19/91 (20.9%) and strong stromal periostin expression in 10/91 cases (11%). Epithelial expression in tumour cells was significantly associated with a higher tumour grade (P < 0.05) and hepatitis B virus infection (P = 0.007). Importantly, there was no strong periostin expression in benign liver tumours. Strong stromal periostin expression was detected in 78/116 (67.2%) BDC and strong epithelial expression in 39/116 (33.6%) BDC. pT stage, differentiation grade and proliferation rate in primary BDC were independent of periostin expression. Epithelial periostin expression was associated with reduced overall survival on univariate and multivariate analysis. The EMT protein periostin is expressed in the stroma and epithelium of a subset of BDC and HCC. Epithelial periostin expression is a marker for malignant transformation of hepatocytes and a novel prognostic marker in BDC.
Zhai, Weiwei; Lim, Tony Kiat-Hon; Zhang, Tong; Phang, Su-Ting; Tiang, Zenia; Guan, Peiyong; Ng, Ming-Hwee; Lim, Jia Qi; Yao, Fei; Li, Zheng; Ng, Poh Yong; Yan, Jie; Goh, Brian K.; Chung, Alexander Yaw-Fui; Choo, Su-Pin; Khor, Chiea Chuen; Soon, Wendy Wei-Jia; Sung, Ken Wing-Kin; Foo, Roger Sik-Yin; Chow, Pierce Kah-Hoe
2017-01-01
Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using multi-regional sampling of nine resected HCC with different aetiologies, here we construct phylogenetic relationships of these sectors, showing diverse levels of genetic sharing, spanning early to late diversification. Unlike the variegated pattern found in colorectal cancers, a large proportion of HCC display a clear isolation-by-distance pattern where spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases showed genetic divergence occurring before and after primary tumour diversification, respectively. Metastatic tumours had much higher variability than their primary tumours, suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant location. The presence of co-existing mutations offers the possibility of drug repositioning for HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a comprehensive understanding of the evolutionary trajectories of HCC and suggest novel avenues for personalized therapy. PMID:28240289
[False positive serum des-gamma-carboxy prothrombin after resection of hepatocellular carcinoma].
Hiramatsu, Kumiko; Tanaka, Yasuhito; Takagi, Kazumi; Iida, Takayasu; Takasaka, Yoshimitsu; Mizokami, Masashi
2007-04-01
Measurements of serum concentrations of des-gamma-carboxy-prothrombin (PIVKA-II) are widely used for diagnosing hepatocellular carcinoma (HCC). Recently, when we evaluated the correlation of PIVKA-II between two commercially available PIVKA-II immunoassay kits (Lumipulse f vs. Picolumi) to introduce it in our hospital, false high values of PIVKA-II were observed in Lumipulse assay. Four(4%) of 100 serum samples showed false high values, and all of them were obtained from patients less than 2 month after curative resection of HCC. Examining additional 7 patients with HCC resection, serum samples from the 5 patients had the same trend. To elucidate the non-specific reaction by Lumipulse assay which utilized alkaline phosphatase (ALP) enzymatic reaction, inhibition assays by various absorbents such as inactive ALP and IgM antibodies were performed. Excess of inactive ALP reduced the high values of PIVKA-II. Note that anti-bleeding sheets (fibrinogen combined drug), which included bovine thrombin, were directly attached on liver of all patients with HCC resection in this study. As the sheets also contaminate ALP and probably produce IgM antibodies to ALP, the IgM may cross-react with anti-PIVKA-II antibodies directly. Taken together, it was suggested that produced antibodies against ALP derived from anti-bleeding sheets led false high values of PIVKA-II in the patients with HCC resection.
SH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma.
Tai, Wei-Tien; Hung, Man-Hsin; Chu, Pei-Yi; Chen, Yao-Li; Chen, Li-Ju; Tsai, Ming-Hsien; Chen, Min-Husan; Shiau, Chung-Wai; Boo, Yin-Pin; Chen, Kuen-Feng
2016-04-19
Pyruvate kinase M2 (PKM2) is known to promote tumourigenesis through dimer formation of p-PKM2Y105. Here, we investigated whether SH2-containing protein tyrosine phosphatase 1 (SHP-1) decreases p-PKM2Y105 expression and, thus, determines the sensitivity of sorafenib through inhibiting the nuclear-related function of PKM2. Immunoprecipitation and immunoblot confirmed the effect of SHP-1 on PKM2Y105 dephosphorylation. Lactate production was assayed in cells and tumor samples to determine whether sorafenib reversed the Warburg effect. Clinical hepatocellular carcinoma (HCC) tumor samples were assessed for PKM2 expression. SHP-1 directly dephosphorylated PKM2 at Y105 and further decreased the proliferative activity of PKM2; similar effects were found in sorafenib-treated HCC cells. PKM2 was also found to determine the sensitivity of targeted drugs, such as sorafenib, brivanib, and sunitinib, by SHP-1 activation. Significant sphere-forming activity was found in HCC cells stably expressing PKM2. Clinical findings suggest that PKM2 acts as a predicting factor of early recurrence in patients with HCC, particularly those without known risk factors (63.6%). SHP-1 dephosphorylates PKM2 at Y105 to inhibit nuclear function of PKM2 and determines the efficacy of targeted drugs. Targeting PKM2 by SHP-1 might provide new therapeutic insights for patients with HCC.
Li, Min; Zhang, Chao; Liu, Li-Li; Fu, Jia; Jin, Jie-Tian; Luo, Rong-Zhen; Zhang, Chris Zhiyi; Yun, Jing-Ping
2015-01-01
Pyruvate kinase M2 (PKM2) contributes to the Warburg effect, a hallmark of cancer. We showed that PKM2 levels were correlated with overall survival (hazard ration = 1.675, 95% confidence interval: 1.389–2.019, P < 0.001) and disease-free survival (hazard ration = 1.573, 95% confidence interval: 1.214–2.038, P < 0.001) in a cohort of 490 patients with HCC. The correlations were further validated in an independent cohort of 148 HCC patients. Multivariate analyses revealed that PKM2 was an independent indicator of poor outcome in HCC. The knockdown of PKM2 in HCC cells inhibited cell proliferation and induced apoptosis in vitro and in vivo. Bim siRNA markedly abolished the PKM2-depletion-induced apoptosis. PKM2 depletion decreased the degradation of Bim. In clinical samples, PKM2 expression was reversely correlated with Bim expression. Combination of PKM2 and Bim levels had the best prognostic significance. We suggest that PKM2 serves as a promising biomarker for poor prognosis of patients with HCC and its knockdown induces HCC apoptosis by stabilizing Bim. PMID:25788265
Liu, Zhicheng; Nahon, Pierre; Li, Zaifang; Yin, Peiyuan; Li, Yanli; Amathieu, Roland; Ganne-Carrié, Nathalie; Ziol, Marianne; Sellier, Nicolas; Seror, Olivier; Le Moyec, Laurence; Savarin, Philippe; Xu, Guowang
2018-01-01
Hepatitis C virus (HCV) infection is associated with a high risk of developing hepatocellular carcinoma (HCC) and HCC recurrence remains the primary threat to outcomes after curative therapy. In this study, we compared recurrent and non-recurrent HCC patients treated with radiofrequency ablation (RFA) in order to identify characteristic metabolic profile variations associated with HCC recurrence. Gas chromatography-mass spectrometry (GC-MS) -based metabolomic analyses were conducted on serum samples obtained before and after RFA therapy. Significant variations were observed in metabolites in the glycerolipid, tricarboxylic acid (TCA) cycle, fatty acid, and amino acid pathways between recurrent and non-recurrent patients. Observed differences in metabolites associated with recurrence did not coincide before and after treatment except for fatty acids. Based on the comparison of serum metabolomes between recurrent and non-recurrent patients, key discriminatory metabolites were defined by a random forest (RF) test. Two combinations of these metabolites before and after RFA treatment showed outstanding performance in predicting HCV-related HCC recurrence, they were further confirmed by an external validation set. Our study showed that the determined combination of metabolites may be potential biomarkers for the prediction of HCC recurrence before and after RFA treatment. PMID:29464069
Function of oval cells in hepatocellular carcinoma in rats.
Fang, Chi-Hua; Gong, Jia-Qing; Zhang, Wei
2004-09-01
To study oval cells' pathological characteristics and relationship with the occurrence of hepatocellular carcinoma (HCC); to observe the form and structural characteristics of oval cells; to explore the expression characteristics of C-kit, PCNA mRNA and c-myc gene during the occurrence and development of HCC and the effect of ulinastatin (UTI) on C-kit and PCNA expression. One hundred and twenty-five SD rats fed on 3,3'-diaminobenzidine (DAB) to construct HCC models were divided into control group, cancer-inducing group and UTI intervention group. In each group, rat liver samples were collected at weeks 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 respectively to study pathological distribution characteristics of oval cells in the process of carcinogenesis under optical microscope. Oval cells were separated by the methods of improved density gradient centrifugation and their structural characteristics were observed under optical microscope and electronic microscope respectively; the oval cells expressing C-kit and PCNA in the collected samples were observed by the methods of immunohistochemistry and image analysis and the expression of c-myc mRNA was also detected by reverse transcription polymerase chain reaction (RT-PCR). Oval cells proliferated firstly in the portal area then gradually migrated into hepatic parenchyma in the inducing group and intervention group. The oval cells distributed inside and outside the carcinoma nodes. The oval cells presented the characteristics of undifferentiated cells: a high ratio of nucleolus and cellular plasm and obvious nucleoli, rare organelle in plasm. Only a few mitochondria and endoplasmic reticulum and some villus-like apophysis on surface of cells could be seen. Cells stained with C-kit and PCNA antibody were mainly oval cells distributed in the portal area. The expression of c-myc mRNA increased with the progression of HCC. However, in the intervention group, UTI could retard its increase. Oval cells work throughout the development of HCC, and might play important roles in this process. c-myc gene may be a kind of promoter gene of HCC, and play a key role in hepatic injury and development of HCC. UTI could retard the occurrence of HCC. Copyright 2004 The WJG Press ISSN
Function of oval cells in hepatocellular carcinoma in rats
Fang, Chi-Hua; Gong, Jia-Qing; Zhang, Wei
2004-01-01
AIM: To study oval cells pathological characteristics and relationship with the occurrence of hepatocellular carcinoma (HCC); to observe the form and structural characteristics of oval cells; to explore the expression characteristics of C-kit, PCNA mRNA and c-myc gene during the occurrence and development of HCC and the effect of ulinastatin (UTI) on C-kit and PCNA expression. METHODS: One hundred and twenty-five SD rats fed on 3,3'-diaminobenzidine (DAB) to construct HCC models were divided into control group, cancer-inducing group and UTI intervention group. In each group, rat liver samples were collected at weeks 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 respectively to study pathological distribution characteristics of oval cells in the process of carcinogenesis under optical microscope. Oval cells were separated by the methods of improved density gradient centrifugation and their structural characteristics were observed under optical microscope and electronic microscope respectively; the oval cells expressing C-kit and PCNA in the collected samples were observed by the methods of immunohistochemistry and image analysis and the expression of c-myc mRNA was also detected by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Oval cells proliferated firstly in the portal area then gradually migrated into hepatic parenchyma in the inducing group and intervention group. The oval cells distributed inside and outside the carcinoma nodes. The oval cells presented the characteristics of undifferentiated cells: a high ratio of nucleolus and cellular plasm and obvious nucleoli, rare organelle in plasm. Only a few mitochondria and endoplasmic reticulum and some villus-like apophysis on surface of cells could be seen. Cells stained with C-kit and PCNA antibody were mainly oval cells distributed in the portal area. The expression of c-myc mRNA increased with the progression of HCC. However, in the intervention group, UTI could retard its increase. CONCLUSION: Oval cells work throughout the development of HCC, and might play important roles in this process. c-myc gene may be a kind of promoter gene of HCC, and play a key role in hepatic injury and development of HCC. UTI could retard the occurrence of HCC. PMID:15300889
Fernández-Vega, Iván; Santos-Juanes, Jorge; Camacho-Urkaray, Emma; Lorente-Gea, Laura; García, Beatriz; Gutiérrez-Corres, Francisco Borja; Quirós, Luis M; Guerra-Merino, Isabel; Aguirre, José Javier
2018-02-12
Hepatocellular carcinoma (HCC) is the most common type of primary malignant tumor in the liver. One of the main features of cancer survival is the generalized loss of growth control exhibited by cancer cells, and Miki is a protein related to the immunoglobulin superfamily that plays an important role in mitosis. We aim to study protein expression levels of Miki in non-tumoral liver and 20 HCCs recruited from a Pathology Department. Clinical information was also obtained. A tissue microarray was performed, and immunohistochemical techniques applied to study protein expression levels of Miki. In normal liver, Miki was weakly expressed, showing nuclear staining in the hepatocytes. Cirrhotic areas and HCCs showed a variety of staining patterns. Most HCC samples showed positive expression, with three different staining patterns being discernible: nuclear, cytoplasmic and mixed. Statistical analysis showed a significant association between grade of differentiation, Ki-67 proliferative index, survival rates and staining patterns. This study has revealed the positive expression of Miki in normal liver, cirrhotic areas and HCCs. Three different staining patterns of Miki expression with clinical relevance were noted in HCCs.
