Sample records for hco3 gradient-driven cl

  1. Sulfate-bicarbonate exchange in brush-border membranes from rat renal cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchard, J.B.

    1987-02-01

    Under Na/sup +/-free conditions /sup 35/SO/sub 4//sup 2 -/ uptake by rat renal brush-border membrane (BBM) vesicles could be driven by imposition of a HCO/sup -//sub 3/ gradient (in greater than out). The initial rate of /sup 35/SO/sub 4//sup 2 -/ uptake was stimulated 10-fold, and peak overshoot exceeded equilibrium uptake by 2-3 times. Cl/sup -/, SCN/sup -/, NO/sub 3//sup -/, I/sup -/, and OH/sup -/ were able to substitute for HCO/sub 3//sup -/. Divalent anions, including /sup 35/SO/sub 4//sup 2 -/ itself, were less effective as counterions. HCO/sub 3//sup -/-SO/sub 4//sup 2 -/ exchange was cis-inhibited by disulfonic stilbenes,more » ((SITS)(DIDS)), phloretin, Hg, and S/sub 2/O/sub 3//sup 2 -/. HCO/sub 3//sup -/-driven /sup 35/SO/sub 4//sup 2 -/ uptake was saturable, with an apparent K/sub m/ of 0.4 mM for SO/sub 4//sup 2 -/. Simultaneous imposition of Na/sup +/ and HCO/sub 3//sup -/ gradients produced approximately additive stimulation of /sup 35/SO/sub 4//sup 2 -/ uptake. The HCO/sub 3//sup -/-driven component of /sup 35/SO/sub 4//sup 2 -/ uptake, but not the component driven by Na/sup +/, was inhibited by SITS. Finally, Na/sup +/-driven SO/sub 4//sup 2 -/ accumulation could be reduced by imposing an out greater than in HCO/sub 3//sup +/ gradient, conditions accelerating exchange driven SO/sub 4//sup 2 -/ efflux. These findings indicate the presence of separate Na/sup +/-SO/sub 4//sup 2 -/ cotransport and SO /sub 4//sup 2 -/-anion exchange pathways in the same BBM vesicles.« less

  2. Cloning, characterization, and chromosomal mapping of a human electroneutral Na(+)-driven Cl-HCO3 exchanger.

    PubMed

    Grichtchenko, I I; Choi, I; Zhong, X; Bray-Ward, P; Russell, J M; Boron, W F

    2001-03-16

    The electroneutral Na(+)-driven Cl-HCO3 exchanger is a key mechanism for regulating intracellular pH (pH(i)) in neurons, glia, and other cells. Here we report the cloning, tissue distribution, chromosomal location, and functional characterization of the cDNA of such a transporter (NDCBE1) from human brain (GenBank accession number AF069512). NDCBE1, which encodes 1044 amino acids, is 34% identical to the mammalian anion exchanger (AE2); approximately 50% to the electrogenic Na/HCO3 cotransporter (NBCe1) from salamander, rat, and humans; approximately 73% to mammalian electroneutral Na/HCO3 cotransporters (NBCn1); 71% to mouse NCBE; and 47% to a Na(+)-driven anion exchanger (NDAE1) from Drosophila. Northern blot analysis of NDCBE1 shows a robust approximately 12-kilobase signal in all major regions of human brain and in testis, and weaker signals in kidney and ovary. This human gene (SLC4A8) maps to chromosome 12q13. When expressed in Xenopus oocytes and running in the forward direction, NDCBE1 is electroneutral and mediates increases in both pH(i) and [Na(+)](i) (monitored with microelectrodes) that require HCO3(-) and are blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The pH(i) increase also requires extracellular Na(+). The Na(+):HCO3(-) stoichiometry is 1:2. Forward-running NDCBE1 mediates a 36Cl efflux that requires extracellular Na(+) and HCO3(-) and is blocked by DIDS. Running in reverse, NDCBE1 requires extracellular Cl(-). Thus, NDCBE1 encodes a human, electroneutral Na(+)-driven Cl-HCO3 exchanger.

  3. HCO3− secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo

    PubMed Central

    Cooper, Christopher A.; Wilson, Rod W.

    2010-01-01

    The intestine of marine teleosts must effectively absorb fluid from ingested seawater to avoid dehydration. This fluid transport has been almost exclusively characterized as driven by NaCl absorption. However, an additional feature of the osmoregulatory role of the intestine is substantial net HCO3− secretion. This is suggested to drive additional fluid absorption directly (via Cl−/HCO3− exchange) and indirectly by precipitating ingested Ca2+ as CaCO3, thus creating the osmotic gradient for additional fluid absorption. The present study tested this hypothesis by perfusing the intestine of the European flounder in vivo with varying [Ca2+]: 10 (control), 40, and 90 mM. Fractional fluid absorption increased from 47% (control) to 73% (90 mM Ca2+), where almost all secreted HCO3− was excreted as CaCO3. This additional fluid absorption could not be explained by NaCl cotransport. Instead, a significant positive relationship between Na+-independent fluid absorption and total HCO3− secretion was consistent with the predicted roles for anion exchange and CaCO3 precipitation. Further analysis suggested that Na+-independent fluid absorption could be accounted for by net Cl− and H+ absorption (from Cl−/HCO3− exchange and CO2 hydration, respectively). There was no evidence to suggest that CaCO3 alone was responsible for driving fluid absorption. However, by preventing the accumulation of luminal Ca2+ it played a vital role by dynamically maintaining a favorable osmotic gradient all along the intestine, which permits substantially higher rates of solute-linked fluid absorption. To overcome the resulting hyperosmotic and highly acidic absorbate, it is proposed that plasma HCO3− buffers the absorbed H+ (from HCO3− production), and consequently reduces the osmolarity of the absorbed fluid entering the body. PMID:20130226

  4. Nitrogen metabolism, acid-base regulation, and molecular responses to ammonia and acid infusions in the spiny dogfish shark (Squalus acanthias).

    PubMed

    Nawata, C Michele; Walsh, Patrick J; Wood, Chris M

    2015-07-01

    Although they are ureotelic, marine elasmobranchs express Rh glycoproteins, putative ammonia channels. To address questions raised by a recent study on high environmental ammonia (HEA) exposure, dogfish were intravascularly infused for 24 h at 3 ml kg(-1) h(-1) with isosmotic NaCl (500 mmol l(-1), control), NH4HCO3 (500 mmol l(-1)), NH4Cl (500 mmol l(-1)), or HCl (as 125 mmol l(-1) HCl + 375 mmol l(-1) NaCl). While NaCl had no effect on arterial acid-base status, NH4HCO3 caused mild alkalosis, NH4Cl caused strong acidosis, and HCl caused lesser acidosis, all predominantly metabolic in nature. Total plasma ammonia (T(Amm)) and excretion rates of ammonia (J(Amm)) and urea-N (J(Urea-N)) were unaffected by NaCl or HCl. However, despite equal loading rates, plasma T(Amm) increased to a greater extent with NH4Cl, while J(Amm) increased to a greater extent with NH4HCO3 due to much greater increases in blood-to-water PNH3 gradients. As with HEA, both treatments caused large (90%) elevations of J(Urea-N), indicating that urea-N synthesis by the ornithine-urea cycle (OUC) is driven primarily by ammonia rather than HCO3(-). Branchial mRNA expressions of Rhbg and Rhp2 were unaffected by NH4HCO3 or NH4Cl, but v-type H(+)-ATPase was down-regulated by both treatments, and Rhbg and Na(+)/H(+) exchanger NHE2 were up-regulated by HCl. In the kidney, Rhbg was unresponsive to all treatments, but Rhp2 was up-regulated by HCl, and the urea transporter UT was up-regulated by HCl and NH4Cl. These responses are discussed in the context of current ideas about branchial, renal, and OUC function in this nitrogen-limited predator.

  5. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed Central

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-01-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption. PMID:6401766

  6. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-02-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption.

  7. Intracellular pH Regulation in Cultured Astrocytes from Rat Hippocampus

    PubMed Central

    Bevensee, Mark O.; Apkon, Michael; Boron, Walter F.

    1997-01-01

    In the preceding paper (Bevensee, M.O., R.A. Weed, and W.F. Boron. 1997. J. Gen. Physiol. 110: 453–465.), we showed that a Na+-driven influx of HCO3 − causes the increase in intracellular pH (pHi) observed when astrocytes cultured from rat hippocampus are exposed to 5% CO2/17 mM HCO3 −. In the present study, we used the pH-sensitive fluorescent indicator 2′,7′-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) and the perforated patch-clamp technique to determine whether this transporter is a Na+-driven Cl-HCO3 exchanger, an electrogenic Na/HCO3 cotransporter, or an electroneutral Na/HCO3 cotransporter. To determine if the transporter is a Na+-driven Cl-HCO3 exchanger, we depleted the cells of intracellular Cl− by incubating them in a Cl−-free solution for an average of ∼11 min. We verified the depletion with the Cl−-sensitive dye N-(6-methoxyquinolyl)acetoethyl ester (MQAE). In Cl−-depleted cells, the pHi still increases after one or more exposures to CO2/HCO3 −. Furthermore, the pHi decrease elicited by external Na+ removal does not require external Cl−. Therefore, the transporter cannot be a Na+-driven Cl-HCO3 exchanger. To determine if the transporter is an electrogenic Na/ HCO3 cotransporter, we measured pHi and plasma membrane voltage (Vm) while removing external Na+, in the presence/absence of CO2/HCO3 − and in the presence/absence of 400 μM 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS). The CO2/HCO3 − solutions contained 20% CO2 and 68 mM HCO3 −, pH 7.3, to maximize the HCO3 − flux. In pHi experiments, removing external Na+ in the presence of CO2/HCO3 − elicited an equivalent HCO3 − efflux of 281 μM s−1. The HCO3 − influx elicited by returning external Na+ was inhibited 63% by DIDS, so that the predicted DIDS-sensitive Vm change was 3.3 mV. Indeed, we found that removing external Na+ elicited a DIDS-sensitive depolarization that was 2.6 mV larger in the presence than in the absence of CO2/ HCO3 −. Thus, the Na/HCO3 cotransporter is electrogenic. Because a cotransporter with a Na+:HCO3 − stoichiometry of 1:3 or higher would predict a net HCO3 − efflux, rather than the required influx, we conclude that rat hippocampal astrocytes have an electrogenic Na/HCO3 cotransporter with a stoichiometry of 1:2. PMID:9379176

  8. Mechanisms of zinc transport into pig small intestine brush-border membrane vesicles.

    PubMed Central

    Tacnet, F; Lauthier, F; Ripoche, P

    1993-01-01

    1. The purpose of the present work was to examine certain membrane transport mechanisms likely to carry zinc across the brush-border membrane of pig small intestine, isolated in a vesicular form. 2. In initial velocity conditions, saturation kinetics revealed a great effect of pH on zinc transport: optimal conditions were observed with an intravesicular pH of around 6.6 with or without a H+ gradient; however, this did not allow us to conclude the existence of a neutral exchange between Zn2+ and H+ ions. 3. By measuring 36Cl uptakes, the presence of the Cl(-)-HCO3- or Cl(-)-OH-antiporter with typical 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) sensitivity was detected in vesicles; zinc did not alter this anionic exchange activity. A 65Zn time course, performed in conditions identical with those for 36Cl uptake, was DIDS insensitive and was greatly inhibited by an outward OH- gradient. This could argue against a transport of zinc as a complex with Cl- and HCO3- through the anion antiporter. 4. When external Cl- and HCO3- were replaced by SCN-, able to form a Zn(SCN)4(2-) complex, we observed a stimulating effect of outward HCO3- gradients on 65Zn uptake but neither DIDS nor diphenylamine-2-carboxylate (DPC) inhibited the transport in these conditions. This suggested that the intestinal anion antiporter was not a major route for zinc reabsorption. 5. The tripeptide Gly-Gly-His at low concentrations stimulated 65Zn uptake, then inhibited it in a dose-dependent manner either in the presence of an inward H+ gradient or in the presence of a membrane potential 'negative inside' or in both situations. These conditions are necessary for the active transport of the peptide and this strongly suggests that zinc can be transported as a [Gly-Gly-His-Zn] complex, utilizing the peptide carrier system. PMID:8229851

  9. Electroneutral, HCO3(-)-independent, pH gradient-dependent uphill transport of Cl- by ileal brush-border membrane vesicles. Possible role in the pathogenesis of chloridorrhea.

    PubMed Central

    Vasseur, M; Caüzac, M; Alvarado, F

    1989-01-01

    By applying a rapid filtration technique to isolated brush border membrane vesicles from guinea pig ileum, 36Cl uptake was quantified in the presence and absence of electrical, pH and alkali-metal ion gradients. A mixture of 20 mM-Hepes and 40 mM-citric acid, adjusted to the desired pH with Tris base, was found to be the most suitable buffer. Malate and Mes could be used to replace the citrate, but succinate, acetate and maleate proved to be unsuitable. In the absence of a pH gradient (pHout:pHin = 7.5:7.5), Cl- uptake increased slightly when an inside-positive membrane potential was applied, but uphill transport was never observed. A pH gradient (pHout:pHin = 5.0:7.5) induced both a 400% increase in the initial Cl- influx rate and a long-lasting (20 to 300 s) overshoot, indicating that a proton gradient can furnish the driving force for uphill Cl- transport. Under pH gradient conditions, initial Cl- entry rates had the following characteristics. (1) They were unaffected by cis-Na+ and/or -K+, indicating the absence of Cl-/K+, Cl-/Na+ or Cl-/K+/Na+ symport activity. (2) Inhibition by 20-100 mM-trans-Na+ and/or -K+ occurred, independent of the existence of an ion gradient. (3) Cl- entry was practically unaffected by short-circuiting the membrane potential with equilibrated potassium and valinomycin. (4) Carbonyl cyanide m-chlorophenylhydrazone was strongly inhibitory and so, to a lesser extent, was 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid [(SITS)], independent of the sign and size of the membrane potential. (5) Cl- entry was negligibly increased (less than 30%) by either trans-Cl- or -HCO3-, indicating the absence of an obligatory Cl-/anion antiport activity. In contrast, the height of the overshoot at 60 s was increased by trans-Cl-, indicating time-dependent inhibition of 36Cl efflux. That competitive inhibition of 36Cl fluxes by anions is involved here is supported by initial influx rate experiments demonstrating: (1) the saturability of Cl- influx, which was found to exhibit Michaelis-Menten kinetics; and (2) competitive inhibition of influx by cis-Cl- and -Br-. Quantitatively, the conclusion is warranted that over 85% of the total initial Cl- uptake energized by a pH gradient involves an electroneutral Cl-/H+ symporter or its physicochemical equivalent, a Cl-/OH- antiporter, exhibiting little Cl- uniport and either Cl-/Cl- or Cl-/HCO3- antiport activities.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2597129

  10. Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration.

    PubMed Central

    Breyer, M D; Kokko, J P; Jacobson, H R

    1986-01-01

    The effects of changes in peritubular pH, carbon dioxide tension (PCO2), and HCO3- concentration on net HCO3- transport was examined in in vitro perfused cortical collecting tubules (CCTs) from unpretreated New Zealand white rabbits. Lowering peritubular HCO3- concentration and pH by reciprocal replacement of HCO3- with Cl-, significantly stimulated net HCO3- absorption. Lowering peritubular HCO3- concentration and pH, by substitution of HCO3- with gluconate, while keeping Cl- concentration constant, also stimulated net HCO3- absorption. Raising peritubular HCO3- concentration and pH, by reciprocal replacement of Cl- with HCO3-, inhibited net HCO3- absorption (or stimulated net HCO3- secretion). When the tubule was cooled, raising peritubular HCO3- concentration had no effect on net HCO3- transport, suggesting these results are not due to the passive flux of HCO3- down its concentration gradient. The effect of changes in ambient PCO2 on net HCO3- transport were also studied. Increasing the ambient PCO2 from 40 mmHg to either 80 or 120 mmHg, allowing pH to fall, had no effect on net HCO3- transport. Similarly, lowering ambient PCO2 to 14 mmHg had no effect on net HCO3- transport. Simultaneously increasing peritubular HCO3- concentration and PCO2, without accompanying changes in peritubular pH, i.e., isohydric changes, stimulated net HCO3- secretion to the same degree as nonisohydric increases in peritubular HCO3- concentration. Likewise, isohydric lowering of peritubular HCO3- concentration and PCO2 stimulated net HCO3- absorption. We conclude that: acute changes in peritubular HCO3- concentration regulate acidification in the CCT and these effects are mediated by a transcellular process; acute changes in ambient PCO2 within the physiologic range have no effect on HCO3- transport in the in vitro perfused CCT; and acute in vitro regulation of CCT acidification is independent of peritubular pH. PMID:3084564

  11. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  12. Intestinal bicarbonate secretion in Amphiuma measured by pH stat in vitro: relationship with metabolism and transport of sodium and chloride ions.

    PubMed Central

    Imon, M A; White, J F

    1981-01-01

    1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption. PMID:7310697

  13. Intestinal bicarbonate secretion in Amphiuma measured by pH stat in vitro: relationship with metabolism and transport of sodium and chloride ions.

    PubMed

    Imon, M A; White, J F

    1981-05-01

    1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption.

  14. Cl sup minus -HCO sub 3 sup minus exchange is present with Na sup + -K sup + -Cl sup minus cotransport in rabbit parotid acinar basolateral membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, R.J.; George, J.N.

    1988-03-01

    The presence of a sodium-independent electroneutral Cl{sup {minus}}-anion exchanger in a basolateral membrane vesicle preparation from the rabbit parotid is demonstrated. This exchanger is shared by HCO{sub 3}{sup {minus}}, NO{sub 3}{sup {minus}}, Br{sup {minus}}, F{sup {minus}}, and formate, but not by thiocyanate, acetate, methylsulfate, gluconate, or hydroxyl ions. In order of relative potency, the exchanger is inhibited by SITS {ge} phloretin > furosemide > bumetanide {ge} phlorizin. A Na{sup +}-K{sup +}-dependent component of chloride flux, presumably due to the Na{sup +}-K{sup +}-Cl{sup {minus}} cotransporter already characterized in this preparation, was also observed. {sup 36}Cl uptake into vesicles loaded with KClmore » exhibited an overshoot of intravesicular ({sup 36}Cl) due to {sup 36}Cl-Cl exchange. However, when vesicles were loaded with both KCl and NaCl the height of the overshoot was considerably decreased indicating a Na{sup +}-K{sup +}-dependent dissipation of the intravesicular to extravesicular chloride gradient. This experiment provides strong evidence that the Na{sup +}-K{sup +}Cl{sup {minus}} cotransporter and the Cl{sup {minus}} HCO{sub 3}{sup {minus}} exchange are present in the same membrane vesicles. These results indicate that Cl{sup {minus}}-HCO{sub 3}{sup {minus}} exchange is present in the basolateral membrane of parotid acinar cells and thus that this transporter may play a significant role in salivary secretion.« less

  15. Direct uptake of HCO3- in the marine angiosperm Posidonia oceanica (L.) Delile driven by a plasma membrane H+ economy.

    PubMed

    Rubio, Lourdes; García, Delia; García-Sánchez, María J; Niell, F Xavier; Felle, Hubert H; Fernández, José A

    2017-11-01

    Seagrasses access HCO 3 - for photosynthesis by 2 mechanisms, apoplastic carbonic anhydrase-mediated dehydration of HCO 3 - to CO 2 and direct HCO 3 - uptake. Here, we have studied plasma membrane energization and the mechanism for HCO 3 - import in Posidonia oceanica. Classical electrophysiology and ion-selective microelectrodes were used to measure the membrane potential, cytosolic pH, and the cytosolic concentrations of Na + and Cl - upon the addition of HCO 3 - . The photosynthetic response to HCO 3 - and to inhibitors was also measured. Results indicate that the primary pump of P. oceanica plasma membrane is a fusicoccin-sensitive H + -ATPase. Bicarbonate depolarizes the plasma membrane voltage and transiently acidifies the cytosol, indicating that HCO 3 - is transported into the cells by an H + -symport. Initial cytosolic acidification is followed by an alkalinization, suggesting an internal dehydration of HCO 3 - . The lack of cytosolic Na + and Cl - responses rules out the contribution of these ions to HCO 3 - transport. The energetics of nH + /HCO 3 - symport allows, for n = 1, an estimate of cytosolic accumulation of 0.22 mM HCO 3 - . Because this transporter could permit accumulation of HCO 3 - up to 100 times above the equilibrium concentration, it would be a significant component of a carbon-concentrating mechanism in this species. © 2017 John Wiley & Sons Ltd.

  16. Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander.

    PubMed

    Newman, E A

    1991-12-01

    An electrogenic Na+/HCO3- cotransport system was studied in freshly dissociated Müller cells of the salamander retina. Cotransporter currents were recorded from isolated cells using the whole-cell, voltage-clamp technique following the block of K+ conductance with external Ba2+ and internal Cs+. At constant pHo, an outward current was evoked when extracellular HCO3- concentration was raised by pressure ejecting a HCO3(-)-buffered solution onto the surface of cells bathed in nominally HCO3(-)-free solution. The HCO3(-)-evoked outward current was reduced to 4.4% of control by 0.5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate), to 28.8% of control by 2 mM DNDS (4,4'-dinitrostilbene-2,2'-disulfonate), and to 28.4% of control by 2 mM harmaline. Substitution of choline for Na+ in bath and ejection solutions reduced the response to 1.3% of control. Bicarbonate-evoked currents of normal magnitude were recorded when methane sulfonate was substituted for Cl- in bath, ejection, and intracellular solutions. Similarly, an outward current was evoked when extracellular Na+ concentration was raised in the presence of HCO3-. The Na(+)-evoked response was reduced to 16.2% of control by 2 mM DNDS and was abolished by removal of HCO3- from bath and ejection solutions. Taken together, these results (block by stilbenes and harmaline, HCO3- and Na+ dependence, Cl- independence) indicate that salamander Müller cells possess an electrogenic Na+/HCO3- cotransport system. Na+/HCO3- cotransporter sites were localized primarily at the endfoot region of Müller cells. Ejection of HCO3- onto the endfoot evoked outward currents 10 times larger than currents evoked by ejections onto the opposite (distal) end of the cell. The reversal potential of the cotransporter was determined by DNDS block of cotransport current. In the absence of a transmembrane HCO3- gradient, the reversal potential varied systematically as a function of the transmembrane Na+ gradient. The reversal potential was -0.1 mV for a [Na+]o:[Na+]i ratio of 1:1 and -25.2 mV for a Na+ gradient ratio of 7.4:1. Based on these values, the estimated stoichiometry of the cotransporter was 2.80 +/- 0.13:1 (HCO3-:Na+). Possible functions of the glial cell Na+/HCO3- cotransporter, including the regulation of CO2 in the retina and the regulation of cerebral blood flow, are discussed.

  17. Carbonic anhydrase, a respiratory enzyme in the gills of the shore crab Carcinus maenas

    NASA Astrophysics Data System (ADS)

    Böttcher, K.; Siebers, D.; Sender, S.

    1995-03-01

    This paper summarizes investigations on the enzyme carbonic anhydrase (CA) in the gills of the osmoregulating shore crab Carcinus maenas. Carbonic anhydrase, an enzyme catalyzing the reversible hydration of CO2 to HCO3 - and H+, is localized with highest activities in the posterior salt-transporting gills of the shore crab- and here CA activity is strongly dependent on salinity. Contrary to the earlier hypothesis established for the blue crab Callinectes sapidus that cytoplasmic branchial CA provides the counter ions HCO3 - and H+ for apical exchange against Na+ and Cl-, the involvement of CA in NaCl uptake mechanisms can be excluded in Carcinus. Differential and density gradient centrifugations indicate that branchial CA is a predominantly membrane-associated protein. Branchial CA was greatly inhibited by the sulfonamide acetazolamide (AZ) Ki=2.4·10-8 mol/l). Using the preparation of the isolated perfused gill, application of 10-4 mol/l AZ resulted in an 80% decrease of CO2/HCO3 - excretion. Thus we conclude that CA is localized in plasma membranes, maintaining the CO2 gradient by accelerating adjustment of the pH-dependent CO2/HCO3 - equilibrium.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.F.

    The ratio of Cl absorbed to HCO3 secreted by the in vitro small intestine of Amphiuma was measured using TWCl and titration. The aim was to estimate the stoichiometry and thereby elucidate the underlying transport mechanisms. For every mole of HCO3 secreted 1.8 mol of Cl underwent net absorption. Indirect measures of net Cl absorption and HCO3 secretion were validated. Several known and putative Cl transport inhibitors were examined for their ability to inhibit the anion transport events. Disulfonic stilbenes (DIDS) and the diuretics piretanide and furosemide inhibited the Cl absorptive flux (J/sub m s/sup Cl/) and simultaneously the HCO3more » secretory flux (J/sup HCO3 /). The diuretics acetazolamide and bumetanide also reduced J/sup HCO3 and J/sub m s/sup Cl/, although the latter effect was not statistically significant. The ratio of inhibition, J/sub m s/sup Cl// J/sup HCO3 /, varied from 1.2 to 1.8 for the different inhibitors. The presence of Cl -HCO3 exchange at the serosal membrane was deduced from 1) the reduction of J/sub m s/sup Cl/ and J/sup HCO3 / by serosally added stilbenes, 2) the reduction of Cl absorption when serosal Cl was replaced, 3) inhibition of the secretory-to-mucosal Cl flux by serosal stilbenes, and 4) enhancement of J/sup HCO3 when serosal medium HCO3 was elevated. The observations are not consistent with one-for-one exchange of Cl for HCO3 at the mucosal membrane. The observed coupling ratio is compatible with a one-for-one exchange of Cl for HCO3 at the serosal membrane.« less

  19. Double Knockout of the Na+-Driven Cl-/HCO3- Exchanger and Na+/Cl- Cotransporter Induces Hypokalemia and Volume Depletion.

    PubMed

    Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A; Chambrey, Régine

    2017-01-01

    We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl - /HCO 3 - exchanger pendrin and the Na + -driven Cl - /2HCO 3 - exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na + balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na + balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na + homeostasis and provide evidence that the Na + /Cl - cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K + concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca 2+ -activated K + channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K + concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. Copyright © 2016 by the American Society of Nephrology.

  20. Cation-Coupled Bicarbonate Transporters

    PubMed Central

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2016-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na+-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na+-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3− transporters of the SLC4-family. PMID:25428855

  1. HCO3(-) secretion by murine nasal submucosal gland serous acinar cells during Ca2+-stimulated fluid secretion.

    PubMed

    Lee, Robert J; Harlow, Janice M; Limberis, Maria P; Wilson, James M; Foskett, J Kevin

    2008-07-01

    Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca(2+)-activated Cl(-) secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca(2+)-activated Cl(-) secretion was accompanied by secretion of HCO(3)(-), possibly a critical ASL component, by simultaneous measurements of intracellular pH (pH(i)) and cell volume. Resting pH(i) was 7.17 +/- 0.01 in physiological medium (5% CO(2)-25 mM HCO(3)(-)). During carbachol (CCh) stimulation, pH(i) fell transiently by 0.08 +/- 0.01 U concomitantly with a fall in Cl(-) content revealed by cell shrinkage, reflecting Cl(-) secretion. A subsequent alkalinization elevated pH(i) to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO(2)-HCO(3)(-)-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO(3)(-) efflux by ion substitution or exposure to the Cl(-) channel inhibitor niflumic acid (100 microM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na(+)/H(+) exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1-4 and 6-9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pH(i) recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO(3)(-) during Ca(2+)-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl(-) channel, with HCO(3)(-) secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na(+)-dependent pH(i) regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na(+)-free media.

  2. Transepithelial potential in the Magadi tilapia, a fish living in extreme alkalinity.

    PubMed

    Wood, Chris M; Bergman, Harold L; Bianchini, Adalto; Laurent, Pierre; Maina, John; Johannsson, Ora E; Bianchini, Lucas F; Chevalier, Claudine; Kavembe, Geraldine D; Papah, Michael B; Ojoo, Rodi O

    2012-02-01

    We investigated the transepithelial potential (TEP) and its responses to changes in the external medium in Alcolapia grahami, a small cichlid fish living in Lake Magadi, Kenya. Magadi water is extremely alkaline (pH = 9.92) and otherwise unusual: titratable alkalinity (290 mequiv L(-1), i.e. HCO(3) (-) and CO(3) (2-)) rather than Cl(-) (112 mmol L(-1)) represents the major anion matching Na(+) = 356 mmol L(-1), with very low concentrations of Ca(2+) and Mg(2+) (<1 mmol L(-1)). Immediately after fish capture, TEP was +4 mV (inside positive), but stabilized at +7 mV at 10-30 h post-capture when experiments were performed in Magadi water. Transfer to 250% Magadi water increased the TEP to +9.5 mV, and transfer to fresh water and deionized water decreased the TEP to -13 and -28 mV, respectively, effects which were not due to changes in pH or osmolality. The very negative TEP in deionized water was attenuated in a linear fashion by log elevations in [Ca(2+)]. Extreme cold (1 vs. 28°C) reduced the positive TEP in Magadi water by 60%, suggesting blockade of an electrogenic component, but did not alter the negative TEP in dilute solution. When fish were transferred to 350 mmol L(-1) solutions of NaHCO(3), NaCl, NaNO(3), or choline Cl, only the 350 mmol L(-1) NaHCO(3) solution sustained the TEP unchanged at +7 mV; in all others, the TEP fell. Furthermore, after transfer to 50, 10, and 2% dilutions of 350 mmol L(-1) NaHCO(3), the TEPs remained identical to those in comparable dilutions of Magadi water, whereas this did not occur with comparable dilutions of 350 mmol L(-1) NaCl-i.e. the fish behaves electrically as if living in an NaHCO(3) solution equimolar to Magadi water. We conclude that the TEP is largely a Na(+) diffusion potential attenuated by some permeability to anions. In Magadi water, the net electrochemical forces driving Na(+) inwards (+9.9 mV) and Cl(-) outwards (+3.4 mV) are small relative to the strong gradient driving HCO(3) (-) inwards (-82.7 mV). Estimated permeability ratios are P (Cl)/P (Na) = 0.51-0.68 and [Formula: see text] = 0.10-0.33. The low permeability to HCO(3) (-) is unusual, and reflects a unique adaptation to life in extreme alkalinity. Cl(-) is distributed close to Nernst equilibrium in Magadi water, so there is no need for lower P (Cl). The higher P (Na) likely facilitates Na(+) efflux through the paracellular pathway. The positive electrogenic component is probably due to active HCO(3) (-) excretion.

  3. Molecular pathophysiology of SLC4 bicarbonate transporters.

    PubMed

    Romero, Michael F

    2005-09-01

    Acid-base (H and HCO3) transport in the kidney is crucial for maintaining blood pH, cellular pH and excreting metabolic acid. HCO3 transport in the kidney is mediated by HCO3 transporter proteins which occur in two gene families in humans, vertebrates and invertebrates (SLC4 and SLC26). Since SLC26 transporters have other, non-HCO3 transport functions, this review highlights the history and recent advances in the SLC4 transporters in the kidney. The SLC4 gene and protein family (10 genes) contains three types of HCO3 transporters: Cl-HCO3 exchangers, Na/HCO3 cotransporters and Na-driven Cl-HCO3 exchangers. Function and human chromosomal location have been determined for most members. Human mutations in AE1 (SLC4A1) and NBCe1 (SLC4A4) are associated with distal and proximal renal tubular acidosis, respectively. Recent advances include the cellular and biophysical mechanisms by which AE1 and NBCe1 mutations lead to renal disease. Mutational and cellular trafficking studies have begun to elucidate the membrane topology and functional domains of AE1 and NBCe1. Knockout mice for AE2 and NBCn1 do not have obvious renal phenotypes. Recently, SLC4A11 (bicarbonate transporter 1) was shown to function as an electrogenic Na/borate cotransporter unable to transport HCO3 but involved in cell cycle control. SLC4 HCO3 transporters play critical roles in systemic and cellular pH homeostasis. Most of the SLC4 members are present at some level in the kidney. Future studies will likely continue to make use of knockout animals, for example mice and zebrafish, human mutations or polymorphisms to elucidate the normal and pathophysiologic roles of these proteins.

  4. Molecular Mechanism of Pancreatic and Salivary Glands Fluid and HCO3− Secretion

    PubMed Central

    Lee, Min Goo; Ohana, Ehud; Park, Hyun Woo; Yang, Dongki; Muallem, Shmuel

    2013-01-01

    Fluid and HCO3− secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO3− secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren’s syndrome and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO3− secretion, in particular by secretory glands. Fluid and HCO3− secretion by secretory glands is a two step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl− and secrete HCO3−. The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete small amount of NaCl-rich fluid, while the duct absorbs the Cl− and secretes HCO3− and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO3− secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that contains high concentrations of Na+ and Cl− and fluid secretion is mediated by active Cl− secretion. The salivary glands duct absorbs both the Na+ and Cl− and secretes K+ and HCO3−. In this review, we focus on the molecular mechanism of fluid and HCO3− secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and point the differences to meet glands specific secretions. PMID:22298651

  5. K(+)- and HCO3(-)-dependent acid-base transport in squid giant axons. I. Base efflux

    PubMed Central

    1995-01-01

    We used microelectrodes to monitor the recovery (i.e., decrease) of intracellular pH (pHi) after using internal dialysis to load squid giant axons with alkali to pHi values of 7.7, 8.0, or 8.3. The dialysis fluid (DF) contained 400 mM K+ but was free of Na+ and Cl-. The artificial seawater (ASW) lacked Na+, K+, and Cl-, thereby eliminating effects of known acid-base transporters on pHi. Under these conditions, halting dialysis unmasked a slow pHi decrease caused at least in part by acid-base transport we refer to as "base efflux." Replacing K+ in the DF with either NMDG+ or TEA+ significantly reduced base efflux and made membrane voltage (Vm) more positive. Base efflux in K(+)-dialyzed axons was stimulated by decreasing the pH of the ASW (pHo) from 8 to 7, implicating transport of acid or base. Although postdialysis acidifications also occurred in axons in which we replaced the K+ in the DF with Li+, Na+, Rb+, or Cs+, only with Rb+ was base efflux stimulated by low pHo. Thus, the base effluxes supported by K+ and Rb+ appear to be unrelated mechanistically to those observed with Li+, Na+, or Cs+. The combination of 437 mM K+ and 12 mM HCO3- in the ASW, which eliminates the gradient favoring a hypothetical K+/HCO3- efflux, blocked pHi recovery in K(+)-dialyzed axons. However, the pHi recovery was not blocked by the combination of 437 mM Na+, veratridine, and CO2/HCO3- in the ASW, a treatment that inverts electrochemical gradients for H+ and HCO3- and would favor passive H+ and HCO3- fluxes that would have alkalinized the axon. Similarly, the recovery was not blocked by K+ alone or HCO3- alone in the ASW, nor was it inhibited by the K-H pump blocker Sch28080 nor by the Na-H exchange inhibitors amiloride and hexamethyleneamiloride. Our data suggest that a major component of base efflux in alkali-loaded axons cannot be explained by metabolism, a H+ or HCO3- conductance, or by a K-H exchanger. However, this component could be mediated by a novel K/HCO3- cotransporter. PMID:8648294

  6. Modulation of chloride secretion in the rat ileum by intracellular bicarbonate.

    PubMed

    Dagher, P C; Chawla, H; Michael, J; Egnor, R W; Charney, A N

    1997-05-01

    Increasing intracellular bicarbonate concentration ([HCO3-]i) inhibits calcium-mediated Cl- secretion in rat distal colon and T84 cells. We investigated the effect of [HCO3-]i on Cl- secretion in rat ileum. Segments of intact ileum from Sprague-Dawley rats were studied in Ussing chambers and villus and crypt intracellular pH and [HCO3-]i were determined using BCECF. A range of crypt and villus [HCO3-]i from 0 to 31 mM was obtained by varying Ringer's composition. Basal serosal-to-mucosal Cl- flux (JsmCl) averaged 8.5 +/- 0.2 mu eq.h-1.cm-2 and was unaffected by changing [HCO3-]i or serosal bumetanide. Carbachol increased JsmCl by 3.9 +/- 0.5 mu eq.h-1.cm-2 at [HCO3-]i = 0 mM but only by 1.0 +/- 0.3 mu eq.h-1.cm-2 at high crypt and villus [HCO3-]i. Dibutyryl-cAMP increased JsmCl by 2.5 +/- 0.2 mu eq.h-1.cm-2 at all [HCO3-]i. Carbachol and db-cAMP showed mutual antagonism at low [HCO3-]i and near-additivity at high [HCO3-]i. We conclude that like rat colon and T84 cells, calcium-mediated but not cAMP-mediated Cl- secretion in the ileum is inhibited by increasing [HCO3-]i. Mutual antagonism between carbachol and db-cAMP at low [HCO3-]i was present in ileum and distal colon but not in T84 cells.

  7. Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange.

    PubMed

    Jennings, Michael L

    2013-11-01

    The rates of H2S and HS(-) transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS(-). Net acid efflux is caused by H2S/HS(-) acting analogously to CO2/HCO3(-) in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS(-) influx in exchange for Cl(-), catalyzed by the anion exchange protein AE1, and 4) intracellular HS(-) protonation. Net acid transport by the Cl(-)/HS(-)/H2S cycle is more efficient than by the Cl(-)/HCO3(-)/CO2 cycle because of the rapid H2S-HS(-) interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS(-) and H2S transport rates. The data indicate that HS(-) is a very good substrate for AE1; the Cl(-)/HS(-) exchange rate is about one-third as rapid as Cl(-)/HCO3(-) exchange. The H2S permeability coefficient must also be high (>10(-2) cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS(-) enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS(-) is a substrate for a Cl(-)/HCO3(-) exchanger indicates that some effects of exogenous H2S/HS(-) may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS(-) transport in a Jacobs-Stewart cycle.

  8. Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.

    PubMed

    Cooper, Christopher A; Whittamore, Jonathan M; Wilson, Rod W

    2010-04-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O absorption). The latter two processes involve high rates of epithelial HCO(3)(-) secretion stimulated by intestinal Ca(2+) and can drive a major portion of water absorption. At higher salinities and ambient Ca(2+) concentrations the osmoregulatory role of intestinal HCO(3)(-) secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO(2)) and acid-base regulation (as intestinal cells must export H(+) into the blood to balance apical HCO(3)(-) secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca(2+). Increasing the luminal Ca(2+) concentration caused a large elevation in intestinal HCO(3)(-) production and excretion. Additionally, blood pH decreased (-0.13 pH units) and plasma partial pressure of CO(2) (Pco(2)) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca(2+)] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO(3)(-) production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca(2+) independent of any other ion or overall osmolality in marine teleost fish.

  9. [Effects of different salt and alkali stresses on ion distribution in Red globe/Beta grapevines].

    PubMed

    Du, Yuan-peng; Jin, Xue-juan; Guo, Shu-hua; Fu, Qing-qing; Zhai, Heng

    2015-06-01

    The potted Red globe/Beta grapevines were selected to irrigated with NaCl, Na2SO4, NaHCO3, NH4Cl, (NH4)2SO4. Hence, the ions which induced leaf etiolation were screened and the impacts of different salt and alkali on ion distribution in different organs of grapevines were investigated. It was found that NaHCO3 exerted the greatest effects on grapevines, leaf etiolation at 14 days after treatment. By contrast, NaCl and NH4Cl treatments induced leaf etiolation at 28 days after treatment. The Na+ content in all the detected organs were significantly increased under NaHCO3 and NaCl treatment, and Na+ content in root under NaHCO3 treatment was 6.4 times as that in control root. NaHCO3 and NaCl treatments significantly decreased K+ content in the organs with the exception of leaf. NaHCO3 treatment significantly decreased K/Na in different organs, which declined to 0.1 in root. By contrast, NaCl treatment significantly decreased K/Na in the detected organs with exception of stem. Besides, the transport of Ca2+, Mg2+, Fe2+ to aboveground organs was significantly decreased by NaHCO3 and NaCl treatments. K/Na ratio in the detected organs were decreased under NH4Cl, (NH4) 2SO4 and Na2SO4 treatments, especially under NH4 Cl treatment. Taken together, NaHCO3 was the primary factor resulting in leaf etiolation, followed by NaCl and NH4Cl, while (NH4) 2SO4 and Na2SO4 produced impacts.

  10. Aquaporin-1 and HCO3−–Cl− transporter-mediated transport of CO2 across the human erythrocyte membrane

    PubMed Central

    Blank, Michael E; Ehmke, Heimo

    2003-01-01

    Recent studies have suggested that aquaporin-1 (AQP1) as well as the HCO3−–Cl− transporter may be involved in CO2 transport across biological membranes, but the physiological importance of this route of gas transport remained unknown. We studied CO2 transport in human red blood cell ghosts at physiological temperatures (37 °C). Replacement of inert with CO2-containing gas above a stirred cell suspension caused an outside-to-inside directed CO2 gradient and generated a rapid biphasic intracellular acidification. The gradient of the acidifying gas was kept small to favour high affinity entry of CO2 passing the membrane. All rates of acidification except that of the approach to physicochemical equilibrium of the uncatalysed reaction were restricted to the intracellular environment. Inhibition of carbonic anhydrase (CA) demonstrated that CO2-induced acidification required the catalytic activity of CA. Blockade of the function of either AQP1 (by HgCl2 at 65 μM) or the HCO3−–Cl− transporter (by DIDS at 15 μM) completely prevented fast acidification. These data indicate that, at low chemical gradients for CO2, nearly the entire CO2 transport across the red cell membrane is mediated by AQP1 and the HCO3−–Cl− transporter. Therefore, these proteins may function as high affinity sites for CO2 transport across the erythrocyte membrane. PMID:12754312

  11. Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium.

    PubMed

    Yamaguchi, Makoto; Steward, Martin C; Smallbone, Kieran; Sohma, Yoshiro; Yamamoto, Akiko; Ko, Shigeru B H; Kondo, Takaharu; Ishiguro, Hiroshi

    2017-03-15

    The ductal system of the pancreas secretes large volumes of alkaline fluid containing HCO 3 - concentrations as high as 140 mm during hormonal stimulation. A computational model has been constructed to explore the underlying ion transport mechanisms. Parameters were estimated by fitting the model to experimental data from guinea-pig pancreatic ducts. The model was readily able to secrete 140 mm HCO 3 - . Its capacity to do so was not dependent upon special properties of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels and solute carrier family 26 member A6 (SLC26A6) anion exchangers. We conclude that the main requirement for secreting high HCO 3 - concentrations is to minimize the secretion of Cl - ions. These findings help to clarify the mechanism responsible for pancreatic HCO 3 - secretion, a vital process that prevents the formation of protein plugs and viscous mucus in the ducts, which could otherwise lead to pancreatic disease. A computational model of guinea-pig pancreatic duct epithelium was developed to determine the transport mechanism by which HCO 3 - ions are secreted at concentrations in excess of 140 mm. Parameters defining the contributions of the individual ion channels and transporters were estimated by least-squares fitting of the model predictions to experimental data obtained from isolated ducts and intact pancreas under a range of experimental conditions. The effects of cAMP-stimulated secretion were well replicated by increasing the activities of the basolateral Na + -HCO 3 - cotransporter (NBC1) and apical Cl - /HCO 3 - exchanger (solute carrier family 26 member A6; SLC26A6), increasing the basolateral K + permeability and apical Cl - and HCO 3 - permeabilities (CFTR), and reducing the activity of the basolateral Cl - /HCO 3 - exchanger (anion exchanger 2; AE2). Under these conditions, the model secreted ∼140 mm HCO 3 - at a rate of ∼3 nl min -1  mm -2 , which is consistent with experimental observations. Alternative 1:2 and 1:1 stoichiometries for Cl - /HCO 3 - exchange via SLC26A6 at the apical membrane were able to support a HCO 3 - -rich secretion. Raising the HCO 3 - /Cl - permeability ratio of CFTR from 0.4 to 1.0 had little impact upon either the secreted HCO 3 - concentration or the volume flow. However, modelling showed that a reduction in basolateral AE2 activity by ∼80% was essential in minimizing the intracellular Cl - concentration following cAMP stimulation and thereby maximizing the secreted HCO 3 - concentration. The addition of a basolateral Na + -K + -2Cl - cotransporter (NKCC1), assumed to be present in rat and mouse ducts, raised intracellular Cl - and resulted in a lower secreted HCO 3 - concentration, as is characteristic of those species. We conclude therefore that minimizing the driving force for Cl - secretion is the main requirement for secreting 140 mm HCO 3 - . © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. Mechanisms of bicarbonate secretion: lessons from the airways.

    PubMed

    Bridges, Robert J

    2012-08-01

    Early studies showed that airway cells secrete HCO(3)(-) in response to cAMP-mediated agonists and HCO(3)(-) secretion was impaired in cystic fibrosis (CF). Studies with Calu-3 cells, an airway serous model with high expression of CFTR, also show the secretion of HCO(3)(-) when cells are stimulated with cAMP-mediated agonists. Activation of basolateral membrane hIK-1 K(+) channels inhibits HCO(3)(-) secretion and stimulates Cl(-) secretion. CFTR mediates the exit of both HCO(3)(-) and Cl(-) across the apical membrane. Entry of HCO(3)(-) on a basolateral membrane NBC or Cl(-) on the NKCC determines which anion is secreted. Switching between these two secreted anions is determined by the activity of hIK-1 K(+) channels.

  13. A Novel Mechanism of pH Buffering in C. elegans Glia: Bicarbonate Transport via the Voltage-Gated ClC Cl- Channel CLH-1.

    PubMed

    Grant, Jeff; Matthewman, Cristina; Bianchi, Laura

    2015-12-16

    An important function of glia is the maintenance of the ionic composition and pH of the synaptic microenvironment. In terms of pH regulation, HCO3 (-) buffering has been shown to be important in both glia and neurons. Here, we used in vivo fluorescent pH imaging and RNA sequencing of the amphid sheath glia of Caenorhabditis elegans to reveal a novel mechanism of cellular HCO3 (-) uptake. While the classical mechanism of HCO3 (-) uptake involves Na(+)/HCO3 (-) cotransporters, here we demonstrate that the C. elegans ClC Cl(-) channel CLH-1 is highly permeable to HCO3 (-) and mediates HCO3 (-) uptake into amphid sheath glia. CLH-1 has homology and electrophysiological properties similar to the mammalian ClC-2 Cl(-) channel. Our data suggest that, in addition to maintaining synaptic Cl(-) concentration, these channels may also be involved in maintenance of synaptic pH via HCO3 (-) flux. These findings provide an exciting new facet of study regarding how pH is regulated in the brain. Maintenance of pH is essential for the physiological function of the nervous system. HCO3 (-) is crucial for pH regulation and is transported into the cell via ion transporters, including ion channels, the molecular identity of which remains unclear. In this manuscript, we describe our discovery that the C. elegans amphid sheath glia regulate intracellular pH via HCO3 (-) flux through the voltage-gated ClC channel CLH-1. This represents a novel function for ClC channels, which has implications for their possible role in mammalian glial pH regulation. This discovery may also provide a novel therapeutic target for pathologic conditions, such as ischemic stroke where acidosis leads to widespread death of glia and subsequently neurons. Copyright © 2015 the authors 0270-6474/15/3516377-21$15.00/0.

  14. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule.

    PubMed

    Sasaki, S; Shiigai, T; Yoshiyama, N; Takeuchi, J

    1987-01-01

    To clarify the mechanism(s) of HCO3- (or related base) transport across the basolateral membrane, rabbit proximal straight tubules were perfused in vitro, and intracellular pH (pHi) and Na+ activity (aiNa) were measured by double-barreled ion-selective microelectrodes. Lowering bath HCO3- from 25 to 5 mM at constant PCO2 depolarized basolateral membrane potential (Vbl), and reduced pHi. Most of these changes were inhibited by adding 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath. Total replacement of bath Na+ with choline also depolarized Vbl and reduced pHi, and these changes were also inhibited by SITS. Reduction in aiNa was observed when bath HCO3- was lowered. Taken together, these findings suggest that HCO3- exists the basolateral membrane with Na+ and negative charge. Calculation of the electrochemical driving forces suggests that the stoichiometry of HCO3-/Na+ must be larger than two for maintaining HCO3- efflux. Total replacement of bath Cl- with isethionate depolarized Vbl gradually and increased pHi slightly, implying the existence of a Cl(-)-related HCO3- exit mechanism. The rate of decrease in pHi induced by lowering bath HCO3- was slightly reduced (20%) by the absence of bath Cl-. Therefore, the importance of Cl(-)-related HCO3- transport is small relative to total basolateral HCO3- exit. Accordingly, these data suggest that most of HCO3- exits the basolateral membrane through the rheogenic Na+/HCO3- cotransport mechanism with a stoichiometry of HCO3-/Na+ of more than two.

  15. Modulation of secretagogue-induced chloride secretion by intracellular bicarbonate.

    PubMed

    Dagher, P C; Morton, T Z; Joo, C S; Taglietta-Kohlbrecher, A; Egnor, R W; Charney, A N

    1994-05-01

    We have previously demonstrated inhibition of basal Cl- secretion by intracellular bicarbonate concentration ([HCO3-]i) in rat distal colon. We now examined whether secretagogue-induced Cl- secretion is inhibited by [HCO3-]i as well. Stripped segments of distal colon from male Sprague-Dawley rats and the colon tumor cell line T84 were studied. Flux measurements were performed in the Ussing chamber under short-circuit conditions. [HCO3-]i was calculated from intracellular pH (pHi) values that were estimated with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) and carbachol were used as secretagogues. In both distal colon and T84 cells, [HCO3-]i did not affect cAMP-induced Cl- secretion. However, carbachol-induced secretion was inhibited by [HCO3-]i; in rat colon, Cl- secretion decreased from 2.3 to 1.5 mueq.cm-2.h-1 when [HCO3-]i was increased from 15.0 to 28.4 mM (P < 0.05). In T84 cells, the change in short-circuit current decreased from 8.1 to 1.1 microA/cm2 over a range of [HCO3-]i from 0 to 15.6 mM (P < 0.001). We conclude that [HCO3-]i is an important modulator of carbachol-stimulated Cl- secretion in both rat distal colon and the T84 cell line. cAMP-mediated secretion is not affected by [HCO3-]i.

  16. Role of carbonic anhydrase in basal and stimulated bicarbonate secretion by the guinea pig duodenum.

    PubMed

    Muallem, R; Reimer, R; Odes, H S; Schwenk, M; Beil, W; Sewing, K F

    1994-05-01

    The role of carbonic anhydrase in the process of proximal duodenal mucosal bicarbonate secretion was investigated in the guinea pig. In a series of experiments in vivo, the duodenum was perfused with 24 mmol/liter NaHCO3 solution (+ NaCl for isotonicity) to ensure that active duodenal HCO3- secretion against a concentration gradient was measured. Acetazolamide (80 mg/kg) was infused intravenously to examine the role of carbonic anhydrase on basal and agonist-stimulated HCO3- secretion. Acetazolamide abolished basal HCO3- secretion and significantly decreased HCO3- secretion after stimulation with dibutyryl 5'-cyclic adenosine monophosphate (dBcAMP, 10(-5) mol/kg), dibutyryl 5'-cyclic guanosine monophosphate (dBcGMP, 10(-5) mol/kg), prostaglandin E2 (PGE2, 10(-6) mol/kg), PGF2 alpha (10(-6) mol/kg), tetradecanoyl-phorbol-acetate (TPA, 10(-7) mol/kg), glucagon (10(-7) mol/kg), vasoactive intestinal polypeptide (VIP, 10(-8) mol/kg), and carbachol (10(-8) mol/kg). Utilizing a fluorescence technique, we could detect the enzyme carbonic anhydrase in equal amounts in villous and crypt cells of the proximal duodenal epithelium; no activity was demonstrated in tissues pretreated with acetazolamide. In conclusion, carbonic anhydrase is required for both basal and stimulated duodenal HCO3- secretion.

  17. Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus.

    PubMed

    Mitsunaga, K; Fujino, Y; Yasumasu, I

    1986-12-01

    In sea urchin embryos, primary mesenchyme cells, descendants from micromeres produced at the 16-cell stage, form spicules or CaCO3 deposits in their skeletal vacuoles, at the post-gastrula stage. Micromeres isolated at the 16-cell stage also differentiate into spicule-forming cells during their culture at the same time schedule as in the embryos. The present study was planned to observe change in the activity of Cl-,HCO3(-)-ATPase, which was expected to contribute to the carbonate supply for CaCO3 deposition, during development. ATP-hydrolysis in the microsome fraction, obtained from embryos of the sea urchin, Hemicentrotus pulcherrimus, and from micromere-derived cells in culture was stimulated by Cl- and HCO3- in the presence of ouabain and EGTA. The ATP-hydrolysis was inhibited by ethacrynic acid, an inhibitor of Cl-,HCO3(-)-ATPase. The activity of Cl-,HCO3(-)-ATPase in embryos and in micromere-derived cells increased during development, keeping pace with the rate of calcium deposition in spicules. Formation of calcified spicules in the cultured micromere-derived cells was inhibited by ethacrynic acid. These results indicate that Cl-,HCO3(-)-ATPase plays an important role in the mechanism of CaCO3 deposition in the primary mesenchyme cells.

  18. Geochemical signatures of groundwater in the coastal aquifers of Thiruvallur district, south India

    NASA Astrophysics Data System (ADS)

    Senthilkumar, S.; Balasubramanian, N.; Gowtham, B.; Lawrence, J. F.

    2017-03-01

    An attempt has been made to identify the chemical processes that control the hydrochemistry of groundwater in the coastal aquifers of Thiruvallur coastal village of Thiruvallur district, Tamil Nadu, south India. The parameters such as pH, EC, TDS and major ion concentrations of Na, K, Ca, Mg, Cl, HCO3, SO4 and NO3 of the groundwater were analyzed. Abundances of these ions are in the following order Na > Ca > Mg > K and HCO3 > Cl > SO4 > NO3. The dominant water types are in the order of NaCl> mixed CaMgCl > CaHCO3 > CaNaHCO3. Water types (mixed CaHCO3, mixed CaMgCl and NaCl) suggest that the mixing of high salinity water caused from surface contamination sources such as irrigation return flow, domestic wastewater and septic tank effluents with existing water followed by ion exchange reaction processes, silicate weathering and evaporation are responsible for the groundwater chemistry of the study area. The above statement is further supported by Gibbs plot where most of the samples fall within the evaporation zone.

  19. Anion exchange pathways for Cl sup minus transport in rabbit renal microvillus membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karniski, L.P.; Aronson, P.S.

    1987-09-01

    The authors evaluated the mechanisms of chloride transport in microvillus membrane vesicles isolated from the rabbit renal cortex. The presence of Cl-formate exchange was confirmed. Outward gradients of oxaloacetate, HCO{sub 3}, acetate, lactate, succinate, sulfate, and p-aminohippurate (PAH) stimulated the rate of Cl uptake minimally or not at all. However, an outward gradient of oxalate stimulated Cl uptake by 70%, and an outward Cl gradient induced uphill oxalate uptake, indicting Cl-oxalate exchange. Moreover, an outward formate gradient induced uphill oxalate uptake, indicating formate-oxalate exchange. Studies of inhibitor and substrate specificity indicated the probably operation of at least two separate anionmore » exchangers in mediating Cl transport. The Cl-formate exchanger accepted Cl and formate as substrates, had little or no affinity for oxalate, was sensitive to inhibition by furosemide, and was less sensitive to inhibition by 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS). The Cl (formate)-oxalate exchanger also accepted Cl and formate as substrates but had high affinity for oxalate, was highly sensitive to inhibition by DIDS, and was less sensitive to inhibition by furosemide. The Cl-formate exchanger was electroneutral, whereas the Cl (formate)-oxalate exchanger was electrogenic. They conclude that at least separate anion exchangers mediating Cl transport are present on the luminal membrane of the rabbit proximal tubule cell. These exchangers may play important roles in mediating transtubular Cl and oxalate transport in this nephron segment.« less

  20. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for fluid secretion. PMID:22777674

  1. Double Knockout of the Na+-Driven Cl−/HCO3− Exchanger and Na+/Cl− Cotransporter Induces Hypokalemia and Volume Depletion

    PubMed Central

    Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I.; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R. Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A.

    2017-01-01

    We recently described a novel thiazide–sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl−/HCO3− exchanger pendrin and the Na+–driven Cl−/2HCO3− exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na+ balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na+ balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na+ homeostasis and provide evidence that the Na+/Cl− cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double–knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K+ concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca2+–activated K+ channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K+ concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. PMID:27151921

  2. Bicarbonate absorption stimulates active calcium absorption in the rat proximal tubule.

    PubMed Central

    Bomsztyk, K; Calalb, M B

    1988-01-01

    To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption. PMID:3366902

  3. Involvement of the anion exchanger SLC26A6 in prostaglandin E2- but not forskolin-stimulated duodenal HCO3- secretion.

    PubMed

    Tuo, Biguang; Riederer, Brigitte; Wang, Zhaohui; Colledge, William H; Soleimani, Manoocher; Seidler, Ursula

    2006-02-01

    SLC26A6 is a recently identified apical Cl(-)/HCO(3)(-) exchanger with strong expression in murine duodenum. The present study was designed to examine the role of SLC26A6 in prostaglandin E(2) (PGE(2))-, forskolin-, and carbachol-induced duodenal HCO(3)(-) secretion. Murine duodenal mucosal HCO(3)(-) secretion was examined in vitro in Ussing chambers and mucosal SLC26A6 expression levels were analyzed by semiquantitative reverse-transcription polymerase chain reaction. Basal HCO(3)(-) secretion was diminished by 20%, PGE(2)-stimulated HCO(3)(-) secretory response by 59%, and carbachol-stimulated response was reduced by 35% in SLC26A6-/- compared with +/+ duodenal mucosa, whereas the forskolin-stimulated HCO(3)(-) secretory response was not different. In Cl(-)-free solutions, PGE(2)- and carbachol-stimulated HCO(3)(-) secretion was reduced by 81% and 44%, respectively, whereas forskolin-stimulated HCO(3)(-) secretion was not altered significantly. PGE(2) and carbachol, but not forskolin, were able to elicit a Cl(-)-dependent HCO(3)(-) secretory response in the absence of short-circuit current changes in cystic fibrosis transmembrane conductance regulator knockout mice. In murine duodenum, PGE(2)-mediated HCO(3)(-) secretion is strongly SLC26A6 dependent and cystic fibrosis transmembrane conductance regulator independent, whereas forskolin-stimulated HCO(3)(-) secretion is completely SLC26A6 independent and cystic fibrosis transmembrane conductance regulator dependent. Carbachol-induced secretion is less pronounced, but occurs via both transport pathways. This suggests that PGE(2) and forskolin activate distinct HCO(3)(-) transport pathways in the murine duodenum.

  4. Geochemical evolution of groundwater in the Western Delta region of River Godavari, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Nageswara Rao, P. V.; Appa Rao, S.; Subba Rao, N.

    2017-05-01

    The present study on geochemical evolution of groundwater is taken up to assess the controlling processes of water chemistry in the Western Delta region of the River Godavari (Andhra Pradesh), which is one of the major rice-producing centers in India. The study region is underlain by coarse sand with black clay (buried channels), black silty clay of recent origin (floodplain) and gray/white fine sand of modern beach sediment of marine source (coastal zone), including brown silty clay with fine sand (paleo-beach ridges). Groundwater is mostly brackish and very hard. It is characterized by Na+ > Mg2+ > Ca2+:HCO3 - > Cl- > SO4 2- > NO3 -, Na+ > Mg2+ > Ca2+:Cl- > HCO3 - > SO4 2-, and Mg2+ > Na+ > Ca2+ > or < K+:HCO3 - > Cl- > or > SO4 2- facies. The ionic relations (Ca2+ + Mg2+:HCO3 -, Ca2+ + Mg2+:SO4 2- + HCO3 -, Na+ + K+:TC, Na+ + K+:Cl- + SO4 2-, HCO3 -:TC, HCO3 -:Ca2+ + Mg2+, Na+:Cl- and Na+:Ca2+) indicate that the rock weathering, mineral dissolution, evaporation and ion exchange are the processes to control the aquifer chemistry. Anthropogenic and marine sources are also the supplementary factors for brackish water quality. These observations are further supported by Gibbs mechanisms that control the water chemistry. Thus, the study suggests that the initial quality of groundwater of geogenic origin has been subsequently modified by the influences of anthropogenic and marine sources.

  5. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. II. Exclusion of HCO3(-)-effects on other ion permeabilities and of coupled electroneutral HCO3(-)-transport.

    PubMed

    Burckhardt, B C; Cassola, A C; Frömter, E

    1984-05-01

    Cell membrane potentials of rat kidney proximal tubules were measured in response to peritubular ion substitutions in vivo with conventional and Cl- sensitive microelectrodes in order to test possible alternative explanations of the bicarbonate dependent cell potential transients reported in the preceding paper. Significant direct effects of bicarbonate on peritubular K+, Na+, and Cl- conductances could be largely excluded by blocking K+ permeability with Ba2+ and replacing all Na+ and Cl- by choline or respectively SO4(2-) isethionate, or gluconate. Under those conditions the cell membrane response to HCO3- was essentially preserved. In addition it was observed that peritubular Cl- conductance is negligibly small, that Cl-/HCO3- exchange - if present at all - is insignificant, and that rheogenic HCO3- flow with coupling to Na+ flow is also absent or insignificant. A transient disturbance of the Na+ pump or a transient unspecific increase of the membrane permeability was also excluded by experiments with ouabain and by the observation that SITS (4-acetamido-4'-isothiocyano-2,2' disulphonic stilbene) blocked the HCO3- response instantaneously. The data strongly support the notion that the potential changes in response to peritubular HCO3- concentration changes arise from passive rheogenic bicarbonate transfer across the peritubular cell membrane, and hence that this membrane has a high conductance for bicarbonate buffer.

  6. Dehydrogenation of formic acid catalyzed by magnesium hydride anions, HMgL2- (L = Cl and HCO2)

    NASA Astrophysics Data System (ADS)

    Khairallah, George N.; O'Hair, Richard A. J.

    2006-08-01

    A two step gas-phase catalytic cycle for the dehydrogenation of formic acid was established using a combination of experiments carried out on a quadrupole ion trap mass spectrometer and DFT calculations. The catalysts are the magnesium hydride anions HMgL2- (L = Cl and HCO2), which are formed from the formate complexes, HCO2MgL2-, via elimination of carbon dioxide under conditions of collision induced dissociation. This is followed by an ion-molecule reaction between HMgL2- and formic acid, which yields hydrogen and also reforms the formate complex, HCO2MgL2-. A kinetic isotope effect in the range 2.3-2.9 was estimated for the rate determining decarboxylation step by carrying out CID on the (HCO2)(DCO2)MgCl2- and subjecting the resultant mixture of (H)(DCO2)MgCl2- and (HCO2)(D)MgCl2- ions at m/z 106 to ion-molecule reactions. DFT calculations (at the B3LYP/6-31 + G* level of theory) were carried out on the HMgCl2- system and revealed that: (i) the decarboxylation of HCO2MgCl2- is endothermic by 47.8 kcal mol-1, consistent with the need to carry out CID to form the HMgCl2-; (ii) HMgCl2- can react with formic acid via either a four centred transition state or a six centred transition state. The former reaction is favoured by 7.8 kcal mol-1.

  7. A Novel Mechanism of pH Buffering in C. elegans Glia: Bicarbonate Transport via the Voltage-Gated ClC Cl− Channel CLH-1

    PubMed Central

    Grant, Jeff; Matthewman, Cristina

    2015-01-01

    An important function of glia is the maintenance of the ionic composition and pH of the synaptic microenvironment. In terms of pH regulation, HCO3− buffering has been shown to be important in both glia and neurons. Here, we used in vivo fluorescent pH imaging and RNA sequencing of the amphid sheath glia of Caenorhabditis elegans to reveal a novel mechanism of cellular HCO3− uptake. While the classical mechanism of HCO3− uptake involves Na+/HCO3− cotransporters, here we demonstrate that the C. elegans ClC Cl− channel CLH-1 is highly permeable to HCO3− and mediates HCO3− uptake into amphid sheath glia. CLH-1 has homology and electrophysiological properties similar to the mammalian ClC-2 Cl− channel. Our data suggest that, in addition to maintaining synaptic Cl− concentration, these channels may also be involved in maintenance of synaptic pH via HCO3− flux. These findings provide an exciting new facet of study regarding how pH is regulated in the brain. SIGNIFICANCE STATEMENT Maintenance of pH is essential for the physiological function of the nervous system. HCO3− is crucial for pH regulation and is transported into the cell via ion transporters, including ion channels, the molecular identity of which remains unclear. In this manuscript, we describe our discovery that the C. elegans amphid sheath glia regulate intracellular pH via HCO3− flux through the voltage-gated ClC channel CLH-1. This represents a novel function for ClC channels, which has implications for their possible role in mammalian glial pH regulation. This discovery may also provide a novel therapeutic target for pathologic conditions, such as ischemic stroke where acidosis leads to widespread death of glia and subsequently neurons. PMID:26674864

  8. Intracellular pH recovery from alkalinization. Characterization of chloride and bicarbonate transport by the anion exchange system of human neutrophils

    PubMed Central

    1990-01-01

    The nature of the intracellular pH-regulatory mechanism after imposition of an alkaline load was investigated in isolated human peripheral blood neutrophils. Cells were alkalinized by removal of a DMO prepulse. The major part of the recovery could be ascribed to a Cl- /HCO3- counter-transport system: specifically, a one-for-one exchange of external Cl- for internal HCO3-. This exchange mechanism was sensitive to competitive inhibition by the cinnamate derivative UK-5099 (Ki approximately 1 microM). The half-saturation constants for binding of HCO3- and Cl- to the external translocation site of the carrier were approximately 2.5 and approximately 5.0 mM. In addition, other halides and lyotropic anions could substitute for external Cl-. These ions interacted with the exchanger in a sequence of decreasing affinities: HCO3- greater than Cl approximately NO3- approximately Br greater than I- approximately SCN- greater than PAH-. Glucuronate and SO4(2-) lacked any appreciable affinity. This rank order is reminiscent of the selectivity sequence for the principal anion exchanger in resting cells. Cl- and HCO3- displayed competition kinetics at both the internal and external binding sites of the carrier. Finally, evidence compatible with the existence of an approximately fourfold asymmetry (Michaelis constants inside greater than outside) between inward- and outward-facing states is presented. These results imply that a Cl-/HCO3- exchange mechanism, which displays several properties in common with the classical inorganic anion exchanger of erythrocytes, is primarily responsible for restoring the pHi of human neutrophils to its normal resting value after alkalinization. PMID:2280252

  9. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of recharge in this area is from bedrock. Concentrations of Na+, HCO3-, As, and TDS also increase in the western MVA. Ground water in the MAK is of a Ca2+-HCO3- type. Mass-balance calculations, using Cl- as a natural, conservative tracer, indicate that approximately 17% of the ground water flowing from the confluence area is derived from the MVA.

  10. Effect of sodium bicarbonate and varying concentrations of sodium chloride in brine on the liquid retention of fish (Pollachius virens L.) muscle.

    PubMed

    Åsli, Magnus; Ofstad, Ragni; Böcker, Ulrike; Jessen, Flemming; Einen, Olai; Mørkøre, Turid

    2016-03-15

    Negative health effects associated with excessive sodium (Na) intake have increased the demand for tasty low-Na products (<2% NaCl) rather than traditional heavily salted fish products (∼20% NaCl). This study investigates the causes of improved yield and liquid retention of fish muscle brined with a combination of salt (NaCl) and sodium bicarbonate (NaHCO3 ). Water characteristics and microstructure of saithe (Pollachius virens L.) muscle brined in solutions of NaCl and NaHCO3 or NaCl alone were compared using low-field nuclear magnetic resonance (LF-NMR) T2 relaxometry, microscopy, salt content, liquid retention and colorimetric measurements. Saithe muscle was brined for 92 h in 0, 30, 60, 120 or 240 g kg(-1) NaCl or the respective solutions with added 7.5 g kg(-1) NaHCO3 . NaHCO3 inclusion improved the yield in solutions ranging from 0 to 120 g kg(-1) NaCl, with the most pronounced effect being observed at 30 g kg(-1) NaCl. The changes in yield were reflected in water mobility, with significantly shorter T2 relaxation times in all corresponding brine concentrations. Salt-dependent microstructural changes were revealed by light microscopy, where NaHCO3 supplementation resulted in greater intracellular space at 30 and 60 g kg(-1) NaCl. Sodium bicarbonate addition to low-salt solutions can improve yield and flesh quality of fish muscle owing to altered water mobility and wider space between the muscle cells. © 2015 Society of Chemical Industry.

  11. Regulation of intracellular pH in the rabbit cortical collecting tubule.

    PubMed Central

    Weiner, I D; Hamm, L L

    1990-01-01

    The cortical collecting tubule (CCT) is an important nephron segment for Na+, K+, water and acid-base transport. Differential loading characteristics of the pH sensitive dye 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein (BCECF) and basolateral Cl- removal were used to identify and study intracellular pH (pHi) regulation in each of three cell types involved in this transport. Both principal cells and beta-intercalated cells were found to have a basolateral Na+/H+ exchanger based on the Na+ and amiloride sensitivity of pHi recovery from acid loads. Intercalated cells demonstrated abrupt pHi changes with basolateral Cl- removal. alpha-intercalated cells alkalinized; beta-intercalated cells acidified. In the beta-intercalated cells, luminal Cl- removal blocked changes in pHi in response to changes in luminal HCO3- or peritubular Cl-, providing direct evidence for a luminal Cl-/HCO3- exchanger. In principal cells, brief removal of either peritubular or luminal Cl- resulted in no change in pHi; however, return of peritubular Cl- after prolonged removal resulted in a rapid fall in pHi consistent with a basolateral Cl-/HCO3- exchanger, which may be relatively inactive under baseline conditions. Therefore, Cl-/HCO3- exchange is present in all three cell types but varies in location and activity. PMID:2153152

  12. Secretin stimulates HCO3(-) and acetate efflux but not Na+/HCO3(-) uptake in rat pancreatic ducts.

    PubMed

    Novak, I; Christoffersen, B C

    2001-03-01

    Pancreatic ducts secrete HCO3(-), but transport mechanisms are unresolved and possibly vary between species. Our aim was to study the intracellular pH (pHi) regulation and thus H+/HCO3- transport in rat pancreatic ducts. Of particular interest was the Na+/HCO3(-) cotransporter, thought to be important in HCO3(-) -transporting epithelia. pHi was measured with BCECF in freshly isolated intralobular ducts. A reduction in extracellular Na+ concentration or application of HOE 694 (1 microM) decreased pHi by 0.1 to 0.6 pH units, demonstrating Na+/H+ exchanger activity. A reduction in extracellular Cl- concentration or addition of H2DIDS (10 microM) increased pHi by 0.1 to 0.5 pH units, demonstrating Cl-/ HCO(3)- (OH ) exchanger activity. In experimental acidosis, extracellular HCO3(-)/CO2 buffer did not increase the rate of pHi recovery, indicating that provision of HCO3(-) by the Na+/HCO3(-) cotransporter was not apparent. Most importantly, Na+/HCO3(-) cotransport was not stimulated by secretin (1 nM). In contrast, in experimental alkalosis the pHi recovery was increased in HCO3(-)/CO2 buffer, possibly due to Na+/HCO3(-) cotransport in the efflux mode. Secretin (1 nM) and carbachol (1 microM) stimulated HCO3(-) efflux, which can account for the observed HCO3(-) concentrations in rat pancreatic juice. Acetate and HCO3(-) buffers were handled similarly, indicating similar transport mechanisms in pancreatic ducts.

  13. Effect of sodium chloride and sodium bicarbonate on the physicochemical properties of soft wheat flour doughs and gluten polymerization.

    PubMed

    Chen, Gengjun; Ehmke, Laura; Miller, Rebecca; Faa, Pierre; Smith, Gordon; Li, Yonghui

    2018-06-07

    Soft wheat flour doughs were prepared with different levels of salt (NaCl) and/or baking soda (NaHCO3). Oscillation rheology, elongational viscosity, and extensibility of doughs were tested to evaluate the effect of salt and/or baking soda on the physical properties of doughs. Furthermore, a series of physical-biochemical analytical techniques were used to investigate gluten polymerization in doughs, including Zeta potential analyzer, Fourier transform infrared spectroscopy (FTIR), spectrophotometer, and reversed phase high performance liquid chromatography (RP-HPLC). Addition of high levels of NaHCO3 (1.0 % fwb), either by itself or in combination with NaCl, increased dough strength, elongational viscosity, and viscoelasticity. RP-HPLC results demonstrated macromolecular aggregation of gluten proteins in the presence of NaCl and/or NaHCO3. Addition of NaHCO3 or NaCl also decreased both free sulfhydryl content and random coil structure of gluten isolated from the doughs. Overall, NaCl and/or NaHCO3 induced the changes of molecular conformation of gluten, which impacted the physicochemical qualities of soft wheat flour dough. Our study provides a better understanding of salt and baking soda functionality in the formation of soft flour dough, which will support the searching of feasible sodium reduction strategies in soft flour bakery products.

  14. Bicarbonate-dependent and -independent intracellular pH regulatory mechanisms in rat hepatocytes. Evidence for Na+-HCO3- cotransport.

    PubMed Central

    Gleeson, D; Smith, N D; Boyer, J L

    1989-01-01

    Using the pH-sensitive dye 2,7-bis(carboxyethyl)-5(6)-carboxy-fluorescein and a continuously perfused subconfluent hepatocyte monolayer cell culture system, we studied rat hepatocyte intracellular pH (pHi) regulation in the presence (+HCO3-) and absence (-HCO3-) of bicarbonate. Baseline pHi was higher (7.28 +/- 09) in +HCO3- than in -HCO3- (7.16 +/- 0.14). Blocking Na+/H+ exchange with amiloride had no effect on pHi in +HCO3- but caused reversible 0.1-0.2-U acidification in -HCO3- or in +HCO3- after preincubation in the anion transport inhibitor 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS). Acute Na+ replacement in +HCO3- alos caused acidification which was amiloride independent but DIDS inhibitible. The recovery of pHi from an intracellular acid load (maximum H+ efflux rate) was 50% higher in +HCO3- than in -HCO3-. Amiloride inhibited H+ effluxmax by 75% in -HCO3- but by only 27% in +HCO3-. The amiloride-independent pHi recovery in +HCO3- was inhibited 50-63% by DIDS and 79% by Na+ replacement but was unaffected by depletion of intracellular Cl-, suggesting that Cl-/HCO3- exchange is not involved. Depolarization of hepatocytes (raising external K+ from 5 to 25 mM) caused reversible 0.05-0.1-U alkalinization, which, however, was neither Na+ nor HCO3- dependent, nor DIDS inhibitible, findings consistent with electroneutral HCO3- transport. We conclude that Na+-HCO3- cotransport, in addition to Na+/H+ exchange, is an important regulator of pHi in rat hepatocytes. PMID:2544626

  15. Effect of Intravenous Small-Volume Hypertonic Sodium Bicarbonate, Sodium Chloride, and Glucose Solutions in Decreasing Plasma Potassium Concentration in Hyperkalemic Neonatal Calves with Diarrhea.

    PubMed

    Trefz, F M; Constable, P D; Lorenz, I

    2017-05-01

    Hyperkalemia is a frequently observed electrolyte imbalance in dehydrated neonatal diarrheic calves that can result in skeletal muscle weakness and life-threatening cardiac conduction abnormalities and arrhythmias. Intravenous administration of a small-volume hypertonic NaHCO 3 solution is clinically more effective in decreasing the plasma potassium concentration (cK) in hyperkalemic diarrheic calves than hypertonic NaCl or glucose solutions. Twenty-two neonatal diarrheic calves with cK >5.8 mmol/L. Prospective randomized clinical trial. Calves randomly received either 8.4% NaHCO 3 (6.4 mL/kg BW; n = 7), 7.5% NaCl (5 mL/kg BW; n = 8), or 46.2% glucose (5 mL/kg BW; n = 7) IV over 5 minutes and were subsequently allowed to suckle 2 L of an electrolyte solution. Infusions with NaHCO 3 and NaCl provided an identical sodium load of 6.4 mmol/kg BW. Hypertonic NaHCO 3 infusions produced an immediate and sustained decrease in plasma cK. Hypertonic glucose infusions resulted in marked hyperglycemia and hyperinsulinemia, but cK remained unchanged for 20 minutes. Between 30 and 120 minutes after initiation of treatment, the most marked decrements in cK from baseline occurred in group NaHCO 3 , which were significantly (P < .05) larger during this period of time than in calves in group NaCl, but not group glucose. After 120 minutes, the mean decrease in cK from baseline was -26 ± 10%, -9 ± 8%, and -22 ± 6% in groups NaHCO 3 , NaCl, and glucose, respectively. Small-volume hypertonic NaHCO 3 infusions appear to have clinical advantages for the rapid resuscitation of hyperkalemic diarrheic calves, compared to hypertonic NaCl or glucose solutions. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  16. Effect of systemic acid-base disorders on colonic intracellular pH and ion transport.

    PubMed

    Wagner, J D; Kurtin, P; Charney, A N

    1985-07-01

    We have previously reported that changes in colonic net Na and Cl absorption correlate with arterial CO2 partial pressure (PCO2) and that changes in colonic net Cl absorption and HCO3 secretion correlate with the plasma HCO3 concentration during the systemic acid-base disorders. To determine whether changes in intracellular pH (pHi) and HCO3 concentration [( HCO3]i) mediate these effects, we measured pHi and calculated [HCO3] in the distal colonic mucosa of anesthetized, mechanically ventilated Sprague-Dawley rats using 5,5-[14C]dimethyloxazolidine-2,4-dione and [3H]inulin. Rats were studied during normocapnia, acute respiratory acidosis and alkalosis, and uncompensated and pH-compensated acute metabolic acidosis and alkalosis. When animals in all groups were considered, there were strong correlations between mucosal pHi and both arterial PCO2 (r = -0.76) and pH (r = 0.82) and between mucosal [HCO3]i and both arterial PCO2 (r = 0.98) and HCO3 concentration (r = 0.77). When we considered the rates of colonic electrolyte transport that characterized these acid-base disorders [A. N. Charney and L. P. Haskell. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G159-G165, 1984], we found strong correlations between mucosal pHi and net Na absorption (r = -0.86) and between mucosal [HCO3]i and both net Cl absorption (r = 0.98) and net HCO3 secretion (r = 0.83). These findings suggest that the systemic acid-base disorders cause changes in colonic mucosal pHi and [HCO3]i as a consequence of altered arterial PCO2 and HCO3 concentration. In addition, the effects of these disorders on colonic electrolyte transport may be mediated by changes in mucosal pHi and [HCO3]i.

  17. Isoflavone genistein inhibits estrogen-induced chloride and bicarbonate secretory mechanisms in the uterus in rats.

    PubMed

    Chinigarzadeh, Asma; Karim, Kamarulzaman; Muniandy, Sekaran; Salleh, Naguib

    2017-04-01

    We hypothesized that genistein could affect the chloride (Cl - ) and bicarbonate (HCO 3 - ) secretory mechanisms in uterus. Ovariectomized female rats were given estradiol or estradiol plus progesterone with 25, 50, or 100 mg/kg/day genistein. Following completion of the treatment, uterine fluid Cl - and HCO 3 - concentrations were determined by in vivo uterine perfusion. Uteri were subjected for molecular biological analysis (Western blot, qPCR, and immunohistochemistry) to detect levels of expression of Cystic Fibrosis transmembrane regulator (CFTR), Cl - /HCO 3 - exchanger (SLC26a6), Na + /HCO 3 - cotransporter (SLC4a4), and estrogen receptor (ER)-α and β. Coadministration of genistein resulted in decrease in Cl - and HCO 3 - concentrations and expression of CFTR, SLC26a6, SLC4a4, and ER-α and ER-β in the uteri of estradiol-treated rats. In estradiol plus progesterone-treated rats, a significant increase in the above parameters were observed following high-dose genistein treatment except for the SLC24a4 level. In conclusion, genistein-induced changes in the uterus could affect the reproductive processes that might result in infertility. © 2016 Wiley Periodicals, Inc.

  18. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchard, J.B.

    p-Aminohippuric acid (PAH) transport by basolateral membrane (BLM) vesicles isolated from rat renal cortex was stimulated very little by a Na{sup +} gradient (out > in). However, when micromolar concentrations of glutaric acid or {alpha}-ketoglutaric acid were added in the presence of a out > in Na{sup +} gradient, PAH uptake was accelerated >20-fold and an overshoot of greater than fivefold was produced. Other anions, e.g., fumarate, stimulated PAH uptake very modestly under these conditions, and that stimulation was totally prevented by short circuiting, i.e., with K{sup +} (in = out) and valinomycin. Glutarate-stimulated uptake was inhibited by 4-acetamide-4{prime}-({sup 14}C)-isothiocyanostilbene-2,2{prime}-disulfonicmore » acid (SITS) and probenecid and was slightly stimulated by the imposition of an inside-negative membrane potential. Furthermore, even in the absence of a Na{sup +} gradient, glutarate-loaded vesicles exhibited a marked acceleration of ({sup 3}H)-PAH uptake (5-fold) and a modest overshoot (2.5-fold). These results suggest an indirect coupling of BLM PAH uptake to the Na{sup +} gradient by a cyclic accumulation (Na{sup +}-dependent) of glutarate followed by its efflux from the vesicle in exchange for PAH. This coupled system was absent in apical membranes. Thus net secretory transport of PAH may entail Na{sup +}-dependent, glutarate-driven PAH uptake at the BLM, followed by the exit of PAH into the lumen down its electrochemical gradient, probably in exchange for other anions, e.g., {sup 36}Cl{sup {minus}}, HCO{sub 3}{sup {minus}}, or OH{sup {minus}}.« less

  19. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias.

    PubMed

    Shuttleworth, Trevor J; Thompson, Jill; Munger, R Stephen; Wood, Chris M

    2006-12-01

    We compared in vivo responses of rectal gland secretion to carbonic anhydrase (CA) inhibition (10(-4) mol l(-1) acetazolamide) in volume-loaded dogfish with in vitro responses in an isolated-perfused gland stimulated with 5 x 10(-6) mol l(-1) forskolin and removed from systemic influences. We also measured respiratory gas exchange in the perfused gland, described the acid-base status of the secreted fluid, and determined the relative importance of various extracellular and intracellular acid-base parameters in controlling rectal gland secretion in vitro. In vivo, acetazolamide inhibited Cl(-) secretion and decreased pHi in the rectal gland, but interpretation was confounded by an accompanying systemic respiratory acidosis, which would also have contributed to the inhibition. In the perfused gland, M(CO(2)) and M(O(2)) increased in linear relation to increases in Cl(-) secretion rate. CA inhibition (10(-4) mol l(-1) acetazolamide) had no effect on Cl(-) secretion rate or pHi in the perfused gland, in contrast to in vivo, but caused a transitory 30% inhibition of M(CO(2)) (relative to stable M(O(2))) and elevation in secretion P(CO(2)) effects, which peaked at 2 h and attenuated by 3.5-4 h. Secretion was inhibited by acidosis and stimulated by alkalosis; the relationship between relative Cl(-) secretion rate and pHe was almost identical to that seen in vivo. Experimental manipulations of perfusate pH, P(CO(2)) and HCO(3)(-) concentration, together with measurements of pHi, demonstrated that these responses were most strongly correlated with changes in pHe, and were not related to changes in P(CO(2)), extracellular HCO(3)(-), or intracellular HCO(3)(-) levels, though changes in pHi may also have played a role. The acid-base status of the secreted fluid varied with that of the perfusate, secretion pH remaining about 0.3-0.5 units lower, and changing in concert with pHe rather than pHi; secretion HCO(3)(-) concentrations remained low, even in the face of greatly elevated perfusate HCO(3)(-) concentrations. We conclude that pH effects on rectal gland secretion rate are adaptive, that CA functions to catalyze the hydration of CO(2), thereby maintaining a gradient for diffusive efflux of CO(2) from the working cells, and that differences in response to CA inhibition likely reflect the higher perfusion-to-secretion ratio in vitro than in vivo.

  20. The Critical Importance of Urinary Concentrating Ability in the Generation of Urinary Carbon Dioxide Tension

    PubMed Central

    Arruda, Jose A. L.; Nascimento, Luiz; Mehta, Pradeep K.; Rademacher, Donald R.; Sehy, John T.; Westenfelder, Christof; Kurtzman, Neil A.

    1977-01-01

    Measurement of urine to blood (U-B) carbon dioxide tension (PCO2) gradient during alkalinization of the urine has been suggested to assess distal H+ secretion. A fact that has not been considered in previous studies dealing with urinary PCO2 is that dissolution of HCO3 in water results in elevation of PCO2 which is directly proportional to the HCO3 concentration. To investigate the interrelationship of urinary HCO3 and urinary acidification, we measured U-B PCO2 in (a) the presence of enhanced H+ secretion and decreased concentrating ability i.e., chronic renal failure (CRF), (b) animals with normal H+ secretion and decreased concentrating ability, Brattleboro (BB) rats, and (c) the presence of both impaired H+ secretion and concentrating ability (LiCl treatment and after release of unilateral ureteral obstruction). At moderately elevated plasma HCO3 levels (30-40 meq/liter), normal rats achieved a highly alkaline urine (urine pH > 7.8) and raised urine HCO3 concentration and U-B PCO2. At similar plasma HCO3 levels, BB rats had a much higher fractional water excretion and failed to raise urine pH, urine HCO3 concentration, and U-B PCO2 normally. At a very high plasma HCO3 (>50 meq/liter), BB rats raised urine pH, urine HCO3 concentration, and U-B PCO2 to the same levels seen in normals. CRF rats failed to raise urine pH, urine HCO3, and U-B PCO2 normally at moderately elevated plasma HCO3 levels; at very high plasma HCO3 levels, CRF rats achieved a highly alkaline urine but failed to raise U-B PCO2. Dogs and patients with CRF were also unable to raise urine pH, urine HCO3 concentration, and U-B PCO2 normally at moderately elevated plasma HCO3 levels. In rats, dogs, and man, U-B PCO2 was directly related to urine HCO3 concentration and inversely related to fractional water excretion. At moderately elevated plasma HCO3 levels, animals with a distal acidification defect failed to raise U-B PCO2; increasing the plasma HCO3 to very high levels resulted in a significant increase in urine HCO3 concentration and U-B PCO2. The observed urinary PCO2 was very close to the PCO2 which would be expected by simple dissolution of a comparable amount of HCO3 in water. These data demonstrate that, in highly alkaline urine, urinary PCO2 is largely determined by concentration of urinary HCO3 and cannot be used as solely indicating distal H+ secretion. PMID:893680

  1. Chemistry and quality of groundwater in a coastal region of Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Rao, N. Subba; Vidyasagar, G.; Surya Rao, P.; Bhanumurthy, P.