Srivastava, Jyoti; Robertson, Chadia L.; Gredler, Rachel; Siddiq, Ayesha; Rajasekaran, Devaraja; Akiel, Maaged A.; Emdad, Luni; Mas, Valeria; Mukhopadhyay, Nitai D.; Fisher, Paul B.; Sarkar, Devanand
2015-01-01
Non-thyroidal illness syndrome (NTIS), characterized by low serum 3,5,3′-triiodothyronine (T3) with normal l-thyroxine (T4) levels, is associated with malignancy. Decreased activity of type I 5′-deiodinase (DIO1), which converts T4 to T3, contributes to NTIS. T3 binds to thyroid hormone receptor, which heterodimerizes with retinoid X receptor (RXR) and regulates transcription of target genes, such as DIO1. NF-κB activation by inflammatory cytokines inhibits DIO1 expression. The oncogene astrocyte elevated gene-1 (AEG-1) inhibits RXR-dependent transcription and activates NF-κB. Here, we interrogated the role of AEG-1 in NTIS in the context of hepatocellular carcinoma (HCC). T3-mediated gene regulation was analyzed in human HCC cells, with overexpression or knockdown of AEG-1, and primary hepatocytes from AEG-1 transgenic (Alb/AEG-1) and AEG-1 knock-out (AEG-1KO) mice. Serum T3 and T4 levels were checked in Alb/AEG-1 mice and human HCC patients. AEG-1 and DIO1 levels in human HCC samples were analyzed by immunohistochemistry. AEG-1 inhibited T3-mediated gene regulation in human HCC cells and mouse hepatocytes. AEG-1 overexpression repressed and AEG-1 knockdown induced DIO1 expression. An inverse correlation was observed between AEG-1 and DIO1 levels in human HCC patients. Low T3 with normal T4 was observed in the sera of HCC patients and Alb/AEG-1 mice. Inhibition of co-activator recruitment to RXR and activation of NF-κB were identified to play a role in AEG-1-mediated down-regulation of DIO1. AEG-1 thus might play a role in NTIS associated with HCC and other cancers. PMID:25944909
Scalp hair cortisol for diagnosis of Cushing's syndrome.
Wester, Vincent L; Reincke, Martin; Koper, Jan W; van den Akker, Erica L T; Manenschijn, Laura; Berr, Christina M; Fazel, Julia; de Rijke, Yolanda B; Feelders, Richard A; van Rossum, Elisabeth F C
2017-06-01
Current first-line screening tests for Cushing's syndrome (CS) only measure time-point or short-term cortisol. Hair cortisol content (HCC) offers a non-invasive way to measure long-term cortisol exposure over several months of time. We aimed to evaluate HCC as a screening tool for CS. Case-control study in two academic referral centers for CS. Between 2009 and 2016, we collected scalp hair from patients suspected of CS and healthy controls. HCC was measured using ELISA. HCC was available in 43 confirmed CS patients, 35 patients in whom the diagnosis CS was rejected during diagnostic work-up and follow-up (patient controls), and 174 healthy controls. Additionally, we created HCC timelines in two patients with ectopic CS. CS patients had higher HCC than patient controls and healthy controls (geometric mean 106.9 vs 12.7 and 8.4 pg/mg respectively, P < 0.001). At a cut-off of 31.1 pg/mg, HCC could differentiate between CS patients and healthy controls with a sensitivity of 93% and a specificity of 90%. With patient controls as a reference, specificity remained the same (91%). Within CS patients, HCC correlated significantly with urinary free cortisol ( r = 0.691, P < 0.001). In two ectopic CS patients, HCC timelines indicated that cortisol was increased 3 and 6 months before CS became clinically apparent. Analysis of cortisol in a single scalp hair sample offers diagnostic accuracy for CS similar to currently used first-line tests, and can be used to investigate cortisol exposure in CS patients months to years back in time, enabling the estimation of disease onset. © 2017 European Society of Endocrinology.
Neurotensin expression and release in human colon cancers.
Evers, B M; Ishizuka, J; Chung, D H; Townsend, C M; Thompson, J C
1992-01-01
Neurotensin (NT), a distal gut peptide released by intraluminal fats, is trophic for normal small bowel and colonic mucosa. In addition, NT stimulates growth of certain colon cancers; the mechanism for this effect is not known. The purpose of this study was to determine whether human colon cancers (HCC) (1) express the mRNA for NT/neuromedin N (N), (2) produce NT peptide, and (3) express the mRNA for a functional NT receptor (NTR). RNA was extracted from four HCC cell lines in culture, nine HCC lines established in athymic nude mice, and from six HCC and adjacent normal mucosa from freshly resected operative specimens; the RNA was analyzed for NT/N mRNA by Northern hybridization with a complementary DNA probe. Neurotensin peptide content, NTR expression, and intracellular Ca++ ([Ca++]i) mobilization in response to NT were evaluated in three HCC cell lines (LoVo, HT29, HCT116). Neurotensin/N mRNA transcripts were identified in all four of the HCC cell lines and in one of nine HCC in nude mice. Neurotensin expression was found in two of six freshly resected HCC and in none of the six corresponding samples of normal mucosa. Neurotensin peptide was identified by RIA in LoVo, HT29, and HCT116. In addition, NTR mRNA was found in HT29 and HCT116. Neurotensin stimulated [Ca++]i mobilization in HCT116 (without serum) and in LoVo (with 0.25% serum). These findings demonstrate the presence of NT/N mRNA and NT peptide and the presence of a functional NTR in certain HCC. Neurotensin, a potent trophic factor for normal gut mucosa, may function as an autocrine growth factor in certain human colon cancers. Images FIG. 1. FIG. 4. PMID:1329682
NASA Astrophysics Data System (ADS)
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph
2015-10-01
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.
Wang, Ben-Gang; Xu, Qian; Lv, Zhi; Fang, Xin-Xin; Ding, Han-Xi; Wen, Jing; Yuan, Yuan
2018-01-01
AIM To evaluate the association of 12 tag single nucleotide polymorphisms (tagSNPs) in three onco-long non-coding RNA (lncRNA) genes (HOTTIP, CCAT2, MALAT1) with the risk and prognosis of hepatocellular cancer (HCC). METHODS Twelve tagSNPs covering the three onco-lncRNAs were genotyped by the KASP method in a total of 1338 samples, including 521 HCC patients and frequency-matched 817 controls. The samples were obtained from an unrelated Chinese population at the First Hospital of China Medical University from 2012-2015. The expression quantitative trait loci (eQTL) analyses were conducted to explore further the potential function of the promising SNPs. RESULTS Three SNPs in HOTTIP, one promoter SNP in MALAT1, and one haplotype of HOTTIP were associated with HCC risk. The HOTTIP rs17501292, rs2067087, and rs17427960 SNPs were increased to 1.55-, 1.20-, and 1.18-fold HCC risk under allelic models (P = 0.012, 0.017 and 0.049, respectively). MALAT1 rs4102217 SNP was increased to a 1.32-fold HCC risk under dominant models (P = 0.028). In addition, the two-way interaction of HOTTIP rs17501292-MALAT1 rs619586 polymorphisms showed a decreased effect on HCC risk (Pinteraction = 0.028, OR = 0.30) and epistasis with each other. HOTTIP rs3807598 variant genotype showed significantly longer survival time in HBV negative subgroup (P = 0.049, HR = 0.12), and MALAT1 rs591291 showed significantly better prognosis in female and HBV negative subgroups (P = 0.022, HR = 0.37; P = 0.042, HR = 0.25, respectively). In the study, no significant effect was observed in eQTL analysis. CONCLUSION Specific lncRNA (HOTTIP and MALAT1) SNPs have potential to be biomarkers for HCC risk and prognosis. PMID:29930469
Carlitz, Esther H D; Kirschbaum, Clemens; Stalder, Tobias; van Schaik, Carolus P
2014-01-01
This study examined whether the method of hair cortisol analysis is applicable to orang-utans (Pongo spp.) and can help to advance the objective monitoring of stress in non-human primates. Specifically, we examined whether fundamental prerequisites for hair cortisol analysis are given in orang-utans and, subsequently, whether segmental hair analysis may provide a retrospective calendar of long-term cortisol levels. For this, hair samples were examined from 71 zoo-living orang-utans (38 males, mean age=22.5years; 33 females, mean age=24years) for which detailed records of past living conditions were available. Hair samples were cut from defined body regions and were analyzed either in full length or in segments. Results showed that hair cortisol concentrations (HCC) were unrelated to age or sex of the individual animal. HCC were found to be higher in orang-utans, with perceived long-term stressful periods (mean HCC=43.6±26.5pg/mg, n=13) compared to animals without perceived stressful periods (19.3±5.5pg/mg, n=55, P<0.001). In non-stressed animals, segmental hair analyses revealed that HCC was stable along the hair shaft even when hair reached >40cm. The possibility of obtaining a retrospective calendar of stress-related cortisol changes through hair analysis was further supported by data of three case studies showing close correspondence between the segmental HCC results and keeper reports of stress exposure during the respective time periods. Finally, low within-animal variation in HCC from different body regions (CV%: 14.3) suggested that this method may also be applicable to naturally shed hair, e.g., as found in nests of wild orang-utans and other great apes. Therefore, using HCC may provide an ideal non-invasive tool for both captive management as well as conservation in orang-utans and potentially other great apes. Copyright © 2013 Elsevier Inc. All rights reserved.
Influence of liver cancer on lipid and lipoprotein metabolism
Jiang, Jingting; Nilsson-Ehle, Peter; Xu, Ning
2006-01-01
Liver plays a key role in the metabolism of plasma apolipoproteins, endogenous lipids and lipoproteins. Hepatocellular carcinoma (HCC) is one of the most common fatal malignant tumors in China and in other Southeast Asian countries. This has been attributed to the high incidence of hepatitis B infection. Hepatitis B proteins, such as the hepatitis B X protein (HBx) that is large hepatitis B surface protein could regulate transcription of many candidate genes for liver carcinogenesis. It has known that patients who suffered from acute hepatitis B could have lipid disorders such as decreased plasma level of high-density lipoproteins (HDL). Furthermore, aberrations of lipid metabolism are often seen in the chronic hepatitis B infection. Plasma lipid profiles could be changed under HCC. In majority of the reports in HCC, plasma levels of triglycerides (TG), cholesterol, free fatty acids (FFA), HDL, low-density lipoproteins (LDL), lipoprotein (a) (Lp(a)), apolipoprotein AI (apoAI) and apoB were slight to significantly decreased, however, in some cases plasma levels of TG and Lp(a) might be increased. It has been suggested that analysis of plasma levels of lipids, lipoproteins and apolipoproteins in the patients suffered from HCC reflects on the hepatic cellular impairment status. Studies revealed that alterations seen in the plasma levels of lipids, lipoproteins and apolipoproteins reflecting patients' pathologic conditions. Decreased serum levels of cholesterol and apoAI may indicate a poor prognosis. Human leukaemic cells and certain tumor tissues have a higher receptor-mediated uptake of HDL and LDL than the corresponding normal cells or tissues. LDL and HDL have therefore been proposed as a carrier for the water-insoluble anti-cancer agents. PMID:16515689
Yoder, Michael; Zimmerman, Robert L; Bibbo, Marluce
2004-04-01
To examine immunohistochemical staining of cell block material with antibodies against vascular marker CD34 and polyclonal carcinoembryonic antigen (pCEA) for their clinical utility as part of a 2-color staining protocol in fine needle aspiration (FNA) biopsy of liver masses to distinguish metastases from primary hepatocellular carcinoma (HCC). The authors obtained cell block material from 96 liver FNAs and performed simultaneous (i.e., "dual-color") immunohistochemical staining utilizing antibodies against vascular marker CD34 and pCEA. Cases were blinded and evaluated by the authors for staining pattern and intensity. A consensus was obtained, the results were unblinded, and the diagnoses were correlated. After staining, 89 cases had sufficient tissue for evaluation. Of the 19 HCC cases, 16 (84%) showed peripheral staining with CD34, and 13 (68%) showed a canalicular or mixed canalicular-cytoplasmic staining pattern for pCEA. Thirteen cases (68%) showed staining for both antigens. All HCC exhibited immunostaining for at least 1 antibody in an appropriate staining pattern. Of the 67 cases of metastatic malignancy, 5 (7%) showed a predominantly transgressing pattern of CD34 staining, 43 (64%) showed a predominantly cytoplasmic or mixed cytoplasmic-canalicular pattern of pCEA staining, and 2 cases (3%) showed staining for both antigens in a transgressing CD34 pattern and cytoplasmic pCEA pattern. None of the 3 normal liver tissue blocks showed staining with either antigen. Two-color immunohistochemical staining of liver cell block material obtained by FNA with antibodies to CD34 and pCEA can be helpful in differentiating metastatic tumors vs. primary HCC.
Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma.
Nwosu, Zeribe Chike; Megger, Dominik Andre; Hammad, Seddik; Sitek, Barbara; Roessler, Stephanie; Ebert, Matthias Philip; Meyer, Christoph; Dooley, Steven
2017-09-01
Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC). We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers ( ECM2 and MMP9) (Pearson correlation P < .05) were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350) are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism). In contrast, among consistently up-regulated metabolic genes (n = 284) are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434) correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts.
Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.
Hinrichsen, Inga; Kemp, Matthias; Peveling-Oberhag, Jan; Passmann, Sandra; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela
2014-01-01
Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.
Effects of body region and time on hair cortisol concentrations in chimpanzees (Pan troglodytes).
Carlitz, Esther H D; Kirschbaum, Clemens; Miller, Robert; Rukundo, Joshua; van Schaik, Carel P
2015-11-01
Hair cortisol concentrations (HCC) are increasingly recognized as an integrated measure of the systemic cortisol secretion. Yet, we still know very little about confounding effects on HCC in animals. The present study therefore used hair from semi-wild and zoo living chimpanzees to investigate (1) intra-individual variability of HCC (body-region effect), and (2) the stability of HCC along the hair shaft (traditionally called the washout effect). Our results indicate that absolute HCC varied substantially between certain body regions, but a factor analysis revealed that these HCC differences were mainly attributable to one common source of variance. Thus, hair from all body regions provides similar biological signals and can be mixed, albeit at the cost of a lower signal-to-noise ratio. With regard to potential underlying mechanisms, we studied skin blood flow, as observed through thermal images from one chimpanzee. We found the general HCC pattern was reflected in differences in surface body temperature observed in this individual in three out of four body regions. In a separate set of samples, we found first evidence to suggest that the systematic cortisol decrease along the hair shaft, as observed in humans, is also present in chimpanzee hair. The effect was more pronounced in semi-wild than in zoo chimpanzees presumably due to more exposure to ambient weather conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Recent negative life events increase hair cortisol concentrations in patients with bipolar disorder.
Staufenbiel, Sabine M; Koenders, Manja A; Giltay, Erik J; Elzinga, Bernet M; Manenschijn, Laura; Hoencamp, Erik; van Rossum, Elisabeth F C; Spijker, Anne T
2014-12-01
Life events induce stress, which is considered to negatively impact the course of disease in patients with bipolar disorder (BD), its effects being predominantly mediated by cortisol. Cortisol in scalp hair has been identified as a biomarker for assessing long-term cortisol levels, and allows clarifying the relation between life events, hair cortisol concentrations (HCC), and clinical course over time. In 71 BD patients, we analyzed the proximal 3 cm of hair, reflecting 3 months of cortisol production, and investigated the association between HCC, the number of life events, the amount of social support, and mood in the 3 months prior to the hair assessment and between HCC and mood in the subsequent 3 months. Although the total number of life events was not associated with HCC (p > 0.05), the number of negative life events was associated with increased HCC (r(2)( )= 0.04, p = 0.02). Social support showed an inverse association with HCC in patients reporting negative life events (r(2)( )= 0.07, p = 0.03). HCC and mood were not associated in the 3 months prior to hair sampling or in the subsequent 3 months. This study indicates that patients who experienced recent negative life events have increased hair cortisol levels, which seem to be attenuated by social support.
Wang, Yu; Zhao, Yingren; Zhang, Aiyun; Ma, Juan; Wang, Zhenzhen; Zhang, Xu
2015-01-01
Hepatocellular carcinoma (HCC) is one of most common malignant tumors worldwide, but with unclear mechanisms. Xeroderma pigmentosum gene D (XPD) is one important DNA damage repair gene and can be involved in protein mutation. Currently little has been known about XPD polymorphism and HCC susceptibility in Chinese people. This study used a meta-analysis approach to comprehensively investigate the correlation between XPD polymorphism and HCC susceptibility in Chinese population, based on previously published literatures. A computer retrieval system was used to collect all case-control studies about XPD Lys751Gln polymorphism and HCC susceptibility. Data in literatures were extracted for meta-analysis. After the primary screening, four independent studies, which were published in 3 English articles and one Chinese article, were recruited in this study. There were 1,717 samples included in all studies. Using Gln/Gln + Lys/Gln, Lys/Lys + Lys/Gln and Lys allels as the reference, HCC disease alleles including Lys/Lys, Gln/Gln and Gln had OR values (95% CI, I(2)) of 1.007 (0.657~4.672, 91%), 3.516 (0.220~20.661, 48%) and 3.225 (0.278~12.326, 84%), respectively. The polymorphism of XPD751 loci is closely correlated with primary HCC. Lys751Gln polymorphism of XPD gene can be used as one susceptibility factor for HCC.
Wang, Zhenguang; Yang, Guangjie; Nie, Pei; Fu, Junhua; Wang, Xufu; Liu, Dan
2013-01-01
Based on practice guideline of "management of hepatocellular carcinoma (HCC): update" published by American Association for the Study of Liver Diseases (AASLD) and "Barcelona Clinic Liver Cancer staging system (BCLC)," this study investigated how to enroll the optimal VX2 liver tumor model for HCC researches by dynamically observing the biological progression of the tumor. Thirty-two healthy New Zealand white rabbits were implanted VX2 liver tumor by cell suspension method (n=24) and tissue fragment method (n=8). All the rabbits underwent CT scans on day 7, 14, 21 and 28 after implantation to observe the size of the tumors, the time when metastases and ascites occurred and the survival time. Appropriate intervention times were estimated corresponding to different clinical HCC stages by using tumor diameter-time curve. The VX2 liver tumors grew rapidly within 28 days after implantation. And the tumors in the cell suspension group grew faster than those of the tissue fragment group. The appropriate intervention time corresponding to very early stage, early stage and intermediate stage were <11 days, 11-16.9 days and >16.9 days, respectively in the cell suspension group, and <19.9 days, 19.9-25.5 days and >25.5 days, respectively in the tissue fragment group. Preclinical animal research needs to improve on different levels to yield best predictions for human patients. Researchers should seek for an individualized proposal to select optimal VX2 liver tumor models for their experiments. This approach may lead to a more accurate determination of therapeutic outcomes.
Markowitz, Geoffrey J; Michelotti, Gregory A; Diehl, Anna Mae; Wang, Xiao-Fan
2015-04-01
Initiation and progression of hepatocellular carcinoma (HCC) is intimately associated with a chronically diseased liver tissue. This diseased liver tissue background is a drastically different microenvironment from the healthy liver, especially with regard to immune cell prevalence and presence of mediators of immune function. To better understand the consequences of liver disease on tumor growth and the interplay with its microenvironment, we utilized two standard methods of fibrosis induction and orthotopic implantation of tumors into the inflamed and fibrotic liver to mimic the liver condition in human HCC patients. Compared to non-diseased controls, tumor growth was significantly enhanced under fibrotic conditions. The immune cells that infiltrated the tumors were also drastically different, with decreased numbers of natural killer cells but greatly increased numbers of immune-suppressive CD11b + Gr1 hi myeloid cells in both models of fibrosis. In addition, there were model-specific differences: Increased numbers of CD11b + myeloid cells and CD4 + CD25 + T cells were found in tumors in the bile duct ligation model but not in the carbon tetrachloride model. Induction of fibrosis altered the cytokine production of implanted tumor cells, which could have farreaching consequences on the immune infiltrate and its functionality. Taken together, this work demonstrates that the combination of fibrosis induction with orthotopic tumor implantation results in a markedly different tumor microenvironment and tumor growth kinetics, emphasizing the necessity for more accurate modeling of HCC progression in mice, which takes into account the drastic changes in the tissue caused by chronic liver disease.
Kind, Nina; Eckert, Anne; Steinlin, Célia; Fegert, Jörg M; Schmid, Marc
2018-08-01
We investigated the impact of verbal and physical client aggression on risk of developing high hair cortisol concentration (HCC) as an indicator of chronic stress exposure and burnout in a Swiss population of professional caregivers working in youth residential care. Participants (n = 121; 62.0% women) reported on client aggression and burnout symptoms and provided hair samples at four annual sampling points. HCC was determined in the first 1.5 cm hair segment. Sociodemographic variables, private stressors, burnout symptoms, and HCC were compared between participants reporting either 'no aggression', 'verbal' aggression, or 'verbal + physical' aggression. Cox proportional hazards regressions were calculated to compute hazard ratios (HR) and 95% confidence intervals (CI) for the association between client aggression and risk of high HCC or burnout over the course of three years. Professional caregivers reporting 'verbal + physical' aggression had higher HCC, more cognitive burnout symptoms, and greater burden in interpersonal domains. Both 'verbal' and 'verbal + physical' aggression were positively associated with burnout risk (verbal: HR = 1.83; 95% CI = 1.27-2.65; verbal + physical: HR = 2.44, 95% CI = 1.56-3.84). 'Verbal + physical' aggression was positively associated with risk of high HCC (HR = 1.58; 95% CI = 1.07-2.36). This longitudinal analysis suggested that psychophysiological stress response is primarily associated with combined verbal and physical aggression. The emotional wearing-down associated with verbal aggression should however not be disregarded. Our exploratory findings could have implications for youth welfare policy, clinical child psychiatry, and future research. Copyright © 2018. Published by Elsevier Ltd.
Tallo-Parra, O; Carbajal, A; Monclús, L; Manteca, X; Lopez-Bejar, M
2018-07-01
Hair cortisol concentrations (HCCs) and hair progesterone concentrations (HPCs) allow monitoring long-term retrospective steroid levels. However, there are still gaps in the knowledge of the mechanisms of steroid deposition in hair and its potential application in dairy cattle research. This study aimed to evaluate the potential uses of hair steroid determinations by studying the interrelations between HCC, HPC, physiological data from cows, and their milk production and quality. Cortisol and progesterone concentrations were analyzed in hair from 101 milking Holstein Friesian cows in a commercial farm. Physiological data were obtained from the 60 d prior to hair collection. Moreover, productive data from the month when hair was collected and the previous one were also obtained as well as at 124 d after hair sampling. Significant but weak correlations were found between HCC and HPC (r = 0.25, P < 0.0001) and between HPC and age (r = 0.06, P = 0.0133). High HCC were associated with low milk yields from the 2 previous months to hair sampling (P = 0.0396) and during the whole lactation (P < 0.0001). High HCC were also related to high somatic cell count (P = 0.0241). No effect of HCC on fat or protein content was detected. No significant correlations were detected between hair steroid concentrations and pregnancy status, days of gestation, parturition category (primiparous vs multiparous), number of lactations or days in milk. The relationship between physiological variables and HCC or HPC could depend on the duration of the time period over which hair accumulates hormones. Steroid concentrations in hair present high variability between individuals but are a potential tool for dairy cattle welfare and production research by providing a useful and practical tool for long-term steroid monitoring. Copyright © 2018 Elsevier Inc. All rights reserved.
Ahn, Yeong Hee; Shin, Park Min; Kim, Yong-Sam; Oh, Na Ree; Ji, Eun Sun; Kim, Kwang Hoe; Lee, Yeon Jung; Kim, Sung Ho; Yoo, Jong Shin
2013-11-07
A lectin-coupled mass spectrometry (MS) approach was employed to quantitatively monitor aberrant protein glycosylation in liver cancer plasma. To do this, we compared the difference in the total protein abundance of a target glycoprotein between hepatocellular carcinoma (HCC) plasmas and hepatitis B virus (HBV) plasmas, as well as the difference in lectin-specific protein glycoform abundance of the target glycoprotein. Capturing the lectin-specific protein glycoforms from a plasma sample was accomplished by using a fucose-specific aleuria aurantia lectin (AAL) immobilized onto magnetic beads via a biotin-streptavidin conjugate. Following tryptic digestion of both the total plasma and its AAL-captured fraction of each HCC and HBV sample, targeted proteomic mass spectrometry was conducted quantitatively by a multiple reaction monitoring (MRM) technique. From the MRM-based analysis of the total plasmas and AAL-captured fractions, differences between HCC and HBV plasma groups in fucosylated glycoform levels of target glycoproteins were confirmed to arise from both the change in the total protein abundance of the target proteins and the change incurred by aberrant fucosylation on target glycoproteins in HCC plasma, even when no significant change occurs in the total protein abundance level. Combining the MRM-based analysis method with the lectin-capturing technique proved to be a successful means of quantitatively investigating aberrant protein glycosylation in cancer plasma samples. Additionally, it was elucidated that the differences between HCC and control groups in fucosylated biomarker candidates A1AT and FETUA mainly originated from an increase in fucosylation levels on these target glycoproteins, rather than an increase in the total protein abundance of the target glycoproteins.