    2017-03-01

    The chemistry of groundwater in the coastal region between Chirala and Ongole of Andhra Pradesh, India shows pollution to varying extent. The relative contribution of ions in six zones divided based on TDS indicates unsuitability of groundwater here for drinking, irrigation and industrial use. The water is brackish except in first zone and further alkaline. TDS is less than 1,000 mg/L in first zone, while it is more in other zones. This classification of groundwater into zones is also investigated by hydrogeochemical facies, genetic classification, mechanisms of groundwater chemistry and geochemical signatures. Hydrogeochemical facies of Na+>Mg2+>Ca2+: {{HCO}}3^{ - } > Cl- > SO 4^{2 - } is observed from zone I, while that of Na+>Mg2+>Ca2+:Cl- > HCO 3^{ - } > SO 4^{2 - } from second to sixth zones. The genetic classification of groundwater in first and second zones is HCO 3^{ - } type and supported by good drainage conditions, while zones III to VI belong to Cl- category evident from poor drainage scenario. The location of six zones on mechanisms of groundwater chemistry supports sluggish drainage conditions of second to six zones, while predominate rock-water interaction in first zone. The geochemical signatures (HCO 3^{ - } :Cl- > 1 and Na+:Cl- < 1) also endorse the pollution. The quantities of chemical species (Mg2+, Na+, K+, HCO 3^{ - } , Cl ^{ - } , SO 4^{2 - } , NO 3^{ - } and F ^{ - } ) and TDS in all zones are far greater than the stipulated limits for drinking. The United States Salinity Laboratory plots discriminated the suitability of groundwater in second to sixth zones for irrigation after only special soil treatment. Higher concentrations of TDS, HCO 3^{ - } , Cl- and SO 4^{2 - } in all zones render it unsuitable for industry too. This information is crucial for public and civic authorities for taking up strategic management plan for preventing further deterioration of hydrogeochemical environmental conditions of this part of the coastal region.

  2. K(+)- and HCO3(-)-dependent acid-base transport in squid giant axons II. Base influx

    PubMed Central

    1995-01-01

    We used microelectrodes to determine whether the K/HCO3 cotransporter tentatively identified in the accompanying paper (Hogan, E. M., M. A. Cohen, and W. F. Boron. 1995. Journal of General Physiology. 106:821- 844) can mediate an increase in the intracellular pH (pHi) of squid giant axons. An 80-min period of internal dialysis increased pHi to 7.7, 8.0, or 8.3; the dialysis fluid was free of K+, Na+, and Cl-. Our standard artificial seawater (ASW), which also lacked Na+, K+, and Cl-, had a pH of 8.0. Halting dialysis unmasked a slow pHi decrease. Subsequently introducing an ASW containing 437 mM K+ and 0.5% CO2/12 mM HCO3- had two effects: (a) it caused membrane potential (Vm) to become very positive, and (b) it caused a rapid pHi decrease, because of CO2 influx, followed by a slower plateau-phase pHi increase, presumably because of inward cotransport of K+ and HCO3- ("base influx"). Only extracellular Rb+ substituted for K+ in producing the plateau-phase pHi increase in the presence of CO2/HCO3-. Mean fluxes with Na+, Li+, and Cs+ were not significantly different from zero, even though Vm shifts were comparable for all monovalent cations tested. Thus, unless K+ or Rb+ (but not Na+, Li+, or Cs+) somehow activates a conductive pathway for H+, HCO3-, or both, it is unlikely that passive transport of H+, HCO3-, or both makes the major contribution to the pHi increase in the presence of K+ (or Rb+) and CO2/HCO3-. Because exposing axons to an ASW containing 437 mM K+, but no CO2/HCO3-, produced at most a slow pHi increase, K-H exchange could not make a major contribution to base influx. Introducing an ASW containing CO2/HCO3-, but no K+ also failed to elicit base influx. Because we observed base influx when the ASW and DF were free of Na+ and Cl-, and because the disulfonic stilbene derivatives SITS and DIDS failed to block base influx, Na(+)-dependent Cl-HCO3 exchange also cannot account for the results. Rather, we suggest that the most straightforward explanation for the pHi increase we observed in the simultaneous presence of K+ and CO2/HCO3- is the coupled uptake of K+ and HCO3-. PMID:8648295

  3. [Massive transfusion of washed red blood cells: acid-base and electrolyth changes for different wash solutions].

    PubMed

    Sümpelmann, R; Schürholz, T; Marx, G; Ahrenshop, O; Zander, R

    2003-09-01

    The composition of normal saline (NaCl), the standard wash solution for cell saver autotransfusion, is considerably different from physiologic plasma values in small infants. Therefore, we investigated acid-base and electrolyte changes during massive cell saver autotransfusion with different wash solutions in young pigs. After approval by the animal protection authorities 15 young pigs (weight 10.6 +/- 1.1 kg, blood volume 848 +/- 88 ml, mean+/-SD) underwent 15 cycles of cell saver autotransfusion (Haemolite 2plus, Haemonetics). For each cycle, 100 ml arterial blood was withdrawn, washed with NaCl, physiologic multielectrolyte solution (PME, V Infusionslösung 296 mval Elektrolyte, Baxter) or physiologic erythrocyte protection solution (PEP, 3.2 % gelatine, pH 7.40, cHCO3 24 mmol/l), and then retransfused. Analyses of acid-base, electrolyte, and hematologic parameters were performed for systemic and washed blood samples. For NaCl there was a progressive decrease in systemic pH, HCO3 and base excess (BE) and an increase in chloride values (Cl) (p < 0.05). Use of PME slightly decreased pH (n. s.), whereas HCO3, BE and Cl remained stable. PEP slightly increased pH, HCO3 and BE, and decreased Cl (n. s.). Free hemoglobin increased in NaCl and PME (p < 0.05) and was below baseline in PEP (n. s.). Lactic acid course was comparable in all groups. The use of NaCl as wash solution for massive autotransfusion resulted in metabolic acidosis caused by dilution of HCO3 and increased Cl values. Fewer systemic acid-base and electrolyte changes were observed, when blood was washed with PME or PEP. The decreased hemoglobin release with PEP is possibly due to a gelatine specific electrostatic surface coating of erythrocyte membranes. For massive transfusion of washed red blood cells, physiologic multielectrolyte solution and physiologic erythrocyte protection solution should be preferred to NaCl, especially for small infants.

  4. An in vitro study of urea, water, ion and CO2/HCO3- transport in the gastrointestinal tract of the dogfish shark (Squalus acanthias): the influence of feeding.

    PubMed

    Liew, Hon Jung; De Boeck, Gudrun; Wood, Chris M

    2013-06-01

    In vitro gut sac preparations made from the cardiac stomach (stomach 1), pyloric stomach (stomach 2), intestine (spiral valve) and colon were used to examine the impact of feeding on transport processes in the gastrointestinal tract of the dogfish shark. Preparations were made from animals that were euthanized after 1-2 weeks of fasting, or at 24-48 h after voluntary feeding on a 3% ration of teleost fish (hake). Sacs were incubated under initially symmetrical conditions with dogfish saline on both surfaces. In comparison to an earlier in vivo study, the results confirmed that feeding caused increases in H(+) secretion in both stomach sections, but an increase in Cl(-) secretion only in stomach 2. Na(+) absorption, rather than Na(+) secretion, occurred in both stomach sections after feeding. All sections of the tract absorbed water and the intestine strongly absorbed Na(+) and Cl(-), regardless of feeding condition. The results also confirmed that feeding increased water absorption in the intestine (but not in the colon), and had little influence on the handling of Ca(2+) and Mg(2+), which exhibited negligible absorption across the tract. However, K(+) was secreted in the intestine in both fasted and fed preparations. Increased intestinal water absorption occurred despite net osmolyte secretion into the mucosal saline. The largest changes occurred in urea and CO2/HCO3(-) fluxes. In fasted preparations, urea was absorbed at a low rate in all sections except the intestine, where it was secreted. Instead of an increase in intestinal urea secretion predicted from in vivo data, feeding caused a marked switch to net urea absorption. This intestinal urea transport occurred at a rate comparable to urea reabsorption rates reported at gills and kidney, and was apparently active, establishing a large serosal-to-mucosal concentration gradient. Feeding also greatly increased intestinal CO2/HCO3(-) secretion; if interpreted as HCO3(-) transport, the rates were in the upper range of those reported in marine teleosts. Phloretin (0.25 mmol l(-1), applied mucosally) completely blocked the increases in intestinal urea absorption and CO2/HCO3(-) secretion caused by feeding, but had no effect on Na(+), Cl(-) or water absorption.

  5. Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes

    USGS Publications Warehouse

    Hurwitz, S.; Lowenstern, J. B.; Heasler, H.

    2007-01-01

    We present and analyze a chemical dataset that includes the concentrations and fluxes of HCO3-, SO42-, Cl-, and F- in the major rivers draining Yellowstone National Park (YNP) for the 2002-2004 water years (1 October 2001 - 30 September 2004). The total (molar) flux in all rivers decreases in the following order, HCO3- > Cl- > SO42- > F-, but each river is characterized by a distinct chemical composition, implying large-scale spatial heterogeneity in the inputs of the various solutes. The data also display non-uniform temporal trends; whereas solute concentrations and fluxes are nearly constant during base-flow conditions, concentrations decrease, solute fluxes increase, and HCO3-/Cl-, and SO42-/Cl- increase during the late-spring high-flow period. HCO3-/SO42- decreases with increasing discharge in the Madison and Falls Rivers, but increases with discharge in the Yellowstone and Snake Rivers. The non-linear relations between solute concentrations and river discharge and the change in anion ratios associated with spring runoff are explained by mixing between two components: (1) a component that is discharged during base-flow conditions and (2) a component associated with snow-melt runoff characterized by higher HCO3-/Cl- and SO42-/Cl-. The fraction of the second component is greater in the Yellowstone and Snake Rivers, which host lakes in their drainage basins and where a large fraction of the solute flux follows thaw of ice cover in the spring months. Although the total river HCO3- flux is larger than the flux of other solutes (HCO3-/Cl- ??? 3), the CO2 equivalent flux is only ??? 1% of the estimated emission of magmatic CO2 soil emissions from Yellowstone. No anomalous solute flux in response to perturbations in the hydrothermal system was observed, possibly because gage locations are too distant from areas of disturbance, or because of the relatively low sampling frequency. In order to detect changes in river hydrothermal solute fluxes, sampling at higher frequencies with better spatial coverage would be required. Our analysis also suggests that it might be more feasible to detect large-scale heating or cooling of the hydrothermal system by tracking changes in gas and steam flux than by tracking changes in river solute flux.

  6. Observed and predicted reproduction of Ceriodaphnia dubia exposed to chloride, sulfate, and bicarbonate

    USGS Publications Warehouse

    Lasier, Peter J.; Hardin, Ian R.

    2010-01-01

    Chronic toxicities of Cl-, SO42-, and HCO3- to Ceriodaphnia dubia were evaluated in low- and moderate-hardness waters using a three-brood reproduction test method. Toxicity tests of anion mixtures were used to determine interaction effects and to produce models predicting C. dubia reproduction. Effluents diluted with low- and moderate-hardness waters were tested with animals acclimated to low- and moderate-hardness conditions to evaluate the models and to assess the effects of hardness and acclimation. Sulfate was significantly less toxic than Cl- and HCO3- in both types of water. Chloride and HCO3- toxicities were similar in low-hardness water, but HCO3- was the most toxic in moderate-hardness water. Low acute-to-chronic ratios indicate that toxicities of these anions will decrease quickly with dilution. Hardness significantly reduced Cl- and SO42- toxicity but had little effect on HCO3-. Chloride toxicity decreased with an increase in Na+ concentration, and CO3- toxicity may have been reduced by the dissolved organic carbon in effluent. Multivariate models using measured anion concentrations in effluents with low to moderate hardness levels provided fairly accurate predictions of reproduction. Determinations of toxicity for several effluents differed significantly depending on the hardness of the dilution water and the hardness of the water used to culture test animals. These results can be used to predict the contribution of elevated anion concentrations to the chronic toxicity of effluents; to identify effluents that are toxic due to contaminants other than Cl-, SO42-, and HCO3-; and to provide a basis for chemical substitutions in manufacturing processes.

  7. Mineral intake independent from gastric irritation or pica by cell-dehydrated rats.

    PubMed

    Constancio, Juliana; Pereira-Derderian, Daniela T B; Menani, José V; De Luca, Laurival A

    2011-10-24

    Gavage of 2 M NaCl (IG 2 M NaCl), a procedure to induce cell-dehydration-and water and 0.15 M NaCl intake in a two-bottle choice test-is also a potential gastric irritant. In this study, we assessed whether mineral intake induced by IG 2 M NaCl is associated with gastric irritation or production of pica in the rat. We first determined the amount of mineral solution (0.15 M NaCl, 0.15 M NaHCO3, 0.01 M KCl and 0.05 mM CaCl2) and water ingested in response to IG 2 M NaCl in a five-bottle test. Then, we used mineral solutions (0.01 M KCl and 0.15 M NaHCO3), whose intakes were significantly increased compared to controls, and water in three-bottle tests to test the gastric irritation hypothesis. The IG 2 M NaCl induced KCl and NaHCO3 intake that was not inhibited by gavage with gastric protectors Al(OH)3 or NaHCO3. IG 2 M NaCl or gavage of 0.6 N acetic acid induced mild irritation, hyperemia, of the glandular part of the stomach. A gavage of 50% ethanol induced strong irritation seen as pinpoint ulcerations. Neither ethanol nor acetic acid induced any fluid intake. Neither IG 2 M NaCl nor acetic acid induced kaolin intake, a marker of pica in laboratory rats. Ethanol did induce kaolin intake. These results suggest that IG 2 M NaCl induced a mineral fluid intake not selective for sodium and independent from gastric irritation or pica. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Gastric mucosal protective mechanisms: roles of epithelial bicarbonate and mucus secretions.

    PubMed

    Garner, A; Flemström, G; Allen, A; Heylings, J R; McQueen, S

    1984-01-01

    Secretion of HCO3 (amounting to 2-10% of maximum H+ secretion) in conjunction with the adherent mucus gel layer (functioning as a mixing barrier) protects gastric mucosa from luminal acid by a process of surface neutralization. Gastric HCO3 secretion is augmented by cholinergic agonists, prostaglandins and low luminal pH. Ulcerogens attenuate HCO3 secretion although passive diffusion of alkali consequent upon an increase in mucosal permeability may mask these inhibitory actions. Studies in vitro indicate that HCO3 transport in the stomach is dependent on oxidative metabolism, carbonic anhydrase activity and involves a CL exchange mechanism. Mucus, synthesized and released from epithelial cells, adheres to the mucosal surface as a thin (less than 80 microns in rat) but continuous gel layer. Prostaglandins and carbachol induced release of preformed mucus and thereby increase thickness, whereas acute exposure to ulcerogens has little effect on overall dimensions of the surface mucus layer. Measurements of pH gradients adjacent to gastric mucosa indicate that the disposal of luminal H+ occurs by extracellular neutralization. However, the fall in pH at the apical cell membrane when luminal pH is low (pH 1.5) suggests that while a mucus-bicarbonate barrier comprises the first line of mucosal defence, other factors are involved in the overall process of mucosal protection in the stomach.

  9. Sodium bicarbonate secretion indicated by ultrastructural cytochemical localization of HCO3(-), Cl-, and Na+ ions on rat bile duct brush cells.

    PubMed

    Ogata, Takuro

    2005-12-01

    Brush cells are widely distributed in the digestive and respiratory apparatus, but their function is still unknown. Because brush cells (BC) are found in organs secreting NaHCO3, it was hypothesized that these cells may secrete NaHCO3. To test this possibility, rat common bile duct epithelia were examined by ultrastructural cytochemical methods for localizing HCO3(-), Cl-, and Na+ ions. All three ion precipitates were few in or on BCs of rats without stimulation. Lead carbonate precipitates, which localized HCO3(-) ions by the lead nitrate-osmium method, increased markedly on the surface of the microvilli (MV) of BCs after secretin or meal stimulation, but similar precipitates were few on the luminal surface of principal cells (PCs). Silver chloride precipitates, which indicate the presence of Cl- ions by the silver-osmium method, increased in the apical cytoplasm and in MV of BCs after secretin or meal stimulation, but they were few in PCs. Sodium pyroantimonate precipitates, which localize Na+ ions by the potassium pyroantimonate-osmium method, increased on the surface of the MV, along the basolateral membrane, and in the apical cytoplasm of BCs after secretin or meal stimulation, but they were few in PCs. These results strongly suggest that BCs may be a significant source of NaHCO3 secretion.

  10. Nonequilibrium thermodynamic model of the rat proximal tubule epithelium.

    PubMed Central

    Weinstein, A M

    1983-01-01

    The rat proximal tubule epithelium is represented as well-stirred, compliant cellular and paracellular compartments bounded by mucosal and serosal bathing solutions. With a uniform pCO2 throughout the epithelium, the model variables include the concentrations of Na, K, Cl, HCO3, H2PO4, HPO4, and H, as well as hydrostatic pressure and electrical potential. Except for a metabolically driven Na-K exchanger at the basolateral cell membrane, all membrane transport within the epithelium is passive and is represented by the linear equations of nonequilibrium thermodynamics. In particular, this includes the cotransport of Na-Cl and Na-H2PO4 and countertransport of Na-H at the apical cell membrane. Experimental constraints on the choice of ionic conductivities are satisfied by allowing K-Cl cotransport at the basolateral membrane. The model equations include those for mass balance of the nonreacting species, as well as chemical equilibrium for the acidification reactions. Time-dependent terms are retained to permit the study of transient phenomena. In the steady state the energy dissipation is computed and verified equal to the sum of input from the Na-K exchanger plus the Gibbs free energy of mass addition to the system. The parameter dependence of coupled water transport is studied and shown to be consistent with the predictions of previous analytical models of the lateral intercellular space. Water transport in the presence of an end-proximal (HCO3-depleted) luminal solution is investigated. Here the lower permeability and higher reflection coefficient of HCO3 enhance net sodium and water transport. Due to enhanced flux across the tight junction, this process may permit proximal tubule Na transport to proceed with diminished energy dissipation. PMID:6652211

  11. Acidosis, but Not Alkalosis, Affects Anaerobic Metabolism and Performance in a 4-km Time Trial.

    PubMed

    Correia-Oliveira, Carlos Rafaell; Lopes-Silva, João Paulo; Bertuzzi, Romulo; McConell, Glenn K; Bishop, David John; Lima-Silva, Adriano Eduardo; Kiss, Maria Augusta Peduti Dal'molin

    2017-09-01

    This study aimed to determine the effect of preexercise metabolic acidosis and alkalosis on power output (PO) and aerobic and anaerobic energy expenditure during a 4-km cycling time trial (TT). Eleven recreationally trained cyclists (V˙O2peak 54.1 ± 9.3 mL·kg·min) performed a 4-km TT 100 min after ingesting in a double-blind matter 0.15 g·kg of body mass of ammonium chloride (NH4Cl, acidosis), 0.3 g·kg of sodium bicarbonate (NaHCO3, alkalosis), or 0.15 g·kg of CaCO3 (placebo). A preliminary study (n = 7) was conducted to establish the optimal doses to promote the desirable preexercise blood pH alterations without gastrointestinal distress. Data for PO, aerobic and anaerobic energy expenditure, and blood and respiratory parameters were averaged for each 1 km and compared between conditions using two-way repeated-measures ANOVA (condition and distance factors). Gastrointestinal discomfort was analyzed qualitatively. Compared with placebo (pH 7.37 ± 0.02, [HCO3]: 27.5 ± 2.6 mmol·L), the NaHCO3 ingestion resulted in a preexercise blood alkalosis (pH +0.06 ± 0.04, [HCO3]: +4.4 ± 2.0 mmol·L, P < 0.05), whereas NH4Cl resulted in a blood acidosis (pH -0.05 ± 0.03, [HCO3]: -4.8 ± 2.1 mmol·L, P < 0.05). Anaerobic energy expenditure rate and PO were reduced throughout the trial in NH4Cl compared with placebo and NaHCO3, resulting in a lower total anaerobic work and impaired performance (P < 0.05). Plasma lactate, V˙CO2, and end-tidal CO2 partial pressure were lower and the V˙E/V˙CO2 higher throughout the trial in NH4Cl compared with placebo and NaHCO3 (P < 0.05). There was no difference between NaHCO3 and placebo for any of these variables (P > 0.05). Minimal gastrointestinal distress was noted in all conditions. Preexercise acidosis, but not alkalosis, affects anaerobic metabolism and PO during a 4-km cycling TT.

  12. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water.

    PubMed

    Ma, Jie; Yang, Yongqi; Jiang, Xianchenghao; Xie, Zhuoting; Li, Xiaoxuan; Chen, Changzhao; Chen, Hongkun

    2018-01-01

    The present study investigated the impacts of water matrix constituents (CO 3 2- , HCO 3 - , Cl - , Br - , PO 4 3- , HPO 4 2- , H 2 PO 4 - , NO 3 - , SO 4 2- and natural organic matters (NOM) on the oxidation of a mixture of benzene, toluene, ethylbenzene, and xylenes (BTEX) by thermally activated persulfate (PS). In the absence of matrix constituents, the BTEX oxidation rates decreased in the following order: xylenes > toluene ≈ ethylbenzene > benzene. HCO 3 - /CO 3 2- and NOM inhibited the BTEX oxidation and the inhibiting effects became more pronounced as the HCO 3 - /CO 3 2- /NOM concentration increased. SO 4 2- , NO 3 - , PO 4 3- and H 2 PO 4 - did not affect the BTEX oxidation while HPO 4 2- slightly inhibited the reaction. The impacts of Cl - and Br - were complex. Cl - inhibited the benzene oxidation while 100 mM and 500 mM of Cl - promoted the oxidation of m-xylene and p-xylene. Br - completely suppressed the benzene oxidation while 500 mM of Br - strongly promoted the oxidation of xylenes. Detailed explanations on the influence of each matrix constituent were discussed. In addition, various halogenated degradation byproducts were detected in the treatments containing Cl - and Br - . Overall, this study indicates that some matrix constituents such as NOM, HCO 3 - , CO 3 2- , H 2 PO 4 - , Cl - and Br - may reduce the BTEX removal efficiency of sulfate radical-based advanced oxidation process (SR-AOP) and the presence of Cl - and Br - may even lead to the formation of toxic halogenated byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Brain anti-cytoxic edema agents.

    PubMed

    Kimelberg, H K; Barron, K D; Bourke, R S; Nelson, L R; Cragoe, E J

    1990-01-01

    The work described in this chapter has indicated that improved outcome from an experimental head injury model can be achieved by drugs which are non-diuretic derivatives of loop diuretics, namely indanyl and fluorenyl compounds which are derivatives of ethacrynic acid. These drugs were originally identified by us on the basis of their efficacy in inhibiting [K+]-stimulated, HCO3(-)-dependent swelling of brain cerebrocortical slices. Swelling of glial cells (astrocytes) has long been known to be associated with such slice swelling and astrocyte swelling is a major locus of cytotoxic or cellular brain edema. Qualitative and quantitative electron microscope studies have shown that L644,711, a particularly effective member of the fluorenyl class of drugs, inhibits astrocytic swelling associated with an experimental animal head injury model. We have suggested that astrocytic swelling in pathological states may be partly due to activation of Cl-/HCO3- and Na+/H+ exchange systems driven by increased astrocytic intracellular hydration of CO2, and recent work has indeed shown that the ability of the indanyl and fluorenyl drugs to inhibit brain slice swelling and protect against head injury correlates closely with their ability to inhibit Cl-/HCO3- exchange. All these data suggest that astrocytic swelling, which seems to precede neuronal degeneration and breakdown of the blood-brain barrier, is deleterious and that prevention of such swelling can lead to effective therapy. We have used primary astrocytic cultures to explore reasons why astrocytic swelling could be harmful. Exposing such astrocytes to hypotonic medium causes rapid swelling with a slower return to normal volume in the continued presence of hypotonic medium, a process known as regulatory volume decrease or RVD. Such RVD is associated with marked release of several amino acids, including L-glutamate. L644,711 and other Cl-/HCO3- transport inhibitors such as SITS and furosemide, but not the selective Na+ + K+ + 2Cl- co-transport inhibitor bumetanide, inhibit such swelling-induced release of L-glutamate. Thus, L644,711 and other drugs may be effective in promoting recovery from head injury and other pathological states in which astrocytic swelling occurs either by initially preventing the swelling or inhibiting the release of excitotoxic excitatory amino acids if swelling does occur, perhaps depending at what time the drug is given.

  14. Passive driving forces of proximal tubular fluid and bicarbonate transport: gradient dependence of H+ secretion.

    PubMed

    Chan, Y L; Malnic, G; Giebisch, G

    1983-11-01

    The effect of oncotic pressure changes on fluid (Jv) and net bicarbonate transport (JHCO-3) and the transepithelial bicarbonate permeability (PHCO-3) were measured by an improved luminal and capillary microperfusion method that allows paired experiments on the same tubule. Rat proximal tubules were pump-perfused and Jv and [HCO-3] measured with [14C]inulin and a pH glass electrode. Raising peritubular protein (0-8-15 g/100 ml bovine serum albumin) stimulated Jv and HCO-3 reabsorption. The response to oncotic pressure changes was asymmetrical since changes of the luminal protein concentration had no significant effects. Whereas transepithelial solvent drag effects on HCO-3 must be minimal, peritubular protein most likely stimulates translocation of fluid and bicarbonate from intercellular spaces into peritubular capillaries. PHCO-3 was measured from HCO-3 net flux along a lumen-to-capillary-directed electrochemical potential gradient. In these experiments active H+ transport and Jv were minimized by 10(-4) M acetazolamide and luminal raffinose. PHCO-3 was 1.77 X 10(-5) cm X s-1 and was unaffected by increasing luminal flow rate from 10 to 45 nl X min-1. Since bicarbonate backflux is only a small fraction of physiological rates of JHCO-3, net transport alterations at varying [HCO-3] in the lumen must be due to changes in active HCO-3 (H+) transport. Thus, active H+ ion secretion across the luminal membrane of the proximal tubule is gradient dependent.

  15. Ca2+-driven intestinal HCO3− secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport

    PubMed Central

    Cooper, Christopher A.; Whittamore, Jonathan M.

    2010-01-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO3−) secretion and Cl− absorption via Cl−/HCO3− exchange fueled by metabolic CO2; and 3) alkaline precipitation of Ca2+ as insoluble CaCO3, which aids H2O absorption). The latter two processes involve high rates of epithelial HCO3− secretion stimulated by intestinal Ca2+ and can drive a major portion of water absorption. At higher salinities and ambient Ca2+ concentrations the osmoregulatory role of intestinal HCO3− secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO2) and acid-base regulation (as intestinal cells must export H+ into the blood to balance apical HCO3− secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca2+. Increasing the luminal Ca2+ concentration caused a large elevation in intestinal HCO3− production and excretion. Additionally, blood pH decreased (−0.13 pH units) and plasma partial pressure of CO2 (Pco2) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca2+] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO3− production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca2+ independent of any other ion or overall osmolality in marine teleost fish. PMID:20130227

  16. Bicarbonate diffusion through mucus.

    PubMed

    Livingston, E H; Miller, J; Engel, E

    1995-09-01

    The mucus layer overlying duodenal epithelium maintains a pH gradient against high luminal acid concentrations. Despite these adverse conditions, epithelial surface pH remains close to neutrality. The exact nature of the gradient-forming barrier remains unknown. The barrier consists of mucus into which HCO3- is secreted. Quantification of the ability of HCO3- to establish and maintain the gradient depends on accurate measurement of this ion's diffusion coefficient through mucus. We describe new experimental and mathematical methods for diffusion measurement and report diffusion coefficients for HCO3- diffusion through saline, 5% mucin solutions, and rat duodenal mucus. The diffusion coefficients were 20.2 +/- 0.10, 3.02 +/- 0.31, and 1.81 +/- 0.12 x 10(-6) cm2/s, respectively. Modeling of the mucobicarbonate layer with this latter value suggests that for conditions of high luminal acid strength the neutralization of acid by HCO3- occurs just above the epithelial surface. Under these conditions the model predicts that fluid convection toward the lumen could be important in maintaining the pH gradient. In support of this hypothesis we were able to demonstrate a net luminal fluid flux of 5 microliters.min-1.cm-2 after perfusion of 0.15 N HCl in the rat duodenum.

  17. Comparison of adsorption equilibrium models for the study of CL-, NO3- and SO4(2-) removal from aqueous solutions by an anion exchange resin.

    PubMed

    Dron, Julien; Dodi, Alain

    2011-06-15

    The removal of chloride, nitrate and sulfate ions from aqueous solutions by a macroporous resin is studied through the ion exchange systems OH(-)/Cl(-), OH(-)/NO(3)(-), OH(-)/SO(4)(2-), and HCO(3)(-)/Cl(-), Cl(-)/NO(3)(-), Cl(-)/SO(4)(2-). They are investigated by means of Langmuir, Freundlich, Dubinin-Radushkevitch (D-R) and Dubinin-Astakhov (D-A) single-component adsorption isotherms. The sorption parameters and the fitting of the models are determined by nonlinear regression and discussed. The Langmuir model provides a fair estimation of the sorption capacity whatever the system under study, on the contrary to Freundlich and D-R models. The adsorption energies deduced from Dubinin and Langmuir isotherms are in good agreement, and the surface parameter of the D-A isotherm appears consistent. All models agree on the order of affinity OH(-)

  18. RNA SEQ Analysis Indicates that the AE3 Cl-/HCO3- Exchanger Contributes to Active Transport-Mediated CO2 Disposal in Heart.

    PubMed

    Vairamani, Kanimozhi; Wang, Hong-Sheng; Medvedovic, Mario; Lorenz, John N; Shull, Gary E

    2017-08-04

    Loss of the AE3 Cl - /HCO 3 - exchanger (Slc4a3) in mice causes an impaired cardiac force-frequency response and heart failure under some conditions but the mechanisms are not known. To better understand the functions of AE3, we performed RNA Seq analysis of AE3-null and wild-type mouse hearts and evaluated the data with respect to three hypotheses (CO 2 disposal, facilitation of Na + -loading, and recovery from an alkaline load) that have been proposed for its physiological functions. Gene Ontology and PubMatrix analyses of differentially expressed genes revealed a hypoxia response and changes in vasodilation and angiogenesis genes that strongly support the CO 2 disposal hypothesis. Differential expression of energy metabolism genes, which indicated increased glucose utilization and decreased fatty acid utilization, were consistent with adaptive responses to perturbations of O 2 /CO 2 balance in AE3-null myocytes. Given that the myocardium is an obligate aerobic tissue and consumes large amounts of O 2 , the data suggest that loss of AE3, which has the potential to extrude CO 2 in the form of HCO 3 - , impairs O 2 /CO 2 balance in cardiac myocytes. These results support a model in which the AE3 Cl - /HCO 3 - exchanger, coupled with parallel Cl - and H + -extrusion mechanisms and extracellular carbonic anhydrase, is responsible for active transport-mediated disposal of CO 2 .

  19. Impact of leather industries on fluoride dynamics in groundwater around a tannery cluster in South India.

    PubMed

    Sajil Kumar, P J

    2013-03-01

    The aim of this study was to investigate the controls of leather industries on fluoride contamination in and around a tannery cluster in Vaniyambadi. Hydrochemical analysis, mineral saturation indices and statistical methods were used to evaluate the intervening factors that controls the contamination processes. Fluoride in groundwater is exceeded the WHO guideline value (1.5 mg/L), in 62 % of the samples, mostly with Na-HCO3 and Na-Cl type of water. Results of the principal component analysis grouped Na, F, HCO3 and NO3 under component 1. This result was in agreement with the cross plot indicating high positive correlation between F and Na (r (2)  = 0.87), HCO3 (r (2)  = 0.84) and NO3 (r (2)  = 0.55). Fluorite (CaF2) and Halite (NaCl) was undersaturated, while calcite (CaCO3) was oversaturated for all the samples. This suggest more dissolution of F-rich minerals under the active supports of Na. Bivariate plots of Na versus Cl and Na + K versus HCO3 showed a combined origin of Na from tannery effluent as well as silicate weathering. Two major clusters, based on the Na, HCO3 and F concentration showed that groundwater is affected by tanneries and silicate weathering. Fluoride concentration in 38 % of samples (n = 5) have significantly affected by the high Na concentration from tanneries.

  20. Isolation and characterization of a metallothionein-1 protein in Chloris virgata Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in Saccharomyces cerevisiae.

    PubMed

    Nishiuchi, Shunsaku; Liu, Shenkui; Takano, Tetsuo

    2007-08-01

    Chloris virgata Swartz (C. virgata) is a gramineous wild plant that is found in alkaline soil areas in northeast China and is highly tolerant to carbonate stress. We constructed a cDNA library from C. virgata seedlings treated with NaHCO(3), and isolated a type 1 metallothionein (MT1) gene (ChlMT1: AB294238) from the library. The amino acid sequence of ChlMT1 contained 12 cysteine residues that constituted the Cys-X-Cys (X = amino acid except Cys) motifs in the N- and C-terminal regions. Northern hybridization showed that expression of ChlMT1 was induced by several abiotic stresses, from salts (NaCl and NaHCO(3)), a ROS inducer (paraquat), and metals (CuSO(4), ZnSO(4), and CoCl(2)). ChlMT1 expression in leaf was induced by 200 mM NaCl and 100 mM NaHCO(3). About 5 microM Paraquat, 500 microM Zn(2+), and 500 microM Co(2+) also induced expression of ChlMT1 in leaf after 6 h, and 100 microM Cu(2+) induced it after 24 h. Saccharomyces cerevisiae when transformed with the ChlMT1 gene had dramatically increased tolerances to salts (NaCl and NaHCO(3)) and ROS.

  1. Effects of CO2/HCO3- in perilymph on the endocochlear potential in guinea pigs.

    PubMed

    Nimura, Yoshitsugu; Mori, Yoshiaki; Inui, Takaki; Sohma, Yoshiro; Takenaka, Hiroshi; Kubota, Takahiro

    2007-02-01

    The effect of CO(2)/HCO(3)(-) on the endocochlear potential (EP) was examined by using both ion-selective and conventional microelectrodes and the endolymphatic or perilymphatic perfusion technique. The main findings were as follows: (i) A decrease in the EP from approximately +75 to approximately +35 mV was produced by perilymphatic perfusion with CO(2)/HCO(3)(-)-free solution, which decrease was accompanied by an increase in the endolymphatic pH (DeltapH(e), approximately 0.4). (ii) Perilymphatic perfusion with a solution containing 20 mM NH(4)Cl produced a decrease in the EP (DeltaEP, approximately 20 mV) with an increase in the pH(e) (DeltapH(e), approximately 0.2), whereas switching the perfusion solution from the NH(4)Cl solution to a 5% CO(2)/25 mM HCO(3)(-) solution produced a gradual increase in the EP to the control level with the concomitant recovery of the pH(e). (iii) The perfusion with a solution of high or low HCO(3)(-) with a constant CO(2) level within 10 min produced no significant changes in the EP. (iv) Perfusion of the perilymph with 10 microg/ml nifedipine suppressed the transient asphyxia-induced decrease in EP slightly, but not significantly. (v) By contrast, the administration of 1 microg/ml nifedipine via the endolymph inhibited significantly the reduction in the EP induced by transient asphyxia or perilymphatic perfusion with CO(2)/HCO(3)(-)-free or 20 mM NH(4)Cl solution. These findings suggest that the effect of CO(2) removal from perilymphatic perfusion solution on the EP may be mediated by an increase in cytosolic Ca(2+) concentration induced by an elevation of cytosolic pH in endolymphatic surface cells.

  2. Groundwater quality from a part of Prakasam District, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Subba Rao, N.

    2018-03-01

    Quality of groundwater is assessed from a part of Prakasam district, Andhra Pradesh, India. Groundwater samples collected from thirty locations from the study area were analysed for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate ( {HCO}3^{ - } ), chloride (Cl-), sulphate ( {SO}4^{2 - } ), nitrate ( {NO}3^{ - } ) and fluoride (F-). The results of the chemical analysis indicate that the groundwater is alkaline in nature and are mainly characterized by Na+- {HCO}3^{ - } and Na+-Cl- facies. Groundwater chemistry reflects the dominance of rock weathering and is subsequently modified by human activities, which are supported by genetic geochemical evolution and hydrogeochemical relations. Further, the chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, {HCO}3^{ - } , Cl-, {SO}4^{2 - } , {NO}3^{ - } and F-) were compared with the drinking water quality standards. The sodium adsorption ratio, percent sodium, permeability index, residual sodium carbonate, magnesium ratio and Kelly's ratio were computed and USSL, Wilcox and Doneen's diagrams were also used for evaluation of groundwater quality for irrigation. For industrial purpose, the pH, TDS, {HCO}3^{ - } , Cl- and {SO}4^{2 - } were used to assess the impact of incrustation and corrosion activities on metal surfaces. As a whole, it is observed that the groundwater quality is not suitable for drinking, irrigation and industrial purposes due to one or more chemical parameters exceeding their standard limits. Therefore, groundwater management measures were suggested to improve the water quality.

  3. Identification of major sources controlling groundwater chemistry from a hard rock terrain — A case study from Mettur taluk, Salem district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Srinivasamoorthy, K.; Chidambaram, S.; Prasanna, M. V.; Vasanthavihar, M.; Peter, John; Anandhan, P.

    2008-02-01

    The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To identify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 groundwater samples for two different seasons, viz., pre-monsoon and post-monsoon. The groundwater chemistry is dominated by silicate weathering and (Na + Mg) and (Cl + SO4) accounts of about 90% of cations and anions. The contribution of (Ca + Mg) and (Na + K) to total cations and HCO3 indicates the domination of silicate weathering as major sources for cations. The plot for Na to Cl indicates higher Cl in both seasons, derived from Anthropogenic (human) sources from fertilizer, road salt, human and animal waste, and industrial applications, minor representations of Na also indicates source from weathering of silicate-bearing minerals. The plot for Na/Cl to EC indicates Na released from silicate weathering process which is also supported by higher HCO3 values in both the seasons. Ion exchange process is also activated in the study area which is indicated by shifting to right in plot for Ca + Mg to SO4 + HCO3. The plot of Na-Cl to Ca + Mg-HCO3-SO4 confirms that Ca, Mg and Na concentrations in groundwater are derived from aquifer materials. Thermodynamic plot indicates that groundwater is in equilibrium with kaolinite, muscovite and chlorite minerals. Saturation index of silicate and carbonate minerals indicate oversaturation during pre-monsoon and undersaturation during post-monsoon, conforming dissolution and dilution process. In general, water chemistry is guided by complex weathering process, ion exchange along with influence of Cl ions from anthropogenic impact.

  4. Effects of Sodium Chloride, Potassium Chloride and Calcium Chloride on the Formation of α-Dicarbonyl Compounds, Furfurals and Development of Browning in Cookies during Baking.

    PubMed

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-10-02

    Effect of NaCl, KCl, CaCl2, NaHCO3, and NH4HCO3 on the formation of glucosone, 1-deoxyglucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, diacetyl, 5-hydroxymethyl-2-furfural, 2-furfural and browning were investigated in cookies. Presence of 1.5% NaCl, 1% KCl, and 1% CaCl2 on flour basis had no effect on α-dicarbonyl compounds, except 1-deoxyglucosone increased in the presence of KCl and CaCl2. The increase in 5-hydroxymethyl-2-furfural formation in the presence of NaCl, KCl, and CaCl2 did not relate to 3-deoxyglucosone formation and pH changes. NaCl, KCl, and CaCl2 increased browning in cookies. Model reaction systems indicated that NaCl, KCl, and CaCl2 enhance browning by increasing furfurals in caramelization. NaCl, KCl, and CaCl2 decreased browning intensity in heated glucose-glycine system. Usage of CaCl2 in cookies may considerably increase furfurals but not α-dicarbonyl compounds. Sodium reduction can be obtained by replacement with potassium without sacrificing the desired consequences of caramelization in sugar rich bakeries.

  5. Intracellular pH Regulation in Cultured Astrocytes from Rat Hippocampus

    PubMed Central

    Bevensee, Mark O.; Weed, Regina A.; Boron, Walter F.

    1997-01-01

    We studied the regulation of intracellular pH (pHi) in single cultured astrocytes passaged once from the hippocampus of the rat, using the dye 2′,7′-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) to monitor pHi. Intrinsic buffering power (βI) was 10.5 mM (pH unit)−1 at pHi 7.0, and decreased linearly with pHi; the best-fit line to the data had a slope of −10.0 mM (pH unit)−2. In the absence of HCO3 −, pHi recovery from an acid load was mediated predominantly by a Na-H exchanger because the recovery was inhibited 88% by amiloride and 79% by ethylisopropylamiloride (EIPA) at pHi 6.05. The ethylisopropylamiloride-sensitive component of acid extrusion fell linearly with pHi. Acid extrusion was inhibited 68% (pHi 6.23) by substituting Li+ for Na+ in the bath solution. Switching from a CO2/HCO3 −-free to a CO2/HCO3 −-containing bath solution caused mean steady state pHi to increase from 6.82 to 6.90, due to a Na+-driven HCO3 − transporter. The HCO3 −-induced pHi increase was unaffected by amiloride, but was inhibited 75% (pHi 6.85) by 400 μM 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), and 65% (pHi 6.55–6.75) by pretreating astrocytes for up to ∼6.3 h with 400 μM 4-acetamide-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS). The CO2/HCO3 −-induced pHi increase was blocked when external Na+ was replaced with N-methyl-d-glucammonium (NMDG+). In the presence of HCO3 −, the Na+-driven HCO3 − transporter contributed to the pHi recovery from an acid load. For example, HCO3 − shifted the plot of acid-extrusion rate vs. pHi by 0.15–0.3 pH units in the alkaline direction. Also, with Na-H exchange inhibited by amiloride, HCO3 − increased acid extrusion 3.8-fold (pHi 6.20). When astrocytes were acid loaded in amiloride, with Li+ as the major cation, HCO3 − failed to elicit a substantial increase in pHi. Thus, Li+ does not appear to substitute well for Na+ on the HCO3 − transporter. We conclude that an amiloride-sensitive Na-H exchanger and a Na+-driven HCO3 − transporter are the predominant acid extruders in astrocytes. PMID:9379175

  6. Thermodynamic modeling of Cl(-), NO3(-) and SO4(2-) removal by an anion exchange resin and comparison with Dubinin-Astakhov isotherms.

    PubMed

    Dron, Julien; Dodi, Alain

    2011-03-15

    The removal of chloride, nitrate, and sulfate ions from wastewaters by a macroporous ion-exchange resin is studied through the experimental results obtained for six ion exchange systems, OH(-)/Cl(-), OH(-)/NO3(-), OH(-)/SO4(2-), and HCO3(-)/Cl(-), Cl(-)/NO3(-), Cl(-)/SO4(2-). The results are described through thermodynamic modeling, considering either an ideal or a nonideal behavior of the ionic species in the liquid and solid phases. The nonidealities are determined by the Davies equation and Wilson equations in the liquid and solid phases, respectively. The results show that the resin has a strong affinity for all the target ions, and the order of affinity obtained is OH(-) < HCO3(-) < Cl(-) < NO3(-) < SO4(2-). The calculation of the changes in standard Gibbs free energies (ΔG(0)) shows that even though HCO3(-) has a lower affinity to the resin, it may affect the removal of Cl(-), and in the same way that Cl(-) may affect the removal of NO3(-) and SO4(2-). The application of nonidealities in the thermodynamic model leads to an improved fit of the model to the experimental data with average relative deviations below 1.5% except for the OH(-)/SO4(2-) system. On the other hand, considering ideal or nonideal behaviors has no significant impact on the determination of the selectivity coefficients. The thermodynamic modeling is also compared with the Dubinin-Astakhov adsorption isotherms obtained for the same ion exchange systems. Surprisingly, the latter performs significantly better than the ideal thermodynamic model and nearly as well as the nonideal thermodynamic model.

  7. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation.

    PubMed

    Hong, Jeong Hee; Muhammad, Emad; Zheng, Changyu; Hershkovitz, Eli; Alkrinawi, Soliman; Loewenthal, Neta; Parvari, Ruti; Muallem, Shmuel

    2015-12-15

    Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  8. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.

    PubMed

    Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng

    2018-06-01

    Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Role of endolymphatic anion transport in forskolin-induced Cl- activity increase of scala media.

    PubMed

    Kitano, I; Mori, N; Matsunaga, T

    1995-03-01

    To determine the role of anion transport in the forskolin-induced Cl- increase of scala media (SM), effects of forskolin on the EP (endocochlear potential) and Cl- activity (ACl) in SM were examined with double-barrelled Cl(-)-selective microelectrodes. The experiments were carried out on guinea pig cochleae, using a few anion transport inhibitors: IAA-94 for a Cl- channel blocker, bumetanide (BU) for an Na+/K+/2Cl- cotransport blocker, and SITS and DIDS for Cl-/HCO3- exchange blockers. The application of forskolin (200 microM) into scala vestibuli (SV) caused a 20 mEq increase of endolymphatic ACl and a 15 mV elevation of EP, and IAA-94 with forskolin completely abolished these responses. Although each application of BU, SITS or DIDS did not completely suppress EP elevation, the concurrent application of these inhibitors completely suppressed EP with endolymphatic ACl increase. The results indicate the involvement of Cl- channels, Na+/K+/2Cl- cotransport and Cl-/HCO3- exchange in forskolin-induced increase of ACl and EP. The role of adenylate cyclase activation and Cl- transport in endolymph homeostasis was discussed.

  10. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  11. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives.

    PubMed

    Gan, Bo; Li, Bei; Jiang, Haipeng; Bi, Mingshu; Gao, Wei

    2018-06-05

    The suppressions of ultrafine water mists containing additives (NaCl and NaHCO 3 ) on 100 nm, 5 μm, and 30 μm polymethyl methacrylate (PMMA) dust explosions were experimentally studied in a dust-explosion apparatus. High-speed photography showed that maximum vertical positions and flame propagation velocities were significantly decreased by suppression with ultrafine water mist/additives. Flame propagation velocities in 100 nm, 5 μm, and 30 μm dust explosions suppressed by the ultrafine pure water mist were reduced by 48.2%, 27.7%, and 15.3%, respectively. Maximum temperatures and temperature rising rates measured by a fine thermocouple in nano- and micro-PMMA dust explosions were also significantly decreased. It was proved that the addition of NaCl and NaHCO 3 improved the suppression effects of the ultrafine pure water mist. The improvement of explosion suppression by an 8% NaHCO 3 mist was superior to that of a 16% NaCl mist. The suppression mechanisms of ultrafine water mist/additives are further discussed by analyzing the physical and chemical effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO2/HCO3- fluctuations.

    PubMed

    Rasmussen, Jacob K; Boedtkjer, Ebbe

    2018-03-01

    The CO 2 /HCO 3 - buffer minimizes pH changes in response to acid-base loads, HCO 3 - provides substrate for Na + ,HCO 3 - -cotransporters and Cl - /HCO 3 - -exchangers, and H + and HCO 3 - modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO 2 /HCO 3 - buffer. Switching from CO 2 /HCO 3 - -free to CO 2 /HCO 3 - -containing extracellular solution results in initial intracellular acidification due to hydration of CO 2 followed by gradual alkalinization due to cellular HCO 3 - uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na + ,HCO 3 - -cotransport and Na + /H + -exchange activity after NH 4 + -prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH 3 flux are evident under CO 2 /HCO 3 - -free conditions but absent when the buffer capacity and apparent H + mobility increase in the presence of CO 2 /HCO 3 - even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO 2 , (b) CO 2 /HCO 3 - minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and (c) carbonic anhydrases are not rate limiting for acid-base transport across cell membranes during recovery from intracellular acidification.

  13. A novel on-line gold nanoparticle-catalyzed luminol chemiluminescence detector for high-performance liquid chromatography.

    PubMed

    Zhang, Qun Lin; Wu, Liang; Lv, Chen; Zhang, Xiao Yue

    2012-06-15

    A novel on-line gold nanoparticle-catalyzed luminol-H(2)O(2) chemiluminescence (CL) detector for high-performance liquid chromatography (HPLC) was established, in which gold nanoparticles were produced by the on-line reaction of H(2)O(2), NaHCO(3)-Na(2)CO(3) (buffer solution of luminol), and HAuCl(4). Eight phenolic compounds (gallic acid, protocatechuic acid, protocatechuic aldehyde, 2,5-dihydroxybenzoic acid, caffeic acid, 2,3-dihydroxybenzoic acid, (+)-catechin, and (-)-epicatechin) were chosen as the model compounds. Every separated phenolic compound in the column eluent strongly enhanced the CL signal of on-line gold nanoparticle-catalyzed luminol system. The CL and UV-visible absorption spectra and transmission electron microscopy studies were carried out, and the CL enhancement mechanism was ascribed to that the presence of phenolic compound promoted the on-line formation of 38-nm-diameter gold nanoparticles, which better catalyzed the luminol-H(2)O(2) CL reaction. The effects of methanol and phosphoric acid in the proposed HPLC configuration were performed by two gradient elution programs, and the baseline profile revealed that on-line gold nanoparticle-catalyzed luminol-H(2)O(2) CL detector had better compatibility than 38 nm gold colloids-luminol-H(2)O(2) CL detector. The proposed CL detector exhibits excellent analytical performance with the low detection limit (S/N=3) of 0.53-0.97 ng/mL (10.6-19.4 pg) phenolic compounds, and offers a new strategy for developing on-line nanoparticle-catalyzed CL detector for HPLC with sensitive analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Renal intercalated cells and blood pressure regulation.

    PubMed

    Wall, Susan M

    2017-12-01

    Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl - absorption and HCO 3 - secretion largely through pendrin-dependent Cl - /HCO 3 - exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO 3 administration. In some rodent models, pendrin-mediated HCO 3 - secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl - absorption, but also by modulating the aldosterone response for epithelial Na + channel (ENaC)-mediated Na + absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.

  15. Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Tiwari, Ashwani Kumar; Singh, Abhay Kumar; Singh, Amit Kumar; Singh, M. P.

    2017-07-01

    The hydrogeochemical study of surface water in Pratapgarh district has been carried out to assess the major ion chemistry and water quality for drinking and domestic purposes. For this purpose, twenty-five surface water samples were collected from river, ponds and canals and analysed for pH, electrical conductivity, total dissolved solids (TDS), turbidity, hardness, major cations (Ca2+, Mg2+, Na+ and K+), major anions (HCO3 -, F-, Cl-, NO3 -, SO4 2-) and dissolved silica concentration. The analytical results show mildly acidic to alkaline nature of surface water resources of Pratapgarh district. HCO3 - and Cl- are the dominant anions, while cation chemistry is dominated by Na+ and Ca2+. The statistical analysis and data plotted on the Piper diagram reveals that the surface water chemistry is mainly controlled by rock weathering with secondary contributions from agriculture and anthropogenic sources. Ca2+-Mg2+-HCO3 -, Ca2+-Mg2+-Cl- and Na+-HCO3 --Cl- are the dominant hydrogeochemical facies in the surface water of the area. For quality assessment, values of analysed parameters were compared with Indian and WHO water quality standards, which shows that the concentrations of TDS, F-, NO3 -, Na+, Mg2+ and total hardness are exceeding the desirable limits in some water samples. Water Quality Index (WQI) is one of the most effective tools to communicate information on the quality of any water body. The computed WQI values of Pratapgarh district surface water range from 28 to 198 with an average value of 82, and more than half of the study area is under excellent to good category.

  16. Mechanisms of transepithelial ammonia excretion and luminal alkalinization in the gut of an intestinal air-breathing fish, Misgurnus anguilliacaudatus.

    PubMed

    Wilson, Jonathan M; Moreira-Silva, Joana; Delgado, Inês L S; Ebanks, Sue C; Vijayan, Mathilakath M; Coimbra, João; Grosell, Martin

    2013-02-15

    The weatherloach, Misgurnus angulliacaudatus, is an intestinal air-breathing, freshwater fish that has the unique ability to excrete ammonia through gut volatilization when branchial and cutaneous routes are compromised during high environmental ammonia or air exposure. We hypothesized that transepithelial gut NH(4)(+) transport is facilitated by an apical Na(+)/H(+) (NH(4)(+)) exchanger (NHE) and a basolateral Na(+)/K(+)(NH(4)(+))-ATPase, and that gut boundary layer alkalinization (NH(4)(+) → NH(3) + H(+)) is facilitated by apical HCO(3)(-) secretion through a Cl(-)/HCO(3)(-) anion exchanger. This was tested using a pharmacological approach with anterior (digestive) and posterior (respiratory) intestine preparations mounted in pH-stat-equipped Ussing chambers. The anterior intestine had a markedly higher conductance, increased short-circuit current, and greater net base (J(base)) and ammonia excretion rates (J(amm)) than the posterior intestine. In the anterior intestine, HCO(3)(-) accounted for 70% of J(base). In the presence of an imposed serosal-mucosal ammonia gradient, inhibitors of both NHE (EIPA, 0.1 mmol l(-1)) and Na(+)/K(+)-ATPase (ouabain, 0.1 mmol l(-1)) significantly inhibited J(amm) in the anterior intestine, although only EIPA had an effect in the posterior intestine. In addition, the anion exchange inhibitor DIDS significantly reduced J(base) in the anterior intestine although only at a high dose (1 mmol l(-1)). Carbonic anhydrase does not appear to be associated with gut alkalinization under these conditions as ethoxzolamide was without effect on J(base). Membrane fluidity of the posterior intestine was low, suggesting low permeability, which was also reflected in a lower mucosal-serosal J(amm) in the presence of an imposed gradient, in contrast to that in the anterior intestine. To conclude, although the posterior intestine is highly modified for gas exchange, it is the anterior intestine that is the likely site of ammonia excretion and alkalinization leading to ammonia volatilization in the gut.

  17. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran.

    PubMed

    Yousefi, Mahmood; Saleh, Hossein Najafi; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nabizadeh, Ramin; Mohammadi, Ali Akbar

    2018-02-01

    This cross-sectional study was conducted on the drinking water resources of the city of Jolfa (East Azerbaijan province, Iran) from samples taken from 30 wells. Calcium hardness, pH, total alkalinity, TDS, temperature and other chemical parameters were measured using standard methods. The Langelier, Rayzner, Puckhorius and aggressive indices were calculated. The results showed that the Langelier, Reynar, Puckorius, Larson-skold and aggressive indices were 1.15 (± 0.43), 6.92 (± 0.54), 6.42 (± 0.9), 0.85 (± 0.72) and 12.79 (± 0.47), respectively. In terms of water classification, 30% of samples fell into the NaCl category and 26.6% in the NaHCO 3 category and 43.4% samples in the CaHCO 3 , MgHCO 3 and MgCl category. The sedimentation indices indicated that the water of the wells could be considered as corrosive.

  18. Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions.

    PubMed

    Wang, Yujuan; Lin, Hui; Jin, Fangyuan; Niu, Junfeng; Zhao, Jinbo; Bi, Ying; Li, Ying

    2016-07-01

    Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Rare Earth Element Concentrations and Fractionation Patterns Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    NASA Astrophysics Data System (ADS)

    Johannesson, K. H.; Tang, J.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally increase along groundwater flow path, however, MREE (Gd) exhibit little change and HREE (Yb) concentrations tend to decreases along the flow path. Floridan groundwaters have HREE enriched shale-normalized patterns, although (Yb/Nd)SN values decrease along groundwater flow path. Thus, REE patterns of Floridan groundwaters tend to flatten with flow down-gradient. All groundwaters show positive Eu anomalies (0.06 - 0.17) and negative Ce anomalies (-0.12 - -0.63).

  20. Determining shallow aquifer vulnerability by the DRASTIC model and hydrochemistry in granitic terrain, southern India

    NASA Astrophysics Data System (ADS)

    Mondal, N. C.; Adike, S.; Singh, V. S.; Ahmed, S.; Jayakumar, K. V.

    2017-08-01

    Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been cross-verified with hydrochemical signatures such as total dissolved solids (TDS), Cl-, HCO3-, SO4^{2-} and Cl-/HCO3- molar ratios. The results show four zones of aquifer vulnerability (i.e., negligible, low, moderate and high) based on the variation of DRASTIC Vulnerability Index (DVI) between 39 and 132. About 57% area in the central part is found moderately and highly contaminated due to the 80 functional tannery disposals and is more prone to groundwater aquifer vulnerability. The high range values of TDS (2304-39,100 mg/l); Na+(239- 6,046 mg/l) and Cl- (532-13,652 mg/l) are well correlated with the observed high vulnerable zones. The values of Cl-/HCO3- (molar ratios: 1.4-106.8) in the high vulnerable zone obviously indicate deterioration of the aquifer due to contamination. Further cumulative probability distributions of these parameters indicate several threshold values which are able to demarcate the diverse vulnerability zones in granitic terrain.

  1. Hydrogeochemical investigation of groundwater in shallow coastal aquifer of Khulna District, Bangladesh

    NASA Astrophysics Data System (ADS)

    Islam, S. M. Didar-Ul; Bhuiyan, Mohammad Amir Hossain; Rume, Tanjena; Azam, Gausul

    2017-12-01

    Groundwater acts as a lifeline in the coastal regions to meet out the domestic, drinking, irrigational and industrial needs. To investigate the hydrogeochemical characteristics of groundwater and its suitability, twenty samples were collected from the shallow tubewells of study area having screen depth 21-54 m. The water quality assessment has been carried out by evaluating the physicochemical parameters such as temperature, pH, EC, TDS and major ions i.e., Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-, NO3 -, HCO3 -. Results found that, the water is slightly alkaline and brackish in nature. The trends of cations and anions are Na+ > Ca2+ > Mg2+ > K+ and Cl- > HCO3 - > SO4 2- > NO3 -, respectively and Na-Cl-HCO3 is the dominant groundwater type. The analyzed samples were also characterized with different indices, diagram and permissible limit i.e., electric conductivity (EC), total dissolved solids (TDS), chloride content (Cl), soluble sodium percentage (SSP), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), Kelley's ratio (KR), Wilcox diagram and USSL diagram, and results showed that groundwater are not suitable for drinking and irrigational use. The factors responsible for the geochemical characterization were also attempted by using standard plot and it was found that mixing of seawater with entrapped water plays a significant role in the study area.

  2. Hydrochemical evolution of regional groundwaters to playa brines in central Australia

    NASA Astrophysics Data System (ADS)

    Jankowski, J.; Jacobson, G.

    A large-scale groundwater system in central Australia discharges to a chain of playas. Recharge in calcrete and fractured rock aquifers gives rise to relatively low-salinity HCO 3 Cl SO 4 groundwaters, which evolve through regional saline groundwaters, to highly saline playa brines. The hydrochemical evolution of the groundwaters follows the anionic sequence HCO 3 Cl SO 4 → ClbHCO 3SO 4 → ClSO 4HCO 3 → ClSO 4 → Cl. With increasing salinity, there is a relative increase in Na, K, Mg, Cl and SO 4; however, there is a relative decrease in HCO 3, Ca, and SiO 2 owing to the precipitation of carbonate, sulphate and silicate minerals, and the resultant brines are depleted in these ions. Significant chemical variation in the composition of playa brines is a result of complex processes of solution, evaporative concentration, precipitation and mineralogical change, including dolomitisation. Thermodynamic calculations based on the Pitzer equations have enabled a general model to be developed for these evolutionary processes in saline groundwaters up to the stage of halite saturation. At an early stage the regional groundwaters are saturated with respect to the carbonate minerals, dolomite first, then calcite. With increasing salinity, sulphate minerals begin to precipitate: saturation with respect to gypsum is attained at a chlorinity of 19‰, and saturation with respect to anhydrite is attained at 122‰. The playa brines attain saturation with respect to halite at a chlorinity of 144‰. Solute budgets based on a chloride concentration factor show that final playa brines are 178 times more concentrated than recharge groundwaters, and confirm the virtually complete loss of HCO 3, Ca and SiO 2 through precipitation. There are subtle differences in the hydrochemistry of different central Australian playa brines and also vis-à-vis playa brines described from other parts of the world. Most Australian playas have brines of the ClNa type with SO 4 and Mg also important. The generally accepted Hardie-Eugster model for brine evolution and mineral precipitation sequences has therefore been modified and extended. Three pathways are defined, following calcite precipitation, on the basis of the ratio of molar Ca to alkalinity; these pathways lead to saline waters with different compositions. Subsequent evolution of the brines depends on the ratios between molar SO 4, Mg, Ca and alkalinity.

  3. Effect of different non-chloride sodium sources on the performance of heat-stressed broiler chickens.

    PubMed

    Ahmad, T; Mushtaq, T; Mahr-Un-Nisa; Sarwar, M; Hooge, D M; Mirza, M A

    2006-06-01

    1. One hundred and eighty 1-d-old broiler chicks were used to evaluate the effect upon broiler performance during severely hot summer months of three different sodium salts: sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3) and sodium sulphate (Na2SO4), in starter and finisher diets having an identical electrolyte balance (DEB) of 250 mEq/kg. 2. The non-chloride sodium salts were added to contribute the same amount of sodium and were substituted at the expense of builder's sand in the basal diets containing common salt (NaCl) as Na and Cl source. 3. Each diet was fed to three experimental units having 15 chicks each until 42 d of age. Severe heat-stress conditions, maintained in the rearing room, were indicated by high average weekly room temperature (minimum 29.3 degrees C; maximum 38.0 degrees C). 4. Diets containing sodium salts gave better body weight gain, feed intake and feed to gain ratio than the control diet. Sodium salts also enhanced water intake as well as water to feed intake ratio. This effect was more pronounced in broilers fed NaHCO3 supplement (with NaCl in the basal diets). 5. The increased water intake resulted in lower body temperature in heat-stressed birds fed NaHCO3 supplemented diet than in birds fed other sodium salts. A lower mortality rate was noted with NaHCO3 (15.15%), Na2CO3 (13.64%) and Na2SO4 (15.15%) supplements than with the control (33.33%) treatment. 6. Better carcase and parts yield were observed in sodium supplemented broilers. Sodium salts reduced the alkalotic pH and enhanced the blood sodium content, which ultimately improved the blood electrolyte balance and overall performance of heat-stressed broilers. 7. Supplementing broiler diets with sodium salts improved the live performance of heat-stressed broilers and better productive performance was noted with NaHCO3 than other sodium supplements.

  4. Simultaneous measurements of gastric motility and acid-bicarbonate secretions in the anaesthetized cat.

    PubMed

    Fändriks, L; Stage, L

    1986-12-01

    Chloralosed cats were acutely vagotomized, their splanchnic nerves cut and the adrenal glands ligated. The gastric lumen was perfused with isotonic NaCl and gastric motility was monitored as changes in hydrostatic pressure within the perfusion circuit. Gastric secretion of H+ and HCO3- were calculated from continuous measurements of pH and PCO2. Methodological tests ex vivo showed good accuracy of the estimations. Recovery of H+ after HCl instillation into the stomach in vivo was almost complete, while HCO3- recovery after NaHCO3 instillations was 85-95%. Pentagastrin (10 micrograms kg-1 h-1 i.v.) stimulated gastric contractile activity and increased gastric H+ secretion 30-fold, while HCO3- secretion decreased somewhat. Carbachol (4 micrograms kg-1 h-1) induced gastric contractions and increased H+ secretion by 400% and HCO3- output by 100-130%. Electrical stimulation of the cut vagal nerves (10 Hz for 10 min) induced well known gastric motor responses and increased gastric H+ secretion 20-fold preceded by a transient doubling of HCO3- secretion. Omeprazole, a selective inhibitor of gastric H+ secretion, decreased the vagally induced H+ secretion, while recorded gastric HCO3- secretion was clearly enhanced. In conclusion, the technique permits simultaneous recordings of rapid alterations of gastric motility and H+ and HCO3- secretions. However, HCO3- secretion was modestly underestimated, probably due to mucosal CO2 absorption.

  5. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?

    PubMed

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2008-01-01

    Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as signals to activate some but not all of the elevated metabolic pathways and ionoregulatory mechanisms needed during processing of a meal.

  6. Thermodynamic description of Tc(iv) solubility and carbonate complexation in alkaline NaHCO3-Na2CO3-NaCl systems.

    PubMed

    Baumann, A; Yalçıntaş, E; Gaona, X; Polly, R; Dardenne, K; Prüßmann, T; Rothe, J; Altmaier, M; Geckeis, H

    2018-03-28

    The solubility of 99 Tc(iv) was investigated in dilute to concentrated carbonate solutions (0.01 M ≤ C tot ≤ 1.0 M, with C tot = [HCO 3 - ] + [CO 3 2- ]) under systematic variation of ionic strength (I = 0.3-5.0 M NaHCO 3 -Na 2 CO 3 -NaCl-NaOH) and pH m (-log[H + ] = 8.5-14.5). Strongly reducing conditions (pe + pH m ≈ 2) were set with Sn(ii). Carbonate enhances the solubility of Tc(iv) in alkaline conditions by up to 3.5 log 10 -units compared to carbonate-free systems. Solvent extraction and XANES confirmed that Tc was kept as +IV during the timeframe of the experiments (≤ 650 days). Solid phase characterization performed by XAFS, XRD, SEM-EDS, chemical analysis and TG-DTA confirmed that TcO 2 ·0.6H 2 O(am) controls the solubility of Tc(iv) under the conditions investigated. Slope analysis of the solubility data in combination with solid/aqueous phase characterization and DFT calculations indicate the predominance of the species Tc(OH) 3 CO 3 - at pH m ≤ 11 and C tot ≥ 0.01 M, for which thermodynamic and activity models are derived. Solubility data obtained above pH m ≈ 11 indicates the formation of previously unreported Tc(iv)-carbonate species, possibly Tc(OH) 4 CO 3 2- , although the likely formation of additional complexes prevents deriving a thermodynamic model valid for this pH m -region. This work provides the most comprehensive thermodynamic dataset available for the system Tc 4+ -Na + -Cl - -OH - -HCO 3 - -CO 3 2- -H 2 O(l) valid under a range of conditions relevant for nuclear waste disposal.

  7. Combinatorial effects of quercetin and sex-steroids on fluid and electrolytes’ (Na+, Cl-, HCO3-) secretory mechanisms in the uterus of ovariectomised female Sprague-Dawley rats

    PubMed Central

    Shahzad, Huma; Giribabu, Nelli; Karim, Kamarulzaman; Kassim, Normadiah M.; Muniandy, Sekaran

    2017-01-01

    Dysregulation of uterine fluid environment could impair successful reproduction and this could be due to the effect of environmental estrogens. Therefore, in this study, effect of quercetin, an environmental estrogen on uterine fluid and electrolytes concentrations were investigated under sex-steroid influence. Ovariectomised adult female Sprague-Dawley rats were given 10, 50 or 100mg/kg/day quercetin subcutaneously with 17-β estradiol (E) for seven days or three days E, then three days E plus progesterone (P) (E+P) treatment. Uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations were determined by in-vivo perfusion. Following sacrifice, uteri were harvested and levels of the proteins of interest were identified by Western blotting and Realtime PCR. Distribution of these proteins in the uterus was observed by immunofluorescence. Levels of uterine cAMP were measured by enzyme-linked immunoassay (EIA). Administration of quercetin at increasing doses increased uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations, but to the levels lesser than that of E. In concordant, levels of CFTR, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP in the uterus increased following increased in the doses of quercetin. Co-administration of quercetin with E caused uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations to decrease. In concordant, uterine CFTR, SLC26A6, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP decreased. Greatest effects were observed following co-administration of 10mg/kg/day quercetin with E. Co-administration of quercetin with E+P caused uterine fluid Na+ and HCO3- concentrations to increase but no changes in fluid secretion rate and Cl- concentration were observed. Co-administration of high dose quercetin (100 mg/kg/day) with E+P caused uterine CFTR, SLC26A6, AC, GPα/β and ENaC (α, β and γ) to increase. Quercetin-induced changes in the uterine fluid secretion rate and electrolytes concentrations could potentially affect the uterine reproductive functions under female sex-steroid influence. PMID:28253299

  8. Interaction of Constitutive Nitric Oxide Synthases with Cyclooxygenases in Regulation of Bicarbonate Secretion in the Gastric Mucosa.

    PubMed

    Zolotarev, V A; Andreeva, Yu V; Vershinina, E; Khropycheva, R P

    2017-05-01

    Neuronal NO synthase blocker 7-nitroindazole suppressed bicarbonate secretion in rat gastric mucosa induced by mild local irritation with 1 M NaCl (pH 2.0). Non-selective blocker of neuronal and endothelial synthases, Nω-nitro-L-arginine (L-NNA), did not affect HCO 3 - production, but inhibited secretion after pretreatment with omeprazole. Non-selective cyclooxygenase blocker indomethacin inhibited HCO 3 - production under conditions of normal synthase activity and in the presence of L-NNA, but was ineffective when co-administered with 7-nitroindazole. It was concluded that neuronal and endothelial synthases are involved in different mechanisms of regulation of HCO 3 - secretion in the gastric mucosa induced by mild irritation. Activation of neuronal synthase stimulated HCO 3 - production, which is mediated mainly through activation of cyclooxygenase. Theoretically, activation of endothelial synthase should suppress HCO 3 - production. The effect of endothelial synthase depends on acid secretion in the stomach and bicarbonate concentration in the submucosa, as it was demonstrated in experiments with intravenous NaHCO 3 infusion.

  9. Geochemistry and quality parameters of dug and tube well water of Khipro, District Sanghar, Sindh, Pakistan

    NASA Astrophysics Data System (ADS)

    Bashir, Erum; Huda, Syed Nawaz-ul; Naseem, Shahid; Hamza, Salma; Kaleem, Maria

    2017-07-01

    Thirty-nine (23 dug and 16 tube well) samples were geochemically evaluated and investigated to ascertain the quality of water in Khipro, Sindh. The analytical results exhibited abundance of major cations and anions in Na+ > Ca2+ > Mg2+ > K+ and Cl- > HCO3 - > SO4 2- sequence. Stiff diagram showed dug well sample have high Na-Cl and moderate Mg-SO4 content as compared to tube well samples. Majority of dug well samples appeared as Na-Cl type on Piper diagram while tube well samples are mixed type. Gibbs diagram reflected evaporation as a dominant phenomenon in dug well; however, tube well samples are declined toward rock dominance. Process of ion exchange was witnessed from Na+ versus Cl- and Ca2+ + Mg2+ versus HCO3 - + SO4 2- plots. Principal component analysis also discriminates dug well and tube well water by means of positive and negative loading based on physical and chemical composition of the groundwater. Studied and computed parameters like pH, EC, TDS, TH, Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-, HCO3 -, sodium adsorption ratio, magnesium adsorption ratio, potential salinity, residual sodium carbonate, Na%, Kelly's ratio, and permeability index were compared with WHO to evaluate studied water for drinking and agricultural purposes. Except Na+ and K+, all chemical constrains are within the allowed limits, set by WHO for drinking water. Similarly, most of the groundwater is moderately suitable for irrigation uses, with few exceptions.

  10. Hydrogeochemistry and isotope hydrology of surface water and groundwater systems in the Ellembelle district, Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    Edjah, A. K. M.; Akiti, T. T.; Osae, S.; Adotey, D.; Glover, E. T.

    2017-05-01

    An integrated approach based on the hydrogeochemistry and the isotope hydrology of surface water and groundwater was carried out in the Ellembelle district of the Western Region of Ghana. Measurement of physical parameters (pH, temperature, salinity, total dissolved solutes, total hardness and conductivity), major ions (Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, SO4 2- and NO3 -), and stable isotopes (δ2H and δ18O) in 7 rivers, 13 hand-dug wells and 18 boreholes were taken. Na+ was the dominant cation and HCO3 - was the dominant anion for both rivers and groundwater. The dominant hydrochemical facies for the rivers were Na-K-HCO3 - type while that of the groundwater (hand-dug wells and boreholes) were Na-Cl and Na-HCO3 - type. According to the Gibbs diagram, majority of the rivers fall in the evaporation-crystallization field and majority of the hand-dug wells and the boreholes fall in the rock dominance field. From the stable isotope composition measurements, all the rivers appeared to be evaporated, 60 % of the hand-dug wells and 70 % of the boreholes clustered along and in between the global meteoric water line and the local meteoric water line, suggesting an integrative and rapid recharge from meteoric origin.

  11. Geochemical processes controlling groundwater quality under semi arid environment: A case study in central Morocco.

    PubMed

    Karroum, Morad; Elgettafi, Mohammed; Elmandour, Abdenabi; Wilske, Cornelia; Himi, Mahjoub; Casas, Albert

    2017-12-31

    Bahira plain is an important area for Morocco due to its agriculture and mining activities. Situated in a sub-arid to arid climate, this plain hosts an aquifer system that represents sequences of carbonates, phosphates, evaporates and alluvial deposits. Groundwater flows from Ganntour plateau (recharge area) to the basin-fill deposits and Zima Lake and Sed Elmejnoun where water evaporates. The objective of this study was to characterize the chemical properties of the groundwater and to assess the processes controlling the groundwater's chemistry. We can divide water samples into three hydrochemical water groups: recharge waters (Ca/Mg-HCO 3 ), transition zone waters (Ca-HCO 3 -SO 4 /Cl) and discharge waters (Na-Cl/SO 4 ). Accordingly, compositions of waters are determined by the availability of easily soluble minerals like calcite (Ca-HCO 3 dominant), halite (Na-Cl dominant) and gypsum (Ca-SO 4 dominant). Cl/Br ratios show that Cl concentration increases from dissolution of natural halite. When groundwater is affected by extreme evaporation Cl/Br ratios may increase up to 1900. High fluoride concentrations are associated with low Ca 2+ concentrations (<100mg/L). That means when recharge waters enter the aquifer, it starts dissolving fluorite since the Ca 2+ concentration is low. Once groundwater becomes saturated with Ca 2+ , the immobilization of fluoride is occurring by precipitation of fluoride-rich minerals like fluoro-apatite. According to the environmental isotope ( 18 O and 2 H) analyses, they are three potential processes affecting groundwater: 1. Evaporation as verified by low slope value, 2. Water-rock interaction, 3. admixture of waters showed different stable isotope compositions and salinities. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Acid-base transport systems in a polarized human intestinal cell monolayer: Caco-2.

    PubMed

    Osypiw, J C; Gleeson, D; Lobley, R W; Pemberton, P W; McMahon, R F

    1994-09-01

    Acid-base transport systems have been incompletely characterized in intact intestinal epithelial cells. We therefore studied the human cell line Caco-2, cultured on Teflon membranes to form confluent monolayers with apical microvilli on transmission electron microscopy and progressive enrichment in microvillar hydrolases. Monolayers (16- to 25-day-old), loaded with the pH-sensitive dye BCECF-AM (2',7'-bis (carboxyethyl)-5-carboxyfluorescein), were mounted in a spectrofluorometer cuvette to allow selective superfusion of apical and basolateral surfaces with Hepes- or HCO(3-)-buffered media. Intracellular pH (pHi) was measured by dual-excitation spectrofluorimetry; calibration was with standards containing nigericin and 110 mM K+ corresponding to measured intracellular [K+] in Caco-2 cell monolayers. In HCO(3-)-free (Hepes-buffered) media, bilateral superfusion with 1 mM amiloride or with Na(+)-free media reversibly inhibited pHi recovery from an intracellular acid load (NH4Cl pulse) by 86 and 98% respectively. Selective readdition of Na+ to the apical or basolateral superfusate also induced a pHi recovery, which was inhibited by ipsilateral but not by contralateral amiloride (1 mM). The pHi recovery induced by apical Na+ readdition had a Michaelis constant (Km) for Na+ of 30 mM and a relatively high inhibitor constant (Ki) for amiloride of 45.5 microM. Initial pHi in HCO(3-)-buffered media was lower than in the absence of HCO3- (7.35 vs. 7.80). pHi recovery from an acid load in HCO3- was Na- dependent but was inhibited only 18% by 1 mM amiloride. The amiloride-independent pHi recovery was inhibited 49% by pre-incubation of cells in 5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid). These data suggest that Caco-2 cells possess: (a) both apical and basolateral membrane Na(+)-H+ exchange mechanisms, the apical exchanger being relatively resistant to amiloride, similar to apical Na(+)-H+ exchangers in several normal epithelia; and (b) a Na(-)-dependent HCO3- transport system, either Na(+)-HCO3- cotransport or Na(-)-dependent Cl(-)-HCO3- exchange.

  13. Comparing dissolved reactive phosphorus measured by DGT with ferrihydrite and titanium dioxide adsorbents: anionic interferences, adsorbent capacity and deployment time.

    PubMed

    Panther, Jared G; Teasdale, Peter R; Bennett, William W; Welsh, David T; Zhao, Huijun

    2011-07-18

    Two adsorbents (Metsorb and ferrihydrite) used in binding layers with the diffusive gradients in a thin film technique were evaluated for the measurement of dissolved reactive phosphorous (DRP) in synthetic and natural waters. Possible interferences were investigated with Cl(-) (up to 1.35 mol L(-1)) and SO(4)(2-) (up to 0.056 mol L(-1)) having no affect on either DGT binding layer, and HCO(3)(-) (up to 5.7 mmol L(-1)) having no effect on Metsorb-DGT, over 4 days. However, HCO(3)(-) interfered with the ferrihydrite-DGT measurement at concentrations typical of many natural waters (≥0.7 mmol L(-1)) after a deployment period of 1-2 days. The capacity of the Metsorb binding phase for DGT response was ∼37,000 ng P, whereas the capacities of a low-mass (17.8 mg of adsorbent per DGT sampler) and high-mass (29.2mg of adsorbent per DGT sampler) ferrihydrite binding phase were substantially lower (∼15,000 ng P and ∼25,000 ng P, low-mass and high-mass, respectively). Increasing the capacity of the ferrihydrite adsorbent allowed the ferrihydrite-DGT to be utilized for up to 3 days before interference by HCO(3)(-) was observed. Seawater deployments demonstrated that even high-capacity ferrihydrite-DGT devices underestimated the DRP concentration by 37%, whereas Metsorb-DGT measurements were accurate. The Metsorb-DGT is superior to the ferrihydrite-DGT for determining DRP over deployment times greater than 1 day and in waters with ≥0.7 mmol L(-1) HCO(3)(-). Based on the experience obtained from this detailed validation process, the authors propose a number of key requirements that need to be considered when developing new DGT binding layers, with testing the performance over longer deployment times being critical. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Characteristics of luminal bicarbonate secretion by rat cecum in vitro.

    PubMed

    Canfield, P

    1991-03-01

    Under in vitro conditions the rat cecum transported HCO3- from the serosal to an unbuffered solution in contact with the mucosal side [Js----m = 7.12 +/- 0.18 mumol.cm-2.h-1 (n = 149)]. With reversed tissues, a significantly lower flux was obtained [Jm----s = 2.47 +/- 0.11 mumol.cm-2.h-1 (n = 42)]. Both fluxes were stable for several hours. Increasing the H+ gradient across the tissue for 60 min did not change either flux. Anoxia for 45 min reversibly reduced Js----m by 65 +/- 3% (n = 20) but had no effect on Jm----s. Both fluxes were linearly related to HCO3- concentration on the buffered side, but the slope for Js----m was 3.5 times that for Jm----s. When tissues were initially set up in HEPES buffer rather than HCO3-, Js----m was 0.12 +/- 0.05 mumol.cm-2.h-1 (n = 6), which is not significantly different from zero. Replacement of Na+ by choline reduced Js----m by 40 +/- 3% (n = 11) and ouabain (1 mM) by 24 +/- 3% (n = 5). Replacement of Cl- with isethionate or K+ with Na+ for 60 min did not alter Js----m. Serosal application of DIDS (0.5 mM) reduced Js----m by 24 +/- 6% (n = 6), but SITS (0.5 mM), furosemide (1 mM), acetazolamide (0.1 mM), amiloride (1 mM), and a proton pump inhibitor (Sch 28080, 50 microM) had no effect. Mucosal application of DIDS, furosemide, and amiloride had no effect on Js----m. Serosal tetrodotoxin (1 microM) and indomethacin (28 microM) were also without effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    NASA Astrophysics Data System (ADS)

    Toth, David J.; Katz, Brian G.

    2006-06-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  16. Structural characterization of two tetra­chlorido­zincate salts of 4-carb­oxy-1H-imidazol-3-ium: a salt hydrate and a co-crystal salt hydrate

    PubMed Central

    Martens, Sean J.

    2017-01-01

    Imidazole-containing compounds exhibit a myriad of pharmacological activities. Two tetra­chlorido­zincate salts of 4-carb­oxy-1H-imidazol-3-ium, ImHCO2H+, are reported. Bis(4-carb­oxy-1H-imidazol-3-ium) tetra­chlorido­zincate monohydrate, (C4H5N2O2)2[ZnCl4]·H2O, (I), crystallizes as a monohydrate salt, while bis­(4-carb­oxy-1H-imidazol-3-ium) tetra­chlorido­zincate bis­(1H-imidazol-3-ium-4-carboxyl­ato) monohydrate, (C4H5N2O2)2[ZnCl4]·2C4H4N2O2·H2O, (II), is a co-crystal salt with six residues: two ImHCO2H+ cations, two formula units of the zwitterionic 1H-imidazol-3-ium-4-carboxyl­ate, ImHCO2, one tetra­chlorido­zincate anion and one water mol­ecule disordered over two sites in a 0.60 (4):0.40 (4) ratio. The geometric parameters of the ImHCO2H+ and the ImHCO2 moieties are the same within the standard uncertainties of the measurements. Both compounds exhibit extensive hydrogen bonding, including involvement of the tetra­chlorido­zincate anion, resulting in inter­connected chains of anions joined by water mol­ecules. PMID:28217334

  17. Oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system up to 0.7 mol/kg ionic strength at 25 °C

    USGS Publications Warehouse

    Kim, Sang-Tae; Gebbinck, Christa Klein; Mucci, Alfonso; Coplen, Tyler B.

    2014-01-01

    To investigate the oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system, witherite (BaCO3) was precipitated quasi-instantaneously and quantitatively from Na-Cl-Ba-CO2 solutions of seawater-like ionic strength (I = 0.7 mol/kg) at two pH values (~7.9 and ~10.6) at 25 °C. The oxygen isotope composition of the witherite and the dissolved inorganic carbon speciation in the starting solution were used to estimate the oxygen isotope fractionations between HCO3¯ and H2O as well as between CO3 2 and H2O. Given the analytical error on the oxygen isotope composition of the witherite and uncertainties of the parent solution pH and speciation, oxygen isotope fractionation between NaHCO3° and HCO3¯, as well as between NaCO3¯ and CO3 2, is negligible under the experimental conditions investigated. The influence of dissolved NaCl concentration on the oxygen isotope fractionation in the aragonite-CO2-H2O-NaCl system also was investigated at 25 °C. Aragonite was precipitated from Na-Cl-Ca-Mg-(B)-CO2 solutions of seawater-like ionic strength using passive CO2 degassing or constant addition methods. Based upon our new experimental observations and published experimental data from lower ionic strength solutions by Kim et al. (2007b), the equilibrium aragonite-water oxygen isotope fractionation factor is independent of the ionic strength of the parent solution up to 0.7 mol/kg. Hence, our study also suggests that the aragonite precipitation mechanism is not affected by the presence of sodium and chloride ions in the parent solution over the range of concentrations investigated.

  18. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design.

    PubMed

    Tanboonchuy, Visanu; Grisdanurak, Nurak; Liao, Chih-Hsiang

    2012-02-29

    This study describes the removal of arsenic species in groundwater by nano zero-valent iron process, including As(III) and As(V). Since the background species may inhibit or promote arsenic removal. The influence of several common ions such as phosphate (PO4(3-)), bicarbonate (HCO3-)), sulfate (SO4(2-)), calcium (Ca2+), chloride (Cl-), and humic acid (HA) were selected to evaluate their effects on arsenic removal. In particular, a 2(6-2) fractional factorial design (FFD) was employed to identify major or interacting factors, which affect arsenic removal in a significant way. As a result of FFD evaluation, PO4(3-) and HA play the role of inhibiting arsenic removal, while Ca2+ was observed to play the promoting one. As for HCO3- and Cl-, the former one inhibits As(III) removal, whereas the later one enhances its removal; on the other hand, As(V) removal was affected only slightly in the presence of HCO3- or Cl-. Hence, it was suggested that the arsenic removal by the nanoiron process can be improved through pretreatment of PO4(3-) and HA. In addition, for the groundwater with high hardness, the nanoiron process can be an advantageous option because of enhancing characteristics of Ca2+. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Influence of calcium ions on the crystallization of sodium bicarbonate

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Demilie, Paul; Davoine, Perrine; Cartage, Thierry; Delplancke-Ogletree, Marie-Paule

    2005-02-01

    In industrial crystallization of sodium bicarbonate (sodium hydrogenocarbonate), the presence of calcium ions in solutions is unavoidable due to the production process. The understanding of the Ca 2+ role in NaHCO 3 crystallization would be helpful for improving the quality of the final products. The influence of calcium ions on NaHCO 3 crystallization was investigated in a 5-l mixed suspension mixed product removal crystallizer under controlled conditions. A density meter was used for continuous supersaturation monitoring. After a steady state had been reached, different CaCl 2 amounts were added at a constant flow rate. It was found that limited calcium ion levels in the system reduce drastically the nucleation frequency of NaHCO 3 and has a limited influence on crystal growth rate. The supersaturation measurements and other methods confirmed this phenomenon. The relationship between the Ca 2+ influence on NaHCO 3 crystallization, the calcium carbonate solubility and its metastable zone in concentrated NaHCO 3 solution was established. In fact, Ca 2+ has a maximum effect on NaHCO 3 crystallization kinetics when the saturation of calcium carbonate in NaHCO 3 solution has been reached, and the effect is constant in the metastable zone. The excess of Ca 2+ precipitates in NaHCO 3 solution as CaCO 3, as observed by energy dispersive X-ray and X-ray diffraction. This explained why an increasing Ca 2+ concentration in the solution has a limited influence on NaHCO 3 crystal size distribution and habit, but decreases the crystal purity. It is also confirmed that an impurity as Ca 2+ has no influence on the equilibrium NaHCO 3-Na 2CO 3.