Xuan, Shi-Ying; Xin, Yong-Ning; Chen, Hua; Shi, Guang-Jun; Guan, Hua-Shi; Li, Yang
2007-01-01
AIM: To investigate the correlation between hepatitis B virus surface antigen (HBsAg), hepatitis C virus (HCV) expression in hepatocellular carcinoma (HCC), the HAI score of the noncancerous region of the liver and the serum Alpha fetoprotein (AFP) level. METHODS: The patterns of HBsAg and HCV in 100 cases of HCC and their surrounding liver tissues were studied on paraffin-embedded sections with immuno-histochemistry, the histological status was determined by one pathologist and one surgeon simultaneously using the hepatitis activity index (HAI) score, and AFP was detected by radioimmunity. The study included 100 consecutive patients who underwent curative resection for HCC. Based on HBsAg and HCV expression, the patients were classified into 4 groups: patients positive for HBsAg (HBsAg group), patients positive for HCV (HCV group), patients negative for both HCV and HBsAg (NBNC group) and patients positive for both HBsAg and HCV (BC group). RESULTS: The BC group had significantly higher HAI scores than the other three groups. (BC > HCV > HBsAg > NBNC). HBV and HCV virus infection was positively correlated with HAI (rs = 0.39, P = 0.0001). The positive rate of AFP (85.7%) and the value of AFP (541.2 ng/mL) in the group with HBV and HCV co-infection were the highest among the four groups. The positive rate (53.3%) of AFP and the value of AFP ( 53.3 ng/mL) in the group with none-infection of HBV and HCV were the lowest. HBV and HCV virus infection was positively correlated with AFP(rs = 0.38, P = 0.0001). CONCLUSION: The AFP increase in patients with liver cancer was positively correlated with the infection of HBV and HCV. The serum AFP elevation by the infection of HBV and HCV is one of mechanisms which lead to hepatocarcinogenesis, and the antivirus intervening treatment of hepatitis is significant for the prognosis of liver cancer. From our Spearman’s rank correlation analysis, we can conclude that the severity of virally induced inflammation is correlated with HBsAg and HCV expression in HCC tissues and noncancerous tissues. Prior co-infection of HBV in HCV patients may be an adverse risk factor for intrahepatic inflammation. PMID:17465484
Li, Qiongshu; Liu, Guomu; Shao, Dan; Wang, Juan; Yuan, Hongyan; Chen, Tanxiu; Zhai, Ruiping; Ni, Weihua; Tai, Guixiang
2015-02-01
In a previous study, we observed by global gene expression analysis that oncogene mucin1 (MUC1) silencing decreased transforming growth factor beta (TGF-β) signaling in the human hepatocellular carcinoma (HCC) cell line SMMC-7721. In this study, we report that MUC1 overexpression enhanced the levels of phosphorylated Smad3 linker region (p-Smad3L) (Ser-213) and its target gene MMP-9 in HCC cells, suggesting that MUC1 mediates TGF-β signaling. To investigate the effect of MUC1 on TGF-β signaling, we determined TGF-β secretion in MUC1 gene silencing and overexpressing cell lines. MUC1 expression enhanced not only TGF-β1 expression at the mRNA and protein levels but also luciferase activity driven by a TGF-β promoter, as well as elevated the activation of c-Jun N-terminal kinase (JNK) and c-Jun, a member of the activation protein 1 (AP-1) transcription factor family. Furthermore, pharmacological reduction of TGF-β receptor (TβR), JNK and c-Jun activity inhibited MUC1-induced autocrine TGF-β signaling. Moreover, a co-immunoprecipitation assay showed that MUC1 directly bound and activated JNK. In addition, both MUC1-induced TGF-β secretion and exogenous TGF-β1 significantly increased Smad signaling and cell migration, which were markedly inhibited by either TβR inhibitor or small interfering RNA silencing of TGF-β1 gene in HCC cells. The high correlation between MUC1 and TGF-β1 or p-Smad3L (Ser-213) expression was shown in tumor tissues from HCC patients by immunohistochemical staining analysis. Collectively, these results indicate that MUC1 mediates autocrine TGF-β signaling by activating the JNK/AP-1 pathway in HCC cells. Therefore, MUC1 plays a key role in HCC progression and could serve as an attractive target for HCC therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Qingjun; Sun, Wei; Zhang, Yong; Wang, Desheng; Dou, Kefeng
2013-01-01
Background The prognosis for patients with hepatocellular carcinoma (HCC) is poor, and the mechanisms underlying the development of HCC remain unclear. Notch1 and Notch3 may be involved in malignant transformation, although their roles remain unknown. Materials and Methods HCC tissues were stained with anti-Notch1 or -Notch3 antibody. The migration and invasion capacities of the cells were measured with transwell cell culture chambers. RT-PCR was used to measure the expression of Notch1 and Notch3 mRNA. Additionally, western blot analysis was used to assess the protein expression of Notch1, Notch3, CD44v6, E-cadherin, matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator (uPA). RNA interference was used to down-regulate the expression of Notch1 and Notch3. Cell viability was assessed using MTT. Results Based on immunohistochemistry, high Notch1 expression was correlated with tumor size, tumor grade, metastasis, venous invasion and AJCC TNM stage. High Notch3 expression was only strongly correlated with metastasis, venous invasion and satellite lesions. Kaplan-Meier curves demonstrated that patients with high Notch1 or Notch3 expression were at a significantly increased risk for shortened survival time. In vitro, the down-regulation of Notch1 decreased the migration and invasion capacities of HCC cells by regulating CD44v6, E-cadherin, MMP-2, MMP-9, and uPA via the COX-2 and ERK1/2 pathways. Down-regulation of Notch3 only decreased the invasion capacity of HCC cells by regulating MMP-2 and MMP-9 via the ERK1/2 pathway. Conclusions Based on the migration and invasion of HCC, we hypothesize that targeting Notch1 may be more useful than Notch3 for designing novel preventive and therapeutic strategies for HCC in the near future. PMID:23468978
Reis, Henning; Pütter, Carolin; Megger, Dominik A; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-C; Bertram, Stefanie; Wohlschläger, Jeremias; Hagemann, Sascha; Eisenacher, Martin; Scherag, André; Schlaak, Jörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A
2015-06-01
Hepatocellular carcinoma (HCC) is a major lethal cancer worldwide. Despite sophisticated diagnostic algorithms, the differential diagnosis of small liver nodules still is difficult. While imaging techniques have advanced, adjuvant protein-biomarkers as glypican3 (GPC3), glutamine-synthetase (GS) and heat-shock protein 70 (HSP70) have enhanced diagnostic accuracy. The aim was to further detect useful protein-biomarkers of HCC with a structured systematic approach using differential proteome techniques, bring the results to practical application and compare the diagnostic accuracy of the candidates with the established biomarkers. After label-free and gel-based proteomics (n=18 HCC/corresponding non-tumorous liver tissue (NTLT)) biomarker candidates were tested for diagnostic accuracy in immunohistochemical analyses (n=14 HCC/NTLT). Suitable candidates were further tested for consistency in comparison to known protein-biomarkers in HCC (n=78), hepatocellular adenoma (n=25; HCA), focal nodular hyperplasia (n=28; FNH) and cirrhosis (n=28). Of all protein-biomarkers, 14-3-3Sigma (14-3-3S) exhibited the most pronounced up-regulation (58.8×) in proteomics and superior diagnostic accuracy (73.0%) in the differentiation of HCC from non-tumorous hepatocytes also compared to established biomarkers as GPC3 (64.7%) and GS (45.4%). 14-3-3S was part of the best diagnostic three-biomarker panel (GPC3, HSP70, 14-3-3S) for the differentiation of HCC and HCA which is of most important significance. Exclusion of GS and inclusion of 14-3-3S in the panel (>1 marker positive) resulted in a profound increase in specificity (+44.0%) and accuracy (+11.0%) while sensitivity remained stable (96.0%). 14-3-3S is an interesting protein biomarker with the potential to further improve the accuracy of differential diagnostic process of hepatocellular tumors. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.
Chiyonobu, Norimichi; Shimada, Shu; Akiyama, Yoshimitsu; Mogushi, Kaoru; Itoh, Michiko; Akahoshi, Keiichi; Matsumura, Satoshi; Ogawa, Kosuke; Ono, Hiroaki; Mitsunori, Yusuke; Ban, Daisuke; Kudo, Atsushi; Arii, Shigeki; Suganami, Takayoshi; Yamaoka, Shoji; Ogawa, Yoshihiro; Tanabe, Minoru; Tanaka, Shinji
2018-05-01
Metabolic syndrome is a newly identified risk factor for hepatocellular carcinoma (HCC); however, tumor-specific biomarkers still remain unclear. We performed cross-species analysis to compare gene signatures of HCC from human patients and melanocortin 4 receptor-knockout mice, which develop HCC with obesity, insulin resistance, and dyslipidemia. Unsupervised hierarchical clustering and principle component analysis of 746 differentially expressed orthologous genes classified HCC of 152 human patients and melanocortin 4 receptor-knockout mice into two distinct subgroups, one of which included mouse HCC and was causatively associated with metabolic risk factors. Nine genes commonly overexpressed in human and mouse metabolic disease-associated HCC were identified; fatty acid binding protein 4 (FABP4) was remarkably enriched in intratumoral activated hepatic stellate cells (HSCs). Subclones constitutively expressing FABP4 were established from a human HSC cell line in which expression levels of inflammatory chemokines, including IL-1A and IL-6, were up-regulated through NF-κB nuclear translocation, resulting in recruitment of macrophages. An immunohistochemical validation study of 106 additional human HCC samples indicated that FABP4-positive HSCs were distributed in tumors of 38 cases, and the FABP4-high group consisted of patients with nonviral and nonalcoholic HCC (P = 0.027) and with multiple metabolic risk factors (P < 0.001) compared with the FABP4-low group. Thus, FABP4 overexpression in HSCs may contribute to hepatocarcinogenesis in patients with metabolic risk factors by modulation of inflammatory pathways. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Hussein, Usama K; Mahmoud, Hamada M; Farrag, Asmaa G; Bishayee, Anupam
2015-11-01
Hepatocellular carcinoma (HCC) is one of the common cancers and lethal diseases worldwide. Both oxidative stress and chronic inflammation contribute to the pathogenesis of HCC. Because of limited treatment options and a grave prognosis of HCC, preventive management has been emphasized. The marine macroalgae Ulva lactuca (Ulvaceae) is consumed by humans and livestock because of its nutritional value. Recent studies showed that various extracts of U. lactuca possess antiviral, antiplasmodial, antinephrotoxic, antioxidant, and anti-inflammatory properties. However, very limited information is available on anticancer potential of U. lactuca with no reports on liver cancer chemopreventive efficacy of this marine algae. Accordingly, the present study was initiated to evaluate the possible antihepatocarcinogenic effects and antioxidant mechanisms of action of various U. lactuca extracts against a clinically relevant rodent model of HCC. Initiation of hepatocarcinogenesis was performed in Sprague-Dawley rats by a single injection of dietary carcinogen diethylnitrosamine (DENA, 200 mg/kg, intraperitoneally), followed by promotion with phenobarbital (0.05%) in drinking water. The rats were fed with daily oral dose (50 mg/kg) of polysaccharide sulfate or aqueous extract of U. lactuca for 2, 12, and 24 weeks. At these timepoints, blood samples were taken to measure hepatic injury markers, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transferase, and bilirubin. The liver tissue was harvested for measurement of hepatic oxidative indices, including lipid peroxidation, reduced glutathione, nitric oxide, catalase, superoxide dismutase, glutathione reductase, and glutathione S-transferase. Hepatic histopathology, immunohistochemical analysis of cell proliferation and apoptosis by DNA fragmentation assay were performed. Our results clearly indicate that sulfated polysaccharides of U. lactuca exert a marked chemoprevention of DENA-initiated hepatocarcinogenesis through inhibition of abnormal cell proliferation and induction of apoptosis. A modest inhibition rat liver carcinogenesis was observed with the aqueous extract. The sulfated polysaccharides altered serum parameters of hepatic damage and modulated various components of the hepatic enzymatic and nonenzymatic antioxidant defense systems. The sulfated polysaccharides from U. lactuca may have unique properties of providing protection against DENA-induced oxidative stress which could contribute to chemoprevention of experimental hepatocarcinogenesis. U. lactuca sulfated polysaccharides could be developed as chemopreventive and therapeutic drug against human HCC. © The Author(s) 2015.
Roth, Gaël S; Macek Jilkova, Zuzana; Zeybek Kuyucu, Ayca; Kurma, Keerthi; Ahmad Pour, Séyédéh Tayébéh; Abbadessa, Giovanni; Yu, Yi; Busser, Benoit; Marche, Patrice N; Leroy, Vincent; Decaens, Thomas
2017-10-01
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related mortality worldwide. The AKT pathway has been found activated in 50% of HCC cases, making it a promising target. Therefore, we assess efficacy of the allosteric AKT inhibitor ARQ 092 compared with untreated control and standard treatment, sorafenib, in vitro and in vivo ARQ 092 blocked phosphorylation of AKT in vitro and strongly inhibited cell growth with significantly higher potency than sorafenib. Similarly, apoptosis and cell migration were strongly reduced by ARQ 092 in vitro To mimic human advanced HCC, we used a diethylnitrosamine-induced cirrhotic rat model with fully developed HCC. MRI analyses showed that ARQ 092 significantly reduced overall tumor size. Furthermore, number of tumors was decreased by ARQ 092, which was associated with increased apoptosis and decreased proliferation. Tumor contrast enhancement was significantly decreased in the ARQ 092 group. Moreover, on tumor tissue sections, we observed a vascular normalization and a significant decrease in fibrosis in the surrounding liver of animals treated with ARQ 092. Finally, pAKT/AKT levels in ARQ 092-treated tumors were reduced, followed by downregulation of actors of AKT downstream signaling pathway: pmTOR, pPRAS40, pPLCγ1, and pS6K1. In conclusion, we demonstrated that ARQ 092 blocks AKT phosphorylation in vitro and in vivo In the HCC-rat model, ARQ 092 was well tolerated, showed antifibrotic effect, and had stronger antitumor effect than sorafenib. Our results confirm the importance of targeting AKT in HCC. Mol Cancer Ther; 16(10); 2157-65. ©2017 AACR . ©2017 American Association for Cancer Research.
Liao, Yi-Jen; Fang, Cheng-Chieh; Yen, Chia-Hung; Hsu, Shih-Ming; Wang, Chung-Kwe; Huang, Shiu-Feng; Liang, Yu-Chih; Lin, Ying-Yu; Chu, Yu-Tseng; Arthur Chen, Yi-Ming
2015-09-15
Primary hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third leading cause of cancer-related death. It is important to identify new targets for early diagnosis and treatment of HCC. Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular cholesterol homeostasis via direct binding with free cholesterol. However, little is known about the significance of NPC2 in HCC tumorigenesis. In this study, we showed that NPC2 is abundantly expressed in normal liver, but is downregulated in human HCC tissues. The patients with NPC2 downregulation expressed much higher α-fetoprotein, multiple tumor type, vascular invasion, later pathological stage and shorter survival rate. Knockdown NPC2 in liver cancer cell lines promote cell proliferation, migration and xenograft tumorigenesis. In contrast, NPC2 overexpression inhibits HuH7 promoted tumor growth. Furthermore, administration of hepatotropic adeno-associated virus 8 (AAV8) delivered NPC2 decreased the inflammatory infiltration, the expression of two early HCC markers-glypican 3 and survivin and suppressed the spontaneous HCC development in mice. To identify the NPC2-dependent mechanism, we emphasized on the status of MAPK/ERK signaling. MEK1/2 inhibitor treatment demonstrated that the expression of NPC2 affected the activation of ERK1/2 but not MEK1/2. In addition, cholesterol trafficking inhibitor treatment did not alter the cell proliferation and the activation of MEK/ERK. In conclusion, our study demonstrates that NPC2 may play an important role in negatively regulate cell proliferation and ERK1/2 activation that were independent of cholesterol accumulation. AAV-NPC2 may thus represent a new treatment strategy for liver cancer. © 2015 UICC.
Matsushima-Nishiwaki, Rie; Toyoda, Hidenori; Nagasawa, Tomoaki; Yasuda, Eisuke; Chiba, Naokazu; Okuda, Seiji; Maeda, Atsuyuki; Kaneoka, Yuji; Kumada, Takashi; Kozawa, Osamu
2016-01-01
Human hepatocellular carcinoma (HCC) is one of the major malignancies in the world. Small heat shock proteins (HSPs) are reported to play an important role in the regulation of a variety of cancer cell functions, and the functions of small HSPs are regulated by post-translational modifications such as phosphorylation. We previously reported that protein levels of a small HSP, HSP20 (HSPB6), decrease in vascular invasion positive HCC compared with those in the negative vascular invasion. Therefore, in the present study, we investigated whether HSP20 is implicated in HCC cell migration and the invasion using human HCC-derived HuH7 cells. The transforming growth factor (TGF)-α-induced migration and invasion were suppressed in the wild-type-HSP20 overexpressed cells in which phosphorylated HSP20 was detected. Phospho-mimic-HSP20 overexpression reduced the migration and invasion compared with unphosphorylated HSP20 overexpression. Dibutyryl cAMP, which enhanced the phosphorylation of wild-type-HSP20, significantly reduced the TGF-α-induced cell migration of wild-type HSP20 overexpressed cells. The TGF-α-induced cell migration was inhibited by SP600125, a c-Jun N-terminal kinases (JNK) inhibitor. In phospho-mimic-HSP20 overexpressed HuH7 cells, TGF-α-stimulated JNK phosphorylation was suppressed compared with the unphosphorylated HSP20 overexpressed cells. Moreover, the level of phospho-HSP20 protein in human HCC tissues was significantly correlated with tumor invasion. Taken together, our findings strongly suggest that phosphorylated HSP20 inhibits TGF-α-induced HCC cell migration and invasion via suppression of the JNK signaling pathway.
Third-generation oncolytic herpes simplex virus inhibits the growth of liver tumors in mice.
Nakatake, Richi; Kaibori, Masaki; Nakamura, Yusuke; Tanaka, Yoshito; Matushima, Hideyuki; Okumura, Tadayoshi; Murakami, Takashi; Ino, Yasushi; Todo, Tomoki; Kon, Masanori
2018-03-01
Multimodality therapies are used to manage patients with hepatocellular carcinoma (HCC), although advanced HCC is incurable. Oncolytic virus therapy is probably the next major breakthrough in cancer treatment. The third-generation oncolytic herpes simplex virus type 1 (HSV-1) T-01 kills tumor cells without damaging the surrounding normal tissues. Here we investigated the antitumor effects of T-01 on HCC and the host's immune response to HCC cells. The cytopathic activities of T-01 were tested in 14 human and 1 murine hepatoma cell line in vitro. In various mouse xenograft models, HuH-7, KYN-2, PLC/PRF/5 and HepG2 human cells and Hepa1-6 murine cells were used to investigate the in vivo efficacy of T-01. T-01 was cytotoxic to 13 cell lines (in vitro). In mouse xenograft models of subcutaneous, orthotopic and peritoneal tumor metastasis in athymic mice (BALB/c nu/nu), the growth of tumors formed by the human HCC cell lines and hepatoblastoma cell line was inhibited by T-01 compared with that of mock-inoculated tumors. In a bilateral Hepa1-6 subcutaneous tumor model in C57BL/6 mice, the growth of tumors inoculated with T-01 was inhibited, as was the case for contralateral tumors. T-01 also significantly reduced tumor growth. T-01 infection significantly enhanced antitumor efficacy via T cell-mediated immune responses. Results demonstrate that a third-generation oncolytic HSV-1 may serve as a novel treatment for patients with HCC. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Park, Y. N.; Abe, K.; Li, H.; Hsuih, T.; Thung, S. N.; Zhang, D. Y.
1996-01-01
Reverse transcription polymerase chain reaction (RT-PCR) has been used to detect hepatitis C virus (HCV) sequences in liver tissue. However, RT-PCR has a variable detection sensitivity, especially on routinely processed formalin-fixed, paraffin-embedded (FFPE) specimens. RNA-RNA and RNA-protein cross-links formed during formalin fixation is the major limiting factor preventing reverse trans criptase from extending the primers. To overcome this problem, we applied the ligation-dependent PCR (LD-PCR) for the detection of HCV RNA in FFPE liver tissue. This method uses two capture probes for RNA isolation and two hemiprobes for the subsequent PCR. Despite cross-links, the capture probes and the hemiprobes are able to form hybrids with HCV RNAs released from the FFPE tissue. The hybrids are isolated through binding of the capture probes to paramagnetic beads. The hemiprobes are then ligated by a T4 DNA ligase to form a full probe that serves as a template for the Taq DNA polymerase. A total of 22 FFPE liver specimens, 21 with hepatocellular carcinoma (HCC) and 1 with biliary cirrhosis secondary to bile duct atresia were selected for this study, of which 13 patients were HCV seropositive and 9 seronegative. HCV RNA was detectable by ID-PCR from all 13 HCV-seropositive HCCs and from 5 of 8 HCV-seronegative HCCs but not from the HCV-seronegative liver with biliary atresia. By contrast, RT-PCR detected HCV sequences in only 5 of the HCV-sero-positive and in 1 of the HCV-seronegative HCCs. To resolve the discordance between the LD-PCR and RT-PCR results, RT-PCR was performed on frozen liver tissue of the discrepant specimens, which confirmed the LD-PCR positive results. In conclusion, LD-PCR is a more sensitive method than RT-PCR for the detection of HCV sequences in routinely processed liver tissues. A high rate of HCV infection (86%) is found in HCC specimens, indicating a previously underestimated role of HCV in HCC pathogenesis. Images Figure 2 PMID:8909238
Mercury cycling in the Hells Canyon Complex of the Snake River, Idaho and Oregon
Clark, Gregory M.; Naymik, Jesse; Krabbenhoft, David P.; Eagles-Smith, Collin A.; Aiken, George R.; Marvin-DiPasquale, Mark C.; Harris, Reed C.; Myers, Ralph
2016-07-11
The Hells Canyon Complex (HCC) is a hydroelectric project built and operated by the Idaho Power Company (IPC) that consists of three dams on the Snake River along the Oregon and Idaho border (fig. 1). The dams have resulted in the creation of Brownlee, Oxbow, and Hells Canyon Reservoirs, which have a combined storage capacity of more than 1.5 million acre-feet and span about 90 miles of the Snake River. The Snake River upstream of and through the HCC historically has been impaired by water-quality issues related to excessive contributions of nutrients, algae, sediment, and other pollutants. In addition, historical data collected since the 1960s from the Snake River and tributaries near the HCC have documented high concentrations of mercury in fish tissue and sediment (Harris and Beals, 2013). Data collected from more recent investigations within the HCC continue to indicate elevated concentrations of mercury and methylmercury in the water column, bottom sediments, and biota (Clark and Maret, 1998; Essig, 2010; Fosness and others, 2013). As a result, Brownlee and Hells Canyon Reservoirs are listed as impaired for mercury by the State of Idaho, and the Snake River from the Oregon and Idaho border through the HCC downstream to the Oregon and Washington border is listed as impaired for mercury by the State of Oregon.
Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway.
Tang, Wenqing; Feng, Xuemei; Zhang, Si; Ren, Zhenggang; Liu, Yinkun; Yang, Biwei; lv, Bei; Cai, Yu; Xia, Jinglin; Ge, Ningling
2015-01-01
Anoikis resistance is a prerequisite for hepatocellular carcinoma (HCC) metastasis. The role of Caveolin-1 (CAV1) in anoikis resistance of HCC remains unclear. The oncogenic effect of CAV1 on anchor-independent growth and anoikis resistance was investigated by overexpression and knockdown of CAV1 in hepatoma cells. IGF-1 pathway and its downstream signals were detected by immunoblot analysis. Caveolae invagination and IGF-1R internalization was studied by electron microscopy and (125)I-IGF1 internalization assay, respectively. The role of IGF-1R and tyrosine-14 residue (Y-14) of CAV1 was explored by deletion experiment and mutation experiment, respectively. The correlation of CAV1 and IGF-1R was further examined by immunochemical analysis in 120 HCC specimens. CAV1 could promote anchor-independent growth and anoikis resistance in hepatoma cells. CAV1-overexpression increased the expression of IGF-1R and subsequently activated PI3K/Akt and RAF/MEK/ERK pathway, while CAV1 knockdown showed the opposite effect. The mechanism study revealed that CAV1 facilitated caveolae invagination and (125)I-IGF1 internalization. IGF-1R deletion or Y-14 mutation reversed CAV1 mediated anchor-independent growth and anoikis resistance. In addition, CAV1 expression was positively related to IGF-1R expression in human HCC tissues. CAV1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway, providing a potential therapeutic target for HCC metastasis. © 2015 S. Karger AG, Basel.
Gao, Xia; Liu, Wenxuan; Yang, Lei; Zhang, Xiaolin; Ma, Ning; Wang, Liqin; Yan, Lina; Tang, Longmei; Yang, Haitao; Liu, Dianwu
2017-10-01
Several recent studies showed that the genetic polymorphisms in the PNPLA3 region (rs738408, rs738409, rs2294918, rs2294919 and rs2281135) were with related to various kinds of liver diseases. We analyzed the five single-nucleotide polymorphisms (SNPs) for major HBV outcomes in Han Chinese. A total of 2410 samples were involved and peripheral blood samples were collected in this study. The SNPs in the PNPLA3 region were genotyped by using Matrix-assisted laser desorption/ionization time of flight mass spectrometry. Our study indicated the clear relationship between the PNPLA3 rs2294918, rs2294919 and HBV-related HCC after control for the effects of sex, drinking and smoking. Health subjects with the PNPLA3 rs2294919 TC genotype would have a 0.605 (95% CI: 0.413, 0.886; p = .010) times lower odds of having HCC, and those with the rs2294918 AG genotype would have a 1.872 (95% CI: 1.256, 2.792; p = .002) times higher odds of having HCC, whereas the values of sex, age, drinking and smoking were fixed. In addition, CA haplotype of the haplotype block of rs738409 and rs2281135 was also associated with HBV-related HCC. Our study suggested that PNPLA3 loci (rs2294918, rs2294919) were associated with HBV-related HCC in Han Chinese.
IGF-1 induces the epithelial-mesenchymal transition via Stat5 in hepatocellular carcinoma.
Zhao, Chuanzong; Wang, Qian; Wang, Ben; Sun, Qi; He, Zhaobin; Hong, Jianguo; Kuehn, Florian; Liu, Enyu; Zhang, Zongli
2017-12-19
It has been reported that the epithelial-mesenchymal transition (EMT) plays an important role in hepatocellular carcinoma (HCC). However, the relationship between the insulin-like growth factor-1 (IGF-1) and EMT of HCC was not fully elucidated. In the present work, we found that the expression of N-cadherin, Vimentin, Snail1, Snail2, and Twist1 was positively associated with IGF-1R expression, while E-cadherin expression was negatively associated with IGF-1 expression in human HCC samples. Furthermore, we observed that IGF-1 up-regulated the expression of N-cadherin, Vimentin, Snail1, Snail2 and Twist1, and down-regulated the expression of E-cadherin. In addition, Stat5 was induced in IGF-1-treated HepG2 and Hep3B cells, and Stat5 inhibition or siRNA significantly affected IGF-1-induced EMT in HepG2 and Hep3B cells. In conclusion, IGF-1 induces EMT of HCC via Stat5 signaling pathway. Thus, IGF-1/Stat5 can be recommended as a potential and novel therapeutic strategy for HCC patients.
NASA Astrophysics Data System (ADS)
Gao, Rong; Cheng, Jianhua; Fan, Chunlei; Shi, Xiaofeng; Cao, Yuan; Sun, Bo; Ding, Huiguo; Hu, Chengjin; Dong, Fangting; Yan, Xianzhong
2015-12-01
Hepatocellular carcinoma (HCC) is a common malignancy that has region specific etiologies. Unfortunately, 85% of cases of HCC are diagnosed at an advanced stage. Reliable biomarkers for the early diagnosis of HCC are urgently required to reduced mortality and therapeutic expenditure. We established a non-targeted gas chromatography-time of flight-mass spectrometry (GC-TOFMS) metabolomics method in conjunction with Random Forests (RF) analysis based on 201 serum samples from healthy controls (NC), hepatitis B virus (HBV), liver cirrhosis (LC) and HCC patients to explore the metabolic characteristics in the progression of hepatocellular carcinogenesis. Ultimately, 15 metabolites were identified intimately associated with the process. Phenylalanine, malic acid and 5-methoxytryptamine for HBV vs. NC, palmitic acid for LC vs. HBV, and asparagine and β-glutamate for HCC vs. LC were screened as the liver disease-specific potential biomarkers with an excellent discriminant performance. All the metabolic perturbations in these liver diseases are associated with pathways for energy metabolism, macromolecular synthesis, and maintaining the redox balance to protect tumor cells from oxidative stress.
Wu, Lun; Zhang, You-Shun; Ye, Meng-Liang; Shen, Feng; Liu, Wei; Hu, Hong-Sheng; Li, Sheng-Wei; Wu, Hong-Wei; Chen, Qin-Hua; Zhou, Wen-Bo
2017-06-01
Rapid growth of residual tumors can occur as a result of their recurrence and progression. The present study aimed to investigate the expression of hypoxia inducible factor-2 subunit α (HIF-2α), vascular endothelial growth factor A (VEGFA), erythropoietin-producing hepatocellular A2 (EphA2) and angiogenesis in residual hepatocellular carcinoma (HCC), following treatment with high-intensity focused ultrasound (HIFU) ablation, in order to investigate the association between protein expression and tumor recurrence and growth. Athymic BALB/c (nu/nu) mice were subcutaneously inoculated with the HCC cell line HepG2, in order to create xenograft tumors. Approximately 30 days post-inoculation, eight mice were treated with HIFU, whereas eight mice received no treatment and acted as the control group. Residual tumor tissues were obtained from the experimental groups after one month. Levels of HIF-2α, VEGFA, EphA2 and cluster of differentiation 31 (CD31) expression was measured by immunohistochemical staining. CD31-positive vascular endothelial cells were counted to calculate microvascular density (MVD), and western blot analysis was performed to determine levels of HIF-2α, VEGFA, and EphA2 protein. It was found that the expression levels of HIF-2α, VEGFA, EphA2, and MVD proteins in residual HCC tissues were significantly higher than in the control group tissues (P<0.05). Tumor MVD was strongly correlated with VEGFA (R=0.957, P<0.01) and EphA2 (R=0.993, P<0.01) protein expression levels. Furthermore, there was a significant positive correlation between HIF-2α and EphA2 expression (R=0.991, P<0.01). The correlation between VEGFA and EphA2 expression was also positive (R=0.985, P<0.01). These data suggest that overexpression of HIF-2α, VEGFA and EphA2 is related to angiogenesis in residual HCC following HIFU ablation, potentially via their association with key mediators of recurrence.