  20. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II)

    NASA Astrophysics Data System (ADS)

    Li, Jinge; Li, Qianqian; Lu, Chao; Zhao, Lixia; Lin, Jin-Ming

    2011-02-01

    Nonionic fluorosurfactant (FSN)-capped gold nanoparticles (GNPs) remain excellently stable at a wider pH range and high ionic strength, which is useful to investigate some CL systems involved in high salt and a strict pH range. In this study, we utilized FSN-capped GNPs of different sizes to distinguish the emitting species from H 2O 2-Co 2+-NaOH and H 2O 2-Co 2+-NaHCO 3 systems. When the pH of FSN-capped gold colloidal solution was adjusted to 10.2 by dropwise addition of 0.05 M NaOH, the CL intensity of H 2O 2-Co 2+-NaHCO 3 system was enhanced 6-fold or 60-fold respectively in the presence of FSN-capped 14 nm or 69 nm GNPs with comparison to H 2O 2-Co 2+-NaOH. The variation of CL spectra and UV-vis spectra, as well as the quenching effect of reactive oxygen species scavengers were studied in detail to understand the CL enhancement mechanisms of FSN-capped GNPs on the two systems. For H 2O 2-Co 2+-NaOH system, the gold(I) complexes intermediate and singlet oxygen dimol species were proposed as the emitting species. The excited states of the carbon dioxide dimers and singlet oxygen dimol species were considered responsible for the light emission of H 2O 2-Co 2+-NaHCO 3 system. To our knowledge, this work is the first time to study the two CL systems simultaneously using nanoparticles.

  1. Chloroquine uptake, altered partitioning and the basis of drug resistance: evidence for chloride-dependent ionic regulation.

    PubMed

    Martiney, J A; Ferrer, A S; Cerami, A; Dzekunov, S; Roepe, P

    1999-01-01

    The biochemical mechanism of chloroquine resistance in Plasmodium falciparum remains unknown. We postulated that chloroquine-resistant strains could alter ion fluxes that then indirectly control drug accumulation within the parasite by affecting pH and/or membrane potential ('altered partitioning mechanism'). Two principal intracellular pH-regulating systems in many cell types are the amiloride-sensitive Na+/H+ exchanger (NHE), and the sodium-independent, stilbene-sensitive Cl-/HCO3- antiporter (AE). We report that under physiological conditions (balanced CO2 and HCO3-) chloroquine uptake and susceptibility are not altered by amiloride analogues. We also do not detect a significant difference in NHE activity between chloroquine-sensitive and chloroquine-resistant strains via single cell photometry methods. AE activity is dependent on the intracellular and extracellular concentrations of Cl- and HCO3- ions. Chloroquine-resistant strains differentially respond to experimental modifications in chloride-dependent homeostasis, including growth, cytoplasmic pH and pH regulation. Chloroquine susceptibility is altered by stilbene DIDS only on chloroquine-resistant strains. Our results suggest that a Cl(-)-dependent system (perhaps AE) has a significant effect on the uptake of chloroquine by the infected erythrocyte, and that alterations of this biophysical parameter may be part of the mechanism of chloroquine resistance in P. falciparum.

  2. Synthesis, crystal structure and study of magnetocaloric effect and single molecular magnetic behaviour in discrete lanthanide complexes.

    PubMed

    Adhikary, Amit; Sheikh, Javeed Ahmad; Biswas, Soumava; Konar, Sanjit

    2014-06-28

    The synthesis, crystal structure and magnetic properties of four polynuclear lanthanide coordination complexes having molecular formulae, [Gd3(2)(1)L(H2O)8(Cl)](Cl)4·10H2O (1), [Dy3L(2)(1)(H2O)9](Cl)5·6H2O (2) [Gd6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (3) and [Dy6L(2)(2)(HCO2)4(μ3-OH)4(DMF)6(H2O)2](Cl)2·4H2O (4) (where H2L(1) = bis[(2-pyridyl)methylene]pyridine-2,6-dicarbohydrazide and H4L(2) = bis[2-hydroxy-benzylidene]pyridine-2,6-dicarbohydrazide) are reported. Structural investigation by X-ray crystallography reveals similar structural features for complexes 1 and 2 and they exhibit butterfly like shapes of the molecules. Non-covalent interactions between the molecules create double helical arrangements for both molecules. Complexes 3 and 4 are isostructural and the core structures feature four distorted hemi-cubanes connected by vertex sharing. Magnetic studies unveil significant magnetic entropy changes for complexes 1, 3 and slow relaxation of magnetization for both dysprosium analogues 2 and 4.

  3. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4 salts and natron (Na 2CO 3 · 10H 2O) is an incompatible salt assemblage.

  4. Impacts of hydrogeochemical processes and anthropogenic activities on groundwater quality in the Upper Precambrian sedimentary aquifer of northwestern Burkina Faso

    NASA Astrophysics Data System (ADS)

    Sako, A.; Yaro, J. M.; Bamba, O.

    2018-06-01

    This study investigates the hydrogeochemical and anthropogenic factors that control groundwater quality in an Upper Precambrian sedimentary aquifer in the northwestern Burkina Faso. The raw data and statistical and geochemical modeling results were used to identify the sources of major ions in dug well, private borewell and tap water samples. Tap waters were classified as Ca-HCO3 and Ca-Mg-HCO3 types, reflecting the weathering of the local dolomitic limestones and silicate minerals. Dug well waters, with a direct contact with various sources of contamination, were classified as Ca-Na-K-HCO3 type. Two factors that explain 94% of the total variance suggested that water-rock interaction was the most important factor controlling the groundwater chemistry. Factor 1 had high loadings on pH, Ca2+, Mg2+, HCO3 -, SO4 2- and TDS. These variables were also strongly correlated indicating their common geogenic sources. Based on the HCO3 -/(HCO3 - + SO4 2-) ratios (0.8-0.99), carbonic acid weathering appeared to control Ca2+, Mg2+, HCO3 - and SO4 2- acquisition in the groundwater. With relatively lower Ca2+ and Mg2+ concentrations, the majority of dug well and borewell waters were soft to moderately hard, whereas tap waters were considered very hard. Thus, the dug well and, to a lesser extent, borewell waters are likely to have a low buffering capacity. Factor 2 had high loadings on Na+, NO3 - and Cl-. The strong correlation between Na+ and NO3 - and Cl- implied that factor 2 represented the anthropogenic contribution to the groundwater chemistry. In contrast, K+ had moderate loadings on factors 1 and 2, consistent with its geogenic and anthropogenic sources. The study demonstrated that waters from dug wells and borewells were bacteriologically unsafe for human consumption, and their low buffering capacity may favor mobility of potentially toxic heavy metals in the aquifer. Not only very hard tap waters have aesthetic inconvenient, but their consumption may also pose health problems.

  5. Groundwater chemical baseline values to assess the Recovery Plan in the Matanza-Riachuelo River basin, Argentina.

    PubMed

    Zabala, M E; Martínez, S; Manzano, M; Vives, L

    2016-01-15

    The two most exploited aquifers in the Matanza-Riachuelo River basin are being monitored in the framework of the Integrated Environmental Sanitation Plan that implements the Basin Authority, Autoridad de Cuenca Matanza Riachuelo. In this context, this work identifies the groundwater chemical types and the natural processes behind them; determines spatial and temporal changes; establishes ranges of variation for chemical components, and proposes concentration values for the upper limit of the natural chemical background. A total of 1007 samples from three aquifer-layers (Upper Aquifer, top and bottom of Puelche Aquifer) have been studied. As concrete guidelines for practical determination of baseline values are not available in the region, the methodology used follows the proposals of European projects which assessed European water directives. The groundwater composition is very stable in terms of both chemical facies and mineralization degree, and the changes observed in the dry and wet periods analysed are subtle in general. Most of the groundwater is Na-HCO3 type, except a few samples that are Ca-HCO3, Na-ClSO4 and Na-Cl types. The Ca-HCO3 waters are the result of calcium carbonate dissolution, Na-HCO3 waters result from cation exchange and carbonate dissolution, while in the Na-ClSO4 and Na-Cl waters, mixing with connate and with encroached old marine water from the underlying and overlying sediments are the most relevant processes. The proposed values for the upper limit of the natural background consider the influence of geology and Holocene marine ingressions in the baseline of coastal groundwater. This study allowed to know the initial chemical conditions of the groundwater system of the Matanza-Riachuelo River basin and to establish the reference from which Basin Authority can start to evaluate trends and monitor the recovery plan. At the same time, it sets a precedent for future studies in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Groundwater quality and its suitability for drinking and agricultural use in the Yanqi Basin of Xinjiang Province, Northwest China.

    PubMed

    Wang, Shuixian

    2013-09-01

    The Yanqi Basin in Xinjiang Province is an important agricultural area with a high population density. The extensive agricultural activities in the Yanqi Basin started in the 1950s with flood irrigation techniques. Since then, the groundwater table was raised because of the absence of an efficient drainage system. This obstacle is a crucial factor that restricts sustainable socioeconomic development. Hydrochemical investigations were conducted in the Yanqi Basin, Northwestern China, to determine the chemical composition of groundwater. Sixty groundwater samples were collected from different wells to monitor the water chemistry of various ions. The results of the chemical analysis indicate that the groundwater in the area is generally neutral to slightly alkaline and predominantly contains Na(+) and Ca(2+) cations as well as HCO3(-) and SO4 (2+) anions. High positive correlations between HCO3 (-)-Mg(2+) + Ca(2+), SO 4 (2-)-Mg(2+), SO4 (2-)-Na(+) + K(+), and Cl(-)-Na(+) + K(+) were obtained. The total dissolved solids (TDS) mainly depend on the concentration of major ions such as HCO3(-), SO4 (2-), Cl(-), Ca(2+), Mg(2+), and Na(+) + K(+). The dominant hydrochemical facies for groundwater are Ca(2+)-Mg(2+)-HCO3(-), Mg(2+)-Ca(2+)-SO4 (2-)-Cl(-), Na(+)-K(+)-Cl(-)-SO4 (2-), and Na(+)-K(+)-Mg(2+)-Cl(-)-HCO3(-) types. The hydrochemical processes are the main factors that determine the water quality of the groundwater system. These processes include silicate mineral weathering, dissolution, ion exchange, and, to a lesser extent, evaporation, which seem to be more pronounced downgradient of the flow system. The saturation index (SI), which is calculated according to the ionic ratio plot, indicates that the gypsum-halite dissolution reactions occur during a certain degree of rock weathering. SI also indicates that evaporation is the dominant factor that determines the major ionic composition in the study area. The assessment results of the water samples using various methods indicate that the groundwater in the study area is generally hard, fresh to brackish, high to very high saline, and low alkaline in nature. The high total hardness and TDS of the groundwater in several places indicate the unsuitability of the groundwater for drinking and irrigation. These areas require particular attention, particularly in the construction of adequate drainage as well as in the introduction of an alternative salt tolerance cropping.

  7. Assessing groundwater quality for irrigation using indicator kriging method

    NASA Astrophysics Data System (ADS)

    Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini

    2016-11-01

    One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.

  8. Anion exchanger 2 is critical for CD8(+) T cells to maintain pHi homeostasis and modulate immune responses.

    PubMed

    Concepcion, Axel R; Salas, January T; Sarvide, Sarai; Sáez, Elena; Ferrer, Alex; López, María; Portu, Ainhoa; Banales, Jesús M; Hervás-Stubbs, Sandra; Oude Elferink, Ronald P J; Prieto, Jesús; Medina, Juan F

    2014-05-01

    Mitogenic stimulation of lymphocytes involves alkalinization of intracellular pH (pHi ). Subsequent pHi regulation may involve HCO3 (-) extrusion through Cl(-) /HCO3 (-) exchangers and/or Na(+) -HCO3 (-) co-transporters with acid-loading capability. Abnormalities in these mechanisms could result in immune dysfunctions, as suggested by the CD8(+) T-cell expansion encountered in mice lacking Ae2 (a widely expressed acid loader with electroneutral and Na(+) -independent Cl(-) /HCO3 (-) anion-exchange activity). Here we report that CD8(+) T cells but not CD4(+) T cells or other lymphocyte populations, are crucially dependent on Ae2 for pHi regulation. While total lymphocytes (including isolated CD4(+) T cells) exhibit Ae1 expression and Na(+) -HCO3 (-) co-transport with acidifying potential, CD8(+) T cells lack these acid-loading mechanisms. In Ae2-KO mice, CD4(+) but not CD8(+) T cells upregulate these potential Ae2 surrogates. As a consequence, Ae2-KO CD8(+) T cells exhibit alkalinized pHi , and dramatically increase their pHi upon CD3 stimulation. Moreover, stimulated Ae2-deficient CD8(+) T cells show enhanced intracellular production of IL-2 and membrane expression of its receptor IL-2Rα, together with increased cell proliferation and activation. These findings demonstrate that CD8(+) T cells are critically dependent on Ae2 for pHi homeostasis and tuning of cell proliferation and activation. Ae2 thus constitutes a novel target to modulate CD8(+) T-cell responses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    USGS Publications Warehouse

    Toth, D.J.; Katz, B.G.

    2006-01-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data-chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6) - for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge. ?? Springer-Verlag 2006.

  10. Erratum: Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    NASA Astrophysics Data System (ADS)

    Toth, David J.; Katz, Brian G.

    2006-09-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  11. Enhanced energy harvesting by concentration gradient-driven ion transport in SBA-15 mesoporous silica thin films.

    PubMed

    Hwang, Junho; Kataoka, Sho; Endo, Akira; Daiguji, Hirofumi

    2016-09-21

    Nanofluidic energy harvesting systems have attracted interest in the field of battery application, particularly for miniaturized electrical devices, because they possess excellent energy conversion capability for their size. In this study, a mesoporous silica (MPS)-based nanofluidic energy harvesting system was fabricated and selective ion transport in mesopores as a function of the salt gradient was investigated. Aqueous solutions with three different kinds of monovalent electrolytes-KCl, NaCl, and LiCl-with different diffusion coefficients (D + ) were considered. The highest power density was 3.90 W m -2 for KCl, followed by 2.39 W m -2 for NaCl and 1.29 W m -2 for LiCl. Furthermore, the dependency of power density on the type of cation employed indicates that the harvested energy increases as the cation mobility increases, particularly at high concentrations. This cation-specific dependency suggests that the maximum power density increases by increasing the diffusion coefficient ratio of cations to anions, making this ratio a critical parameter in enhancing the performance of nanofluidic energy harvesting systems with extremely small pores ranging from 2 to 3 nm.

  12. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Ramkumar, K.; Chandrasekar, N.; Magesh, N. S.; Kaliraj, S.

    2017-03-01

    A total of 20 groundwater samples were collected from both dug and bore wells of southern Tiruchirappalli district and analyzed for various hydrogeochemical parameters. The analyzed physicochemical parameters such as pH, electrical conductivity, total dissolved solids, calcium, magnesium, sodium, potassium, bicarbonate, carbonate, sulfate, chloride, nitrate, and fluoride are used to characterize the groundwater quality and its suitability for drinking and irrigational uses. The results of the chemical analysis indicates that the groundwater in the study area is slightly alkaline and mainly contains Na+, Ca2+, and Mg2+ cations as well as HCO3 2-, Cl-, SO4 2-and NO3 - anions. The total dissolved solids mainly depend on the concentration of major ions such as Ca, Mg, Na, K, HCO3, Cl, and SO4. Based on TDS, 55 % of the samples are suitable for drinking and rest of the samples are unsuitable for drinking. The total hardness indicates that majority of the groundwater samples are found within the permissible limit of WHO. The dominant hydrochemical facies for groundwater are Ca-Mg-Cl, Ca-HCO3, and Ca-Cl type. The USSL graphical geochemical representation of groundwater quality suggests that majority of the water samples belongs to high medium salinity with low alkali hazards. The Gibb's plot indicates that the groundwater chemistry of the study area is mainly controlled by evaporation and rock-water interaction. Spearman's correlation and factor analysis were used to distinguish the statistical relation between different ions and contamination source in the study area.

  13. Hydrogeological Modelling of Some Geothermal Waters of Ivrindi, Havran and Gönen in the Province Capital of Balikesir, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Özgür, Nevzat; Ugurlu, Zehra; Memis, Ümit; Aydemir, Eda

    2017-12-01

    In this study, hydrogeological, hydrogeochemical and isotope geochemical features of Havran, Gönen and Ivrindi within the province capital of Balıkesir, Turkey were investigated in detail. The Early Triassic Karakaya formation in the study area of Havran forms the oldest rocks consisting of spilitic basalts, diabases, gabbros, mudstones, cherts and radiolarites. There are limestone blocks in this formation with intercalations with sandstones and with feldspar contents, quartzite, conglomerates and siltstones. Oligocene to Miocene granodiorite intrusions were generated in association with intensively volcanic events in the area. Between Upper Oligocene and Early Miocene, andesitic and dacitic pyroclastic rocks cropped out due to intensively volcanism. Later, conglomerates, sandstones, claystones, marls and limestones as lacustrine sediments formed from Middle to Upper Miocene in the study area. In the study area of Gönen, the Lower Triassic Karakaya formation consists of basalts, diabases, gabbros, mudstones, cherts and radiolarites and forms the basement rocks overlain by Upper Jurassic to Lower Cretaceous sandy limestones. Upper and Middle Miocene volcanics which can be considered intensive Biga Peninsula volcanos outcrop in the area. These andesitic lava flows are of black, gray and red color with intensive fissures. Neogene lacustrine sediments consist of conglomerates, sandstones, marl, claystone and clayey limestones. Upper Miocene to Pliocene rhyolitic pyroclastics and dacitic lava flows are the volcanic rocks which are overlain by Pliocene conglomerates, sandstones and claystones. In the study area of Ivrindi, the Çaldağ limestones are the oldest formation in Permian age. Çavdartepe metamorphic rocks are of Lower Triassic in which can be observed marbles sporadically. The Kınık formation consisting of conglomerates, sandstones, siltstones and limestones are of Lower Triassic age and display a lateral Stratigraphic progress with volcanic rocks. Upper Miocene to Pliocene Yürekli formation consists of dacites and rhyodacites. Upper Miocene to Pliocene Soma formation is composed of clayey limestone, marl, siltstone, intercalations of sandstone, agglomerate and andesitic gravels and blocks cemented by tuffs. Quaternary alluvium is the youngest formation. The samples of geothermal waters in the area of Havran can be considered as Na-Ca-(SO4)-HCO3, Na-(SO4)-HCO3 and Na-SO4 type waters. In comparison, the geothermal waters in Gönen are of Na-(SO4)-HCO3 and Na-HCO3 type waters. The geothermal waters of Ivrindi are considered as Na-Ca-HCO3 type waters. In the area, a groundwater sample is of Ca-Mg-HCO3 type water. The geothermal waters belong to the cations of Na+K>Ca>Mg in Havran, Gönen and Ivrindi and to the anions of SO4>HCO3>Cl in Havran, HCO3>SO4>Cl in Gönen and SO4>HCO3>Cl in Ivrindi. In the diagram of Na-K-Mg1/2, the geothermal waters in Havran, Gönen and Ivrindi of the province capital of Balıkesir can be classified as immature waters.

  14. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II).

    PubMed

    Li, Jinge; Li, Qianqian; Lu, Chao; Zhao, Lixia; Lin, Jin-Ming

    2011-02-01

    Nonionic fluorosurfactant (FSN)-capped gold nanoparticles (GNPs) remain excellently stable at a wider pH range and high ionic strength, which is useful to investigate some CL systems involved in high salt and a strict pH range. In this study, we utilized FSN-capped GNPs of different sizes to distinguish the emitting species from H2O2-Co2+-NaOH and H2O2-Co2+-NaHCO3 systems. When the pH of FSN-capped gold colloidal solution was adjusted to 10.2 by dropwise addition of 0.05 M NaOH, the CL intensity of H2O2-Co2+-NaHCO3 system was enhanced 6-fold or 60-fold respectively in the presence of FSN-capped 14 nm or 69 nm GNPs with comparison to H2O2-Co2+-NaOH. The variation of CL spectra and UV-vis spectra, as well as the quenching effect of reactive oxygen species scavengers were studied in detail to understand the CL enhancement mechanisms of FSN-capped GNPs on the two systems. For H2O2-Co2+-NaOH system, the gold(I) complexes intermediate and singlet oxygen dimol species were proposed as the emitting species. The excited states of the carbon dioxide dimers and singlet oxygen dimol species were considered responsible for the light emission of H2O2-Co2+-NaHCO3 system. To our knowledge, this work is the first time to study the two CL systems simultaneously using nanoparticles. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Leukotrienes-mediated effects of water extracts from Sargassum horneri, a marine brown alga, on Cl- absorption in isolated rat colon.

    PubMed

    Sakai, Hideki; Uchiumi, Takaoki; Lee, Jung-Bum; Ohira, Yuta; Ohkura, Jun-ichi; Suzuki, Tomoyuki; Hayashi, Toshimitsu; Takeguchi, Noriaki

    2004-02-01

    Sargassum horneri is an edible marine brown alga distributed along the seacoast of Japan. Here we examined effects on the water-soluble (ethanol-insoluble) extracts (EIS) from Sargassum horneri on ion transports across the isolated rat colonic mucosa set in Ussing chambers. The nonpolysaccharide fraction of EIS (EIS-2) significantly decreased short-circuit current (Isc) across the mucosa, and increased the tissue conductance (Gt). The half-maximal effect of EIS-2 was obtained at 20 microg/ml. In contrast, the polysaccharide fraction of EIS (EIS-1; 100 microg/ml) had little effect on Isc and Gt. The effect of EIS-2 depended on the presence of Cl- and HCO3- but not K+ in the bathing solution. These results suggest that EIS-2 stimulates Cl)absorption in the colonic mucosa. The EIS-2-induced changes in Isc and Gt were inhibited by 3-(1-[p-chlorobenzyl]-5-[isopropyl]-3-t-butylthioindol-2-yl)-2,2-dimethyl-propanoic acid sodium (MK-886; 10 microM), a 5-lipoxygenase-activating protein inhibitor, and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB; 100 microM), a Cl- channel blocker. EIS-2 attenuated the prostaglandin E2 (0.5 microM)-increased Isc, and the half-maximal effect of EIS-2 was obtained at 50 microg/ml. The present study suggests that the EIS-2 stimulates Cl- absorption mediated by basolateral leukotriene-sensitive Cl- channels and apical Cl-/HCO3- exchanger in the rat colonic mucosa.

  16. Model of bicarbonate secretion by resting frog stomach fundus mucosa. II. Role of the oxyntopeptic cells.

    PubMed

    Debellis, L; Iacovelli, C; Frömter, E; Curci, S

    1994-10-01

    In the present publication we report mainly electrophysiological studies on oxyntopeptic cells of frog gastric mucosa which aim at clarifying a possible involvement of these cells in the process of resting gastric alkali (HCO3-) secretion, described in the preceding publication. The experiments were performed on intact gastric fundus mucosa of Rana esculenta mounted in Ussing chambers. After removal of the muscle and connective tissue layer oxyntopeptic cells were punctured from the serosal surface with conventional or pH-sensitive microelectrodes to measure, besides transepithelial voltage and resistance, the basolateral cell membrane potential, the voltage divider ratio, and the cell pH in response to secretagogues and/or changes in serosal ion concentration. Carbachol (10(-4) mol/l), which transiently stimulated HCO3- secretion by 0.22 mumol.cm-2.h-1, transiently acidified the cells by 0.09 +/- SEM 0.03 pH units (n = 6) and transiently induced an apical cell membrane anion conductance. According to the model of gastric HCO3- secretion presented in the preceding publication, this anion conductance could be involved in gastric HCO3- secretion, mediating, besides Cl- efflux, also apical HCO3- efflux. In addition carbachol stimulated basolateral Na+(HCO3-)n-cotransport, which according to the results from the preceding publication mediates basolateral HCO3- uptake for secretion. By contrast, cAMP-mediated secretagogues, such as histamine or others, which stimulate HCl secretion and transiently alkalinize the oxyntopeptic cells, were found to down-regulate the basolateral Na+(HCO3-)n-cotransporter.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Hydrochemical zonation of the western part of Göksu Delta aquifer system, Southern Turkey

    NASA Astrophysics Data System (ADS)

    Dokuz, U. E.; Çelik, M.; Arslan, Ş.; Engin, H.

    2012-04-01

    In general, coastal areas are preferred places for human settlement, especially at places where infrastructure routes benefit from rivers, streets, or harbours. As a result, these areas usually suffer from rising population and endure increasingly high demand on natural resources like water. Göksu Delta, located in southern Turkey, is one of the important wetland areas of Turkey at the Mediterranean coast. It is divided into two parts by Göksu River. The western part of the delta, which is the subject matter of this study, hosts fertile agricultural fields, touristic places and a Special Environmental Protection Area. These properties of the region lead to a water-dependent ecosystem where groundwater has widely been used for agricultural and domestic purposes. When the exploitation of groundwater peaked in the middle of 1990s, the groundwater levels dropped and seawater intruded. General Directorate of State Hydraulic Works tried to stop seawater intrusion by building irrigation channels connected to Göksu River and banned drilling of new wells for groundwater exploitation, although it is hard to control the drilling of wells without official permit. Geological studies show that the delta is composed of terrestrial sediments including clay to coarse sand deposited during Quaternary. The heterogeneous sediments of Göksu Delta cause hydrogeological features of the aquifer systems to be heterogeneous and anisotropic. Hydrogeological investigations, therefore, indicate mainly two different aquifers, shallow and deep, separated by an aquitard. The shallow aquifer is under unconfined to confined conditions from north to south while the deep aquifer is under confined conditions. This study focuses on hydrogeochemical zonation in terms of hydrochemical processes that affect the Göksu Delta aquifer systems. For this purpose, hydrogeochemical and isotopic studies are conducted to understand the salinisation and softening processes of groundwater. The physicochemical and hydrochemical features of the water (EC, TDS, HCO3-, SO4-2, Cl-, Na+, Ca+2, Mg+2, K+, Br-, B+3, Sr+2, NO3-, PO4-3) were evaluated and composition diagrams were plotted (e.g. ion vs Cl-, ion vs TDS, Na+ vs Ca+2, HCO3/Cl vs Cl-). Ratios of HCO3/Cl, Na/Cl, Ca/Cl, SO4/Cl, Br/Cl, B/Cl were calculated and isotope analyses (δ18O, δD and Tritium) were conducted. By these methods, it is possible to differentiate the effects of agricultural land use, seawater intrusion, ion exchange, and softening processes. Hydrochemical analyses indicate that the dominant anion is HCO3- and the dominant cation is Ca+2 for the northern part and Na+ for the southern part of the aquifers. Both EC values (417-2890 µS/cm), Cl- (16-320 mg/l) and Na+ (490,68-558,58 mg/l) concentrations of groundwater increase along the flow path from north to south for the aquifer system. Combined evaluations show that seawater intrusion is still dominant in the southern part of the study area while ion exchange and softening processes control the central part. Both NO3- (up to 19,6 mg/l) and PO4-3 (up to 11 mg/l) contents as well as Br/Cl ratios indicate agricultural pollution at some locations in the study area.

  18. Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India

    NASA Astrophysics Data System (ADS)

    Adimalla, Narsimha; Venkatayogi, Sudarshan

    2018-03-01

    Hydrogeochemical investigations were carried out in semi-arid region of Basara to estimate the quality of groundwater for its suitability for domestic and agricultural purposes. For this region 34 groundwater samples were collected in different locations and analyzed for various ions, viz., Na+, Ca2+, Mg2+, K+, Cl-, HCO3 -, SO4 2-, CO3 2-, HCO3 -, NO3 - and F- to assess the water chemistry with sodium absorption ratio, %Na, residual sodium carbonate, magnesium hazard. The nitrate and fluoride concentrations were above the maximum permissible limit, while calcium, sodium, potassium and chloride were found below the desirable limits in most of the groundwater samples. The Wilcox diagram illustrates that 59% of the samples belong to excellent to good category, while the US Salinity Laboratory diagram indicates medium salinity/low sodium content in 64.70% of samples. In general, the geochemistry of groundwater in Basara region is influenced by the water rock processes through percolation and dissolution of rock forming minerals, while calculated values of saturation index for Anhydrite, Aragonite, Artinite, Brucite, Calcite, Fluorite, Gypsum, Dolomite and Magnesite of the groundwater samples were less than zero, indicating under-saturation. Chadha rectangular diagram for geochemical classification and hydrochemical processes of groundwater for Basara provinces indicates 50% of Na+-Cl-, 29% of Ca2+-Mg2+-Cl- and 18% of the water samples concentrate in the category of Na+-HCO3 - type.

  19. Impact of reclaimed water in the watercourse of Huai River on groundwater from Chaobai River basin, Northern China

    NASA Astrophysics Data System (ADS)

    Yu, Yilei; Song, Xianfang; Zhang, Yinghua; Zheng, Fandong; Liu, Licai

    2017-12-01

    Reclaimed water is efficient for replenishing the dry rivers in northern China, but regional groundwater may be at risk from pollution. Therefore, samples of reclaimed water, river water, and groundwater were collected at the Huai River in the Chaobai River basin in 2010. The water chemistry and isotopic compositions of the samples were analyzed in the laboratory. The reclaimed water had stable compositions of water chemistry and isotopes, and the Na·Ca-HCO3·Cl water type. The water chemistry of the river water was consistent with that of the reclaimed water. A June peak of total nitrogen was the prominent characteristic in the shallow groundwater, which also had the Na·Ca-HCO3·Cl water type. However, the water chemistry and isotopes in most of the deep groundwater remained stable, and the water type was Ca·Mg-HCO3. The amount of reclaimed water recharging the groundwater was about 2.5 × 107 m3/yr. All of the shallow groundwater was impacted by the reclaimed water, with the mixing proportion of reclaimed water ranging from 42% to 80 % in the dry season and from 20% to 86% in the wet season. Only one deep well, with proportions of 67% (dry season) and 28% (wet season), was impacted. TDS, EC, and major ions (Na, K, Cl, NH4-N, NO2-N, and NO3-N) were increased in the impacted wells.

  20. Identification of the Hydrogeochemical Processes in Groundwater Using Classic Integrated Geochemical Methods and Geostatistical Techniques, in Amol-Babol Plain, Iran

    PubMed Central

    Sheikhy Narany, Tahoora; Ramli, Mohammad Firuz; Aris, Ahmad Zaharin; Sulaiman, Wan Nor Azmin; Juahir, Hafizan; Fakharian, Kazem

    2014-01-01

    Hydrogeochemical investigations had been carried out at the Amol-Babol Plain in the north of Iran. Geochemical processes and factors controlling the groundwater chemistry are identified based on the combination of classic geochemical methods with geographic information system (GIS) and geostatistical techniques. The results of the ionic ratios and Gibbs plots show that water rock interaction mechanisms, followed by cation exchange, and dissolution of carbonate and silicate minerals have influenced the groundwater chemistry in the study area. The hydrogeochemical characteristics of groundwater show a shift from low mineralized Ca-HCO3, Ca-Na-HCO3, and Ca-Cl water types to high mineralized Na-Cl water type. Three classes, namely, C1, C2, and C3, have been classified using cluster analysis. The spatial distribution maps of Na+/Cl−, Mg2+/Ca2+, and Cl−/HCO3 − ratios and electrical conductivity values indicate that the carbonate and weathering of silicate minerals played a significant role in the groundwater chemistry on the southern and western sides of the plain. However, salinization process had increased due to the influence of the evaporation-precipitation process towards the north-eastern side of the study area. PMID:24523640

  1. Multivariate statistical techniques for the evaluation of groundwater quality of Amaravathi River Basin: South India

    NASA Astrophysics Data System (ADS)

    Loganathan, K.; Ahamed, A. Jafar

    2017-12-01

    The study of groundwater in Amaravathi River basin of Karur District resulted in large geochemical data set. A total of 24 water samples were collected and analyzed for physico-chemical parameters, and the abundance of cation and anion concentrations was in the following order: Na+ > Ca2+ > Mg2+ > K+ = Cl- > HCO3 - > SO4 2-. Correlation matrix shows that the basic ionic chemistry is influenced by Na+, Ca2+, Mg2+, and Cl-, and also suggests that the samples contain Na+-Cl-, Ca2+-Cl- an,d mixed Ca2+-Mg2+-Cl- types of water. HCO3 -, SO4 2-, and F- association is less than that of other parameters due to poor or less available of bearing minerals. PCA extracted six components, which are accountable for the data composition explaining 81% of the total variance of the data set and allowed to set the selected parameters according to regular features as well as to evaluate the frequency of each group on the overall variation in water quality. Cluster analysis results show that groundwater quality does not vary extensively as a function of seasons, but shows two main clusters.

  2. Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation.

    PubMed

    Demarco, Ignacio A; Espinosa, Felipe; Edwards, Jennifer; Sosnik, Julian; De La Vega-Beltran, Jose Luis; Hockensmith, Joel W; Kopf, Gregory S; Darszon, Alberto; Visconti, Pablo E

    2003-02-28

    Mammalian sperm are incapable of fertilizing eggs immediately after ejaculation; they acquire fertilization capacity after residing in the female tract for a finite period of time. The physiological changes sperm undergo in the female reproductive tract that render sperm able to fertilize constitute the phenomenon of "sperm capacitation." We have demonstrated that capacitation is associated with an increase in the tyrosine phosphorylation of a subset of proteins and that these events are regulated by an HCO(3)(-)/cAMP-dependent pathway involving protein kinase A. Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. Here we present evidence that, in addition to its role in the regulation of adenylyl cyclase, HCO(3)(-) has a role in the regulation of plasma membrane potential in mouse sperm. Addition of HCO(3)(-) but not Cl(-) induces a hyperpolarizing current in mouse sperm plasma membranes. This HCO(3)(-)-dependent hyperpolarization was not observed when Na(+) was replaced by the non-permeant cation choline(+). Replacement of Na(+) by choline(+) also inhibited the capacitation-associated increase in protein tyrosine phosphorylation as well as the zona pellucida-induced acrosome reaction. The lack of an increase in protein tyrosine phosphorylation was overcome by the presence of cAMP agonists in the incubation medium. The lack of a hyperpolarizing HCO(3)(-) current and the inhibition of the capacitation-dependent increase in protein tyrosine phosphorylation in the absence of Na(+) suggest that a Na(+)/HCO(3)(-) cotransporter is present in mouse sperm and is coupled to events regulating capacitation.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johanson, C.E.; Sweeney, S.M.; Parmelee, J.T.

    Cerebrospinal fluid formation stems primarily from the transport of Na and Cl in choroid plexus (CP). To characterize properties and modulation of choroidal transporters, we tested diuretics and other agents for ability to alter ion transport in vitro. Adult Sprague-Dawley rats were the source of CPs preincubated with drug for 20 min and then transferred to cerebrospinal fluid (CSF) medium containing 22Na or 36Cl with (3H)mannitol (extracellular correction). Complete base-line curves were established for cellular uptake of Na and Cl at 37 degrees C. The half-maximal uptake occurred at 12 s, so it was used to assess drug effects onmore » rate of transport (nmol Na or Cl/mg CP). Bumetanide (10(-5) and 10(-4) M) decreased uptake of Na and Cl with maximal inhibition (up to 45%) at 10(-5) M. Another cotransport inhibitor, furosemide (10(-4) M), reduced transport of Na by 25% and Cl by 33%. However, acetazolamide (10(-4) M) and atriopeptin III (10(-7) M) significantly lowered uptake of Na (but not Cl), suggesting effect(s) other than on cotransport. The disulfonic stilbene 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 10(-4) M), known to inhibit Cl-HCO3 exchange, substantially reduced the transport of 36Cl. Bumetanide plus DIDS (both 10(-4) M) caused additive inhibition of 90% of Cl uptake, which provides strong evidence for the existence of both cotransport and antiport Cl carriers. Overall, this in vitro analysis, uncomplicated by variables of blood flow and neural tone, indicates the presence in rat CP of the cotransport of Na and Cl in addition to the established Na-H and Cl-HCO3 exchangers.« less

  4. The cyanobacterial bicarbonate transporter BicA: its physiological role and the implications of structural similarities with human SLC26 transporters.

    PubMed

    Price, G Dean; Howitt, Susan M

    2011-04-01

    The cyanobacterial Na+-dependent HCO3- transporter BicA is a member of the ubiquitous and important SulP/SLC26 family of anion transporters found in eukaryotes and prokaryotes. BicA is an important component of the cyanobacterial CO2 concentrating mechanism, an adaptation that contributes to cyanobacteria being able to achieve an estimated 25% of global primary productivity, largely in the oceans. The human SLC26 members are involved in a range of key cellular functions involving a diverse range of anion transport activities including Cl-/HCO3-, I-/HCO3-, and SO42-/HCO3- exchange; mutations in SLC26 members are known to be associated with debilitating diseases such as Pendred syndrome, chondrodysplasias, and congenital chloride diarrhoea. We have recently experimentally determined the membrane topology of BicA using the phoA-lacZ reporter system and here consider some of the extrapolated implications for topology of the human SLC26 family and the Sultr plant sulphate transporters.

  5. An amplified chemiluminescence system based on Si-doped carbon dots for detection of catecholamines.

    PubMed

    Amjadi, Mohammad; Hallaj, Tooba; Manzoori, Jamshid L; Shahbazsaghir, Tahmineh

    2018-08-05

    We report on a chemiluminescence (CL) system based on simultaneous enhancing effect of Si-doped carbon dots (Si-CDs) and cetyltrimethylammonium bromide (CTAB) on HCO 3 - -H 2 O 2 reaction . The possible CL mechanism is investigated and discussed. Excited-state Si-CDs was found to be the final emitting species, which are probably produced via electron and hole injection by oxy-radicals. The effect of several other heteroatom-doped CDs and undoped CDs was also investigated and compared with Si-CDs. Furthermore, it was found that catecholamines such as dopamine, adrenaline and noradrenaline remarkably diminish the CL intensity of Si-CD-HCO 3 - -H 2 O 2 -CTAB system. By taking advantage of this fact, a sensitive probe was designed for determination of dopamine, adrenaline and noradrenaline with a limit of detection of 0.07, 0.60 and 0.01 μM, respectively. The method was applied to the determination of catecholamines in human plasma samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Ratio of Major Ions in Groundwater to Determine Saltwater Intrusion in Coastal Areas

    NASA Astrophysics Data System (ADS)

    Sudaryanto; Naily, Wilda

    2018-02-01

    Saltwater or seawater intrusion into groundwater aquifers occurs mostly in big cities and developing coastal cities. Coastal hydrology is associated with complex and highly dynamic environmental characteristics of interactions between groundwater, surface water, and water from the estuary. The rise of sea levels and excessive use of groundwater for clean water source trigger saltwater intrusion. Identification of saltwater intrusion into groundwater can be done by groundwater sampling and major ion analysis. The major ions dissolved in water are Ca, Mg, Na, K, Cl, HCO3, and SO4; the major ion ratios are Cl/Br, Ca/Mg, Ca/ (HCO3 and SO4), and Na/Cl. By knowing whether groundwater quality has been or has not been influenced by saltwater, groundwater zones can be determined in every coastal area. In addition, by analyzing and reviewing some concepts about the intrusion or contamination of saltwater into groundwater, there will be sufficient results for the identification of saltwater intrusion.

  7. Physicochemical quality evaluation of groundwater and development of drinking water quality index for Araniar River Basin, Tamil Nadu, India.

    PubMed

    Jasmin, I; Mallikarjuna, P

    2014-02-01

    Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na(+)) and potassium (K(+)) and anions such as bicarbonate (HCO3 (-)) and chloride (Cl(-)) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca(2+)), magnesium (Mg(2+)), sulfate (SO4 (2-)), nitrate (NO3 (-)), and fluoride (F(-)) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Ca(2+)-Mg(2+)-HCO3 (-) and Na(+)-K(+)-Cl(-)-SO4 (2-) types during the post-monsoon period and Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Na(+)-K(+)-Cl(-)-SO4 (2-) and Ca(2+)-Mg(2+)-HCO3 (-) types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46% of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.

  8. The Role of Intercalated Cell Nedd4-2 in BP Regulation, Ion Transport, and Transporter Expression.

    PubMed

    Nanami, Masayoshi; Pham, Truyen D; Kim, Young Hee; Yang, Baoli; Sutliff, Roy L; Staub, Olivier; Klein, Janet D; Lopez-Cayuqueo, Karen I; Chambrey, Regine; Park, Annie Y; Wang, Xiaonan; Pech, Vladimir; Verlander, Jill W; Wall, Susan M

    2018-06-01

    Background Nedd4-2 is an E3 ubiquitin-protein ligase that associates with transport proteins, causing their ubiquitylation, and then internalization and degradation. Previous research has suggested a correlation between Nedd4-2 and BP. In this study, we explored the effect of intercalated cell (IC) Nedd4-2 gene ablation on IC transporter abundance and function and on BP. Methods We generated IC Nedd4-2 knockout mice using Cre-lox technology and produced global pendrin/ Nedd4-2 null mice by breeding global Nedd4-2 null ( Nedd4-2 -/- ) mice with global pendrin null ( Slc26a4 -/- ) mice. Mice ate a diet with 1%-4% NaCl; BP was measured by tail cuff and radiotelemetry. We measured transepithelial transport of Cl - and total CO 2 and transepithelial voltage in cortical collecting ducts perfused in vitro Transporter abundance was detected with immunoblots, immunohistochemistry, and immunogold cytochemistry. Results IC Nedd4-2 gene ablation markedly increased electroneutral Cl - /HCO 3 - exchange in the cortical collecting duct, although benzamil-, thiazide-, and bafilomycin-sensitive ion flux changed very little. IC Nedd4-2 gene ablation did not increase the abundance of type B IC transporters, such as AE4 ( Slc4a9 ), H + -ATPase, barttin, or the Na + -dependent Cl - /HCO 3 - exchanger ( Slc4a8 ). However, IC Nedd4-2 gene ablation increased CIC-5 total protein abundance, apical plasma membrane pendrin abundance, and the ratio of pendrin expression on the apical membrane to the cytoplasm. IC Nedd4-2 gene ablation increased BP by approximately 10 mm Hg. Moreover, pendrin gene ablation eliminated the increase in BP observed in global Nedd4-2 knockout mice. Conclusions IC Nedd4-2 regulates Cl - /HCO 3 - exchange in ICs., Nedd4-2 gene ablation increases BP in part through its action in these cells. Copyright © 2018 by the American Society of Nephrology.

  9. Comparison of the effects of intravenous administration of isotonic and hypertonic sodium bicarbonate solutions on venous acid-base status in dehydrated calves with strong ion acidosis.

    PubMed

    Coskun, Alparslan; Sen, Ismail; Guzelbektes, Hasan; Ok, Mahmut; Turgut, Kursat; Canikli, Sebnem

    2010-05-15

    OBJECTIVE-To compare the effects of IV administration of isotonic (1.3%) and hypertonic (8.4%) sodium bicarbonate (NaHCO(3)) solutions on acid-base status in dehydrated calves with strong ion (metabolic) acidosis. DESIGN-Randomized controlled clinical trial. ANIMALS-50 calves with diarrhea and severe dehydration. PROCEDURES-Calves were randomly assigned to receive isotonic NaHCO(3) solution (65 mL/kg [29.5 mL/lb], IV) over 3 hours (n = 30) or hypertonic NaHCO(3) solution (10 mL/kg [4.5 mL/lb], IV) over 20 minutes (20). Blood samples were collected at 0 hours (immediately prior to solution administration) and at 0.5, 1, 2, and 4 hours after administration began. Samples were submitted for blood gas analysis, serum biochemical analysis, and determination of blood Na(+), K(+), and Cl(-) concentrations and percentage change in plasma volume. RESULTS-Calves that received isotonic NaHCO(3) solution had an increase in venous blood pH, HCO(3) concentration, and base excess; a small, transient increase in Po(2); and no change in Pco(2) within 4 hours after administration began. Calves that received hypertonic NaHCO(3) solution had an immediate increase in venous blood pH, HCO(3) concentration, and base excess; a small, transient increase Pco(2); and no change in Po(2) within 0.5 hours after treatment began. Plasma volume increased to a greater extent following administration of isotonic solution than after administration of hypertonic solution. CONCLUSIONS AND CLINICAL RELEVANCE-IV administration of 8.4% NaHCO(3) solution in small volumes provided fast and effective improvement of severe acid-base abnormalities in calves with severe strong ion acidosis but did not improve hydration status as well as administration of a larger volume of isotonic NaHCO(3) solution.

  10. Proximal bicarbonate absorption independent of Na+-H+ exchange: effect of bicarbonate load.

    PubMed

    Bank, N; Aynedjian, H S; Mutz, B F

    1989-04-01

    To study proximal tubule bicarbonate absorption that is not due to the neutral Na+-H+ antiporter, mid to late proximal convolutions of the rat kidney were microperfused in vivo with a sodium-free choline solution containing 10(-3) M amiloride. The average sodium concentration resulting from sodium influx was 12 mM. At such low intraluminal [Na+], 10(-3) M amiloride should have inhibited the Na+-H+ antiporter by greater than 95%. When 25 mM HCO3- was in the perfusion fluid, measured total CO2 absorption was 100 pmol.mm-1.min-1. When luminal [HCO3-] was raised to 50 mM, and blood [HCO3-] was also raised to approximately 50 mM to avoid a transepithelial HCO3- concentration gradient, total CO2 absorption increased to greater than 300 pmol.mm-1.min-1. Thus raising intraluminal HCO3- concentration caused a marked increase in total CO2 absorption even though intraluminal [Na+] was low and amiloride was present. Control perfusions containing 140 mM Na+ yielded total CO2 absorption that was approximately 100 pmol.mm-1.min-1 higher than with the respective sodium-free perfusion solutions. In additional experiments, either DCCD or NEM was added to sodium-free perfusion solutions to inhibit H+-ATPase. These inhibitors reduced Na+-H+ independent total CO2 absorption markedly. Our observations suggest that under physiological acid-base conditions, sodium-independent H+ secretion can account for approximately 50% of total HCO3- absorption in mid to late proximal convolutions. This mechanism is stimulated by an increase in ambient HCO(-3) concentration to a degree that might account for the load-dependency of proximal HCO(-3) absorption in these segments of the proximal tubule.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Geochemical Composition of Surface Water in the Mineralized Lom Basin, East Cameroon: Natural and Anthropogenic Sources.

    NASA Astrophysics Data System (ADS)

    Mimba, M. E.; Ohba, T.; Nguemhe Fils, S. C.; Wirmvem, M. J.

    2016-12-01

    Thousands of people in East Cameroon depend on surface water for consumption and domestic purposes. The Lom basin, north of the region, is heavily mineralized especially in gold owing to its regional geological setting. Although research has been done regarding the rock type, age, formation history and reconnaissance gold surveys, surface water investigation in the area has received limited attention. Thus, this study appraises the first regional hydrogeochemical program for environmental assessment of the mineralized Lom basin. Fifty-two representative stream water samples were collected under base flow conditions and analysed for major cations (Ca2+, Mg2+, Na+, K+ ), major anions (HCO3-, F-, Cl-, NO2-, NO3-, Br-, PO43-, SO42- ) and stable isotopes (δD and δ18O). Calcium and HCO3- were the dominant ions. The chemical facies were CaHCO3 and NaHCO3 indicating surface water draining igneous/metamorphic rocks in hot and humid equatorial climate, resulting in the discordant dissolution of primary silicate minerals. From the isotopic evaluation, the stream water is of meteoric origin, shows negligible evaporation effect and has a common recharge source. The major ion geochemistry demonstrated the potential to discriminate between natural and anthropogenic origins. Distribution trends of Ca2+, Mg2+, Na+, K+, HCO3- and SO42- showed a correlation with the lithology and the occurrence of sulphide minerals associated with hydrothermal gold mineralization in the area. The distribution patterns of NO3- and Cl- reflect pollution from settlement. Overall, the chemistry of stream water in the Lom basin is mainly controlled by rock weathering compared to anthropogenic influence. Surface water quality is easily influenced by anthropogenic activities, and stream sediment collects effectively trace metals resulting from such activities. Hence, geochemical mapping incorporating stream water and stream sediment is of considerable value in future investigations within the Lom basin.

  12. Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis.

    PubMed

    Pratha, V S; Hogan, D L; Martensson, B A; Bernard, J; Zhou, R; Isenberg, J I

    2000-06-01

    The duodenum is a cystic fibrosis transmembrane conductance regulator (CFTR)-expressing epithelium with high bicarbonate secretory capacity. We aimed to define the role of CFTR in human duodenal epithelial bicarbonate secretion in normal (NL) subjects and patients with cystic fibrosis (CF). Endoscopic biopsy specimens of the duodenal bulb were obtained from 9 CF patients and 16 volunteers. Tissues were mounted in modified Ussing chambers. Bicarbonate secretion and short-circuit current (Isc) were quantitated under basal conditions and in response to dibutyryl adenosine 3',5'-cyclic monophosphate (db-cAMP), carbachol, and the heat-stable toxin of Escherichia coli (STa). Duodenocytes were also isolated and loaded with the pH-sensitive fluoroprobe BCECF/AM, and intracellular pH (pH(i)) was measured at rest and after intracellular acidification and alkalinization. Basal HCO(3)(-) secretion and Isc were significantly lower in the CF vs. NL duodenal mucosa. In contrast to NL, db-cAMP failed to alter either HCO(3)(-) or Isc in CF tissues. However, in CF, carbachol resulted in an electroneutral HCO(3)(-) secretion, whereas STa induced electrogenic HCO(3)(-) secretion that was similar to NL. In CF and NL duodenocytes, basal pH(i) and recovery from an acid load were comparable, but pH(i) recovery after an alkaline load in CF duodenocytes was Cl(-) dependent, whereas in NL duodenocytes it was Cl(-) independent. These findings implicate CFTR in NL duodenal alkaline transport and its absence in CF. Although duodenal bicarbonate secretion is impaired in CF tissues, alternate pathway(s) likely exist that can be activated by carbachol and STa.

  13. Changing fluxes of carbon and other solutes from the Mekong River.

    PubMed

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  14. Reconciling the Krogh and Ussing interpretations of epithelial chloride transport - presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake.

    PubMed

    Larsen, Erik Hviid

    2011-07-01

    In 1937, August Krogh discovered a powerful active Cl(-) uptake mechanism in frog skin. After WWII, Hans Ussing continued the studies on the isolated skin and discovered the passive nature of the chloride uptake. The review concludes that the two modes of transport are associated with a minority cell type denoted as the γ-type mitochondria-rich (MR) cell, which is highly specialized for epithelial Cl(-) uptake whether the frog is in the pond of low [NaCl] or the skin is isolated and studied by Ussing chamber technique. One type of apical Cl(-) channels of the γ-MR cell is activated by binding of Cl(-) to an external binding site and by membrane depolarization. This results in a tight coupling of the uptake of Na(+) by principal cells and Cl(-) by MR cells. Another type of Cl(-) channels (probably CFTR) is involved in isotonic fluid uptake. It is suggested that the Cl(-) channels serve passive uptake of Cl(-) from the thin epidermal film of fluid produced by mucosal glands. The hypothesis is evaluated by discussing the turnover of water and ions of the epidermal surface fluid under terrestrial conditions. The apical Cl(-) channels close when the electrodiffusion force is outwardly directed as it is when the animal is in the pond. With the passive fluxes eliminated, the Cl(-) flux is governed by active transport and evidence is discussed that this is brought about by an exchange of cellular HCO(3) (-) with Cl(-) of the outside bath driven by an apical H(+) V-ATPase. © 2011 The Author. Acta Physiologica © 2011 Scandinavian Physiological Society.

  15. Neurogenic regulation of proximal bicarbonate and chloride reabsorption.

    PubMed

    Cogan, M G

    1986-01-01

    Although a change in renal nerve activity is known to alter proximal reabsorption, it is unclear whether reabsorption of NaHCO3 or NaCl or both are affected. Sprague-Dawley rats (n = 10) were studied using free-flow micropuncture techniques during euvolemia and following acute ipsilateral denervation. Glomerular filtration rate and single nephron glomerular filtration rate were stable. Absolute proximal bicarbonate reabsorption fell following denervation (933 +/- 40 to 817 +/- 30 pmol/min) with a parallel reduction in chloride reabsorption (1,643 +/- 116 to 1,341 +/- 129 peq/min). Urinary sodium, potassium, bicarbonate, and chloride excretion all increased significantly. To further assess the physiological significance of neurogenic modulation of proximal transport, other rats (n = 6) were subjected to acute unilateral nephrectomy (AUN). There is evidence that AUN induces a contralateral natriuresis (renorenal reflex) at least partially by causing inhibition of efferent renal nerve traffic. AUN caused significant changes in proximal NaHCO3 and NaCl reabsorption as well as in whole kidney electrolyte excretion in the same pattern as had denervation. Prior denervation of the remaining kidney prevented the proximal and whole kidney response to AUN (n = 6). In conclusion, depression of renal nerve activity inhibits both NaHCO3 and NaCl reabsorption in the rat superficial proximal convoluted tubule. The data are consistent with the hypothesis that changes in renal nerve activity modify whole kidney electrolyte excretion under physiological conditions at least partially by regulating proximal transport.

  16. The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area.

    PubMed

    Yin, Shiyang; Wu, Wenyong; Liu, Honglu; Bao, Zhe

    2016-10-01

    Reclaimed water reuse is an effective method of alleviating agricultural water shortages, which entails some potential risks for groundwater. In this study, the impacts of wastewater reuse on groundwater were evaluated by combination of groundwater chemistry and isotopes. In reclaimed water infiltration, salt composition was affected not only by ion exchange and dissolution equilibrium but also by carbonic acid equilibrium. The dissolution and precipitation of calcites and dolomites as well as exchange and adsorption between Na and Ca/Mg were simultaneous, leading to significant changes in Na/Cl, (Ca+Mg)/Cl, electrical conductivity (EC) and sodium adsorption ratio (SAR). The reclaimed water was of the Na-Mg-Ca-HCO 3 -Cl type, and groundwater recharged by reclaimed water was of the Na-Mg-HCO 3 and Mg-Na-HCO 3 types. The hydrogeological conditions characterized by sand-clay alternation led to both total nitrogen (TN) and total phosphorus (TP) removal efficiencies >95%, and there was no significant difference in those contents between aquifers recharged by precipitation and reclamation water. >40years of long-term infiltration and recharge from sewage and reclaimed water did not cause groundwater contamination by nitrogen, phosphorus and heavy metals. These results indicate that characteristics of the study area, such as the lithologic structure with sand-clay alternation, relatively thick clay layer, and relatively large groundwater depth have a significant role in the high vulnerability. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists.

    PubMed

    Gough, Lewis A; Deb, Sanjoy K; Sparks, S Andy; McNaughton, Lars R

    2018-08-01

    The aim of this study was to investigate the effects of sodium bicarbonate (NaHCO 3 ) on 4 km cycling time trial (TT) performance when individualised to a predetermined time to peak blood bicarbonate (HCO 3 - ). Eleven male trained cyclists volunteered for this study (height 1.82 ± 0.80 m, body mass (BM) 86.4 ± 12.9 kg, age 32 ± 9 years, peak power output (PPO) 382 ± 22 W). Two trials were initially conducted to identify time to peak HCO 3 - following both 0.2 g . kg -1 BM (SBC2) and 0.3 g . kg -1 BM (SBC3) NaHCO 3 . Thereafter, on three separate occasions using a randomised, double-blind, crossover design, participants completed a 4 km TT following ingestion of either SBC2, SBC3, or a taste-matched placebo (PLA) containing 0.07 g . kg -1 BM sodium chloride (NaCl) at the predetermined individual time to peak HCO 3 - . Both SBC2 (-8.3 ± 3.5 s; p < 0.001, d = 0.64) and SBC3 (-8.6 ± 5.4 s; p = 0.003, d = 0.66) reduced the time to complete the 4 km TT, with no difference between SBC conditions (mean difference = 0.2 ± 0.2 s; p = 0.87, d = 0.02). These findings suggest trained cyclists may benefit from individualising NaHCO 3 ingestion to time to peak HCO 3 - to enhance 4 km TT performance.

  18. Effect of somatostatin-14 on duodenal mucosal bicarbonate secretion in guinea pigs.

    PubMed

    Odes, H S; Muallem, R; Reimer, R; Ioffe, S; Beil, W; Schwenk, M; Sewing, K F

    1995-03-01

    The role of somatostatin-14 in duodenal mucosal HCO3- secretion was investigated in anesthetized, indomethacin-treated guinea pigs. Net HCO3- output from the isolated, perfused (24 mM NaHCO3 + 130 mM NaCl) proximal duodenum was measured during intravenous infusion (alone or in combination) of somatostatin-14, carbachol, vasoactive intestinal peptide (VIP), and prostaglandin E2 (PGE2). In homogenates of duodenal enterocytes, the effect of these agents on adenylate cyclase activity was studied. Basal duodenal HCO3- secretion (3.5 +/- 0.2 mumol/cm/10 min) was reduced dose dependently by somatostatin-14 (10(-11) mol/kg, 10(-9) mol/kg, and 10(-7) mol/kg). Carbachol, VIP, and PGE2 (all 10(-8) mol/kg) increased basal duodenal HCO3- secretion two- to threefold. Somatostatin-14 (10(-7) mol/kg) abolished the stimulatory effect of carbachol and VIP, but not that of PGE2. Basal adenylate cyclase activity in isolated duodenal enterocytes (9.4 +/- 1.0 pmol cAMP/mg protein/min) was unaltered by somatostatin (10(-6) mol/liter) or carbachol (10(-3) mol/liter). VIP (10(-8) mol/liter) and PGE2 (10(-7) mol/liter) increased adenylate cyclase activity two- to threefold, and these effects were unchanged by somatostatin-14 (10(-6) mol/liter). In conclusion, somatostatin-14 inhibits basal and carbachol- and VIP-stimulated duodenal HCO3- secretion, and its mechanism of action is not via inhibition of adenylate cyclase activity in duodenal enterocytes.

  19. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels

    PubMed Central

    Jun, Ikhyun; Cheng, Mary Hongying; Sim, Eunji; Jung, Jinsei; Suh, Bong Lim; Kim, Yonjung; Son, Hankil; Park, Kyungsoo; Kim, Chul Hoon; Yoon, Joo‐Heon; Whitcomb, David C.; Bahar, Ivet

    2016-01-01

    Key points Cellular stimuli can modulate the ion selectivity of some anion channels, such as CFTR, ANO1 and the glycine receptor (GlyR), by changing pore size.Ion selectivity of CFTR, ANO1 and GlyR is critically affected by the electric permittivity and diameter of the channel pore.Pore size change affects the energy barriers of ion dehydration as well as that of size‐exclusion of anion permeation.Pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of CFTR, ANO1 and GlyR.Dynamic change in P HC O3/ Cl may mediate many physiological and pathological processes. Abstract Chloride (Cl−) and bicarbonate (HCO3 −) are two major anions and their permeation through anion channels plays essential roles in our body. However, the mechanism of ion selection by the anion channels is largely unknown. Here, we provide evidence that pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of anion channels by reducing energy barriers of size‐exclusion and ion dehydration of HCO3 − permeation. Molecular, physiological and computational analyses of major anion channels, such as cystic fibrosis transmembrane conductance regulator (CFTR), anoctamin‐1(ANO1/TMEM16A) and the glycine receptor (GlyR), revealed that the ion selectivity of anion channels is basically determined by the electric permittivity and diameter of the pore. Importantly, cellular stimuli dynamically modulate the anion selectivity of CFTR and ANO1 by changing the pore size. In addition, pore dilatation by a mutation in the pore‐lining region alters the anion selectivity of GlyR. Changes in pore size affected not only the energy barriers of size exclusion but that of ion dehydration by altering the electric permittivity of water‐filled cavity in the pore. The dynamic increase in P HC O3/ Cl by pore dilatation may have many physiological and pathophysiological implications ranging from epithelial HCO3 − secretion to neuronal excitation. PMID:26663196

  20. Regulators of Slc4 bicarbonate transporter activity.

    PubMed

    Thornell, Ian M; Bevensee, Mark O

    2015-01-01

    The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na(+)-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO(-) 3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO(-) 3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na(+) or Cl(-)). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.

  1. High sodium intake increases HCO3− absorption in medullary thick ascending limb through adaptations in basolateral and apical Na+/H+ exchangers

    PubMed Central

    George, Thampi; Watts, Bruns A.

    2011-01-01

    A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO3−. Here, we examined the role of the apical NHE3 and basolateral NHE1 Na+/H+ exchangers in this adaptation. MTALs from rats drinking H2O or 0.28 M NaCl for 5–7 days were perfused in vitro. High sodium intake increased HCO3− absorption rate by 60%. The increased HCO3− absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO3− absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na+/H+ exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na+/H+ exchange activity by 30% under conditions in which basolateral Na+/H+ exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO3− absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO3− absorption. The adaptive increases in Na+/H+ exchange activity and HCO3− absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance. PMID:21613418

  2. Sodium bicarbonate ingestion and boxing performance.

    PubMed

    Siegler, Jason C; Hirscher, Kristian

    2010-01-01

    Boxing is a sport that consists of multiple high-intensity bouts separated by minimal recovery time and may benefit from a pre-exercise alkalotic state. The purpose of this study was to observe the ergogenic potential of sodium bicarbonate (NaHCO3) ingestion on boxing performance. Ten amateur boxers volunteered to participate in 2 competitive sparring bouts. The boxers were prematched for weight and boxing ability and consumed either 0.3 g.kg(-1) body weight (BW) of NaHCO3 (BICARB) or 0.045 g.kg(-1) BW of NaCl placebo (PLAC) mixed in diluted low calorie-flavored cordial. The sparring bouts consisted of four 3-minute rounds, each separated by 1-minute seated recovery. Blood acid-base (pH, bicarbonate [HCO3(-)], base excess [BE]), and performance (rates of perceived exertion [RPE], heart rate [HR] [HR(ave) and HR(max)], total punches landed successfully) profiles were analyzed before (where applicable) and after sparring. The results indicated a significant interaction effect for HCO3(-) (p < or = 0.001) and BE (p < 0.001), but not for pH (p = 0.48). Post hoc analysis revealed higher presparring HCO3(-) and BE for the BICARB condition, but no differences between the BICARB and PLAC conditions postsparring. There was a significant increase in punches landed during the BICARB condition (p < 0.001); however, no significant interaction effects for HRave (p = 0.15), HRmax (p = 0.32), or RPE (p = 0.38). The metabolic alkalosis induced by the NaHCO3 loading elevated before and after sparring blood buffering capacity. In practical application, the findings suggest that a standard NaHCO3 loading dose (0.3 g.kg(-1)) improves punch efficacy during 4 rounds of sparring performance.

  3. Aqueous origins of bright salt deposits on Ceres

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.

    2017-11-01

    Bright materials have been reported in association with impact craters on Ceres. The abundant Na2CO3 and some ammonium salts, NH4HCO3 and/or NH4Cl, were detected in bright deposits within Occator crater with Dawn near infrared spectroscopy. The composition and appearance of the salts suggest their aqueous mobilization and emplacement after formation of the crater. Here we consider origins of the bright deposits through calculation of speciation in the H-C-N-O-Na-Cl water-salt type system constrained by the mass balance of observed salts. Calculations of chemical equilibria show that initial solutions had the pH of ∼10. The temperature and salinity of solutions could have not exceeded ∼273 K and ∼100 g per kg H2O, respectively. Freezing models reveal an early precipitation of Na2CO3·10H2O followed by minor NaHCO3. Ammonium salts precipitate near eutectic from brines enriched in NH4+, Cl- and Na+. A late-stage precipitation of NaCl·2H2O is modeled for solution compositions with added NaCl. Calculated eutectics are above 247 K. The apparently unabundant ammonium and chloride salts in Occator's deposits imply a rapid emplacement without a compositional evolution of solution. Salty ice grains could have deposited from post-impact ballistic plumes formed through low-pressure boiling of subsurface solutions. Hydrated and ammonium salts are unstable at maximum temperatures of Ceres' surface and could decompose through space weathering. Occator's ice-free salt deposits formed through a post-depositional sublimation of ice followed by dehydration of Na2CO3·10H2O and NaHCO3 to Na2CO3. In other regions, excavated and exposed bright materials could be salts initially deposited from plumes and accumulated at depth via post-impact boiling. The lack of detection of sulfates and an elevated carbonate/chloride ratio in Ceres' materials suggest an involvement of compounds abundant in the outer solar system.

  4. Effect of furosemide on ion transport in the turtle bladder: evidence for direct inhibition of active acid-base transport.

    PubMed

    Ehrenspeck, G; Voner, C

    1985-07-25

    The diuretic furosemide inhibits acid-base transport in the short-circuited turtle bladder. It inhibits luminal acidification when present in either mucosal or serosal bathing fluids, but decreases alkalinization only from the serosal side of the tissue. The inhibition of both acid-base transport processes is independent of ambient Cl-; and the disulfonic stilbene, SITS, an inhibitor of Cl--HCO3- exchange, fails to prevent the furosemide-elicited inhibition of alkalinization. These results preclude an absolute requirement of a furosemide-sensitive Cl--HCO3- exchange by these transport processes. The drug also interferes with the CO2-induced stimulation of acidification and alkalinization. The inhibition of the residual acidification in acetazolamide-treated, acidotic bladders, however, suggests an action at sites other than cytosolic carbonic anhydrase. Although active Na+ and Cl- reabsorption and tissue oxygen uptake are also decreased by furosemide, the rate of oxygen consumption uncoupled by 2,4-dinitrophenol is not diminished, indicating a primary inhibition of the various ion transport processes, not of metabolism. It is proposed that inhibition of transepithelial acid-base transport by furosemide in the turtle bladder includes inhibition of the acid-base pumps.

  5. Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water rock interaction and hydrologic mixing

    NASA Astrophysics Data System (ADS)

    Chae, Gi-Tak; Yun, Seong-Taek; Kim, Kangjoo; Mayer, Bernhard

    2006-04-01

    The Pocheon spa-land area, South Korea occurs in a topographically steep, fault-bounded basin and is characterized by a hydraulic upwelling flow zone of thermal water (up to 44 °C) in its central part. Hydrogeochemical and environmental isotope data for groundwater in the study area suggested the occurrence of two distinct water types, a Ca-HCO 3 type and a Na-HCO 3 type. The former water type is characterized by relatively high concentrations of Ca, SO 4 and NO 3, which show significant temporal variation indicating a strong influence by surface processes. In contrast, the Na-HCO 3 type waters have high and temporally constant temperature, pH, TDS, Na, Cl, HCO 3 and F, indicating the attainment of a chemical steady state with respect to the host rocks (granite and gneiss). Oxygen, hydrogen and tritium isotope data also indicate the differences in hydrologic conditions between the two groups: the relatively lower δ 18O, δD and tritium values for Na-HCO 3 type waters suggest that they recharged at higher elevations and have comparatively long mean residence times. Considering the geologic and hydrogeologic conditions of the study area, Na-HCO 3 type waters possibly have evolved from Ca-HCO 3 type waters. Mass balance modeling revealed that the chemistry of Na-HCO 3 type water was regulated by dissolution of silicates and carbonates and concurrent ion exchange. Particularly, low Ca concentrations in Na-HCO 3 water was mainly caused by cation exchange. Multivariate mixing and mass balance modeling (M3 modeling) was performed to evaluate the hydrologic mixing and mass transfer between discrete water masses occurring in the shallow peripheral part of the central spa-land area, where hydraulic upwelling occurs. Based on Q-mode factor analysis and mixing modeling using PHREEQC, an ideal mixing among three major water masses (surface water, shallow groundwater of Ca-HCO 3 type, deep groundwater of Na-HCO 3 type) was proposed. M3 modeling suggests that all the groundwaters in the spa area can be described as mixtures of these end-members. After mixing, the net mole transfer by geochemical reaction was less than that without mixing. Therefore, it is likely that in the hydraulic mixing zone geochemical reactions are of minor importance and, therefore, that mixing regulates the groundwater geochemistry.

  6. Sulfate-chloride exchange by lobster hepatopancreas is regulated by pH-sensitive modifier sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cattey, M.A.; Ahearn, G.A.; Gerencser, G.A.

    1991-03-15

    {sup 35}SO{sub 4}{sup 2{minus}} uptake by Atlantic lobster (Homarus americanus) hepatopancreatic epithelial brush border membrane vesicles (BBMV) was stimulated by internal Cl{sup {minus}}, but not internal HCO{sub 3}{sup {minus}}, or external Na{sup +}. Sulfate-chloride exchange was stimulated by inside positive, and inhibited by inside negative, trans-membrane K diffusion potentials. {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange was strongly inhibited by 4,4{prime} diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS), 4-acetamido-4{prime}-isotheocynaostilbene-2,2{prime}-disulfonic acid, (SITS), and thiosulfate. Chloride, bicarbonate, furosamide, and bumetanide slightly, yet significantly, cis-inhibited {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange. Altering bilateral pH from 8.0 to 5.4 stimulated {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange when vesicles weremore » loaded with Cl{sup {minus}}, but reduced bilateral pH alone or the presence of pH gradients did not affect {sup 35}SO{sub 4}{sup 2{minus}} transport in the absence of internal Cl{sup {minus}}. {sup 36}Cl uptake into SO{sub 4}{sup 2{minus}}-loaded BBMV was stimulated by an internal negative membrane potential and inhibited when the interior was electrically positive. A model is proposed which suggests that SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange is regulated by internal and external pH-sensitive modifier sites on the anion antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter on the same membrane.« less

  7. Assessment of groundwater quality in Kashipur Block, Purulia district, West Bengal

    NASA Astrophysics Data System (ADS)

    Kundu, Anindita; Nag, S. K.

    2018-03-01

    Hydrogeochemical investigation of groundwater resources of Kashipur Block, Purulia district, West Bengal has been carried out to assess the water quality for domestic and irrigation uses. Twenty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (CO3 2-, HCO3 -, Cl-, SO4 2-, F-) and cations (Ca2+, Mg2+, Fe2+, Na+, K+). Study results reveal that the groundwater of the area is mostly acidic in nature. The trend amongst average ionic concentrations of cations and anions is Mg2+ > Ca2+ > Na+ > Fe2+ > K+ and Cl- > HCO3 - > CO3 2- > SO4 2- > F- respectively during the post monsoon whereas the trend for cations and anions are Mg2+ > Ca2+> Na+ > K+ > Fe and Cl- > HCO3 - > SO4 2- > F- > CO3 - in pre monsoon session, respectively. To explore the ionic toxicity of the study area, the derived parameters like sodium adsorption ratio, soluble sodium percentage, residual sodium carbonate, magnesium adsorption ratio, Kelly's ratio and permeability index were calculated. The hydro geochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Kashipur Block, Purulia District. According to piper diagram, water samples of most of the area of the block are fresh water and in some areas sulphate rich throughout the year. All samples are distributed to central rock dominance category. Groundwater chemistry of this block is mainly controlled by the interaction existing between the litho units and the percolating water into the subsurface domain. However, the groundwater quality and suitability of this study area can be termed as good to moderate with a few exceptions which have been encountered on a local scale.

  8. Thermal degradation of (6R,S)-5,10-methenyltetrahydrofolate in aqueous solution at pH 8

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Batschauer, A.; Wolf, E.

    2009-03-01

    The degradation of the folate (6R,S)-5,10-methenyltetrahydrofolate chloride (MTHF-Cl) in aqueous solution at pH 8 at room temperature is studied by absorption spectra measurements. Samples with and without the reducing agent β-mercaptoethanol (β-ME) both under aerobic and anaerobic conditions are investigated. MTHF-Cl hydrolyses to (6R,S)-10-formyltetrahydrofolate (10-HCO-H4folate) in all four cases. 10-HCO-H4folate oxidizes to 10-formyldihydrofolate (10-HCO-H2folate) under aerobic conditions in the absence of β-ME. The degradation dynamics is analysed theoretically and conversion rate constants of hydrolysis and oxidation are determined.

  9. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations.

    PubMed

    Bouzourra, Hazar; Bouhlila, Rachida; Elango, L; Slama, Fairouz; Ouslati, Naceur

    2015-02-01

    Coastal aquifers are at threat of salinization in most parts of the world. This study was carried out in coastal shallow aquifers of Aousja-Ghar El Melh and Kalâat el Andalous, northeastern of Tunisia with an objective to identify sources and processes of groundwater salinization. Groundwater samples were collected from 42 shallow dug wells during July and September 2007. Chemical parameters such as Na(+), Ca(2+), Mg(2+), K(+), Cl(-), SO4 (2-), HCO3 (-), NO3 (-), Br(-), and F(-) were analyzed. The combination of hydrogeochemical, statistical, and GIS approaches was used to understand and to identify the main sources of salinization and contamination of these shallow coastal aquifers as follows: (i) water-rock interaction, (ii) evapotranspiration, (iii) saltwater is started to intrude before 1972 and it is still intruding continuously, (iv) irrigation return flow, (v) sea aerosol spray, and finally, (vi) agricultural fertilizers. During 2005/2006, the overexploitation of the renewable water resources of aquifers caused saline water intrusion. In 2007, the freshening of a brackish-saline groundwater occurred under natural recharge conditions by Ca-HCO3 meteoric freshwater. The cationic exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. The sulfate reduction process and the neo-formation of clays minerals characterize the hypersaline coastal Sebkha environments. Evaporation tends to increase the concentrations of solutes in groundwater from the recharge areas to the discharge areas and leads to precipitate carbonate and sulfate minerals.

  10. External solution driving forces for isotonic fluid absorption in proximal tubules.

    PubMed

    Andreoli, T E; Schafer, J A

    1979-02-01

    We have explored evidence that suggests that lateral intercellular spaces is the mammalian proximal nephron do not serve as a hypertonic "central compartment" driving volume absorption. A primary consideration is the very low transepithelial resistance of this tissue as demonstrated by several laboratories. By making the reasonable assumption that passive ion permeation occurs via a paracellular route, we have concluded that the diffusion resistance of the spaces in insufficient to allow the development of a significant compositional difference between the spaces and the peritubular medium. This conclusion led us to look for potential osmotic gradients existing between the luminal and peritubular solutions. From the perfusion rate dependence of osmotic volume flow in the absence of active transport in isolated convoluted and straight proximal tubules, we calculated that both segments have very high hydraulic conductances, on the order of 3,000-5,000 micron/sec. Consequently, slight differences in the effective osmolality of the external solutions are sufficient to explain net volume absorption both in vivo and in vitro. We have provided evidence for two such driving forces. First, the development of asymmetrical anion concentration differences along the length of the proximal nephron due to preferential reabsorption of HCO-3 provides a driving force if the reflection coefficient for HCO-3 exceeds that for Cl-. Second, slight luminal hypotonicity may develop as a consequence of active solute absorption. Although both mechanisms probably occur simultaneously in vivo, we consider the former to be quantitatively the most important.

  11. Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India

    NASA Astrophysics Data System (ADS)

    Ravikumar, P.; Somashekar, R. K.

    2017-05-01

    The present study envisages the importance of graphical representations like Piper trilinear diagram and Chadha's plot, respectively to determine variation in hydrochemical facies and understand the evolution of hydrochemical processes in the Varahi river basin. The analytical values obtained from the groundwater samples when plotted on Piper's and Chadha's plots revealed that the alkaline earth metals (Ca2+, Mg2+) are significantly dominant over the alkalis (Na+, K+), and the strong acidic anions (Cl-, SO4 2-) dominant over the weak acidic anions (CO3 2-, HCO3 -). Further, Piper trilinear diagram classified 93.48 % of the samples from the study area under Ca2+-Mg2+-Cl--SO4 2- type and only 6.52 % samples under Ca2+-Mg2+-HCO3 - type. Interestingly, Chadha's plot also demonstrated the dominance of reverse ion exchange water having permanent hardness (viz., Ca-Mg-Cl type) in majority of the samples over recharging water with temporary hardness (i.e., Ca-Mg-HCO3 type). Thus, evaluation of hydrochemical facies from both the plots highlighted the contribution from the reverse ion exchange processes in controlling geochemistry of groundwater in the study area. Further, PCA analysis yielded four principal components (PC1, PC2, PC3 and PC4) with higher eigen values of 1.0 or more, accounting for 65.55, 10.17, 6.88 and 6.52 % of the total variance, respectively. Consequently, majority of the physico-chemical parameters (87.5 %) loaded under PC1 and PC2 were having strong positive loading (>0.75) and these are mainly responsible for regulating the hydrochemistry of groundwater in the study area.

  12. Analysis of hydrogeochemical facies in groundwater of upper part of Cross River Basin, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Stephen, Ukpai N.; Celestine, Okogbue O.; Solomon, Onwuka O.

    2017-07-01

    Upper Cross River Hydrogeological Basin lies within latitudes 60 021N to 60 241N and longitudes 80 001E to 80 161E, and is generally underlain by shales of Asu River group of Albian age. The area has Histories of intensive mineralization which influenced groundwater system, resulting to occurrence of different water types. This study determines the various water types via evaluation of major ion concentration from representative water samples collected across the area. Twenty (20) water samples were analyzed using Spectrophotometer of HACH DR/2010 series, and results showed that groundwater in the area is generally hard and polluted with TDS in some places. Statistical inspection was performed on the results using aqua-chem, and it delineated five hydro-chemical facies, namely: Ca-Mg-Cl-S04, Ca-Mg-HCO3-Cl-SO4, Ca-Mg-HCO3, Na-K-HCO3 and Na-K-Cl-SO4; all lie between slight acidic and weak alkaline water. These chemical facies (water types) diffused from non-point sources in urban area and point source from south of Abakaliki town. The dispersion of the facies plumes is possibly controlled by advection process through structural weak zones such as fractures. Hydraulic heads determined from hand-dug wells indicate local potentiometric surfaces, hence, showed local groundwater flow system which is possibly controlled by the underlying low permeable aquicludes formed by shales. The protective capacity of the aquitards was somewhat reduced by the permeating fractures which exposed the aquifers to polluting effects of mineralized water-types.

  13. The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature

    NASA Astrophysics Data System (ADS)

    Millero, Frank; Huang, Fen; Graham, Taylor; Pierrot, Denis

    2007-01-01

    Potentiometric measurements of the stoichiometric constants for the dissociation of carbonic acid in NaCl solutions ( K1∗=[H+][HCO3-]/[CO] and K1∗=[H][CO32-]/[HCO3-]) have been made as a function of molality (0-6 m) and temperature (0-50 °C). The results have been fitted to the equations pKi∗-pKi=Ai+Bi/T+CilnT The values of p Ki in pure water are taken from the literature and the adjustable parameters Ai, Bi and Ci are a function of molality A1=35.2911m+0.8491m-0.32m+0.055m B1=-1583.09m C1=-5.4366m A2=38.2746m+1.6057m-0.647m+0.113m B2=-1738.16m C2=-6.0346m ( σ = 0.013 for pK1∗ and σ = 0.020 for pK2∗, N = 603). The values determined in this study are in good agreement with the 25 °C literature values. Our results have been combined with previous measurements to derive equations that are valid from 0 to 250 °C and 0 to 5 m. This large data set has been used to determine the Pitzer parameters ( β(0), β(1) and Cϕ) for the interactions of Na + with HCO 3- and CO 32- from 0 to 250 °C. These results extend the carbonate system Pitzer model to hydrothermal brines containing high concentrations of NaCl.

  14. Na(+)/Ca(2+) exchange regulates Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion in mice.

    PubMed

    Dong, Hui; Sellers, Zachary M; Smith, Anders; Chow, Jimmy Y C; Barrett, Kim E

    2005-03-01

    Stimulation of muscarinic receptors in duodenal mucosa raises intracellular Ca(2+), which regulates ion transport, including HCO(3)(-) secretion. However, the underlying Ca(2+) handling mechanisms are poorly understood. The aim of the present study was to determine whether Na(+)/Ca(2+) exchanger (NCX) plays a role in the regulation of duodenal mucosal ion transport and HCO(3)(-) secretion by controlling Ca(2+) homeostasis. Mouse duodenal mucosa was mounted in Ussing chambers. Net ion transport was assessed as short-circuit current (I(sc)), and HCO(3)(-) secretion was determined by pH-stat. Expression of NCX in duodenal mucosae was analyzed by Western blot, and cytosolic Ca(2+) in duodenocytes was measured by fura 2. Carbachol (100 muM) increased I(sc) in a biphasic manner: an initial transient peak within 2 min and a later sustained plateau starting at 10 min. Carbachol-induced HCO(3)(-) secretion peaked at 10 min. 2-Aminoethoxydiphenylborate (2-APB, 100 muM) or LiCl (30 mM) significantly reduced the initial peak in I(sc) by 51 or 47%, respectively, and abolished the plateau phase of I(sc) without affecting HCO(3)(-) secretion induced by carbachol. Ryanodine (100 muM), caffeine (10 mM), and nifedipine (10 muM) had no effect on either response to carbachol. In contrast, nickel (5 mM) and KB-R7943 (10-30 muM) significantly inhibited carbachol-induced increases in duodenal mucosal I(sc) and HCO(3)(-) secretion. Western blot analysis showed expression of NCX1 proteins in duodenal mucosae, and functional NCX in duodenocytes was demonstrated in Ca(2+) imaging experiments where Na(+) depletion elicited Ca(2+) entry via the reversed mode of NCX. These results indicate that NCX contributes to the regulation of Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion that results from stimulation of muscarinic receptors.

  15. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas

    USGS Publications Warehouse

    Warner, Nathaniel R.; Kresse, Timothy M.; Hays, Phillip D.; Down, Adrian; Karr, Jonathan D.; Jackson, R.B.; Vengosh, Avner

    2013-01-01

    Exploration of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling and hydraulic fracturing has changed the energy landscape in the USA providing a vast new energy source. The accelerated production of natural gas has triggered a debate concerning the safety and possible environmental impacts of these operations. This study investigates one of the critical aspects of the environmental effects; the possible degradation of water quality in shallow aquifers overlying producing shale formations. The geochemistry of domestic groundwater wells was investigated in aquifers overlying the Fayetteville Shale in north-central Arkansas, where approximately 4000 wells have been drilled since 2004 to extract unconventional natural gas. Monitoring was performed on 127 drinking water wells and the geochemistry of major ions, trace metals, CH4 gas content and its C isotopes (δ13CCH4), and select isotope tracers (δ11B, 87Sr/86Sr, δ2H, δ18O, δ13CDIC) compared to the composition of flowback-water samples directly from Fayetteville Shale gas wells. Dissolved CH4 was detected in 63% of the drinking-water wells (32 of 51 samples), but only six wells exceeded concentrations of 0.5 mg CH4/L. The δ13CCH4 of dissolved CH4 ranged from −42.3‰ to −74.7‰, with the most negative values characteristic of a biogenic source also associated with the highest observed CH4 concentrations, with a possible minor contribution of trace amounts of thermogenic CH4. The majority of these values are distinct from the reported thermogenic composition of the Fayetteville Shale gas (δ13CCH4 = −35.4‰ to −41.9‰). Based on major element chemistry, four shallow groundwater types were identified: (1) low (<100 mg/L) total dissolved solids (TDS), (2) TDS > 100 mg/L and Ca–HCO3 dominated, (3) TDS > 100 mg/L and Na–HCO3dominated, and (4) slightly saline groundwater with TDS > 100 mg/L and Cl > 20 mg/L with elevated Br/Cl ratios (>0.001). The Sr (87Sr/86Sr = 0.7097–0.7166), C (δ13CDIC = −21.3‰ to −4.7‰), and B (δ11B = 3.9–32.9‰) isotopes clearly reflect water–rock interactions within the aquifer rocks, while the stable O and H isotopic composition mimics the local meteoric water composition. Overall, there was a geochemical gradient from low-mineralized recharge water to more evolved Ca–HCO3, and higher-mineralized Na–HCO3 composition generated by a combination of carbonate dissolution, silicate weathering, and reverse base-exchange reactions. The chemical and isotopic compositions of the bulk shallow groundwater samples were distinct from the Na–Cl type Fayetteville flowback/produced waters (TDS ∼10,000–20,000 mg/L). Yet, the high Br/Cl variations in a small subset of saline shallow groundwater suggest that they were derived from dilution of saline water similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH4 and salinity occurrences in shallow drinking water wells with proximity to shale-gas drilling sites. The integration of multiple geochemical and isotopic proxies shows no direct evidence of contamination in shallow drinking-water aquifers associated with natural gas extraction from the Fayetteville Shale.

  16. Hydrogeology of the northern segment of the Edwards aquifer, Austin region, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senger, R.K.; Collins, E.W.; Kreitler, C.W.