Kroshko, Thomas; Kapronczai, Luciene; Cattet, Marc R L; Macbeth, Bryan J; Stenhouse, Gordon B; Obbard, Martyn E; Janz, David M
2017-01-01
Methodological differences among laboratories are recognized as significant sources of variation in quantification of hair cortisol concentration (HCC). An important step in processing hair, particularly when collected from wildlife, is the choice of solvent used to remove or "wash" external hair shaft cortisol prior to quantification of HCC. The present study systematically compared methanol and isopropanol as wash solvents for their efficiency at removing external cortisol without extracting internal hair shaft cortisol in samples collected from free-ranging grizzly bears and polar bears. Cortisol concentrations in solvents and hair were determined in each of one to eight washes of hair with each solvent independently. •There were no significant decreases in internal hair shaft cortisol among all eight washes for either solvent, although methanol removed detectable hair surface cortisol after one wash in grizzly bear hair whereas hair surface cortisol was detected in all eight isopropanol washes.•There were no significant differences in polar bear HCC washed one to eight times with either solvent, but grizzly bear HCC was significantly greater in hair washed with isopropanol compared to methanol.•There were significant differences in HCC quantified using different commercial ELISA kits commonly used for HCC determinations.
Lee, Hye Won; Park, Tae In; Jang, Se Young; Park, Soo Young; Park, Won-Jin; Jung, Soo-Jung; Lee, Jae-Ho
2017-02-01
Promoter mutations in telomerase reverse transcriptase (TERT) and telomere length have been studied in various tumors. In the present study, the frequency and clinical characteristics of TERT promoter mutation and telomere length were studied in hepatocellular carcinoma (HCC). TERT promoter mutation and telomere length were analyzed in 162 tumor samples of the patients with HCC by sequencing and real-time PCR, respectively. The TERT promoter mutation rate was 28.8% (46/160) in HCC and was associated with males (P = 0.027). The telomere length was not significantly different in the presence of a TERT promoter mutation but was shorter in high-grade tumor stages (P = 0.048). Survival analyses showed that poor overall survival was associated with longer telomere length (P = 0.013). However, the TERT promoter mutation did not have a prognostic value for HCC. Multivariate survival analyses demonstrated that the telomere length was an independent prognostic marker for poor overall survival (hazard ratio = 1.75, 95% confidence interval: 1.046-2.913, P = 0.033). These data demonstrated that TERT promoter mutation is a frequent event in HCC; however, telomere length, but not the presence of a TERT promoter mutation, might have potential value as a prognostic indicator of HCC.
Serum YKL-40 as a marker of liver fibrosis in patients with non-alcoholic fatty liver disease.
Kumagai, Erina; Mano, Yohei; Yoshio, Sachiyo; Shoji, Hirotaka; Sugiyama, Masaya; Korenaga, Masaaki; Ishida, Tsuyoshi; Arai, Taeang; Itokawa, Norio; Atsukawa, Masanori; Hyogo, Hideyuki; Chayama, Kazuaki; Ohashi, Tomohiko; Ito, Kiyoaki; Yoneda, Masashi; Kawaguchi, Takumi; Torimura, Takuji; Nozaki, Yuichi; Watanabe, Sumio; Mizokami, Masashi; Kanto, Tatsuya
2016-10-14
Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic non-viral liver disease. YKL-40, chitinase-like protein expressed in multiple tissues including liver, is involved in cell proliferation, inflammation and remodeling of the extracellular matrix. The aim of this study was to assess whether serum YKL-40 levels are associated with liver fibrosis in NAFLD patients. Serum YKL-40 levels were quantified in 111 NAFLD patients and 23 HCC patients with NAFLD. To identify the source of YKL-40, immunofluorescence staining of liver specimens from NAFLD patients was performed. Serum YKL-40 levels in NAFLD patients increased in accordance with the progression of liver fibrosis. Multivariate analysis revealed that YKL-40 was one of the independent factors significantly associated with severe fibrosis (F3-4). We established a new predictive model for fibrosis of NAFLD, using logistic regression analysis: YKL-40 based fibrosis score = -0.0545 + type IV collagen 7s * 0.3456 + YKL-40 * 0.0024. Serum YKL-40 levels of HCC patients with non-cirrhotic NAFLD were significantly higher than those without HCC. Immunofluorescence staining showed that YKL-40 was expressed by macrophages in liver tissue of NAFLD patients. In conclusion, macrophage-derived YKL-40 is a feasible biomarker of liver fibrosis in NAFLD patients.
Lin, Chih-Wen; Lin, Chih-Che; Lee, Po-Huang; Lo, Gin-Ho; Hsieh, Pei-Min; Koh, Kah Wee; Lee, Chih-Yuan; Chen, Yao-Li; Dai, Chia-Yen; Huang, Jee-Fu; Chuang, Wang-Long; Chen, Yaw-Sen; Yu, Ming-Lung
2017-11-03
The remnant liver's ability to regenerate may affect post-hepatectomy immediate mortality. The promotion of autophagy post-hepatectomy could enhance liver regeneration and reduce mortality. This study aimed to identify predictive factors of immediate mortality after surgical resection for hepatocellular carcinoma (HCC). A total of 535 consecutive HCC patients who had undergone their first surgical resection in Taiwan were enrolled between 2010 and 2014. Clinicopathological data and immediate mortality, defined as all cause-mortality within three months after surgery, were analyzed. The expression of autophagy proteins (LC3, Beclin-1, and p62) in adjacent non-tumor tissues was scored by immunohistochemical staining. Approximately 5% of patients had immediate mortality after surgery. The absence of LC3, hypoalbuminemia (<3.5 g/dl), high alanine aminotransferase, and major liver surgery were significantly associated with immediate mortality in univariate analyses. Multivariate logistic regression demonstrated that absence of LC3 (hazard ratio/95% confidence interval: 40.8/5.14-325) and hypoalbuminemia (2.88/1.11-7.52) were significantly associated with immediate mortality. The 3-month cumulative incidence of mortality was 12.1%, 13.0%, 21.4% and 0.4%, respectively, among patients with absence of LC3 expression, hypoalbuminemia, both, or neither of the two. In conclusion, the absence of LC3 expression in adjacent non-tumor tissues and hypoalbuminemia were strongly predictive of immediate mortality after resection for HCC.
Wu, I-Chin; Liu, Wen-Chun; Chang, Ting-Tsung
2018-06-02
Next-generation sequencing (NGS) is a powerful and high-throughput method for the detection of viral mutations. This article provides a brief overview about optimization of NGS analysis for hepatocellular carcinoma (HCC)-associated hepatitis B virus (HBV) mutations, and hepatocarcinogenesis of relevant mutations. For the application of NGS analysis in the genome of HBV, four noteworthy steps were discovered in testing. First, a sample-specific reference sequence was the most effective mapping reference for NGS. Second, elongating the end of reference sequence improved mapping performance at the end of the genome. Third, resetting the origin of mapping reference sequence could probed deletion mutations and variants at a certain location with common mutations. Fourth, using a platform-specific cut-off value to distinguish authentic minority variants from technical artifacts was found to be highly effective. One hundred and sixty-seven HBV single nucleotide variants (SNVs) were found to be studied previously through a systematic literature review, and 12 SNVs were determined to be associated with HCC by meta-analysis. From comprehensive research using a HBV genome-wide NGS analysis, 60 NGS-defined HCC-associated SNVs with their pathogenic frequencies were identified, with 19 reported previously. All the 12 HCC-associated SNVs proved by meta-analysis were confirmed by NGS analysis, except for C1766T and T1768A which were mainly expressed in genotypes A and D, but including the subgroup analysis of A1762T. In the 41 novel NGS-defined HCC-associated SNVs, 31.7% (13/41) had cut-off values of SNV frequency lower than 20%. This showed that NGS could be used to detect HCC-associated SNVs with low SNV frequency. Most SNV II (the minor strains in the majority of non-HCC patients) had either low (< 20%) or high (> 80%) SNV frequencies in HCC patients, a characteristic U-shaped distribution pattern. The cut-off values of SNV frequency for HCC-associated SNVs represent their pathogenic frequencies. The pathogenic frequencies of HCC-associated SNV II also showed a U-shaped distribution. Hepatocarcinogenesis induced by HBV mutated proteins through cellular pathways was reviewed. NGS analysis is useful to discover novel HCC-associated HBV SNVs, especially those with low SNV frequency. The hepatocarcinogenetic mechanisms of novel HCC-associated HBV SNVs defined by NGS analysis deserve further investigation.
Definition of tumor-associated antigens in hepatocellular carcinoma.
Stenner-Liewen, F; Luo, G; Sahin, U; Tureci, O; Koslovski, M; Kautz, I; Liewen, H; Pfreundschuh, M
2000-03-01
With an estimated annual incidence of about one million cases, hepatocellular carcinoma (HCC) is one of the most common neoplasms worldwide. Of all malignant diseases, it is the major cause of death in some regions of Africa and Asia. The pathogenic mechanisms responsible for HCC are not well defined, and therapeutic means, especially in inoperable HCCs, are still unsatisfactory and await improvement. In the quest for tumor antigens exploitable for gene therapy, we studied immune responses in the context of HCC. A cDNA library derived from a human HCC sample was screened using the SEREX approach. Nineteen distinct antigens reactive with autologous IgG were identified. Sequence analysis revealed three of the cDNA clones to code for hitherto unknown proteins and 16 known genes products. Proteins as diverse in function as LDH, albumin, and kinectin were found. Furthermore, proteins involved in the transcription/translation machinery had elicited an immune response in the autologous host. A panel of allogenic sera including sera from patients with hepatitis, liver cirrhosis, HCC, and other tumor entities, as well as sera from normal individuals, was used for frequency analysis of antibody responses. Whereas allogenic sera of HCC patients detected most antigens at a high percentage, control sera were rarely antibody-positive. The nature of the major fraction of antigens described here are linked to liver. Thus, our findings demonstrate not only the complexity of the humoral immune response against HCC, but may also offer new insight into mechanisms underlying transformation of the liver cell.
Ji, Jie; Tang, Junwei; Deng, Lei; Xie, Yu; Jiang, Runqiu; Li, Guoqiang; Sun, Beicheng
2015-12-15
Hepatocellular carcinoma (HCC) is well known as the sixth most common malignant tumor and the third leading cause of cancer-related deaths globally. LINC00152 was documented as an important long non-coding RNA (lncRNA) involved in the pathogenesis of gastric cancer; however, the detailed mechanism of action of LINC00152 remains unknown. Here, based on the increased level of LINC00152 in HCC tissues, we found that LINC00152 could promote cell proliferation in vitro and tumor growth in vivo. Furthermore, microarray-based analysis indicated that LINC00152 could activate the mechanistic target of rapamycin(mTOR) pathway by binding to the promoter of EpCAM through a cis-regulation, as confirmed by Gal4-λN/BoxB reporter system. Thus, LINC00152 might be involved in the oncogenesis of HCC by activating the mTOR signaling pathway and might be a novel index for clinical diagnosis in the future.
Osler-Weber-Rendu disease presenting with hepatocellular carcinoma: radiologic and genetic findings.
Lee, Joo Ho; Lee, Yung Sang; Kim, Pyo Nyun; Lee, Beom Hee; Kim, Gu Whan; Yoo, Han Wook; Heo, Nae Yun; Lim, Young Suk; Lee, Han Chu; Chung, Young Hwa; Suh, Dong Jin
2011-12-01
This is a case report of a 68-year-old man with hepatocellular carcinoma (HCC) accompanied by hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu disease, and hepatic vascular malformation. HHT is an autosomal dominant disorder of the fibrovascular tissue that is characterized by recurrent epistaxis, mucocutaneous telangiectasias, and visceral arteriovenous malformations. HHT is caused by mutation of the genes involved in the signaling pathway of transforming growth factor-β, which plays an important role in the formation of vascular endothelia. Hepatic involvement has been reported as occurring in 30-73% of patients with HHT. However, symptomatic liver involvement is quite rare, and the representative clinical presentations of HHT in hepatic involvement are high-output heart failure, portal hypertension, nodular regenerative hyperplasia, and symptoms of biliary ischemia. Some cases of HCC in association with HHT have been reported, but are very rare. We present herein the characteristic radiologic and genetic findings of HHT that was diagnosed during the evaluation and treatment of HCC.
Short, Sarah J.; Stalder, Tobias; Marceau, Kristine P.; Entringer, Sonja; Moog, Nora K.; Shirtcliff, Elizabeth A.; Wadhwa, Pathik D.; Buss, Claudia
2016-01-01
Characterization of cortisol production, regulation and function is of considerable interest and relevance given its ubiquitous role in virtually all aspects of physiology, health and disease risk. The quantification of cortisol concentration in hair has been proposed as a promising approach for the retrospective assessment of integrated, long-term cortisol production. However, human research is still needed to directly test and validate current assumptions about which aspects of cortisol production and regulation are reflected in hair cortisol concentrations (HCC). Here, we report findings from a validation study in a sample of 17 healthy adults (mean ± SD age: 34 ± 8.6 yrs). To determine the extent to which HCC captures cumulative cortisol production, we examined the correspondence of HCC, obtained from the first 1cm scalp-near hair segment, assumed to retrospectively reflect 1-month integrated cortisol secretion, with 30-day average salivary cortisol area-under-the curve (AUC) based on 3 samples collected per day (on awakening, +30 min, at bedtime) and the average of 4 weekly 24-hr urinary free cortisol (UFC) assessments. To further address which aspects of cortisol production and regulation are best reflected in the HCC measure, we also examined components of the salivary measures that represent: 1) production in response to the challenge of awakening (using the cortisol awakening response [CAR]), and 2) chronobiological regulation of cortisol production (using diurnal slope). Finally, we evaluated the test-retest stability of each cortisol measure. Results indicate that HCC was most strongly associated with the prior 30-day integrated cortisol production measure (average salivary cortisol AUC) (r = 0.61, p = 0.01). There were no significant associations between HCC and the 30-day summary measures using CAR or diurnal slope. The relationship between 1-month integrated 24-hr UFC and HCC did not reach statistical significance (r = 0.30, p = 0.28). Lastly, of all cortisol measures, test-retest correlations of serial measures were highest for HCC (month-to-month: r = 0.84, p < 0.001), followed by 24-hr UFC (week-to-week: r’s between 0.59 and 0.68, ps < 0.05) and then integrated salivary cortisol concentrations (week-to-week: r’s between 0.38 and 0.61, p’s between 0.13 and 0.01). These findings support the contention that HCC provides a reliable estimate of long-term integrated free cortisol production that is aligned with integrated salivary cortisol production measured over a corresponding one-month period. PMID:27235635
Short, Sarah J; Stalder, Tobias; Marceau, Kristine; Entringer, Sonja; Moog, Nora K; Shirtcliff, Elizabeth A; Wadhwa, Pathik D; Buss, Claudia
2016-09-01
Characterization of cortisol production, regulation and function is of considerable interest and relevance given its ubiquitous role in virtually all aspects of physiology, health and disease risk. The quantification of cortisol concentration in hair has been proposed as a promising approach for the retrospective assessment of integrated, long-term cortisol production. However, human research is still needed to directly test and validate current assumptions about which aspects of cortisol production and regulation are reflected in hair cortisol concentrations (HCC). Here, we report findings from a validation study in a sample of 17 healthy adults (mean±SD age: 34±8.6 yrs). To determine the extent to which HCC captures cumulative cortisol production, we examined the correspondence of HCC, obtained from the first 1cm scalp-near hair segment, assumed to retrospectively reflect 1-month integrated cortisol secretion, with 30-day average salivary cortisol area-under-the curve (AUC) based on 3 samples collected per day (on awakening, +30min, at bedtime) and the average of 4 weekly 24-h urinary free cortisol (UFC) assessments. To further address which aspects of cortisol production and regulation are best reflected in the HCC measure, we also examined components of the salivary measures that represent: (1) production in response to the challenge of awakening (using the cortisol awakening response [CAR]), and (2) chronobiological regulation of cortisol production (using diurnal slope). Finally, we evaluated the test-retest stability of each cortisol measure. Results indicate that HCC was most strongly associated with the prior 30-day integrated cortisol production measure (average salivary cortisol AUC) (r=0.61, p=0.01). There were no significant associations between HCC and the 30-day summary measures using CAR or diurnal slope. The relationship between 1-month integrated 24-h UFC and HCC did not reach statistical significance (r=0.30, p=0.28). Lastly, of all cortisol measures, test-retest correlations of serial measures were highest for HCC (month-to-month: r=0.84, p<0.001), followed by 24-h UFC (week-to-week: r's between 0.59 and 0.68, ps<0.05) and then integrated salivary cortisol concentrations (week-to-week: r's between 0.38 and 0.61, p's between 0.13 and 0.01). These findings support the contention that HCC provides a reliable estimate of long-term integrated free cortisol production that is aligned with integrated salivary cortisol production measured over a corresponding one-month period. Copyright © 2016 Elsevier Ltd. All rights reserved.
Abo-Hashem, Ekbal M; El-Emshaty, Wafaa M; Farag, Raghda El Sayed; Zakaria, Sahar; Abd El-Aziz, Mohammed; Ghonaim, Azza
2016-10-01
Cytochrome P450 1A1 (CYP1A1) and Glutathione S-transferase P1 (GSTP1) genes are involved in the metabolism of many carcinogens. Polymorphisms in these genes with altered enzyme activity have been reported. The present study evaluated the synergistic effect between CYP1A1 and GSTP1 gene polymorphisms and smoking on development of HCV-related liver disease and hepatocellular carcinoma (HCC). The patients group comprised 40 patients with HCC and 40 patients with liver cirrhosis. The control group comprised 40 healthy subjects having no history of malignancy. The genetic polymorphisms were studied using polymerase chain reaction restriction fragment length polymorphism (PCR RFLP) technique on blood samples. The number of current or former smoker among HCC and cirrhotic patients as well as the median Pack/year of cigarette smoked were significantly higher in HCC and liver cirrhotic patients than in control group. Subjects with CYP1A1 gene variants (m1 and m3) had no significant risk to develop cirrhosis or HCC compared to control group. Individuals carrying the Ile/Val genotype of GSTP1 had a significant increased risk of HCC (OR of 2.2, 95 % CI 1.143-4.261) and had larger tumor size. No significant risk was observed on combining both genes variants or on combining smoking with variants of both genes. In conclusion, the GSTP1 Ile/Val genotype and Val allele are associated with an increased risk of HCC. CYP1A1 and GSTP1 genes variants interaction did not increase the risk of HCC.
Dietary fat, fat subtypes and hepatocellular carcinoma in a large European cohort.
Duarte-Salles, Talita; Fedirko, Veronika; Stepien, Magdalena; Aleksandrova, Krasimira; Bamia, Christina; Lagiou, Pagona; Laursen, Anne Sofie Dam; Hansen, Louise; Overvad, Kim; Tjønneland, Anne; Boutron-Ruault, Marie-Christine; Fagherazzi, Guy; His, Mathilde; Boeing, Heiner; Katzke, Verena; Kühn, Tilman; Trichopoulou, Antonia; Valanou, Elissavet; Kritikou, Maria; Masala, Giovanna; Panico, Salvatore; Sieri, Sabina; Ricceri, Fulvio; Tumino, Rosario; Bueno-de-Mesquita, H B As; Peeters, Petra H; Hjartåker, Anette; Skeie, Guri; Weiderpass, Elisabete; Ardanaz, Eva; Bonet, Catalina; Chirlaque, Maria-Dolores; Dorronsoro, Miren; Quirós, J Ramón; Johansson, Ingegerd; Ohlsson, Bodil; Sjöberg, Klas; Wennberg, Maria; Khaw, Kay-Tee; Travis, Ruth C; Wareham, Nick; Ferrari, Pietro; Freisling, Heinz; Romieu, Isabelle; Cross, Amanda J; Gunter, Marc; Lu, Yunxia; Jenab, Mazda
2015-12-01
The role of amount and type of dietary fat consumption in the etiology of hepatocellular carcinoma (HCC) is poorly understood, despite suggestive biological plausibility. The associations of total fat, fat subtypes and fat sources with HCC incidence were investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, which includes 191 incident HCC cases diagnosed between 1992 and 2010. Diet was assessed by country-specific, validated dietary questionnaires. A single 24-hr diet recall from a cohort subsample was used for measurement error calibration. Hazard ratios (HR) and 95% confidence intervals (95% CI) were estimated from Cox proportional hazard models. Hepatitis B and C viruses (HBV/HCV) status and biomarkers of liver function were assessed separately in a nested case-control subset with available blood samples (HCC = 122). In multivariable calibrated models, there was a statistically significant inverse association between total fat intake and risk of HCC (per 10 g/day, HR = 0.80, 95% CI: 0.65-0.99), which was mainly driven by monounsaturated fats (per 5 g/day, HR = 0.71, 95% CI: 0.55-0.92) rather than polyunsaturated fats (per 5 g/day, HR = 0.92, 95% CI: 0.68-1.25). There was no association between saturated fats (HR = 1.08, 95% CI: 0.88-1.34) and HCC risk. The ratio of polyunsaturated/monounsaturated fats to saturated fats was not significantly associated with HCC risk (per 0.2 point, HR = 0.86, 95% CI: 0.73-1.01). Restriction of analyses to HBV/HCV free participants or adjustment for liver function did not substantially alter the findings. In this large prospective European cohort, higher consumption of monounsaturated fats is associated with lower HCC risk. © 2015 UICC.
Tamori, Akihiro; Nishiguchi, Shuhei; Shiomi, Susumu; Hayashi, Takehiro; Kobayashi, Sawako; Habu, Daiki; Takeda, Tadashi; Seki, Shuichi; Hirohashi, Kazuhiro; Tanaka, Hiromu; Kubo, Shoji
2005-08-01
Hepatocellular carcinoma (HCC) has been reported in patients in whom hepatitis C virus (HCV) was eliminated by interferon (IFN) therapy. We examined the pathogenesis of HCC in patients with sustained viral response. Operable HCC developed in 7 of 342 patients cured of HCV infection by IFN monotherapy. No patient abused alcohol or had diabetes mellitus or obesity. Resected specimens of HCC were histologically evaluated. DNA extracted from HCC was examined by polymerase chain reaction (PCR) to locate hepatitis B virus (HBV) DNA. HBV integration sites in human genome were identified by cassette-ligation-mediated PCR. HBV DNA was not amplified in serum samples from any of the seven patients with HCC and was found in liver in four patients. In the latter four patients, HBV DNA was integrated into the human genome of HCC. In two of these patients, covalently closed circular HBV (cccHBV) was also detected. The patients with HBV DNA integration were free of HCV for more than 3 yr. In two of the three patients without HBV DNA integration, the surrounding liver showed cirrhosis. The liver of HCC with HBV DNA integration had not progressed to cirrhosis. Three of the four tumors with HBV integration had one integration site each, located at chromosomes 11q12, 11q22-23, and 22q11, respectively. The other tumor had two integration sites, situated at chromosomes 11q13 and 14q32. At chromosome 11q12, HBV DNA was integrated into protein-coding genome, the function of which remains unclear. Integrated HBV DNA may play a role in hepatocarcinogenesis after the clearance of HCV by IFN treatment.
Jee, Sun Ha; Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Kim, Hyungyoon; Jung, Keum Ji; Hong, Seri; Lee, Jong Ho
2018-05-01
In the prospective Korean Cancer Prevention Study-II (KCPS-II), we investigated the application of metabolomics to differentiate subjects with incident hepatocellular carcinoma (HCC group) from subjects who remained free of cancer (control group) during a mean follow-up period of 7 years with the aim of identifying valuable metabolic biomarkers for HCC. We used baseline serum samples from 75 subjects with incident HCC and 134 age- and gender-matched cancer-free subjects. Serum metabolic profiles associated with HCC incidence were investigated via metabolomics analysis. Compared with the control group, the HCC group showed significantly higher serum levels of aspartate aminotransferase (AST), alanine aminotransferase, and γ-glutamyl transpeptidase. At baseline, compared with the control group, the HCC group showed significantly higher levels of 9 metabolites, including leucine, 5-hydroxyhexanoic acid, phenylalanine, tyrosine, arachidonic acid, and tauroursodeoxycholic acid (TUDCA), but lower levels of 28 metabolites, including oleamide, androsterone sulfate, L-palmitoylcarnitine, lysophosphatidic acid (LPA) 16:0, LPA 18:1, and lysophosphatidylcholines (lysoPC). Multiple linear regression revealed that the incidence of HCC was associated with the levels of tyrosine, AST, lysoPCs (16:1, 20:3), oleamide, 5-hydroxyhexanoic acid, androsterone sulfate, and TUDCA (adjusted R 2 = 0.514, P = 0.036). This study showed the clinical relevance of the dysregulation of not only branched amino acids, aromatic amino acids, and lysoPCs but also bile acid biosynthesis and linoleic acid, arachidonic acid, and fatty acid metabolism. In addition, tyrosine, AST, lysoPCs (16:1, 20:3), oleamide, 5-hydroxyhexanoic acid, androsterone sulfate, and TUDCA were identified as independent variables associated with the incidence of HCC. Cancer Prev Res; 11(5); 303-12. ©2018 AACR . ©2018 American Association for Cancer Research.
Kim, Cha Young; Kim, Bo Ra; Lee, Sang Soo; Jeon, Dae-Hong; Lee, Chang Min; Kim, Wan Soo; Cho, Hyun Chin; Kim, Jin Joo; Lee, Jae Min; Kim, Hong Jun; Ha, Chang Yoon; Kim, Hyun Jin; Kim, Tae Hyo; Jung, Woon Tae; Lee, Ok-Jae
2017-01-01
Abstract The appropriate α-fetoprotein (AFP) level to confirm hepatocellular carcinoma (HCC) could be 100 ng/mL; however, the clinical significance of falsely elevated AFP in patients without HCC has not been fully studied. We investigated the clinical features and outcome of patients without HCC but with high AFP levels (100 ng/mL), especially with chronic hepatitis B (CHB) or C (CHC). The sample included 124 consecutive patients with CHB (n = 97) or CHC (n = 27), with AFP levels >100 ng/mL and without HCC at baseline. Multivariate Cox proportional regression analysis was performed to determine the factors associated with AFP normalization and HCC development. During the mean 52-month follow-up, the proportion of patients with CHB with AFP normalization (90.7%) was significantly higher than the proportion of patients with CHC (59.3%, P < 0.001). Initial aspartate aminotransferase levels (hazard ratio [HR] = 1.02 per 10 U/L increase, P = 0.021) and antiviral therapy (HR = 2.89, P < 0.001) were significantly associated with AFP normalization. Of the 16 (12.9%) patients who developed HCC, hepatitis B virus infection (HR = 10.82, P = 0.001), initiation of antiviral treatment postenrollment (HR = 0.23, P = 0.030), and AFP normalization within 12 months (HR = 0.13, P = 0.011) were associated with HCC development. CHB and CHC were the most common causes of falsely elevated AFP (>100 ng/mL). With either CHB or CHC, persistent AFP elevation (>12 months), regardless of antiviral treatment, might be an important marker of HCC development. PMID:28079817
Krishnamurthy, Padmini; Hazratjee, Nyla; Opris, Dan; Agrawal, Sangeeta; Markert, Ronald
2016-06-01
Approximately 15% to 35% of those with chronic hepatitis C (CHC) related cirrhosis will develop hepatocellular cancer (HCC). With this burden increasing across the globe, identification of risk factors for HCC has become imperative. Exposure to Agent Orange has been implicated as a possible risk factor for liver cancer in a study from the Republic of Korea. However, there has been no study in U.S. veterans with CHC and cirrhosis that has evaluated exposure to Agent Orange as a risk factor for HCC. We conducted a retrospective study of U.S. military veterans diagnosed with CHC and cirrhosis over a period of 14 years to evaluate potential risk factors for HCC including exposure to Agent Orange. We retrospectively reviewed 390 patients with confirmed CHC-related cirrhosis between 2000 and 2013 and identified patients with HCC. We compared demographic, laboratory, and other clinical characteristics of patients with and without HCC. The mean age of the cohort was 51 years (SD =7.5), with the majority being male (98.5%). Seventy-nine of 390 (20.2%) patients developed HCC, diagnosed on average 8 (SD =4.8) years after diagnosis of CHC. Nearly half (49.4%) were Childs A, 40.5% were Childs B, and 10.1% were Childs C. HCC patients were more likely to be African American than non-HCC patients (40.5% vs. 25.4%, P=0.009) and to be addicted to alcohol (86.1% vs. 74.3%, P=0.027). A trend toward significance was seen in the HCC group for exposure to Agent Orange (16.5% vs. 10.0%, P=0.10) and smoking addiction (88.6% vs. 80.7%, P=0.10). Consequently, race, alcohol addiction, Agent Orange exposure, and smoking addiction were included in the multivariable logistic regression (MLR) analysis. Alcohol addiction [odds ratio (OR) =2.17; 95% confidence interval (CI), 1.07-4.43] and African American race (OR =2.07; 95% CI, 1.22-3.51) were found to be the only two definitive independent risk factors for HCC in our sample. African American race and alcohol addiction were independent risk factors for HCC development in this U.S. veteran population. There was no significant association between exposure to Agent Orange and HCC, although larger studies are needed in the U.S. military veteran population to evaluate further this toxic herbicide from the Vietnam War era.