    1990-01-01

    This book reports on geologic mapping and fracture analysis of Lower Cretaceous Edwards aquifer strata conducted to provide a better understanding of the geology of the Balcones Fault Zone as it relates to the hydrogeology of the aquifer's northern segment. Hydrochemical, water-level, and precipitation data were studied to evaluate ground-water flow characteristics, recharge and discharge mechanisms, and the hydrochemical evolution of ground water in the Edwards aquifer. The authors found that ground water generally flows eastward, and main discharge of the unconfined, fast-flowing system occurs along fractures through springs and seeps at the major creeks and rivers in the Georgetownmore » area. Some recharge water moves downdip past these springs into a confined section farther east, along a much reduced hydraulic gradient, and discharges by leaking through the confining units. Hydrochemistry of Edwards ground water indicates an evolution from a Ca-HCO{sub 3} and Ca-Mg-HCO{sub 3} to a mixed-cation-HCO{sub 3} farther downdip to a Na-HCO{sub 3}, and finally to a Na-mixed-anion-type water.« less

  17. Determination of suitable chemical extraction methods for the available iron content of brown forest soils in Turkey

    NASA Astrophysics Data System (ADS)

    Adiloglu, Aydin

    2006-09-01

    The aim of this research was to determine the available iron (Fe) content of brown forest soils of Edirne Province and the most suitable chemical extraction method. Eight chemical extraction methods (the 0.005 M DTPA + 0.01 M CaCl2 + 0.1 MTEA, 0.05 M HCl + 0.012 M H2SO4, 1 M NH4OAc (pH: 4.8), 0.01 M EDTA + 1 M NH4OAc, 1 M MgCl2, 0.01 M EDTA + 1 M (NH4)2CO3, 0.005 M DTPA + 1 M NH4HCO3, and 0.001 M EDDHA methods) and six biological indices (the dry matter yield, Fe concentration, Fe uptake, relative dry matter yield, relative Fe concentration, and relative Fe uptake) were compared. The biological indices were determined with barley (Hordeum vulgare L.) grown under greenhouse conditions. At the end of the experiment, the highest correlation coefficients (r) were determined to be between the 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA method and the biological indices and between the 0.005 M DTPA + 1 M NH4HCO3 method and the biological indices. The corresponding correlation coefficients (r) for the 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA method and the six biological indices were 0.621**, 0.823**, 0.810** 0.433**, 0.558**, and 0.640**, respectively. For the 0.005 M DTPA + 1 M NH4HCO3 method, these coefficients were equal to 0.618**, 0.520**, 0.679**, 0.521**, 0.492**, and 0.641**, respectively (** indicate the validity of the relationships at p < 0.01) These extraction methods, out of all the methods tested, were suggested for the determination of the available Fe content of the brown forest soils.

  18. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China.

    PubMed

    Liu, Fei; Song, Xianfang; Yang, Lihu; Han, Dongmei; Zhang, Yinghua; Ma, Ying; Bu, Hongmei

    2015-12-15

    Groundwater resources are increasingly exploited for industrial and agricultural purposes in many arid regions globally, it is urgent to gain the impact of the enhanced anthropogenic pressure on the groundwater chemistry. The aim of this study was to acquire a comprehensive understanding of the evolution of groundwater chemistry and to identify the impact of natural and anthropogenic factors on the groundwater chemistry in the Subei Lake basin, Northwestern China. A total of 153 groundwater samples were collected and major ions were measured during the three campaigns (August and December 2013, May 2014). At present, the major hydrochemical facies in unconfined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Na-HCO3, Ca-Mg-SO4 and Na-SO4-Cl types, while the main hydrochemical facies in confined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Ca-HCO3 and Na-HCO3 types. Relatively greater seasonal variation can be observed in the chemical constituents of confined groundwater than that of unconfined groundwater. Rock weathering predominates the evolution of groundwater chemistry in conjunction with the cation exchange, and the dissolution/precipitation of gypsum, halite, feldspar, calcite and dolomite are responsible for the chemical constituents of groundwater. Anthropogenic activities can be classified as: (1) groundwater overexploitation; (2) excessive application of fertilizers in agricultural areas. Due to intensive groundwater pumping, the accelerated groundwater mineralization resulted in the local changes in hydrochemical facies of unconfined groundwater, while the strong mixture, especially a large influx of downward leakage from the unconfined aquifer into the confined aquifer, played a vital role in the fundamental variation of hydrochemical facies in confined aquifer. The nitrate contamination is mainly controlled by the local hydrogeological settings coupled with the traditional flood irrigation. The deeper insight into geochemical evolution of groundwater obtained from this study can be beneficial to improving groundwater management for sustainable development in the rapidly industrialized areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Assessment of hydrogeochemistry and environmental isotopes of surface and groundwaters in the Kütahya Plain, Turkey

    NASA Astrophysics Data System (ADS)

    Abadi Berhe, Berihu; Erdem Dokuz, Uğur; Çelik, Mehmet

    2017-10-01

    The aim of the present work is to determine the geochemical processes that control the nature of the groundwater and assess the quality of water for drinking and public health purposes. Surface and groundwater samples of Kütahya plain were analyzed for their physio-chemical and environmental isotope properties. The relative concentrations of the water ions were found to occur in the order of Ca2+>Mg2+>(K+ + Na+) and HCO3->SO42->Cl-. Piper diagram shows that Ca-Mg/Mg-Ca-HCO3 was the dominant water types. Waters in the area were super-saturated with respect to carbonates. However, they were under-saturated with respect to sulphate minerals. The groundwaters had a mean isotopic composition of -67.32 δ2H and -9.72 δ18O and were comparatively lower than surface waters -64.64 δ2H and -9.25 δ18O. Tritium activities in groundwater from the wells ranged from 1.00 to 8.38 TU with a mean value of 4.37 TU. The impact of agricultural practices and poor sanitation conditions is indicated by the positive correlation between K+ - NO3-, K+- NO2- and HCO3- - Cl- ions as well as Na+ and Mg2+ ions with SO42-ion. The groundwater quality of Kütahya plain is influenced by various natural and anthropogenic factors.

  20. Assessment of Groundwater quality in Krishnagiri and Vellore Districts in Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Shanmugasundharam, A.; Kalpana, G.; Mahapatra, S. R.; Sudharson, E. R.; Jayaprakash, M.

    2017-07-01

    Groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural and industrial purposes. The suitability of groundwater for drinking and irrigation has been assessed in north and eastern part of Krishnagiri district, South-western part of Vellore district and contiguous with Andhra Pradesh states, India. A total of 31 groundwater samples were collected in the study area. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, {HCO}3^{ - }, Cl-, {SO}4^{2 - }, Ca2+, Mg2+, Na+ and K+. The dominant cations are in the order of Na+ > K+ > Ca2+ > Mg2+ while the dominant anions have the trends of Cl- > {HCO}3^{ - } > {SO}4^{2 - } > CO3. The quality of the water is evaluated using Wilcox diagram and the results reveals that most of the samples are found to be suitable for irrigation. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose.

  1. Hydrochemical and isotopic characteristics of estuarial seawater and river water of Bailanghe in Laizhou Bay, China

    NASA Astrophysics Data System (ADS)

    Yang, Qiaofeng; Xu, Suning; Wang, Ruijiu; Li, Wenpeng; Wang, Zhiyi; Mei, Junjun; Ding, Zhilei; Yang, Peijie; Yu, Liangju; Lv, Tieying; Bai, Gang; Kang, Wei

    2016-04-01

    In the study of seawater intrusion, seawater is usually taken as an end-member that mixes with other source(s). However, compared to standard seawater, the coastal seawater particularly that near the estuary, can be strongly influenced by the rivers into the sea and by coastal human activities. Their composition can be thus continuously changed and redistributed with space and time. Therefore, before investigating seawater intrusion in a certain area, it is essentially important to determine the features of the estuarine seawater (e.g. the mixture percentage between standard seawater and river water). In this study, we aimed to gain a clear situation of the seawater intrusion in Laizhou Bay, Southern Bohai, China. The issue aforementioned was investigated by comparing the stable isotopic and hydrochemical composition of the marine and river water collected in this area. Samples investigated include 5 surface water samples collected at the downstream of the Bailanghe and 7 seawater samples near the estuary of Laizhou Bay. Inert tracers (δD, δ18O, Cl, Br) and reaction tracers (Na, Mg, SO4, HCO3, Ca, NO3) are particularly analyzed. The major results are as follows: 1) All the river water samples fall below the Global Meteoric Water Line in the δD - δ18O diagram, reflecting evaporation of the upstream reservoir water. The seawater samples fall on the mixing line of standard seawater and the river water in the stable isotopic diagram. 2) The Cl-δ18O diagram indicates widespread dissolution of evaporate into the river, while high concentration of Ca and HCO3-, as well as the SO42- - Cl relation of the river water samples reflect the dissolution of CO2 , carbonate and sulfate in the atmosphere and on the ground. 3) The Br/Cl ratios of seawater samples are closed to the marine ratios. This together with the plots of major ions vs. Cl suggest that the seawater samples are originated from the mixture of standard seawater and river water. Therefore, when referring to the mixing of river water and seawater, one means the solvents of these two end-members mix. This will cause the ratios of some hydrochemical components (i.e. Na, Mg, SO4 and Br) vs. Cl, close to the marine ratios, because the main component of the mixture comes from seawater. By contrast, the ratios of Ca, HCO3- and NO3- vs. Cl, which are mostly derived from continental clasts, are higher than the marine ratios. This mixing mechanism also applies to the groundwater.

  2. The effect of sodium bicarbonate ingestion on back squat and bench press exercise to failure.

    PubMed

    Duncan, Michael J; Weldon, Anthony; Price, Michael J

    2014-05-01

    This study examined the acute effects of NaHCO3 ingestion on repetitions to failure and rating of perceived exertion in the back squat and bench press in trained men. Eight resistance-trained men took part in this double-blind, randomized crossover experimental study whereby they ingested NaHCO3 (0.3 g·kg(-1) body mass) or placebo (sodium chloride NaCl: 0.045 g·kg(-1) body mass) solution 60 minutes before completing a bout of resistance exercise (3 sets of bench press and back squat exercise to failure at an intensity of 80% 1 repetition maximum). Experimental conditions were separated by at least 48 hours. Participants completed more repetitions to failure in the back squat after NaHCO3 ingestion (p = 0.04) but not for bench press (p = 0.679). Mean ± SD of total repetitions was 31.3 ± 15.3 and 24.6 ± 16.2 for back squat and 28.7 ± 12.2 and 26.7 ± 10.2 for bench press in NaHCO3 and placebo conditions, respectively. Repetitions to failure decreased as set increased for the back squat and bench press (p = 0.001, both). Rating of perceived exertion significantly increased with set for the back squat and bench press (p = 0.002, both). There was no significant change in blood lactate across time or between conditions. There were however treatment × time interactions for blood pH (p = 0.014) and blood HCO3 concentration (p = 0.001). After ingestion, blood pH and HCO3 (p = 0.008) concentrations were greater for the NaHCO3 condition compared with the placebo condition (p < 0.001). The results of this study suggest that sodium bicarbonate ingestion can enhance resistance exercise performance using a repetition to failure protocol in the first exercise in a resistance exercise session.

  3. A thermodynamic model for the prediction of phase equilibria and speciation in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to halite saturation

    NASA Astrophysics Data System (ADS)

    Li, Jun; Duan, Zhenhao

    2011-08-01

    A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca, CaHCO3+,Ca(OH)+,OH-,Cl-, HCO3-,HSO4-,SO42-, CO32-,CO,CaCO and CaSO 4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results. Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO 2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.

  4. Phosphate and carbonate mass balances and their relationships to ground-water inputs at Beaver Lake, Waukesha County, Wisconsin. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, B.E.; Cherkauer, D.S.

    1991-01-01

    The water and chemical budgets of Beaver Lake, Waukesha County, Wisconsin were examined to determine the role of groundwater and sediments in controlling lake quality in a seepage lake. Groundwater dominates the water budget, providing 70% of annual inflow and 60% of the outflow. The 15-m deep lake diverts flow from a depth of at least 90 m in the glacial aquifer of which it is a part. Acting as a flow-through system, the lake receives inflow predominantly from nearshore springs. Outflow occurs in the deeper parts of the lake. Groundwater provides more than 90% of the mass inflow ofmore » the major chemicals examined (Ca, Mg, Na, K, HCO3, SO4, Cl and NO3). It is also the major path of outflow for chemicals, accounting for more than 60% of the lake's loss of all the above ions except Ca and HCO3. Sedimentation of 270 + or - 82 g/sqm/yr of precominatly CaCO3 marl with significant silica and organic matter accounts for removal of 43 and 15% of the Ca and HCO3, respectively. Losses of Mg, Na, K, S and Cl to the sediment are insignificant. Data on NO3 fluxes indicate groundwater provides more N than can be accounted for in water and sediment effluxes. Seasonal denitrification in the lake's hypolimnion may account for the difference.« less

  5. Downregulation of the Cl-/HCO3-Exchanger Pendrin in Kidneys of Mice with Cystic Fibrosis: Role in the Pathogenesis of Metabolic Alkalosis.

    PubMed

    Varasteh Kia, Mujan; Barone, Sharon; McDonough, Alicia A; Zahedi, Kamyar; Xu, Jie; Soleimani, Manoocher

    2018-01-01

    Patients with cystic fibrosis (CF) are prone to the development of metabolic alkalosis; however, the pathogenesis of this life threatening derangement remains unknown. We hypothesized that altered acid base transport machinery in the kidney collecting duct underlies the mechanism of impaired bicarbonate elimination in the CF kidney. Balance studies in metabolic cages were performed in WT and CFTR knockout (CF) mice with the intestinal rescue in response to bicarbonate loading or salt restriction, and the expression levels and cellular distribution of acid base and electrolyte transporters in the proximal tubule, collecting duct and small intestine were examined by western blots, northern blots and/or immunofluorescence labeling. Baseline parameters, including acid-base and systemic vascular volume status were comparable in WT and CF mice, as determined by blood gas, kidney renin expression and urine chloride excretion. Compared with WT animals, CF mice demonstrated a significantly higher serum HCO3- concentration (22.63 in WT vs. 26.83 mEq/l in CF mice; n=4, p=0.013) and serum pH (7.33 in WT vs. 7.42 in CF mice; n=4, p=0.00792) and exhibited impaired kidney HCO3- excretion (urine pH 8.10 in WT vs. 7.35 in CF mice; n=7, p=0.00990) following a 3-day oral bicarbonate load. When subjected to salt restriction, CF mice developed a significantly higher serum HCO3- concentration vs. WT animals (29.26 mEq/L in CF mice vs. 26.72 in WT; n=5, p=0.0291). Immunofluorescence labeling demonstrated a profound reduction in the apical expression of the Cl-/HCO3- exchanger pendrin in cortical collecting duct cells and western and northern blots indicated diminished plasma membrane abundance and mRNA expression of pendrin in CF kidneys. We propose that patients with cystic fibrosis are prone to the development of metabolic alkalosis secondary to the inactivation of the bicarbonate secreting transporter pendrin, specifically during volume depletion, which is a common occurrence in CF patients. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Determination of the recharge area and salinization degree of karst springs in the Lamas Basin (Turkey).

    PubMed

    Yüce, Galip

    2005-12-01

    The Lamas Basin is an area covering approximately 4,400 km(2) situated on the eastern Mediterranean coast of Turkey covered with highly karstified limestone and dolomitic limestone from the Miocene and Mesozoic age, respectively. Owing to the area's low karstification basement, groundwater in the karst aquifer circulates deep from the surface towards the springs along the coast as well as to the submarine springs. This study aims working out the salinization level and recharge characteristics of the Lamas Basin using environmental isotopes techniques. In the study, the data collected previously to discover, in general terms, the groundwater characteristics within the area are reanalyzed to fulfil the purpose of the study. In conclusion, it is found that the down gradient karst springs discharging along the Mediterranean coast mostly contain groundwater contributions from higher altitudes with depleted delta(18)O and delta(2)H compositions. The delta(18)O-altitude effect was determined as approximately-0.12 per thousand/100 m which may indicate sea-spray intrusion towards inland. As a result, the salinization level of coastal springs changes ranging between 1.2 % and 17.0 %. Owing to the seawater encroachment, Ca-HCO(3) water type changes to Na-HCO(3) or Na-Cl water by the cation exchange during the dry period. As the unique freshwater potential extends along the coastal area, the groundwater production should be exploited in a way that seawater encroachment is kept at minimum.

  7. Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park

    USGS Publications Warehouse

    McCleskey, R. Blaine; Clor, Laura; Lowenstern, Jacob B.; Evans, William C.; Nordstrom, D. Kirk; Heasler, Henry; Huebner, Mark

    2012-01-01

    The thermal output from the Yellowstone magma chamber can be estimated from the Cl flux in the major rivers in Yellowstone National Park; and by utilizing continuous discharge and electrical conductivity measurements the Cl flux can be calculated. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes (Na, SO4, F, HCO3, SiO2, K, Li, B, and As) was quantified at monitoring sites along the Madison, Gibbon, and Firehole Rivers, which receive discharge from some of the largest and most active geothermal areas in Yellowstone. Except for some trace elements, most solutes behave conservatively and the ratios between geothermal solute concentrations are constant in the Madison, Gibbon, and Firehole Rivers. Hence, dissolved concentrations of Cl, Na, SO4, F, HCO3, SiO2, K, Li, Ca, B and As correlate well with conductivity (R2 > 0.9 for most solutes) and most exhibit linear trends. The 2011 flux for Cl, SO4, F and HCO3 determined using automated conductivity sensors and discharge data from nearby USGS gaging stations is in good agreement with those of previous years (1983–1994 and 1997–2008) at each of the monitoring sites. Continuous conductivity monitoring provides a cost- and labor-effective alternative to existing protocols whereby flux is estimated through manual collection of numerous water samples and subsequent chemical analysis. Electrical conductivity data also yield insights into a variety of topics of research interest at Yellowstone and elsewhere: (1) Geyser eruptions are easily identified and the solute flux quantified with conductivity data. (2) Short-term heavy rain events can produce conductivity anomalies due to dissolution of efflorescent salts that are temporarily trapped in and around geyser basins during low-flow periods. During a major rain event in October 2010, 180,000 kg of additional solute was measured in the Madison River. (3) The output of thermal water from the Gibbon River appears to have increased by about 0.2%/a in recent years, while the output of thermal water for the Firehole River shows a decrease of about 10% from 1983 to 2011. Confirmation of these trends will require continuing Cl flux monitoring over the coming decades.

  8. Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh

    USGS Publications Warehouse

    Zahid, A.; Hassan, M.Q.; Balke, K.-D.; Flegr, M.; Clark, D.W.

    2008-01-01

    Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25-33 m) and deep (191-318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl- and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl-. Use of chemical fertilizers may cause higher concentrations of NH 4+ and PO 43- in shallow well samples. In general, most ions are positively correlated with Cl-, with Na+ showing an especially strong correlation with Cl-, indicating that these ions are derived from the same source of saline waters. The relationship between Cl-/HCO 3- ratios and Cl- also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO 3- reflect the degree of water-rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO 42- and NO 3- and high concentrations of dissolved Fe and PO 43- and NH 4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO 42- and NO 3- but correlate weakly with Mo, Fe concentrations and positively with those of P, PO 43- and NH 4+ ions. ?? 2007 Springer-Verlag.

  9. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H₂O₂, UV/HSO₅⁻ and UV/S₂O₈²⁻.

    PubMed

    Luo, Congwei; Ma, Jun; Jiang, Jin; Liu, Yongze; Song, Yang; Yang, Yi; Guan, Yinghong; Wu, Daoji

    2015-09-01

    This study comparatively investigated atrazine (ATZ) degradation by irradiation at the wavelength of 254 nm in the presence of peroxides including hydrogen peroxide (H2O2), peroxymonosulfate (HSO5(-)), and persulfate (S2O8(2-)) at various initial ATZ concentrations and oxidant dosages. The effects of water matrix, such as carbonate/bicarbonate (HCO3(-)/CO3(2-)), chloride ions (Cl(-)), and natural organic matter (NOM), were evaluated on these three advanced oxidation processes. A simple steady-state kinetic model was developed based on the initial rates of ATZ destruction, which could well describe the apparent pseudo-first-order rate constants (k(app), s(-1)) of ATZ degradation in these three processes. The specific roles of reactive species (i.e., HO·, SO4(-·), CO3(-·), and Cl2(-·)) under various experimental conditions were quantitatively evaluated based on their steady-state concentrations obtained from this model. Modeling results showed that the steady-state concentrations of HO· and SO4(-·) decreased with the increase of CO3(2-)/HCO3(-) concentration, and the relative contribution of HO· to ATZ degradation significantly decreased in UV/H2O2 and UV/HSO5(-) systems. On the other hand, the scavenging effect of HCO3(-)/CO3(2-) on the relative contribution of SO4(-·) to ATZ degradation was lower than that on HO·. The presence of Cl(-) (0.5-10 mM) significantly scavenged SO4(-·) but had slightly scavenging effect on HO· at the present experimental pH, resulting in greater decrease of k(app) in the UV/S2O8(2-) than UV/H2O2 and UV/HSO5(-) systems. Higher levels of Cl2(-·) were generated in the UV/S2O8(2-) than those in the UV/H2O2 and UV/HSO5(-) systems at the same Cl(-) concentrations. NOM significantly decreased k(app) due to its effects of competitive UV absorption and radical scavenging with the latter one being dominant. These results improve the understanding of the effects of water constituents for ATZ degradation in the UV-based oxidation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Temporal variability and annual budget of inorganic dissolved matter in Andean Pacific Rivers located along a climate gradient from northern Ecuador to southern Peru

    NASA Astrophysics Data System (ADS)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Morera, Sergio; Crave, Alain; Rau, Pedro; Vauchel, Philippe; Lagane, Christelle; Sondag, Francis; Lavado, Casimiro Waldo; Pombosa, Rodrigo; Martinez, Jean-Michel

    2018-01-01

    In Ecuador and Peru, geochemical information from Pacific coastal rivers is limited and scarce. Here, we present an unedited database of major element concentrations from five HYBAM observatory stations monitored monthly between 4 and 10 years, and the discrete sampling of 23 Andean rivers distributed along the climate gradient of the Ecuadorian and Peruvian Pacific coasts. Concentration (C) vs. discharge (Q) relationships of the five monitored basins exhibit a clear dilution behavior for evaporites and/or pyrite solutes, while the solute concentrations delivered by other endmembers are less variable. Spatially, the annual specific fluxes for total dissolved solids (TDS), Ca2+, HCO3-, K+, Mg2+, and SiO2 are controlled on the first order by runoff variability, while Cl-, Na+ and SO42- are controlled by the occurrence of evaporites and/or pyrite. The entire Pacific basin in Ecuador and Peru exported 30 Mt TDS·yr-1, according to a specific flux of ∼70 t·km-2·yr-1. This show that, even under low rainfall conditions, this orogenic context is more active, in terms of solute production, than the global average.

  11. [Hydrochemical Characteristics and Influencing Factors in Different Geological Background: A Case Study in Darongjiang and Lingqu Basin, Guangxi, China].

    PubMed

    Sun, Ping-an; Yu, Shi; Mo, Fu-zhen; He, Shi-yi; Lu, Ju-fang; Yuan, Ya-qiong

    2016-01-15

    The observation and sampling were carried out in May 2013 to April 2014 in a hydrological year for two river basins with different geological background in upstream of Li river basin. The seasonal variations of river water chemistry and its main influencing factors were discussed in this paper. The results showed that the hydrochemistry types of both Darongjiang basin with 9% of carbonates and Lingqu basin with nearly 50% of carbonates in area belonged to Ca-HCO3 type. Ca2+ and HCO3- were the main cations and anions. The main ion concentrations were higher in winter and lower in summer, affected by the change of the flow. Ca2+, Mg2+, HCO3- were mainly sourced from the weathering of carbonates by carbonic acid. The weathering of carbonates by sulfuric acid and the weathering of silicate rocks also had contribution to the river water chemistry. In addition, comparing to the Lingqu basin, the contribution of the weathering of carbonates was much more than the percent of carbonates area, because the carbonate rocks were eroded by the allogenic water. On the other hand, K+, Na+, Cl-, NO3-, SO4(2-) were mainly affected by the atmospheric precipitation and human activities. Comparing to the Darongjiang Basin, the effects of human activities on the changes of K+, Na+, Cl-, NO3-, SO4(2-) were more significant in Lingqu Basin.

  12. Wet-dry seasonal and vertical geochemical variations in soil water and their driving forces under different land covers in southwest China karst

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Hu, Bill X.; Wu, Chuanhao; Xu, Kai

    2017-04-01

    Karst aquifers supply drinking water for 25% of the world's population, and they are, however, vulnerable to climate change. Bimonthly hydrochemical data in karst soil water samples from July 2010 to July 2011 were obtained to reveal the seasonal and vertical geochemical variations in soil water under five vegetation types in Qingmuguan, a small karst catchment in southwest China. Soil water chemistry was dominated by Ca2+, HCO3-, and SO42- because of the dissolution of limestone, dolomite, and gypsum minerals in the strata. The predominant hydrochemical types in soil water were Ca2+-HCO3-, Ca2+-SO42-, and mixed Ca2+-HCO3-SO42-. Ca2+ and HCO3- concentrations ranked in the following order: shrub land > dry land > afforestation farmland > bamboo land > grassland. In warm and wet seasons, the main ion concentrations in soil water from grasslands were low. Na+, K+, Ca2+, Mg2+, HCO3-, SO42-, and Cl- concentrations in soil water from other lands were high. An opposite trend was observed in cold and dry seasons. Marked seasonal variations were observed in Ca2+, HCO3-, and NO3- in soil water from dry land. The main ion concentrations in soil water from bamboo lands decreased as soil depth increased. By contrast, the chemistry of soil water from other lands increased as soil depth increased. Their ions were accumulated in depth. A consistent high and low variation between the main ions in soil water and the contents of carbonate and CO2 was found in the soil. Hydrochemical changes in soil water were regulated by the effects of dilution and soil CO2.

  13. Coupled phase and aqueous species equilibrium of the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite

    NASA Astrophysics Data System (ADS)

    Duan, Zhenhao; Li, Dedong

    2008-10-01

    A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H +, Na +, Ca 2+, CaHCO3+, Ca(OH) +, OH -, Cl -, HCO3-, CO32-, CO 2(aq) and CaCO 3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO 2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T- P- m range, hence calcite solubility, CO 2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data. One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO 2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility. The functionality of pH value, alkalinity, CO 2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl (aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.

  14. Assessment of groundwater quality from Bankura I and II Blocks, Bankura District, West Bengal, India

    NASA Astrophysics Data System (ADS)

    Nag, S. K.; Das, Shreya

    2017-10-01

    Hydrochemical evaluation of groundwater has been conducted in Bankura I and II Blocks to analyze and determining groundwater quality in the area. Thirty-six groundwater samples were analyzed for their physical and chemical properties using standard laboratory methods. The constituents have the following ranges in the water: pH 6.4-8.6, electrical conductivity 80-1900 μS/cm, total hardness 30-730 mg/l, TDS 48-1001 mg/l, Ca2+ 4.2-222.6 mg/l, Na+ 2.33-103.33 mg/l, Mg2+ 1.56-115.36 mg/l, K+ 0.67-14 mg/l and Fe BDL-2.53 mg/l, {HCO}3^{ - } 48.8-1000.4 mg/l, Cl- 5.6-459.86 mg/l and {SO}4^{ = } BDL-99.03 mg/l. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). Sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), total hardness (TH), and permeability index (PI) were calculated as derived parameters, to investigate the ionic toxicity. Concerned chemical parameters when plotted in the U.S. Salinity diagram indicate that waters are of C1-S1, C2-S1 and C3-S1 types, i.e., low salinity and low sodium which is good for irrigation. The values of Sodium Adsorption Ratio indicate that the groundwater of the area falls under the category of low sodium hazard. So, there is neither salinity nor toxicity problem of irrigation water, and hence the ground water can safely be used for long-term irrigation. The chemical parameters when plotted in Piper's trilinear diagram are found to concentrate in the central and west central part of the diamond-shaped field. Based on the analytical results, groundwater in the area is found to be generally fresh and hard to very hard. The abundance of the major ions is as follows: HCO3 > Cl > SO4 and Ca > Na > Mg > K > Fe. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). According to Gibbs diagrams samples fall in the rock dominance field and the chemical quality of groundwater is related to the lithology of the area. The alkaline earth elements (Ca and Mg) occur in greater abundance than alkaline elements (Na and K). A comparative study of our analytical results with the WHO standards of drinking water indicate that the present waters are also good for drinking purposes.

  15. Vibrio cholerae ACE stimulates Ca(2+)-dependent Cl(-)/HCO(3)(-) secretion in T84 cells in vitro.

    PubMed

    Trucksis, M; Conn, T L; Wasserman, S S; Sears, C L

    2000-09-01

    ACE, accessory cholera enterotoxin, the third enterotoxin in Vibrio cholerae, has been reported to increase short-circuit current (I(sc)) in rabbit ileum and to cause fluid secretion in ligated rabbit ileal loops. We studied the ACE-induced change in I(sc) and potential difference (PD) in T84 monolayers mounted in modified Ussing chambers, an in vitro model of a Cl(-) secretory cell. ACE added to the apical surface alone stimulated a rapid increase in I(sc) and PD that was concentration dependent and immediately reversed when the toxin was removed. Ion replacement studies established that the current was dependent on Cl(-) and HCO(3)(-). ACE acted synergistically with the Ca(2+)-dependent acetylcholine analog, carbachol, to stimulate secretion in T84 monolayers. In contrast, the secretory response to cAMP or cGMP agonists was not enhanced by ACE. The ACE-stimulated secretion was dependent on extracellular and intracellular Ca(2+) but was not associated with an increase in intracellular cyclic nucleotides. We conclude that the mechanism of secretion by ACE involves Ca(2+) as a second messenger and that this toxin stimulates a novel Ca(2+)-dependent synergy.

  16. Spectral analysis of optical emission of microplasma in sea water

    NASA Astrophysics Data System (ADS)

    Gamaleev, Vladislav; Morita, Hayato; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-09-01

    This work presents an analysis of optical emission spectra from microplasma in three types of liquid, namely artificial sea water composed of 10 typical agents (10ASW), reference solutions each containing a single agent (NaCl, MgCl2 + H2O, Na2SO4, CaCl2, KCl, NaHCO3, KBr, NaHCO3, H3BO3, SrCl2 + H2O, NaF) and naturally sampled deep sea water (DSW). Microplasma was operated using a needle(Pd)-to-plate(Pt) electrode system sunk into each liquid in a quartz cuvette. The radius of the tip of the needle was 50 μm and the gap between the electrodes was set at 20 μm. An inpulse generator circuit, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the liquid between the electrodes, was used as a pulse current source for operation of discharges. In the spectra, the emission peaks for the main components of sea water and contaminants from the electrodes were detected. Spectra for reference solutions were examined to enable the identification of unassigned peaks in the spectra for sea water. Analysis of the Stark broadening of H α peak was carried out to estimate the electron density of the plasma under various conditions. The characteristics of microplasma discharge in sea water and the analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129.

  17. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, Virendra Bahadur; Ramanathan, Al; Pottakkal, Jose George; Sharma, Parmanand; Linda, Anurag; Azam, Mohd Farooq; Chatterjee, C.

    2012-06-01

    A detailed analytical study of major cations (Ca2 + , Mg2 + , Na + , K + ) and anions (SO4^{2-}, HCO3-, Cl - , NO3-) of meltwater draining from Gangotri Glacier was carried out to understand major ion chemistry and to get an insight into geochemical weathering processes controlling hydrochemistry of the glacier. In the meltwater, the abundance order of cations and anions varied as follows: Ca2 + > Mg2 + > K + > Na + and SO4^{2-} > HCO3- > Cl - > NO3-, respectively. Calcium and magnesium are dominant cations while sulphate and bicarbonate are dominant anions. Weathering of rocks is the dominant mechanism controlling the hydrochemistry of drainage basin. The relative high contribution of (Ca+Mg) to the total cations (TZ + ), high (Ca+Mg)/(Na+K) ratio (2.63) and low (Na+K)/TZ + ratio (0.29) indicate the dominance of carbonate weathering as a major source for dissolved ions in the glacier meltwater. Sulphide oxidation and carbonation are the main proton supplying geochemical reactions controlling the rock weathering in the study area. Statistical analysis was done to identify various factors controlling the dissolved ionic strength of Gangotri Glacier meltwater.

  18. Soil salination indicators

    USDA-ARS?s Scientific Manuscript database

    Salts are naturally present in soils, and many salt elements are essential nutrients for plants. The most common soluble salts in soil include major cations of sodium (Na+), magnesium (Mg2+), calcium (Ca2+), potassium (K+), and anions of chloride (Cl-), sulfate (SO42-), bicarbonate (HCO3-) and carbo...

  19. Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon

    PubMed Central

    Yu, Kuai; Lujan, Rafael; Marmorstein, Alan; Gabriel, Sherif; Hartzell, H. Criss

    2010-01-01

    Anion transport by the colonic mucosa maintains the hydration and pH of the colonic lumen, and its disruption causes a variety of diarrheal diseases. Cholinergic agonists raise cytosolic Ca2+ levels and stimulate anion secretion, but the mechanisms underlying this effect remain unclear. Cholinergic stimulation of anion secretion may occur via activation of Ca2+-activated Cl– channels (CaCCs) or an increase in the Cl– driving force through CFTR after activation of Ca2+-dependent K+ channels. Here we investigated the role of a candidate CaCC protein, bestrophin-2 (Best2), using Best2–/– mice. Cholinergic stimulation of anion current was greatly reduced in Best2–/– mice, consistent with our proposed role for Best2 as a CaCC. However, immunostaining revealed Best2 localized to the basolateral membrane of mucin-secreting colonic goblet cells, not the apical membrane of Cl–-secreting enterocytes. In addition, in the absence of HCO3–, cholinergic-activated current was identical in control and Best2–/– tissue preparations, which suggests that most of the Best2 current was carried by HCO3–. These data delineate an alternative model of cholinergic regulation of colonic anion secretion in which goblet cells play a critical role in HCO3– homeostasis. We therefore propose that Best2 is a HCO3– channel that works in concert with a Cl:HCO3– exchanger in the apical membrane to affect transcellular HCO3– transport. Furthermore, previous models implicating CFTR in cholinergic Cl– secretion may be explained by substantial downregulation of Best2 in Cftr–/– mice. PMID:20407206

  20. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India

    NASA Astrophysics Data System (ADS)

    Soujanya Kamble, B.; Saxena, Praveen Raj

    2017-10-01

    The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.

  1. Hydrogeochemical investigation of groundwater in Jericho area in the Jordan Valley, West Bank, Palestine

    NASA Astrophysics Data System (ADS)

    Da'as, Ammar; Walraevens, Kristine

    2013-06-01

    Water resources in the Middle East, particularly in Palestine, are extremely scarce and costly. The Jordan Valley is a fertile productive region, described as the food basket of Palestine. Groundwater originating from the Quaternary Aquifer System forms the main water resource in the Jordan Valley. However, the quality of this groundwater is threatened mainly by the high chloride concentration. The most representative area of the Jordan Valley is Jericho area, which was chosen to be the study area. The study area (65 km2) is almost a flat area with a gentle decline towards the east. It is the lowest land on earth with ground levels reaching 400 meters below sea level (mbsl) near the Dead Sea shores. The Quaternary Aquifer System in the study area could be divided into an upper alluvial layer with thickness varying from 40 to 150 m and a lower low-permeable Lisan layer, which crops out in the eastern part of the study area with thickness over 200 m. Hydrogeochemical investigation reveals that the water is generally earth alkaline with higher content of earth alkalis and prevailing chloride. According to Stuyfzand (1986) and Piper's (1944) classification systems, water type in the Alluvial Aquifer varies from fresh hard CaMgHCO3 or MgCaHCO3 water in the west and northwest to brackish very-hard MgNaCl or NaMgCl in the middle. In the east, the water becomes brackish-salt extremely-hard MgNaCl or NaCl. Groundwater quality is deteriorating (increase in salinity) spatially towards the east and vertically with increasing depth (when nearing the Lisan Formation). As an indication of groundwater salinity, total dissolved solids show some variability with time over the last 21 years (1983-2004). In short-time scale, there are high seasonal and yearly fluctuations with regard to salinity, specifically in Cl- and SO42- contents. Spring water from the Upper Cenomanian Aquifer (CaHCO3) represents the fresh end member, while Rift Valley Brines (RVB-CaNaCl) and Dead Sea Brines (DSB-MgNaCl) represent the saline end members. Existing water types are mixtures of the 3 end members. There is a consistency in results and analysis of geological, hydrogeological, hydrochemical and geophysical data. There are three probable sources of increase in groundwater salinity: mixing with saline end members (RVB/DSB); dissolution of minerals of the Lisan Formation (calcite, dolomite, gypsum and halite); and to some extent, agricultural effluent pollution.

  2. Dissociative Photoionization of the Elusive Vinoxy Radical.

    PubMed

    Adams, Jonathan D; Scrape, Preston G; Lee, Shih-Huang; Butler, Laurie J

    2017-08-24

    These experiments report the dissociative photoionization of vinoxy radicals to m/z = 15 and 29. In a crossed laser-molecular beam scattering apparatus, we induce C-Cl bond fission in 2-chloroacetaldehyde by photoexcitation at 157 nm. Our velocity measurements, combined with conservation of angular momentum, show that 21% of the C-Cl photofission events form vinoxy radicals that are stable to subsequent dissociation to CH 3 + CO or H + ketene. Photoionization of these stable vinoxy radicals, identified by their velocities, which are momentum-matched with the higher-kinetic-energy Cl atom photofragments, shows that the vinoxy radicals dissociatively photoionize to give signal at m/z = 15 and 29. We calibrated the partial photoionization cross section of vinoxy to CH 3 + relative to the bandwidth-averaged photoionization cross section of the Cl atom at 13.68 eV to put the partial photoionization cross sections on an absolute scale. The resulting bandwidth-averaged partial cross sections are 0.63 and 1.3 Mb at 10.5 and 11.44 eV, respectively. These values are consistent with the upper limit to the cross section estimated from a study by Savee et al. on the O( 3 P) + propene bimolecular reaction. We note that the uncertainty in these values is primarily dependent on the signal attributed to C-Cl primary photofission in the m/z = 35 (Cl + ) time-of-flight data. While the value is a rough estimate, the bandwidth-averaged partial photoionization cross section of vinoxy to HCO + calculated from the signal at m/z = 29 at 11.53 eV is approximately half that of vinoxy to CH 3 + . We also present critical points on the potential energy surface of the vinoxy cation calculated at the G4//B3LYP/6-311++G(3df,2p) level of theory to support the observation of dissociative ionization of vinoxy to both CH 3 + and HCO + .

  3. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans.

    PubMed

    Morris, S

    2001-03-01

    Gills are the primary organ for salt transport, but in land crabs they are removed from water and thus ion exchanges, as well as CO(2) and ammonia excretion, are compromised. Urinary salt loss is minimised in land crabs by redirecting the urine across the gills where salt reabsorption occurs. Euryhaline marine crabs utilise apical membrane branchial Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange powered by a basal membrane Na(+)/K(+)-ATPase, but in freshwater crustaceans an apical V-ATPase provides for electrogenic uptake of Cl(-) in exchange for HCO(3)(-). The HCO(3)(-) is provided by carbonic anhydrase facilitating CO(2) excretion while NH(4)(+) can substitute for K(+) in the basal ATPase and for H(+) in the apical exchange. Gecarcinid land crabs and the terrestrial anomuran Birgus latro can lower the NaCl concentration of the urine to 5 % of that of the haemolymph as it passes across the gills. This provides a filtration-reabsorption system analogous to the vertebrate kidney. Crabs exercise hormonal control over branchial transport processes. Aquatic hyper-regulators release neuroamines from the pericardial organs, including dopamine and 5-hydroxytryptamine (5-HT), which via a cAMP-mediated phosphorylation stimulate Na(+)/K(+)-ATPase activity and NaCl uptake. Freshwater species utilise a V-ATPase, and additional mechanisms of control have been suggested. Crustacean hyperglycaemic hormone (CHH) has now also been confirmed to have effects on hydromineral regulation, and a putative role for neuropeptides in salt and water balance suggests that current models for salt regulation are probably incomplete. In a terrestrial crabs there may be controls on both active uptake and diffusive loss. The land crab Gecarcoidea natalis drinking saline water for 3 weeks reduced net branchial Na(+) uptake but not Na(+)/K(+)-ATPase activity, thus implying a reduction in diffusive Na(+) loss. Further, in G. natalis Na(+) uptake and Na(+)/K(+)-ATPase were stimulated by 5-HT independently of cAMP. Conversely, in the anomuran B. latro, branchial Na(+) and Cl(-) uptake and Na(+)/K(+)-ATPase are inhibited by dopamine, mediated by cAMP. There has been a multiple evolution of a kidney-type system in terrestrial crabs capable of managing salt, CO(2) and NH(3) movements.

  4. Alkylating Derivatives of Vitamin D Hormone for Prostate Cancer

    DTIC Science & Technology

    2006-10-01

    Acetic Anhydride / Pyridine/ 40C 1. UV / Toluene 2. EtOH - Reflux TBDMSCl / Imidazole /DMF BrCH2COOH / DCC / DMAP / CH2Cl2 1,25(OH)2D3-3-BE Figure 1...BE OH SO2 OTBDMS OH OTBDMS 1. Liq. SO2 / Reflux 2. TBDMSCl / Imidazole /DMF NaHCO3 / EtOH / Reflux NMO / SeO2 / CH2Cl2 / Reflux OH OTBDMSHO OTHP...containing 200 mg of 25-hydroxyvitamin D3 in a flask fitted with a trap that was cooled with dry ice-acetone (-780C). The yellow solution was refluxed

  5. Modeling interactions in major ion toxicity to Ceriodaphnia dubia

    EPA Science Inventory

    Various anthopogenic activities can cause exposures of freshwater systems to greatly elevated concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) with widely-varying compositions. A data set on the acute toxicity of single salts and binary salt mixtures to Ceriodaphnia d...

  6. TASK-2 K₂p K⁺ channel: thoughts about gating and its fitness to physiological function.

    PubMed

    López-Cayuqueo, Karen I; Peña-Münzenmayer, Gaspar; Niemeyer, María Isabel; Sepúlveda, Francisco V; Cid, L Pablo

    2015-05-01

    TASK-2 (K2P5) was one of the earliest members of the K2P two-pore, four transmembrane domain K(+) channels to be identified. TASK-2 gating is controlled by changes in both extra- and intracellular pH through separate sensors: arginine 224 and lysine 245, located at the extra- and intracellular ends of transmembrane domain 4. TASK-2 is inhibited by a direct effect of CO2 and is regulated by and interacts with G protein subunits. TASK-2 takes part in regulatory adjustments and is a mediator in the chemoreception process in neurons of the retrotrapezoid nucleus where its pHi sensitivity could be important in regulating excitability and therefore signalling of the O2/CO2 status. Extracellular pH increases brought about by HCO3 (-) efflux from proximal tubule epithelial cells have been proposed to couple to TASK-2 activation to maintain electrochemical gradients favourable to HCO3 (-) reabsorption. We demonstrate that, as suspected previously, TASK-2 is expressed at the basolateral membrane of the same proximal tubule cells that express apical membrane Na(+)-H(+)-exchanger NHE-3 and basolateral membrane Na(+)-HCO3 (-) cotransporter NBCe1-A, the main components of the HCO3 (-) transport machinery. We also discuss critically the mechanism by which TASK-2 is modulated and impacts the process of HCO3 (-) reclaim by the proximal tubule epithelium, concluding that more than a mere shift in extracellular pH is probably involved.

  7. Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda

    NASA Astrophysics Data System (ADS)

    Green, William J.; Canfield, Donald E.

    1984-12-01

    The Onyx River (Wright Valley, Antarctica) is a dilute meltwater stream originating in the vicinity of the Wright Lower Glacier. It acquires a significant fraction of its salt content when glacial meltwaters contact Wright Valley soils at Lake Brownworth and the concentrations of all ions increase with distance along the 28-km channel down to Lake Vanda. Average millimolar concentrations of major ions at the Vanda weir during the 1980-1981 flow season were: Ca = 0.119; Mg = 0.061; Na = 0.212; K = 0.033; Q = 0.212; SO4 = 0.045; HCO3 = 0.295; and SiO2 = 0.049. Based on the flow measurements of Chinn (1982), this amounts to an annual flux (in moles) to Lake Vanda of: Ca = 0.238 × 10 6; Mg = 0.122 × 10 6; Na = 0.424 × 10 6; K = 0.066 × 10 6; Cl = 0.424 × 10 6; SO4 = 0.09 × 10 6; HCO3 = 0.59 × 10 6; SiO2 = 0.098 × 10 6. In spite of the large salt input from this source, equilibrium evaporation of Onyx River water would have resulted in early calcite deposition and in the formation of a Na-Mg-Cl-HCO 3 brine rather than in the Ca-Na-Mg-Cl waters observed in Lake Vanda. The river alone could not have produced a brine having the qualitative geochemical features of the lower saline waters of Lake Vanda. It is proposed that the Vanda brine is instead the result of past ( > 1200 yrs BP) mixing events between Onyx River inflows and calcium chloride-rich deep groundwaters derived from the Don Juan Basin. The mixing model presented here shows that the Onyx River is the major contributor of K, HCO 3, SO 4, and (possibly) Mg found in the lake and a significant contributor (approximately one half) of the observed Na. Calcium and Cl, on the other hand, came largely from deep groundwater sources in the Don Juan Basin. All concentrations except Mg are well predicted by this model. The chemical composition of the geologically recent upper lake is explained in terms of ionic diffusion from the pre-formed brine, coupled with Onyx River inflow. Ionic ratios calculated from this latter model are in very good agreement with those observed in the lake at 35 meters.

  8. Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria.

    PubMed

    Belkhiri, Lazhar; Mouni, Lotfi; Tiri, Ammar

    2012-02-01

    Hydrochemical, multivariate statistical, and inverse geochemical modeling techniques were used to investigate the hydrochemical evolution within the Ain Azel aquifer, Algeria. Cluster analysis based on major ion contents defined 3 main chemical water types, reflecting different hydrochemical processes. The first group water, group 1, has low salinity (mean EC = 735 μS/cm). The second group waters are classified as Cl-HCO(3)-alkaline earth type. The third group is made up of water samples, the cation composition of which is dominated by Ca and Mg with anion composition varying from dominantly Cl to dominantly HCO(3) plus SO(4). The varifactors obtained from R-mode FA indicate that the parameters responsible for groundwater quality variations are mainly related to the presence and dissolution of some carbonate, silicate, and evaporite minerals in the aquifer. Inverse geochemical modeling along groundwater flow paths indicates the dominant processes are the consumption of CO(2), the dissolution of dolomite, gypsum, and halite, along with the precipitation of calcite, Ca-montmorillonite, illite, kaolinite, and quartz. © Springer Science+Business Media B.V. 2011

  9. The reactions of O(ID) and OH with CH3OH, oxidation of the HCO radial, and the photochemical oxidation of formaldehyde. [photochemical reactions in stratosphere

    NASA Technical Reports Server (NTRS)

    Osif, T. L.

    1976-01-01

    An experimental, laboratory study of the various photochemical reactions that can occur in the mesosphere and stratosphere is presented. N2O was photolyzed at 2139 A in the presence of CH3OH and CO. The O(id) produced in the photolysis reacted with CH3OH to produce OH radicals, and thus the reactions of both O(id) and OH were able to be studied. Also considered was the oxidation of the HCO radical. Mixtures of Cl2, O2, H2CO, and sometimes N2 or He were irradiated at 3660 A at several temperatures to photodecompose the Cl2. The photochemical oxidation of formaldehyde was studied as follows: formaldehyde in the presence of N2 and/or O2 (usually dry air) was photolyzed with a medium pressure Hg lamp used in conjunction with various filters which transmit different relative amounts of Hg lines from 2894 A to 3660 A. Results are presented and discussed, along with a description of experimental procedures and apparatus, and chemical reaction kinetics.

  10. Effects of brining on the corrosion of ZVI and its subsequent As(III/V) and Se(IV/VI) removal from water.

    PubMed

    Yang, Zhe; Xu, Hui; Shan, Chao; Jiang, Zhao; Pan, Bingcai

    2017-03-01

    Zero-valent iron (ZVI) has been extensively applied in water remediation, and most of the ZVI materials employed in practical applications are iron scraps, which have usually been corroded to certain extent under different conditions. In this study, the effects of brining with six solutions (NaCl, Na 2 SO 4 , NaHCO 3 , Na 2 SiO 3 , NH 4 Cl, and NaH 2 PO 4 ) on the corrosion of ZVI and its performance in the removal of As(III/V)/Se(IV/VI) were systematically investigated. All the studied solutions enhanced the corrosion of ZVI except for Na 2 SiO 3 , and the degrees of corrosion followed the order of NH 4 Cl > NaH 2 PO 4  > Na 2 SO 4  > NaCl > NaHCO 3  > H 2 O > Na 2 SiO 3 . The corrosion products derived from ZVI were identified by SEM and XRD, and the dominant corrosion products varied with the type of brine solution. The positive correlation between the degree of ZVI corrosion and As(III/V)/Se(IV/VI) removal by the pre-corroded ZVI (pcZVI) was verified. In addition, As and Se removal by pcZVI was realized via a comprehensive process including adsorption and reduction, as further supported by the XPS analysis. We believe this study will shed new light upon the selection of iron materials pre-corroded under different saline conditions for practical water remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Quality of water resources in Kullu Valley in Himachal Himalayas, India: perspective and prognosis

    NASA Astrophysics Data System (ADS)

    Thakur, Nandini; Rishi, Madhuri; Sharma, Diana A.; Keesari, Tirumalesh

    2018-03-01

    The water quality in mountain regions of Himalaya is considered to be good and quantity adequate. However, recent reports suggest that urbanisation and population growth have been tremendous, which are impacting the land use/cover changes and also endangering the water resources both in quality and quantity. This paper elaborates the systematic investigation carried out on different attributes impacting the drinking water resources in Kullu valley. Two approaches were employed in this study: (1) ex-ante approach involving field survey and secondary data analysis from ancillary sources and (2) hydrochemical approach for the measurement of water quality parameters from springs. Results from ex-ante approach infer rise in population of about 15% during 2001-2011, which led to a significant change in land use pattern, microclimate and also increased water demand. Hydrochemistry of the water samples in the study area has indicated that the current status of spring waters is satisfactory for drinking purposes with a few incidences of high NO3 - which is mostly attributed to contamination from sewage, while F-, Cl- and TDS contamination is mainly confined to hot springs. From both ex-ante approach and primary hydrochemical data it can be inferred that springs need to be restored in terms of both quantity and quality. Hydrochemical interpretation suggests two main groups of samples: (1) low TDS and Ca-Mg-Cl-HCO3 type, which are mainly recharging waters with very less interaction with the aquifer material and (ii) moderate TDS and Mg-Ca-Cl, Ca-Na-HCO3, Na-Ca-Cl-SO4 and Ca-Mg-HCO3 and have undergone water-rock interaction. Based on the inferences obtained from the Piper's, Chadha's and Durov's classification no evidence of hot springs contaminating or contributing to other cold springs and shallow groundwater (hand pump) is found. The study concludes that the water resources are vulnerable to anthropogenic interventions and needs treatment prior to drinking. Periodic monitoring of water quality and adopting proper treatment procedures are essential for supplying safe and sustainable water to the community in the Kullu valley, Himachal Pradesh.

  12. Relationships determining the toxicity of major ion mixtures to Ceriodaphnia dubia

    EPA Science Inventory

    Significant impacts to aquatic systems can occur due to increases in major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) from various anthropogenic activities, these impacts varying with both the specific combination of ions that are elevated and the chemistry of the background water. A s...

  13. Thoughts on applying existing toxicological understanding to risk assessment for major ions in fresh waters

    EPA Science Inventory

    Recent research in our laboratories and many others have greatly increased understanding of the responses of freshwater organisms to increased concentrations of major geochemical ions (Na, K, Ca, Mg, Cl, SO4, HCO3) in laboratory toxicity tests, stream mesocosms, and in natural st...

  14. Modeling interactions in major ion toxicity to Ceriodaphnia dubia (presentation)

    EPA Science Inventory

    Various anthropogenic activities can cause exposures of freshwater systems to greatly elevated concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) with widely-varying compositions. A data set on the acute toxicity of single salts and binary salt mixtures to Ceriodaphnia d...

  15. Interactive toxicity of major ion salts: Comparisons among species and between acute and chronic endpoints

    EPA Science Inventory

    Increased concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) in freshwater systems can result from a variety of anthropogenic activities, and can adversely affect aquatic organisms if the increase is sufficiently severe. Laboratory tests have indicated that the toxicity...

  16. Ingestion of Sodium Bicarbonate (NaHCO3) Following a Fatiguing Bout of Exercise Accelerates Postexercise Acid-Base Balance Recovery and Improves Subsequent High-Intensity Cycling Time to Exhaustion.

    PubMed

    Gough, Lewis A; Rimmer, Steven; Osler, Callum J; Higgins, Matthew F

    2017-10-01

    This study evaluated the ingestion of sodium bicarbonate (NaHCO 3 ) on postexercise acid-base balance recovery kinetics and subsequent high-intensity cycling time to exhaustion. In a counterbalanced, crossover design, nine healthy and active males (age: 23 ± 2 years, height: 179 ± 5 cm, body mass: 74 ± 9 kg, peak mean minute power (W peak ) 256 ± 45 W, peak oxygen uptake (V̇O 2peak ) 46 ± 8 ml.kg -1 .min -1 ) performed a graded incremental exercise test, two familiarization and two experimental trials. Experimental trials consisted of cycling to volitional exhaustion (T LIM1 ) at 100% W PEAK on two occasions (T LIM1 and T LIM2 ) interspersed by a 90 min passive recovery period. Using a double-blind approach, 30 min into a 90 min recovery period participants ingested either 0.3 g.kg -1 body mass sodium bicarbonate (NaHCO 3 ) or a placebo (PLA) containing 0.1 g.kg -1 body mass sodium chloride (NaCl) mixed with 4 ml.kg -1 tap water and 1 ml.kg -1 orange squash. The mean differences between T LIM2 and T LIM1 was larger for PLA compared with NaHCO 3 (-53 ± 53 vs. -20 ± 48 s; p = .008, d = 0.7, CI =-0.3, 1.6), indicating superior subsequent exercise time to exhaustion following NaHCO 3 . Blood lactate [Bla - ] was similar between treatments post T LIM1 , but greater for NaHCO 3 post T LIM2 and 5 min post T LIM2 . Ingestion of NaHCO 3 induced marked increases (p < .01) in both blood pH (+0.07 ± 0.02, d = 2.6, CI = 1.2, 3.7) and bicarbonate ion concentration [HCO 3 - ] (+6.8 ± 1.6 mmo.l -1 , d = 3.4, CI = 1.8, 4.7) compared with the PLA treatment, before T LIM2 . It is likely both the acceleration of recovery, and the marked increases of acid-base after T LIM1 contributed to greater T LIM2 performance compared with the PLA condition.

  17. Geochemical and Sr isotopic variations in groundwaters of the Edwards aquifer, central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oetting, G.C.; Banner, J.L.; Sharp, J.M. Jr.

    1992-01-01

    The regionally-extensive Edwards aquifer of central Texas lies on the northwestern edge of the Gulf of Mexico Basin. The aquifer system is composed primarily of lower Cretaceous marine limestones and dolostones with minor evaporitic and siliciclastic confining units of the Edwards Group and associated formations. The eastern and southern boundaries of the freshwater aquifer are defined by an abrupt change in groundwater salinity that is known as the badwater line. Variation in the isotopic composition and concentration of Sr in the mineral phases and waters in this aquifer system provide means to examine groundwater evolution processes. Models of simultaneous variationsmore » in Sr isotopes and major and trace ions are used to constrain processes of groundwater-rock interaction and groundwater mixing. Geochemical variations were examined in Edwards carbonate host rocks and groundwaters in Williamson and Bell Counties. Groundwaters were sampled along and across the badwater line, and range in salinity from 320--2,630 mg/l total dissolved solids. Major ion distributions in the water samples demonstrate a hydrochemical facies transition from Ca-HCO[sub 3] freshwaters to Na-Cl-SO[sub 4]-HCO[sub 3] badwaters. Both water types show a wide range of [sup 87]Sr/[sup 86]Sr values: Ca-HCO[sub 3] waters range from values of 0.7078--0.7093, and Na-Cl-SO[sub 4]-HCO[sub 3] waters range from values of 0.7087--0.7097. The Sr isotope compositions for both water groups are significantly greater than their host marine carbonates ([approximately]0.7075). The high Sr isotopic compositions indicate an extraformational source of Sr in both hydrochemical facies. Fluid mixing processes involving a freshwater and at least two badwater endmembers are required to account for variations in elemental and isotopic compositions in the groundwaters. Mineral-solution reactions may operate during and/or subsequent to mixing to produce the compositional variability observed in some intermediate waters.« less

  18. The chemistry in circumstellar envelopes of evolved stars: following the origin of the elements to the origin of life.

    PubMed

    Ziurys, Lucy M

    2006-08-15

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C(8)H, C(3)S, SiC(3), and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO(+), SO(2), and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO(+), HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.

  19. Intracellular pH regulatory mechanism in human atrial myocardium: functional evidence for Na(+)/H(+) exchanger and Na(+)/HCO(3)(-) symporter.

    PubMed

    Loh, Shih-Hurng; Chen, Wei-Hwa; Chiang, Cheng-Hsien; Tsai, Chien-Sung; Lee, Guo-Chen; Jin, Jong-Shiaw; Cheng, Tzu-Hurng; Chen, Jin-Jer

    2002-01-01

    Intracellular pH (pH(i)) exerts considerable influence on cardiac contractility and rhythm. Over the last few years, extensive progress has been made in understanding the system that controls pH(i) in animal cardiomyocytes. In addition to the housekeeping Na(+)-H(+) exchanger (NHE), the Na(+)-HCO(3)(-) symporter (NHS) has been demonstrated in animal cardiomyocytes as another acid extruder. However, whether the NHE and NHS functions exist in human atrial cardiomyocytes remains unclear. We therefore investigated the mechanism of pH(i) recovery from intracellular acidosis (induced by NH(4)Cl prepulse) using intracellular 2',7'-bis(2-carboxethyl)-5(6)-carboxy-fluorescein fluorescence in human atrial myocardium. In HEPES (nominally HCO(3)(-)-free) Tyrode solution, pH(i) recovery from induced intracellular acidosis could be blocked completely by 30 microM 3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE 694), a specific NHE inhibitor, or by removing extracellular Na(+). In 3% CO(2)-HCO(3)(-) Tyrode solution, HOE 694 only slowed the pH(i) recovery, while addition of HOE 694 together with 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (an NHS inhibitor) or removal of extracellular Na(+) inhibited the acid extrusion entirely. Therefore, in the present study, we provided evidence that two acid extruders involved in acid extrusion in human atrial myocytes, one which is HCO(3)(-) independent and one which is HCO(3)(-) dependent, are mostly likely NHE and NHS, respectively. When we checked the percentage of contribution of these two carriers to pH(i) recovery following induced acidosis, we found that the activity of NHE increased steeply in the acid direction, while that of NHS did not change. Our present data indicate for the first time that two acid extruders, NHE and NHS, exist functionally and pH(i) dependently in human atrial cardiomyocytes. Copyright 2002 National Science Council, ROC and S. Karger AG, Basel

  20. Effects of hardness and alkalinity in culture and test waters on reproduction of Ceriodaphnia dubia

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Hardin, I.R.

    2006-01-01

    Ceriodaphnia dubia were cultured in four reconstituted water formulations with hardness and alkalinity concentrations ranging from soft to the moderately hard water that is required by whole-effluent toxicity (WET) testing methods for culturing test organisms. The effects of these culture formulations alone and in combination with two levels of Cl-, SO42, and HCO3- on reproduction of C. dubia were evaluated with the standard three-brood test. Reproduction was significantly reduced when test waters had lower hardness than culture waters. However, reproduction was not significantly different when animals cultured in low-hardness waters were exposed to moderately hard waters. The hardness of the culture water did not significantly affect the sensitivity of C. dubia to the three anions. Conversely, increased hardness in test waters significantly reduced the toxicities of Cl- and SO42-, with HCO3- toxicity following the same pattern. Alkalinity exhibited no consistent effect on Cl- and SO42- toxicity. The physiological stress of placing animals cultured in moderately hard water into softer test waters might contribute to marginal failures of otherwise nontoxic effluents. The standard WET protocol should be revised to allow the culture of C. dubia under lower hardness conditions to better represent local surface water chemistries.

  1. Fluoride content in drinking water supply in São Miguel volcanic island (Azores, Portugal).

    PubMed

    Cordeiro, S; Coutinho, R; Cruz, J V

    2012-08-15

    High fluoride contents in the water supply of the city of Ponta Delgada, located in the volcanic island of São Miguel (Azores, Portugal) have been reported. Dental fluorosis in São Miguel has been identified and described in several medical surveys. The water supply in Ponta Delgada consists entirely of groundwater. A study was carried out in order to characterize the natural F-pollution of a group of springs (30) and wells (3), that are associated to active central volcanoes of a trachytic nature. Two springs known for their high content in fluoride were sampled, both located in the central volcano of Furnas. The sampled waters are cold, ranging from slightly acidic to slightly alkaline (pH range 6.53-7.60), exhibiting a low electrical conductivity (springs range 87-502 μS/cm; wells range 237-1761 μS/cm), and are mainly from the Na-HCO(3), Na-HCO(3)-Cl and Na-Cl-HCO(3) water types. Results suggest two main trends of geochemical evolution: silicate weathering, enhanced by CO(2) dilution, and seawater spraying. Fluoride contents range between 0.17 mg/L and 2 mg/L, and no seasonal variations were detected. Results in the sources of the water supply system are lower than those of the Furnas volcano, which reach 5.09 mgF/L, demonstrating the effect of F-rich gaseous emanations in this area. Instead, the higher fluoride contents in the water supply are mainly due to silicate weathering in aquifers made of more evolved volcanic rocks. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Influence of antimycin A and uncouplers on anaerobic photosynthesis in isolated chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovacek, R.E.; Hind, G.

    1977-10-01

    Anaerobiosis depresses the light- and bicarbonate-saturated rates of O/sub 2/ evolution in intact spinach (Spinacia oleracea) chloroplasts by as much as 3-fold from those observed under aerobic conditions. These lower rates are accelerated 2-fold or more by the addition of 1 ..mu..m antimycin A or by low concentrations of the uncouplers 0.3 mM NH/sub 4/Cl or 0.25 ..mu..m carbonyl cyanide m-chlorophenylhydrazone. Oxaloacetate and glycerate 3-phosphate reduction rates are also increased by antimycin A or an uncoupler under anaerobic conditions. At intermediate light intensities, the rate accelerations by either antimycin A or uncoupler are inversely proportional to the adenosine 5'-triphosphate demandmore » of the reduction process for the acceptors HCO/sub 3//sup -/, glycerate 3-phosphate, and oxaloacetate. The acceleration of bicarbonate-supported O/sub 2/ evolution may also be produced by adding an adenosine 5'-triphosphate sink (ribose 5-phosphate) to anaerobic chloroplasts. The above results suggest that a proton gradient back pressure resulting from antimycin A-sensitive cyclic electron flow is responsible for the depression of light-saturated photosynthesis under anaerobiosis.« less

  3. [Temporal-spatial Variation and Source Identification of Hydro-chemical Characteristics in Shima River Catchment, Dongguan City].

    PubMed

    Gao, Lei; Chen, Jian-yao; Wang, Jiang; Ke, Zhi-ting; Zhu, Ai-ping; Xu, Kai

    2015-05-01

    Shima River catchment is of strategic importance to urban water supply in Dongjiang portable water source area. To investigate the hydro-chemical characteristics of Shima River, 39 river water samples were collected in February, June and November, 2012 to analyze the major ions (K+, Na+, Ca2+, Mg2+, Cl-, SO4(2-) , HCO3-) and nutritive salts (PO4(3-), NO3- and NH4+) and to discuss the temporal-spatial variation and controlling factors of hydro-chemical composition, relative sources identification of varied ions was performed as well. The results showed that the hydro-chemical composition exhibited significant differences in different periods. The average concentration of total dissolved solid ( TDS) and nutritive salts in different investigated periods followed the decreasing order of November > February > June. The dominant anion of Shima River was HCO3-, and Na+ + K+ were the major cations in February and November which were changed to Ca2+ in June, the hydro-chemical types were determined as HCO(3-)-Na+ and HCO(3-)- Ca2+ in dry (February and November) and rainy (June) seasons, respectively. Spatial variations of concentration of nutritive salts were mainly affected by the discharges of N- and P-containing waste water resulted from human activities. The ratio between N and P of water sample (R7) was 18.4:1 which boosted the "crazy growth" of phytoplankton and led to severe eutrophication. According to Gibbs distribution of water samples, dissolution of hydatogenic rocks was the primary factor to control the major cations of river water in dry season, however, the hydro-chemical composition was significantly affected by the combination of hydatogenic and carbonate rocks in rainy season. The deposition of sea-salts contributed less to chemical substances in river. Correlation analysis revealed that K+, Na+, Mg2+, Cl- and SO4(2-) were partly derived from the application of fertilizer and the discharge of industrial effluent; Waste water of poultry feeding and sanitary wastewater transported large quantities of NH(4+)-N, PO4(3-)-P and NO(3-)-N into the river.

  4. Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India.

    PubMed

    Reddy, A G S; Reddy, D V; Rao, P N; Prasad, K Maruthy

    2010-12-01

    The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain--the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca(2+), Mg(2+), Na(+), K(+), CO3-, HCO3-, Cl(-), SO4(-2), NO3-, and F(-). The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na(+) > Ca(2+) > Mg(2+) > K(-) among cations and HCO3- Cl(-) > SO4(-2) NO3- F(-) among anions in pre-monsoon. In post-monsoon, Mg replaces Ca(2+) and NO3- takes the place of SO4(-2). The Modified Piper diagram reflect that the water belong to Ca(+2)-Mg(+2)-HCO3- to Na(+)-HCO3- facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na(+) and K(+) in aquatic solution took place with Ca(+2) and Mg(+2) of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water-rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water-rock interaction during the process of percolation with fluoride-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.

  5. Alteration of rhyolite in CO{sub 2} charged water at 200 and 350{degree}C: The unreactivity of CO{sub 2} at higher temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischoff, J.L.; Rosenbauer, R.J.

    1996-10-01

    Geochemical and hydrologic modeling indicates that geothermal waters in the T > 270{degrees}C reservoirs beneath Yellowstone National Park have HCO{sub 3} {much_lt} Cl and contrast with waters in reservoirs at lower temperatures which attain HCO{sub 3} about equal to Cl. Experiments reacting rhyolite with 0.5 molal solutions of CO{sub 2} at 200{degrees} and 350{degrees}C were carried out to test the hypothesis of Fournier to explain the chemistry of these springs: that CO{sub 2} is relatively unreactive with volcanic rocks at temperatures >270{degrees}C. The experimental results strongly support this hypothesis. Extent of alteration is twenty-seven times greater at 200{degrees}C than atmore » 350{degrees}C. The dominant process in the experiments appears to be the alteration of the albitic component of the rhyolite by dissolved CO{sub 2} to form a kaolinite-like alteration product plus quartz: 2NaAlSi{sub 3}O{sub 8} + 2CO{sub 2} + 3H{sub 2}O = 2Na{sup +} + 2HCO{sub 3}{sup -} + Al{sub 2}Si{sub 2}O{sub 5}(OH){sub 4} + 4SiO{sub 2}. CO{sub 2} reacts with water to form H{sub 2}CO{sub 3} which dissociates to H{sup +} and HCO{sub 3}{sup -}, more so at lower temperatures. Kinetic and thermodynamic considerations suggest that the reactivity of H{sub 2}CO{sub 3} with wallrocks is at its maximum between 150{degrees} and 200{degrees}C, consuming most of the H{sup +} and liberating equivalent amounts of cations and bicarbonate. Wallrocks in higher temperature reservoirs are relatively unreactive to dissolved CO{sub 2} which is eventually lost from the system by boiling. These observations also offer a possible explanation for the change in chemical sediments from chloride-dominated to bicarbonate-dominated salts found in the stratigraphic section at Searles Lake, California, the terminus of the Owens River which derives its dissolved load from hot springs of the Long Valley caldera. 21 refs., 5 figs., 2 tabs.« less

  6. Experimental determination of lead carbonate solubility at high ionic strengths: A Pitzer model description

    DOE PAGES

    Xiong, Yongliang

    2015-05-06

    In this article, solubility measurements of lead carbonate, PbCO 3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO 3 up to I = 1.2 mol•kg –1 and in the mixtures of NaHCO 3 and Na 2CO 3 up to I = 5.2 mol•kg –1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log K sp) for cerussite, PbCO 3(cr) = Pb 2+ + CO 3 2- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO 3(aq), Pb(CO 3) 2more » 2-, and Pb(CO 3)Cl – with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.« less

  7. Reconstitution of a kidney chloride channel and its identification by covalent labeling.

    PubMed

    Breuer, W

    1990-02-28

    The basolateral membrane of the thick ascending loop of Henle (TALH) of the mammalian kidney is characterized by its high content of Na+/K(+)-ATPase and a Cl- conductance, which function in parallel in salt reabsorption. In order to reconstitute the Cl- channels, TALH membrane vesicles were solubilized in 1% sodium cholate in buffer containing 200 mM KCl, followed by dilution with soybean lipids (final ratio of protein/detergent/lipid of 1:3:15 in mg) and removal of the detergent by gel filtration on Sephadex G-50. Cl- channel activity in the liposomes was determined by a 36Cl- uptake assay where the accumulation of the radioactive tracer against its chemical gradient is driven by the membrane potential (positive inside) generated by an outward Cl- gradient. The 36Cl- uptake by the KCl-loaded liposomes was dependent on the inclusion of membrane protein and was abolished by valinomycin, indicating the involvement of a conductive pathway. It was also inhibited by 36% by 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). Solubilization of the Cl- channels in cholate was optimal in the presence of 200 mm KCl, but was found to decrease markedly at low ionic strength. SDS-PAGE analysis of the proteins extracted by cholate at high and low salt concentrations showed that the Cl- channel-containing high KCl extract was enriched in the 96 and 55 kDa alpha- and beta-subunits of the Na+/K(+)-ATPase (the major proteins in the membrane preparation) and several minor protein bands. Treatment of the membrane vesicles with the radioactive analogue of DIDS, [3H]2DIDS, labeled primarily a 65 and a 31 kDa protein. The solubilization of the 31 kDa protein by cholate depended markedly on the ionic strength and thus paralleled the solubilization pattern of Cl- channel activity. Furthermore, the labeling of the 31 kDa protein was prevented by nonradioactive DIDS and by NPPB but not by other compounds, indicating that it may be a Cl- channel component.

  8. The Features of Condensate Water and Its Guide on Gas Proudction in upper Triassic Gas Reservoir of Western Sichuan Depression, China

    NASA Astrophysics Data System (ADS)

    Shang, C.; Lou, Z.

    2012-12-01

    In upper Triassic Xujiahe Formation of western Sichuan depression, China, there developed ultrathight sandstones reservoirs, of which the mean porosity is 4.02% and the permeability mode is less than 0.1×10-3μm2. Because of the ultrathight sandstones, thick gaseous- liquid phase transition develops in the upper Trassic Xujiahe Formation. The absolute quantity of gaseous water is lager. Due to the change of temperature and pressure at the wellhead, the gaseous water in gas reservoir becomes condensate water. Therefore, the condensate water of low salinity can be widely found at the original productive process in the Xujiahe Formation reservoir, such as wells named Lian 150, Xin 851, Xin 853, Xin 856, Dayi 101, Dayi 103. The main cations are K++Na+, while the anions are HCO3- and Cl-. The main water type is CaCl2, followed by NaHCO3, Na2SO4 and MgCl2. The PH of condensate water is 5.28-8.20 with mean value 6.40. The salinity of condensate water is lower than that of formation water. The milligram equivalent (mEq) percent of ion is used to study the features of condensate water. The anions (mEq) distribution of condensate water are scattered in ternary diagram, while that of formation water concentrate upon the SO42- and Cl- endpoints. The percent of HCO3-(mEq) in condensate water is higher than that of formation water. There is no obvious difference of cations mEq percent between condensate water and formation water, which indicates that condensate water strongly affected by formation water. Through this study, condensate water may originate from formation water and then be affected by complicated physical and chemical interactions. The condensate water is affected by gas and formation water. The relationship between condensate water and gas yield is very close. The variations of water yield, salinity and ions composition can reflect the change of gas yield. Taking well Xin 856 for example, which is located in Xinchang gas felid, there exist a relationship between the condensate water yield and the gas yield. The sequence of high- medial -low gas yield is in consistent with the variation of condensate water - mixture water- formation water, in well Xin 856. In addition, water-gas ratio increases gradually from 0.049 m3/104m3 to 258.54 m3/104m3, in the whole process. Based on water yield of well Xin 856, the transition from condensate water to formation water can be indicated by the increase of salinity and the decrease of mEq percent of HCO3-. The percent of ions (mEq) of condensate water and formation water in Xujiahe formation gas reservoir of western Sichuan depression. a the percent of cations (mEq); b the percent of anions (mEq)

  9. Similarities and differences in acute response to major ions among several aquatic species: Implications for guideline development

    EPA Science Inventory

    Adverse effects from increased concentrations of major geochemical ions (Na, K, Ca, Mg, Cl, SO4, HCO3) to aquatic organisms have been demonstrated or implied in many settings. However, experimental work has shown that the toxicity of ion mixtures is dependent on the specific mix...

  10. The Acute Toxicity of Major Ion Salts to Ceriodaphnia Dubia. Ii. Empirical Relationships in Binary Salt Mixtures

    EPA Science Inventory

    Many human activities increase concentrations of major geochemical ions (Na+, K+, Ca+2, Mg+2, Cl, SO42, and HCO3/CO32) in fresh water systems, and can thereby adversely affect aquatic life. Such effects involve several toxicants, multiple mechanisms of toxicity, various ion inte...

  11. Biokinetic model-based multi-objective optimization of Dunaliella tertiolecta cultivation using elitist non-dominated sorting genetic algorithm with inheritance.

    PubMed

    Sinha, Snehal K; Kumar, Mithilesh; Guria, Chandan; Kumar, Anup; Banerjee, Chiranjib

    2017-10-01

    Algal model based multi-objective optimization using elitist non-dominated sorting genetic algorithm with inheritance was carried out for batch cultivation of Dunaliella tertiolecta using NPK-fertilizer. Optimization problems involving two- and three-objective functions were solved simultaneously. The objective functions are: maximization of algae-biomass and lipid productivity with minimization of cultivation time and cost. Time variant light intensity and temperature including NPK-fertilizer, NaCl and NaHCO 3 loadings are the important decision variables. Algal model involving Monod/Andrews adsorption kinetics and Droop model with internal nutrient cell quota was used for optimization studies. Sets of non-dominated (equally good) Pareto optimal solutions were obtained for the problems studied. It was observed that time variant optimal light intensity and temperature trajectories, including optimum NPK fertilizer, NaCl and NaHCO 3 concentration has significant influence to improve biomass and lipid productivity under minimum cultivation time and cost. Proposed optimization studies may be helpful to implement the control strategy in scale-up operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Tidally driven water column hydro-geochemistry in a remediating acidic wetland

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Keene, Annabelle F.; Bush, Richard T.; Sullivan, Leigh A.; Wong, Vanessa N. L.

    2011-10-01

    SummaryManaged tidal inundation is a newly evolved technique for remediating coastal acid sulphate soil (CASS) wetlands. However, there remains considerable uncertainty regarding the hydro-geochemical pathways and spatiotemporal dynamics of residual H + and metal(loid) mobilisation into the tidal fringe surface waters of these uniquely iron-rich landscapes. Here, we examine the hydrology and water column chemistry across the intertidal slope of a remediating CASS wetland during several tide cycles. There was extreme spatial and temporal dynamism in water column chemistry, with pH fluctuating by ˜3 units (˜3.5-6.5) during a single tide cycle. Acute acidity was spatially confined to the upper intertidal slope, reflecting surface sediment properties, and tidal overtopping is an important pathway for mobilisation of residual H + and Al 3+ to the water column. Marine derived HCO3- was depleted from surface waters migrating across the intertidal slope and a strong gradient in HCO3- was observed from the tidal fringe to the adjacent tributary channel and nearby estuary. Tidal forcing generated oscillating hydraulic gradients in the shallow fringing aquifer, favouring ebb-tide seepage and driving rapid, heterogeneous advection of groundwater on the lower intertidal slope via surface connected macropores. A combination of diffusive and advective flux across the sediment-water interface led to persistent, elevated surface water Fe 2+ (˜10-1000 μM). The geochemical processes associated with Fe 2+ mobilisation displayed distinct spatial zonation, with low pH, proton-promoted desorption occurring on the upper intertidal slope, whilst circum-neutral pH, Fe(III)-reducing processes dominated the lower intertidal slope. Arsenic was also mobilised into surface waters on the lower intertidal slope under moderate pH (˜6.0) conditions and was strongly positively correlated with Fe 2+. Saturation index values for aragonite were substantially depressed (-1 to -5) and significantly negatively correlated with elevation, thereby presenting a barrier to re-colonisation of the upper intertidal slope by calcifying benthic organisms. These findings highlight the spatially complex hydrological and geochemical controls on surface water quality that can occur in tidally inundated acid sulphate soil environments.

  13. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6.

    PubMed

    Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy; Thai, Phung N; Ren, Lu; Kim, Hyo Jeong; Park, Seojin; Lee, Jeong Han; Dai, Gu; Moshref, Maryam; Sihn, Choong-Ryoul; Chen, Wei Chun; Timofeyeva, Maria Valeryevna; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Chiamvimonvat, Nipavan; Chen-Izu, Ye; Yamoah, Ebenezer N; Zhang, Xiao-Dong

    2017-10-01

    Intracellular pH (pH i ) is critical to cardiac excitation and contraction; uncompensated changes in pH i impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pH i regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl - /HCO 3 - exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pH i , but also cardiac excitability. To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout ( Slc26a6 -/ - ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca 2+ transient and sarcoplasmic reticulum Ca 2+ load, together with decreased sarcomere shortening in Slc26a6 -/ - cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pH i is elevated in Slc26a6 -/ - cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl - /HCO 3 - exchange activities of Slc26a6. Moreover, Slc26a6 -/ - mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl - /HCO 3 - transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pH i , excitability, and contractility. pH i is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6 -/ - mice. © 2017 American Heart Association, Inc.

  14. Variable H13CO+ Emission in the IM Lup Disk: X-Ray Driven Time-dependent Chemistry?

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Öberg, Karin I.; Andrews, Sean; Wilner, David; Loomis, Ryan

    2017-07-01

    We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO+, within a protoplanetary disk of a T Tauri star. The H13CO+ J=3-2 rotational transition was observed three times toward IM Lup between 2014 July and 2015 May with the Atacama Large Millimeter/submillimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk-integrated J=3-2 line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H13CO+ emission variation can potentially be explained via X-ray-driven chemistry temporarily enhancing the HCO+ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO+ enhancement is indeed caused by an X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.

  15. Effects of urbanization on groundwater evolution in an urbanizing watershed

    NASA Astrophysics Data System (ADS)

    Reyes, D.; Banner, J. L.; Bendik, N.

    2011-12-01

    The Jollyville Plateau Salamander (Eurycea tonkawae), a candidate species for listing under the Endangered Species Act, is endemic to springs and caves within the Bull Creek Watershed of Austin, Texas. Rapid urbanization endangers known populations of this salamander. Conservation strategies lack information on the extent of groundwater contamination from anthropogenic sources in this karst watershed. Spring water was analyzed for strontium (Sr) isotopes and major ions from sites classified as "urban" or "rural" based on impervious cover estimates. Previous studies have shown that the 87Sr/86Sr value of municipal water is significantly higher than values for natural streamwater, which are similar to those for the Cretaceous limestone bedrock of the region's watersheds. We investigate the application of this relationship to understanding the effects of urbanization on groundwater quality. The use of Sr isotopes as hydrochemical tracers is complemented by major ion concentrations, specifically the dominant ions in natural groundwater (Ca and HCO3) and the ions associated with the addition of wastewater (Na and Cl). To identify high priority salamander-inhabited springs for water quality remediation, we explore the processes controlling the chemical evolution of groundwater such as municipal water inputs, groundwater-soil interactions, and solution/dissolution reactions. 87Sr/86Sr values for water samples from within the watershed range from 0.70760 to 0.70875, the highest values corresponding to sites located in the urbanized areas of the watershed. Analyses of the covariation of Sr isotopes with major ion concentrations help elucidate controls on spring water evolution. Springs located in rural portions of the watershed have low 87Sr/86Sr, high concentrations of Ca and HCO3, and low concentrations of Na and Cl. This is consistent with small inputs of municipal water. Three springs located in urban portions of the watershed have high 87Sr/86Sr, low Ca and HCO3, and high Na and Cl. This is consistent with large inputs of municipal water. The other five springs located in urban portions have low 87Sr/86Sr, low concentrations of Ca and HCO3, and high concentrations of Na and Cl. This is reflects a process other than an input of municipal water. Groundwater interaction with soils generally results in higher Na concentrations relative to Ca. 87Sr/86Sr values in this scenario may increase or decrease, depending on the Sr isotope variability of the local soils. Alternatively, precipitation of calcite from groundwater would decrease the concentration of Ca without necessarily decreasing 87Sr/86Sr values. The results suggest more anthropogenic water in urban springs than rural springs. These data serve to identify sources of spring recharge, including better constraints on the location(s) of urban leakage.

  16. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  17. Finite Volume Scheme for Double Convection-Diffusion Exchange of Solutes in Bicarbonate High-Flux Hollow-Fiber Dialyzer Therapy

    PubMed Central

    Annan, Kodwo

    2012-01-01

    The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the end of the membrane, HCO3 − concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly within the first 47 minutes while optimal HCO3 − concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers. PMID:23197994

  18. Synthesis of calcium oxalate crystals in culture medium irradiated with non-equilibrium atmospheric-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    Octahedral particulates several tens of microns in size were synthesized in a culture medium irradiated through contact with a plume of non-equilibrium atmospheric-pressure plasma (NEAPP). The particulates were identified in the crystalline phase as calcium oxalate dihydrate (COD). The original medium contained constituents such as NaCl, d-glucose, CaCl2, and NaHCO3 but not oxalate or oxalic acid. The oxalate was clearly synthesized and crystallized in the medium as thermodynamically unstable COD crystals after the NEAPP irradiation.

  19. Molecular Diagnostics of the Internal Motions of Massive Cores

    NASA Astrophysics Data System (ADS)

    Pineda, Jorge; Velusamy, T.; Goldsmith, P.; Li, D.; Peng, R.; Langer, W.

    2009-12-01

    We present models of the internal kinematics of massive cores in the Orion molecular cloud. We use a sample of cores studied by Velusamy et al. (2008) that show red, blue, and no asymmetry in their HCO+ line profiles in equal proportion, and which therefore may represent a sample of cores in different kinematic states. We use the radiative transfer code RATRAN (Hogerheijde & van der Tak 2000) to model several transitions of HCO+ and H13CO+ as well as the dust continuum emission, of a spherical model cloud with radial density, temperature, and velocity gradients. We find that an excitation and velocity gradients are prerequisites to reproduce the observed line profiles. We use the dust continuum emission to constrain the density and temperature gradients. This allows us to narrow down the functional forms of the velocity gradient giving us the opportunity to test several theoretical predictions of velocity gradients produced by the effect of magnetic fields (e.g. Tassis et. al. 2007) and turbulence (e.g. Vasquez-Semanedi et al 2007).

  20. Species-specific toxicity of major ion salts 1: Fathead minnows and pond snails

    EPA Science Inventory

    Elevated major ion concentrations (Na, K, Ca, Mg, Cl, SO4, HCO3) have been recognized as a cause of surface water impairment and the toxicity of these major ions has been shown to be dependent on the specific ion composition of the water. A long-term research project was initiate...

  1. The acute toxicity of major ion salts to Ceriodaphnia dubia: I. Influence of background water chemistry

    EPA Science Inventory

    The ions Na+, K+, Ca2+, Mg2+, Cl-, SO42-, and HCO3-/CO32- (referred to as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can be increased to harmful levels by a variety of anthropogenic activities that speed ge...

  2. Species-specific toxicity of major ion salts 2: Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans

    EPA Science Inventory

    Elevated major ion concentrations (Na, K, Ca, Mg, Cl, SO4, HCO3) have been recognized as a cause of surface water impairment and the toxicity of these major ions has been shown to be dependent on the specific ion composition of the water. A long-term research project was initiate...

  3. Tularosa Basin Play Fairway Analysis: Water Chemistry

    DOE Data Explorer

    Adam Brandt

    2015-12-15

    This shapefile contains 409 well data points on Tularosa Basin Water Chemistry, each of which have a location (UTM), temperature, quartz and Potassium/Magnesium geothermometer; as well as concentrations of chemicals like Mn, Fe, Ba, Sr, Cs, Rb, As, NH4, HCO3, SO4, F, Cl, B, SiO2, Mg, Ca, K, Na, and Li.

  4. Arsenic treatment and power generation with a dual-chambered fuel cell with anionic and cationic membranes using NaHCO3 anolyte and HCl or NaCl catholyte.