Cillo, Umberto; Giuliani, Tommaso; Polacco, Marina; Herrero Manley, Luz Maria; Crivellari, Gino; Vitale, Alessandro
2016-01-01
Morphological criteria have always been considered the benchmark for selecting hepatocellular carcinoma (HCC) patients for liver transplantation (LT). These criteria, which are often inappropriate to express the tumor’s biological behavior and aggressiveness, offer only a static view of the disease burden and are frequently unable to correctly stratify the tumor recurrence risk after LT. Alpha-fetoprotein (AFP) and its progression as well as AFP-mRNA, AFP-L3%, des-γ-carboxyprothrombin, inflammatory markers and other serological tests appear to be correlated with post-transplant outcomes. Several other markers for patient selection including functional imaging studies such as 18F-FDG-PET imaging, histological evaluation of tumor grade, tissue-specific biomarkers, and molecular signatures have been outlined in the literature. HCC growth rate and response to pre-transplant therapies can further contribute to the transplant evaluation process of HCC patients. While AFP, its progression, and HCC response to pre-transplant therapy have already been used as a part of an integrated prognostic model for selecting patients, the utility of other markers in the transplant setting is still under investigation. This article intends to review the data in the literature concerning predictors that could be included in an integrated LT selection model and to evaluate the importance of biological aggressiveness in the evaluation process of these patients. PMID:26755873
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; ...
2015-10-29
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form anmore » image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.« less
Hu, Xiangpeng; Rui, Wenjuan; Wu, Chao; He, Shufang; Jiang, Jiemei; Zhang, Xiaoxiang; Yang, Yan
2014-06-01
Previous studies showed Compound Astragalus and Salvia miltiorrhiza extract (CASE), extract from Astragalus membranaceus and Salvia miltiorhiza, significantly suppresses hepatocellular carcinoma (HCC) in rats induced by diethylinitrosamine (DEN), and in vitro experiments further demonstrated that CASE's anti-HepG2 cell invasion is associated with transforming growth factor-β (TGF-β). We hypothesized that CASE's suppression of HCC is modulated by TGF-β/Smad signaling, and we conducted this in vivo study to test this hypothesis. Rats were divided into the normal control, the DEN group, and three CASE (60, 120, and 240 mg/kg) treatment groups. The expression of phosphorylation(p) Smad both at C-terminal and linker region, plasminogen activator inhibitor 1, and Smad4 and Smad7 of liver tissues were measured and compared across the five groups. The positive staining of pSmad2L and pSmad3L increased both in hepatoma nodule areas and adjacent relatively normal liver tissues in rats treated with DEN, while the positive staining of pSmad2C and pSmad3C increased only in relatively normal liver tissues adjacent to hepatoma tissues. The elevated expression of pSmad2C, pSmad2L, pSmad3L, Smad4, and plasminogen activator inhibitor 1 proteins were suppressed by CASE in a dose-dependent manner. CASE treatment also significantly reduced the intranuclear amounts of pSmad2L and pSmad3L, and upregulated the elevation of pSmad3C positive cells and protein expression in a dose-dependent manner. The results suggest that CASE significantly suppresses HCC progression by mediating TGF-β/Smad signaling, especially by modulating Smad3 phosphorylation both at the C-terminal and linker region. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
Favus, Murray J.; Kimberg, Daniel V.; Millar, Gail N.; Gershon, Elaine
1973-01-01
Glucocorticoid administration is known to decrease calcium absorption in vivo and the vitamin D-dependent active transport of calcium by rat duodenum in vitro. The basis for this antivitamin D-like effect of glucocorticoids is unclear. Previous studies in the rat failed to demonstrate an effect of glucocorticoid treatment on the hepatic conversion of the parent vitamin to 25-hydroxycholecalciferol (25-HCC). Moreover, pharmacologic doses of 25-HCC did not restore intestinal calcium transport to normal. The results of these experiments suggested that if indeed glucocorticoids interfere with the metabolism of vitamin D, the step involved must be subsequent to 25-hydroxylation. The present studies demonstrate that the administration of cortisone to vitamin D-deficient rats does not affect the rate of conversion of a physiologic dose of [3H]25-HCC to the biologically important metabolite, 1,25-dihydroxycholecalciferol (1,25-DHCC). Furthermore, pretreatment with glucocorticoids affects neither the tissue distribution nor the subcellular localization on or in intestinal mucosal cell nuclei of 1,25-DHCC. Of note is the fact that 1,25-DHCC is currently considered to be the “tissue-active” form of the vitamin in the intestine. Whereas tissues from cortisone-treated animals had increased concentrations of the biologically less active 24,25-DHCC, the physiologic significance of this observation remains unclear. The results of the present studies strongly support the concept that the antivitamin D-like effects of glucocorticoids in the intestine are due to hormonal influences on the biochemical reactions responsible for calcium transport. While the effects of these hormones are opposite in direction to those of vitamin D, they occur by a mechanism that is independent of a direct interaction with either the vitamin or its biologically active metabolites. PMID:4703222
Srivastava, Jyoti; Robertson, Chadia L; Gredler, Rachel; Siddiq, Ayesha; Rajasekaran, Devaraja; Akiel, Maaged A; Emdad, Luni; Mas, Valeria; Mukhopadhyay, Nitai D; Fisher, Paul B; Sarkar, Devanand
2015-06-19
Non-thyroidal illness syndrome (NTIS), characterized by low serum 3,5,3'-triiodothyronine (T3) with normal l-thyroxine (T4) levels, is associated with malignancy. Decreased activity of type I 5'-deiodinase (DIO1), which converts T4 to T3, contributes to NTIS. T3 binds to thyroid hormone receptor, which heterodimerizes with retinoid X receptor (RXR) and regulates transcription of target genes, such as DIO1. NF-κB activation by inflammatory cytokines inhibits DIO1 expression. The oncogene astrocyte elevated gene-1 (AEG-1) inhibits RXR-dependent transcription and activates NF-κB. Here, we interrogated the role of AEG-1 in NTIS in the context of hepatocellular carcinoma (HCC). T3-mediated gene regulation was analyzed in human HCC cells, with overexpression or knockdown of AEG-1, and primary hepatocytes from AEG-1 transgenic (Alb/AEG-1) and AEG-1 knock-out (AEG-1KO) mice. Serum T3 and T4 levels were checked in Alb/AEG-1 mice and human HCC patients. AEG-1 and DIO1 levels in human HCC samples were analyzed by immunohistochemistry. AEG-1 inhibited T3-mediated gene regulation in human HCC cells and mouse hepatocytes. AEG-1 overexpression repressed and AEG-1 knockdown induced DIO1 expression. An inverse correlation was observed between AEG-1 and DIO1 levels in human HCC patients. Low T3 with normal T4 was observed in the sera of HCC patients and Alb/AEG-1 mice. Inhibition of co-activator recruitment to RXR and activation of NF-κB were identified to play a role in AEG-1-mediated down-regulation of DIO1. AEG-1 thus might play a role in NTIS associated with HCC and other cancers. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Pang, Yuanfeng; Wang, Chongwen; Xiao, Rui; Sun, Zhiwei
2018-05-11
The detection of hepatocellular carcinoma (HCC) circulating tumor cells (CTCs) from a blood sample can be a very powerful noninvasive approach for the early detection and therapy of liver cancer. However, the extreme rarity of tumor cells in blood containing billions of other cells makes the capture and identification of CTCs with sufficient sensitivity and specificity a real challenge. Here, a magnetically assisted surface-enhanced Raman scattering (SERS) biosensor for HCC CTC detection is reported for the first time. The biosensor consists of two basic elements: anti-ASGPR antibody-Fe 3 O 4 @Ag magnetic nanoparticles and anti-GPC3 antibody-Au@Ag@DTNB nanorods. According to the dual-selectivity of the anti-ASGPR and anti-GPC3 antibodies and the dual-enhancement SERS signal of the MNPs silver shell and the Au@Ag NRs SERS tags, a limit of detection of 1 cell mL -1 for HCC CTC in human peripheral blood samples with a linear relationship from 1 to 100 cells mL -1 can be obtained. The system shows good performance in real serum, which suggests it may be a promising tool for HCC clinical diagnosis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen
2018-03-01
Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.
Sultanik, P; Ginguay, A; Vandame, J; Popovici, T; Meritet, J-F; Cynober, L; Pol, S; Bories, P-N
2017-01-01
The increasing incidence of hepatocellular carcinoma (HCC) in Western countries requests reliable tumour markers for preclinical diagnosis. We evaluated the diagnostic accuracy of des-gamma-carboxy prothrombin (DCP), in comparison with alpha-fetoprotein (AFP) in a French cohort using a new analyser. One hundred and sixty-two patients with virus-related cirrhosis (46 HCC patients and 116 controls) were recruited in this retrospective proof-of-concept study. DCP was measured on new Lumipulse ® G600 analyzer and AFP on usual Cobas e602 analyzer in serum samples that were collected at the time of HCC diagnosis for HCC patients or during follow-up for controls. DCP and AFP levels were higher in HCC patients. The area under receiver operating characteristic curve was larger for DCP than for AFP (0.89 vs 0.77, P=.03). At the cut-off value of 128 mAU/mL, sensitivity and specificity for DCP were 74% and 92%. At the cut-off value of 20 μg/L, sensitivity and specificity for AFP were 63% and 82%. NRI >0 for the association of "AFP+DCP" were 101%, P<.0001, and 23%, P=.03, compared to "AFP" or "DCP" alone, respectively. We conclude that DCP outperformed AFP for the detection of HCC. © 2016 John Wiley & Sons Ltd.
Herr, Raphael M; Almer, Christian; Loerbroks, Adrian; Barrech, Amira; Elfantel, Irina; Siegrist, Johannes; Gündel, Harald; Angerer, Peter; Li, Jian
2018-03-01
There is ample evidence supporting the link between stress at the workplace and physical and mental health. One of the pathways potentially mediating those associations may involve the hypothalamic-pituitary-adrenal (HPA) axis, with cortisol as an end product. While theoretically plausible, findings on the association of self-reported work stress with hair cortisol concentrations (HCC) are inconclusive, being potentially biased by omitted pertinent factors. This issue can be addressed, among others, by eliminating time-invariant factors through consideration of variation within persons over time. To this end, the present study examined the association between variation in HCC and perceived work stress - as assessed by the Effort-Reward-Imbalance (ERI) model - between two points in time (t1 and t2) over one year in a sample of 40 male factory workers. Neither a cross-sectional association, nor a link between change in ERI and HCC levels at t2 was observed. There was however a robust association of the change in ERI with the change of HCC. This effect was independent of baseline HCC and other confounders (Beta = 0.414, S.E. = 0.155, p = 0.012). Accordingly, this is the first study revealing prospective evidence for the associations of work stress with HCC, while excluding potentially time-stable confounding factors, like genetic factors or phenotypic hair color. Copyright © 2018 Elsevier Ltd. All rights reserved.
2015-01-01
We have developed herein a quantitative mass spectrometry-based approach to analyze the etiology-related alterations in fucosylation degree of serum haptoglobin in patients with liver cirrhosis and hepatocellular carcinoma (HCC). The three most common etiologies, including infection with hepatitis B virus (HBV), infection with hepatitis C virus (HCV), and heavy alcohol consumption (ALC), were investigated. Only 10 μL of serum was used in this assay in which haptoglobin was immunoprecipitated using a monoclonal antibody. The N-glycans of haptoglobin were released with PNGase F, desialylated, and permethylated prior to MALDI-QIT-TOF MS analysis. In total, N-glycan profiles derived from 104 individual patient samples were quantified (14 healthy controls, 40 cirrhosis, and 50 HCCs). A unique pattern of bifucosylated tetra-antennary glycan, with both core and antennary fucosylation, was identified in HCC patients. Quantitative analysis indicated that the increased fucosylation degree was highly associated with HBV- and ALC-related HCC patients compared to that of the corresponding cirrhosis patients. Notably, the bifucosylation degree was distinctly increased in HCC patients versus that in cirrhosis of all etiologies. The elevated bifucosylation degree of haptoglobin can discriminate early stage HCC patients from cirrhosis in each etiologic category, which may be used to provide a potential marker for early detection and to predict HCC in patients with cirrhosis. PMID:24807840