    PubMed

    Maitlo, Hubdar Ali; Kim, Jung Hwan; Park, Joo Yang

    2017-04-01

    Dual-chambered fuel cells with an iron anode and an air-carbon cathode separated by an ion exchange membranes have been used to treat arsenate during power production. To select an effective catholyte, the dual-chambered fuel cell consisted 90 mL of 0.1 M HCl or 0.5 M NaCl as the catholyte and 1 L of 0.1 M NaHCO 3 as the anolyte at an initial pH 5. The 0.1 M HCl was an effective catholyte, with which 1 ppm arsenate in 1 L of anolyte was reduced to 5 ppb in 1 h, and the maximum power density was about 6.3 w/m 2 with an anion exchange membrane fuel cell (AEM_FC) and 4.4 w/m 2 with a cation exchange membrane fuel cell (CEM_FC). Therefore, 90 mL of 0.1 M HCl was used as a catholyte to treat 20 L of 0.1 M NaHCO 3 anolyte containing 1 ppm arsenate at an initial pH of 5 or 7. The arsenate level at pH 5 decreased to less than 5 ppb in 4 h, and the maximum power density was 5.9 W/m 2 and 4.7 W/m 2 with AEM_FC and CEM_FC, respectively. When using 0.01 M NaHCO 3 as the anolyte at pH 5, arsenate was reduced to less than 5 ppb in 8 and 24 h for AEC_FC and CEM_FC, respectively. However, when using an anolyte at pH 7, arsenate could not be effectively removed in 24 h. Therefore, when using carbonate as an anolyte, the solution should be adjusted to a weakly acidic pH in order to remove arsenate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. CFTR is restricted to a small population of high expresser cells that provide a forskolin-sensitive transepithelial Cl- conductance in the proximal colon of the possum, Trichosurus vulpecula.

    PubMed

    Fan, Shujun; Harfoot, Natalie; Bartolo, Ray C; Butt, A Grant

    2012-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is central to anion secretion in both the possum and eutherian small intestine. Here, we investigated its role in the possum proximal colon, which has novel transport properties compared with the eutherian proximal colon. Despite considerable CFTR expression, high doses of the CFTR activator forskolin (EC(50)≈10 μmol l(-1)) were required for a modest, CFTR-dependent increase in short-circuit current (I(sc)) in the proximal colon. Presumably, this is because CFTR is restricted to the apical membrane of a small population of CFTR high expresser (CHE) cells in the surface and upper crypt epithelium. Furthermore, although the forskolin-stimulated I(sc) was dependent on serosal Na(+), Cl(-) and HCO(3)(-), consistent with anion secretion, inhibition of the basolateral Na-K-2Cl(-) (NKCC1) or Na-HCO(3) (pNBCe1) cotransporters did not prevent it. Therefore, although NKCC1 and pNBCe1 are expressed in the colonic epithelium they do not appear to be expressed in CHE cells. At low doses (IC(50)≈1 μmol l(-1)), forskolin also decreased the transepithelial conductance (G(T)) of the colon through inhibition of a 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid-sensitive anion conductance in the basolateral membrane of the CHE cells. This conductance is arranged in series with CFTR in the CHE cells and, therefore, the CHE cells provide a transepithelial Cl(-) conductance for passive Cl(-) absorption across the epithelium. Inhibition of the basolateral Cl(-) conductance of the CHE cells by forskolin will inhibit Na(+) absorption by restricting the movement of its counter-ion Cl(-), assisting in the conversion of the tissue from an absorptive to a secretory state.

  6. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.

    PubMed

    Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L

    2010-11-25

    A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.

  7. Microbiological, physicochemical, and heavy metals assessment of groundwater quality in the Triffa plain (eastern Morocco)

    NASA Astrophysics Data System (ADS)

    Yahya, Hameed Saleh Ali; Jilali, Abdelhakim; Mostareh, Mohammed Mohammed Mohammed; Chafik, Zouheir; Chafi, Abdelhafid

    2017-12-01

    The focus of this study is the physicochemical and bacteriological characteristics of groundwater in the Triffa plain, Morocco. In total, 34 groundwater samples were analyzed for major elements (Tp, pH, EC, K+, Na+, Ca2+, Mg2+, Cl-, SO4 2-, NO3 -, NO2 -, NH4 +, H2PO4 -, CO3, and HCO3 -) and trace metal (Al, Cd, Cu, Fe, and Zn) content. The results show that the pH values range between 6.7 and 8.9, electrical conductivity ranges between 740 and 7340 µS/cm, and nitrate content ranges between 1.7 and 212 mg/l. Hydrochemical facies represented using a Piper diagram indicate an Na-K-Cl type water. All the trace metal concentrations are within the admissible standard range except for Cd. The bacteriological analysis showed that the majority of groundwater samples are contaminated. Generally, the content of total coliforms, fecal coliforms, and fecal streptococci ranged from 0 to 140, 0 to 125, and 0 to 108 CFU/100 ml, respectively. The samples are grouped according to three factors. Factor 1 shows strong positive loadings of EC, Mg, Cl, Na and K with 51.91% of total variance (TV); factor 2 shows strong negative loadings of NO3, SO4 and Ca with 17.98% of TV; and factor 3 shows strong negative loading of HCO3 with 15.56 of TV. We conclude that the quality of this groundwater is suitable for irrigation and domestic use (cleaning house, ect).

  8. Effects of oral electrolyte supplementation on endurance horses competing in 80 km rides.

    PubMed

    Sampieri, F; Schott, H C; Hinchcliff, K W; Geor, R J; Jose-Cunilleras, E

    2006-08-01

    There is no evidence that use of oral electrolyte pastes enhances performance in competing endurance horses. To ascertain whether oral administration of a high dose (HD) of sodium chloride (NaCl) and potassium chloride (KCl) to endurance horses would differentially increase water intake, attenuate bodyweight (bwt) loss and improve performance when compared to a low dose (LD). A randomised, blinded, crossover study was conducted on 8 horses participating in two 80 km rides (same course, 28 days apart). Thirty minutes before and at 40 km of the first ride 4, horses received orally 02 g NaCl/kg bwt and 0.07 g KCl/kg bwt. The other 4 received 0.07 g NaCl/kg bwt and 0.02 g KCl/kg bwt. Horses received the alternate treatment in the second ride. Data were analysed with 2-way ANOVA for repeated measures (P<0.05). Estimated water intake was significantly greater with HD both at the 40 km mark and as total water intake; however, differences in bwt loss and speed between HD and LD were not found. Treatment significantly affected serum Na+, Cl-, HCO3, pH and water intake, but not serum K+ or bwt. Serum Na+ and Cl- were significantly higher at 80 km when horses received HD, but no differences were found in early recovery. Venous HCO3- and pH were significantly lower throughout the ride and in early recovery when horses received HD. Other than enhancing water intake, supplementing endurance horses with high doses of NaCI and KCl did not provide any detectable competitive advantage in 80 km rides. Further, the elevated serum electrolyte concentrations induced with HD might not be appropriate for endurance horses.

  9. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-02-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

  10. Dietary mixtures of sodium bicarbonate, sodium chloride, and potassium chloride: effects on lactational performance, acid-base status, and mineral metabolism of Holstein cows.

    PubMed

    Sanchez, W K; Beede, D K; Cornell, J A

    1997-06-01

    The objective of this study was to determine lactational, blood mineral, and blood acid-base responses to dietary mixtures of NaHCO3, NaCl, and KCl and dietary cation-anion difference by lactating diary cows. Three 100:0:0 (primary) blends, three 50:50:0 (binary) blends, and one 33:33:33 (tertiary) blend of NaHCO3, NaCl, and KCl, respectively, were formulated to replace 1% of the dry matter in a diet based on corn silage. Seven treatments were defined according to a simplex-centroid mixtures design using a partially balanced incomplete block arrangement. An eighth treatment served as a control and contained 1% SiO2 instead of the mineral blends. Dietary cation-anion difference ranged from +25 to +40 meq of (Na + K - Cl)/100 g of dietary dry matter. Diets were fed for three consecutive 28-d periods during summer to 36 midlactation cows. Cows that were fed the tertiary mixture had lower milk protein percentage, whole blood bicarbonate, and plasma K than did cows fed the other blends. With the exception of milk protein percentage and body weight gain, none of the mixtures had a significant impact on lactational performance. The lack of differences could have been due to the narrow range in the dietary cation-anion difference studied.

  11. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life

    PubMed Central

    Ziurys, Lucy M.

    2006-01-01

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule “freeze-out,” shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This “survivor” molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells. PMID:16894164

  12. Interstellar Chemistry Special Feature: The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2006-08-01

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.

  13. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    PubMed Central

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  14. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C - A potentiometric and spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2013-11-01

    Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.

  15. Degradation of florfenicol in water by UV/Na2S 2O 8 process.

    PubMed

    Gao, Yu-Qiong; Gao, Nai-Yun; Deng, Yang; Yin, Da-Qiang; Zhang, Yan-Sen

    2015-06-01

    UV irradiation-activated sodium persulfate (UV/PS) was studied to degrade florfenicol (FLO), a phenicol antibiotic commonly used in aquaculture, in water. Compared with UV/H2O2 process, UV/PS process achieves a higher FLO degradation efficiency, greater mineralization, and less cost. The quantum yield for direct photolysis of FLO and the second-order rate constant of FLO with sulfate radicals were determined. The effects of various factors, namely PS concentration, anions (NO3 (-), Cl(-), and HCO3 (-)), ferrous ion, and humic acid (HA), on FLO degradation were investigated. The results showed that the pseudo-first-order rate constant increased linearly with increased PS concentration. The tested anions all adversely affected FLO degradation performance with the order of HCO3 (-) > Cl(-) > NO3 (-). Coexisting ferrous ions enhanced FLO degradation at a Fe(2+)/PS molar ratio under 1:1. HA significantly inhibited FLO degradation due to radical scavenging and light-screening effect. Toxicity assessment showed that it is capable of controlling the toxicity for FLO degradation. These findings indicated that UV/PS is a promising technology for water polluted by antibiotics, and the treatment is optimized only after the impacts of water characteristics are carefully considered.

  16. The effects of elevated environmental CO2 on nitrite uptake in the air-breathing clown knifefish, Chitala ornata.

    PubMed

    Gam, Le Thi Hong; Jensen, Frank Bo; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Bayley, Mark

    2018-03-01

    Nitrite and carbon dioxide are common environmental contaminants in the intensive aquaculture ponds used to farm clown knifefish (Chitala ornata) in the Mekong delta, Vietnam. Here we tested the hypothesis that hypercapnia reduces nitrite uptake across the gills, because pH regulation will reduce chloride uptake and hence nitrite uptake as the two ions compete for the same transport route via the branchial HCO 3 - /Cl - exchanger. Fish fitted with arterial catheters were exposed to normocapnic/normoxic water (control), nitrite (1 mM), hypercapnia (21 mmHg CO 2 ), or combined hypercapnia (acclimated hypercapnia) and nitrite for 96 h. Blood was sampled to measure acid-base status, haemoglobin derivatives and plasma ions. Plasma nitrite increased for 48 h, but levels stayed below the exposure concentration, and subsequently decreased as a result of nitrite detoxification to nitrate. The total uptake of nitrite (evaluated as [NO 2 - ] + [NO 3 - ]) was significantly decreased in hypercapnia, in accordance with the hypothesis. Methemoglobin and nitrosylhemoglobin levels were similarly lower during hypercapnic compared to normocapnic nitrite exposure. The respiratory acidosis induced by hypercapnia was half-compensated by bicarbonate accumulation in 96 h, which was mainly chloride-mediated (i.e. reduced Cl - influx via the branchial HCO 3 - /Cl - exchanger). Plasma osmolality and main ions (Na + , Cl - ) were significantly decreased by hypercapnia and by nitrite exposure, consistent with inhibition of active transport. We conclude that hypercapnia induces a long-lasting, and mainly chloride-mediated acid-base regulation that reduces the uptake of nitrite across the gills. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Influence of geochemical processes on hydrochemistry and irrigation suitability of groundwater in part of semi-arid Deccan Plateau, India

    NASA Astrophysics Data System (ADS)

    Vasu, Duraisamy; Singh, Surendra Kumar; Tiwary, Pramod; Sahu, Nisha; Ray, Sanjay Kumar; Butte, Pravin; Duraisami, Veppangadu Perumal

    2017-11-01

    Major ion geochemistry was used to characterise the chemical composition of groundwater in part of semi-arid Deccan plateau region to understand the geochemical evolution and to evaluate the groundwater quality for irrigation. The study area comprises peninsular gneissic complex of Archean age, younger granites and basaltic alluvium. Forty-nine georeferenced groundwater samples were collected and analysed for major ions. The ionic sequence based on relative proportions was Na+ > Mg2+ > Ca2+ > SO4 2- > HCO3 - > Cl- > CO3 2- > BO3 3- > K+. High Na+, Mg2+ and Ca2+ were generally associated with basaltic alluvial formation, whereas pH, electrical conductivity (EC) and total dissolved salts (TDS) were found to be higher in granitic formations. High standard deviation for EC, TDS, Na+, Ca2+ and Mg2+ indicated the dispersion of ionic concentration throughout the study area. Four major hydrochemical facies identified were Na-Mg-HCO3 type; Mg-Na-HCO3 type; Na-Mg-Ca-SO4 and Mg-Na-Ca-SO4 type. The graphical plots indicated that the groundwater chemistry was influenced by rock-water interaction, silicate weathering and reverse ion exchange. Sodium-dominated waters might have impeded the hydraulic properties of soils as a result of long-term irrigation.

  18. The acute and chronic toxicity of major geochemical ions to Hyalella azteca Ion interactions and comparisons to other species

    EPA Science Inventory

    We have previously reported that the acute and chronic toxicities of major geochemical ions (Na, K, Ca, Mg, Cl, SO4, HCO3) to Ceriodaphnia dubia can involve multiple, independent mechanisms. The toxicities of K, Mg, and Ca salts were best related to the chemical activity of the c...

  19. The acute toxicity of major ion salts to Ceriodaphnia dubia: III. Mathematical models for mixture toxicity

    EPA Science Inventory

    Based on previous research on the acute toxicity of major ions (Na+, K+, Ca2+, Mg2+, Cl, SO42, and HCO3/CO32) to C. dubia, two mathematical models were developed for predicting the LC50 for any ion mixture, excluding those dominated by K toxicity. One model addresses a mechanism...

  20. Kinetic modeling and energy efficiency of UV/H₂O₂ treatment of iodinated trihalomethanes.

    PubMed

    Xiao, Yongjun; Zhang, Lifeng; Yue, Junqi; Webster, Richard D; Lim, Teik-Thye

    2015-05-15

    Photodegradation of I-THMs including CHCl2I and CHI3 by the UV/H2O2 system was investigated in this study. CHCl2I and CHI3 react rapidly with hydroxyl radical (OH) produced by the UV/H2O2 system, with second-order rate constants of 8.0 × 10(9) and 8.9 × 10(9) M(-1) s(-1), respectively. A fraction of CHCl2I could be completely mineralized within 15 min and the remaining fraction was mainly converted to formic acid (HCO2H). Cl(-) and I(-) were identified as the predominant end-products. No ClO3(-) was observed during the photodegradation process, while IO3(-) was detected but at less than 2% of the total liberated iodine species at the end of the reaction. The effects of pH, H2O2 dose, and matrix species such as humic acid (HA), HCO3(-), SO4(2-), Cl(-), NO3(-) on the photodegradation kinetics were evaluated. The steady-state kinetic model has been proven to successfully predict the destruction of CHCl2I and CHI3 by UV/H2O2 in different water matrices. On this basis, the kinetic model combined with electrical energy per order (EE/O) concept was applied to evaluate the efficiency of the photodegradation process and to optimize the H2O2 dose for different scenarios. The optimal H2O2 doses in deionized (DI) water, model natural water, and surface water are estimated at 5, 12, and 16 mg L(-1), respectively, which correspond to the lowest total energy consumption (EE/Ototal) of 0.2, 0.31, and 0.45 kWhm(-3)order(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Hyper-localized carbon mineralization in diffusion-limited basalt fractures

    NASA Astrophysics Data System (ADS)

    Menefee, A. H.; Giammar, D.; Ellis, B. R.

    2017-12-01

    Basalt formations could enable secure carbon sequestration through mineral trapping. CO2 injection acidifies formation brines and drives dissolution of the host rock, which releases divalent metal cations that combine with dissolved carbonate ions to form stable carbonate minerals. Here, a series of high-pressure flow-through experiments was conducted to evaluate how transport limitations and geochemical gradients drive microscale carbonation reactions in fractured basalts. To isolate advection- and diffusion-controlled zones, surfaces of saw-cut basalt cores were milled to create one primary flow channel adjoined by four dead-end fracture pathways. In the first experiment, a representative basalt brine (6.3 mM NaHCO3) equilibrated with CO2 (100ºC, 10 MPa) was injected at 1 mL/h under 20 MPa confining stress. The second experiment was conducted under the same physical conditions but [NaHCO3] was elevated to 640 mM, and in the third, temperature was also raised to 150ºC. Effluent chemistry was monitored via ICP-MS to infer dissolution trends and calibrate reactive transport models. Reacted cores were characterized using x-ray computed tomography (xCT), optical microscopy, scanning electron microscopy, and Raman spectroscopy. Carbonation occurred in all experiments but increased in experiments with higher alkalinity and higher temperature. At low [NaHCO3], secondary precipitate coatings formed distinct reaction fronts that varied with distance into dead-end fractures. Reactive transport modeling demonstrated that these reactions fronts were due to sharp gradients in pH and dissolved inorganic carbon. Carbonation was restricted to transport-limited vugs and pores between the confined core surfaces and was highly localized on reactive primary mineral grains (e.g. pyroxene) that contributed major divalent cations. Increasing [NaHCO3] by two orders of magnitude significantly enhanced carbonation and promoted Mg and Fe uptake into carbonates. While xCT scans revealed clays filling the advective path, no permeability changes were measured. Our coupled experiment-modeling approach further elucidates the geochemical conditions controlling carbonation reactions and extends unique microstructural observations to implications for long-term CO2 mineralization in basalt reservoirs.

  2. Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification

    NASA Astrophysics Data System (ADS)

    Diaz-Pulido, Guillermo; Cornwall, Christopher; Gartrell, Patrick; Hurd, Catriona; Tran, Dien V.

    2016-12-01

    Macroalgae are generally used as indicators of coral reef status; thus, understanding the drivers and mechanisms leading to increased macroalgal abundance are of critical importance. Ocean acidification (OA) due to elevated carbon dioxide (CO2) concentrations has been suggested to stimulate macroalgal growth and abundance on reefs. However, little is known about the physiological mechanisms by which reef macroalgae use CO2 from the bulk seawater for photosynthesis [i.e., (1) direct uptake of bicarbonate (HCO3 -) and/or CO2 by means of carbon concentrating mechanisms (CCM) and (2) the diffusive uptake of CO2], which species could benefit from increased CO2 or which habitats may be more susceptible to acidification-induced algal proliferations. Here, we provide the first quantitative examination of CO2-use strategies in coral reef macroalgae and provide information on how the proportion of species and the proportional abundance of species utilising each of the carbon acquisition strategies varies across a gradient of terrestrial influence (from inshore to offshore reefs) in the Great Barrier Reef (GBR). Four macroalgal groups were identified based on their carbon uptake strategies: (1) CCM-only (HCO3 - only users); (2) CCM-HCO3 -/CO2 (active uptake HCO3 - and/or CO2 use); (3) Non-CCM species (those relying on diffusive CO2 uptake); and (4) Calcifiers. δ13C values of macroalgae, confirmed by pH drift assays, show that diffusive CO2 use is more prevalent in deeper waters, possibly due to low light availability that limits activity of CCMs. Inshore shallow reefs had a higher proportion of CCM-only species, while reefs further away from terrestrial influence and exposed to better water quality had a higher number of non-CCM species than inshore and mid-shelf reefs. As non-CCM macroalgae are more responsive to increased seawater CO2 and OA, reef slopes of the outer reefs are probably the habitats most vulnerable to the impacts of OA. Our results suggest a potentially important role of carbon physiology in structuring macroalgal communities in the GBR.

  3. Aquifer prospect and vulnerability of Upper Maastrichtian sandstones: Case of Ajali and Nsukka formations in the Northern Enugu Province, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ukpai, Stephen N.; Ezeh, Hilary N.; Igwe, James O.

    2017-11-01

    Two typical aquifer systems, namely, regional aquifer and local Perched aquifer have been delineated in the study area. The regional aquifer was identified at about 100 m depth around lowland areas, although prone to polluting effects from farming activities, erosion and weathering processes. This study investigated extents of groundwater pollution and permeability of the aquifers from water sample and grain size analyses. Results show porosity ranging from 49 to 50% and hydraulic conductivities as follows: 7.0 m/day for the sandstone of Nsukka Formation, 34.6 m/day for the outcrop of Ajali sandstone and 10.4 m/day for the sandstone at saturated subsurface zone with transmissivity of about 572 m2/day. The results signify that the regional aquifer is recharged by substantial rate of infiltrations vis-a-vis surface outcrops, and is therefore vulnerable to infiltration of pollution plumes. The groundwater is mainly acidic at pH ranging from 5.05 to 7.41 with a mean value of about 6.48, hence the pollution from dissolved iron in many places. Three main water types were identified, namely, Ca-Mg-HCO3, Ca-HCO3-Cl2 and Mg-Na-HCO3-SO4-Cl2 facies, all signifying dominance of groundwater species arising from precipitation recharge. This has resulted in the influences of surface effluents from run off as indicated by nitrate pollution in some areas. Thus, active hydrologic cycle controls the chemical facies in the water resources of the region, and with its hydraulic influence on the landscape, the quality status of groundwater, as well as the growth of agricultural products have been impaired.

  4. Regulation of K transport in a mathematical model of the cortical collecting tubule.

    PubMed

    Strieter, J; Weinstein, A M; Giebisch, G; Stephenson, J L

    1992-12-01

    The effect of luminal flow rate and peritubular pH on Na and K transport is investigated in a mathematical model of the rabbit cortical collecting tubule. The model is used to simulate a 0.4-cm segment of tubule comprised of principal cell, alpha- and beta-intercalated cells, and lateral interspace. Calculations produce luminal profiles of Na, K, Cl, HCO3, and phosphate, as well as of electrical potential and pH. Parameter sets are developed that permit representation of both unstimulated and deoxycorticosterone acetate-stimulated tubules. A series of simulations is performed in which initial luminal flow rate is varied over the range of values between 0.1 and 30 nl/min. A marked flow-dependent enhancement of Na reabsorption and K secretion is seen, especially at lower flows, while Cl and HCO3 transport remain relatively constant. In experimental studies, it has been observed that metabolic alkalosis stimulates and metabolic acidosis inhibits K secretion, while leaving Na transport relatively unaffected [B. A. Stanton and G. Giebisch. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F544-F551, 1982; K. Tabei, S. Muto, Y. Ando, Y. Sakairi, and Y. Asano. J. Am. Soc. Nephrol. 1: 693, 1990; and K. Tabei, S. Muto, H. Furuya, and Y. Asano. J. Am. Soc. Nephrol. 2: 752, 1991]. Model calculations indicate that, when ion permeabilities are fixed and not dependent on pH, the impact of peritubular HCO3 on K secretion cannot be simulated. When junctional Cl permeability decreases with increasing interspace pH (E. M. Wright and J. M. Diamond. Biochim. Biophys. Acta 163: 57-74, 1968) in the model, there is a marked stimulation of K secretion with alkalosis and inhibition with acidosis. Furthermore, inclusion of a pH-dependent apical Na permeability [L. G. Palmer and G. Frindt. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333-F339, 1987] that increases with increasing principal cell pH significantly reduces the change in Na+ reabsorption seen with the pH-dependent junctional Cl permeability alone. In these calculations, a pH-dependent apical K permeability [W. Wang, A. Schwab, and G. Giebisch. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F494-F502, 1990] that increases with increasing principal cell pH shows relatively little impact on K secretion.

  5. Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain.

    PubMed

    Gu, Xiaomin; Xiao, Yong; Yin, Shiyang; Pan, Xingyao; Niu, Yong; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Hao, Qichen

    2017-09-22

    In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO 3 type in grass land to Ca·Na-Cl (+NO 3 ) type and Na (Ca)-Cl (+NO 3 +SO 4 ) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO 3 ) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.

  6. The Divergence, Actions, Roles, and Relatives of Sodium-Coupled Bicarbonate Transporters

    PubMed Central

    Boron, Walter F.

    2013-01-01

    The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1–3), five Na+-coupled HCO3− transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3− across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1–3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature. PMID:23589833

  7. Installation and Implementation of a Comprehensive Groundwater Monitoring Program for the Indian Wells Valley, California

    DTIC Science & Technology

    2010-04-01

    isotopes. Laboratory analysis for general chemistry included Na, Ca, Mg, K, Fe, Cl, HCO3, CO3 , SO4, F, B, NO3, arsenic (As), hardness, alkalinity...used for interpretations within the project. Prior to this effort, a single -location repository for isotopic data related to IWV investigations...canyons of importance to this study (Indian Wells Canyon, Freeman Canyon, and the upgradient canyons of Cow Haven, Sage, and Horse). Single samples

  8. Preparation, characterization, and silanization of 3D microporous PDMS structure with properly sized pores for endothelial cell culture.

    PubMed

    Zargar, Reyhaneh; Nourmohammadi, Jhamak; Amoabediny, Ghassem

    2016-01-01

    Nowadays, application of porous polydimethylsiloxane (PDMS) structure in biomedical is becoming widespread, and many methods have been established to create such structure. Although the pores created through these methods are mostly developed on the outer surface of PDMS membrane, this study offers a simple and cost-efficient technique for creating three-dimensional (3D) microporous PDMS structure with appropriate pore size for endothelial cell culture. In this study, combination of gas foaming and particulate leaching methods, with NaHCO3 as effervescent salt and NaCl as progen are used to form a 3D PDMS sponge. The in situ chemical reaction between NaHCO3 and HCl resulted in the formation of small pores and channels. Moreover, soaking the samples in HCl solution temporarily improved the hydrophilicity of PDMS, which then facilitated the penetration of water for further leaching of NaCl. The surface chemical modification process was performed by (3-aminopropyl)triethoxysilane to culture endothelial cells on porous PDMS matrix. The results are an indication of positive response of endothelial cells to the fabricated PDMS sponge. Because of simplicity and practicality of this method for preparing PDMS sponge with appropriate pore size and biological properties, the fabricated matrix can perfectly be applied to future studies in blood-contacting devices. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  9. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Liuzhu; Ma, Teng; Du, Yao; Xiao, Cong; Chen, Xinming; Liu, Cunfu; Wang, Yanxin

    2016-05-01

    Geothermal energy is abundant in Guangdong Province of China, however, majority of it is still unexploited. To take full advantage of this energy, it is essential to know the information of geothermal system. Here, physical parameters such as pH and temperature, major ion (Na+, Ca2 +, Mg2 +, Cl-, SO42 - and HCO3-), trace elements (Br-, Sr2 +, Li+ and B3 +) and stable isotopes (2H, 18O and 37Cl) in geothermal water, non-geothermal water (river water, cold groundwater) and seawater were used to identify the origin and evolution of geothermal water in coastal plain of Southwest of Guangdong. Two separate groups of geothermal water have been identified in study area. Group A, located in inland of study area, is characterized by Na+ and HCO3-. Group B, located in coastal area, is characterized by Na+ and Cl-. The relationships of components vs. Cl for different water samples clearly suggest the hydrochemical differences caused by mixing with seawater and water-rock interactions. It's evident that water-rock interactions under high temperature make a significant contribution to hydrochemistry of geothermal water for both Group A and Group B. Besides, seawater also plays an important role during geothermal water evolution for Group B. Mixing ratios of seawater with geothermal water for Group B are calculated by Cl and Br binary diagram, the estimated results show that about < 1% to < 35% of seawater has mixed into geothermal water, and seawater might get into the geothermal system by deep faults. Molar Na/Cl ratios also support these two processes. Geothermal and non-geothermal water samples plot around GMWL in the δ2H vs. δ18O diagram, indicating that these samples have a predominant origin from meteoric water. Most of geothermal water samples display δ37Cl values between those of the non-geothermal water and seawater samples, further reveals three sources of elements supply for geothermal water, including atmospheric deposition, bedrocks and seawater, which show a great potential to trace source of dissolved Cl- in geothermal water. Estimated reservoir temperatures show that geothermal reservoirs in study area are mid-low temperature geothermal reservoirs.

  10. Characterization of brines and evaporites of Lake Katwe, Uganda

    NASA Astrophysics Data System (ADS)

    Kasedde, Hillary; Kirabira, John Baptist; Bäbler, Matthäus U.; Tilliander, Anders; Jonsson, Stefan

    2014-03-01

    Lake Katwe brines and evaporites were investigated to determine their chemical, mineralogical and morphological composition. 30 brine samples and 3 solid salt samples (evaporites) were collected from different locations of the lake deposit. Several analytical techniques were used to determine the chemical composition of the samples including Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), ion chromatography, and potentiometric titration. The mineralogical composition and morphology of the evaporites was determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Physical parameters of the lake brines such as density, electrical conductivity, pH, and salinity were also studied. The results show that the lake brines are highly alkaline and rich in Na+, Cl-, CO32-, SO42-, and HCO3- with lesser amounts of K+, Mg2+, Ca2+, Br-, and F- ions. The brines show an intermediate transition between Na-Cl and Na-HCO3 water types. Among the trace metals, the lake brines were found to be enriched in B, I, Sr, Fe, Mo, Ba, and Mn. The solid salts are composed of halite mixed with other salts such as hanksite, burkeite and trona. It was also observed that the composition of the salts varies considerably even within the same grades.

  11. Export fluxes of geochemical solutes in the meltwater stream of Sutri Dhaka Glacier, Chandra basin, Western Himalaya.

    PubMed

    Singh, Ajit T; Laluraj, C M; Sharma, Parmanand; Patel, Lavkush K; Thamban, Meloth

    2017-10-12

    The hydrochemistry of meltwater from the Sutri Dhaka Glacier, Western Himalaya, has been studied to understand the influence of the factors controlling the weathering processes of the glaciers during the peak ablation period. The high solar irradiance prompted intense melting, which has raised the stream flow of the glacier. The meltwater has been observed as slightly alkaline (mean pH 8.2) and contains the major anions (HCO 3 -  > SO 4 2-  > NO 3 -  > Cl - ) and cations (Ca 2+  > Mg 2+  > K +  > Na +  > NH 4 + ) with Ca 2+ (78.5%) and HCO 3 - (74.5%) as the dominant species. The piper diagram indicates the category of stream meltwater as Ca 2+ -HCO 3 - type. In addition, it is evident from the Gibbs diagram that the interaction between the meltwater and bedrock controls the ionic concentrations of the glacial meltwater. The high ratio value (~ 0.75) of HCO 3 - /(HCO 3 -  + SO 4 2- ) indicates that the carbonate weathering is dominant. Fe and Al followed by Mn, Sr, and Ti are the most dominant trace elements present in the meltwater. The significant negative correlation exhibited by the major ions and Sr with the discharge is recommended for the enrichment of these solutes during the lean discharge periods. However, the insignificant correlation of Fe, Al, Mn, and Ti with discharge suggests their physicochemical control. The principal component analysis (PCA) carried has highlighted three dominant composites, i.e., the water-rock interaction, atmospheric dust inputs, and physicochemical changes in the meltwater. Hence, the present study elucidates the export of geochemical solutes from Sutri Dhaka Glacier and factors governing the water chemistry, which helps in the better understanding of hydrochemical processes of the Himalayan glaciers and substantial improvement of our understanding about the glacio-hydrological environments and their response in the scenario of global warming.

  12. The effect of drugs acting on cholinoceptors and mucosal chloride on luminal bicarbonate transport by rat caecum under in vitro conditions.

    PubMed Central

    Canfield, P.; Abdul-Ghaffar, T.

    1991-01-01

    1. The transport of HCO3- (Jsm) from a HCO3(-)-buffered serosal to an unbuffered mucosal saline solution has been studied in rat caecum in vitro. 2. Carbachol, bethanechol and acetylcholine (ACh) caused a concentration-dependent fall in Jsm with similar maximum effects. 1,1-Dimethyl-4-phenyl-piperazinium iodide (DMPP) also inhibited Jsm but the effect was less than with the other drugs. Maximum cholinoceptor inhibition was less than that obtained with anoxia. 3. Responses were blocked by atropine (10(-5) M) but hexamethonium (2 x 10(-4) M) significantly altered the response only to DMPP. 4. Physostigmine (10(-5) M) shifted the ACh response curve to the left but physostigmine itself caused inhibition of Jsm which was blocked by atropine. 5. Substitution of mucosal Cl- by NO3- reduced Jsm to a similar extent to maximum cholinoceptor effect and abolished responses to bethanecol. Anoxia further reduced Jsm in the presence of NO3-. 6. Mucosal SITS and DIDS (1 mM) reduced Jsm but this was less than the maximum inhibition seen with drugs acting on cholinoceptors or mucosal Cl- removal. Serosal DIDS caused a similar inhibition. 7. We conclude that cholinoceptor agonists inhibit but do not abolish luminal bicarbonate transport by an action on muscarinic receptors. PMID:1884114

  13. Effects of anion transport inhibitors and ion substitution on Cl sup minus transport in TAL of Henle's loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Yoshiaki; Yoshitomi, Koji; Imai, Masashi

    1987-12-01

    To identify the mechanism of Cl{sup {minus}} transport across the thin ascending limb of Henle's loop (TAL), the authors examined effects of anion transport inhibitors and ionic substitution in the isolated segments of hamsters using the in vitro microperfusion technique. 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS) at 10{sup {minus}3} M changed the NaCl diffusion voltage (V{sub t}) to the orientation that corresponds to the decrease in the Cl{sup {minus}}-Na{sup +} permeability ratio when it was added either to the bath or to the lumen. DIDS, added to the bath or to the lumen decreased the lumen-to-bath flux coefficient for {sup 36}Cl, whereas itmore » had little effect on the flux coefficient for {sup 22}Na. The inhibitory effect of phloretin was rapid and reversible. Phloridzin was ineffective. From these observations, they conclude that Cl{sup {minus}} transport across the TAL is distinct from Na{sup +} and is not coupled with Na{sup +}, K{sup +}, or HCO{sup {minus}}{sub 3}.« less

  14. Apical ammonium inhibition of cAMP-stimulated secretion in T84 cells is bicarbonate dependent.

    PubMed

    Worrell, Roger T; Best, Alison; Crawford, Oscar R; Xu, Jie; Soleimani, Manoocher; Matthews, Jeffrey B

    2005-10-01

    Normal human colonic luminal (NH(4)(+)) concentration ([NH(4)(+)]) ranges from approximately 10 to 100 mM. However, the nature of the effects of NH(4)(+) on transport, as well as NH(4)(+) transport itself, in colonic epithelium is poorly understood. We elucidate here the effects of apical NH(4)(+) on cAMP-stimulated Cl(-) secretion in colonic T84 cells. In HEPES-buffered solutions, 10 mM apical NH(4)(+) had no significant effect on cAMP-stimulated current. In contrast, 10 mM apical NH(4)(+) reduced current within 5 min to 61 +/- 4% in the presence of 25 mM HCO(3)(-). Current inhibition was not simply due to an increase in extracellular K(+)-like cations, in that the current magnitude was 95 +/- 5% with 10 mM apical K(+) and 46 +/- 3% with 10 mM apical NH(4)(+) relative to that with 5 mM apical K(+). We previously demonstrated that inhibition of Cl(-) secretion by basolateral NH(4)(+) occurs in HCO(3)(-)-free conditions and exhibits anomalous mole fraction behavior. In contrast, apical NH(4)(+) inhibition of current in HCO(3)(-) buffer did not show anomalous mole fraction behavior and followed the absolute [NH(4)(+)] in K(+)-NH(4)(+) mixtures, where K(+) concentration + [NH(4)(+)] = 10 mM. The apical NH(4)(+) inhibitory effect was not prevented by 100 microM methazolamide, suggesting no role for apical carbonic anhydrase. However, apical NH(4)(+) inhibition of current was prevented by 10 min of pretreatment of the apical surface with 500 microM DIDS, 100 microM 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), or 25 microM niflumic acid, suggesting a role for NH(4)(+) action through an apical anion exchanger. mRNA and protein for the apical anion exchangers SLC26A3 [downregulated in adenoma (DRA)] and SLC26A6 [putative anion transporter (PAT1)] were detected in T84 cells by RT-PCR and Northern and Western blots. DRA and PAT1 appear to associate with CFTR in the apical membrane. We conclude that the HCO(3)(-) dependence of apical NH(4)(+) inhibition of secretion is due to the action of NH(4)(+) on an apical anion exchanger.

  15. [Effect of hydrochemistry characteristics under impact of human activity: a case study in the upper reaches of the Xijiang River basin].

    PubMed

    Yu, Shil; Sun, Ping-an; Du, Wen-yue; He, Shi-yi; Li, Rui

    2015-01-01

    In this paper, observation and sampling were taken three times a month in a hydrological year for three typical sections of the middle and upper reaches of the Xijiang River basin, based on the data of hydrochemistry and flow, the article mainly discusses the evolution process of hydrochemistry in river under natural process and impact of human activity. Hydrochemical characteristics of 116. samples were analyzed in the study area. The hydrochemistry type in the middle and upper reaches of the Xijiang River basin belonged to HCO3- -Ca2+ type, and the chemical weathering type mainly came from carbonate rock weathering. Ca2+ and HCO3- were the main cations and anions, which reflected that hydrochemical characteristics of river in karst area mainly affected by the dissolution of carbonate rock. Na, Mg2, Ca2+ and Cl- mainly affected by natural conditions, the impact of human activity was little. K+, NO3-, SO4(2-) and HCO3- were affected by human activity in different degrees, and it showed different influence ways. This study had an important significance for the change of river hydrochemistry, water quality characteristics, and the effect on substance transported fluxes in the downstream of Pearl River and water quality protection in South China Monsoon Area.

  16. Intracellular pH regulation in hepatocytes isolated from three teleost species.

    PubMed

    Furimsky, M; Moon, T W; Perry, S F

    1999-09-01

    The mechanisms of intracellular pH (pH(i)) regulation were studied in hepatocytes isolated from three species of teleost: rainbow trout (Oncorhynchus mykiss), black bullhead (Ameiurus melas) and American eel (Anguilla rostrata). Intracellular pH was monitored over time using the pH-sensitive fluorescent dye BCECF in response to acid loading under control conditions and in different experimental media containing either low Na(+) or Cl(-) concentrations, the Na(+)-H(+) exchanger blocker amiloride or the blocker of the V-type H(+)-ATPase, bafilomycin A(1). In trout and bullhead hepatocytes, recovery to an intracellular acid load occurred principally by way of a Na(+)-dependent amiloride-sensitive Na(+)-H(+) exchanger. In eel hepatocytes, the Na(+)-H(+) exchanger did not contribute to recovery to an acid load though evidence suggests that it is present on the cell membrane and participates in the maintenance of steady-state pH(i). The V-type H(+)-ATPase did not participate in recovery to an acid load in any species. A Cl(-)-HCO(3)(-) exchanger may play a role in recovery to an acid load in eel hepatocytes by switching off and retaining base that would normally be tonically extruded. Thus, it is clear that hepatocytes isolated from the three species are capable of regulating pH(i), principally by way of a Na(+)-H(+) exchanger and a Cl(-)-HCO(3)(-) exchanger, but do not exploit identical mechanisms for pH(i) recovery. J. Exp. Zool. 284:361-367, 1999. Copyright 1999 Wiley-Liss, Inc.

  17. Sequential application of NaHCO3, CaCl2 and Candida oleophila (isolate 13L) affects significantly Penicillum expansum growth and the infection degree in apples.

    PubMed

    Molinu, M G; Pani, G; Venditti, T; Dore, A; Ladu, G; D'Hallewin, G

    2011-01-01

    The employment of biocontrol agents to restrain postharvest pathogens is an encouraging approach, although, efficacy and consistency are still below those of synthetic pesticides. Up to date, the 'integrated control strategy' seems to be the most promising way to overcome this gap. Here, we report the feasibility to control postharvest decay caused by Penicillium expansum in apples by a 2 min, single or sequential, immersion in water with an antagonistic yeast (Candida oleophila, isolate '13L'), 2% NaHCO3 (SBC) or 1% CaCl2. The treatments were carried out, on appels cv 'Miali' either un-wounded, wounded or wound-pathogen inoculated and then stored at 2 degrees C for 30 d followed by a 6 d simulated marketing period at 20 degrees C or alternatively stored only for 7 d at 20 degrees C. As a general role, the best results were attained when CaCl2 was applied with the yeast or when preceded by the SBC treatment. When the wounding and inoculation took place 24 h before the treatment, the latter application sequence of the two salts was three times more effective compared to the treatment with the sole antagonist, and one time when performed 24 h after the treatment. Interestingly, apples immersed in the sole 2% SBC solution had the highest percentage of decay during storage and when inoculated before moving to the simulated marketing period at 20 degrees C.

  18. Accessing groundwater quality in lower part of Nagapattinam district, Southern India: using hydrogeochemistry and GIS interpolation techniques

    NASA Astrophysics Data System (ADS)

    Gnanachandrasamy, G.; Ramkumar, T.; Venkatramanan, S.; Vasudevan, S.; Chung, S. Y.; Bagyaraj, M.

    2015-03-01

    The aim of this present study was to evaluate groundwater quality in the lower part of Nagapattinam district, Tamil Nadu, Southern India. A detailed geochemical study of groundwater region is described, and the origin of the chemical composition of groundwater has been qualitatively evaluated, using observations over a period of two seasons premonsoon (June) and monsoon (November) in the year of 2010. To attempt this goal, samples were analysed for various physico-chemical parameters such as temperature, pH, salinity, Na+, Ca2+, K+, Mg2+, Cl-, HCO3 - and SO4 2-. The abundance of major cations concentration in groundwater is as Na > Ca > Mg > K, while that of anions is Cl > SO4 > HCO3. The Piper trilinear diagram indicates Ca-Cl2 facies, and according to USSL diagram, most of the sample exhibits high salinity hazard (C3S1) type in both seasons. It indicates that high salinity (C3) and low sodium (S1) are moderately suitable for irrigation purposes. Gibbs boomerang exhibits most of the samples mainly controlled by evaporation and weathering process sector in both seasons. Irrigation status of the groundwater samples indicates that it was moderately suitable for agricultural purpose. ArcGIS 9.3 software was used for the generation of various thematic maps and the final groundwater quality map. An interpolation technique inverse distance weighting was used to obtain the spatial distribution of groundwater quality parameters. The final map classified the ground quality in the study area. The results of this research show that the development of the management strategies for the aquifer system is vitally necessary.

  19. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Stonestrom, David A.; Vivit, D.V.; Fitzpatrick, J.; Bullen, T.D.; Maher, K.; Blum, A.E.

    2009-01-01

    The spatial and temporal changes in hydrology and pore water elemental and 87Sr/86Sr compositions are used to determine contemporary weathering rates in a 65- to 226-kyr-old soil chronosequence formed from granitic sediments deposited on marine terraces along coastal California. Soil moisture, tension and saturation exhibit large seasonal variations in shallow soils in response to a Mediterranean climate. These climate effects are dampened in underlying argillic horizons that progressively developed in older soils, and reached steady-state conditions in unsaturated horizons extending to depths in excess of 15 m. Hydraulic fluxes (qh), based on Cl mass balances, vary from 0.06 to 0.22 m yr-1, resulting in fluid residence times in the terraces of 10-24 yrs. As expected for a coastal environment, the order of cation abundances in soil pore waters is comparable to sea water, i.e., Na > Mg > Ca > K > Sr, while the anion sequence Cl > NO3 > HCO3 > SO4 reflects modifying effects of nutrient cycling in the grassland vegetation. Net Cl-corrected solute Na, K and Si increase with depth, denoting inputs from feldspar weathering. Solute 87Sr/86Sr ratios exhibit progressive mixing of sea water-dominated precipitation with inputs from less radiogenic plagioclase. While net Sr and Ca concentrations are anomalously high in shallow soils due to biological cycling, they decline with depth to low and/or negative net concentrations. Ca/Mg, Sr/Mg and 87Sr/86Sr solute and exchange ratios are similar in all the terraces, denoting active exchange equilibration with selectivities close to unity for both detrital smectite and secondary kaolinite. Large differences in the magnitudes of the pore waters and exchange reservoirs result in short-term buffering of the solute Ca, Sr, and Mg. Such buffering over geologic time scales can not be sustained due to declining inputs from residual plagioclase and smectite, implying periodic resetting of the exchange reservoir such as by past vegetational changes and/or climate. Pore waters approach thermodynamic saturation with respect to albite at depth in the younger terraces, indicating that weathering rates ultimately become transport-limited and dependent on hydrologic flux. Contemporary rates Rsolute are estimated from linear Na and Si pore weathering gradients bsolute such that Rsolute = frac(qh, bsolute ?? Sv) where Sv is the volumetric surface area and ?? is the stoichiometric coefficient. Plagioclase weathering rates (0.38-2.8 ?? 10-15 mol m-2 s-1) are comparable to those based on 87Sr/86Sr mass balances and solid-state Na and Ca gradients using analogous gradient approximations. In addition, contemporary solute gradients, under transport-limited conditions, approximate long-term solid-state gradients when normalized against the mass of protolith plagioclase and its corresponding aqueous solubility. The multi-faceted weathering analysis presented in this paper is perhaps the most comprehensive yet applied to a single field study. Within uncertainties of the methods used, present day weathering rates, based on solute characterizations, are comparable to average long-term past rates as evidenced by soil profiles.

  20. Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh.

    PubMed

    Shammi, Mashura; Rahman, Md Mostafizur; Islam, Md Atikul; Bodrud-Doza, Md; Zahid, Anwar; Akter, Yeasmin; Quaiyum, Samia; Kurasaki, Masaaki

    2017-06-01

    The study was designed to collect water samples over two seasons-wet-monsoon season (n = 96) (March-April) and dry-monsoon season (n = 44) (September-October)-to understand the seasonal variation in anion and cation hydrochemistry of the coastal rivers and estuaries contributing in the spatial trend in salinity. Hydrochemical examination of wet-monsoon season primarily revealed Ca-Mg-HCO 3 type (66%) and followed by Na-Cl type (17.70%) water. In the dry-monsoon season, the scenario reversed with primary water being Na-Cl type (52.27%) followed by Ca-Mg-HCO 3 type (31.81%). Analysis of Cl/Br molar ratio vs. Cl (mg/L) depicted sampling area affected by seawater intrusion (SWI). Spatial analysis by ordinary kriging method confirmed approximately 77% sample in the dry-monsoon, and 34% of the wet-monsoon season had shown SWI. The most saline-intruded areas in the wet-monsoon seasons were extreme south-west coastal zone of Bangladesh, lower Meghna River floodplain and Meghna estuarine floodplain and south-eastern part of Chittagong coastal plains containing the districts of Chittagong and Cox's Bazar adjacent to Bay of Bengal. In addition, mid-south zone is also affected slightly in the dry-monsoon season. From the analyses of data, this study could further help to comprehend seasonal trends in the hydrochemistry and water quality of the coastal and estuarine rivers. In addition, it can help policy makers to obligate some important implications for the future initiatives taken for the management of land, water, fishery, agriculture and environment of coastal rivers and estuaries of Bangladesh.

  1. Evidence for the role of a Na(+)/HCO(3)(-) cotransporter in trout hepatocyte pHi regulation.

    PubMed

    Furimsky, M; Moon, T W; Perry, S F

    2000-07-01

    The mechanisms of intracellular pH (pHi) regulation were examined in hepatocytes of the rainbow trout Oncorhynchus mykiss. pHi was monitored using the pH-sensitive fluorescent dye BCECF, and the effects of various media and pharmacological agents were examined for their influence on baseline pHi and recovery rates from acid and base loading. Rates of Na(+) uptake were measured using (22)Na, and changes in membrane potential were examined using the potentiometric fluorescent dye Oxonol VI. The rate of proton extrusion following acid loading was diminished by the blockade of either Na(+)/H(+) exchange (using amiloride) or anion transport (using DIDS). The removal of external HCO(3)(-) and the abolition of outward K(+) diffusion by the channel blocker Ba(2+) also decreased the rate of proton extrusion following acid load. Depolarization of the cell membrane with 50 mmol l(-)(1) K(+), however, did not affect pHi. The rate of recovery from base loading was significantly diminished by the blockade of anion transport, removal of external HCO(3)(-) and, to a lesser extent, by blocking Na(+)/H(+) exchange. The blockade of K(+) conductance had no effect. The decrease in Na(+) uptake rate observed in the presence of the anion transport blocker DIDS and the DIDS-sensitive hyperpolarization of membrane potential during recovery from acid loading suggest that a Na(+)-dependent electrogenic transport system is involved in the restoration of pHi after intracellular acidification. The effects on baseline pHi indicate that the different membrane exchangers are tonically active in the maintenance of steady-state pHi. This study confirms the roles of a Na(+)/H(+) exchanger and a Cl(-)/HCO(3)(-) exchanger in the regulation of trout hepatocyte pHi and provides new evidence that a Na(+)/HCO(3)(-) cotransporter contributes to pHi regulation.

  2. Tissue-Specific and Cation/Anion-Specific DNA Methylation Variations Occurred in C. virgata in Response to Salinity Stress

    PubMed Central

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations. PMID:24223802

  3. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    PubMed

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  4. The spatial geochemical characteristics of groundwater and surface in the Tuul River basin, Ulaanbatar, Mongolia

    NASA Astrophysics Data System (ADS)

    Batdelger, Odsuren; Tsujimura, Maki; Zorigt, Byambasuren; Togtokh, Enkhjargal

    2017-04-01

    The capital city, Ulaanbaatar, is located along the Tuul River and its water supply totally dependent on the groundwater, which comes from the aquifer of the Tuul River. Due to the rapid growth of the population and the increasing human pressures in this basin, water quality has been deteriorating and has become a crucial issue for sustainable environmental and socio-economic development. Hydro-chemical and stable isotope tracing approaches were applied into the groundwater and surface water in order to study geochemical characteristics and groundwater and surface water interaction. The Tuul River water was mostly characterized by the Ca-HCO3 type, spatially variable and it changed into Ca-Na-HCO3 type in the downstream of the city after wastewater (WW) meets the river. Also, electrical conductivity (EC) values of Tuul River are increasing gradually with distance and it increased more than 2 times after WW meets the stream, therefore anthropogenic activities influence to the downstream of the river. The dominant hydro-chemical facies of groundwater were the Ca-HCO3 type, which represents 83% of the total analyzed samples, while Ca- HCO3-Cl-NO3, Na-HCO3, Ca-HCO3-SO4 each represent 4%, and Ca-mixed and Ca-Mg-HCO3 each represent 2% of the total samples. This suggests that groundwater chemistry is controlled by rock-water interaction and anthropogenic pollution. The floodplain groundwater chemical characteristics were similar to Tuul River water and showing lowest EC values. Groundwater far from floodplain showed higher EC (mean value of 498 μs/cm) values than river waters and floodplain groundwater. Also, different kinds of hydro-chemical facies were observed. The stable isotopic compositions revealed less evaporation effect on the groundwater and surface water, as well as an altitude effect in the river water. The similarity of stable isotopes and chemical characteristics of floodplain groundwater and river water suggests that alluvial groundwater is recharged by Tuul River water in the study area. The cluster analysis (CA) clearly indicated a connection between floodplain groundwater and river water, and also the effect of anthropogenic activities (such as canal and WW) in the system. The analysis results show that CA is a useful approach for future spatial sampling strategy in an optimal manner and offers a reliable classification of sampling stations in the region, especially along Tuul River. Therefore, the number of sampling stations in the monitoring network could be optimized without losing any significant information and saving cost.

  5. The hydrogeochemistry of argillaceous rock formations at the Horonobe URL site, Japan

    NASA Astrophysics Data System (ADS)

    Hama, K.; Kunimaru, T.; Metcalfe, R.; Martin, A. J.

    A hydrogeochemical investigation is being carried out as part of the Horonobe underground research laboratory (URL) project in Japan. The main aims are to: (1) investigate an actual example of a geological environment in a sedimentary rock formation in Japan; and (2) to confirm the reliability of generic technologies that may in future be applied during the geological disposal of high level radioactive waste. The main rock formations being characterized are the marine Wakkanai and Koetoi Formations (Miocene to Pliocene), consisting dominantly of siliceous shales (porcelanites) and diatomaceous shales respectively. These formations are located within the Tempoku Basin, within a back-arc tectonic setting. Rock sequences of this kind occur widely in Japan and throughout the northern Pacific region. However, prior to the present study, there was relatively little information concerning the processes controlling in situ chemical conditions and groundwater flow in such settings. Chemical data was obtained for both pumped waters and squeezed porewaters in order to characterize the hydrogeochemistry of these argillaceous rock formations. The in situ chemical conditions, residence time of the groundwaters and the evolution processes of the groundwaters were investigated. Generally, at each locality studied, shallower groundwaters are fresh and have Na-HCO 3 dominated chemistry. Deeper groundwaters are saline (TDS up to about 22,000 mg/l) and have Na-Cl dominated chemistry. However, lateral gradients in salinity are also recognized, with salinity contours in the Na-Cl dominated saline water (having TDS > 10,000 mg/l) probably varying in elevation by at least 250 m. Further investigations are required to confirm the origins of the groundwater salinity, but the Na-Cl dominated groundwater chemistry is provisionally explained as a consequence of the dilution of fossil seawater, accompanied by diagenetic water-rock reactions. The vertical and lateral salinity gradients can potentially be used to test the validity of coupled groundwater flow models. A conceptual model is tentatively suggested in which the spatial distribution and frequency of fractures helps to control the spatial distribution of groundwater salinity. Future investigations will clarify the timing of flow, the flow directions and the characteristics of the flow paths.

  6. Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Kargel, J.S.

    2003-01-01

    Major uncertainties exist with respect to the aqueous geochemical evolution of the Martian surface. Considering the prevailing cryogenic climates and the abundance of salts and iron minerals on Mars, any attempt at comprehensive modeling of Martian aqueous chemistry should include iron chemistry and be valid at low temperatures and high solution concentrations. The objectives of this paper were to (1) estimate ferrous iron Pitzer-equation parameters and iron mineral solubility products at low temperatures (from < 0 ??C to 25 ??C), (2) incorporate these parameters and solubility products into the FREZCHEM model, and (3) use the model to simulate the surficial aqueous geochemical evolution of Mars. Ferrous iron Pitzer-equation parameters were derived in this work or taken from the literature. Six new iron minerals [FeCl2??4H2O, FeCl2??6H2O, FeSO4??H2O, FeSO4??7H2O, FeCO3, and Fe(OH)3] were added to the FREZCHEM model bringing the total solid phases to 56. Agreement between model predictions and experimental data are fair to excellent for the ferrous systems: Fe-Cl, Fe-SO4, Fe-HCO3, H-Fe-Cl, and H-Fe-SO4. We quantified a conceptual model for the aqueous geochemical evolution of the Martian surface. The five stages of the conceptual model are: (1) carbonic acid weathering of primary ferromagnesian minerals to form an initial magnesium-iron-bicarbonate-rich solution; (2) evaporation and precipitation of carbonates, including siderite (FeCO3), with evolution of the brine to a concentrated NaCl solution; (3) ferrous/ferric iron oxidation; (4) either evaporation or freezing of the brine to dryness; and (5) surface acidification. What began as a dilute Mg-Fe-HCO3 dominated leachate representing ferromagnesian weathering evolved into an Earth-like seawater composition dominated by NaCl, and finally into a hypersaline Mg-Na-SO4-Cl brine. Weathering appears to have taken place initially under conditions that allowed solution of ferrous iron [low O2(g)], but later caused oxidation of iron [high O2(g)]. Surface acidification and/or sediment burial can account for the minor amounts of Martian surface carbonates. This model rests on a large number of assumptions and is therefore speculative. Nevertheless, the model is consistent with current understanding concerning surficial salts and minerals based on Martian meteorites, Mars lander data, and remotely-sensed spectral analyses. ?? 2003 Elsevier Ltd.

  7. Using human urine as food for cyanobacteria in LSS

    NASA Astrophysics Data System (ADS)

    Kalacheva, Galina; Gribovskaya, Iliada; Kolmakova, Angela

    In biological LSS: human, higher plants, algae, united by common cycle of matter, native human urine is the most problematic substance for using in inter-link exchange. It contains urea, ammonium compounds and up to 10 g/l of NaCl. Each of the mentioned components is toxic for growing higher plants. As for inferior plants, experiments showed that cyanobacteria of genus Spirulina platensis and similar genus Oscillatoria deflexa can grow at NaCl concentrations up to 20 g/l and NH4Cl concentrations up to 800 mg/l. These cyanobacteria can be used in LSS as a photosynthesizing link. Besides, S. platensis is edible for humans and fish. To use urine as food for algae, it is necessary to remove urea and organics. All previously used methods for urine treatment aimed at urea destruction: heating to 300oC, ultraviolet exposure, freezing, oxidation on reactor with hydrogen peroxide, had no effect. We used the following method of urine treatment: urine evaporation till dry residue, subsequent combustion in muffle furnace at 450-500oC and creation of ash water extract of the same volume as the initial urine. Comparison of standard Zarrouk's solution for S. platensis and O. deflexa with the water extract of urine ash showed that the concentrations of K, Ca, Mg, P, S were similar. Successful experiments were made with O. deflexa that were grown on nutrient solution made of the water extract of urine ash with 10 g/l of NaHCO3 and 2 g/l of NaNO3. The sources of intersystem production of HCO3 and NO3 were shown, and the biochemical composition of the investigated algae species, including mineral composition, protein, carbohydrate, amino acid, lipid and vitamin content were studied.

  8. HCO3− Secretion by Murine Nasal Submucosal Gland Serous Acinar Cells during Ca2+-stimulated Fluid Secretion

    PubMed Central

    Lee, Robert J.; Harlow, Janice M.; Limberis, Maria P.; Wilson, James M.; Foskett, J. Kevin

    2008-01-01

    Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca2+-activated Cl− secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca2+-activated Cl− secretion was accompanied by secretion of HCO3−, possibly a critical ASL component, by simultaneous measurements of intracellular pH (pHi) and cell volume. Resting pHi was 7.17 ± 0.01 in physiological medium (5% CO2–25 mM HCO3−). During carbachol (CCh) stimulation, pHi fell transiently by 0.08 ± 0.01 U concomitantly with a fall in Cl− content revealed by cell shrinkage, reflecting Cl− secretion. A subsequent alkalinization elevated pHi to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO2–HCO3−-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO3− efflux by ion substitution or exposure to the Cl− channel inhibitor niflumic acid (100 μM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na+/H+ exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1–4 and 6–9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pHi recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO3− during Ca2+-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl− channel, with HCO3− secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na+-dependent pHi regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na+-free media. PMID:18591422

  9. Repurposing tromethamine as inhaled therapy to treat CF airway disease

    PubMed Central

    Alaiwa, Mahmoud H. Abou; Launspach, Janice L.; Sheets, Kelsey A.; Rivera, Jade A.; Gansemer, Nicholas D.; Taft, Peter J.; Thorne, Peter S.; Welsh, Michael J.; Stoltz, David A.

    2016-01-01

    In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR) anion channel activity causes airway surface liquid (ASL) pH to become acidic, which impairs airway host defenses. One potential therapeutic approach is to correct the acidic pH in CF airways by aerosolizing HCO3– and/or nonbicarbonate pH buffers. Here, we show that raising ASL pH with inhaled HCO3– increased pH. However, the effect was transient, and pH returned to baseline values within 30 minutes. Tromethamine (Tham) is a buffer with a long serum half-life used as an i.v. formulation to treat metabolic acidosis. We found that Tham aerosols increased ASL pH in vivo for at least 2 hours and enhanced bacterial killing. Inhaled hypertonic saline (7% NaCl) is delivered to people with CF in an attempt to promote mucus clearance. Because an increased ionic strength inhibits ASL antimicrobial factors, we added Tham to hypertonic saline and applied it to CF sputum. We found that Tham alone and in combination with hypertonic saline increased pH and enhanced bacterial killing. These findings suggest that aerosolizing the HCO3–-independent buffer Tham, either alone or in combination with hypertonic saline, might be of therapeutic benefit in CF airway disease. PMID:27390778

  10. Salt Content Determination for Bentonite Mine Spoil: Saturation Extracts Versus 1:5 Extracts

    Treesearch

    Marguerite E. Voorhees; Daniel W. Uresk

    2004-01-01

    The reliability of estimating salt content in saturated extracts from 1:5 (1spoil:5water) extract levels for bentonite mine spoil was examined by regression analyses. Nine chemical variables were examined that included pH, EC, Ca++, Mg++, Na+, K+, HCO3-, SO4-, and Cl-. Ion concentrations from 1:5 extracts were estimated with high predictability for Ca++, Mg++, Na+, SO4...

  11. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism

    PubMed Central

    Tokonami, Natsuko; Morla, Luciana; Centeno, Gabriel; Mordasini, David; Ramakrishnan, Suresh Krishna; Nikolaeva, Svetlana; Wagner, Carsten A.; Bonny, Olivier; Houillier, Pascal; Doucet, Alain; Firsov, Dmitri

    2013-01-01

    Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle’s loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A–non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl–-dependent HCO3– secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1–/– mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1–/– mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO3– secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule. PMID:23934124

  12. Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessments in closed systems

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.

    2012-08-01

    Solids of nearly solar composition have interacted with aqueous fluids on carbonaceous asteroids, icy moons, and trans-neptunian objects. These processes altered mineralogy of accreted materials together with compositions of aqueous and gaseous phases. We evaluated chemistry of aqueous solutions coexisted with CI-type chondritic solids through calculations of chemical equilibria in closed water-rock-gas systems at different compositions of initial fluids, water/rock mass ratios (0.1-1000), temperatures (<350 °C), and pressures (<2 kbars). The calculations show that fluid compositions are mainly affected by solubilities of solids, the speciation of chlorine in initial water-rock mixtures, and the occurrence of Na-bearing secondary minerals such as saponite. The major species in modeled alkaline solutions are Na+, Cl-, CO32-,HCO3-, K+, OH-, H2, and CO2. Aqueous species of Mg, Fe, Ca, Mn, Al, Ni, Cr, S, and P are not abundant in these fluids owing to low solubility of corresponding solids. Typical NaCl type alkaline fluids coexist with saponite-bearing mineralogy that usually present in aqueously altered chondrites. A common occurrence of these fluids is consistent with the composition of grains emitted from Enceladus. Na-rich fluids with abundant CO32-,HCO3-, and OH- anions coexist with secondary mineralogy depleted in Na. The Na2CO3 and NaHCO3 type fluids could form via accretion of cometary ices. NaOH type fluids form in reduced environments and may locally occur on parent bodies of CR carbonaceous chondrites. Supposed melting of accreted HCl-bearing ices leads to early acidic fluids enriched in Mg, Fe and other metals, consistent with signs of low-pH alteration in chondrites. Neutralization of these solutions leads to alkaline Na-rich fluids. Sulfate species have negligible concentrations in closed systems, which remain reduced, especially at elevated pressures created by forming H2 gas. Hydrogen, CO2, and H2O dominate in the gaseous phase, though the abundance of methane cannot be fairly estimated.

  13. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to other active volcanic systems on Earth.

  14. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal.

    PubMed

    Pant, Ramesh Raj; Zhang, Fan; Rehman, Faizan Ur; Wang, Guanxing; Ye, Ming; Zeng, Chen; Tang, Handuo

    2018-05-01

    The characterization and assessment of water quality in the head water region of Himalaya is necessary, given the immense importance of this region in sustaining livelihoods of people and maintaining ecological balance. A total of 165 water samples were collected from 55 sites during pre-monsoon, monsoon and post-monsoon seasons in 2016 from the Gandaki River Basin of the Central Himalaya, Nepal. The pH, EC values and TDS concentrations were measured in-situ and the concentrations of major ions (Ca 2+ , Mg 2+ , K + , Na + , Cl - , SO 4 2- , NO 3 - ) and Si were analyzed in laboratory. Correlation matrices, paired t-test, cluster analysis, principal component analysis (PCA), the Piper, Gibbs, and Mixing plots, and saturation index were applied to the measurements for evaluating spatiotemporal variation of the major ions. The results reveal mildly alkaline pH values and the following pattern of average ionic dominance: Ca 2+ >Mg 2+ >Na + >K + for cations and HCO 3 - >SO 4 2 - >Cl - >NO 3 - for anions. The results of PCA, Gibbs plot and the ionic relationships displayed the predominance of geogenic weathering processes in areas with carbonate dominant lithology. This conclusion is supported by geochemically different water facies identified in the Piper plot as Ca-HCO 3 (83.03%), mixed Ca-Mg-Cl (12.73.0%) and Ca-Cl (4.24%). Pronounced spatiotemporal heterogeneity demonstrates the influence of climatic, geogenic and anthropogenic conditions. For instance, the Ca 2+ -SO 4 2- , Mg 2+ -SO 4 2- and Na + -Cl - pairs exhibit strong positive correlation with each other in the upstream region, whereas relatively weak correlation in the downstream region, likely indicating the influence of evapo-crystallization processes in the upstream region. Analyses of the suitability of the water supply for drinking and irrigation reveal that the river has mostly retained its natural water quality but poses safety concern at a few locations. Knowledge obtained through this study can contribute to the sustainable management of water quality in the climatically and lithologically distinct segments of the Himalayan river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The molecular core in G34.3 + 0.2 - Millimeter interferometric observations of HCO(+), H(C-13)N, H(C-15)N, and SO

    NASA Technical Reports Server (NTRS)

    Carral, Patricia; Welch, William J.

    1992-01-01

    This study presents high-resolution observations of the molecular core in the star-forming region G34.3 + 0.2. Maps at 6-arcsec resolution of emission and absorption of the J = 1 - 0 transitions of HCO(+), H (C-13)N, H(C-15)N, and of the 2(2) - 1(1) transition of SO were obtained in addition to a map of the 3.4-mm continuum emission from the compact H II component. The HCL(+) emission toward G34.3 + 0.2 traces a warm molecular core about 0.9 pc in size. Emission from H (C-13)N is detected over about 0.3 pc. The cometary H II region lies near the edge of the molecular core. The blueshift of the radio recombination lines with respect to the molecular emission suggests that gas from the H II region is accelerated in a champagne flow caused by a steep gradient in the ambient gas density.

  16. New amine-type inhibitors for protecting low-carbon steels in hydrogen sulfide-containing neutral media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podobaev, N.I.; Atanasyan, T.K.; Lyashenko, L.F.

    The protecting action of polethylenepolyamine (PEPA) products was carried out by gravimetric and electrochemical methods in aerated and de-aerated 35 NaCl solutions and simulated waste water containing CaCl/sub 2/, NaCl, NaHCO/sub 3/, Na/sub 2/SO/sub 4/, and KBr, with addition of H/sub 2/S. Gravimetric and electrochemical measurements were carried out and results are presented. The influence on tanning agents on the physicomechanical and photographic properties of the positive emulsion Unibrom, Normal at thermostated aging for two days was shown. The results lead to the conclusion that the use of animals as tanning agents of the emulsion lead to improvement of themore » physicomechanical properties of the emulsion light sensitive layers.« less

  17. Nitrate pollution and surface water chemistry in Shimabara, Nagasaki Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.; Amano, H.

    2017-12-01

    Shimabara city has been experiencing serious nitrate pollution in groundwater. To evaluate nitrate pollution and water chemistry in surface water, water samples were collected at 42 sampling points in 15 rivers in Shimabara including a part of Unzen city from January to February 2017. Firstly, spatial distribution of water chemistry was assessed by describing stiff and piper-trilinear diagrams using major ions concentrations. Most of the samples showed Ca-HCO3 or Ca-(NO3+SO4) water types. It corresponds to groundwater chemistry. Some samples were classified into characteristic water types such as Na-Cl, (Na+K)-HCO3, and Ca-Cl. These results indicate sea water mixing and anthropogenic pollution. At the upstream of Nishi-river, although water chemistry showed Ca-HCO3, ions concentrations were higher than that of the other rivers. It indicates that this site was affected by the peripheral anthropogenic activities. Secondly, nitrate-pollution assessment was performed by using NO3-, NO2-, coprostanol (5β(H)-Cholestan-3β-ol), and cholestanol (5α(H)-Cholestan-3β-ol). NO2-N was detected at the 2 sampling points and exceeded drinking standard 0.9 mg L-1 for bottle-fed infants (WHO, 2011). NO3-N + NO2-N concentrations exceeded Japanese drinking standard 10 mg L-1 at 18 sampling points. The highest concentration was 27.5 mg L-1. Higher NO3-N levels were observed in the rivers in the northern parts of the study area. Coprostanol has been used as a fecal contamination indicator, since it can be found in only feces of higher animals. Coprostanol concentrations at 8 sampling points exceeded 700 ng L-1 (Australian drinking water standard). Coprostanol has a potential to distinguish the nitrate pollution sources between chemical fertilizer or livestock wastes, since water samples with similar NO3-N + NO2-N concentration showed distinct coprostanol concentration. The sterols ratio (5β/ (5β+5α)) exceeded 0.5 at 18 sampling points. This reveals that fecal pollution has occurred.

  18. Characterization of bacteria isolated from palaeoproterozoic metasediments for sequestration of carbon dioxide and formation of calcium carbonate.

    PubMed

    Srivastava, Shaili; Bharti, Randhir K; Thakur, Indu Shekhar

    2015-01-01

    Bacterial community of palaeoproterozoic metasediments was enriched in the chemostat in the presence of different concentrations of NaHCO3. Six bacterial isolates were isolated from the chemostat on nutrient agar plates on the basis of distinct morphology. Denaturing gradient gel electrophoresis (DGGE) proved the presence of six operational taxonomic units (OTUs) at 50 and 100 mM NaHCO3. The OTU was reduced to three and one at enrichment concentration of 150 and 200 mM NaHCO3 respectively. These six isolates were tested for sequestration of carbon dioxide by (14)C metabolic labeling of NaH(14)CO3. Among the six isolates, one of the bacterium showed better potency to fix radiolabeled NaH(14)CO3. The isolate (ISTD04) was identified as Serratia sp. by 16S ribosomal RNA (16S rRNA) sequence analysis and was found to be same as the DGGE OTU sequence at 200-mM NaHCO3 concentration. The bacterium was tested for product formation in form of calcite crystals in presence of 5 % CO2. Scanning electron microscopy (SEM) of product formed by the bacterium revealed defined faceted rhombohedral structure which resembled calcite and vaterite phases of the crystal. Formation of calcium carbonate crystals was further confirmed by Fourier transform infrared (FTIR) spectroscopy as carbonate group showing strong vibration at 1,456 cm(-1). Major calcite phase diffraction peaks were determined by X-ray diffraction (XRD) analysis, and energy-dispersive X-ray (EDX) analysis showed the presence of CaO (72 %) and carbon (18 %). Bacterium use bicarbonate as carbon source for their growth as well as by-product formation in form of calcite shows carbon circulation and storage.

  19. The nature of the in vivo sodium and chloride uptake mechanisms through the epithelium against sodium and of bicarbonate against chloride.

    PubMed

    García Romeu, F; Salibián, A; Pezzani-Hernádez, S

    1969-06-01

    The Chilean frog, Calyptocephallela gayi, placed in dilute NaCl solutions may pump Na(+) and Cl(-) at very different rates depending on the kind of bath solutions in which it was preadapted. Furthermore, Na(+) and Cl(-) may be absorbed from solutions in which the accompanying coion, such as sulfate and choline, respectively, is impermeant. In all these cases it is obligatory to postulate the existence of two ionic exchange mechanisms, Cl(-) and Na(+), being exchanged against endogenous anions and cations, respectively. It has been determined that Na(+) is exchanged against endogenous H(+) and that Cl(-) is exchanged against HCO(3) (-). In animals pumping Na(+) and Cl(-) from dilute NaCl solutions Na(+) or Cl(-) uptake may be selectively inhibited, while the flux of the accompanying ion remains unchanged. This is considered to be an additional proof that both Na(+) and Cl(-) fluxes are always independent. The role of the ionic exchange mechanisms in the direct regulation of the Na(+) and Cl(-) levels in the internal medium is discussed as well as their relationship in the regulation of the acid-base equilibrium; other physioecological considerations have been treated.

  20. The Nature of the In Vivo Sodium and Chloride Uptake Mechanisms through the Epithelium of the Chilean Frog Calyptocephalella gayi (Dum. et Bibr., 1841)

    PubMed Central

    Romeu, Federico García; Salibián, Alfredo; Pezzani-Hernandez, Silvia

    1969-01-01

    The Chilean frog, Calyptocephallela gayi, placed in dilute NaCl solutions may pump Na+ and Cl- at very different rates depending on the kind of bath solutions in which it was preadapted. Furthermore, Na+ and Cl- may be absorbed from solutions in which the accompanying coion, such as sulfate and choline, respectively, is impermeant. In all these cases it is obligatory to postulate the existence of two ionic exchange mechanisms, Cl- and Na+, being exchanged against endogenous anions and cations, respectively. It has been determined that Na+ is exchanged against endogenous H+ and that Cl- is exchanged against HCO3 -. In animals pumping Na+ and Cl- from dilute NaCl solutions Na+ or Cl- uptake may be selectively inhibited, while the flux of the accompanying ion remains unchanged. This is considered to be an additional proof that both Na+ and Cl- fluxes are always independent. The role of the ionic exchange mechanisms in the direct regulation of the Na+ and Cl- levels in the internal medium is discussed as well as their relationship in the regulation of the acid-base equilibrium; other physioecological considerations have been treated. PMID:5822161

  1. A straightforward method for measuring the range of apparent density of microplastics.

    PubMed

    Li, Lingyun; Li, Mengmeng; Deng, Hua; Cai, Li; Cai, Huiwen; Yan, Beizhan; Hu, Jun; Shi, Huahong

    2018-10-15

    Density of microplastics has been regarded as the primary property that affect the distribution and bioavailability of microplastics in the water column. For measuring the density of microplastis, we developed a simple and rapid method based on density gradient solutions. In this study, we tested four solvents to make the density gradient solutions, i.e., ethanol (0.8 g/cm 3 ), ultrapure water (1.0 g/cm 3 ), saturated NaI (1.8 g/cm 3 ) and ZnCl 2 (1.8 g/cm 3 ). Density of microplastics was measured via observing the float or sink status in the density gradient solutions. We found that density gradient solutions made from ZnCl 2 had a larger uncertainty in measuring density than that from NaI, most likely due to a higher surface tension of ZnCl 2 solution. Solutions made from ethanol, ultrapure water, and NaI showed consistent density results with listed densities of commercial products, indicating that these density gradient solutions were suitable for measuring microplastics with a density range of 0.8-1.8 g/cm 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Hydrogeochemical and isotopic characterisation of groundwater in a sand-dune phreatic aquifer on the northeastern coast of the province of Buenos Aires, Argentina.

    PubMed

    Carretero, Silvina C; Dapeña, Cristina; Kruse, Eduardo E

    2013-01-01

    This contribution presents the hydrochemical and isotopic characterisation of the phreatic aquifer located in the Partido de la Costa, province of Buenos Aires, Argentina. In the sand-dune barrier geomorphological environment, groundwater is mainly a low-salinity Ca-HCO3 and Na-HCO3-type, being in general suitable for drinking, whereas in the continental plain (silty clay sediments), groundwater is a Na-Cl type with high salinity and unsuitable for human consumption. The general isotopic composition of the area ranges from-6.8 to-4.3 ‰ for δ(18)O and from-39 to-21 ‰ for δ(2)H, showing that rainwater rapidly infiltrates into the sandy substrate and reaches the water table almost without significant modification in its isotopic composition. These analyses, combined with other chemical parameters, made it possible to corroborate that in the eastern area of the phreatic aquifer, there is no contamination from marine salt water.

  3. Reprint of "Characterization of cyclodextrin containing nanofilters for removal of pharmaceutical residues".

    PubMed

    Jurecska, Laura; Dobosy, Péter; Barkács, Katalin; Fenyvesi, Éva; Záray, Gyula

    2015-03-15

    Due to the increasing amount of persistent organic pollutants (POPs) in general and pharmaceutical residues in particular in municipal wastewater, the efficiency of water treatment technologies should be improved. Following the biological treatment of wastewater nanofiltration offers a possible way for the removal of POPs. In this study β-cyclodextrin containing nanofilters having different chemical composition and thickness (1.5-3.5 mm) were investigated. For their characterization, their adsorption capacity was determined applying ibuprofen containing model solution and total organic carbon (TOC) analyzer. It could be established that the regeneration of nanofilters with ethanol and the application of inorganic additives (NaCl, NaHCO3, NH4HCO3) increased the adsorption capacity of nanofilters. The best results were achieved with chemical composition of 30 m/m% β-cyclodextrin polymer beads and 70 m/m% ultra-high molecular weight polyethylene in the presence of 1 2mmol ammonium hydrogen carbonate/nanofilter. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Characterization of cyclodextrin containing nanofilters for removal of pharmaceutical residues.

    PubMed

    Jurecska, Laura; Dobosy, Péter; Barkács, Katalin; Fenyvesi, Éva; Záray, Gyula

    2014-09-01

    Due to the increasing amount of persistent organic pollutants (POPs) in general and pharmaceutical residues in particular in municipal wastewater, the efficiency of water treatment technologies should be improved. Following the biological treatment of wastewater nanofiltration offers a possible way for the removal of POPs. In this study β-cyclodextrin containing nanofilters having different chemical composition and thickness (1.5-3.5mm) were investigated. For their characterization, their adsorption capacity was determined applying ibuprofen containing model solution and total organic carbon (TOC) analyzer. It could be established that the regeneration of nanofilters with ethanol and the application of inorganic additives (NaCl, NaHCO3, NH4HCO3) increased the adsorption capacity of nanofilters. The best results were achieved with chemical composition of 30m/m% β-cyclodextrin polymer beads and 70m/m% ultra-high molecular weight polyethylene in the presence of 12mmol ammonium hydrogen carbonate/nanofilter. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Proximal tubule hydrogen ion transport processes in diuretic-induced metabolic alkalosis.

    PubMed

    Blumenthal, S S; Ware, R A; Kleinman, J G

    1985-07-01

    Transport systems involved in proximal tubule HCO-3 reabsorption were examined in disaggregated renal cortical tubules from rabbits with metabolic alkalosis. The acid-base disorder was induced by first treating the animals with furosemide, and then maintaining them on low Cl--high HCO-3 diets. On this regimen, the rabbits had increases in blood pH and total CO2 values and decreases in serum K+ concentrations. Urine Cl- concentrations were less than 15 mEq/L in all cases. Na+-H+ exchange was evaluated by incubating tubules in rotenone in an Na+-free medium to deplete them of Na+ and adenosine triphosphate. Then the tubules were resuspended in media containing 65 or 12.5 mEq/L Na+ at either pH 7.1 or pH 7.6. The rise in cell pH estimated by dimethadione distribution was taken as a measure of Na+-H+ exchanger activity. At the high incubation pH, Na+-H+ exchanger activity appeared to be the same in tubules taken from alkalotic rabbits compared with those prepared from normal rabbits. At the low incubation pH, the activity of this transport system appeared to be depressed by 40% to 50% in alkalosis, with kinetics that suggested a decreased Vmax for the exchanger. Na+-independent H+ transport, presumably reflecting activity of an H+-adenosine triphosphatase, was evaluated by preincubating tubules in a Na+-free medium in the presence of ouabain, and then sequentially exposing them to and removing them from a solution containing 20 mmol/L NH4Cl.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Minimising alkalinity and pH spikes from Portland cement-bound Bauxsol (seawater-neutralized red mud) pellets for pH circum-neutral waters.

    PubMed

    Despland, Laure M; Clark, Malcolm W; Aragno, Michel; Vancov, Tony

    2010-03-15

    Bauxsol reagents (powder, slurry, or pellet forms) are powerful tools in environmental remediation and water and sewage treatment However, when used in circum-neutral water treatments, cement-bound Bauxsol pellets produce a sustained pH and alkalinity spike due to the presence of unreacted CaO in the cement binder. This study developed a pellet treatment system to minimize the alkalinity/pH spike. The recipe for pelletization consisted of Bauxsol powder, ordinary Portland cement (OPC), hydrophilic fumed silica, aluminum powder, a viscosity modifier, and water. Several batches (including different ratios and sizes) were run using modified makeup waters (H(2)0 + CO(2) or NaHCO(3)) or curing brines (CO(2), NaHCO(3), or Mg/CaCl(2)). Alkalinity, pH stability, and slake durability tests were performed on pellets before and/or after curing. The best result for reducing the alkalinity/pH spike was obtained from a MgCl(2), CaCl(2) bath treatment using a Bauxsol:cement ratio of 2.8:1 (pH 8.28; alkalinity 75.1 mg/L) for a 100 g batch or 245:1 (pH 8.05; alkalinity 35.4 mg/L) for a 1 kg batch. Although brine curing does provide a control on pH/alkalinity release, the pellets may still contain unreacted CaO. Therefore, a freshwater rinse of pellets before treating circum-neutral waters is recommended as is the continued investigation of alternative pellet binders.

  7. Sodium bicarbonate supplementation delays neuromuscular fatigue without changes in performance outcomes during a basketball match simulation protocol.

    PubMed

    Ansdell, Paul; Dekerle, Jeanne

    2017-10-10

    To investigate the development of neuromuscular fatigue during a basketball game simulation and ascertain whether sodium bicarbonate (NaHCO3) supplementation attenuates any neuromuscular fatigue that persists. Ten participants ingested 0.2 g.kg of NaHCO3 (or an equimolar placebo dosage of sodium chloride [NaCl]) 90 and 60 minutes prior to commencing a basketball game simulation (ALK-T vs PLA-T). Isometric maximal voluntary contractions of the knee extensors (MVIC) and potentiated high (100 Hz) and low (10 Hz) frequency doublet twitches were recorded before and after each match quarter for both trials. In addition, 15 m sprint times and layup completion (%) were recorded during each quarter. MVIC, 100 and 10 Hz twitch forces declined progressively in both trials (P<0.05) with a less pronounced decrease in MVIC during ALK-T (P<0.01). Both 100 and 10 Hz twitch forces were also significantly greater in ALK-T (P<0.05). 15 m sprint time increased over the course of both trials (∼2%, P<0.01); however, no significant condition or time effect was found for layup completion (P>0.05). A basketball simulation protocol induces a substantial amount of neuromuscular (reduction in knee extensor MVICs) and peripheral fatigue with a concomitant increase in 15 m sprint time over the protocol. NaHCO3 supplementation attenuated the rate of fatigue development by protecting contractile elements of the muscle fibres. This study provides coaches with information about the magnitude of fatigue induced by a simulated basketball game, and provides evidence of the efficacy of NaHCO3 in attenuating fatigue.

  8. Sodium bicarbonate loading limits tubular cast formation independent of glomerular injury and proteinuria in dahl salt-sensitive rats.

    PubMed

    Ray, S C; Patel, B; Irsik, D L; Sun, J; Ocasio, H; Crislip, G R; Jin, C H; Chen, J K; Baban, B; Polichnowski, A J; O'Connor, P M

    2018-04-12

    Sodium bicarbonate (NaHCO 3 ) slows the decline in kidney function in patients with chronic kidney disease (CKD), yet the mechanisms mediating this effect remain unclear. The Dahl salt-sensitive (SS) rat develops hypertension and progressive renal injury when fed a high salt diet; however, the effect of alkali loading on kidney injury has never been investigated in this model. We hypothesized that 'NaHCO 3 protects from the development of renal injury in Dahl salt-sensitive rats via luminal alkalization which limits the formation of tubular casts, which are a prominent pathological feature in this model. To examine this hypothesis, we determined blood pressure and renal injury responses in Dahl SS rats drinking vehicle (0.1M NaCl) or NaHCO 3 (0.1M) solutions as well as in Dahl SS rats lacking the voltage gated proton channel (Hv1). We found that oral NaHCO 3 reduced tubular NH 4 + production, tubular cast formation and interstitial fibrosis in rats fed a high salt diet for 2 weeks. This effect was independent of changes in blood pressure, glomerular injury or proteinuria and did not associate with changes in renal inflammatory status. We found that null mutation of Hv1 also limited cast formation in Dahl SS rats independent of proteinuria or glomerular injury. As Hv1 is localized to the luminal membrane of TAL, our data, suggest that alkalization of the luminal fluid within this segment limits cast formation in this model. Reduced cast formation, secondary to luminal alkalization within TAL segments may mediate some of the protective effects of alkali loading observed in CKD patients. ©2018 The Author(s).

  9. Changes to Intestinal Transport Physiology and Carbonate Production at Various CO2 Levels in a Marine Teleost, the Gulf Toadfish (Opsanus beta).

    PubMed

    Heuer, Rachael M; Munley, Kathleen M; Narsinghani, Nafis; Wingar, Jessica A; Mackey, Theresa; Grosell, Martin

    2016-01-01

    Most marine teleosts defend blood pH during high CO2 exposure by sustaining elevated levels of HCO3(-) in body fluids. In contrast to the gill, where measures are taken to achieve net base retention, elevated CO2 leads to base loss in the intestine of marine teleosts studied to date. This loss is thought to occur through transport pathways previously demonstrated to be involved with routine osmoregulation in marine teleosts. The main objective of this study was to characterize the intestinal transport physiology of the gulf toadfish (Opsanus beta) when exposed to varied levels of CO2: control, 5,000, 10,000, and 20,000 μatm CO2 (0.04, 0.5, 1, and 2 kPa, respectively). Results of this study suggest that intestinal apical anion exchange is highly responsive to hypercarbia, evidenced by a dose-dependent increase in intestinal luminal HCO3(-) (mmol L(-1)) that was mirrored by a reduction in Cl(-) (mmol L(-1)). Despite activation of HCO3(-) transport pathways typically used during osmoregulation, fractional fluid absorption was only significantly lower at the highest level of CO2. Although increased HCO3(-) excretion could provide more substrate for intestinally produced carbonates, carbonate production was not significantly increased during hypercarbia at the levels tested. This study is among the first to thoroughly characterize how compensation for elevated CO2 affects transport physiology and carbonate production in the marine fish intestine. This deeper understanding may be particularly relevant when considering the impacts of future predicted ocean acidification, where prolonged base loss may alter the energetic cost of acid-base balance or osmoregulation in marine fish.

  10. Cl/B ratio of geothermal fluid around Slamet Volcano, Jawa Tengah, Indonesia

    NASA Astrophysics Data System (ADS)

    Harijoko, Agung; Juhri, Saefudin

    2017-12-01

    Geothermal manifestations occurred in four areas surrounding Slamet Volcano, such as Guci, Baturraden, Paguyangan, and Bantarkawung. These areas are located of about 7.5 km, 8 km, 25 km and 33 km from the summit of Slamet volcano, respectively. We analyzed the chemical composition of cold and hot hater in order to understand the genesis and hydrological the relationship of the hot springs. The plot on HCO3-Cl-SO4 ternary diagram classified the hot water into four water types i.e. chloride-bicarbonate water (Bantarkawung), chloride water (Paguyangan), sulfate-chloride water (Baturraden), and bicarbonate water (Guci). The Cl/B ratio values indicate that the southern part of the Slamet volcano (Baturaden) hot springs have high Cl/B ratio compared to that of the northern hot springs (Guci area). While the hot springs in the western part (Paguyangan and Bantarkawung) are classified into high and low Cl/B ratio. This indicates that the hot springs in Paguyangan and Bantarkawung are the outflow of Baturraden and Guci.

  11. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua

    PubMed Central

    Hu, Marian Y.; Michael, Katharina; Kreiss, Cornelia M.; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO3− cotransporter (NBC1), pendrin-like Cl−/HCO3− exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3− secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3− levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans. PMID:27313538

  12. Effect of injection matrix concentration on peak shape and separation efficiency in ion chromatography.

    PubMed

    Zhang, Ya; Lucy, Charles A

    2014-12-05

    In HPLC, injection of solvents that differ from the eluent can result in peak broadening due to solvent strength mismatch or viscous fingering. Broadened, distorted or even split analyte peaks may result. Past studies of this injection-induced peak distortion in reversed phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography have led to the conclusion that the sample should be injected in the eluent or a weaker solvent. However, there have been no studies of injection-induced peak distortion in ion chromatography (IC). To address this, injection-induced effects were studied for six inorganic anions (F-, Cl-, NO2-, Br-, NO3- and SO4(2-)) on a Dionex AS23 IC column using a HCO3-/CO3(2-) eluent. The VanMiddlesworth-Dorsey injection sensitivity parameter (s) showed that IC of anions has much greater tolerance to the injection matrix (HCO3-/CO3(2-) herein) mismatch than RPLC or HILIC. Even when the injection contained a ten-fold greater concentration of HCO3-/CO3(2-) than the eluent, the peak shapes and separation efficiencies of six analyte ions did not change significantly. At more than ten-fold greater matrix concentrations, analyte anions that elute near the system peak of the matrix were distorted, and in the extreme cases exhibited a small secondary peak on the analyte peak front. These studies better guide the degree of dilution needed prior to IC analysis of anions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Krám, Pavel; Oulehle, Filip; Posch, Maximilian

    2016-10-15

    Using statistical relationships between the composition of precipitation at eight long-term monitoring stations and emission rates of sulphur (S) and nitrogen (N) compounds, as well as industrial dust in the Czech Republic and Slovakia (Central Europe), we modelled historic pH and concentrations of sulphate (SO4(2-)), nitrate (NO3(-)), ammonium (NH4(+)), chloride (Cl(-)), base cations (BC), and bicarbonate (HCO3(-)) in bulk precipitation from 1850 to 2013. Our model suggests that concentrations of SO4(2-), NO3(-), and HCO3(-) were similar (11-16 μeq l(-1)) in 1850. Cations were dominated by NH4(+) and BC (24-27 μeq l(-1)) and precipitation pH was >5.6. The carbonate buffering system was depleted around 1920 and precipitation further acidified at an exponential rate until the 1980s, when concentrations of SO4(2-), NO3(-), Cl(-), NH4(+) and BC reached maxima of 126, 55, 16, 76, and 57 μeq l(-1), respectively, and pH decreased to 4.2. Dust emissions from industrial sources were an important source of BC. Without their contribution, pH would have decreased to 4.0 in the 1980s, and the carbonate buffering system would have been depleted already in the 1870s. Since the late 1980s, concentrations of strong acid anions and BC have decreased by 46-81% (i.e. more than in Europe on average) due to a 53-93% reduction in regional emissions of S and N compounds and dust from industrial and agricultural sources. The present composition of precipitation is similar to the late 19th century, except for NO3(-) concentrations, which are similar to those during 1926-1950. Precipitation pH now exceeds 5.0, the carbonate buffering system has been re-established, and HCO3(-) has again become (after almost a century) a significant component of precipitation chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparison of DGT with traditional extraction methods for assessing arsenic bioavailability to Brassica chinensis in different soils.

    PubMed

    Dai, Yunchao; Nasir, Mubasher; Zhang, Yulin; Gao, Jiakai; Lv, Yamin; Lv, Jialong

    2018-01-01

    Several predictive models and methods have been used for heavy metals bioavailability, but there is no universally accepted approach in evaluating the bioavailability of arsenic (As) in soil. The technique of diffusive gradients in thin-films (DGT) is a promising tool, but there is a considerable debate with respect to its suitability. The DGT method was compared with other traditional chemical extractions techniques (soil solution, NaHCO 3 , NH 4 Cl, HCl, and total As method) for estimating As bioavailability in soil based on a greenhouse experiment using Brassica chinensis grown in various soils from 15 provinces in China. In addition, we assessed whether these methods are independent of soil properties. The correlations between plant and soil As concentration measured with traditional extraction techniques were pH and iron oxide (Fe ox ) dependent, indicating that these methods are influenced by soil properties. In contrast, DGT measurements were independent of soil properties and also showed a better correlation coefficient than other traditional techniques. Thus, DGT technique is superior to traditional techniques and should be preferable for evaluating As bioavailability in different type of soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Localization of Hydrogen Ion and Chloride Ion Fluxes in Nitella

    PubMed Central

    Spear, Donald G.; Barr, June K.; Barr, C. E.

    1969-01-01

    Alternating bands of acid and base formation have been detected along the length of the internodal cell of Nitella clavata when it is illuminated, while in the dark this phenomenon is minimal. Chloride influx occurs only or largely in the acid-extruding regions, and this is also a light-dependent ion movement. Chloride efflux is slightly dependent on illumination and is not localized as are H+ efflux and Cl- influx. The results obtained support Kitasato's (1968) proposal that a large passive H+ influx is balanced by an active efflux of this ion. Transport mechanisms suggested by the correlations of Cl- and HCO3 - influxes with H+ extrusion are discussed. PMID:5806597

  16. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.).

    PubMed

    Gregório, Sílvia F; Carvalho, Edison S M; Encarnação, Sandra; Wilson, Jonathan M; Power, Deborah M; Canário, Adelino V M; Fuentes, Juan

    2013-02-01

    The processing of intestinal fluid, in addition to a high drinking rate, is essential for osmoregulation in marine fish. This study analyzed the long-term response of the sea bream (Sparus aurata L.) to relevant changes of external salinity (12, 35 and 55 p.p.t.), focusing on the anterior intestine and in the less-often studied rectum. Intestinal water absorption, epithelial HCO(3)(-) secretion and gene expression of the main molecular mechanisms (SLC26a6, SLC26a3, SLC4a4, atp6v1b, CFTR, NKCC1 and NKCC2) involved in Cl(-) and HCO(3)(-) movements were examined. The anion transporters SLC26a6 and SLC26a3 are expressed severalfold higher in the anterior intestine, while the expression of Atp6v1b (V-type H(+)-ATPase β-subunit) is severalfold higher in the rectum. Prolonged exposure to altered external salinity was without effect on water absorption but was associated with concomitant changes in intestinal fluid content, epithelial HCO(3)(-) secretion and salinity-dependent expression of SLC26a6, SLC26a3 and SLC4a4 in the anterior intestine. However, the most striking response to external salinity was obtained in the rectum, where a 4- to 5-fold increase in water absorption was paralleled by a 2- to 3-fold increase in HCO(3)(-) secretion in response to a salinity of 55 p.p.t. In addition, the rectum of high salinity-acclimated fish shows a sustained (and enhanced) secretory current (I(sc)), identified in vitro in Ussing chambers and confirmed by the higher expression of CFTR and NKCC1 and by immunohistochemical protein localization. Taken together, the present results suggest a functional anterior-posterior specialization with regard to intestinal fluid processing and subsequently to salinity adaptation of the sea bream. The rectum becomes more active at higher salinities and functions as the final controller of intestinal function in osmoregulation.

  17. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater

    PubMed Central

    Nakajima, Kensuke; Tanaka, Atsuko; Matsuda, Yusuke

    2013-01-01

    Photosynthesis in marine diatoms is a vital fraction of global primary production empowered by CO2-concentrating mechanisms. Acquisition of HCO3− from seawater is a critical primary step of the CO2-concentrating mechanism, allowing marine photoautotrophic eukaryotes to overcome CO2 limitation in alkaline high-salinity water. However, little is known about molecular mechanisms governing this process. Here, we show the importance of a plasma membrane-type HCO3− transporter for CO2 acquisition in a marine diatom. Ten putative solute carrier (SLC) family HCO3− transporter genes were found in the genome of the marine pennate diatom Phaeodactylum tricornutum. Homologs also exist in marine centric species, Thalassiosira pseudonana, suggesting a general occurrence of SLC transporters in marine diatoms. Seven genes were found to encode putative mammalian-type SLC4 family transporters in P. tricornutum, and three of seven genes were specifically transcribed under low CO2 conditions. One of these gene products, PtSLC4-2, was localized at the plasmalemma and significantly stimulated both dissolved inorganic carbon (DIC) uptake and photosynthesis in P. tricornutum. DIC uptake by PtSLC4-2 was efficiently inhibited by an anion-exchanger inhibitor, 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid, in a concentration-dependent manner and highly dependent on Na+ ions at concentrations over 100 mM. These results show that DIC influx into marine diatoms is directly driven at the plasmalemma by a specific HCO3− transporter with a significant halophilic nature. PMID:23297242

  18. Quality characterization and pollution source identification of surface water using multivariate statistical techniques, Nalagarh Valley, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Herojeet, Rajkumar; Rishi, Madhuri S.; Lata, Renu; Dolma, Konchok

    2017-09-01

    Sirsa River flows through the central part of the Nalagarh valley, belongs to the rapid industrial belt of Baddi, Barotiwala and Nalagarh (BBN). The appraisal of surface water quality to ascertain its utility in such ecologically sensitive areas is need of the hour. The present study envisages the application of multivariate analysis, water utility class and conventional graphical representation to reveal the hidden factor responsible for deterioration of water quality and determine the hydrochemical facies and its evolution processes of water types in Nalagarh valley, India. The quality assessment is made by estimating pH, electrical conductivity (EC), total dissolved solids (TDS), total hardness, major ions (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, SO4 2-, NO3 - and PO4 3-), dissolved oxygen (DO), biological oxygen demand (BOD) and total coliform (TC) to determine its suitability for drinking and domestic purposes. The parameters like pH, TDS, TH, Ca2+, HCO3 -, Cl-, SO4 2-, NO3 - are within the desirable limit as per Bureau of Indian Standards (Indian Standard Drinking Water Specification (Second Edition) IS:10500. Indian Standard Institute, New Delhi, pp 1-18, 2012). Mg2+, Na+ and K+ ions for pre monsoon and EC during pre and post monsoon at few sites and approx 40% samples of BOD and TC for both seasons exceeds the permissible limits indicate organic contamination from human activities. Water quality classification for designated use indicates that maximum surface water samples are not suitable for drinking water source without conventional treatment. The result of piper trillinear and Chadha's diagram classified majority of surface water samples for both seasons fall in the fields of Ca2+-Mg2+-HCO3 - water type indicating temporary hardness. PCA and CA reveal that the surface water chemistry is influenced by natural factors such as weathering of minerals, ion exchange processes and anthropogenic factors. Thus, the present paper illustrates the importance of multivariate techniques for reliable quality characterization of surface water quality to develop effective pollution reduction strategies and maintain a fine balance between the industrialization and ecological integrity.

  19. [Acid-base equilibrium and the brain].

    PubMed

    Rabary, O; Boussofara, M; Grimaud, D

    1994-01-01

    In physiological conditions, the regulation of acid-base balance in brain maintains a noteworthy stability of cerebral pH. During systemic metabolic acid-base imbalances cerebral pH is well controlled as the blood/brain barrier is slowly and poorly permeable to electrolytes (HCO3- and H+). Cerebral pH is regulated by a modulation of the respiratory drive, triggered by the early alterations of interstitial fluid pH, close to medullary chemoreceptors. As blood/brain barrier is highly permeable to Co2, CSF pH is corrected in a few hours, even in case of severe metabolic acidosis and alkalosis. Conversely, during ventilatory acidosis and alkalosis the cerebral pH varies in the same direction and in the same range than blood pH. Therefore, the brain is better protected against metabolic than ventilatory acid-base imbalances. Ventilatory acidosis and alkalosis are able to impair cerebral blood flow and brain activity through interstitial pH alterations. During respiratory acidosis, [HCO3-] increases in extracellular fluids to control cerebral pH by two main ways: a carbonic anhydrase activation at the blood/brain and blood/CSF barriers level and an increase in chloride shift in glial cells (HCO3- exchanged for Cl-). During respiratory alkalosis, [HCO3-] decreases in extracellular fluids by the opposite changes in HCO3- transport and by an increase in lactic acid synthesis by cerebral cells. The treatment of metabolic acidosis with bicarbonates may induce a cerebral acidosis and worsen a cerebral oedema during ketoacidosis. Moderate hypocapnia carried out to treat intracranial hypertension is mainly effective when cerebral blood flow is high and vascular CO2 reactivity maintained. Hypocapnia may restore an altered cerebral blood flow autoregulation. Instrumental hypocapnia requires a control of cerebral perfusion pressure and cerebral arteriovenous difference for oxygen, to select patients for whom this kind of treatment may be of benefit, to choose the optimal level of hypocapnia and to avoid any deleterious effect. If hypocapnia is maintained over several days, an adaptation of CSF pH may limit the therapeutic effect on the cerebral blood flow and the intracranial pressure.

  20. A combination of additives can synergically decrease acrylamide content in gingerbread without compromising sensory quality.

    PubMed

    Komprda, Tomáš; Pridal, Antonin; Mikulíková, Renata; Svoboda, Zdeněk; Cwiková, Olga; Nedomová, Šárka; Sýkora, Vladimír

    2017-02-01

    The present study tested whether replacement of the leavening agent ammonium carbonate by sodium hydrogen carbonate in combination with calcium cation and acidifying agent will synergically decrease acrylamide (AA) content in gingerbread. The type of leavening agent and the presence of Ca 2+ and citric acid accounted for 33.6%, 13.2% and 53.2% of the explained variability of the AA content, respectively (P < 0.01). The AA content in gingerbread produced with (NH 4 ) 2 CO 3 alone was 186.5 µg kg -1 . Irrespective of other tested additives, NaHCO 3 decreased (P < 0.05) AA content to 42% compared to (NH 4 ) 2 CO 3 . Combination of NaHCO 3 + CaCl 2 + citric acid in dough reduced (P < 0.05) AA content below the limit of detection (25 µg kg -1 ). The AA content in gingerbread (y; µg kg -1 ) decreased with an increasing number of additives used (x) according to the equation y = 158.8 - 47.94x (r 2 = 0.42; P < 0.0001). A comprehensive sensory analysis did not indicate any significant deterioration (P > 0.05) in the organoleptic quality of gingerbread produced using calcium cation and citric acid. The present study demonstrates that the combination of additives NaHCO 3 /Ca 2+ /citric acid synergically decreases AA content in gingerbread without compromising the sensory quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS.

    PubMed

    Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin

    2017-10-01

    The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO 3 , NaHCO 3 , NaCl, CaCl 2 , and CaSO 4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.

  2. Evaluation of Factors Influencing the Groundwater Chemistry in a Small Tropical Island of Malaysia

    PubMed Central

    Kura, Nura Umar; Ramli, Mohammad Firuz; Sulaiman, Wan Nur Azmin; Ibrahim, Shaharin; Aris, Ahmad Zaharin; Mustapha, Adamu

    2013-01-01

    Groun in a very complex way. In this work, multivariate statistical analysis was used to evaluate the factors controlling the groundwater chemistry of Kapas Island (Malaysia). Principal component analysis (P dwater chemistry of small tropical islands is influenced by many factors, such as recharge, weathering and seawater intrusion, among others, which interact with each other CA) was applied to 17 hydrochemical parameters from 108 groundwater samples obtained from 18 sampling sites. PCA extracted four PCs, namely seawater intrusion, redox reaction, anthropogenic pollution and weather factors, which collectively were responsible for more than 87% of the total variance of the island’s hydrochemistry. The cluster analysis indicated that three factors (weather, redox reaction and seawater intrusion) controlled the hydrochemistry of the area, and the variables were allocated to three groups based on similarity. A Piper diagram classified the island’s water types into Ca-HCO3 water type, Na-HCO3 water type, Na-SO4-Cl water type and Na-Cl water type, indicating recharge, mixed, weathering and leached from sewage and seawater intrusion, respectively. This work will provide policy makers and land managers with knowledge of the precise water quality problems affecting the island and can also serve as a guide for hydrochemistry assessments of other islands that share similar characteristics with the island in question. PMID:23648442

  3. New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells.

    PubMed

    Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P

    2018-04-01

    The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.

  4. Differential activation of the HCO3− conductance through the cystic fibrosis transmembrane conductance regulator anion channel by genistein and forskolin in murine duodenum

    PubMed Central

    Tuo, Biguang; Wen, Guorong; Seidler, Ursula

    2009-01-01

    Background and purpose: Many cystic fibrosis (CF)-associated mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels affect CFTR-activated HCO3− transport more than Cl− transport. Targeting the CFTR HCO3− conductance, if possible, may therefore be of major therapeutic benefit. In the present study, we examined the effects of genistein and forskolin on duodenal mucosal HCO3− and Cl− secretion. Experimental approach: Murine duodenal mucosal HCO3− and Cl− secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (Isc) techniques. Key results: Genistein markedly stimulated duodenal HCO3− secretion and Isc in a dose-dependent manner in CFTR wild-type mice, but not in CFTR null mice. CFTRinh-172, a highly specific CFTR inhibitor, inhibited genistein-stimulated duodenal HCO3− secretion and Isc in wild-type mice. Genistein induced 59% net HCO3− increase and 123% net Isc increase over basal value, whereas forskolin, an activator of adenylate cyclase, induced 94% net HCO3− increase and 507% net Isc increase, indicating that, compared with forskolin, genistein induced a relatively high HCO3−/Isc ratio. Further data showed that CFTR HCO3−/Cl− conductance ratio was 1.05 after genistein stimulation, whereas after forskolin stimulation, the CFTR HCO3−/Cl− conductance ratio was 0.27. Conclusions and implications: Genistein stimulates duodenal HCO3− and Cl− secretion through CFTR, and has a relatively high selectivity for the CFTR HCO3− conductance, compared with forskolin. This may indicate the feasibility of selective targeting of the HCO3− conductance of the CFTR channels. PMID:19788494

  5. Formation of the chemical composition of water in channel head in postglacial areas (West Pomerania, Poland)

    NASA Astrophysics Data System (ADS)

    Mazurek, Małgorzata; Kruszyk, Robert; Szpikowska, Grażyna

    2016-04-01

    The channel head is a zone of hydrological changes determining the hydrochemical features of water in the final stage of groundwater flow and the start of the surface cycle. The chemistry of water flowing out of a channel head reflects not only the characteristics of groundwater feeding the zone, but also changes it undergoes in this area during the organisation of channel flow. Groundwater interacts with surface water in the hyporheic zone where water from different environments is mixed and exchanged due to high hydraulic and chemical gradients. The goal of this study was to assess spatial differences in the concentrations of nutrients and compounds produced by chemical weathering in a channel head and to establish the role of the hyporheic zone in the transformation of the chemical composition of groundwater supplying a 1st-order stream. The research area was the channel head Żarnowo, located on the southern slope of the upper Parsęta valley. Three hydrochemical mappings were conducted in the headwater alcove consisting of three parts developed in a glaciofluvial plain and an erosional-accumulative alluvial terrace. Water was sampled in places of groundwater outflow in the footslope zone (9 sites), the hyporheic zone (14 sites), and outflows in the individual alcove parts and the rivulet they formed (5 sites). Water temperature, pH, and electrical conductivity were measured in the field. Concentrations of K, Ca, Mg, Na, Fe, Mn, HCO3, Cl, NO3, PO4, SO4 and SiO2 were determined in the laboratory. The chemical composition of ground- and surface water shows the concentration of geogenic components like K, Ca, Mg, Na, HCO3, and SiO2 to be an effect of chemical weathering and the leaching of its products taking place in a zero-discharge catchment. Those ions display little spatial variability and a stability of concentration in individual measurement periods, while the greatest disproportions in their concentrations among the alcove parts were recorded for Cl, NO3 and PO4, representing an anthropogenic component. Like iron and manganese, nitrates are components with the highest horizontal gradients of concentration in the alcove. Nitrate levels drop considerably in each hyporheic zone. The levels of iron and manganese found in porewater at the bottom of the alcove can be both high and low, which indicates a highly local nature of their determinants in the hyporheic zone connected mainly with changes in its hydrogeochemical conditions. This should be considered an effect of biogeochemical processes involving a change in the oxidation level of nitrogen in porewater. The bottom of the channel head is permanently waterlogged, fed by water with a stable temperature of ca. 8.8°C, and consequently supporting a green Cardamino amarae-Beruletum erecti Turmanova 1985 community even in winter. Plants are a source of organic matter, the decomposition of which brings about an oxygen deficit necessary for the development of microorganisms deriving oxygen from oxygen complexes of nitrogen. Those are conditions facilitating a reduction of nitrates to free nitrogen and the migration of reduced forms of iron and manganese.

  6. Effect of sodium chloride gradients on water flux in rat descending vasa recta.

    PubMed

    Pallone, T L

    1991-01-01

    In the hydropenic kidney, volume efflux from descending vasa recta (DVR) occurs despite an intracapillary oncotic pressure that exceeds hydraulic pressure. That finding has been attributed to small solute gradients which may provide an additional osmotic driving force favoring water transport from DVR plasma to the papillary interstitium. To test this hypothesis, axial gradients of NaCl and urea in the papilla were eliminated by administration of furosemide and saline. DVR were then blocked with paraffin and microperfused at 10 nl/min with a buffer containing albumin, fluorescein isothiocyanate labeled dextran (FITC-Dx), 22Na, and NaCl in a concentration of 0 (hypotonic to the interstitium), 161 (isotonic) or 322 mM (hypertonic). Collectate was obtained from the perfused DVR by micropuncture and the collectate-to-perfusate ratios of FITC-Dx and 22Na were measured. A mathematical model was employed to determine DVR permeability (Ps) and reflection coefficient to NaCl (sigma NaCl). The rate of transport of water from the DVR lumen to the papillary interstitium was 2.8 +/- 0.3 (Nv = 22), -0.19 +/- 0.4 (Nv = 15), and -2.3 +/- 0.3 nl/min (Nv = 21) (mean +/- SE) when perfusate NaCl was 0, 161, or 322 mM, respectively (Nv = number of DVR perfused). The collectate-to-perfusate 22Na concentration ratios were 0.34 +/- 0.04, 0.36 +/- 0.04 and 0.37 +/- 0.03 for those groups, respectively. Based on these data, Ps is calculated to be 60.4 x 10(-5) +/- 4.0 x 10(-5) cm/s and sigma NaCl less than 0.05. The results of this study confirm that transcapillary NaCl concentrations gradients induce water movement across the wall of the DVR.

  7. Army Generating Force Census Utilization. FY2008 Summer Study

    DTIC Science & Technology

    2009-10-01

    TD 󈧻 -a ^ 01 3 3" 𔃽 3 QJ <j IH b rj •3 re .£ > OJ re a re (— ft- c g...73 £ rn H QJ -3 QJ J3 co Ŗ •*•’ ro 3 •_ .a - Si «o 2 g.| S c x > 2 2 O £ Q. QJ .£ o X ft- 3 TD O 3 co re QJ IH X T3 >H...co to 󈧻 — _>» TD c 5 < CO 75 CD .2 II CO o n LJ- LL U O • c CD E CD O) 03 c 03 CD o CL c

  8. Intrinsic Cholinergic Mechanisms Regulating Cerebral Blood Flow as a Target for Organophosphate Action.

    DTIC Science & Technology

    1985-10-01

    regions one hour 26 following microinjection of YH- choline into the right parietal cortex. II Effect of atropine sulfate (0.3 mg/kg i.v.) on the...Harvard Apparatus model 940). The superfusate consisted of a modified Kreb’s- bicarbonate buffer containing physostigmine to inhibit ACh degradation...in mM: NaCl, 118; CaCI 2 , 1.2; KC01, 4.8; MgSO4, 1.2; NaH 2 PO 4 , 1.2; NaHCO 3 , 25; choline chloride, 0.001; physostigmine, 0.1). The area of the

  9. Modulation of chloride, potassium and bicarbonate transport by muscarinic receptors in a human adenocarcinoma cell line.

    PubMed

    Holliday, N D; Cox, H M

    1999-01-01

    1. Short-circuit current (I(SC)) responses to carbachol (CCh) were investigated in Colony 1 epithelia, a subpopulation of the HCA-7 adenocarcinoma cell line. In Krebs-Henseleit (KH) buffer, CCh responses consisted of three I(SC) components: an unusual rapid decrease (the 10 s spike) followed by an upward spike at 30 s and a slower transient increase (the 2 min peak). This response was not potentiated by forskolin; rather, CCh inhibited cyclic AMP-stimulated I(SC). 2. In HCO3- free buffer, the decrease in forskolin-elevated I(SC) after CCh was reduced, although the interactions between CCh and forskolin remained at best additive rather than synergistic. When Cl- anions were replaced by gluconate, both Ca2+- and cyclic AMP-mediated electrogenic responses were significantly inhibited. 3. Basolateral Ba2+ (1-10 mM) and 293B (10 microM) selectively inhibited forskolin stimulation of I(SC), without altering the effects of CCh. Under Ba2+- or 293B-treated conditions, CCh responses were potentiated by pretreatment with forskolin. 4. Basolateral charybdotoxin (50 nM) significantly increased the size of the 10 s spike of CCh responses in both KH and HCO3- free medium, without affecting the 2 min peak. The enhanced 10 s spike was inhibited by prior addition of 5 mM apical Ba2+. Charybdotoxin did not affect forskolin responses. 5. In epithelial layers prestimulated with forskolin, the muscarinic antagonists atropine and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, both at 100 nM) abolished subsequent 10 microM CCh responses. Following addition of p-fluoro hexahydro-sila-difenidol (pF-HHSiD, 10 microM) or pirenzepine (1 microM), qualitative changes in the CCh response time-profile also indicated a rightward shift of the agonist concentration-response curve; however, 1 microM gallamine had no effect. These results suggest that a single M3-like receptor subtype mediates the secretory response to CCh. 6. It is concluded that CCh and forskolin activate discrete populations of basolateral K+ channels gated by either Ca2+ or cyclic AMP, but that the Cl- permeability of the apical membrane may limit their combined effects on electrogenic Cl- secretion. In addition, CCh activates a Ba2+-sensitive apical K+ conductance leading to electrogenic K+ transport. Both agents may also modulate HCO3- secretion through a mechanism at least partially dependent on carbonic anhydrase.

  10. Critical role for NHE1 in intracellular pH regulation in pancreatic acinar cells.

    PubMed

    Brown, David A; Melvin, James E; Yule, David I

    2003-11-01

    The primary function of pancreatic acinar cells is to secrete digestive enzymes together with a NaCl-rich primary fluid which is later greatly supplemented and modified by the pancreatic duct. A Na+/H+ exchanger(s) [NHE(s)] is proposed to be integral in the process of fluid secretion both in terms of the transcellular flux of Na+ and intracellular pH (pHi) regulation. Multiple NHE isoforms have been identified in pancreatic tissue, but little is known about their individual functions in acinar cells. The Na+/H+ exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride completely blocked pHi recovery after an NH4Cl-induced acid challenge, confirming a general role for NHE in pHi regulation. The targeted disruption of the Nhe1 gene also completely abolished pHi recovery from an acid load in pancreatic acini in both HCO3--containing and HCO3--free solutions. In contrast, the disruption of either Nhe2 or Nhe3 had no effect on pHi recovery. In addition, NHE1 activity was upregulated in response to muscarinic stimulation in wild-type mice but not in NHE1-deficient mice. Fluctuations in pHi could potentially have major effects on Ca2+ signaling following secretagogue stimulation; however, the targeted disruption of Nhe1 was found to have no significant effect on intracellular Ca2+ homeostasis. These data demonstrate that NHE1 is the major regulator of pHi in both resting and muscarinic agonist-stimulated pancreatic acinar cells.

  11. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal

    NASA Astrophysics Data System (ADS)

    Kaown, D.; Kim, H.; Lee, S.; Hyun, Y.; Moon, H.; Ko, K.; Lee, K.

    2012-12-01

    The release of leachate from animal carcass disposal can potentially contaminate soil and groundwater. During the Korea's foot-and-mouth disease (FMD) outbreak in 2010-2011, about 3.53 million of pigs and cattle were slaughtered and 4,538 burial sites were constructed. The objectives of this study are to determine the hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass burial facilities were monitored to prevent further soil and groundwater contamination and to build effective plans for stabilization of the burial site. Two burial sites were investigated in this study. An animal carcass disposal site is located in a flat area and another disposal site is found in mountain area. The hydrogeochemical and hydrogeological characteristics were analyzed to identify groundwater contamination by leachate from livestock burial sites. After 5-6 months of burial, the concentrations of NH4+, Cl-, and HCO3- in leachate were decreased since the leachate was regularly pumped and treated. However, high concentrations of major contaminants (NH4+, Cl-, and HCO3-) were still observed in landfill leachate of mountain area even though pumping and treatment of leachate were continuously conducted. Bacterial community diversity over time in leachate from animal carcass disposal was analyzed using 16S rRNA gene-based pyrosequencing. The impact of landfill leachate on change of bacterial community in soil and groundwater were monitored for a year.

  12. Hydrogeochemical investigation of Küçük Menderes River coastal wetland, Selçuk-Izmir, Turkey

    NASA Astrophysics Data System (ADS)

    Somay, A. Melis; Gemici, Ünsal; Filiz, Sevki

    2008-07-01

    Küçük Menderes River forms a rich coastal wetland inside in the Selçuk plain. Three saline/brackish lakes, one swamp and Küçük Menderes River are these wetlands’ components. Alkaline-slightly alkaline type lakes are recharged from precipitation and karstic springs that discharge from marble-schist and marble-alluvium contacts in the northern and southern parts of the study area. Water types of the wetland are Na-Cl and Na-Ca-Mg-HCO3-Cl in both rainy and dry seasons. Both seawater intrusion and evaporation, as being the sources of the ions, justify the presence of Na-Cl, Na-SO4 and Cl-SO4, in the wetland water. Environmental isotopes were used to identify the relationship between wetland and groundwater in the Selçuk plain. The δ18O and δD composition of wetland area samples have changed between -6.42 to -4.56‰, and -36.40 to -23.80‰, respectively. The lakes and rivers are plotted on the mixing line by slope of 5.2 and these data indicate that wetland is affected from seawater intrusion. The recharge area that was sampled in order to compare the wetland has Ca-HCO3 water type with a neutral-slightly alkaline pH values and the main hydrogeochemical process is weathering the different types of silicates. Iron, manganese and selenium are the dominant minor ions due to the high biological activities and organic matters in the lakes. There are two contamination risks for this wetland: (1) waste disposal site and (2) water treatment plant where the purified waters are released into the river. EC, Al, As, Cd, Cu, Fe and Zn values exceed those of aquatic life standards. In the near future these sites will pose a danger for wetland wild life and surrounding irrigation water suppliers.

  13. Rapid increase in red blood cell density driven by K:Cl cotransport in a subset of sickle cell anemia reticulocytes and discocytes.

    PubMed

    Fabry, M E; Romero, J R; Buchanan, I D; Suzuka, S M; Stamatoyannopoulos, G; Nagel, R L; Canessa, M

    1991-07-01

    We have previously demonstrated that young normal (AA) and sickle cell anemia (SS) red blood cells are capable of a volume regulatory decrease response (VRD) driven by a K:Cl cotransporter that is activated by low pH or hypotonic conditions. We now report on the characteristics of young SS cells (SS2, discocytes) capable of rapid increase in density in response to swelling. We have isolated cells with high VRD response (H-VRD) and low VRD response (L-VRD) cells by incubation and density-gradient centrifugation under hypotonic conditions. Comparison of these cells in patients homozygous for hemoglobin (Hb)S indicated that H-VRD cells have 91% more reticulocytes (P less than 9 x 10(-9) than L-VRD cells, 25% less HbF (P less than 5.5 x 10(-5), 106% more NEM (N-methylmaleimide)-stimulated K:Cl cotransport activity (P less than 2 x 10(-4), and 86% more volume-stimulated K:Cl cotransport activity (P less than 1.8 x 10(-3). H-VRD and L-VRD cells have similar G-6-PD and Na+/H+ antiport activity. In agreement with the reduced percent HbF in H-VRD cells, F cells (red blood cells that contain fetal Hb) are depleted from the H-VRD population; however, F reticulocytes are enriched in the H-VRD population to the same extent as non-F reticulocytes, which suggests that both F and non-F reticulocytes have a similar initial distribution of volume-sensitive K:Cl cotransport activity but that it may be more rapidly inactivated in F than in S reticulocytes. We find that H-VRD cells consist of 20% reticulocytes (or 79% of all reticulocytes in SS2) and 80% more mature cells. This study demonstrates the role of K:Cl cotransport in determining red blood cell density, the heterogeneity of K:Cl cotransport activity in reticulocytes, and the capacity for rapid change in the density of reticulocytes with high K:Cl cotransport activity. We speculate that the H-VRD population may be more susceptible to generation of dense and irreversibly sickled cells.

  14. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase.

    PubMed

    Mathieu, Véronique; Chantôme, Aurélie; Lefranc, Florence; Cimmino, Alessio; Miklos, Walter; Paulitschke, Verena; Mohr, Thomas; Maddau, Lucia; Kornienko, Alexander; Berger, Walter; Vandier, Christophe; Evidente, Antonio; Delpire, Eric; Kiss, Robert

    2015-10-01

    Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 µM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl(-) and the decreased HCO3 (-) concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na-K-2Cl electroneutral cotransporter or Cl(-)/HCO3 (-) anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells.

  15. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia.

    PubMed

    Karro, Enn; Uppin, Marge

    2013-05-01

    Silurian-Ordovician (S-O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3-Cl-Na-Mg-Ca, water is alkaline, and its Ca(2+) content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S-O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100-400 mg/kg) and K-bentonites (F = 2,800-4,500 mg/kg) contributes to the formation of F-rich groundwater.

  16. Geochemistry of mineral waters and associated gases of the Sakhalin Island (Far East of Russia)

    NASA Astrophysics Data System (ADS)

    Chelnokov, George A.; Bragin, Ivan V.; Kharitonova, Natalia A.

    2018-04-01

    Isotopic and chemical data on the mineral water, mud volcanoes fluid and associated gases from the biggest Russian island Sakhalin, together with previous stable isotope data (d18O, dD, 13C), allow elucidation of their origin and general evolution. The water fluid circulation is mainly related to marine environment inducing three distinct types: Na-HCO3-Cl alkali carbonate groundwaters, Na-Cl-HCO3 highly evolved saline and Na-Cl mature groundwaters, indicating different evolution. Chemical evolution of groundwater on Sakhalin Island demonstrated cation exchange and salinization as dominant evolutionary pathways. Isotopic composition of groundwaters varies from meteoric to metamorphic waters. These metamorphic waters consist of water hydration from the clay and seawater are traced in fluids of Yuzhno-Sakhalin mud volcano despite modification by mixing with meteoric waters and water-rock interaction processes. Fault systems that define the areas of highly mineralized water circulation appear to play a major role in the CO2 migration to the surface and CH4 generation. The δ13C(CO2) values have pointed that gas phase in high-pCO2 waters mostly consists of mantle-derived CO2. The carbon isotope signature of methane δ13C(CH4) and δD(CH4) indicates its distinct origin which is specified by tectonics. Methane manifestation in the south of the Sakhalin Island is mainly related to thermogenic reservoirs as they are more often dislocate by tectonics, and crossed by active and permeable faults. The sources of biogenous methane in the north of Sakhalin Island is related to younger and shallower reservoirs, and less affected by tectonic processes. The determinations of 222Rn have allowed observing that maximal radon flux is associated with high pCO2 waters.

  17. In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory

    NASA Astrophysics Data System (ADS)

    Garavito, A. M.; De Cannière, P.; Kooi, H.

    Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest for osmosis-induced effects in this reference formation in Belgium. Indeed, water flow and solute transport may be associated with several types of driving forces, or gradients (chemical, electrical, thermal), in addition to the hydraulic forces, resulting in the so-called coupled flows. Fluid flow caused by driving forces different than hydraulic gradients is referred to as osmosis. Chemical osmosis, the water flow induced by a chemical gradient across a semi-permeable membrane, can generate pressure increase. The question thus arises if there is a risk to create high pore pressures that could damage the near-field of medium-level waste (MLW) galleries, if osmotically driven water flows towards the galleries are produced by the release of large amounts of NaNO 3 (750 t) in the formation. To what extent a low-permeability clay formation such as the Boom Clay acts as an osmotic membrane is thus a key issue to assess the relevance of osmosis phenomena for the disposal of medium-level waste. An in situ osmosis experiment has been conducted at the H ADES underground research laboratory to determine the osmotic efficiency of Boom Clay at the field scale. A recently developed chemical osmosis flow continuum model has been used to design the osmosis experiment, and to interpret the water pressure measurements. Experimental data could be reproduced quite accurately by the model, and the inferred parameter values are consistent with independent determinations for Boom Clay. A rapid water pressure increase (but limited to about a 2 m water column) was observed after 12 h in the filter containing the more saline water. Then, the osmotically induced water pressure slowly decays on several months. So, the experimental results obtained in situ confirm the occurrence of non-hydraulic flow phenomena (chemical osmosis) in a low-permeability plastic formation such as the Boom Clay. The osmotic efficiency of Boom Clay is high under undisturbed chemical conditions ( σ = 0.41 at 0.014 M NaHCO 3), but rapidly decreases when the dissolved salts concentration increases ( σ = 0.07 at 0.14 M NaHCO 3). A semi-permeable membrane behaviour of the Boom Clay (high efficiencies) may be expected for the disposal of nitrate-bearing radioactive waste. However, the presently observed osmotically induced pressure is too low to have a significant mechanical impact on the host rock. Finally, the short duration of the osmosis test performed suggests that the shut-in test method used is effective for osmosis testing.

  18. The reductive degradation of 1,1,1-trichloroethane by Fe(0) in a soil slurry system.

    PubMed

    Wu, Xiaoliang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian; Lin, Kuangfei; Du, Xiaoming; Luo, Qishi

    2014-01-01

    Most studies on the treatment of chlorinated contaminants by Fe(0) focus on aqueous system tests. However, few is known about the effectiveness of these tests for degrading chlorinated contaminants such as 1,1,1-trichloroethane (TCA) in soil. In this work, the reductive degradation performance of 1,1,1-TCA by Fe(0) was thoroughly investigated in a soil slurry system. The effects of various factors including acid-washed iron, the initial 1,1,1-TCA concentration, Fe(0) dosage, slurry pH, and common constituents in groundwater and soil such as Cl(-), HCO3 (-), SO4 (2-), and NO3 (-) anions and humic acid (HA) were evaluated. The experimental results showed that 1,1,1-TCA could be effectively degraded in 12 h for an initial Fe(0) dosage of 10 g L(-1) and a soil/water mass ratio of 1:5. The soil slurry experiments showed two-stage degradation kinetics: a slow reaction in the first stage and a fast reductive degradation of 1,1,1-TCA in the second stage. The reductive degradation of 1,1,1-TCA was expedited as the mass concentration of Fe(0) increased. In addition, high pHs adversely affected the degradation of 1,1,1-TCA over a pH range of 5.4-8.0 and the reductive degradation efficiency decreased with increasing slurry pH. The initial 1,1,1-TCA concentration and the presence of Cl(-) and SO4(2-) anions had negligible effects. HCO3(-) anions had a accelerative effect on 1,1,1-TCA removal, and both NO3(-) and HA had inhibitory effects. A Cl(-) mass balance showed that the amount of Cl(-) ions released into the soil slurry system during the 1,1,1-TCA degradation increased with increasing reaction time, suggesting that the main degradation mechanism of 1,1,1-TCA by Fe(0) in a soil slurry system was reductive dechlorination with 1,1-DCA as the main intermediate. In conclusion, this study provides a theoretical basis for the practical application of the remediation of contaminated sites containing chlorinated solvent.

  19. Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells.

    PubMed

    Yue, Grace Gar-Lee; Lau, Clara Bik-San; Fung, Kwok-Pui; Leung, Ping-Chung; Ko, Wing-Hung

    2008-04-17

    The traditional Chinese medicine Cordyceps sinensis (CS) (Clavicipitaceae) improves pulmonary function and is used to treat respiratory disease. Here, we compare the efficacy and mechanisms of action of Cordyceps sinensis and Cordyceps militaris (CM) (Clavicipitaceae) in Calu-3 human airway epithelial monolayer model. The extracts of Cordyceps sinensis and Cordyceps militaris, as well as their isolated compounds, cordycepin and adenosine, stimulated ion transport in a dose-dependent manner in Calu-3 monolayers. In subsequent experiments, transport inhibitor bumetanide and carbonic anhydrase inhibitor acetazolamide were added after Cordyceps sinensis and Cordyceps militaris extracts to determine their effects on Cl- and HCO3- movement. The results suggested that Cordyceps sinensis and Cordyceps militaris extracts may affect the anion movement from the basolateral to apical compartments in the airway epithelia. Basolateral Na+-K+-2Cl- cotransporter and apical cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel are involved in the process. The results provide the first evidence for the pharmacological mechanism of Cordyceps sinensis and Cordyceps militaris on respiratory tract.

  20. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines

    PubMed Central

    Case, R. M.; Conigrave, A. D.; Novak, I.; Young, J. A.

    1980-01-01

    1. A method is described for the isolation and vascular perfusion in vitro of the mandibular gland of the rabbit. The perfusate is a physiological salt solution containing glucose as the only metabolic substrate. 2. During perfusion with solutions containing acetylcholine, the gland secretes vigorously at a rate and in a manner similar to that seen in vivo. Although the gland becomes oedematous during perfusion, the extent of this oedema appears to have no influence on secretory ability: the perfused glands were capable of functioning for at least 4 h, and often for more than 6 h. 3. Acetylcholine evoked a small secretory response at a concentration of 8 × 10-9 mol l-1 and a maximum response at 8 × 10-7 mol l-1. Eserine (2 × 10-5 mol l-1) evoked secretory responses comparable to those evoked by acetylcholine in a concentration of 8 × 10-9 mol l-1. Secretion, whether unstimulated or evoked by acetylcholine or eserine, could be blocked completely by atropine. 4. During prolonged stimulation with acetylcholine, the fluid secretory response declined rapidly over a period of about 15 min from an initial high value to a much lower plateau value. After 3 or more hours of stimulation, the secretory response began once more to decline, this time towards zero. If, before the second period of decline begins, stimulation is interrupted for about 30 min, the gland recovers its initial responsiveness to further stimulation with acetylcholine. 5. The Na, K, Cl and HCO3 concentrations and the osmolality of acetylcholine evoked saliva exhibited flow-dependency similar to that seen in vivo. The concentrations of Na and Cl, but not K and HCO3, increased by about 25 mmol l-1 during periods of prolonged stimulation with acetylcholine even though the salivary secretory rate was constant. The concentrations of K and HCO3, but not Na and Cl, increased progressively as the concentration of infused acetylcholine was increased. 6. Salivary protein secretion increased with increasing concentrations of acetylcholine to a greater extent than did fluid secretion. During continuous stimulation, the rate of protein secretion fell off much faster than the rate of fluid secretion. 7. The β-adrenergic agonist isoproterenol evoked a fluid secretory response only equal to about 5% of that evoked by acetylcholine, but still the response declined during continued stimulation. The electrolyte composition of isoproterenol-evoked saliva was vastly different from that evoked by acetylcholine, being particularly rich in K and HCO3. The isoproterenol-evoked saliva was also extremely rich in protein so that the total protein secretion evoked by isoproterenol was much greater than that evoked by acetylcholine. 8. The α-adrenergic agonist phenylephrine was without stimulatory effect on salivary fluid secretion and caused a reduction in the secretory response to acetylcholine. The drug had little or no effect on the electrolyte content of acetylcholine-evoked saliva and appeared to reduce its protein content. PMID:7381794

  1. A study of the physics and chemistry of TMC-1

    NASA Technical Reports Server (NTRS)

    Pratap, P.; Dickens, J. E.; Snell, R. L.; Miralles, M. P.; Bergin, E. A.; Irvine, W. M.; Schloerb, F. P.

    1997-01-01

    We present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N. The values of the density and temperature allow column densities for 13 molecular species to be estimated from statistical equilibrium calculations, using observations of rarer isotopomers where possible, to minimize opacity effects. The most striking abundance variations relative to HCO+ along the ridge were seen for HC3N, CH3CCH, and SO, while smaller variations were seen in CS, C2H, and HCN. On the other hand, the NH3, HNC, and N2H+ abundances relative to HCO+ were determined to be constant, indicating that the so-called NH3 peak in TMC-1 is probably a peak in the ammonia column density rather than a relative abundance peak. In contrast, the well-studied cyanopolyyne peak is most likely due to an enhancement in the abundance of long-chain carbon species. Comparisons of the derived abundances to the results of time-dependent chemical models show good overall agreement for chemical timescales around 10(5) yr. We find that the observed abundance gradients can be explained either by a small variation in the chemical timescale from 1.2 x 10(5) to 1.8 x 10(5) yr or by a factor of 2 change in the density along the ridge. Alternatively, a variation in the C/O ratio from 0.4 to 0.5 along the ridge produces an abundance gradient similar to that observed.

  2. Room-temperature transition-metal-free one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines via iodo-hemiaminal intermediate.

    PubMed

    Lee, Seul Ki; Park, Jin Kyoon

    2015-04-03

    A mild and efficient one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines in up to 88% yield was developed. An adduct was formed after the simple mixing of 2-amino-4-methylpyridine, 2-phenylacetaldehyde, and N-iodosuccinimide in CH2Cl2, and the structure of the adduct was characterized by 2D NMR, IR, and high-resolution mass analysis. The adduct was readily cyclized by treatment with a saturated aqueous solution of NaHCO3. The reactions proceeded to completion after several hours at room temperature.

  3. Role of Cl- -HCO3- exchanger AE3 in intracellular pH homeostasis in cultured murine hippocampal neurons, and in crosstalk to adjacent astrocytes.

    PubMed

    Salameh, Ahlam I; Hübner, Christian A; Boron, Walter F

    2017-01-01

    A polymorphism of human AE3 is associated with idiopathic generalized epilepsy. Knockout of AE3 in mice lowers the threshold for triggering epileptic seizures. The explanations for these effects are elusive. Comparisons of cells from wild-type vs. AE3 -/- mice show that AE3 (present in hippocampal neurons, not astrocytes; mediates HCO 3 - efflux) enhances intracellular pH (pH i ) recovery (decrease) from alkali loads in neurons and, surprisingly, adjacent astrocytes. During metabolic acidosis (MAc), AE3 speeds initial acidification, but limits the extent of pH i decrease in neurons and astrocytes. AE3 speeds re-alkalization after removal of MAc in neurons and astrocytes, and speeds neuronal pH i recovery from an ammonium prepulse-induced acid load. We propose that neuronal AE3 indirectly increases acid extrusion in (a) neurons via Cl - loading, and (b) astrocytes by somehow enhancing NBCe1 (major acid extruder). The latter would enhance depolarization-induced alkalinization of astrocytes, and extracellular acidification, and thereby reduce susceptibility to epileptic seizures. The anion exchanger AE3, expressed in hippocampal (HC) neurons but not astrocytes, contributes to intracellular pH (pH i ) regulation by facilitating the exchange of extracellular Cl - for intracellular HCO 3 - . The human AE3 polymorphism A867D is associated with idiopathic generalized epilepsy. Moreover, AE3 knockout (AE3 -/- ) mice are more susceptible to epileptic seizure. The mechanism of these effects has been unclear because the starting pH i in AE3 -/- and wild-type neurons is indistinguishable. The purpose of the present study was to use AE3 -/- mice to investigate the role of AE3 in pH i homeostasis in HC neurons, co-cultured with astrocytes. We find that the presence of AE3 increases the acidification rate constant during pH i recovery from intracellular alkaline loads imposed by reducing [CO 2 ]. The presence of AE3 also speeds intracellular acidification during the early phase of metabolic acidosis (MAc), not just in neurons but, surprisingly, in adjacent astrocytes. Additionally, AE3 contributes to braking the decrease in pH i later during MAc in both neurons and astrocytes. Paradoxically, AE3 enhances intracellular re-alkalization after MAc removal in neurons and astrocytes, and pH i recovery from an ammonium prepulse-induced acid load in neurons. The effects of AE3 knockout on astrocytic pH i homeostasis in MAc-related assays require the presence of neurons, and are consistent with the hypothesis that the AE3 knockout reduces functional expression of astrocytic NBCe1. These findings suggest a new type of neuron-astrocyte communication, based on the expression of AE3 in neurons, which could explain how AE3 reduces seizure susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2009-02-01

    The Yangyi geothermal field, located 72 km northwest to Lhasa City, capital of Tibet, has a high reservoir temperature up to at least 207.2 °C. The geothermal waters from both geothermal wells and hot springs belong to the HCO 3 (+CO 3)-Na type. Factor analysis of all the chemical constituents shows that they can be divided into two factors: F 1 factor receives the contributions of SO 42-, Cl -, SiO 2, As, B, Na +, K +, and Li +; whereas F 2 factor is explained by HCO 3-, F -, CO 32-, Ca 2+, and Sr 2+. The F 1 factor can be regarded as an indicator of the reservoir temperature distribution at Yangyi, but its variable correlation with the results of different geothermometers (Na-K, quartz and K-Mg) does not allow one to draw further inferences. Different from F 1, the F 2 factor is an indicator of a group of hydrogeochemical processes resulting from the CO 2 pressure decrease in geothermal water during its ascent from the deep underground, including transformation of HCO 3- to CO 32-, precipitation of Ca 2+ and Sr 2+, and release of F - from some fluoride-bearing minerals of reservoir rocks. The plot of enthalpy vs. chloride, prepared on the basis of Na-K equilibrium temperatures, suggests that a parent geothermal liquid (PGL) with Cl - concentration of 185 mg/L (that of sample YYT-8) and enthalpy of 1020 J/g (corresponding to a temperature of 236-237 °C, i.e., somewhat higher than that of sample YYT-6) is present in the geothermal reservoir of the Yangyi area, below both the Qialagai valley and the Bujiemu valley, although the samples less affected by mixing and cooling (YYT-6 and YYT-7) come from the second site. The discharge of geothermal waters with high contents of toxic elements such as B, As and F into the Luolang River, the only drinking water source for local residents, has caused slight pollution of the river water. Great care should therefore be taken in the geothermal water resource management at Yangyi.

  5. Protozoa inhibition by different salts: Osmotic stress or ionic stress?

    PubMed

    Li, Changhao; Li, Jingya; Lan, Christopher Q; Liao, Dankui

    2017-09-01

    Cell density and morphology changes were tested to examine the effects of salts including NaHCO 3 , NaCl, KHCO 3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO 3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017. © 2017 American Institute of Chemical Engineers.

  6. Effect of glandular kallikrein on distal nephron HCO3- secretion in rats and on HCO3- secretion in MDCK cells.

    PubMed

    Vallés, P; Ebner, S; Manucha, W; Gutierrez, L; Marin-Grez, M

    1997-11-01

    Renal kallikrein is localized in the connecting tubule cells and secreted into the tubular fluid at late distal nephron segments. The present experiments were performed to further test the hypothesis that renal kallikrein reduces bicarbonate secretion of cortical collecting duct (CCD). The effect of orthograde injections of pig pancreatic kallikrein (1 or 3 micrograms/ml) into the renal tubular system was investigated. Urine fractions (Fr) were collected after a 2-min stop flow. Changes in the urine fraction with respect to those in free-flow urine samples (Ff) were related to the respective polyfructosan (Inutest) ratio. Renal kallikrein activity (Fr:Ff kallikrein/ Fr:Ff polyfructosan) increased significantly in the first two urine fractions collected after glandular kallikrein administration (kallikrein, 1 microgram/ml, P < 0.05; kallikrein, 3 micrograms/ml, P < 0.01). HCO3- secretion of collecting ducts was significantly reduced dose dependently by orthograde and also reduced by retrograde pig pancreatic kallikrein administration. Release of kinins into the fractions was not affected by the retrograde kallikrein injection, even though the kallikrein activity increased considerably (2.26 +/- 0.2 vs. 1.55 +/- 0.2, P < 0.05). Adequacy of retrograde injections for delivering substances to the CCD was demonstrated by injecting colloidal mercury and detecting the appearance of this mercury in the renal cortex by transmission electron microscopy. The integrity of the renal tissue after a retrograde ureteral injection was confirmed by scanning electron microscopy. These results confirm and extend previous data (M. Marin-Grez and P. Vallés. Renal Physiol. Biochem. 17: 301-306, 1994; and M. Marin-Grez, P. Vallés, and P. Odigie. J. Physiol. 488: 163-170, 1995) showing that renal kallikrein reduces bicarbonate secretion at the CCD, probably by inhibiting HCO3- transported by a mechanism unrelated to its kininogenase activity. Support for this assessment was obtained in experiments testing the effect of kallikrein on the luminal bicarbonate secretion of a subpopulation of Madin-Darby canine kidney cells capable of extruding the anion. Kallikrein inhibited HCO3-/Cl- exchange, and the degree of inhibition was dose dependent. This inhibition occurred in the absence of kininogen in the bathing solution.

  7. Natural contamination with arsenic and other trace elements in groundwater of the Central-West region of Chaco, Argentina.

    PubMed

    Blanes, Patricia S; Buchhamer, Edgar E; Giménez, María C

    2011-01-01

    This study covered the central agricultural region of the Chaco province, which lacks a permanent river networks. However, during the rainy period there is localized groundwater recharge. About 84 groundwater samples were taken during the period April-December 2007. These groundwater samples were collected from two different depths: 62 samples from shallow wells (4 to 20 m) and 24 samples from deep wells (20 to 100 m). Chemical variables were determined: pH, specific conductance, total dissolved solid, hardness, alkalinity, HCO(3)-, CO(3)(2-), SO(4)(2-), Cl-, NO(3)-, NO(2) -, NH(4)+, F-, As((tot)), Na+, K+, Ca2+, Mg2+, Fe, Cu, Ni, Pb and Zn. The chemical composition of groundwater in the study area is dominantly sodium bicarbonate and sodium chloride bicarbonate, comprising more than 60% (52/86) of shallow and deep groundwater samples. Of the 86 analyzed groundwater samples, 88% exceeded the WHO (World Health Organization) and CAA (Código Alimentario Argentino) standards (10 μg/L) for As (arsenic) and 9% exceeded the WHO standard (1.5 mg/L) for F(-).Groundwater highly contaminated with As (max. 1,073 μg/L) and F- (max. 4.2 mg/L) was found in shallow aquifer. The contaminated groundwater is characterized by high pH (max. 8.9), alkalinity (max. HCO(3)- 1,932 mg/L), SO(4)(2-) (max. 11,862 mg/L), Na(+) (max. 3,158 mg/L), Cl(-) (max. 10,493 mg/L) and electric conductivity greater than 33.3 μS/cm. Other associated elements (Ni, Pb, Cu and Zn) are present in low concentrations, except for Fe that in 32% of samples exceeded the guideline value of 0.3 mg/L suggested by the CAA.

  8. Latitudinal Trends in Stable Isotope Signatures of Northeast Atlantic Rhodoliths

    NASA Astrophysics Data System (ADS)

    Hofmann, Laurie

    2017-04-01

    Rhodoliths are free-living calcifying red algae that form extensive beds in shallow marine benthic environments (< 200 m) that provide important habitats and nurseries for marine organisms and contribute to carbonate sediment accumulation. There is growing concern that these organisms are sensitive to global climate change, which will have important consequences for coastal productivity and stability. Despite their significance and sensitivity, their basic photosynthetic and calcification mechanisms are not well understood. The goal of this study was to determine the plasticity of dissolved inorganic carbon (DIC) uptake mechanisms of rhodoliths along a latitudinal gradient in the Northeast (NE) Atlantic using natural stable isotope signatures. The delta 13C signature of macroalgae can be used to provide an indication of the preferred inorganic carbon source (CO2 vs. HCO3-). Here we present the total and organic delta 13C signatures of NE Atlantic rhodoliths with respect to changing temperature and light along the latitudinal gradient from the Canary Islands to Spitsbergen. A decreasing trend in delta 13C signatures with increasing latitude suggests that rhodoliths rely solely on CO2 as an inorganic carbon source at mid latitudes, while those at low latitudes may be able to utilize HCO3-. Polar rhodoliths deviate from this trend, suggesting they may have unique physiological mechanisms related to inorganic carbon acquisition and assimilation, which may have important implications for calcification in an environment undergoing rapid changing ocean chemistry.

  9. An all-solid-state reference electrode based on the layer-by-layer polymer coating.

    PubMed

    Kwon, Nak-Hyun; Lee, Kyung-Sun; Won, Mi-Sook; Shim, Yoon-Bo

    2007-09-01

    A solid-state reference electrode (SSRE) was fabricated by layering a silicone rubber (SR) film containing KCl on an AgCl surface, then a perfluorinated ionomer film, and finally a polyurethane-based membrane containing an ionophore, a lipophilic ionic additive, and a plasticizer, respectively. The addition of SiCl4 to the polyurethane-based membrane layer enhanced the strength of the membrane in an aqueous solution. The morphologies of the membranes were studied separately by SEM. The fabrication of the Ag/AgCl electrode through this layer-by-layer polymer coating improved the electrode stability enormously. In addition, the potential drift of the SSRE according to the pH of the medium was minimized by introducing a H+-ion-selective ionophore (tridodecylamine; TDDA) into the outmost polymer membrane. The cyclic voltammetric and potentiometric responses using the SSRE and a conventional reference electrode, respectively, were consistent. The SSRE exhibited little potential variation even in the case of the addition of very high concentrations of various salts, such as Na salicylate, LiCl, KCl, CaCl2, MgCl2, KNO3, NaCl, and NaHCO3. The practicability of the proposed SSRE was tested for the determination of blood pH and pCO2 in a flow cell system. The SSRE fabricated in the present study was stable over two years.

  10. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  11. A novel Na+/HCO3--codependent choline transporter in the syncytial epithelium of the cestode Hymenolepis diminuta.

    PubMed

    Webb, R A; Xue, L

    1998-02-01

    Absorption of exogenous choline by the cestode Hymenolepis diminuta was found to be both Na+- and HCO3--dependent and, at pH 6 to 7, accounted for up to 65% of the total choline uptake. Na+/HCO3- dependent choline uptake was activated at approximately 6 mM HCO3- (EC50 approximately 9 mM), and, above 100 mM Na+, the rate of uptake was directly proportional to the Na+ concentration. Atempts to uncouple Na+-dependent uptake from HCO3--dependent uptake were not successful: K+-depolarization was without effect on HCO3--dependent choline uptake, and use of valinoomycin to hyperpolarize the brush-border membrane resulted in inhibition of uptake. Na-/HCO3--dependent choline uptake was not associated with solvent drag. The Na+/HCO3--dependent choline uptake displayed a Q10 of 6.4 (27 degrees to 37 degrees) and a relatively high activation energy of 126 kJ x mol(-1). At pH 6.0 and 7.0, Na-/HCO3--dependent choline uptake rates were similar, but Na+/HCO3--dependent choline uptake was reduced at pH 5.0. The Na+/HCO3--dependent choline uptake, at pH 7.0, displayed a Kt of approximately 500 microM and a Vmax of 4.01 pmol x mg wet weight(-1) x min(-1). The Na+/HCO3--dependent choline uptake was hemicholinium-3 sensitive, but not significantly inhibited by 200 microM bumetanide, 100 microM amiloride, benzamil, or EIPA or by 1 mM 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) or 4-acetamido-4'-isothiocvanostilbene-2,2'-disulfonic acid (SITS). Although it remains to be shown that HCO3- uptake is coupled directly to both choline and Na+ uptake, the data suggest that choline up take occurs via choline/Na+/HCO3--co-trans porter.

  12. Chemokinetic behavior of the infective third-stage larvae of Strongyloides ratti on a sodium chloride gradient.

    PubMed

    Tobata-Kudo, H; Higo, H; Koga, M; Tada, I

    2000-09-01

    The movements of the infective third-stage larvae (L3) of a rodent parasitic nematode Strongyloides ratti were examined on a sodium chloride (NaCl) gradient set up on agarose plates. The movements of larvae were followed by observing their tracks on the surface of the agarose. The direction of movement depended on the NaCl concentration at the point of their initial placement on the gradient. Larvae placed at between 230 and 370 mM NaCl tended to migrate towards areas of lower concentration. On the other hand, when placed at concentrations less than 20 mM NaCl, larvae tended to migrate initially towards higher concentrations but did not linger in areas where the concentration was over approximately 80 mM NaCl. It seems that S. ratti L3, tested in vitro, prefer regions with a concentration of NaCl below 80 mM NaCl. Two typical chemokinetic behaviors are seen; a unidirectional avoidance movement when initially placed in unfavorable environmental conditions and a random dispersal movement when placed within an area of favorable conditions. Track patterns were straight in the avoidance movement but included multiple changes of direction and loops in the dispersal movement. This study introduces an assay system suitable for studying chemokinetic behavior of larvae of Strongyloides ratti.

  13. Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia.

    PubMed

    Markich, S J; Brown, P L

    1998-07-03

    Fresh surface waters from the Hawkesbury-Nepean River, the major river supplying water to the Sydney region in south-eastern Australia, were sampled monthly during 1991 and analysed for major ions (Na, K, Ca, Mg, Cl, SO4 and HCO3), nutrients (NO3 and PO4), organic carbon and trace metals (Al, Fe, Cu, Zn, Pb, Cd, Ni, Co and Mn). The chemical composition of the river during 1991 was consistent with other studies of the river from 1977 to 1996. The major ion composition in the river is predominantly influenced by sea-salt aerosols in rainwater (headwaters) and connate sea-salt in groundwater (mid-lower reaches), with a cationic dominance order of Na > Mg > Ca > K (equivalents) and an anionic order of Cl > HCO3 > SO4. This is typical of the headwaters of other permanent coastal rivers (freshwater) in south-eastern Australia with a similar catchment lithology. These results differ markedly from the most common natural major ion assemblages established for world rivers (i.e. Ca > Mg > Na > K and HCO3 > SO4 > Cl), which tend to be predominantly influenced by chemical weathering of rocks and minerals. The mean concentrations of major ions, nutrients, organic carbon and trace metals in the freshwater reaches of the Hawkesbury-Nepean River increased by factors of 2.5-4.4, 14-18, 2.2 and 1.6-11, respectively, with increasing distance from the headwaters. Increases in major ion concentrations are attributed mainly to the increasing influence of saline groundwater inflows from regions of Wianamatta shale. Conversely, concentrations of nutrients, organic carbon and trace metals (except Fe and Al) increased as a consequence of anthropogenic inputs, particularly point discharges from sewage treatment plants (i.e. showing distinct, but variable, concentration peaks), as well as diffuse urban and/or agricultural runoff during storm events. The temporal variability of the mean concentrations of all measured parameters in this study was related to variability in water discharge. The mean concentrations of the major ions decreased by a factor of 1.5-3.0 with increasing water discharge, whereas the concentrations of nutrients, organic carbon and trace metals increased by a factor of 2.0-3.0, 1.6 and 1.3-2.0, respectively. This study provides the first survey of trace metal concentrations in the freshwater reaches of a permanent coastal river in Australia using 'clean' sampling and handling techniques. The concentrations of Cu, Zn, Pb, Cd and Ni measured in the headwaters of the Hawkesbury-Nepean River were amongst the lowest reported in the literature for riverine (freshwater) systems, and will form a benchmark for assessing the effects of increasing urbanisation in the catchment.

  14. Temporal dynamics of groundwater-dissolved inorganic carbon beneath a drought-affected braided stream: Platte River case study

    NASA Astrophysics Data System (ADS)

    Boerner, Audrey R.; Gates, John B.

    2015-05-01

    Impacts of environmental changes on groundwater carbon cycling are poorly understood despite their potentially high relevance to terrestrial carbon budgets. This study focuses on streambed groundwater chemistry during a period of drought-induced river drying and consequent disconnection between surface water and groundwater. Shallow groundwater underlying vegetated and bare portions of a braided streambed in the Platte River (Nebraska, USA) was monitored during drought conditions in summer 2012. Water temperature and dissolved inorganic carbon (dominated by HCO3-) in streambed groundwater were correlated over a 3 month period coinciding with a decline in river discharge from 35 to 0 m3 s-1. Physical, chemical, and isotopic parameters were monitored to investigate mechanisms affecting the HCO3- trend. Equilibrium thermodynamic modeling suggests that an increase of pCO2 near the water table, coupled with carbonate mineral weathering, can explain the trend. Stronger temporal trends in Ca2+ and Mg2+ compared to Cl- are consistent with carbonate mineral reequilibria rather than evaporative concentration as the primary mechanism of the increased HCO3-. Stable isotope trends are not apparent, providing further evidence of thermodynamic controls rather than evaporation from the water table. A combination of increased temperature and O2 in the dewatered portion of the streambed is the most likely driver of increased pCO2 near the water table. Results of this study highlight potential linkages between surface environmental changes and groundwater chemistry and underscore the need for high-resolution chemical monitoring of alluvial groundwater in order to identify environmental change impacts.

  15. Evaluation of water resources around Barapukuria coal mine industrial area, Dinajpur, Bangladesh

    NASA Astrophysics Data System (ADS)

    Howladar, M. Farhad; Deb, Pulok Kanti; Muzemder, A. T. M. Shahidul Huqe; Ahmed, Mushfique

    2014-09-01

    Water is a very important natural resource which can be utilized in renewable or non-renewable forms but before utilizing, the evaluation of the quality of this resource is crucial for a particular use. However, the problems of water quality are more severe in areas where the mining and mineral processes' industries are present. In mining processes, several classes of wastes are produced which may turn into ultimately the sources of water quality and environmental degradation. In consequences, the evaluations of water quality for livestock, drinking, irrigation purposes and environmental implications have been carried out around the Barapukuria Coal Mining Industry under different methods and techniques such as primarily the field investigation; secondly the laboratory chemical analysis and thirdly justified the suitability of the laboratory analysis with statistical representation and correlation matrix, Schoeller plot, Piper's Trilinear diagram, Expanded Durov diagram, Wilcox diagram, US salinity diagram, Doneen's chart and others. The results of all surface and ground water samples analysis show that the characteristics and concentrations of all the major physical and chemical parameters such as pH, EC, TDS, Na+, K+, Ca2+, Mg2+, Fetotal, Cl-, HCO3 -, CO3 2- and SO4 2- are varied from one sample to other but well analogous with the WHO and EQS standard limit for all purposes in the area where the abundance of the major ions is as follows: Ca2+ > Na+ > Mg2+ > K+ > Fetotal = HCO3 - > SO4 2- > Cl- > CO3 2-. The graphical exposition of analytical data demonstrates two major hydrochemical facies for example: calcium-bicarbonate (Ca2+- HCO3 -) and magnesium-bicarbonate (Mg2+- HCO3 -) type facies which directly support the shallow recently recharged alkaline water around the industry. The calculated values for the evaluation classification of water based on TDS, Na%, EC, SAR, PI, RSC, MH, and TH replicate good to excellent use of water for livestock, drinking and irrigation activities except in some cases. For example, the high hardness in both water samples specifies the active hydraulic relation between surface and groundwater. Moreover, the statistical application and interpretation exhibit a good positive correlation among most of the water constituents which might be the indicator of having tightly grouped, precise homogeneous good-quality water resources around the mining industry. Finally from the environmental degradation point of view, it can be implied that there are no significant parameters or factors observed which are much badly effective on environment except very few cases. Thus, this research strongly recommends for monitoring the water quality in every 6 months or annually around this industry which might be positive for keeping the safe environment and healthy production of the coal mine.

  16. Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes

    PubMed Central

    Musa-Aziz, Raif; Boron, Walter F.

    2014-01-01

    Exposing an oocyte to CO2/HCO3− causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3− solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3− (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3− or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive. PMID:24965589

  17. Intracellular pH regulation by acid-base transporters in mammalian neurons

    PubMed Central

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  18. The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study.

    PubMed

    Gough, Lewis A; Deb, Sanjoy K; Sparks, Andy S; McNaughton, Lars R

    2017-10-01

    Current evidence suggests sodium bicarbonate (NaHCO 3 ) should be ingested based upon the individualised alkalotic peak of either blood pH or bicarbonate (HCO 3 - ) because of large inter-individual variations (10-180 min). If such a strategy is to be practical, the blood analyte response needs to be reproducible. This study aimed to evaluate the degree of reproducibility of both time to peak (TTP) and absolute change in blood pH, HCO 3 - and sodium (Na + ) following acute NaHCO 3 ingestion. Male participants (n = 15) with backgrounds in rugby, football or sprinting completed six randomised treatments entailing ingestion of two doses of 0.2 g·kg -1 body mass (BM) NaHCO 3 (SBC2a and b), two doses of 0.3 g·kg -1 BM NaHCO 3 (SBC3a and b) or two control treatments (CON1a and b) on separate days. Blood analysis included pH, HCO 3 - and Na + prior to and at regular time points following NaHCO 3 ingestion over a 3-h period. HCO 3 - displayed greater reproducibility than pH in intraclass correlation coefficient (ICC) analysis for both TTP (HCO 3 - SBC2 r = 0.77, P = 0.003; SBC3 r = 0.94, P < 0.001; pH SBC2 r = 0.62, P = 0.044; SBC3 r = 0.71, P = 0.016) and absolute change (HCO 3 - SBC2 r = 0.89, P < 0.001; SBC3 r = 0.76, P = 0.008; pH SBC2 r = 0.84, P = 0.001; SBC3 r = 0.62, P = 0.041). Our results indicate that both TTP and absolute change in HCO 3 - is more reliable than pH. As such, these data provide support for an individualised NaHCO 3 ingestion strategy to consistently elicit peak alkalosis before exercise. Future work should utilise an individualised NaHCO 3 ingestion strategy based on HCO 3 - responses and evaluate effects on exercise performance.

  19. Magnetic Fe3O4@V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation.

    PubMed

    Boruah, Purna K; Szunerits, Sabine; Boukherroub, Rabah; Das, Manash R

    2018-01-01

    Reduced graphene oxide nanosheets decorated with Fe 3 O 4 and V 2 O 5 nanoparticles as a magnetically recoverable nanocomposite (Fe 3 O 4 @V 2 O 5 /rGO) was synthesized by a simple solution chemistry approach. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier transform infrared (FTIR), fluorescence, and zeta potential measurements. The narrow band gap and different band gap energies of Fe 3 O 4 and V 2 O 5 proved to be suitable for the absorption of visible light in the solar spectrum. The Fe 3 O 4 @V 2 O 5 /rGO displayed indeed excellent photocatalytic activity towards the degradation of harmful cationic Bismarck Brown (BB) as well as anionic Acid Orange 7 (AO) dyes under direct sunlight irradiation. The photocatalytic activity of the Fe 3 O 4 @V 2 O 5 /rGO is influenced by solution pH, catalyst loading, initial dye concentration and the presence of different inorganic ions (NH 4 + , Na + , Mg 2+ , Ca 2+, SO 4 2- , Br - , NO 3 - , Cl - , HCO 3 - ). This study provides a new scientific knowledge on the sunlight driven photocatalytic degradation of dye molecules using novel mixed metal oxide/rGO nanocomposite photocatalyst. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Growth Performance, Carcass Characteristics and Plasma Mineral Chemistry as Affected by Dietary Chloride and Chloride Salts Fed to Broiler Chickens Reared under Phase Feeding System

    PubMed Central

    Mushtaq, M. M. H.; Pasha, T. N.; Akram, M.; Mushtaq, T.; Parvin, R.; Choi, H. C.; Hwangbo, J.; Kim, J. H.

    2013-01-01

    Requirements of dietary chloride (dCl) and chloride salts were determined by using 4×2 factorial arrangement under four phase feeding program. Four levels (0.31, 0.45, 0.59 and 0.73%) and two sources (NH4Cl and CaCl2) of the dCl were allocated to 1,472 chicks in eight dietary treatments in which each treatment was replicated four times with 46 birds per replicate. The four phase feeding program was comprised of four dietary phases: Prestarter (d 1 to 10), Starter (d 11 to 20), Grower (d 21 to 33) and Finisher (d 34 to 42); and diets were separately prepared for each phase. The cations, anions, pH, dissolved oxygen (DO), temperature, electrical conductivity (EC), total dissolved solids (TDS) and salinity were analyzed in drinking water and were not affected by dietary treatments. BW gain (BWG; p≤0.009) and feed:gain (FG; p≤0.03) were improved in CaCl2 supplemented diets during d 1 to 10. The maximum response of BWG and FG was observed at 0.38% and 0.42% dCl, respectively, for d 34 to 42. However, the level of dCl for BWG during d 21 to 33 (p≤0.04) and d 34 to 42 (p≤0.009) was optimized at 0.60% and 0.42%, respectively. The level of dCl for optimized feed intake (FI; p≤0.006), FG (p≤0.007) and litter moisture (LM; p≤0.001) was observed at 0.60%, 0.38% and 0.73%, respectively, for d 1 to 42. Water intake (DWI) was not affected by increasing dCl supplementation (p>0.05); however, the ratio between DWI and FI (DWI:FI) was found highest at 0.73% dCl during d 1 to 10 (p≤0.05) and d 21 to 33 (p≤0.009). Except for d 34 to 42 (p≤0.006), the increasing level of dCl did not result in a significant difference in mortality during any phase. Blood pH and glucose, and breast and thigh weights (percentage of dressed weight) were improved while dressing percentage (DP) and gastrointestinal health were exacerbated with NH4Cl as compared to CaCl2 supplemented diets (p≤0.001). Higher plasma Na+ and HCO3− and lower Cl− and Ca++ were observed in NH4Cl supplemented diets (p≤0.001). Increasing supplementation of dCl increased plasma Cl− (p≤0.04; quadratically) and linearly reduced plasma K+ (p≤0.001), Ca++ (p≤0.003), HCO3− (p≤0.001), and Na+ (p≤0.001; quadratically). Consequently, higher requirements of dietary chloride are suggested for feed intake; nevertheless, lower levels of dietary chloride are sufficient to support optimal BWG and FG with increasing age. The NH4Cl supplemented diets ameliorate breast and thigh meat yield along with overall energy balance (glucose). PMID:25049859

  1. Reduced DIDS-sensitive chloride conductance in Ae1-/- mouse erythrocytes

    PubMed Central

    Alper, Seth L.; Vandorpe, David H.; Peters, Luanne L.; Brugnara, Carlo

    2008-01-01

    The resting membrane potential of the human erythrocyte is largely determined by a constitutive Cl- conductance ∼100-fold greater than the resting cation conductance. The 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS)-sensitive electroneutral Cl- transport mediated by the human erythroid Cl-/HCO3- exchanger, AE1 (SLC4A1, band 3) is ≥10,000-fold greater than can be accounted for by the Cl- conductance of the red cell. The molecular identities of conductive anion pathways across the red cell membrane remain poorly defined. We have examined red cell Cl- conductance in the Ae1-/- mouse as a genetic test of the hypothesis that Ae1 mediates DIDS-sensitive Cl- conductance in mouse red cells. We report here that wildtype mouse red cell membrane potential resembles that of human red cells in the predominance of its Cl- conductance. We show with four technical approaches that the DIDS-sensitive component of erythroid Cl- conductance is reduced or absent from Ae1-/- red cells. These results are consistent with the hypothesis that the Ae1 anion exchanger polypeptide can operate infrequently in a conductive mode. However, the fragile red cell membrane of the Ae1-/- mouse red cell exhibits reduced abundance or loss of multiple polypeptides. Thus, loss of one or more distinct, DIDS-sensitive anion channel polypeptide(s) from the Ae1-/- red cell membrane cannot be ruled out as an explanation for the reduced DIDS-sensitive anion conductance. PMID:18329299

  2. Hydrogeological, Hydrogeochemical and Isotope Geochemical Features of the Geothermal Waters in Seferihisar and Environs, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Özgür, Nevzat; Aras Pala, Ebru; Degirmenci, Saliha

    2017-12-01

    The study area of Seferihisar is located within the Izmir-Ankara suture in the NW of the Menderes Massif in western Anatolia, Turkey. The Paleozoic metamorphic rocks of the Menderes Massif form the basement rocks in the area which are overlain by 760 m thick Izmir-flysch series consisting of metamorphic rocks, limestones and ultrabasic rocks tectonically. The Pliocene Bahçecik formation which consists of an alternation of conglomerates, sandstones, claystones, lignite and limestones and shows a thickness of 300 m overlies the (İzmir) flysch series discordantly. This is overlain by 430 m thick Yeniköy formation composed of conglomerates, sandstones, claystones and clayey limestones discordantly. The Miocene volcanic rocks of Cumaovası overlie the Yeniköy formation concordantly which are overlain by alluvium and travertine deposits. Geothermal waters which are observed in the localities of Tuzla, Cumalı, Doğanbey and Karakoç are associated with NE-SW trending faults in the area. The geothermal waters in the area are considered as Na-Cl or Na-Cl-HCO3 type waters. The geothermal waters of Seferihisar and environs are identified to be Na+K>Ca>Mg dominant cations and Cl>HCO3>SO4 dominant anions. According to the diagram of Na/100-K/100-√Mg, a certainly part of the thermal waters can be considered as equilibrated thermal waters during some waters are of immature waters. According to the results of geochemical thermometers, the reservoir temperatures of thermal waters range from 150 to 240°C. The δ2H values of thermal waters are between -13,3 to -31,9, while δ18O values range from -2,55 to -5,70. The tritium contents of thermal waters are between 13 to 64±10 TU.

  3. A multidisciplinary approach to define the hydrogeological model of the carbonate aquifer system in the Versilia River basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Menichini, M.; Doveri, M.; Giannecchini, R.; Raco, B.; Rosi, M.

    2012-12-01

    A hydrogeological study was carried out on important fractured/karst aquifer systems located in the Versilia River basin (Tuscany, Italy), in order to optimize the groundwater resources management. The main aim was the individuation of the feeding areas of the most important springs by means of a multidisciplinary approach using geological, hydrogeological and geochemical-isotopic tools. Some hydrogeological sections were elaborated in order to define the geometry of the main hydrostructures and to individuate possible groundwater divides. The elaboration of geochemical data allowed at identifying 3 main chemical facies: Ca-HCO3, Ca-SO4 and Na-Cl. The first two highlight the interaction of water with limestone/dolostone and carbonate-evaporite rocks for a time sufficient to acquire these chemical compositions and to achieve saturation/supersaturation in calcite and dolomite. The Na-Cl groundwater shows low salinity and a composition similar to rainwater, indicating a circulation in rocks containing minerals not very reactive and/or short interaction time with carbonate rocks. These two main types of water-rock interaction are confirmed by the isotopic ratio δ13C: for the Ca-HCO3 and Ca-SO4 types, δ13C value requires a significant contribution of carbon derived from dissolution of calcite, while for Na-Cl water, δ13C values are consistent with the addition of biogenic CO2 in rainwater. Stable water isotopes (δ18O and δ2H) confirm that groundwaters have a meteoric origin and that the wide range of values essentially depends on the different average altitude of feeding zone. Comparing the geological and hydrogeological features with the results of the geochemical processing, it is reasonable to assume that: the Na-Cl springs are representative of the superficial circuits, with small feeding zones and very low residence times in aquifer; whereas the Ca-HCO3 and Ca-SO4 springs are representative of relatively deep circuits developed in extensive aquifers with high permeability. The first type of springs was used to obtain the relationship between the δ18O ratio and the altitude of rainwater infiltration. Taking into account that they drain a small basin and considering the regulator effect of the aquifers, the isotopic composition of these springs are very similar to the annual average isotopic values of the local meteoric water. This relationship was used to evaluate the average altitude of the feeding area of the second type of springs. All these elements, and some tracer test results available in literature, allowed us to delimit the hydrogeological basins likely drained by the most important springs under study. In addition, for each hydrogeological system, a simplified water balance using meteorological data and the effective infiltration coefficients reported in the literature was performed, verifying that the delimited catchment areas are entirely consistent with the flow rate data of the springs.

  4. [Detection and clinical analysis of acute lower respiratory tract infection with human coronaviruses in children in Beijing area 2007-2015].

    PubMed

    Qian, Yi; Xie, Zhengde; Ren, Lili; Liu, Chunyan; Xiao, Yan; Xu, Baoping; Yang, Yan; Qian, Suyun; Geng, Rong; Shen, Kunling

    2015-09-01

    To investigate human coronaviruses (HCoVs) infection in children with acute lower respiratory tract infection(ALRTI)and to explore the clinical features of ALRTI caused by HCoVs in children. Totally 4 371 children with clinical diagnosis of ALRTI during the period from March 2007 to February 2015 seen in Beijing Children's Hospital were recruited into this study. Patients were divided into 4 groups by age, including 1 890 cases in < 1 year group, 788 cases in 1-3 years group, 553 cases in 3-6 years group, 1140 cases in ≥6 years group. One nasopharyngeal aspirate specimen was collected from each patient. RT-PCR methods were applied to detect 9 common respiratory viruses including HCoVs (including HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1), respiratory syncytial virus (RSV) and so on. Clinical features of ALRTI with single HCoVs infection were analyzed and compared with hospitalized ALRTI cases with single RSV infection in the same period. (1) Totally 2 895 cases were positive for at least one virus in this study in 4 371 ALRTI patients (positive rate 66.23%), in which 147 cases were positive for HCoVs infection (positive rate 3.36%). (2) Positive rates of HCoVs in each year from 2007 to 2014 were 6.11%, 3.79%, 4.69%, 4.31%, 2.38% 2.10%, 0.77% and 2.65%, respectively. The mean positive rates of HCoVs for each month from January to December were 2.53%, 2.12%, 3.63%, 6.68%, 1.53%, 3.77%, 3.92%, 3.00%, 2.15%, 5.26%, 3.01% and 2.80%. (3) Detection results of each subtypes of HCoVs in total 4 371 pediatric ALRTI patients were: 48 cases positive for HCoV-OC43(1.10%), 32 cases positive for HCoV-229E(0.73%), 25 cases positive for HCoV-NL63 (0.57%), 27 cases positive for HCoV-HKU1 (0.62%). (4) Positive rates of HCoVs infection in <1 year group, 1-3 years group, 3-6 years group and ≥ 6 years group were 4.13%, 5.08%, 2.71% and 1.23%, respectively. There were significant differences in positive rates of HCoV among groups (χ² = 27.218, P<0.01). (5) There were 16 hospitalized cases with single infection of HCoVs in this study, of which 12 cases were diagnosed as bronchopneumonia, 3 cases developed acute laryngeal obstruction, 2 cases had acute bronchial asthma attack. Common clinical manifestations included cough (14 cases), gasping (13 cases), dyspnea (9 cases), fever (6 cases), hoarseness (4 cases), laryngeal stridor (4 cases) and abnormality on chest X-ray (including fuzzy lung texture, patchy shadow and consolidation) (12 cases). (6) There were no significant differences in the incidence of clinical manifestations (including cough, gasping, dyspnea, fever and abnormality on chest X-ray), complications (including respiratory failure, myocardial damage, and acute bronchial asthma attack) and mechanical ventilation between hospitalized ALRTI patients with single HCoV infection and 193 patients with single RSV infection in the same period. HCoVs are pathogens of ALRTI in children, The overall positive rate of HCoVs was 3.36% in this study. The clinical manifestations and severity of ALRTI caused by single HCoVs was comparable to that of ALRTI with single RSV infection in children.

  5. Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase

    DTIC Science & Technology

    2004-08-01

    polyethylene glycol precipitation, ion exchange chromatography, and density gradient sedimentation (Malkas et al., 1990; Applegren et al., 1995; Coll et...jtl of 25 mM NH4HCO 3/50% acetonitrile were added and the tubes were mixed for 35-40 min on a low setting using a microtube mixer. The pale blue...these isoforms. Proteins identified in these spots are shown in table 1: Spot #* Predominant Protein MCF-10A 1 Heat Shock Protein 90 cc (hsp-90 ct) 2

  6. Virus purification by CsCl density gradient using general centrifugation.

    PubMed

    Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro

    2017-11-01

    Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.

  7. Assessment of typical natural processes and human activities' impact on the quality of drinking water.

    PubMed

    Kurilić, Sanja Mrazovac; Ulniković, Vladanka Presburger; Marić, Nenad; Vasiljević, Milenko

    2015-11-01

    This paper provides insight into the quality of groundwater used for public water supply on the territory of Temerin municipality (Vojvodina, Serbia). The following parameters were measured: color, turbidity, pH, KMnO4 consumption, total dissolved solids (TDS), EC, NH4+, Cl-, NO2-, NO3-, Fe, Mn, As, Ca2+, Mg2+, SO4(2-), HCO3-, K+, and Na+. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from three analyzed sources is Na-HCO3 type. Elevated organic matter content, ammonium ion content, and arsene content are characteristic for these waters. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, and HCO3- content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main natural processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering. The dominant cause of As concentration in groundwater is the use of mineral fertilizers and of KMnO4 in urban area. The concentration of As and KMnO4 in the observed sources is inversely proportional to the distance from agricultural land and urban area. 2D model of distribution of As and KMnO4 is done, and it is applicable in detecting sources of pollution. By using this model, we can quantify the impact of certain pollutants on unfavorable content of some parameters in groundwater.

  8. External anion effect on the synthesis of new MOFs based on formate and a twisted divergent ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Ana Belén, E-mail: ablago@uvigo.es; Carballo, Rosa; Lezama, Luis

    2015-11-15

    New copper(II) metal–organic compounds with the formulae [Cu{sub 3}Cl(HCO{sub 2}){sub 5}(SCS){sub 3}(H{sub 2}O){sub 2}]·8H{sub 2}O·EtOH (1) and [Cu{sub 3}(HCO{sub 2}){sub 4}(SCS){sub 4}(H{sub 2}O){sub 2}](NO{sub 3}){sub 2}·9H{sub 2}O (2) (SCS=bis(4-pyridylthio)methane) have been synthesized after a careful study of the reaction of the SCS ligand with copper(II) formate. The compounds were obtained in the presence of sodium chloride and nitrate salts under microwave irradiation. The influence of the anion at different metal/anion ratios on the final architecture has been studied. The new chloride-MOF 1 has been characterized by electron paramagnetic resonance (EPR), magnetic properties and single crystal X-ray diffraction studies. The thermalmore » stability and topological analysis have also been investigated. - Highlights: • Microwave synthesis of coordination polymers. • Anion-derived structural changes. • Influence of anions at different metal/anion ratios on the final architectures. • EPR and magnetic characterization of a MOF compound.« less

  9. Density functional theory studies on the electronic, structural, phonon dynamical and thermo-stability properties of bicarbonates MHCO3, M = Li, Na, K

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, J. Karl; Majzoub, Eric H.; Luebke, David R.

    2012-08-01

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M = Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy (FPH) calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the {{HCO}}_{3}^{-} groups in LiHCO3 and NaHCO3 form an infinite chain structure through O⋯H⋯O hydrogen bonds. In contrast, the {{HCO}}_{3}^{-} anions form dimers, ({{HCO}}_{3}^{-})_{2}, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical-transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0-900 K, the FPH and the entropies (S) of MHCO3 (M =Li, Na, K) systems vary as FPH(LiHCO3) > FPH(NaHCO3) > FPH(KHCO3) and S(KHCO3) > S(NaHCO3) > S(LiHCO3), respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

  10. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system.

    PubMed

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue

    2017-11-15

    A highly selective method for transforming ammonia nitrogen to N 2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO 3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl - ). Under illumination, photoholes from WO 3 promote the oxidation of Cl - to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N 2 (79.9%) and NO 3 - (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl - ) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl - /Cl and the reaction intermediates (NH 2 , NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N 2 , which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology.

    PubMed

    Foulke-Abel, Jennifer; In, Julie; Yin, Jianyi; Zachos, Nicholas C; Kovbasnjuk, Olga; Estes, Mary K; de Jonge, Hugo; Donowitz, Mark

    2016-03-01

    Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. GALVANOTAXIS OF SLIME MOLD

    PubMed Central

    Anderson, John D.

    1951-01-01

    The plasmodium of Physarum polycephalum reacts to direct current by migration toward the cathode. Cathodal migration was obtained upon a variety of substrata such as baked clay, paper, cellophane, and agar with a current density in the substratum of 1.0 µa./mm.2 Injury was produced by current densities of 8.0 to 12.0 µa./mm.2 The negative galvanotactic response was not due to electrode products. Attempts to demonstrate that the response was due to gradients or orientation in the substratum, pH changes in the mold, cataphoresis, electroosmosis, or endosmosis were not successful. The addition of salts (CaCl2, LiCl, NaCl, Na2SO4, NaHCO3, KCl, MgSO4, sodium citrate, and sea water) to agar indicated that change of cations had more effect than anions upon galvanotaxis and that the effect was upon threshold values. K ion (0.01 M KCl) increased the lower threshold value to 8.0 µa./mm.2 and the upper threshold value to 32.0 µa./mm.2, whereas the Li ion (0.01 M LiCl) increased the lower threshold to only 4.0 µa./mm.2 and the upper threshold to only 16.0 µa./mm.2 The passage of electric current produced no increase in the rate of cathodal migration; neither was there a decrease until injurious current densities were reached. With increase of subthreshold current densities there was a progressive decrease in rate of migration toward the anode until complete anodal inhibition occurred. There was orientation at right angles to the electrodes in alternating current (60 cycle) with current density of 4.0 µa./mm.2 and in direct current of 5.0 µa./mm.2 when polarity of current was reversed every minute. It is concluded that the negative galvanotactic response of P. polycephalum is due to inhibition of migration on the anodal side of the plasmodium and that this inhibition results in the limitation of the normal migration of the mold to a cathodal direction. The mechanism of the anodal inhibition has not been elucidated. PMID:14873916

  13. Chemiluminescence of off-line and on-line gold nanoparticle-catalyzed luminol system in the presence of flavonoid.

    PubMed

    Wu, Dong; Zhang, Xiaoyue; Liu, Yong; Ma, Yan; Wang, Xiaowu; Wang, Xiaojuan; Xu, Liuxin

    2017-06-01

    It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off-line gold nanoparticle (AuNP)-catalyzed luminol-H 2 O 2 CL system. By contrast, flavonoids enhanced the CL intensity of an on-line AuNP-catalyzed luminol-H 2 O 2 CL system. In the off-line system, the AuNPs were prepared beforehand, whereas in the on-line system, AuNPs were produced by on-line mixing of luminol prepared in a buffer solution of NaHCO 3  - Na 2 CO 3 and HAuCl 4 with no need for the preliminary preparation of AuNPs. The on-line system had prominent advantages over the off-line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off-line AuNP-catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy-sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on-line system was ascribed to the presence of flavonoids promoting the on-line formation of AuNPs, which better catalyzed the luminol-H 2 O 2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP-catalyzed CL system. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Acid-base responses to feeding and intestinal Cl- uptake in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric euryhaline teleost.

    PubMed

    Wood, Chris M; Bucking, Carol; Grosell, Martin

    2010-08-01

    Marine teleosts generally secrete basic equivalents (HCO(3)(-)) and take up Na(+) and Cl(-) in the intestine so as to promote absorption of H(2)O. However, neither the integration of these functions with feeding nor the potential role of the gut in ionoregulation and acid-base balance in freshwater have been well studied. The euryhaline killifish (Fundulus heteroclitus) is unusual in lacking both an acid-secreting stomach and a mechanism for Cl(-) uptake at the gills in freshwater. Responses to a satiation meal were evaluated in both freshwater- and seawater-acclimated killifish. In intact animals, there was no change in acid or base flux to the external water after the meal, in accord with the absence of any post-prandial alkaline tide in the blood. Indeed, freshwater animals exhibited a post-prandial metabolic acidosis ('acidic tide'), whereas seawater animals showed no change in blood acid-base status. In vitro gut sac experiments revealed a substantially higher rate of Cl(-) absorption by the intestine in freshwater killifish, which was greatest at 1-3 h after feeding. The Cl(-) concentration of the absorbate was higher in preparations from freshwater animals than from seawater killifish and increased with fasting. Surprisingly, net basic equivalent secretion rates were also much higher in preparations from freshwater animals, in accord with the 'acidic tide'; in seawater preparations, they were lowest after feeding and increased with fasting. Bafilomycin (1 micromol l(-1)) promoted an 80% increase in net base secretion rates, as well as in Cl(-) and fluid absorption, at 1-3 h post-feeding in seawater preparations only, explaining the difference between freshwater and seawater fish. Preparations from seawater animals at 1-3 h post-feeding also acidified the mucosal saline, and this effect was associated with a marked rise in P(CO(2)), which was attenuated by bafilomycin. Measurements of chyme pH from intact animals confirmed that intestinal fluid (chyme) pH and basic equivalent concentration were lowest after feeding in seawater killifish, whereas P(CO(2)) was greatly elevated (80-95 Torr) in chyme from both seawater and freshwater animals but declined to lower levels (13 Torr) after 1-2 weeks fasting. There were no differences in pH, P(CO(2)) or the concentrations of basic equivalents in intestinal fluid from seawater versus freshwater animals at 12-24 h or 1-2 weeks post-feeding. The results are interpreted in terms of the absence of gastric HCl secretion, the limitations of the gills for acid-base balance and Cl(-) transport, and therefore the need for intestinal Cl(-) uptake in freshwater killifish, and the potential for O(2) release from the mucosal blood flow by the high P(CO(2)) in the intestinal fluids. At least in seawater killifish, H(+)-ATPase running in parallel to HCO(3)(-):Cl(-) exchange in the apical membranes of teleost enterocytes might reduce net base secretion and explain the high P(CO(2)) in the chyme after feeding.

  15. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    NASA Astrophysics Data System (ADS)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu0.5L]n (1), [Cu(HL)2Cl2]n (2), [Cu(HL)2Cl2(H2O)] (3), [Cu(L)2(H2O)]n (4) and [Cu(L)(phen)(HCO2)]n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl-, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units -Cu-O-Cu-O- are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated.

  16. A micropuncture study of the effect of parathyroid hormone on renal bicarbonate reabsorption.

    PubMed Central

    Bank, N; Aynediian, H S

    1976-01-01

    Renal micropuncture and clearance experiments were carried out in rats to study the effect of parathyroid hormone (PTH) on renal tubular HCO-/3 reabsorption. The rats were studied during an initial period of parathyroid deficiency (acute thyroidparathyroidectomy, TPTX) and during infusion of large amounts of bovine PTH. Under normal acid-base conditions, PTH administration to TPTX rats caused a significant rise in proximal tubular fluid HCO-/3 concentration (TFHCO-/3), a decrease in fluid reabsorption, and a fall in proximal HCO-/3 reabsorption from 94.0 to 88.2% (P less than 0.01). In control experiments with mannitol infusion, a comparable reduction in proximal fluid reabsorption occurred without any significant effect on intraluminal HCO-/3 concentration. During acute intravenous HCO-/3 loading, PTH inhibited proximal HCO-/3 reabsorption. However, no change in whole kidney HCO-/3 reabsorption was observed in these experiments or in the animals studied under normal acid-base conditions. The findings are consistent with the view that PTH inhibits proximal tubular HCO-/3 reabsorption with normal or high filtered loads of HCO-/3, but distal segments of the nephron are able to reabsorb the excess delivered from the proximal tubule. Measurements of urinary ammonium and titratable acid indicate that net acid excretion (NH+/4 + TA -- HCO-/3) increases significantly after PTH administration. These results do not provide support for the view that PTH excess causes metabolic acidosis by reducing renal acid excretion. PMID:956369

  17. Fluorescent determination of chloride in nanoliter samples.

    PubMed

    García, N H; Plato, C F; Garvin, J L

    1999-01-01

    Measurements of Cl- in nanoliter samples, such as those collected during isolated, perfused tubule experiments, have been difficult, somewhat insensitive, and/or require custom-made equipment. We developed a technique using a fluorescent Cl- indicator, 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ), to make these measurements simple and reliable. This is a simple procedure that relies on the selectivity of the dye and the fact that Cl-quenches its fluorescence. To measure millimolar quantities of Cl- in nanoliter samples, we prepared a solution of 0.25 mm SPQ and loaded it into the reservoir of a continuous-flow ultramicrofluorometer, which can be constructed from commercially available components. Samples were injected with a calibrated pipette via an injection port, and the resultant peak fluorescent deflections were recorded. The deflections represent a decrease in fluorescence caused by the quenching effect of the Cl- injected. The method yielded a linear response with Cl- concentrations from 5 to 200 mm NaCl. The minimum detectable Cl- concentration was approximately 5 mm. The coefficient of variation between 5 and 200 mm was 1.7%. Resolution, defined as two times the standard error divided by the slope, between 10 and 50 mm and between 50 and 200 mm was 1 mm and 2.6 mm, respectively. Furosemide, diisothiocyanostilbene-2,2'-disulfonic acid and other nonchloride anions (HEPES, HCO3, SO4, and PO4) did not interfere with the assay, whereas 150 mm NaBr resulted in a peak height greater than 150 NaCl. In addition, the ability to measure Cl- did not vary with pH within the physiological range. We developed an easy, accurate, and sensitive method to measure Cl- concentration in small aqueous solution samples.

  18. [Composition characteristics and source analysis of major ions in four small lake-watersheds on the Tibetan Plateau, China].

    PubMed

    Li, He; Li, Jun; Liu, Xiao-Long; Yang, Xi; Zhang, Wei; Wang, Jie; Niu, Ying-Quan

    2015-02-01

    To investigate the ionic compositions of small lake-watersheds on the Tibetan Plateau, water samples from the brackish lakes (Pung Co (lake), Angrenjin Co and Dajia Co), the freshwater lake (Daggyaima Co), their inflowing rivers and the hot spring (Dagejia Geothermal Field), were collected during July-August 2013. The results showed that the major anions and cations of the brackish lakes were HCO3-, SO4(2-) and Na+, respectively, and the hydrochemical types were HCO3-SO4-Na and HCO3-Na. The major anions and cations of the inflowing rivers and the freshwater lake were HCO3-, SO4(2-) and Ca2+, Mg2+, respectively, and the hydrochemical types were HCO3-Ca, HCO3-Ca-Mg, HCO3-Mg-Ca, HCO3-SO4-Ca and SO4-HCO3- Ca. The major anions and cations of the hot spring were HCO3- and Na+, respectively, and the hydrochemical type was HCO3-Na. Water chemistry in the brackish lakes was primarily dominated by evaporation-crystallization processes, while the inflowing rivers and the freshwater lake were mainly influenced by carbonate weathering, and the hot spring was mainly controlled by hot water-granite interaction. Ca2+ was preferentially removed over Mg2+ from the water when carbonate minerals precipitation occured, which resulted in the high Mg2+/Ca2+ molar ratios of the brackish lakes. In the contribution of cation compositions, the largest contribution was carbonate weathering (54% - 79%), followed by silicate weathering (13% -29%) and evaperite dissolution (4% -23%), and the smallest was atmospheric input (3% - 7%).

  19. Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes.

    PubMed

    Chernyshova, Ekaterina S; Zaikina, Yulia S; Tsvetovskaya, Galina A; Strokotov, Dmitry I; Yurkin, Maxim A; Serebrennikova, Elena S; Volkov, Leonid; Maltsev, Valeri P; Chernyshev, Andrei V

    2016-03-21

    Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan.

    PubMed

    Mushtaq, Nisbah; Younas, Ayesha; Mashiatullah, Azhar; Javed, Tariq; Ahmad, Arslan; Farooqi, Abida

    2018-06-01

    Geochemical investigation was carried out for delineating factors responsible for the mobilization of arsenic (As) from aquifer material into the groundwater. Four sites along Ravi River, (Samada, Sarai Chimba, Kot Maiga and Chah Fatehwala), were selected based on the blanket survey. Groundwater-rock interaction and evaporation were the key phenomena controlling groundwater chemistry, as shown by the hydrogeochemical data. Groundwater was predominantly Na-Cl type, with other principle facies being Na-HCO 3 , Na-Ca-HCO 3 and Ca-Mg-Cl. The groundwater As concentration ranged between below detection level (2 μg/L) to 548 μg/L with 59% samples exceeding the World Health Organization (WHO) guidelines for As in drinking water (10 μg/L) and 31% having higher concentrations than the National Environmental Quality Standard (NEQS, 50 μg/L). Moderate to high concentrations of SO 4 -2 averaged at 244 mg/L and moderate NO 3 - concentrations averaged at 8 mg/L, together with alkaline pH (7.3-8.8) and high Eh values (113-402 mV) suggest partial oxidizing nature of the aquifers. The values for δ 18 O and δ 2 H in groundwater varied between -9.14 and -5.51‰, and -56.57 to -39.5‰ respectively, and suggests meteoric origin of the groundwater with some evaporative loss. This effect could be partly responsible for elevated levels of pH and salinity in groundwater. Based on geochemical and isotopic composition of groundwater, desorption of As from metal surfaces under alkaline environment might be the factor causing As enrichment in study area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effects of feeding on arterial blood gases in the American alligator Alligator mississippiensis.

    PubMed

    Busk, M; Overgaard, J; Hicks, J W; Bennett, A F; Wang, T

    2000-10-01

    Reptiles habitually ingest large meals at infrequent intervals, leading to changes in acid-base status as the net secretion of acid to the stomach causes a metabolic alkalosis (the alkaline tide). In chronically cannulated and undisturbed amphibians and reptiles, the pH changes in arterial blood are, nevertheless, reduced by a concomitant respiratory acidosis (increased P(CO2) caused by a relative hypoventilation). Alligators (Alligator mississippiensis) have been reported to exhibit exceptionally large increases in plasma [HCO3(-)] following feeding, but these studies were based on blood samples obtained by cardiac puncture, so stress and disturbance may have affected the blood gas levels. Furthermore, crocodilian haemoglobin is characterised by a unique binding of HCO3(-) that act to reduce blood oxygen-affinity, and it has been proposed that this feature safeguards oxygen offloading by counteracting pH effects on blood oxygen-affinity. Therefore, to study acid-base regulation and the interaction between the alkaline tide and oxygen transport in more detail, we describe the arterial blood gas composition of chronically cannulated and undisturbed alligators before and after voluntary feeding (meal size 7.5+/-1% of body mass). Digestion was associated with an approximately fourfold increase in metabolic rate (from 0.63+/-0.04 to 2.32+/-0.24 ml O(2) min(-1)kg(-1)) and was accompanied by a small increase in the respiratory gas exchange ratio. The arterial P(O2) of fasting alligators was 60.3+/-6.8 mmHg (1 mmHg = 0.133 kPa) and reached a maximum of 81.3+/-2.7 mmHg at 96 h following feeding; there was only a small increase in lactate levels, so the increased metabolic rate seems to be entirely aerobic. Plasma [HCO3(-)] increased from 24.4+/-1.1 to 36.9+/-1.7 mmol l(-1) (at 24 h), but since arterial P(CO2) increased from 29.0+/-1.1 to 36.8+/-1.3 mmHg, arterial pH remained virtually unaffected (changing from 7.51+/-0.01 to 7.58+/-0.01 at 24 h). The changes in plasma [HCO3(-)] were mirrored by equimolar reductions in plasma [Cl(-)]. The in vitro blood oxygen-affinity was reduced during the post-prandial period, whereas the estimated in vivo blood oxygen-affinity remained virtually constant. This supports the view that the specific HCO3(-) effect prevents an increased blood oxygen-affinity during digestion in alligators.

  2. Extracellular HCO3- is sensed by mouse cerebral arteries: Regulation of tone by receptor protein tyrosine phosphatase γ

    PubMed Central

    Hansen, Kristoffer B; Boedtkjer, Donna MB; Aalkjaer, Christian; Boron, Walter F

    2015-01-01

    We investigate sensing and signaling mechanisms for H+, HCO3- and CO2 in basilar arteries using out-of-equilibrium solutions. Selectively varying pHo, [HCO3-]o, or pCO2, we find: (a) lowering pHo attenuates vasoconstriction and vascular smooth muscle cell (VSMC) Ca2+-responses whereas raising pHo augments vasoconstriction independently of VSMC [Ca2+]i, (b) lowering [HCO3-]o increases arterial agonist-sensitivity of tone development without affecting VSMC [Ca2+]i but c) no evidence that CO2 has direct net vasomotor effects. Receptor protein tyrosine phosphatase (RPTP)γ is transcribed in endothelial cells, and direct vasomotor effects of HCO3o- are absent in arteries from RPTPγ-knockout mice. At pHo 7.4, selective changes in [HCO3-]o or pCO2 have little effect on pHi. At pHo 7.1, decreased [HCO3-]o or increased pCO2 causes intracellular acidification, which attenuates vasoconstriction. Under equilibrated conditions, anti-contractile effects of CO2/HCO3- are endothelium-dependent and absent in arteries from RPTPγ-knockout mice. With CO2/HCO3- present, contractile responses to agonist-stimulation are potentiated in arteries from RPTPγ-knockout compared to wild-type mice, and this difference is larger for respiratory than metabolic acidosis. In conclusion, decreased pHo and pHi inhibit vasoconstriction, whereas decreased [HCO3-]o promotes vasoconstriction through RPTPγ-dependent changes in VSMC Ca2+-sensitivity. HCO3o- serves dual roles, providing substrate for pHi-regulating membrane transporters and modulating arterial responses to acid–base disturbances. PMID:26661205

  3. Two Randomized Clinical Studies to Confirm Differential Plaque Removal by Sodium Bicarbonate Dentifrices in a Single Timed Brushing Model.

    PubMed

    Mason, Stephen; Karwal, Ritu; Bosma, Mary Lynn

    2017-09-01

    This study evaluated and compared plaque removal efficacy of commercially available dentifrices containing sodium bicarbonate (NaHCO3) to those without NaHCO3 in a single timed brushing clinical study model. Two randomized, examiner-blind, three-period, three-treatment, crossover studies were performed in adults with a mean Turesky modification of the Quigley-Hein Plaque Index (TPI) score of = 2.00. In Study 1, 60 subjects were randomized to commercially available dentifrices containing: (i) 67% NaHCO3 plus 1425 ppm fluoride (F) as sodium fluoride (NaF); (ii) 45% NaHCO3 plus 1425 ppm F as NaF; or (iii) 0% NaHCO3 plus silica and 1450 ppm F as NaF. In Study 2, 55 subjects were randomized to commercially available dentifrices containing: (i) 67% NaHCO3 plus 1425 ppm F as NaF; (ii) 0% NaHCO3 plus silica and 1400 ppm F as amine F/stannous F; or (iii) 0% NaHCO3 plus chlorhexidine/aluminum lactate and silica with 1360 ppm F as aluminum F. In both studies, subjects brushed their teeth for one timed minute under supervised conditions. Plaque was assessed pre- and post-brushing according to a six-site modification of the TPI. Mean TPI score was analyzed using an analysis of covariance model with treatment and study period as fixed effects, subject as a random variable, and pre-brushing score as a covariate. In both studies, mean TPI score decreased in all groups post-brushing compared with pre-brushing. In Study 1, statistically significant improvements in mean TPI score were reported with the 67% and 45% NaHCO3 dentifrices compared with the 0% NaHCO3 dentifrice (p = 0.0003 and p = 0.0005, respectively). In Study 2, improvements in mean TPI score were statistically significantly greater with the 67% NaHCO3 dentifrice compared with both 0% NaHCO3 dentifrices (p < 0.0001 for both comparisons). All dentifrices were generally well tolerated. A single timed brushing with commercially available dentifrices containing 67% or 45% NaHCO3 exerted a significantly greater effect on plaque removal than commercially available dentifrices without NaHCO3.

  4. Atomic and molecular adsorption on Au(111)

    DOE PAGES

    Santiago-Rodriguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, Maria C.; ...

    2014-05-02

    Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH 3 < NO < CO < CH 3 < HCO < NH 2 < COOH < OH < HCOO < CNH 2 < H < N < NH

  5. Anion Transport in a Chemically Stable, Sterically Bulky alpha-C Modified Imidazolium Functionalized Anion Exchange Membrane

    DTIC Science & Technology

    2014-06-24

    AEM is often inconvenient, as ambient carbon dioxide (at publication time, 400 ppm) will react with the OH− to form a mixture of CO3 2− and HCO3 − in... crystal . Spectra were obtained in the range 500−4000 cm−1, with 256 scans and a resolution of 8 cm−1. Figure 1. Structure of 1,4,5-trimethyl-2-(2,4,6...pulsed-field gradient nuclear magnetic resonance (PFG NMR) on an AVANCEIII NMR spectrometer with a 5 mm Bruker single -axis DIFF60L Z-diffusion probe. The

  6. Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fast-urbanizing center in Uttar Pradesh, India.

    PubMed

    Janardhana Raju, Nandimandalam; Shukla, U K; Ram, Prahlad

    2011-02-01

    The hydrogeochemical parameters for groundwater samples of the Varanasi area, a fast-urbanizing region in India, were studied to evaluate the major ion chemistry, weathering and solute acquisition processes controlling water composition, and suitability of water quality for domestic and irrigation uses. Sixty-eight groundwater samples were collected randomly from dug wells and hand pumps in the urban Varanasi area and analyzed for various chemical parameters. Geologically, the study area comprises Quaternary alluvium made up of an alternating succession of clay, silty clay, and sand deposits. The Total dissolved solids classification reveals that except two locations, the groundwater samples are desirable for drinking, and all are useful for irrigation purposes. The cationic and anionic concentrations indicated that the majority of the groundwater samples belong to the order of Na>Ca>Mg>K and HCO3>Cl>SO4 types, respectively. Geochemical classification of groundwater based on the Chadha rectangular diagram shows that the majority (81%) of groundwater samples belong to the calcium-bicarbonate type. The HCO3/(HCO3+SO4) ratio (0.87) indicates mostly carbonic acid weathering process due to presence of kankar carbonate mixed with clay/fine sand. The high nitrate concentration (>45 mg/l) of about 18% of the groundwater samples may be due to the local domestic sewage, leakage of septic tanks, and improper management of sanitary landfills. In general, the calculated values of sodium adsorption ratio, percent sodium, residual sodium carbonate, and permeability index indicate good to permissible use of water for irrigation, and only a few locations demand remedial measures for better crop yields.

  7. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    PubMed Central

    Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  8. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China

    NASA Astrophysics Data System (ADS)

    Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin

    2018-05-01

    Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.

  9. The Reproducibility of 4-km Time Trial (TT) Performance Following Individualised Sodium Bicarbonate Supplementation: a Randomised Controlled Trial in Trained Cyclists.

    PubMed

    Gough, Lewis Anthony; Deb, Sanjoy Kumar; Sparks, Andy; McNaughton, Lars Robert

    2017-09-21

    Individual time to peak blood bicarbonate (HCO 3 - ) has demonstrated good to excellent reproducibility following ingestion of both 0.2 g kg -1 body mass (BM) and 0.3 g kg -1 BM sodium bicarbonate (NaHCO 3 ), but the consistency of the time trial (TT) performance response using such an individualised NaHCO 3 ingestion strategy remains unknown. This study therefore evaluated the reproducibility of 4-km TT performance following NaHCO 3 ingestion individualised to time to peak blood bicarbonate. Eleven trained male cyclists completed five randomised treatments with prior ingestion of 0.2 g kg -1 (SBC2) or 0.3 g kg -1 BM (SBC3) NaHCO 3 , on two separate occasions each, or a control trial entailing no supplementation. Participants completed a 4-km cycling TT on a Velotron ergometer where time to complete, power and speed were measured, whilst acid-base blood parameters were also recorded (pH and blood bicarbonate concentration HCO 3 - ) and lactate [La - ]. Alkalosis was achieved prior to exercise in both SBC2 and SBC3, as pH and HCO 3 - were greater compared to baseline (p < 0.001), with no differences between treatments (p > 0.05). The reproducibility of the mean absolute change from baseline to peak in HCO 3 - was good in SBC2 (r = 0.68) and excellent in SBC3 (r = 0.78). The performance responses following both SBC2 and SBC3 displayed excellent reproducibility (r range = 0.97 to 0.99). Results demonstrate excellent reproducibility of exercise performance following individualised NaHCO 3 ingestion, which is due to the high reproducibility of blood acid-base variables with repeat administration of NaHCO 3 . Using a time to peak HCO 3 - strategy seems to cause no dose-dependent effects on performance for exercise of this duration and intensity; therefore, athletes may consider smaller doses of NaHCO 3 to mitigate gastrointestinal (GI) discomfort.

  10. Evaluation of the multiple-ion competition in the adsorption of As(V) onto reclaimed iron-oxide coated sands by fractional factorial design.

    PubMed

    Hsu, Jia-Chin; Lin, Chien-Jung; Liao, Chih-Hsiang; Chen, Shyi-Tien

    2008-07-01

    This study describes the competitive effects of selected ions and natural organic matter on As(V) removal using reclaimed iron-oxide coated sands (RIOCS) in the single- and multi-ion systems. A 2(7-3) factional factorial experimental design (FFD) was employed for screening main competitive factors in this adsorption process. As a result, the inhibitive competition effects of the anions on As(V) removal in the single ion system were in the following sequence: PO(4)(3-)>SiO(3)(2-)>HCO(3)(-)>humic acid (HA)>SO(4)(2-)>Cl(-), whereas the cation Ca(2+) was observed to enhance the As(V) removal. In addition, the optimum initial pH for As(V) removal in single-ion system was 5. Based on the estimates of major effects and interactions from the FFD, PO(4)(3-), SiO(3)(2-), Ca(2+) and HA were important factors on As(V) removal in the multi-ion system. The promoters for the As(V) removal were found to be Ca(2+) and, to a lesser extent, SO(4)(2-). The competitive effects of these ions on As(V) removal were in the order of PO(4)(3-), SiO(3)(2-), HA, HCO(3)(-), and Cl(-). In the single ion system, the efficiencies of As(V) removal range from 75% to 96%, much higher than those in the multi-ion system (44%) at the initial pH 5. Clearly, there were some complex anion interactions in the multi-ion system. To promote the removal of As(V) by RIOCS, it is proposed to lower the pH in the single-ion system, while in the multi-ion system, the increase of the Ca(2+) concentration, or decreases of PO(4)(3-), SiO(3)(2-) and HA concentrations is suggested.

  11. A Microperfusion Study of Bicarbonate Accumulation in the Proximal Tubule of the Rat Kidney*

    PubMed Central

    Bank, Norman; Aynedjian, Hagop S.

    1967-01-01

    In order to determine whether HCO3- gains access to the proximal tubular lumen from a source other than the glomerular filtrate, we carried out microperfusion experiments on isolated segments of rat proximal tubules in vivo. The perfusion fluid was essentially free of HCO3- and of a composition that prevented net absorption of sodium and water. It was found that when plasma HCO3- concentration and CO2 tension (PCO2) were normal, the HCO3- concentration in the collected perfusate rose to about 3 mEq per L. Inhibition of renal carbonic anhydrase did not produce an appreciable change in this value in normal rats, but when the enzyme was inhibited in acutely alkalotic rats, a mean concentration of 15 mEq per L was recovered in the perfusate. Addition of HCO3- to the tubular lumen might occur by either intraluminal generation of HCO3- from CO2 and OH- or by influx of ionic bicarbonate from the plasma or tubular cells. Because of the marked increase in HCO3- found when intraluminal carbonic anhydrase was inhibited, generation of new HCO3- from CO2 and OH- seems unlikely. We conclude, therefore, that influx of ionic bicarbonate occurred, either across the luminal membrane or through extracellular aqueous channels. These observations suggest that the proximal epithelium has a finite degree of permeability to HCO3- and that influx of this ion may be a component of the over-all handling of HCO3- by the kidney. PMID:4959907

  12. Mixing effects on geothermometric calculations of the Newdale geothermal area in the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashayam Neupane; Earl D. Mattson; Travis L. McLing

    The Newdale geothermal area in Madison and Fremont Counties in Idaho is a known geothermal resource area whose thermal anomaly is expressed by high thermal gradients and numerous wells producing warm water (up to 51 °C). Geologically, the Newdale geothermal area is located within the Eastern Snake River Plain (ESRP) that has a time-transgressive history of sustained volcanic activities associated with the passage of Yellowstone Hotspot from the southwestern part of Idaho to its current position underneath Yellowstone National Park in Wyoming. Locally, the Newdale geothermal area is located within an area that was subjected to several overlapping and nestedmore » caldera complexes. The Tertiary caldera forming volcanic activities and associated rocks have been buried underneath Quaternary flood basalts and felsic volcanic rocks. Two southeast dipping young faults (Teton dam fault and an unnamed fault) in the area provide the structural control for this localized thermal anomaly zone. Geochemically, water samples from numerous wells in the area can be divided into two broad groups – Na-HCO3 and Ca-(Mg)-HCO3 type waters and are considered to be the product of water-rhyolite and water-basalt interactions, respectively. Each type of water can further be subdivided into two groups depending on their degree of mixing with other water types or interaction with other rocks. For example, some bivariate plots indicate that some Ca-(Mg)-HCO3 water samples have interacted only with basalts whereas some samples of this water type also show limited interaction with rhyolite or mixing with Na-HCO3 type water. Traditional geothermometers [e.g., silica variants, Na-K-Ca (Mg-corrected)] indicate lower temperatures for this area; however, a traditional silica-enthalpy mixing model results in higher reservoir temperatures. We applied a new multicomponent equilibrium geothermometry tool (e.g., Reservoir Temperature Estimator, RTEst) that is based on inverse geochemical modeling which explicitly accounts for boiling, mixing, and CO2 degassing. RTEst modeling results indicate that the well water samples are mixed with up to 75% of the near surface groundwater. Relatively, Ca-(Mg)-HCO3 type water samples are more diluted than the Na-HCO3 type water samples. However, both water types result in similar reservoir temperatures, up to 150 °C. Samples in the vicinity of faults produced higher reservoir temperatures than samples away from the faults. Although both the silica-enthalpy mixing and RTEst models indicated promising geothermal reservoir temperatures, evaluation of the subsurface permeability and extent of the thermal anomaly is needed to define the hydrothermal potential of the Newdale geothermal resource.« less

  13. Characterisation and origin of hydrothermal waters at São Miguel (Azores) inferred by chemical and isotopic composition

    NASA Astrophysics Data System (ADS)

    Woitischek, Julia; Dietzel, Martin; Inguaggiato, Claudio; Böttcher, Michael E.; Leis, Albrecht; Cruz, J. Virgílio; Gehre, Matthias

    2017-10-01

    This study focuses on the characterisation and origin of hydrothermal waters discharging from three main active volcanoes (Furnas, Fogo and Sete Cidades) at São Miguel, where 33 water with temperatures ranging between 13 and 97 °C, and 5 precipitate samples were collected. The developed conceptual model for this active hydrothermal system reveals that all waters can be classified by Na-HCO3, Na-Cl and Na-SO4 types and are of meteoric origin. This is confirmed by the stable hydrogen and oxygen isotope data that are positioned close to the local meteoric water line (- 4.1‰ ≤ δ18OH2O ≤ 5.2‰; - 17.6‰ ≤ δDH2O ≤ 20.4‰), except for the Na-Cl type water at Ferraria (Sete Cidades area), which is characterized by admixing of seawater. The stable isotope composition of São Miguel hydrothermal solutions (δ34SSO4 range from 21.3 to - 3.7; δ18OSO4 range between 0.5 and 10.5‰; δ13CTDIC = - 4.5 ± 3.2‰) indicate that waters are individually evolved by several processes: evaporation, uptake of volcanogenic sulphur and carbon dioxide, leaching of local volcanic rocks (driven by high CO2 contents and/or elevated temperature), and biological activity. Latter hydrochemical superimposition is displayed by stromatolitic structures in the precipitates at the given site. Dissolved REE data show similar pattern as local volcanic rocks. In particular the distinct Eu anomaly hints to preferential leaching of locally occurring trachyte. The strongly acidic Na-SO4 waters sampled in boiling pools at Fogo and Furnas Lake indicate high leaching levels and LREE depletion versus HREE compared with the volcanic local rock compositions. Depletion in LREE is most likely caused by its preferential removal compared to HREE by the co-precipitation with alunite.

  14. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters

    USGS Publications Warehouse

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium–potassium adenosine triphosphatase (Na+/K+ ATPase) together with the lack of growth effects suggests that Na+/K+ ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.

  15. Bicarbonate‐rich fluid secretion predicted by a computational model of guinea‐pig pancreatic duct epithelium

    PubMed Central

    Yamaguchi, Makoto; Steward, Martin C.; Smallbone, Kieran; Sohma, Yoshiro; Yamamoto, Akiko; Ko, Shigeru B. H.; Kondo, Takaharu

    2017-01-01

    Key points The ductal system of the pancreas secretes large volumes of alkaline fluid containing HCO3 − concentrations as high as 140 mm during hormonal stimulation.A computational model has been constructed to explore the underlying ion transport mechanisms. Parameters were estimated by fitting the model to experimental data from guinea‐pig pancreatic ducts.The model was readily able to secrete 140 mm HCO3 −. Its capacity to do so was not dependent upon special properties of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels and solute carrier family 26 member A6 (SLC26A6) anion exchangers.We conclude that the main requirement for secreting high HCO3 − concentrations is to minimize the secretion of Cl− ions.These findings help to clarify the mechanism responsible for pancreatic HCO3 − secretion, a vital process that prevents the formation of protein plugs and viscous mucus in the ducts, which could otherwise lead to pancreatic disease. Abstract A computational model of guinea‐pig pancreatic duct epithelium was developed to determine the transport mechanism by which HCO3 − ions are secreted at concentrations in excess of 140 mm. Parameters defining the contributions of the individual ion channels and transporters were estimated by least‐squares fitting of the model predictions to experimental data obtained from isolated ducts and intact pancreas under a range of experimental conditions. The effects of cAMP‐stimulated secretion were well replicated by increasing the activities of the basolateral Na+‐HCO3 − cotransporter (NBC1) and apical Cl−/HCO3 − exchanger (solute carrier family 26 member A6; SLC26A6), increasing the basolateral K+ permeability and apical Cl− and HCO3 − permeabilities (CFTR), and reducing the activity of the basolateral Cl−/HCO3 − exchanger (anion exchanger 2; AE2). Under these conditions, the model secreted ∼140 mm HCO3 − at a rate of ∼3 nl min−1 mm−2, which is consistent with experimental observations. Alternative 1:2 and 1:1 stoichiometries for Cl−/HCO3 − exchange via SLC26A6 at the apical membrane were able to support a HCO3 −‐rich secretion. Raising the HCO3 −/Cl− permeability ratio of CFTR from 0.4 to 1.0 had little impact upon either the secreted HCO3 − concentration or the volume flow. However, modelling showed that a reduction in basolateral AE2 activity by ∼80% was essential in minimizing the intracellular Cl− concentration following cAMP stimulation and thereby maximizing the secreted HCO3 − concentration. The addition of a basolateral Na+‐K+‐2Cl− cotransporter (NKCC1), assumed to be present in rat and mouse ducts, raised intracellular Cl− and resulted in a lower secreted HCO3 − concentration, as is characteristic of those species. We conclude therefore that minimizing the driving force for Cl− secretion is the main requirement for secreting 140 mm HCO3 −. PMID:27995646

  16. A Well-Defined Isocyano Analogue of HCo(CO) 4. 2: Relative Brønsted Acidity as a Function of Isocyanide Ligation

    DOE PAGES

    Carpenter, Alex E.; Chan, Chinglin; Rheingold, Arnold L.; ...

    2016-07-07

    The m-terphenyl isocyanide complex, HCo(CNAr Mes2) 4 (Ar Mes2 = 2,6-(2,4,6-Me 3C 6H 2) 2C 6H 3), serves as a unique example of a well-defined isocyano analogue to HCo(CO) 4. Given the well documented Brønsted acidity of HCo(CO) 4 in both protic and nonprotic media, the Brønsted acidity of HCo(CNAr Mes2) 4 was assessed for a quantitative comparison. Acid bracketing experiments in THF solution revealed that HCo(CNAr Mes2) 4 has a Morris relative pK α THF value of 38.5-40.7, which is considerably higher than that of HCo(CO) 4 (pK α THF (calc) = 11.4) and thereby indicates insignificant Brønsted acidity.more » Furthermore, the relative acidity of HCo(CNAr Mes2) 4 rivals that of tetra-phosphine cobalt hydrides (i.e., HCo(PR 3) 4; pK α THF (calc) ≥ 48), despite the good π-acidity properties of the isocyano unit. To systematically determine the effect of substituting an isocyanide for a CO ligand on the acidity of the Co-H unit in HCoL 4 complexes, the full series of HCo(CO) n(CNAr Mes2) 4-n monohydrides and [Co(CO) n(CNAr Mes2) 4-n] - (n = 1-4) metalates were prepared and characterized. Acid bracketing studies on the [Co(CO) n(CNAr Mes2) 4-n] - metalates in THF solution revealed a regular progression of increasing pK α THF values as isocyanides are added to the Co center. However, the monoisocyanide tricarbonyl hydride, HCo(CO) 3(CNAr Mes2), possesses a pK α THF value of 28.6-32.5, which is also significantly higher than that of HCo(CO) 4 and the monophosphine complex HCo(CO) 3(PPh 3). Accordingly, the unconventional ability of isocyanide ligands to function as stronger σ-donors than organophosphines is discussed within the context of both the Brønsted acidity and spectroscopic features of the HCo(CO) n(CNAr Mes2) 4-n monohydrides.« less

  17. Does Amia Calva aestivate?

    PubMed

    McKenzie, D J; Randall, D J

    1990-03-01

    During gradual air exposure, Amia calva show no reduction in oxygen consumption, no increase in plasma urea levels or in urea excretion. Blood pH remains constant, and plasma total CO2, PCO 2, HCO3 (-). total ammonia and NH3 concentrations all rise significantly. Exposure to 923 μmol/l NH4Cl does not elicit an increase in urea production or airbreathing. Aquatic hypoxia without access to air does not cause a reduction in aerobic metabolism, and moderate levels result in death. These results suggest that Amia are incapable of aestivation, due to an inability to detoxify ammonia to urea and reduce metabolism, and die following three to five days of air exposure.

  18. SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization

    PubMed Central

    Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Reimold, Fabian; Heneghan, John F.; Nakakuki, M.; Akhavein, Arash; Ko, Shigeru; Ishiguro, Hiroshi

    2011-01-01

    The secretin-stimulated human pancreatic duct secretes HCO3−-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO3− secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl−/HCO3− exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO3− or more, mouse and rat ducts secrete ∼40–70 mM HCO3−. Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO3− secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl−/Cl− exchange and electroneutral Cl−/HCO3− exchange. gpSlc26a6 in Xenopus oocytes mediated Cl−/Cl− exchange and bidirectional exchange of Cl− for oxalate and sulfate, but Cl−/HCO3− exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl−, oxalate, and sulfate transport but no detectable Cl−/HCO3− exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of 36Cl− influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO3− secretion in species that share a high HCO3− secretory output. PMID:21593449

  19. Study of quaternary aquifers in Ganga Plain, India: focus on groundwater salinity, fluoride and fluorosis.

    PubMed

    Misra, Anil Kumar; Mishra, Ajai

    2007-06-01

    In marginal and central alluvial plains (Ganga Plain) of India, the inland salinity is continuously increasing, canal network and arid to semi-arid climatic conditions that led to excessive evapotranspiration concentrates the salt in soil and thereby escalating the groundwater salinity. In Mat Tahsil, Mathura district (Ganga Plain) study on shallow and deep aquifer salinity and fluoride was carried out in August 2001 and 2004. Groundwater salinity in some parts is more then 4000 microOmega(-1)/cm. This region is severely affected by endemic fluorosis due to consumption of fluoride-contaminated water. Analysis of F(-), Na(+), K(+), Cl(-) and HCO(3)(-) was carried out at 30 sites of dugwells and borewells. Result shows that there is a variation and continuous escalation in the groundwater salinity and fluoride concentration in deep and shallow aquifers on the basis of analysis. Classification of salinity levels was carried out in 2001 and 2004. The deep aquifers (borewells) are found more saline as compare to the shallow aquifers (dugwells) while F(-), Na(+), K(+), Cl(-) and HCO(3)(-) shows high concentration in shallow aquifers. The fluoride concentration in the groundwater of these villages showed values from 0.1 to 2.5mg/l, severe enough to cause dental and skeletal fluorosis among the inhabitants, especially children of these villages. One of the major effects of inland salinity in this region is from saline groundwater, which is reaching the land surface and causing soil salinisations and water logging in the NE and SE parts of Mat block.

  20. Control of rectal gland secretion by blood acid-base status in the intact dogfish shark (Squalus acanthias).

    PubMed

    Wood, Chris M; Munger, R Stephen; Thompson, Jill; Shuttleworth, Trevor J

    2007-05-14

    In order to address the possible role of blood acid-base status in controlling the rectal gland, dogfish were fitted with indwelling arterial catheters for blood sampling and rectal gland catheters for secretion collection. In intact, unanaesthetized animals, isosmotic volume loading with 500 mmol L-1 NaCl at a rate of 15 mL kg-1 h-1 produced a brisk, stable rectal gland secretion flow of about 4 mL kg-1 h-1. Secretion composition (500 mmol L-1 Na+ and Cl-; 5 mmol L-1 K+; <1 mmol L-1 Ca2+, Mg2+, SO(4)2-, or phosphate) was almost identical to that of the infusate with a pH of about 7.2, HCO3- mmol L-1<1 mmol L-1 and a PCO2 (1 Torr) close to PaCO2. Experimental treatments superimposed on the infusion caused the expected disturbances in systemic acid-base status: respiratory acidosis by exposure to high environmental PCO2, metabolic acidosis by infusion of HCl, and metabolic alkalosis by infusion of NaHCO3. Secretion flow decreased markedly with acidosis and increased with alkalosis, in a linear relationship with extracellular pH. Secretion composition did not change, apart from alterations in its acid-base status, and made negligible contribution to overall acid-base balance. An adaptive control of rectal gland secretion by systemic acid-base status is postulated-stimulation by the "alkaline tide" accompanying the volume load of feeding and inhibition by the metabolic acidosis accompanying the volume contraction of exercise.

  1. Identification of hydrogeochemical processes and pollution sources of groundwater nitrate in Leiming Basin of Hainan island, Southern China

    NASA Astrophysics Data System (ADS)

    Shaowen, Y.; Zhan, Y., , Dr; Li, Q.

    2017-12-01

    Identifying the evolution of groundwater quality is important for the control and management of groundwater resources. The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources and to evaluate the potential sources of groundwater nitrate in Leiming basin using chemical and isotopic methods. The majority of samples belong to Na-Cl water type and are followed by Ca-HCO3 and mixed Ca-Na-HCO3. The δ18O and δ2H values in groundwater indicate that the shallow fissure groundwater is mainly recharged by rainfall. The evaporated surface water is another significant origin of groundwater. The weathering and dissolution of different rocks and minerals, input of precipitation, evaporation, ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. NO- 3 concentration in the groundwater varies from 0.7 to 51.7 mg/L and high values are mainly occurred in the densely populated area. The combined use of isotopic values and hydrochemical data suggests that the NO- 3 load in Leiming basin is not only derived from agricultural activities but also from other sources such as waste water and atmospheric deposition. Fertilizer is considered as the major source of NO- 3 in the groundwater in Leiming basin.

  2. Fractionation of Saprolegnia diclina (Oomycetes) satelite DNAs by AgNO3/Cs2SO4 density gradient centrifugation.

    PubMed

    Neish, G A; Green, B R

    1977-12-14

    Saprolegnia diclina DNA has been fractionated using preparative AgNO3/Cs2SO4 and CsCl density gradients. In addition to the previously identified major satellite DNA, there are two minor DNA components banding at 1.682 and 1.701 g - cm(-3) in CsCl. Purified major satellite DNA bands at 1.707 g - cm(-3) giving a base composition of 48% G + C in good agreement with 47% G + C calculated from its Tm value. The nuclear DNA base composition is 58% G + C by both methods. The base composition of the major satellite DNA suggests that it may represent ribosomal DNA cistrons.

  3. Euryhaline pufferfish NBCe1 differs from nonmarine species NBCe1 physiology

    PubMed Central

    Plata, Consuelo; Kurita, Yukihiro; Kato, Akira; Hirose, Shigehisa; Romero, Michael F.

    2012-01-01

    Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO3 precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO3− secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na+/HCO3− cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li+/nHCO3− cotransport; HCO3− independent, DIDS-insensitive transport; and increased basal intracellular Na+ accumulation. fNBCe1 is a voltage-dependent Na+/nHCO3− cotransporter that rectifies, independently from the extracellular Na+ or HCO3− concentration, around −60 mV. Na+ removal (0Na+ prepulse) is necessary to produce the true HCO3−-elicited current. HCO3− addition results in huge outward currents with quick current decay. Kinetic analysis of HCO3− currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher Km) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = −80 mV; [HCO3−] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO3− secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence. PMID:22159080

  4. Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China.

    PubMed

    Wei, Chao; Guo, Huaming; Zhang, Di; Wu, Yang; Han, Shuangbao; An, Yonghui; Zhang, Fucun

    2016-02-01

    High-F(-) groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F(-) enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F(-) groundwaters were characterized by hydrochemical types of Na-HCO3 and Na-SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F(-) enrichment in groundwater included weakly alkaline pH (7.2-8.9), low concentration of Ca(2+), and high concentrations of HCO3 (-) and Na(+). Calcite and fluorite were the main minerals controlling F(-) concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F(-) release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca(2+) and Mg(2+) and led to more free mobility of F(-) in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 (-) were the more important processes for F(-) enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F(-) concentration, which was considered to be the potential drinking water resource.

  5. A Melting Curve-Based Multiplex RT-qPCR Assay for Simultaneous Detection of Four Human Coronaviruses

    PubMed Central

    Wan, Zhenzhou; Zhang, Ya’nan; He, Zhixiang; Liu, Jia; Lan, Ke; Hu, Yihong; Zhang, Chiyu

    2016-01-01

    Human coronaviruses HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1 are common respiratory viruses associated with acute respiratory infection. They have a global distribution. Rapid and accurate diagnosis of HCoV infection is important for the management and treatment of hospitalized patients with HCoV infection. Here, we developed a melting curve-based multiplex RT-qPCR assay for simultaneous detection of the four HCoVs. In the assay, SYTO 9 was used to replace SYBR Green I as the fluorescent dye, and GC-modified primers were designed to improve the melting temperature (Tm) of the specific amplicon. The four HCoVs were clearly distinguished by characteristic melting peaks in melting curve analysis. The detection sensitivity of the assay was 3 × 102 copies for HCoV-OC43, and 3 × 101 copies for HCoV-NL63, HCoV-229E and HCoV-HKU1 per 30 μL reaction. Clinical evaluation and sequencing confirmation demonstrated that the assay was specific and reliable. The assay represents a sensitive and reliable method for diagnosis of HCoV infection in clinical samples. PMID:27886052

  6. A Melting Curve-Based Multiplex RT-qPCR Assay for Simultaneous Detection of Four Human Coronaviruses.

    PubMed

    Wan, Zhenzhou; Zhang, Ya'nan; He, Zhixiang; Liu, Jia; Lan, Ke; Hu, Yihong; Zhang, Chiyu

    2016-11-23

    Human coronaviruses HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1 are common respiratory viruses associated with acute respiratory infection. They have a global distribution. Rapid and accurate diagnosis of HCoV infection is important for the management and treatment of hospitalized patients with HCoV infection. Here, we developed a melting curve-based multiplex RT-qPCR assay for simultaneous detection of the four HCoVs. In the assay, SYTO 9 was used to replace SYBR Green I as the fluorescent dye, and GC-modified primers were designed to improve the melting temperature (Tm) of the specific amplicon. The four HCoVs were clearly distinguished by characteristic melting peaks in melting curve analysis. The detection sensitivity of the assay was 3 × 10² copies for HCoV-OC43, and 3 × 10¹ copies for HCoV-NL63, HCoV-229E and HCoV-HKU1 per 30 μL reaction. Clinical evaluation and sequencing confirmation demonstrated that the assay was specific and reliable. The assay represents a sensitive and reliable method for diagnosis of HCoV infection in clinical samples.

  7. Spatial variability of groundwater quality of Sabour block, Bhagalpur district (Bihar, India)

    NASA Astrophysics Data System (ADS)

    Verma, D. K.; Bhunia, Gouri Sankar; Shit, Pravat Kumar; Kumar, S.; Mandal, Jajati; Padbhushan, Rajeev

    2017-07-01

    This paper examines the quality of groundwater of Sabour block, Bhagalpur district of Bihar state, which lies on the southern region of Indo-Gangetic plains in India. Fifty-nine samples from different sources of water in the block have been collected to determine its suitability for drinking and irrigational purposes. From the samples electrical conductivity (EC), pH and concentrations of Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), carbonate ion (CO 3 2- ), Bicarbonate ion (HCO 3 - ), Chloride ion (Cl-), and Fluoride (F-) were determined. Surface maps of all the groundwater quality parameters have been prepared using radial basis function (RBF) method. RBF model was used to interpolate data points in a group of multi-dimensional space. Root Mean Square Error (RMSE) is employed to scrutinize the best fit of the model to compare the obtained value. The mean value of pH, EC, Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, and F- are found to be 7.26, 0.69, 38.98, 34.20, 16.92, 1.19, 0.02, and 0.28, respectively. Distribution of calcium concentration is increasing to the eastern part and K+ concentrations raise to the downstream area in the southwestern part. Low pH concentrations (less than 6.71) occur in eastern part of the block. Spatial variations of hardness in Sabour block portraying maximum concentration in the western part and maximum SAR (more than 4.23) were recorded in the southern part. These results are not exceeding for drinking and irrigation uses recommended by World Health Organization. Therefore, the majority of groundwater samples are found to be safe for drinking and irrigation management practices.

  8. Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions.

    PubMed

    Barazesh, James M; Prasse, Carsten; Sedlak, David L

    2016-09-20

    Electrochemical treatment on anodes shows promise for the oxidation of organic contaminants in industrial wastewater and reverse osmosis concentrate from municipal wastewater recycling due to the high conductivity of the matrix and the concomitant low energy demand. The effect of background electrolyte composition (Cl(-), HCO3(-), and NH4(+)) on the formation and fate of electrochemically produced heterogeneous (HO(•)ads and Cl(•)ads) and homogeneous (HOCl and HOBr) oxidants was evaluated on Ti-IrO2 and boron-doped diamond (BDD) electrodes using a suite of trace organic contaminants that exhibited varying reactivity with HO(•), CO3(•-), HOCl, and HOBr. The contributions of adsorbed and bulk oxidants to contaminant degradation were investigated. Results show that transformation rates for most contaminants increased in the presence of chloride and trace amounts of bromide; however, elevated concentrations of HCO3(-) often altered transformation rates due to formation of selective oxidants, with decreases in reactivity observed for electron-poor contaminants and increases in reactivity observed for compounds with amine and phenolic moieties. Using this information, rates of reactions on anode surfaces and measured production and loss rates for reactive homogeneous species were used to predict contaminant removal in municipal wastewater effluent. Despite some uncertainty in the reaction mechanisms, the model accurately predicted rates of removal of electron-rich contaminants but underestimated the transformation rates of compounds that exhibited low reactivity with HOCl and HOBr, possibly due to the formation of halogen radicals. The approach employed in this study provides a means of identifying key reactions for different classes of contaminants and for predicting the conditions under which anodic treatment of wastewater will be practical.

  9. Molecular diagnostics of Galactic star-formation regions

    NASA Astrophysics Data System (ADS)

    Loenen, Edo; Baan, Willem; Spaans, Marco

    2007-10-01

    We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.

  10. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH.

    PubMed

    Fernández, Pamela A; Hurd, Catriona L; Roleda, Michael Y

    2014-12-01

    Macrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3 (-) ) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3 (-) by the surface-bound enzyme carbonic anhydrase (CAext ). Here, we examined other putative HCO3 (-) uptake mechanisms in M. pyrifera under pHT 9.00 (HCO3 (-) : CO2  = 940:1) and pHT 7.65 (HCO3 (-) : CO2  = 51:1). Rates of photosynthesis, and internal CA (CAint ) and CAext activity were measured following the application of AZ which inhibits CAext , and DIDS which inhibits a different HCO3 (-) uptake system, via an anion exchange (AE) protein. We found that the main mechanism of HCO3 (-) uptake by M. pyrifera is via an AE protein, regardless of the HCO3 (-) : CO2 ratio, with CAext making little contribution. Inhibiting the AE protein led to a 55%-65% decrease in photosynthetic rates. Inhibiting both the AE protein and CAext at pHT 9.00 led to 80%-100% inhibition of photosynthesis, whereas at pHT 7.65, passive CO2 diffusion supported 33% of photosynthesis. CAint was active at pHT 7.65 and 9.00, and activity was always higher than CAext , because of its role in dehydrating HCO3 (-) to supply CO2 to RuBisCO. Interestingly, the main mechanism of HCO3 (-) uptake in M. pyrifera was different than that in other Laminariales studied (CAext -catalyzed reaction) and we suggest that species-specific knowledge of carbon uptake mechanisms is required in order to elucidate how seaweeds might respond to future changes in HCO3 (-) :CO2 due to ocean acidification. © 2014 Phycological Society of America.

  11. Sodium bicarbonate use and the risk of hypernatremia in thoracic aortic surgical patients with metabolic acidosis following deep hypothermic circulatory arrest

    PubMed Central

    Ghadimi, Kamrouz; Gutsche, Jacob T.; Ramakrishna, Harish; Setegne, Samuel L.; Jackson, Kirk R.; Augoustides, John G.; Ochroch, E. Andrew; Weiss, Stuart J.; Bavaria, Joseph E.; Cheung, Albert T.

    2016-01-01

    Objective: Metabolic acidosis after deep hypothermic circulatory arrest (DHCA) for thoracic aortic operations is commonly managed with sodium bicarbonate (NaHCO3). The purpose of this study was to determine the relationships between total NaHCO3 dose and the severity of metabolic acidosis, duration of mechanical ventilation, duration of vasoactive infusions, and Intensive Care Unit (ICU) or hospital length of stay (LOS). Methods: In a single center, retrospective study, 87 consecutive elective thoracic aortic operations utilizing DHCA, were studied. Linear regression analysis was used to test for the relationships between the total NaHCO3 dose administered through postoperative day 2, clinical variables, arterial blood gas values, and short-term clinical outcomes. Results: Seventy-five patients (86%) received NaHCO3. Total NaHCO3 dose averaged 136 ± 112 mEq (range: 0.0–535 mEq) per patient. Total NaHCO3 dose correlated with minimum pH (r = 0.41, P < 0.0001), minimum serum bicarbonate (r = −0.40, P < 0.001), maximum serum lactate (r = 0.46, P = 0.007), duration of metabolic acidosis (r = 0.33, P = 0.002), and maximum serum sodium concentrations (r = 0.29, P = 0.007). Postoperative hypernatremia was present in 67% of patients and peaked at 12 h following DHCA. Eight percent of patients had a serum sodium ≥ 150 mEq/L. Total NaHCO3 dose did not correlate with anion gap, serum chloride, not the duration of mechanical ventilator support, vasoactive infusions, ICU or hospital LOS. Conclusion: Routine administration of NaHCO3 was common for the management of metabolic acidosis after DHCA. Total dose of NaHCO3 was a function of the severity and duration of metabolic acidosis. NaHCO3 administration contributed to postoperative hypernatremia that was often severe. The total NaHCO3 dose administered was unrelated to short-term clinical outcomes. PMID:27397449

  12. A new method of calculating electrical conductivity with applications to natural waters

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.

    2012-01-01

    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004–0.7 mol kg-1), temperature (0–95 °C), pH (1–10), and conductivity (30–70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4- substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.

  13. A new method of calculating electrical conductivity with applications to natural waters

    NASA Astrophysics Data System (ADS)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.

    2012-01-01

    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004-0.7 mol kg-1), temperature (0-95 °C), pH (1-10), and conductivity (30-70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4-substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.

  14. Acute toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters, to 13 aquatic species as defined in the laboratory

    USGS Publications Warehouse

    Harper, David D.; Farag, Aïda M.; Skaar, Don

    2014-01-01

    Water produced during coal bed natural gas (CBNG) extraction in the Powder River Structural Basin of Wyoming and Montana (USA) may contain concentrations of sodium bicarbonate (NaHCO3) of more than 3000 mg/L. The authors evaluated the acute toxicity of NaHCO3, also expressed as bicarbonate (HCO3−), to 13 aquatic organisms. Of the 13 species tested, 7 had a median lethal concentration (LC50) less than 2000 mg/L NaHCO3, or 1300 mg/L HCO3−. The most sensitive species were Ceriodaphnia dubia, freshwater mussels (Lampsilis siliquoidea), pallid sturgeon (Scaphirhynchus albus), and shovelnose sturgeon (Scaphirhynchus platorynchus). The respective LC50s were 989 mg/L, 1120 mg/L, 1249 mg/L, and 1430 mg/L NaHCO3, or 699 mg/L, 844 mg/L, 831 mg/L, and 1038 mg/L HCO3−. Age affected the sensitivity of fathead minnows, even within life stage. Two days posthatch, fathead minnows were more sensitive to NaHCO3 and HCO3− compared with 4-d-old fish, even though fish up to 14 d old are commonly used for toxicity evaluations. The authors recommend that ion toxicity exposures be conducted with organisms less than 24 h posthatch to ensure that experiments document the most sensitive stage of development. The results of the present study, along with historical and current research regarding the toxicity of bicarbonate, may be useful to establish regulatory standards for HCO3−.

  15. The Balance of HCO3- Secretion vs. Reabsorption in the Endometrial Epithelium Regulates Uterine Fluid pH

    PubMed Central

    Xie, Zhang-Dong; Guo, Yi-Min; Ren, Mei-Juan; Yang, Jichun; Wang, Shao-Fang; Xu, Tong-Hui; Chen, Li-Ming; Liu, Ying

    2018-01-01

    Uterine fluid contains a high concentration of HCO3- which plays an essential role in sperm capacitation and fertilization. In addition, the HCO3- concentration in uterine fluid changes periodically during the estrous cycle. It is well-known that the endometrial epithelium contains machineries involving the apical SLC26 family anion exchangers for secreting HCO3- into the uterine fluid. In the present study, we find for the first time that the electroneutral Na+/HCO3- cotransporter NBCn1 is expressed at the apical membrane of the endometrial epithelium. The protein abundance of the apical NBCn1 and that of the apical SLC26A4 and SLC26A6 are reciprocally regulated during the estrous cycle in the uterus. NBCn1 is most abundant at diestrus, whereas SLC26A4/A6 are most abundant at proestrus/estrus. In the ovariectomized mice, the expression of uterine NBCn1 is inhibited by β-estradiol, but stimulated by progesterone, whereas that of uterine SLC26A4/A6 is stimulated by β-estradiol. In vivo perfusion studies show that the endometrial epithelium is capable of both secreting and reabsorbing HCO3-. Moreover, the activity for HCO3- secretion by the endometrial epithelium is significantly higher at estrus than it is at diestrus. The opposite is true for HCO3- reabsorption. We conclude that the endometrial epithelium simultaneously contains the activity for HCO3- secretion involving the apical SLC26A4/A6 and the activity for HCO3- reabsorption involving the apical NBCn1, and that the acid-base homeostasis in the uterine fluid is regulated by the finely-tuned balance of the two activities. PMID:29422866

  16. Na+-coupled bicarbonate transporters in duodenum, collecting ducts and choroid plexus.

    PubMed

    Praetorius, Jeppe

    2010-01-01

    Epithelia cover the internal and external surfaces of the organism and form barriers between the various compartments. Some of these epithelia are specialized for effective transmembrane or even transepithelial movement of acid-base equivalents. Certain epithelia with a high rate of HCO3- transport express a few potent Na+-coupled acid-base transporters to gain a net HCO3- movement across the epithelium. Examples of such epithelia are renal proximal tubules and pancreatic ducts. In contrast, multiple Na+-coupled HCO3- transporters are expressed in other HCO3- secreting epithelia, such as the duodenal mucosa or the choroid plexus, which maintain suitable intracellular pH despite a variable demand for secreting HCO3-. In the duodenum, the epithelial cells must secrete HCO3- for neutralization of the gastric acid, and at the same time prevent cellular acidification. During the neutralization, large quantities of CO2 are formed in the duodenal lumen, which enter the epithelial cells. This would tend to lower intracellular pH and require effective counteracting mechanisms to avoid cell death and to maintain HCO3- secretion. The choroid plexus secretes the cerebrospinal fluid (CSF) and controls the pH of the otherwise poorly buffered CSF. The pCO2 of CSF fluctuates with plasma pCO2, and the choroid plexus must regulate the HCO3- secretion to minimize the effects of these fluctuations on CSF pH. This is done while maintaining pH neutrality in the epithelial cells. Thus, the Na+-HCO3- cotransporters appear to be involved in HCO3- import in more epithelia, where Na+/H+ exchangers were until recently thought to be sufficient for maintaining intracellular pH.

  17. Use of mineral/solution equilibrium calculations to assess the potential for carnotite precipitation from groundwater in the Texas Panhandle, USA

    USGS Publications Warehouse

    Ranalli, Anthony J.; Yager, Douglas B.

    2016-01-01

    This study investigated the potential for the uranium mineral carnotite (K2(UO2)2(VO4)2·3H2O) to precipitate from evaporating groundwater in the Texas Panhandle region of the United States. The evolution of groundwater chemistry during evaporation was modeled with the USGS geochemical code PHREEQC using water-quality data from 100 groundwater wells downloaded from the USGS National Water Information System (NWIS) database. While most modeled groundwater compositions precipitated calcite upon evaporation, not all groundwater became saturated with respect to carnotite with the system open to CO2. Thus, the formation of calcite is not a necessary condition for carnotite to form. Rather, the determining factor in achieving carnotite saturation was the evolution of groundwater chemistry during evaporation following calcite precipitation. Modeling in this study showed that if the initial major-ion groundwater composition was dominated by calcium-magnesium-sulfate (>70 precent Ca + Mg and >50 percent SO4 + Cl) or calcium-magnesium-bicarbonate (>70 percent Ca + Mg and <70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was greater than the carbonate alkalinity (2mCa+2 > mHCO3− + 2mCO3−2) carnotite saturation was achieved. If, however, the initial major-ion groundwater composition is sodium-bicarbonate (varying amounts of Na, 40–100 percent Na), calcium-sodium-sulfate, or calcium-magnesium-bicarbonate composition (>70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was less than the carbonate alkalinity (2mCa+2 < mHCO3- + 2mCO3−2) carnotite saturation was not achieved. In systems open to CO2, carnotite saturation occurred in most samples in evaporation amounts ranging from 95 percent to 99 percent with the partial pressure of CO2 ranging from 10−3.5 to 10−2.5 atm. Carnotite saturation occurred in a few samples in evaporation amounts ranging from 98 percent to 99 percent with the partial pressure of CO2 equal to 10−2.0 atm. Carnotite saturation did not occur in any groundwater with the system closed to CO2.

  18. The effect of bicarbonate on menadione-induced redox cycling and cytotoxicity: potential involvement of the carbonate radical.

    PubMed

    Aljuhani, Naif; Michail, Karim; Karapetyan, Zubeida; Siraki, Arno G

    2013-10-01

    We have investigated the effect of NaHCO3 on menadione redox cycling and cytotoxicity. A cell-free system utilized menadione and ascorbic acid to catalyze a redox cycle, and we utilized murine hepatoma (Hepa 1c1c7) cells for in vitro experiments. Experiments were performed using low (2 mmol/L) and physiological (25 mmol/L) levels of NaHCO3 in buffer equilibrated to physiological pH. Using oximetry, ascorbic acid oxidation, and ascorbyl radical detection, we found that menadione redox cycling was enhanced by NaHCO3. Furthermore, Hepa 1c1c7 cells treated with menadione demonstrated cytotoxicity that was significantly increased with physiological concentrations of NaHCO3 in the media, compared with low levels of NaHCO3. Interestingly, the inhibition of superoxide dismutase (SOD) with 2 different metal chelators was associated with a protective effect against menadione cytotoxicity. Using isolated protein, we found a significant increase in protein carbonyls with menadione-ascorbate-SOD with physiological NaHCO3 levels; low NaHCO3 or SOD-free reactions produced lower levels of protein carbonyls. In conclusion, these findings suggest that the hydrogen peroxide generated by menadione redox cycling together with NaHCO3-CO2 are potential substrates for SOD peroxidase activity that can lead to carbonate-radical-enhanced cytotoxicity. These findings demonstrate the importance of NaHCO3 in menadione redox cycling and cytotoxicity.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Alex E.; Chan, Chinglin; Rheingold, Arnold L.

    The m-terphenyl isocyanide complex, HCo(CNAr Mes2) 4 (Ar Mes2 = 2,6-(2,4,6-Me 3C 6H 2) 2C 6H 3), serves as a unique example of a well-defined isocyano analogue to HCo(CO) 4. Given the well documented Brønsted acidity of HCo(CO) 4 in both protic and nonprotic media, the Brønsted acidity of HCo(CNAr Mes2) 4 was assessed for a quantitative comparison. Acid bracketing experiments in THF solution revealed that HCo(CNAr Mes2) 4 has a Morris relative pK α THF value of 38.5-40.7, which is considerably higher than that of HCo(CO) 4 (pK α THF (calc) = 11.4) and thereby indicates insignificant Brønsted acidity.more » Furthermore, the relative acidity of HCo(CNAr Mes2) 4 rivals that of tetra-phosphine cobalt hydrides (i.e., HCo(PR 3) 4; pK α THF (calc) ≥ 48), despite the good π-acidity properties of the isocyano unit. To systematically determine the effect of substituting an isocyanide for a CO ligand on the acidity of the Co-H unit in HCoL 4 complexes, the full series of HCo(CO) n(CNAr Mes2) 4-n monohydrides and [Co(CO) n(CNAr Mes2) 4-n] - (n = 1-4) metalates were prepared and characterized. Acid bracketing studies on the [Co(CO) n(CNAr Mes2) 4-n] - metalates in THF solution revealed a regular progression of increasing pK α THF values as isocyanides are added to the Co center. However, the monoisocyanide tricarbonyl hydride, HCo(CO) 3(CNAr Mes2), possesses a pK α THF value of 28.6-32.5, which is also significantly higher than that of HCo(CO) 4 and the monophosphine complex HCo(CO) 3(PPh 3). Accordingly, the unconventional ability of isocyanide ligands to function as stronger σ-donors than organophosphines is discussed within the context of both the Brønsted acidity and spectroscopic features of the HCo(CO) n(CNAr Mes2) 4-n monohydrides.« less

  20. Assessment of chemical quality of groundwater in coastal volcano-sedimentary aquifer of Djibouti, Horn of Africa

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdoulkader Houssein; Rayaleh, Waiss Elmi; Zghibi, Adel; Ouddane, Baghdad

    2017-07-01

    This research is conducted to evaluate the current status of hydrogeochemical contaminants and their sources in groundwater in the volcano-sedimentary aquifer of Djibouti. Groundwater samples were mostly collected from the volcanic and inferoflux aquifers and then were analyzed for quality on physicochemical parameters (EC, pH, Temperature, Cl-, SO42-, HCO3-, NO3-, Na+, Ca2+, Mg2+, K+, Br-, F-), minor and trace elements (Li, Ba, B, Sr, Si, Al, Cr, Fe, Mn, Mo, Pb, Co, Cu, Ni, Zn, Ti, V, As, Se). The interpretations of hydrochemical data are shown numerically and graphically through the Piper diagram such as the multivariate statistical analysis, binary diagram, the calculation of the saturation indexes, the index of base exchanges and ratio of Na+/Cl-, SO42-/Cl-, HCO3-/Cl-. The seawater ratio and ionic deviation in the groundwater were calculated using the chloride concentration. These processes can be used as indicators of seawater intrusion progress. This study reveals three groundwater quality groups and how the quality of water supply has been deteriorated through the process of seawater intrusion. The seawater intrusion extends into the Gulf basalts aquifer that covers nearly 12% of the whole area according to some observations. Some toxic elements present in drinking water (As and Se) have already exceeded the maximum permissible in almost the entire of the Gulf basalts aquifer affected by seawater intrusion. Indeed, some correlations were found between As, Se, with electrical conductivity and among other minor and trace elements such as Br, B, Sr, Co and Cr. It indicates that all these elements are mainly controlled by naturel/geogenic processes. The Principal component Analysis and the Hierarchical Cluster Analysis have led to the confirmation of the hypotheses developed in the previous hydrochemical study in which two factors explain the major hydrochemical processes in the aquifer. These factors reveal first the existence of an intensive intrusion of seawater and second the mechanisms of contamination through the recharge processes of groundwater. Consequently, the assessment of water quality and the determination of the risk of water contamination by pollution seems to be very useful for an effective management of groundwater resources, and also for preventing salinization and minimizing the phenomena of seawater intrusion.

  1. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    NASA Astrophysics Data System (ADS)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  2. Transport of H2S and HS− across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl−/HS− exchange

    PubMed Central

    2013-01-01

    The rates of H2S and HS− transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS−. Net acid efflux is caused by H2S/HS− acting analogously to CO2/HCO3− in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS− influx in exchange for Cl−, catalyzed by the anion exchange protein AE1, and 4) intracellular HS− protonation. Net acid transport by the Cl−/HS−/H2S cycle is more efficient than by the Cl−/HCO3−/CO2 cycle because of the rapid H2S-HS− interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS− and H2S transport rates. The data indicate that HS− is a very good substrate for AE1; the Cl−/HS− exchange rate is about one-third as rapid as Cl−/HCO3− exchange. The H2S permeability coefficient must also be high (>10−2 cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS− enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS− is a substrate for a Cl−/HCO3− exchanger indicates that some effects of exogenous H2S/HS− may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS− transport in a Jacobs-Stewart cycle. PMID:23864610

  3. Agonist-evoked changes in cytosolic pH and calcium concentration in human platelets: studies in physiological bicarbonate.

    PubMed

    Sage, S O; Jobson, T M; Rink, T J

    1990-01-01

    1. Cytosolic pH (pHi) and calcium concentration ([Ca2+]i) have been investigated in the presence and absence of physiological HCO3- in human platelets co-loaded with the fluorescent indicators BCECF and Fura-2. Basal pHi and changes evoked by butyrate, thrombin, platelet activating factor (PAF), ADP and phorbol ester were investigated, as were the effects of removing external Na+. 2. In the presence of physiological HCO3- and CO2, basal pHi was 7.02 +/- 0.04 compared with 7.15 +/- 0.05 in the absence of HCO3-. Estimated cytosolic buffering power was reduced from 35.6 +/- 3.0 to 14.5 +/- 0.4 mM/pH unit by the omission of HCO3-. 3. Thrombin evoked an immediate acidification of 0.03 +/- 0.01 pH units in the presence of HCO3- and 0.07 +/- 0.01 pH units in its absence. The acidifications were followed by a slow alkalinization. The final pHi was 0.10 +/- 0.01 units above basal in the presence of HCO3- and 0.08 +/- 0.02 units above basal in the absence of HCO3-. The initial acidification was significantly greater in the absence of HCO3-. The subsequent increase in pHi was similar in the presence and absence of this ion, but the calculated loss of proton equivalents was greater in the presence of HCO3-. 4. Replacement of extracellular Na+ with N-methyl-D-glucamine resulted in a fall in basal pHi and abolished recovery from thrombin-evoked acidification in both the presence and absence of HCO3-. 5. In the presence of HCO3-, PAF and ADP evoked an intracellular acidification similar to that caused by thrombin. However, with PAF and ADP, the subsequent recovery in pHi was slow and did not rise above basal levels. Phorbol dibutyrate, an activator of protein kinase C, evoked a similar elevation in pHi of 0.04 +/- 0.01 units over 3 min in the presence and absence of HCO3-. 6. Stopped-flow fluorimetric measurements were made of both BCECF and Fura-2 fluorescence in the presence of HCO3-. In the presence and absence of external Ca2+, thrombin-evoked rises in [Ca2+]i peaked before any cytoplasmic alkalinization occurred. ADP evoked rapid elevations in [Ca2+]i, but caused no alkalinization.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. Effective identification of (NH4)2CO3 and NH4HCO3 concentrations in NaHCO3 regeneration process from desulfurized waste.

    PubMed

    Govindan, Muthuraman; Karunakaran, Kannan; Nallasamy, Palanisami; Moon, Il Shik

    2015-01-01

    This work describes the quantitative analysis of (NH4)2CO3 and NH4HCO3 using a simple solution phase titration method. Back titration results at various (NH4)2CO3-NH4HCO3 ratios demonstrated that 6:4 ratio caused a 3% error in their differentiation, but very high errors were found at other ratios. A similar trend was observed for the double indicator method, especially when strong acid HCl was used as a titrant, where still less errors (2.5%) at a middle ratio of (NH4)2CO3-NH4HCO3 was found. Remaining ratios with low (NH4)2CO3 (2:8, 4:6) show high +ve error (found concentration is less) and high (NH4)2CO3 (7:3, 8:2, and 9:1) show high -ve error (found concentration is higher) and vice versa for NH4HCO3. In replacement titration using Na2SO4, at both higher end ratios of (NH4)2CO3-NH4HCO3 (2:8 and 9:1), both -ve and +ve errors were minimized to 75% by partial equilibrium arrest between (NH4)2CO3 and NH2COONH4, instead of more than 100% observed in back titration and only double indicator methods. In the presence of (NH4)2SO4 both -ve and +ve error% are completely reduced to 3±1 at ratios 2:8, 4:6, and 6:4 of (NH4)2CO3-NH4HCO3, which demonstrates that the equilibrium transformation between NH2COONH4 and (NH4)2CO3 is completely controlled. The titration conducted at lower temperature (5 °C) in the presence of (NH4)2SO4 at higher ratios of (NH4)2CO3-NH4HCO3 (7:3, 8:2,and 9:1) shows complete minimization of both -ve and +ve errors to 2±1%, which explains the complete arresting of equilibrium transformation. Finally, the developed method shows 2±1% error in differentiation of CO3(2-) and HCO3(-) in the regeneration process of NaHCO3 from crude desulfurized sample. The developed method is more promising to differentiate CO3(2-) and HCO3(-) in industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.

    PubMed

    Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V

    2007-11-15

    Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] < or = 0.46 mM and decreased by less than a factor of 2 for further increases in TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- < SO4(2-) < HCO3- < HPO4(2). This order is consistent with their affinity to form complexes with iron oxide. Nitrate, a NZVI-reducible groundwater solute, present at 0.2 and 1 mN did not affect the rate of TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).

  6. The physiology of overwintering in a turtle that occupies multiple habitats, the common snapping turtle (Chelydra serpentina).

    PubMed

    Reese, Scott A; Jackson, Donald C; Ultsch, Gordon R

    2002-01-01

    Common snapping turtles, Chelydra serpentina (Linnaeus), were submerged in anoxic and normoxic water at 3 degrees C. Periodic blood samples were taken, and PO(2), PCO(2), pH, [Na(+)], [K(+)], [Cl(-)], total Ca, total Mg, [lactate], [glucose], hematocrit, and osmolality were measured; weight gain was determined; and plasma [HCO(3)(-)] was calculated. Submergence in normoxic water caused a decrease in PCO(2) from 10.8 to 6.9 mmHg after 125 d, partially compensating a slight increase in lactate and allowing the turtles to maintain a constant pH. Submergence in anoxic water caused a rapid increase in lactate from 1.8 to 168.1 mmol/L after 100 d. Associated with the increased lactate were decreases in pH from 8.057 to 7.132 and in [HCO(3)(-)] from 51.5 to 4.9 mmol/L and increases in total Ca from 2.0 to 36.6 mmol/L, in total Mg from 1.8 to 12.1 mmol/L, and in [K(+)] from 3.08 to 8.45 mmol/L. We suggest that C. serpentina is tolerant of anoxic submergence and therefore is able to exploit habitats unavailable to some other species in northern latitudes.

  7. Hypokalemia and Pendrin Induction by Aldosterone.

    PubMed

    Xu, Ning; Hirohama, Daigoro; Ishizawa, Kenichi; Chang, Wen Xiu; Shimosawa, Tatsuo; Fujita, Toshiro; Uchida, Shunya; Shibata, Shigeru

    2017-05-01

    Aldosterone plays an important role in regulating Na-Cl reabsorption and blood pressure. Epithelial Na + channel, Na + -Cl - cotransporter, and Cl - /HCO 3 - exchanger pendrin are the major mediators of Na-Cl transport in the aldosterone-sensitive distal nephron. Existing evidence also suggests that plasma K + concentration affects renal Na-Cl handling. In this study, we posited that hypokalemia modulates the effects of aldosterone on pendrin in hyperaldosteronism. Chronic aldosterone infusion in mice increased pendrin levels at the plasma membrane, and correcting hypokalemia in this model almost completely blocked pendrin upregulation. However, hypokalemia induced by a low-K + diet resulted in pendrin downregulation along with reduced plasma aldosterone levels, indicating that both hypokalemia and aldosterone excess are necessary for pendrin induction. In contrast, decreased plasma K + levels were sufficient to increase Na + -Cl - cotransporter levels. We found that phosphorylation of mineralocorticoid receptor that prevents aldosterone binding in intercalated cells was suppressed by hypokalemia, which resulted in enhanced pendrin response to aldosterone, explaining the coordinated action of aldosterone and hypokalemia in pendrin regulation. Finally, to address the physiological significance of our observations, we administered aldosterone to mice lacking pendrin. Notably, plasma K + levels were significantly lower in pendrin knockout mice (2.7±0.1 mmol/L) than in wild-type mice (3.0±0.1 mmol/L) after aldosterone infusion, demonstrating that pendrin alleviates hypokalemia in a state of aldosterone excess. These data indicate that the decreased plasma K + levels promote pendrin induction by aldosterone, which, in concert with Na + -Cl - cotransporter, counteracts the progression of hypokalemia but promotes hypertension in primary aldosterone excess. © 2017 American Heart Association, Inc.

  8. Basolateral membrane Na/base cotransport is dependent on CO2/HCO3 in the proximal convoluted tubule

    PubMed Central

    1987-01-01

    The mechanism of basolateral membrane base transport was examined in the in vitro microperfused rabbit proximal convoluted tubule (PCT) in the absence and presence of ambient CO2/HCO3- by means of the microfluorometric measurement of cell pH. The buffer capacity of the cells measured using rapid NH3 washout was 42.8 +/- 5.6 mmol.liter-1.pH unit-1 in the absence and 84.6 +/- 7.3 mmol.liter-1.pH unit-1 in the presence of CO2/HCO3-. In the presence of CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.30 pH units and lowering peritubular Na from 147 to 0 mM acidified the cell by 0.25 pH units. Both effects were inhibited by peritubular 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). In the absence of exogenous CO2/HCO3-, lowering peritubular pH from 7.4 to 6.8 acidified the cell by 0.25 pH units and lowering peritubular Na from 147 to 0 mM decreased cell pH by 0.20 pH units. Lowering bath pH from 7.4 to 6.8 induced a proton flux of 643 +/- 51 pmol.mm-1.min-1 in the presence of exogenous CO2/HCO3- and 223 +/- 27 pmol.mm-1.min-1 in its absence. Lowering bath Na from 147 to 0 mM induced proton fluxes of 596 +/- 77 pmol.mm-1.min-1 in its absence. The cell acidification induced by lowering bath pH or bath Na in the absence of CO2/HCO3- was inhibited by peritubular SITS or by acetazolamide, whereas peritubular amiloride had no effect. In the absence of exogenous CO2/HCO3-, cyanide blocked the cell acidification induced by bath Na removal, but was without effect in the presence of exogenous CO2/HCO3-. We reached the following conclusions. (a) The basolateral Na/base n greater than 1 cotransporter in the rabbit PCT has an absolute requirement for CO2/HCO3-. (b) In spite of this CO2 dependence, in the absence of exogenous CO2/HCO3-, metabolically produced CO2/HCO3- is sufficient to keep the transporter running at 30% of its control rate in the presence of ambient CO2/HCO3- . (c) There is no apparent amiloride-sensitive Na/H antiporter on the basolateral membrane of the rabbit PCT. PMID:2831294

  9. Dissolution of aragonite-strontianite solid solutions in nonstoichiometric Sr (HCO3)2-Ca (HCO3)2-CO2-H2O solutions

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Glynn, P.D.; Blum, A.E.

    1992-01-01

    Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 A?? (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates. ?? 1992.

  10. It Is Chloride Depletion Alkalosis, Not Contraction Alkalosis

    PubMed Central

    Galla, John H.

    2012-01-01

    Maintenance of metabolic alkalosis generated by chloride depletion is often attributed to volume contraction. In balance and clearance studies in rats and humans, we showed that chloride repletion in the face of persisting alkali loading, volume contraction, and potassium and sodium depletion completely corrects alkalosis by a renal mechanism. Nephron segment studies strongly suggest the corrective response is orchestrated in the collecting duct, which has several transporters integral to acid-base regulation, the most important of which is pendrin, a luminal Cl/HCO3− exchanger. Chloride depletion alkalosis should replace the notion of contraction alkalosis. PMID:22223876

  11. Suppression/Reversal of Natural Convection by Exploiting the Temperature/Composition Dependence of Magnetic Susceptibility

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2000-01-01

    Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.

  12. Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively.

    PubMed

    Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A

    2004-03-25

    Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.

  13. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.

    PubMed

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Lourdel, Stéphane; Teulon, Jacques; Paulais, Marc

    2016-09-01

    ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells. © 2016 Pinelli et al.

  14. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  15. Computer modeling of gastric parietal cell: significance of canalicular space, gland lumen, and variable canalicular [K+].

    PubMed

    Crothers, James M; Forte, John G; Machen, Terry E

    2016-05-01

    A computer model, constructed for evaluation of integrated functioning of cellular components involved in acid secretion by the gastric parietal cell, has provided new interpretations of older experimental evidence, showing the functional significance of a canalicular space separated from a mucosal bath by a gland lumen and also shedding light on basolateral Cl(-) transport. The model shows 1) changes in levels of parietal cell secretion (with stimulation or H-K-ATPase inhibitors) result mainly from changes in electrochemical driving forces for apical K(+) and Cl(-) efflux, as canalicular [K(+)] ([K(+)]can) increases or decreases with changes in apical H(+)/K(+) exchange rate; 2) H-K-ATPase inhibition in frog gastric mucosa would increase [K(+)]can similarly with low or high mucosal [K(+)], depolarizing apical membrane voltage similarly, so electrogenic H(+) pumping is not indicated by inhibition causing similar increase in transepithelial potential difference (Vt) with 4 and 80 mM mucosal K(+); 3) decreased H(+) secretion during strongly mucosal-positive voltage clamping is consistent with an electroneutral H-K-ATPase being inhibited by greatly decreased [K(+)]can (Michaelis-Menten mechanism); 4) slow initial change ("long time-constant transient") in current or Vt with clamping of Vt or current involves slow change in [K(+)]can; 5) the Na(+)-K(+)-2Cl(-) symporter (NKCC) is likely to have a significant role in Cl(-) influx, despite evidence that it is not necessary for acid secretion; and 6) relative contributions of Cl(-)/HCO3 (-) exchanger (AE2) and NKCC to Cl(-) influx would differ greatly between resting and stimulated states, possibly explaining reported differences in physiological characteristics of stimulated open-circuit Cl(-) secretion (≈H(+)) and resting short-circuit Cl(-) secretion (>H(+)). Copyright © 2016 the American Physiological Society.

  16. Bicarbonate secretion and solute absorption in forestomach of the llama.

    PubMed

    Rübsamen, K; Engelhardt, W V

    1978-07-01

    Bicarbonate appearance in the lumen and its relationship to solute absorption were studied in a Pavlov pouch in the cardiac region of the first compartment of the llama forestomach. HCO3- appearance showed no diurnal variation. HCO3- accumulation was highly dependent on the pH of the solution used. The HCO3- ion probably is formed from CO2 diffusing into the lumen from the serosal side, as a result of cell metabolism and of OH- ions. HCO3- accumulation was closely related to volatile fatty acid (VFA) absorption. The ratio of HCO3- appearance to VFA absorption depended on the pH of the solution. At a pH of 6.6, about 0.1 mol HCO3- and, at a pH of 7.8, 0.9 mol HCO3- appeared per mole absorbed VFA, indicating that at slightly alkaline pH nearly all H+ ions required for the nonionic absorption of VFA appeared to be delivered from the dissociation of H2CO3. Bicarbonate gain and VFA absorption were increased when animals were not fed for 48 h. Sodium absorption was related to VFA as well as water absorption.

  17. Stimulatory effect of Coca-Cola on gastroduodenal HCO3- secretion in rats.

    PubMed

    Sasaki, Y; Aihara, E; Ise, F; Kita, K; Takeuchi, K

    2007-10-01

    We examined the effect of various carbonated beverages, especially Coca-Cola, on the HCO3- secretion in the rat stomach and duodenum. Under urethane anaesthesia, a chambered stomach or a proximal duodenal loop was perfused with saline, and HCO3- secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. The amount of CO2 contained in these beverages was about 4-7 g/mL. Coca-Cola topically applied to the mucosa for 10 min significantly increased the HCO3- secretion in both the stomach and the duodenum. The HCO3- response in the duodenum was totally abolished by indomethacin and also partially inhibited by acetazolamide, an inhibitor of carbonic anhydrase. Likewise, the response in the stomach was also markedly inhibited by either acetazolamide or indomethacin. The mucosal application of Coca-Cola increased the PGE2 contents in both the stomach and the duodenum. Other carbonated beverages, such as sparkling water, Fanta Grape or cider, also increased the HCO3- secretion in these tissues. These results suggest that Coca-Cola induces HCO3- secretion in both the stomach and the duodenum, and these responses may be attributable to both the intracellular supply of HCO3- generated via carbonic anhydrase, and endogenous PGs, probably related to the acidic pH of the solution.

  18. Water chemistry of Lake Quilotoa (Ecuador) and assessment of natural hazards

    NASA Astrophysics Data System (ADS)

    Aguilera, E.; Chiodini, G.; Cioni, R.; Guidi, M.; Marini, L.; Raco, B.

    2000-04-01

    A geochemical survey carried out in November 1993 revealed that Lake Quilotoa was composed by a thin (˜14 m) oxic epilimnion overlying a ˜200 m-thick anoxic hypolimnion. Dissolved CO2 concentrations reached 1000 mg/kg in the lower stratum. Loss of CO2 from epilimnetic waters, followed by calcite precipitation and a consequent lowering in density, was the apparent cause of the stratification. The Cl, SO4 and HCO3 contents of Lake Quilotoa are intermediate between those of acid-SO4-Cl Crater lakes and those of neutral-HCO3 Crater lakes, indicating that Lake Quilotoa has a 'memory' of the inflow and absorption of HC1- and S-bearing volcanic (magmatic) gases. The Mg/Ca ratios of the lake waters are governed by dissolution of local volcanic rocks or magmas, but K/Na ratios were likely modified by precipitation of alunite, a typical mineral in acid-SO4-Cl Crater lakes. The constant concentrations of several conservative chemical species from lake surface to lake bottom suggest that physical, chemical and biological processes did not have enough time, after the last overturn, to cause significant changes in the contents of these chemical species. This lapse of time might be relatively large, but it cannot be established on the basis of available data. Besides, the lake may not be close to steady state. Mixing of Lake Quilotoa waters could presently be triggered by either cooling epilimnetic waters by ˜4°C or providing heat to hypolimnetic waters or by seismic activity. Although Quilotoa lake contains a huge amount of dissolved CO2(˜3×1011 g), at present the risk of a dangerous limnic eruption seems to be nil even though some gas exsolution might occur if deep lake waters were brought to the surface. Carbon dioxide could build up to higher levels in deep waters than at present without any volcanic re-awakening, due to either a large inflow of relatively cool CO2-rich gases, or possibly a long interval between overturns. Periodical geochemical surveys of Lake Quilotoa are, therefore, recommended.

  19. Analytical RISM-MP2 free energy gradient method: Application to the Schlenk equilibrium of Grignard reagent

    NASA Astrophysics Data System (ADS)

    Mori, Toshifumi; Kato, Shigeki

    2007-03-01

    We present a method to evaluate the analytical gradient of reference interaction site model Møller-Plesset second order free energy with respect to solute nuclear coordinates. It is applied to calculate the geometries and energies in the equilibria of the Grignard reagent (CH 3MgCl) in dimethylether solvent. The Mg-Mg and Mg-Cl distances as well as the binding energies of solvents are largely affected by the dynamical electron correlation. The solvent effect on the Schlenk equilibrium is examined.

  20. Recovery of Manganese Ore Tailings by High-Gradient Magnetic Separation and Hydrometallurgical Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiufeng; Tan, Xiumin; Yi, Yuejun; Liu, Weizao; Li, Chun

    2017-11-01

    With the depletion of high-grade manganese ores, Mn ore tailings are considered valuable secondary resources. In this study, a process combining high-gradient magnetic separation (HGMS) with hydrometallurgical methods is proposed to recycle fine-grained Mn tailings. The Mn tailings were treated by HGMS at 12,500 G to obtain a Mn concentrate of 30% Mn with the recovery efficiency of 64%. The Mn concentrate could be used in the ferromanganese industry. To recover Mn further, the nonmagnetic fraction was leached by SO2 in an H2SO4 solution. Hydrogen peroxide was added to the leachate to oxidize Fe2+ to Fe3+, and the solution pH was adjusted to 5.0-5.5 with ammonia to remove Al, Fe, and Si impurities. The purified solution was reacted with NH4HCO3, and a saleable product of MnCO3 with 97.9% purity was obtained. The combined process can be applied to Mn recovery from finely dispersed weakly magnetic Mn ores or tailings.

  1. Albumin Loss and Citrate Load in Pre-Dilution High Cut-Off-CVVHDF with Regional Citrate (18 mmol/L) and High Cut-Off CVVHD with Systemic Heparin: An in vitro Study.

    PubMed

    Villa, Gianluca; Neri, Mauro; De Rosa, Silvia; Samoni, Sara; Chelazzi, Cosimo; Romagnoli, Stefano; Lorenzin, Anna; de Cal, Massimo; Ronco, Claudio; De Gaudio, Angelo Raffaele

    2018-06-08

    Convective therapies with high cut-off membranes (HCO) are usually not recommended because of theoretical excessive albumin loss. The aim of this in vitro study is to demonstrate the noninferior safety of pre-dilution hemodiafiltration with HCO (HCO-CVVHDF) with isotonic citrate anticoagulation (18 mmol/L) with respect to heparin anticoagulated hemodialysis with HCO (HCO-CVVHD) in terms of albumin removal and citrate load. -Albumin removal was compared in vitro between 3 pre--dilution-HCO-CVVHDF with citrate anticoagulation and 3 -HCO-CVVHD with heparin anticoagulation during 30-min single-pass and 180-min recirculation phases. Considering concentrations and flows in the extracorporeal circuit, the transmembrane albumin removal was 2.06 (1.51; 2.09) g and 2.09 (1.9; 2.8) g respectively for HCO-CVVHDF and HCO-CVVHD, during the single-pass phase; 2.8 (2.67; 4.59) g and 2.54 (2.35; 4.67) g, respectively, for HCO-CVVHDF and HCO-CVVHD during the recirculation phase. Based on the citrate saturation coefficients, a citrate metabolic load of 8.86 mmol/h has been calculated for HCO-CVVHDF. HCO-CVVHDF performed with regional anticoagulation with 18 mmol/L citrate solution does not induce higher -albumin transmembrane removal compared to HCO-CVVHD. © 2018 S. Karger AG, Basel.

  2. Bicarbonate Values for Healthy Residents Living in Cities Above 1500 Meters of Altitude: A Theoretical Model and Systematic Review.

    PubMed

    Ramirez-Sandoval, Juan C; Castilla-Peón, Maria F; Gotés-Palazuelos, José; Vázquez-García, Juan C; Wagner, Michael P; Merelo-Arias, Carlos A; Vega-Vega, Olynka; Rincón-Pedrero, Rodolfo; Correa-Rotter, Ricardo

    2016-06-01

    Ramirez-Sandoval, Juan C., Maria F. Castilla-Peón, José Gotés-Palazuelos, Juan C. Vázquez-García, Michael P. Wagner, Carlos A. Merelo-Arias, Olynka Vega-Vega, Rodolfo Rincón-Pedrero, and Ricardo Correa-Rotter. Bicarbonate values for healthy residents living in cities above 1500 m of altitude: a theoretical model and systematic review. High Alt Med Biol. 17:85-92, 2016.-Plasma bicarbonate (HCO3(-)) concentration is the main value used to assess the metabolic component of the acid-base status. There is limited information regarding plasma HCO3(-) values adjusted for altitude for people living in cities at high altitude defined as 1500 m (4921 ft) or more above sea level. Our aim was to estimate the plasma HCO3(-) concentration in residents of cities at these altitudes using a theoretical model and compare these values with HCO3(-) values found on a systematic review, and with those venous CO2 values obtained in a sample of 633 healthy individuals living at an altitude of 2240 m (7350 ft). We calculated the PCO2 using linear regression models and calculated plasma HCO3(-) according to the Henderson-Hasselbalch equation. Results show that HCO3(-) concentration falls as the altitude of the cities increase. For each 1000 m of altitude above sea level, HCO3(-) decreases to 0.55 and 1.5 mEq/L in subjects living at sea level with acute exposure to altitude and in subjects acclimatized to altitude, respectively. Estimated HCO3(-) values from the theoretical model were not different to HCO3(-) values found in publications of a systematic review or with venous total CO2 measurements in our sample. Altitude has to be taken into consideration in the calculation of HCO3(-) concentrations in cities above 1500 m to avoid an overdiagnosis of acid-base disorders in a given individual.

  3. Geochemistry of hot springs in the Ie Seu’um hydrothermal areas at Aceh Besar district, Indonesia

    NASA Astrophysics Data System (ADS)

    Idroes, R.; Yusuf, M.; Alatas, M.; Subhan; Lala, A.; Saiful; Suhendra, R.; Idroes, G. M.; Marwan

    2018-03-01

    Indonesia geothermal resources are the largest in the world, about 40 percent of the total geothermal resources worldwide with a potential energy of 28,617 MW. Geothermal energy is one of the renewable energy in the world that can be developed sustainably. This kind of energy is not only environmentally friendly but also highly prospective compared to fossil energy. One of the potential geothermal energy in Indonesia is Seulawah Agam geothermal field with some manifestation areas. The fluid type of Ie Seu’um manifestation was chloride (Cl-) obtained from the ternary diagram Cl--SO4 2--HCO3 -, using UV-Vis spectrophotometry, argentometry and acidimetry method. The reservoir range temperature was 188,7 ± 9,3°C calculated using geothermometer Na-K-Ca, Na-K Fournier and Na-K Giggenbach by applying Atomic Absorption Spectroscopy method. This data processing was carried out using liquid chemistry plotting spreadsheet version 3 powell geoscience Ltd.3 September 2012 by Powell & Cumming. The potential in the geothermal manifestation of Ie Seu’um was estimated about 50-100 MW (medium enthalpy).

  4. (η(6)-Benzene)(carbonato-κ(2) O,O')[di-cyclohex-yl(naphthalen-1-ylmeth-yl)phosphane-κP]ruthenium(II) chloro-form tris-olvate.

    PubMed

    Gowrisankar, Saravanan; Neumann, Helfried; Spannenberg, Anke; Beller, Matthias

    2014-07-01

    The title compound, [Ru(CO3)(η(6)-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η(6)-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The Ru(II) atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C-H⋯O and C-H⋯Cl hydrogen-bonding inter-actions between adjacent metal complexes and between the complexes and the solvent mol-ecules. The asymmetric unit contains one metal complex and three chloro-form solvent mol-ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro-form solvent mol-ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155].

  5. Assessment of major ions and heavy metals in groundwater: a case study from Guangzhou and Zhuhai of the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Lu, Yintao; Tang, Changyuan; Chen, Jianyao; Yao, Hong

    2016-06-01

    Anthropogenic activities in the Pearl River Delta (PRD) have caused a deterioration of groundwater quality over the past twenty years as a result of rapid urbanization and industrial development. In this study, the hydrochemical characteristics, quality, and sources of heavy metals in the groundwater of the PRD were investigated. Twenty-five groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), δ18O, δ2H, major ions, and heavy metals. The groundwater was slightly acidic and presented TDS values that ranged from 35.5 to 8,779.3 mg·L-1. The concentrations of the major ions followed the order Cl->HCO 3 - >Na+>SO 4 2- >NO 3 - >NH 4 + >Ca2+>K+>Mg2+>Fe2+/3+>Al3+. Ca-Mg-HCO3 and Na-K-HCO3 were the predominant types of facies, and the chemical composition of the groundwater was primarily controlled by chemical weathering of the basement rocks, by mixing of freshwater and seawater and by anthropogenic activities. The heavy metal pollution index (HPI) indicated that 64% of the samples were in the low category, 16% were in the medium category and 20% were in the high category, providing further evidence that this groundwater is unsuitable for drinking. Lead, arsenic, and manganese were mainly sourced from landfill leachate; cadmium from landfill leachate and agricultural wastes; mercury from the discharge of leachate associated with mining activities and agricultural wastes; and chromium primarily from industrial wastes. According to the irrigation water quality indicators, the groundwater in the PRD can be used for irrigation in most farmland without strong negative impacts. However, approximately 9 million people in the Guangdong Province are at risk due to the consumption of untreated water. Therefore, we suggest that treating the groundwater to achieve safer levels is necessary.

  6. The effects of hypoxic bradycardia and extracellular HCO3(-)/CO2 on hypoxic performance in the eel heart.

    PubMed

    Joyce, William; Simonsen, Maj; Gesser, Hans; Wang, Tobias

    2016-02-01

    During hypoxia, fishes exhibit a characteristic hypoxic bradycardia, the functional significance of which remains debated. Here, we investigated the hypothesis that hypoxic bradycardia primarily safeguards cardiac performance. In preparations from the European eel (Anguilla anguilla), a decrease in stimulation frequency from 40 to 15 beats min(-1), which replicates hypoxic bradycardia in vivo, vastly improved cardiac performance during hypoxia in vitro. As eels display dramatic shifts in extracellular HCO3(-)/CO2, we further investigated the effect this has upon hypoxic cardiac performance. Elevations from 10 mmol l(-1) HCO3(-)/1% CO2 to 40 mmol l(-1) HCO3(-)/4% CO2 had few effects on performance; however, further, but still physiologically relevant, increases to 70 mmol l(-1) HCO3(-)/7% CO2 compromised hypoxia tolerance. We revealed a four-way interaction between HCO3(-)/CO2, contraction frequency, hypoxia and performance over time, whereby the benefit of hypoxic bradycardia was most prolonged at 10 mmol l(-1) HCO3(-)/1% CO2. Together, our data suggest that hypoxic bradycardia greatly benefits cardiac performance, but its significance may be context specific. © 2016. Published by The Company of Biologists Ltd.

  7. The selectivity of water-based pyrophosphate recognition is tuned by metal substitution in dimetallic receptors.

    PubMed

    Svane, Simon; Kjeldsen, Frank; McKee, Vickie; McKenzie, Christine J

    2015-07-14

    The three dimetallic compounds [Ga2(bpbp)(OH)2(H2O)2](ClO4)3, [In2(bpbp)(CH3CO2)2](ClO4)3 and [Zn2(bpbp)(HCO2)2](ClO4) (bpbp(-) = 2,6-bis((N,N'-bis(2-picolyl)amino)methyl)-4-tertbutylphenolate) were evaluated as stable solid state precursors for reactive solution state receptors to use for the recognition of the biologically important anion pyrophosphate in water at neutral pH. Indicator displacement assays using in situ generated complex-pyrocatechol violet adducts, {M2(bpbp)(HxPV)}(n+) M = Ga(3+), In(3+), Zn(2+), were tested for selectivity in their reactions with a series of common anions: pyrophosphate, phosphate, ATP, arsenate, nitrate, perchlorate, chloride, sulfate, formate, carbonate and acetate. The receptor employing Ga(3+) showed a slow but visually detectable response (blue to yellow) in the presence of one equivalent of pyrophosphate but no response to any other anion, even when they were present in much higher concentrations. The systems based on In(3+) or Zn(2+) show less selectivity in accord with visibly discernible responses to several of the anions. These results demonstrate a facile method for increasing anion selectivity without modification of an organic dinucleating ligand scaffold. The comfortable supramolecular recognition of pyrophosphate by the dimetallic complexes is demonstrated by the single crystal X-ray structure of [Ga2(bpbp)(HP2O7)](ClO4)2 in which the pyrophosphate is coordinated to the two gallium ions via four of its oxygen atoms.

  8. Essential role of the electroneutral Na+-HCO3- cotransporter NBCn1 in murine duodenal acid-base balance and colonic mucus layer build-up in vivo.

    PubMed

    Singh, Anurag Kumar; Xia, Weiliang; Riederer, Brigitte; Juric, Marina; Li, Junhua; Zheng, Wen; Cinar, Ayhan; Xiao, Fang; Bachmann, Oliver; Song, Penghong; Praetorius, Jeppe; Aalkjaer, Christian; Seidler, Ursula

    2013-04-15

    Duodenal epithelial cells need efficient defence strategies during gastric acidification of the lumen, while colonic mucosa counteracts damage by pathogens by building up a bacteria-free adherent mucus layer. Transport of HCO3(-) is considered crucial for duodenal defence against acid as well as for mucus release and expansion, but the transport pathways involved are incompletely understood. This study investigated the significance of the electroneutral Na(+)-HCO3(-) cotransporter NBCn1 for duodenal defence against acid and colonic mucus release. NBCn1 was localized to the basolateral membrane of duodenal villous enterocytes and of colonic crypt cells, with predominant expression in goblet cells. Duodenal villous enterocyte intracellular pH was studied before and during a luminal acid load by two-photon microscopy in exteriorized, vascularly perfused, indicator (SNARF-1 AM)-loaded duodenum of isoflurane-anaesthetized, systemic acid-base-controlled mice. Acid-induced HCO3(-) secretion was measured in vivo by single-pass perfusion and pH-stat titration. After a luminal acid load, NBCn1-deficient duodenocytes were unable to recover rapidly from intracellular acidification and could not respond adequately with protective HCO3(-) secretion. In the colon, build-up of the mucus layer was delayed, and a decreased thickness of the adherent mucus layer was observed, suggesting that basolateral HCO3(-) uptake is essential for optimal release of mucus. The electroneutral Na(+)-HCO3(-) cotransporter NBCn1 displays a differential cellular distribution in the murine intestine and is essential for HCO3(-)-dependent mucosal protective functions, such as recovery of intracellular pH and HCO3(-) secretion in the duodenum and secretion of mucus in the colon.

  9. Hydrogeology of The East of Buyukcekmece Basin

    NASA Astrophysics Data System (ADS)

    Altıok, Türkü; Güneş, Yaǧmur; Ayhan, Büşra; Karagüzel, Remzi

    2017-04-01

    Buyukcekmece is located in the West of Istanbul in Turkey and Buyukcekmece Lake is poured to Sea of Marmara. In this study, we have investigated hydrogeology of The East of Buyukcekmece Basin which is an important source to provide drinking water to Istanbul. Meteorological data and hydrologic measurements have been used to calculate water balance of the east part of the basin. Total flow has been calculated as 54.513 x 106 m3 and total infiltration has been shown as 16.5 x 106 m3. Dropdown measurements have been used to calculate transmissibility (T) and hydraulic conductivity (K) by using both Dupuit method and empirical calculations. In result, K values varied between 10-7m/s and 10-8 m/s degrees. Groundwater quality of the study area has been investigated with the help of groundwater samples' chemical analysis results. These results have been used to create Piper, Scholler, Wilcox and USA Salinity Diagram. According to Piper diagram, groundwater from the study area can be classified as type Ca-HCO3. Due to Schoeller, The anion cation trend of the samples exhibit as Ca>Mg>Na>K and HCO3 > Cl>SO4 and they can be classified as Normal Chlorine water and Normal Sulfate water. The KN-5 sample disrupts the 20.41% Cl meq/l value and it is included in the Oligochloride waters. According to USA Salinity Diagram, groundwater of the study area can be classified as C1S3. As a result of this study, according WHO (World Health Organization) groundwater samples from the east of the Buyukcekmece Basin is meeting the drinking water standards except its electric conductivity values where it has been measured for KN-7, KN-8 and KN-9 respectively 7710, 6780 and 6180 μS/cm. Those samples are predicted to be deep circulated water samples with sea water intrusion.

  10. Bicarbonate is a recycling substrate for cyanase.

    PubMed

    Johnson, W V; Anderson, P M

    1987-07-05

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to ammonia and bicarbonate. Previous studies provided evidence that carbamate is an initial product and that the kinetic mechanism is rapid equilibrium random (bicarbonate serving as substrate as opposed to activator); the following mechanism was proposed (Anderson, P. M. (1980) Biochemistry 19, 2282-2888; Anderson, P. M., and Little, R. M. (1986) Biochemistry 25, 1621-1626). (formula; see text) Direct evidence for this mechanism was obtained in this study by 1) determining whether CO2 or HCO3- serves as substrate and is formed as product, 2) identifying the products formed from [14C]HCO3- and [14C] OCN-, 3) identifying the products formed from [13C] HCO3- and [12C]OCN- in the presence of [18O]H2O, and 4) determining whether 18O from [18O]HCO3- is incorporated into CO2 derived from OCN-. Bicarbonate (not CO2) is the substrate. Carbon dioxide (not HCO3-) is produced in stoichiometric amounts from both HCO3- and OCN-. 18O from [18O]H2O is not incorporated into CO2 formed from either HCO3- or OCN-. Oxygen-18 from [18O]HCO3- is incorporated into CO2 derived from OCN-. These results support the above mechanism, indicating that decomposition of cyanate catalyzed by cyanase is not a hydrolysis reaction and that bicarbonate functions as a recycling substrate.

  11. Sources of salinity and urban pollution in the Quaternary sand aquifers of Dar es Salaam, Tanzania

    NASA Astrophysics Data System (ADS)

    Walraevens, Kristine; Mjemah, Ibrahimu Chikira; Mtoni, Yohana; Van Camp, Marc

    2015-02-01

    Groundwater is globally important for human consumption, and changes in quality can have serious consequences. The study area is within a coastal aquifer where groundwater quality is influenced by various potential sources of salinity that determine the composition of water extracted from wells. Groundwater chemistry data from the aquifer have been acquired to determine the geochemical conditions and processes that occur in this area and assess their implications for aquifer susceptibility. Analysis of groundwater samples shows that the dominant watertype is mostly NaCl with pH < 7 in both aquifers (i.e. upper and lower) except for the shallow wells where CaHCO3 prevails with pH ⩾ 7, and boreholes located near the Indian Ocean, where coral reef limestone deposits are located and the watertype evolves towards CaHCO3. In the lower aquifer, Cl- is higher than in the upper aquifer. The origin of salinity in the area is strongly influenced by groundwater ascending from deep marine Miocene Spatangid Shales through faults, seawater incursion on the border of the Indian Ocean, and throughout, there is some salinity within the Quaternary aquifer, especially in intercalated deltaic clays in the fluviatile deposits, showing some marine influences. The seawater intrusion is linked to the strongly increasing groundwater exploitation since 1997. Another process that plays a major role to the concentration of major ions in the groundwater is calcite dissolution. Next to geogenic salinity and seawater intrusion, anthropogenic pollution as well is affecting groundwater quality in the aquifer. An important result of this study is the observation of high nitrate concentrations, that call for improved sanitation in the area, where domestic sewage with on-site sanitation (mainly pit latrines) also threatens the groundwater resource.

  12. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions.

    PubMed

    Lu, Songhua; Zhu, Kairuo; Song, Wencheng; Song, Gang; Chen, Diyun; Hayat, Tasawar; Alharbi, Njud S; Chen, Changlun; Sun, Yubing

    2018-07-15

    The discharge of microplastics into aquatic environment poses the potential threat to the hydrocoles and human health. The fate and transport of microplastics in aqueous solutions are significantly influenced by water chemistry. In this study, the effect of water chemistry (i.e., pH, foreign salts and humic acid) on the surface charge and aggregation of polystyrene microsphere in aqueous solutions was conducted by batch, zeta potentials, hydrodynamic diameters, FT-IR and XPS analysis. Compared to Na + and K + , the lower negative zeta potentials and larger hydrodynamic diameters of polystyrene microspheres after introduction of Mg 2+ were observed within a wide range of pH (2.0-11.0) and ionic strength (IS, 0.01-500mmol/L). No effect of Cl - , HCO 3 - and SO 4 2- on the zeta potentials and hydrodynamic diameters of polystyrene microspheres was observed at low IS concentrations (<5mmol/L), whereas the zeta potentials and hydrodynamic diameters of polystyrene microspheres after addition of SO 4 2- were higher than that of Cl - and HCO 3 - at high IS concentrations (>10mmol/L). The zeta potentials of polystyrene microspheres after HA addition were decreased at pH2.0-11.0, whereas the lower hydrodynamic diameters were observed at pH<4.0. According to FT-IR and XPS analysis, the change in surface properties of polystyrene microspheres after addition of hydrated Mg 2+ and HA was attributed to surface electrostatic and/or steric repulsions. These investigations are crucial for understanding the effect of water chemistry on colloidal stability of microplastics in aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Suitability for human consumption and agriculture purposes of Sminja aquifer groundwater in Zaghouan (north-east of Tunisia) using GIS and geochemistry techniques.

    PubMed

    Ameur, Meriem; Hamzaoui-Azaza, Fadoua; Gueddari, Moncef

    2016-10-01

    In Tunisia, the water resources are limited, partially renewable and unequally distributed between the wet north and the dry south of the country. The Sminja aquifer in Zaghouan city is located in north-east of Tunisia, between latitudes 36°38' and 36°47' and longitudes 9°95' and 10°12'. This aquifer is used to satisfy the population needs for their domestic purposes and agricultural activities. Water analyses results are expressed by many methods, among which are geochemical methods combined with the geographic information system (GIS) (all schematic presentations of the diagram software (Piper, Riverside, Wilcox…), which can be used to assess the suitability of the Sminja aquifer groundwater for human consumption and irrigation purposes. A total of 23 wells were sampled in January 2013, and the concentrations of major cations (Na(+), Ca(2+), Mg(2+) and K(+)), major anions (Cl(-), SO4 (2-) and HCO3 (-)), electrical conductivity and total dissolved solids were analysed. In the Sminja groundwater, the order of the cations dominance was Na > Ca > Mg > K and that of the anions was Cl > HCO3 > SO4. All of the analysed samples of the study area exceed chemical values recommended by the World Health Organisation guidelines and Tunisian Standards (NT.09.14) for potability but with different percentages. The aquifer spatial distribution of saturation indices reveals that all groundwater samples are under-saturated with gypsum, halite and anhydrite and are over-saturated with respect to calcite and dolomite based on water quality evaluation parameters for irrigation purposes; here, 87 % of samples in Sminja aquifer groundwater are suitable, whereas 13 % are unsuitable for irrigation uses.

  14. Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.

    PubMed

    Hogan, D L; Yao, B; Isenberg, J I

    1998-01-01

    Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).

  15. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification.

    PubMed

    Ow, Yan X; Uthicke, Sven; Collier, Catherine J

    2016-01-01

    Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m(-2) s(-1)) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36-60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA.

  16. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification

    PubMed Central

    2016-01-01

    Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m-2 s-1) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36–60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA. PMID:26938454

  17. Modeling the Reaction of Fe Atoms with CCl4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camaioni, Donald M.; Ginovska, Bojana; Dupuis, Michel

    2009-01-05

    The reaction of zero-valent iron with carbon tetrachloride (CCl4) in gas phase was studied using density functional theory. Temperature programmed desorption experiments over a range of Fe and CCl4 coverages on a FeO(111) surface, demonstrate a rich surface chemistry with several reaction products (C2Cl4, C2Cl6, OCCl2, CO, FeCl2, FeCl3) observed. The reactivity of Fe and CCl4 was studied under three stoichiometries, one Fe with one CCl4, one Fe with two CCl4 molecules and two Fe with one CCl4, modeling the environment of the experimental work. The electronic structure calculations give insight into the reactions leading to the experimentally observed productsmore » and suggest that novel Fe-C-Cl containing species are important intermediates in these reactions. The intermediate complexes are formed in highly exothermic reactions, in agreement with the experimentally observed reactivity with the surface at low temperature (30 K). This initial survey of the reactivity of Fe with CCl4 identifies some potential reaction pathways that are important in the effort to use Fe nano-particles to differentiate harmful pathways that lead to the formation of contaminants like chloroform (CHCl3) from harmless pathways that lead to products such as formate (HCO2-) or carbon oxides in water and soil. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Kimberly; Bennett, Philip C.; Wolfe, Will

    Dissolution of CO2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO2 entering the atmosphere. Ions in solution partially control the amount of CO2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO2 solubility is difficult to predict. In this study, CO2 solubility was experimentally determined in water, NaCl, CaCl2, Na2SO4, and NaHCO3 solutions and a mixed brine similar to the Bravo Dome natural CO2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO2 pressuresmore » to 35.5 MPa. Increasing ionic strength decreased CO2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO2 was strongly correlated (R2 = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl2 brine and a natural Na+, Ca2+, Cl- type brine with minor amounts of Mg2+, K+, Sr2+ and Br-).« less

  19. A new approach for bisphenol A detection employing fluorosurfactant-capped gold nanoparticle-amplified chemiluminescence from cobalt(II) and peroxymonocarbonate.

    PubMed

    Pan, Feng; Liu, Lin; Dong, Shichao; Lu, Chao

    2014-07-15

    In this work, we utilized the nonionic fluorosurfactant-capped gold nanoparticles (GNPs) as a novel chemiluminescence (CL) probe for the determination of trace bisphenol A. Bisphenol A can induce a sharp decrease in CL intensity from the GNP-Co(2+)-peroxymonocarbonate (HCO4(-)) system. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the logarithm of concentration of bisphenol A in the range of 0.05-50 μM (R(2) = 0.9936), and the detection limit at a signal-to-noise ratio of 3 for bisphenol A was 10 nM. The applicability of the proposed method has been validated by determining bisphenol A in real polycarbonate samples with satisfactory results. The recoveries for bisphenol A in spiked samples were found to be between 94.4% and 105.0%. The relative standard deviation (RSD) for 12 repeated measurements of 0.5 μM bisphenol A was 2.2%. The proposed method described herein was simple, selective and obviated the need of extensive sample pretreatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. High removal performance of a magnetic FPA90-Cl anion resin for bromate and coexisting precursors: kinetics, thermodynamics, and equilibrium studies.

    PubMed

    Xu, Zhengming; Han, Dexia; Li, Yuan; Zhang, Pingling; You, Lijun; Zhao, Zhengang

    2018-04-23

    In this study, the FPA90-Cl resin was magnetized with supported Fe 3 O 4 particles using a chemical co-precipitation method and its removal performance of bromate and coexisting precursors was explored. The magnetized FPA90-Cl resin was structurally characterized by SEM, FT-IR, and XRD. The effects of the initial concentrations, temperature, and resin dosage on bromate and bromide ion removal in drinking water were investigated using batch experiments. The magnetized FPA90-Cl resin exhibited a high removal efficiency for bromate and bromide ions at three initial concentrations, and the residual bromate concentrations were under the maximum contaminant level (MCL) of 10 μg L -1 after 80 min. The adsorption data of bromate and bromide ion could be well described by a pseudo-first-order kinetic model (R 2  ˃ 0.98). The bromate removal alone was further studied by varying the initial solution pH, temperature, and competitive anions. The results showed that the magnetized FPA90-Cl resin could be used over a wide pH range (4.0-9.0). The maximum sorption capacity of the magnetized FPA90-Cl resin for bromate reached 132.83 mg g -1 at 298 K. The Freundlich and Redlich-Peterson isotherm models fit the bromate adsorption equilibrium better (R 2  ˃ 0.99) than the Langmuir isotherm model (R 2  ˃ 0.98). The thermodynamic analysis showed that the bromate adsorption process was endothermic. The negative ΔG and positive ΔS indicated that the process was spontaneous and that randomness increased after adsorption, respectively. The competition of coexisting anions with bromate was in the order of SO 4 2-  > CO 3 2-  > Cl -  > NO 3 -  > HCO 3 -  > PO 4 3- . Additionally, the magnetized FPA90-Cl resin could maintain a high bromate and bromide ion adsorption capacity after five cycles of regeneration by a 0.1 M NaCl solution. Graphical abstract ᅟ.

  1. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors.

  2. Proton Fall or Bicarbonate Rise

    PubMed Central

    Theparambil, Shefeeq M.; Weber, Tobias; Schmälzle, Jana; Ruminot, Ivàn; Deitmer, Joachim W.

    2016-01-01

    Glycolysis is the primary step for major energy production in the cell. There is strong evidence suggesting that glucose consumption and rate of glycolysis are highly modulated by cytosolic pH/[H+], but those can also be stimulated by an increase in the intracellular [HCO3−]. Because proton and bicarbonate shift concomitantly, it remained unclear whether enhanced glucose consumption and glycolytic rate were mediated by the changes in intracellular [H+] or [HCO3−]. We have asked whether glucose metabolism is enhanced by either a fall in intracellular [H+] or a rise in intracellular [HCO3−], or by both, in mammalian astrocytes. We have recorded intracellular glucose in mouse astrocytes using a FRET-based nanosensor, while imposing different intracellular [H+] and [CO2]/[HCO3−]. Glucose consumption and glycolytic rate were augmented by a fall in intracellular [H+], irrespective of a concomitant rise or fall in intracellular [HCO3−]. Transport of HCO3− into and out of astrocytes by the electrogenic sodium bicarbonate cotransporter (NBCe1) played a crucial role in causing changes in intracellular pH and [HCO3−], but was not obligatory for the pH-dependent changes in glucose metabolism. Our results clearly show that it is the cytosolic pH that modulates glucose metabolism in cortical astrocytes, and possibly also in other cell types. PMID:27422823

  3. Effects of Zn Deficiency and Bicarbonate on the Growth and Photosynthetic Characteristics of Four Plant Species

    PubMed Central

    Zhao, Kuan; Wu, Yanyou

    2017-01-01

    Calcareous soils are characterized by low nutrient contents, high bicarbonate (HCO3−) content, and high alkalinity. The effects of HCO3− addition under zinc-sufficient (+Zn) and zinc-deficient (−Zn) conditions on the growth and photosynthetic characteristics of seedlings of two Moraceae species (Broussonetia papyrifera and Morus alba) and two Brassicaceae species (Orychophragmus violaceus and Brassica napus) were investigated. These four species were hydroponically grown in nutrient solution with 0 mM Zn (−Zn) or 0.02 mM Zn (+Zn) and 0 mM or 10 mM HCO3−. The photosynthetic response to HCO3− treatment, Zn deficiency, or both varied according to plant species. Of the four species, Broussonetia papyrifera showed the best adaptability to Zn deficiency for both the 0 mM and 10 mM HCO3− treatments due to its strong growth and minimal inhibition of photosynthesis and photosystem II (PS II). Brassica napus was sensitive to Zn deficiency, HCO3− treatment, or both as evidenced by the considerable inhibition of photosynthesis and high PS II activity. The results indicated different responses of various plant species to Zn deficiency and excess HCO3−. Broussonetia papyrifera was shown to have potential as a pioneer species in karst regions. PMID:28076430

  4. New Fluorescent and Colorimetric Chemosensor for Detection of Cyanide with High Selectivity and Sensitivity in Aqueous Media.

    PubMed

    Zali-Boeini, Hassan; Zareh Jonaghani, Mohammad

    2017-05-01

    A fluorescent and colorimetric chemosensor for detection of cyanide ion based on a styryl quinoline derivative has been designed and synthesized. The chemosensor (E)-2-(4-mercaptostyryl)quinolin-8-ol L showed high selectivity for detection of cyanide over other anions such as F¯, Cl¯, Br¯, I¯, NO 3 ¯, SCN¯, N 3 ¯, ClO 4 ¯, H 2 PO 4 ¯, AcO¯, HCO 3 ¯, SO 4 2 ¯ and HSO 4 ¯in aqueous solution. The chemosensor L displayed an immediate visible and fluorescence changes from nearly colorless to orange and greenish-blue to brick-red upon addition of cyanide ion respectively. It is more likely, these distinct changes can be attributed to hydrogen bonding interaction between phenol group and cyanide anion leading to a 1:1 binding stoichiometry following with deprotonation of phenol group. The detection limit for chemosensor L toward CN¯ was 2.73× 10 -8  M. Thus, the chemosensor can be used efficiently and selectively for detection and monitoring of small amounts of cyanide ion in aqueous media.

  5. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  6. [Major ion chemistry of surface water in the Xilin River Basin and the possible controls].

    PubMed

    Tang, Xi-Wen; Wu, Jin-Kui

    2014-01-01

    Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in the steppe region in Inner Mongolia is urgently needed. Major ions are widely used to identify the hydrological processes in a river basin. Based on the analysis results of 239 river water samples collected in 13 sections along the Xilin River system during 2006 to 2008, combined with data from groundwater and precipitation samples collected in the same period and the meteorological and hydrological data in the Xilin River Basin, hydrochemical characteristics and the chemistry of major ions of the Xilin River water have been studied by means of Piper triangle plots and Gibbs diagrams. The results showed that: (1) the total dissolved solid (TDS) in river water mainly ranged between 136.7 mg x L(-1) and 376.5 mg x L(-1), and (2) it had an increasing trend along the river flow path. (3) The major cations and anions of river water were Ca2+ and HCO3-, respectively, and the chemical type of the river water varied from HCO3- -Ca2+ in the headwater area to HCO(3-)-Ca2+ Mg2+ in the lower part. (4) The variation in the concentration of major irons in surface water was not significant at the temporal scale. Usually, the concentration values of major irons were much higher in May than those in other months during the runoff season, while the values were a bit lower in 2007 than those in 2006 and 2008. Except for SO4(2-), the concentrations of other ions such as Ca2+, Na+, Mg2+, K+, Cl- and HCO3- showed a upward trend along the river flow path. Comparing major ion concentrations of the river water with those of local groundwater and precipitation, the concentration in river water was between those of precipitation and groundwater but was much closer to the concentration of groundwater. This indicated that the surface water was recharged by a mixture of precipitation and groundwater, and groundwater showed a larger impact. The Gibbs plot revealed that the chemical compositions of the river water were mainly affected by rock weathering in the drainage area.

  7. Stable carbon isotopes of HCO3- in oil-field waters-implications for the origin of CO2

    USGS Publications Warehouse

    Carothers, W.W.; Kharaka, Y.K.

    1980-01-01

    The ??13C values of dissolved HCO3- in 75 water samples from 15 oil and gas fields (San Joaquin Valley, Calif., and the Houston-Galveston and Corpus Christi areas of Texas) were determined to study the sources of CO2 of the dissolved species and carbonate cements that modify the porosity and permeability of many petroleum reservoir rocks. The reservoir rocks are sandstones which range in age from Eocene through Miocene. The ??13C values of total HCO3- indicate that the carbon in the dissolved carbonate species and carbonate cements is mainly of organic origin. The range of ??13C values for the HCO3- of these waters is -20-28 per mil relative to PDB. This wide range of ??13C values is explained by three mechanisms. Microbiological degradation of organic matter appears to be the dominant process controlling the extremely low and high ??13C values of HCO3- in the shallow production zones where the subsurface temperatures are less than 80??C. The extremely low ??13C values (< -10 per mil) are obtained in waters where concentrations of SO42- are more than 25 mg/l and probably result from the degradation of organic acid anions by sulfate-reducing bacteria (SO42- + CH3COO- ??? 2HCO3- + HS-). The high ??13C values probably result from the degradation of these anions by methanogenic bacteria (CH3COO- + H2O ai HCO3- + CH4). Thermal decarboxylation of short-chain aliphatic acid anions (principally acetate) to produce CO2 and CH4 is probably the major source of CO2 for production zones with subsurface temperatures greater than 80??C. The ??13C values of HCO3- for waters from zones with temperatures greater than 100??C result from isotopic equilibration between CO2 and CH4. At these high temperatures, ??13C values of HCO3- decrease with increasing temperatures and decreasing concentrations of these acid anions. ?? 1980.

  8. Natural background groundwater composition in the Azores archipelago (Portugal): a hydrogeochemical study and threshold value determination.

    PubMed

    Cruz, J V; Andrade, C

    2015-07-01

    Groundwater discharges were sampled in selected springs from São Miguel (Furnas and Fogo trachytic central volcanoes) and Santa Maria islands (Azores, Portugal), in order to characterize natural background levels (NBLs) and proceed to the determination of threshold values (TVs). Besides being a key issue in order to fully assess the anthropogenic pressures, NBLs are also instrumental to derive TVs, therefore complying with requirements from the European Union Groundwater Directive. The composition of groundwater corresponds mainly to low mineralized Na-HCO3 to Na-Cl water types, the latter dominant in Santa Maria island, with a decreasing order of Na>Ca>Mg>K and Cl>HCO3>SO4>NO3 for cations and anion respectively. The majority of the samples are slightly acid to slightly alkaline (pH range of 5.45-7.43), and the electrical conductivity range between 180 and 1458 μS/cm. Groundwater composition is controlled by two major drivers, addition of sea salts and dissolution of silicate minerals. Results shown that TVs established along the present study are in general in the lower rank when compared to the range of values proposed by the several EU member states, with the main exception of NO3, reflecting the impact of agriculture activities over water quality in the Azores, and lower than the national ones. The comparison between the estimated NBL and TV with values derived with another dataset from the Azores, usually higher, depicts the effect of a larger and diverse number of groundwater sources over calculations. On the other hand, all samples which show a contribution from volcanic/hydrothermal systems were excluded from the dataset, which explains why the derived NBLs and TVs are lower comparing to other active volcanic areas, which is also a conservative approach on a subject that has regulatory implications. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA: I. Low-flow discharge and major solute chemistry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Holloway, JoAnn M.

    2010-01-01

    The Gibbon River in Yellowstone National Park (YNP) is an important natural resource and habitat for fisheries and wildlife. However, the Gibbon River differs from most other mountain rivers because its chemistry is affected by several geothermal sources including Norris Geyser Basin, Chocolate Pots, Gibbon Geyser Basin, Beryl Spring, and Terrace Spring. Norris Geyser Basin is one of the most dynamic geothermal areas in YNP, and the water discharging from Norris is much more acidic (pH 3) than other geothermal basins in the upper-Madison drainage (Gibbon and Firehole Rivers). Water samples and discharge data were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006. Surface inflows from Norris Geyser Basin were sampled to identify point sources and to quantify solute loading to the Gibbon River. The source and fate of the major solutes (Ca, Mg, Na, K, SiO2, Cl, F, HCO3, SO4, NO3, and NH4) in the Gibbon River were determined in this study and these results may provide an important link in understanding the health of the ecosystem and the behavior of many trace solutes. Norris Geyser Basin is the primary source of Na, K, Cl, SO4, and N loads (35–58%) in the Gibbon River. The largest source of HCO3 and F is in the lower Gibbon River reach. Most of the Ca and Mg originate in the Gibbon River upstream from Norris Geyser Basin. All the major solutes behave conservatively except for NH4, which decreased substantially downstream from Gibbon Geyser Basin, and SiO2, small amounts of which precipitated on mixing of thermal drainage with the river. As much as 9–14% of the river discharge at the gage is from thermal flows during this period.

  10. Influence of inorganic anions on metals release from oil sands coke and on toxicity of nickel and vanadium to Ceriodaphnia dubia.

    PubMed

    Puttaswamy, Naveen; Liber, Karsten

    2012-02-01

    In a previous study it was shown that pH significantly influences the release of metals from oil sands coke, particularly Ni and V which were identified as the cause of coke leachate toxicity. Coke comes in contact with oil sands process water (OSPW) during its transport to and long term storage in reclamation landscapes. However, the influence of dominant inorganic anions present in OSPW (i.e. HCO(3)(-), Cl(-) and SO(4)(2-)) on metals release from coke and on speciation and toxicity of Ni and V, has not been characterized before. Coke was subjected to a 15-d batch leaching process at four levels of HCO(3)(-), Cl(-) and SO(4)(2-) to determine the influence on metals release and speciation. Further, the effects of each of the three anions on Ni and V toxicity, as well as the mixture toxicity of Ni and V, were assessed using the three-brood Ceriodaphnia dubia test. Inorganic anions had a significant influence on the type and amount of metals released from coke. Specifically, sulfate increased the mobilization of cationic metals (e.g. Ni, Fe, Mn and Zn), whereas bicarbonate enhanced the release of oxyanion forming metals (e.g. Al, As, Mo and V) from coke. Chloride had no particular effect on the type and amount of metals released. With respect to toxicity, elevated bicarbonate levels decreased the 7-d Ni IC50 from 6.3 to 2.3 μg L(-1), whereas sulfate showed an ameliorative effect against V toxicity to C. dubia. In combination, Ni and V acted additively at their highest sub-lethal concentrations. Aqueous chemistry and toxicity of Ni and V are discussed with the goal of informing reclamation efforts at the Athabasca oil sands. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Post-prandial metabolic alkalosis in the seawater-acclimated trout: the alkaline tide comes in.

    PubMed

    Bucking, Carol; Fitzpatrick, John L; Nadella, Sunita R; Wood, Chris M

    2009-07-01

    The consequences of feeding and digestion on acid-base balance and regulation in a marine teleost (seawater-acclimated steelhead trout; Oncorhynchus mykiss) were investigated by tracking changes in blood pH and [HCO3-], as well as alterations in net acid or base excretion to the water following feeding. Additionally the role of the intestine in the regulation of acid-base balance during feeding was investigated with an in vitro gut sac technique. Feeding did not affect plasma glucose or urea concentrations, however, total plasma ammonia rose during feeding, peaking between 3 and 24 h following the ingestion of a meal, three-fold above resting control values (approximately 300 micromol ml(-1)). This increase in plasma ammonia was accompanied by an increase in net ammonia flux to the water (approximately twofold higher in fed fish versus unfed fish). The arterial blood also became alkaline with increases in pH and plasma [HCO3-] between 3 and 12 h following feeding, representing the first measurement of an alkaline tide in a marine teleost. There was no evidence of respiratory compensation for the measured metabolic alkalosis, as Pa CO2 remained unchanged throughout the post-feeding period. However, in contrast to an earlier study on freshwater-acclimated trout, fed fish did not exhibit a compensating increase in net base excretion, but rather took in additional base from the external seawater, amounting to approximately 8490 micromol kg(-1) over 48 h. In vitro experiments suggest that at least a portion of the alkaline tide was eliminated through increased HCO3- secretion coupled to Cl- absorption in the intestinal tract. This did not occur in the intestine of freshwater-acclimated trout. The marked effects of the external salinity (seawater versus freshwater) on different post-feeding patterns of acid-base balance are discussed.

  12. Chemical Composition of Atmospheric Aerosols From High and Low Altitude Sites in Northern and Western India

    NASA Astrophysics Data System (ADS)

    Rastogi, N.; Athiyarath, S.; Sarin, M.; R, R.

    2006-12-01

    The chemical composition of ambient aerosols, collected during wintertime from four designated sites: Ahmedabad (23.0oN, 72.6oE, 49 m asl), Mt Abu (24.6oN, 72.7oE, 1680 m asl), Hisar (29.2oN, 75.7oE, 216m asl) and Nainital (29.4oN, 79.5oE, 1940 m asl), has been studied to understand the potential role of regional emission sources as well as the long-range transport of chemical constituents through free troposphere. The two high altitude sites, Mt Abu and Nainital, exhibit free tropospheric characteristics during wintertime; whereas the urban sites (Ahmedabad and Hisar) are within boundary layer. The ratios of major ionic species, measured in water extracts of aerosols, are considered to be advantageous in order to remove the effect of aerosol mass loading on the atmospheric concentrations of species at different sites. At low-altitude-urban sites (Ahmedabad and Hisar), geometric mean of Ca2+/Na+ ratios (4.3 and 4.5) and HCO3-/ Ca2+ ratios (1.7 and 1.5) are comparable; whereas significant differences are observed in Cl-/Na+ (1.1 and 0.6), SO42-/Ca2+ (1.5 and 3.5) and SO42-/NO3- (2.1 and 1.0). These differences are attributed to relative dominance of anthropogenic emissions over the northern site (Hisar). In contrast, major differences arise over Mt Abu and Nainital with respect to Cl-/Na+ (1.0 and 0.2), Ca2+/Na+ (9.0 and 4.4) and HCO3-/ Ca2+ (1.8 and 0.9) ratios; whereas SO42-/Ca2+ (2.3 and 3.1) and SO42-/NO3- (5.3 and 5.9) ratios are comparable. Such regional differences for a high altitude site could arise due to semi-arid climate and high abundance of mineral dust at Mt Abu. Higher SO42-/NO3- ratios over high altitude sites than those over low altitude sites are attributed to the relative difference in the size distribution of SO42- (fine mode) and NO3- (coarse mode) aerosols.

  13. Plasma electrolytes in relation to altitude tolerance in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purshottam, T.

    1979-04-01

    Plasma concentrations of Na(+), K(+) and Cl(-) ions did not change significantly whereas that of (HCO3)- dropped to one-third of its initial value in rats during their 15 min of gasping at a simulated altitude of 10,000 m at 33 C, which was their survival threshold. Administration of methamphetamine (2 mg/kg), imipramine (2 mg/kg) and adrenaline (7 mg/kg) i.p. were ineffective in prolonging the survival time of rats, whereas acetazolamide (40 mg/kg), furosemide (2 mg/kg) and caffeine citrate (10 mg/kg) significantly increased their survival under hypoxia, (p less than 0.001, 0.01, and 0.05, respectively).

  14. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  15. Simultaneous flow of water and solutes through geological membranes-I. Experimental investigation

    USGS Publications Warehouse

    Kharaka, Y.K.; Berry, F.A.P.

    1973-01-01

    The relative retardation by geological membranes of cations and anions generally present in subsurface waters was investigated using a high pressure and high temperature 'filtration cell'. The solutions were forced through different clays and a disaggregated shale subjected to compaction pressures up to 9500 psi and to temperatures from 20 to 70??C. The overall efficiences measured increased with increase of exchange capacity of the material used and with decrease in concentration of the input solution. The efficiency of a given membrane increased with increasing compaction pressure but decreased slightly at higher temperatures for solutions of the same ionic concentration. The results further show that geological membranes are specific for different dissolved species. The retardation sequences varied depending on the material used and on experimental conditions. The sequences for monovalent and divalent cations at laboratory temperatures were generally as follows: Li < Na < NH3 < K < Rb < Cs Mg < Ca < Sr < Ba. The sequences for anions at room temperature were variable, but at 70??C, the sequence was: HCO3 < I < B < SO4 < Cl < Br. Monovalent cations contrary to some field data were generally retarded with respect to divalent cations. The differences in the filtration ratios among the divalent cations were smaller than those between the monovalent cations. The passage rate of B, HCO3, I and NH3 was greatly increased at 70??C. ?? 1973.

  16. Removing polysaccharides-and saccharides-related coloring impurities in alkyl polyglycosides by bleaching with the H2O2/TAED/NaHCO3 system.

    PubMed

    Yanmei, Liu; Jinliang, Tao; Jiao, Sun; Wenyi, Chen

    2014-11-04

    The effect of H2O2/TAED/NaHCO3 system, namely NaHCO3 as alkaline agent with the (tetra acetyl ethylene diamine (TAED)) TAED-activated peroxide system, bleaching of alkyl polyglycosides solution was studied by spectrophotometry. The results showed that the optimal bleaching conditions about H2O2/TAED/NaHCO3 system bleaching of alkyl polyglycosides solution were as follows: molar ratio of TAED to H2O2 was 0.06, addition of H2O2 was 8.6%, addition of NaHCO3 was 3.2%, bleaching temperature of 50-65 °C, addition of MgO was 0.13%, and bleaching time was 8h. If too much amount of NaHCO3 was added to the system and maintained alkaline pH, the bleaching effect would be greatly reduced. Fixing molar ratio of TAED to H2O2 and increasing the amount of H2O2 were beneficial to improve the whiteness of alkyl polyglycosides, but adding too much amount of H2O2 would reduce the transparency. In the TAED-activated peroxide system, NaHCO3 as alkaline agent and buffer agent, could overcome the disadvantage of producing black precipitates when NaOH as alkaline agent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Combined effects of high pressure and sodium hydrogen carbonate treatment on beef: improvement of texture and color

    NASA Astrophysics Data System (ADS)

    Ohnuma, Shun; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    We investigated the effect of combined high pressure and sodium hydrogen carbonate (NaHCO3) treatment on the physical properties and color of silverside Australian beef. Meat samples were pressurized at 100-500 MPa and the water content, weight reduction, rupture stress, and meat color were determined. The water content of meat treated with NaHCO3 and high pressure (300 MPa) reached a maximum of 70.1%. Weight reduction tended to decrease with high pressure treatment at 300 MPa. Meats treated with NaHCO3 and high pressure at 400 MPa showed a>50% decrease in hardness. Whitening of the meat was reduced by the combined high pressure and NaHCO3 treatment. Therefore, the combined high pressure and NaHCO3 treatment is effective for improvement of beef quality.

  18. Prevalence of obesity hypoventilation syndrome in ambulatory obese patients attending pathology laboratories.

    PubMed

    Borel, Jean-Christian; Guerber, Fabrice; Jullian-Desayes, Ingrid; Joyeux-Faure, Marie; Arnol, Nathalie; Taleux, Nellie; Tamisier, Renaud; Pépin, Jean-Louis

    2017-08-01

    The prevalence of obesity hypoventilation syndrome (OHS) in the unselected obese is unknown. Our objectives were: (i) to determine the prevalence of OHS in ambulatory obese patients not previously referred to a pulmonologist for suspicion of sleep breathing disorders and (ii) to assess whether venous bicarbonate concentration [HCO 3 - v ] can be used to detect OHS. In this prospective multicentric study, we measured [HCO 3 - v ] in consenting obese patients attending pathology analysis laboratories. Patients with [HCO 3 - v ] ≥ 27 mmol/L were referred to a pulmonologist for comprehensive sleep and respiratory evaluations. Those with [HCO 3 - v ] < 27 mmol/L were randomized to either referral to a pulmonologist or ended the study. For the 1004 screened patients, the [HCO 3 - v ] was ≥27 mmol/L in 24.6% and <27 mmol/L in 45.9%. A total of 29.5% who had previously consulted a pulmonologist were excluded. A population of 241 obese patients underwent sleep and respiratory assessments. The prevalence of OHS in this population was 1.10 (95% CI = 0.51; 2.27). In multivariate analysis, PaCO 2 , forced expiratory volume in 1 s (FEV 1 ), apnoea-hypopnoea index (AHI), BMI, use of ≥3 anti-hypertensive drugs, anti-diabetics, proton pump inhibitors and/or paracetamol were related to raised [HCO 3 - v ]. The prevalence of OHS in our obese population was lower than previous estimations based on hospitalized patients or clinical cohorts with sleep breathing disorders. Apart from hypercapnia, increased [HCO 3 - v ] may also reflect multimorbidity and polypharmacy, which should be taken into account when using [HCO 3 - v ] to screen for OHS. © 2017 Asian Pacific Society of Respirology.

  19. Proton Fall or Bicarbonate Rise: GLYCOLYTIC RATE IN MOUSE ASTROCYTES IS PAVED BY INTRACELLULAR ALKALINIZATION.

    PubMed

    Theparambil, Shefeeq M; Weber, Tobias; Schmälzle, Jana; Ruminot, Ivàn; Deitmer, Joachim W

    2016-09-02

    Glycolysis is the primary step for major energy production in the cell. There is strong evidence suggesting that glucose consumption and rate of glycolysis are highly modulated by cytosolic pH/[H(+)], but those can also be stimulated by an increase in the intracellular [HCO3 (-)]. Because proton and bicarbonate shift concomitantly, it remained unclear whether enhanced glucose consumption and glycolytic rate were mediated by the changes in intracellular [H(+)] or [HCO3 (-)]. We have asked whether glucose metabolism is enhanced by either a fall in intracellular [H(+)] or a rise in intracellular [HCO3 (-)], or by both, in mammalian astrocytes. We have recorded intracellular glucose in mouse astrocytes using a FRET-based nanosensor, while imposing different intracellular [H(+)] and [CO2]/[HCO3 (-)]. Glucose consumption and glycolytic rate were augmented by a fall in intracellular [H(+)], irrespective of a concomitant rise or fall in intracellular [HCO3 (-)]. Transport of HCO3 (-) into and out of astrocytes by the electrogenic sodium bicarbonate cotransporter (NBCe1) played a crucial role in causing changes in intracellular pH and [HCO3 (-)], but was not obligatory for the pH-dependent changes in glucose metabolism. Our results clearly show that it is the cytosolic pH that modulates glucose metabolism in cortical astrocytes, and possibly also in other cell types. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Geothermal solute flux monitoring and the source and fate of solutes in the Snake River, Yellowstone National Park, WY

    USGS Publications Warehouse

    McCleskey, R. Blaine; Lowenstern, Jacob B.; Schaper, Jonas; Nordstrom, D. Kirk; Heasler, Henry P.; Mahony, Dan

    2016-01-01

    The combined geothermal discharge from over 10,000 features in Yellowstone National Park (YNP) can be can be estimated from the Cl flux in the Madison, Yellowstone, Falls, and Snake Rivers. Over the last 30 years, the Cl flux in YNP Rivers has been calculated using discharge measurements and Cl concentrations determined in discrete water samples and it has been determined that approximately 12% of the Cl flux exiting YNP is from the Snake River. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes was quantified at a monitoring site located downstream from the thermal inputs in the Snake River. Beginning in 2012, continuous (15 min) electrical conductivity measurements have been made at the monitoring site. Combining continuous electrical conductivity and discharge data, the Cl and other geothermal solute fluxes were determined. The 2013–2015 Cl fluxes (5.3–5.8 kt/yr) determined using electrical conductivity are comparable to historical data. In addition, synoptic water samples and discharge data were obtained from sites along the Snake River under low-flow conditions of September 2014. The synoptic water study extended 17 km upstream from the monitoring site. Surface inflows were sampled to identify sources and to quantify solute loading. The Lewis River was the primary source of Cl, Na, K, Cl, SiO2, Rb, and As loads (50–80%) in the Snake River. The largest source of SO4 was from the upper Snake River (50%). Most of the Ca and Mg (50–55%) originate from the Snake Hot Springs. Chloride, Ca, Mg, Na, K, SiO2, F, HCO3, SO4, B, Li, Rb, and As behave conservatively in the Snake River, and therefore correlate well with conductivity (R2 ≥ 0.97).

  1. Assessment of potable water quality including organic, inorganic, and trace metal concentrations.

    PubMed

    Nahar, Mst Shamsun; Zhang, Jing

    2012-02-01

    The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management. © Springer Science+Business Media B.V. 2011

  2. Six-Month Evaluation of a Sodium Bicarbonate-Containing Toothpaste for Reduction of Established Gingivitis: A Randomized USA-Based Clinical Trial.

    PubMed

    Jose, Anto; Pratten, Jonathan; Bosma, Mary-Lynn; Milleman, Kimberly R; Milleman, Jeffery L; Wang, Nan

    2018-03-01

    Short-term use of sodium bicarbonate (NaHCO3)-containing toothpaste reduces plaque and improves clinical measures of gingivitis. To examine this over a longer period, we compared efficacy and tolerability of twice-daily brushing for 24 weeks with 67% or 0% NaHCO3-containing toothpastes in USA-based participants with moderate gingivitis (Clinicaltrials.gov:NCT02207400). This was a six-month, randomized, examiner-blind, parallel-group, clinical trial. Investigators randomized adults with blood in expectorate after brushing and ≥ 20 gingival bleeding sites to 67% NaHCO3 (n = 123; n = 107 completed study) or 0% NaHCO3 (n = 123; n = 109 completed study) toothpastes. Primary efficacy variables included between-treatment differences in number of bleeding sites and Modified Gingival Index (MGI) score at 24 weeks. Secondary efficacy variables included Bleeding Index and Turesky modification of the Quigley-Hein Plaque Index (overall and interproximal sites) at six, 12, and 24 weeks. A subset of 50 participants underwent sampling to assess plaque microbiology over the course of treatment. Compared with the 0% NaHCO3 toothpaste, the 67% NaHCO3 toothpaste produced statistically significant improvements at Week 24 in number of bleeding sites (46.7% difference) and MGI (33.9% difference), and for all other endpoints (all p < 0.0001). There was no significant between-treatment difference in the proportion of participants harboring opportunistic pathogens. Products were generally well tolerated, with two and five treatment-related adverse events reported in the 67% and 0% NaHCO3 toothpaste groups, respectively. Gingival bleeding, gingivitis, and plaque indices were significantly improved at six, 12, and 24 weeks with twice-daily brushing with 67% NaHCO3-containing toothpaste in participants with moderate gingivitis. Copyright© by the YES Group, Inc.

  3. Electrophysiological evidence for Na+-coupled bicarbonate transport in cultured rat hepatocytes.

    PubMed

    Fitz, J G; Persico, M; Scharschmidt, B F

    1989-03-01

    Recent observations suggest that hepatocytes exhibit basolateral electrogenic Na+-coupled HCO3- transport. In these studies, we have further investigated this transport mechanism in primary culture of rat hepatocytes using intracellular microelectrodes to measure membrane potential difference (PD) and the pH-sensitive fluorochrome 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein to measure intracellular pH (pHi). In balanced media containing 25 mM HCO3-, PD averaged -32.1 +/- 0.6 (SE) mV and pHi averaged 7.22 +/- 0.03. PD became more negative (hyperpolarized) when extracellular [HCO3-] was increased and less negative (depolarized) when extracellular HCO3- was decreased. Acute replacement of extracellular Na+ by choline also resulted in membrane depolarization of 18.0 +/- 1.6 mV, suggesting net transfer of negative charge. This decrease in PD upon Na+ removal was HCO3- -dependent, amiloride insensitive, and inhibited by the disulfonic stilbene 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS). PD also decreased upon acute exposure to SITS. The degree of depolarization seen with removal of Na+ or HCO3- correlated directly with resting PD (r = 0.81 and 0.95, respectively), suggesting a voltage-dependent mechanism. Removal of extracellular Na+ also decreased pHi to 7.06 +/- 0.02, and this acidification was decreased in the absence of HCO3- or in the presence of SITS or amiloride. These studies provide direct evidence for electrogenic Na+-coupled HCO3- transport in rat hepatocytes. Further, they suggest that it represents a major pathway for conductive movement of Na+ across the membrane and that it contributes, along with Na+-H+ exchange, to the intracellular acidification observed upon removal of extracellular Na+.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Hydrogencarbonate is not a tightly bound constituent of the water-oxidizing complex in photosystem II.

    PubMed

    Shevela, Dmitriy; Su, Ji-Hu; Klimov, Vyacheslav; Messinger, Johannes

    2008-06-01

    Since the end of the 1950s hydrogencarbonate ('bicarbonate') is discussed as a possible cofactor of photosynthetic water-splitting, and in a recent X-ray crystallography model of photosystem II (PSII) it was displayed as a ligand of the Mn(4)O(x)Ca cluster. Employing membrane-inlet mass spectrometry (MIMS) and isotope labelling we confirm the release of less than one (~0.3) HCO(3)(-) per PSII upon addition of formate. The same amount of HCO(3)(-) release is observed upon formate addition to Mn-depleted PSII samples. This suggests that formate does not replace HCO(3)(-) from the donor side, but only from the non-heme iron at the acceptor side of PSII. The absence of a firmly bound HCO(3)(-) is corroborated by showing that a reductive destruction of the Mn(4)O(x)Ca cluster inside the MIMS cell by NH(2)OH addition does not lead to any CO(2)/HCO(3)(-) release. We note that even after an essentially complete HCO(3)(-)/CO(2) removal from the sample medium by extensive degassing in the MIMS cell the PSII samples retain > or =75% of their initial flash-induced O(2)-evolving capacity. We therefore conclude that HCO(3)(-) has only 'indirect' effects on water-splitting in PSII, possibly by being part of a proton relay network and/or by participating in assembly and stabilization of the water-oxidizing complex.

  5. Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2013-05-01

    A vast region in north-central Texas, centering on Dallas-Fort Worth metroplex, suffers from intense groundwater drawdown and water quality degradation, which led to inclusion of 18 counties of this region into Priority Groundwater Management Areas. We combined aquifer-based and county-based hydrologic analyses to (1) assess spatio-temporal changes in groundwater level and quality between 1960 and 2010 in the Trinity and Woodbine aquifers underlying the study region, (2) delve into major hydrochemical facies with reference to aquifer hydrostratigraphy, and (3) identify county-based spatial zones to aid in future groundwater management initiatives. Water-level and quality data was obtained from the Texas Water Development Board (TWDB) and analyzed on a decadal scale. Progressive water-level decline was the major concern in the Trinity aquifer with >50% of observations occurring at depths >100 m since the 1980s, an observation becoming apparent only in the 2000s in the Woodbine aquifer. Water quality degradation was the major issue in the Woodbine aquifer with substantially higher percentage of observations exceeding the secondary maximum contaminant levels (SMCL; a non-enforceable threshold set by the United State Environmental Protection Agency (USEPA)) and/or maximum contaminant level (MCL, a legally enforceable drinking water standard set by the USEPA) for sulfate (SO4(2-)), chloride (Cl(-)), and fluoride (F(-)) in each decade. In both aquifers, however, >70% of observations exceeded the SMCL for total dissolved solids indicating high groundwater salinization. Water-level changes in Trinity aquifer also had significant negative impact on water quality. Hydrochemical facies in this region sequentially evolved from Ca-Mg-HCO3 and Ca-HCO3 in the fluvial sediments of the west to Na-SO4-Cl in the deltaic sediments to the east. Sequentially evolving hydrogeochemical facies and increasing salinization closely resembled regional groundwater flow pattern. Distinct spatial zones based on homogenous hydrologic characteristics have become increasingly apparent over time indicating necessity of zone-specific groundwater management strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion. PMID:22821947

  7. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  8. A pH-sensitive methenamine mandelate-loaded nanoparticle induces DNA damage and apoptosis of cancer cells.

    PubMed

    Zhang, Linhua; Hao, Wenbo; Xu, Lv; Gao, Yongfeng; Wang, Xusheng; Zhu, Dunwan; Chen, Zhuo; Zhang, Xudong; Chen, Hongbo; Mei, Lin

    2017-10-15

    Methenamine mandelate is a urinary antibacterial agent, which can be converted to formaldehyde in urine that has a relatively low pH of average 5.5-6.8. Here, we prepare a pH-sensitive PLGA-based nanoparticle containing both methenamine mandelate and NaHCO 3 . Methenamine mandelate/NaHCO 3 -coloaded nanoparticle could enter cells via endosome/lysosome pathway. The pH in lysosomes and endo-lysosomes is approximately 5.0. In the acidic environment, NaHCO 3 reacts with proton and produce CO 2 bubbles, which burst nanoparticles and lead to the rapidly release of methenamine mandelate. Meanwhile, methenamine mandelate was then quickly converted to a sufficient amount of formaldehyde in this acidic environment, which induced DNA damage and DNA damage response (DDR). Consequently, methenamine mandelate/NaHCO 3 -coloaded nanoparticles caused cell cycle arrest, cell growth inhibition and apoptosis of cancer cells. Moreover, methenamine mandelate/NaHCO 3 -coloaded nanoparticles also show intensive inhibitory effect on the growth of MCF-7 xenograft tumor in vivo. Therefore, methenamine mandelate/NaHCO 3 -coloaded nanoparticle is a promising type of formulation for the treatment of cancer, which could give the "old drug" methenamine mandelate a new anti-cancer function in clinical. Methenamine mandelate is a urinary antibacterial agent, which can be converted to formaldehyde in urine that has a relatively low pH of average 5.5-6.8. Here, we prepare a pH-sensitive PLGA-based nanoparticle containing both methenamine mandelate and NaHCO 3 . Methenamine mandelate/NaHCO 3 -coloaded nanoparticle could enter cells via endosome/lysosome pathway. The pH in lysosomes and endo-lysosomes is approximately 5.0. In the acidic environment, NaHCO 3 reacts with proton and produce CO 2 bubbles, which burst nanoparticles and lead to the rapidly release of methenamine mandelate. Meanwhile, methenamine mandelate was then quickly converted to a sufficient amount of formaldehyde in this acidic environment, which induced DNA damage and DNA damage response (DDR). Methenamine mandelate/NaHCO 3 -coloaded nanoparticle is a promising type formulation for the treatment of cancer, which could give the "old drug" methenamine mandelate a new anti-cancer function in clinical. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. A silicon-nanowire memory driven by optical gradient force induced bistability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, B.; Institute of Microelectronics, A*STAR; Cai, H., E-mail: caih@ime.a-star.edu.sg

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  10. Stimulation of gastric bicarbonate secretion by an analog of thyrotropin-releasing hormone, YM-14673, in the rat.

    PubMed

    Takeuchi, K; Ueshima, K; Okabe, S

    1991-03-01

    The effects of YM-14673, a thyrotropin-releasing hormone analog, on gastric alkaline secretion were investigated in the anesthetized rat pretreated with omeprazole (60 mg/kg, intraperitoneally) by measuring the luminal pH, transmucosal PD and HCO3- output. The whole stomach was perfused at a flow rate of 0.7 ml/min with saline (pH 4.5) in the absence of acid secretion, the pH of the perfusate and PD were continuously monitored and the HCO3- output was measured as acid-neutralizing capacity by back-titration of the perfusate to pH 4.5. YM-14673, given intravenously at the doses (0.1-1 mg/kg) that stimulated acid secretion, increased the pH and HCO3- output in a dose-dependent fashion, but did not significantly affect the PD. Prostaglandin E2 (1 mg/kg) elevated the pH and HCO3- output with concomitant decrease in the PD, whereas carbachol (4 micrograms/kg), similar to YM-14673, produced an increase of the pH and HCO3- output with no change in the PD. The net HCO3- output (4.3 +/- 0.3 muEq) induced by 0.3 mg/kg of YM-14673 was about 60 and 150% of that induced by prostaglandin E2 and carbachol, respectively. The increased pH and HCO3- responses caused by YM-14673 were almost completely abolished by vagotomy, significantly inhibited by atropine (0.3 mg/kg, intravenously) and indomethacin (5 mg/kg, subcutaneously) but not affected by pirenzepine (1 mg/kg, intravenously). These results suggest that YM-14673, a thyrotropin-releasing hormone analog, produced vagally mediated HCO3- secretion in the rat stomach, and the mechanism may involve the cholinergic system, which is mediated with muscarinic M2 receptors and interacts with endogenous prostaglandins.

  11. Exposure age and climate controls on weathering in deglaciated watersheds of western Greenland

    NASA Astrophysics Data System (ADS)

    Scribner, C. A.; Martin, E. E.; Martin, J. B.; Deuerling, K. M.; Collazo, D. F.; Marshall, A. T.

    2015-12-01

    Fine-grained sediments deposited by retreating glaciers weather faster than the global average and this weathering can impact the global carbon cycle and oceanic fluxes of nutrients and radiogenic isotopes. Much work has focused on subglacial and proglacial weathering of continental ice sheets, but little is known about weathering and resulting fluxes from deglacial watersheds, which are disconnected from the ice sheets and discharge only annual precipitation and permafrost melt. We investigate the effects of exposure age and precipitation on weathering intensity in four deglacial watersheds on Greenland that form a transect from the coast near Sisimiut toward the Greenland Ice Sheet (GrIS) near Kangerlussuaq based on evaluations of major ion compositions, Sr isotope ratios, and mineral saturation states of waters and sediments. The transect is underlain by Archean orthogneiss and is characterized by gradients in moraine ages (∼7.5-8.0 ky inland to ∼10 ky at the coast) and water balance (-150 mm/yr inland to +150 mm/yr at the coast). Anion compositions are generally dominated by HCO3, but SO4 becomes increasingly important toward the coast, reflecting a switch from trace carbonate dissolution to sulfide mineral oxidation. Coastal watersheds have a higher proportion of dissolved silica, higher Na/Cl, Si/Ca, and lower Ca/Sr ratios than inland watersheds, indicating an increase in the relative proportion of silicate weathering and an increase in the extent of weathering toward the coast. More extensive weathering near the coast is also apparent in differences in the 87Sr/86Sr ratios of stream water and bedload (Δ87Sr/86Sr), which decreases from 0.017 inland to 0.005 at the coast, and in increased saturation states relative to amorphous SiO2 and quartz. The steep weathering gradient from inland to coastal watersheds reflects enhanced weathering compared to that expected from the 2 to 3 ky difference in exposure age caused by elevated coastal precipitation. The gradient of weathering with exposure age, water budget and distance from the ice sheet indicates that oceanic and atmospheric fluxes will change as continental glaciers retreat, precipitation patterns across the deglacial region readjust, and the relative proportion of deglacial to proglacial runoff increases.

  12. Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis.

    PubMed

    Kang, Young-Min; Kim, Moon-Kyung; Zoh, Kyung-Duk

    2018-08-01

    In this study, the effects of natural water components (nitrate, carbonate/bicarbonate, and humic acid) on the kinetics and degradation mechanisms of bisphenol A (BPA) during UV-C photolysis and UV/H 2 O 2 reaction were examined. The presence of NO 3 - (0.04-0.4 mM) and CO 3 2- /HCO 3 - (0.4-4 mM) ions increased BPA degradation during UV photolysis. Humic acid less than 3 mg/L promoted BPA degradation, but greater than 3 mg/L of humic acid inhibited BPA degradation. During the UV/H 2 O 2 reaction, all water matrix components acted as radical scavengers in the order of humic acid > CO 3 2- /HCO 3 -  > NO 3 - . All of the degradation reactions agreed with the pseudo-first-order kinetics. While eight byproducts (m/z = 122, 136, 139, 164, 181, 244, 273, 289) were identified in UV-C/NO 3 - photolysis reaction, four (m/z = 122, 136, 164, 244) and three byproducts (m/z = 122, 136, 164) were observed during UV-C/NO 3 - /CO 3 2- /HCO 3 - and UV-C/CO 3 2- /HCO 3 - reactions. Nitrogenated and hydrogenated byproducts were first observed during the UV-C/NO 3 - photolysis, but only hydrogenated byproducts as adducts were detected during the UV-C/NO 3 - /CO 3 2- /HCO 3 - photolysis. Nitrogenated and hydrogenated byproducts were formed in the early stage of degradation by OH or NO 2 radicals, and these byproducts were subsequently degraded into smaller compounds with further reaction during UV-C/NO 3 - and UV-C/NO 3 - /CO 3 2- /HCO 3 - reactions. In contrast, BPA was directly degraded into smaller compounds by β-scission of the isopropyl group by CO 3 - /HCO 3 radicals during UV-C/CO 3 2- /HCO 3 - reaction. Our results imply that the water components can change the degradation mechanism of BPA during UV photolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. [Research on the sensitivity of geochemical of underground river in Chongqing Xueyu Cave].

    PubMed

    Xu, Shang-Quan; Yang, Ping-Heng; Yin, Jian-Jun; Mao, Hai-Hong; Wang, Peng; Zhou, Xiao-Ping

    2013-01-01

    Quoted geochemical susceptivity index and isosensitive line on geochemical susceptivity, analyzed the data of underground rivers of Xueyu Cave in Chongqing from September 2010 to August 2011, we found that the chemical composition of the underground river was controlled by the bedrock, due to the composition of high concentration of Ca2+ and low concentration of Mg2+. Owing to the effects of the monsoon, water chemistry was different between drought season and rainy season: the value of [Mg2+]/[Ca2+] was 0.018-0.051 in the rainy season, but in dry season the value was 0.038-0.064. The value of [HCO3(-)]/[SO4(2-)] was 4.86-36.62 in the rainy season, and 6.23-46.67 in the dry season. The seasonal change of Karstification made Ca2+ and HCO3(-) become the most sensitive ion. As a result of the special hydrogeological structure in Karat area, rain, surface water and groundwater transformed rapidly, which caused the underground river was sensitive to agricultural activities, especially for Cl- and NO3(-), and their sensitive indices were 0.286 and 0.022 respectively. The influence of tourism activities on the underground river was less than the management. The management work of ecological system should be strengthen in the recharge area, thus the largest economic and environmental benefits in the Karst area could be achieved.

  14. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences.

    PubMed

    Bhowmick, Subhamoy; Nath, Bibhash; Halder, Dipti; Biswas, Ashis; Majumder, Santanu; Mondal, Priyanka; Chakraborty, Sudipta; Nriagu, Jerome; Bhattacharya, Prosun; Iglesias, Monica; Roman-Ross, Gabriela; Guha Mazumder, Debendranath; Bundschuh, Jochen; Chatterjee, Debashis

    2013-11-15

    A comparative hydrogeochemical study was carried out in West Bengal, India covering three physiographic regions, Debagram and Chakdaha located in the Bhagirathi-Hooghly alluvial plain and Baruipur in the delta front, to demonstrate the control of geogenic and anthropogenic influences on groundwater arsenic (As) mobilization. Groundwater samples (n = 90) from tube wells were analyzed for different physico-chemical parameters. The low redox potential (Eh = -185 to -86 mV) and dominant As(III) and Fe(II) concentrations are indicative of anoxic nature of the aquifer. The shallow (<100 m) and deeper (>100 m) aquifers of Bhagirathi-Hooghly alluvial plains as well as shallow aquifers of delta front are characterized by Ca(2+)HCO3(-) type water, whereas Na(+) and Cl(-) enrichment is found in the deeper aquifer of delta front. The equilibrium of groundwater with respect to carbonate minerals and their precipitation/dissolution seems to be controlling the overall groundwater chemistry. The low SO4(2-) and high DOC, PO4(3-) and HCO3(-) concentrations in groundwater signify ongoing microbial mediated redox processes favoring As mobilization in the aquifer. The As release is influenced by both geogenic (i.e. geomorphology) and anthropogenic (i.e. unsewered sanitation) processes. Multiple geochemical processes, e.g., Fe-oxyhydroxides reduction and carbonate dissolution, are responsible for high As occurrence in groundwaters. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Characterization and prediction of carbon steel corrosion in diluted seawater containing pentaborate

    NASA Astrophysics Data System (ADS)

    Fukaya, Yuichi; Watanabe, Yutaka

    2018-01-01

    This study addresses the influence of Na2B10O16, which may be used for criticality control of fuel debris in the Fukushima Daiichi Nuclear Power Station, on the corrosion behavior of carbon steel in diluted artificial seawater. The corrosion forms of carbon steel were categorized as uniform corrosion, localized corrosion, and passivity based on the balance between the dilution ratio of artificial seawater and the concentration of Na2B10O16. The changes in corrosion forms were arranged on a water quality region map. Passivity was maintained by adding 3.7 × 10-2 M or more of Na2B10O16 to artificial seawater with a dilution ratio of 100-fold or more. The criticality control of the fuel debris and corrosion mitigation of the carbon steel components may be achieved simultaneously in the water quality. The prediction of the corrosion form of carbon steel was attempted by the extended Larson-Skold Index (LSI) = ([Cl-] + 2[SO42-])/([HCO3-] + 2[B10O162-]). However, because the passivating action of B10O162- was remarkably stronger than that of HCO3-, the prediction was difficult under the simple addition of equivalent concentrations. The localized corrosion of carbon steel under the addition of Na2B10O16 preferentially occurred from the crevices of the test specimens, as was the case in stainless steel.

  16. (η6-Benzene)(carbonato-κ2 O,O′)[di­cyclohex­yl(naphthalen-1-ylmeth­yl)phosphane-κP]ruthenium(II) chloro­form tris­olvate

    PubMed Central

    Gowrisankar, Saravanan; Neumann, Helfried; Spannenberg, Anke; Beller, Matthias

    2014-01-01

    The title compound, [Ru(CO3)(η6-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η6-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C—H⋯O and C—H⋯Cl hydrogen-bonding inter­actions between adjacent metal complexes and between the complexes and the solvent mol­ecules. The asymmetric unit contains one metal complex and three chloro­form solvent mol­ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro­form solvent mol­ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148–155]. PMID:25161531

  17. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.

    PubMed

    Wu, Ya; Wang, Yanxin

    2014-05-01

    A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.

  18. Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3 -) to formate.

    PubMed

    Aslan, Aşkın Sevinç; Valjakka, Jarkko; Ruupunen, Jouni; Yildirim, Deniz; Turner, Nicholas J; Turunen, Ossi; Binay, Barış

    2017-01-01

    While formate dehydrogenases (FDHs) have been used for cofactor recycling in chemoenzymatic synthesis, the ability of FDH to reduce CO 2 could also be utilized in the conversion of CO 2 to useful products via formate (HCOO - ). In this study, we investigated the reduction of CO 2 in the form of hydrogen carbonate (HCO 3 - ) to formate by FDHs from Candida methylica (CmFDH) and Chaetomium thermophilum (CtFDH) in a NADH-dependent reaction. The catalytic performance with HCO 3 - as a substrate was evaluated by measuring the kinetic rates and conducting productivity assays. CtFDH showed a higher efficiency in converting HCO 3 - to formate than CmFDH, whereas CmFDH was better in the oxidation of formate. The pH optimum of the reduction was at pH 7-8. However, the high concentrations of HCO 3 - reduced the reaction rate. CtFDH was modeled in the presence of HCO 3 - showing that it fits to the active site. The active site setting for hydride transfer in CO 2 reduction was modeled. The hydride donated by NADH would form a favorable contact to the carbon atom of HCO 3 - , resulting in a surplus of electrons within the molecule. This would cause the complex formed by hydrogen carbonate and the hydride to break into formate and hydroxide ions. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Review of prehospital sodium bicarbonate use for cyclic antidepressant overdose

    PubMed Central

    Calkins, T; Chan, T; Clark, R; Stepanski, B; Vilke, G

    2003-01-01

    Methods: A three year retrospective observational review of records was performed using the San Diego County Quality Assurance Network database for prehospital providers. All adult patients who were treated with NaHCO3 by paramedics for a CA overdose were included. Demographic data, presenting cardiovascular and neurological symptoms, paramedic treatments, and any changes in status were reviewed. Results: Twenty one patients were treated by paramedics with NaHCO3 for CA overdose. Seventeen patients (80%) presented with mental status changes, including 11 presenting with a GCS<8. Seven of the 21 (33%) presented with a cardiac arrhythmia expected to possibly respond to NaHCO3 treatment. Seven of the 21 (33%) were hypotensive, and five (24%) patients had reported seizure activity. Only 2 of the 21 patients (10%) treated with NaHCO3 had recorded improvements after administration of the drug, while the other 19 remained stable without any deterioration. Sixteen of 21 patients (76%) were given NaHCO3 for indications on standing order, while five patients were treated outside the standing order indications by base physician order with none of the five patients having any change in status ater treatment. Conclusions: After prehospital NaHCO3 use in patients with CA overdose, there were no complications reported, two patients improved in status and the others remained unchanged. Base hospital physician orders of NaHCO3 for indications beyond the standing orders were not associated with changes in patient status. PMID:12954700

  20. Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions.

    PubMed

    Deb, Sanjoy K; Gough, Lewis A; Sparks, S Andy; McNaughton, Lars R

    2018-03-01

    Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H + ) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO 3 ) supplementation and determine the corresponding effects on severe-intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO 2 % = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO 3 - ]) following NaHCO 3 ingestion. The intermittent exercise tests involved repeated 60-s work in their severe-intensity domain and 30-s recovery at 20 W to exhaustion. Participants ingested either 0.3 g kg bm -1 of NaHCO 3 or a matched placebo of 0.21 g kg bm -1 of sodium chloride prior to exercise. Exercise tolerance (+ 110.9 ± 100.6 s; 95% CI 43.3-178 s; g = 1.0) and work performed in the severe-intensity domain (+ 5.8 ± 6.6 kJ; 95% CI 1.3-9.9 kJ; g = 0.8) were enhanced with NaHCO 3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+ 4 ± 2.4 mmol l -1 ; 95% CI 2.2-5.9; g = 1.8), while blood [HCO 3 - ] and pH remained elevated in the NaHCO 3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO 3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance.

Top