Science.gov

Sample records for hdhq150 knock-in mouse

  1. Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the HdhQ150/Q150 Mouse Model of Huntington’s Disease

    PubMed Central

    Rattray, Ivan; Smith, Edward J.; Crum, William R.; Walker, Thomas A.; Gale, Richard; Bates, Gillian P.

    2017-01-01

    A variety of mouse models have been developed that express mutant huntingtin (mHTT) leading to aggregates and inclusions that model the molecular pathology observed in Huntington’s disease. Here we show that although homozygous HdhQ150 knock-in mice developed motor impairments (rotarod, locomotor activity, grip strength) by 36 weeks of age, cognitive dysfunction (swimming T maze, fear conditioning, odor discrimination, social interaction) was not evident by 94 weeks. Concomitant to behavioral assessments, T2-weighted MRI volume measurements indicated a slower striatal growth with a significant difference between wild type (WT) and HdhQ150 mice being present even at 15 weeks. Indeed, MRI indicated significant volumetric changes prior to the emergence of the “clinical horizon” of motor impairments at 36 weeks of age. A striatal decrease of 27% was observed over 94 weeks with cortex (12%) and hippocampus (21%) also indicating significant atrophy. A hypothesis-free analysis using tensor-based morphometry highlighted further regions undergoing atrophy by contrasting brain growth and regional neurodegeneration. Histology revealed the widespread presence of mHTT aggregates and cellular inclusions. However, there was little evidence of correlations between these outcome measures, potentially indicating that other factors are important in the causal cascade linking the molecular pathology to the emergence of behavioral impairments. In conclusion, the HdhQ150 mouse model replicates many aspects of the human condition, including an extended pre-manifest period prior to the emergence of motor impairments. PMID:28099507

  2. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes

    SciTech Connect

    Polyzos, Aris; Holt, Amy; Brown, Christopher; Cosme, Celica; Wipf, Peter; Gomez-Marin, Alex; Castro, Maríadel R.; Ayala-Peña, Sylvette; McMurray, Cynthia T.

    2016-02-21

    Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a graying phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.

  3. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes

    DOE PAGES

    Polyzos, Aris; Holt, Amy; Brown, Christopher; ...

    2016-02-21

    Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a grayingmore » phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.« less

  4. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes.

    PubMed

    Polyzos, Aris; Holt, Amy; Brown, Christopher; Cosme, Celica; Wipf, Peter; Gomez-Marin, Alex; Castro, Maríadel R; Ayala-Peña, Sylvette; McMurray, Cynthia T

    2016-05-01

    Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a graying phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.

  5. Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington's disease

    PubMed Central

    Jin, Jing; Peng, Qi; Hou, Zhipeng; Jiang, Mali; Wang, Xin; Langseth, Abraham J.; Tao, Michael; Barker, Peter B.; Mori, Susumu; Bergles, Dwight E.; Ross, Christopher A.; Detloff, Peter J.; Zhang, Jiangyang; Duan, Wenzhen

    2015-01-01

    White matter abnormalities have been reported in premanifest Huntington's disease (HD) subjects before overt striatal neuronal loss, but whether the white matter changes represent a necessary step towards further pathology and the underlying mechanism of these changes remains unknown. Here, we characterized a novel knock-in mouse model that expresses mouse HD gene homolog (Hdh) with extended CAG repeat- HdhQ250, which was derived from the selective breeding of HdhQ150 mice. HdhQ250 mice manifest an accelerated and robust phenotype compared with its parent line. HdhQ250 mice exhibit progressive motor deficits, reduction in striatal and cortical volume, accumulation of mutant huntingtin aggregation, decreased levels of DARPP32 and BDNF and altered striatal metabolites. The abnormalities detected in this mouse model are reminiscent of several aspects of human HD. In addition, disturbed myelination was evident in postnatal Day 14 HdhQ250 mouse brain, including reduced levels of myelin regulatory factor and myelin basic protein, and decreased numbers of myelinated axons in the corpus callosum. Thinner myelin sheaths, indicated by increased G-ratio of myelin, were also detected in the corpus callosum of adult HdhQ250 mice. Moreover, proliferation of oligodendrocyte precursor cells is altered by mutant huntingtin both in vitro and in vivo. Our data indicate that this model is suitable for understanding comprehensive pathogenesis of HD in white matter and gray matter as well as developing therapeutics for HD. PMID:25609071

  6. A knock-in mouse model of congenital erythropoietic porphyria.

    PubMed

    Ged, C; Mendez, M; Robert, E; Lalanne, M; Lamrissi-Garcia, I; Costet, P; Daniel, J Y; Dubus, P; Mazurier, F; Moreau-Gaudry, F; de Verneuil, H

    2006-01-01

    Congenital erythropoietic porphyria (CEP) is a recessive autosomal disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. The severity of the disease, the lack of specific treatment except for allogeneic bone marrow transplantation, and the knowledge of the molecular lesions are strong arguments for gene therapy. An animal model of CEP has been designed to evaluate the feasibility of retroviral gene transfer in hematopoietic stem cells. We have previously demonstrated that the knockout of the Uros gene is lethal in mice (Uros(del) model). This work describes the achievement of a knock-in model, which reproduces a mutation of the UROS gene responsible for a severe UROS deficiency in humans (P248Q missense mutant). Homozygous mice display erythrodontia, moderate photosensitivity, hepatosplenomegaly, and hemolytic anemia. Uroporphyrin (99% type I isomer) accumulates in urine. Total porphyrins are increased in erythrocytes and feces, while Uros enzymatic activity is below 1% of the normal level in the different tissues analyzed. These pathological findings closely mimic the CEP disease in humans and demonstrate that the Uros(mut248) mouse represents a suitable model of the human disease for pathophysiological, pharmaceutical, and therapeutic purposes.

  7. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.

    PubMed

    Wang, Bangmei; Li, Kunyu; Wang, Amy; Reiser, Michelle; Saunders, Thom; Lockey, Richard F; Wang, Jia-Wang

    2015-10-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) gene editing technique, based on the non-homologous end-joining (NHEJ) repair pathway, has been used to generate gene knock-outs with variable sizes of small insertion/deletions with high efficiency. More precise genome editing, either the insertion or deletion of a desired fragment, can be done by combining the homology-directed-repair (HDR) pathway with CRISPR cleavage. However, HDR-mediated gene knock-in experiments are typically inefficient, and there have been no reports of successful gene knock-in with DNA fragments larger than 4 kb. Here, we describe the targeted insertion of large DNA fragments (7.4 and 5.8 kb) into the genomes of mouse embryonic stem (ES) cells and zygotes, respectively, using the CRISPR/HDR technique without NHEJ inhibitors. Our data show that CRISPR/HDR without NHEJ inhibitors can result in highly efficient gene knock-in, equivalent to CRISPR/HDR with NHEJ inhibitors. Although NHEJ is the dominant repair pathway associated with CRISPR-mediated double-strand breaks (DSBs), and biallelic gene knock-ins are common, NHEJ and biallelic gene knock-ins were not detected. Our results demonstrate that efficient targeted insertion of large DNA fragments without NHEJ inhibitors is possible, a result that should stimulate interest in understanding the mechanisms of high efficiency CRISPR targeting in general.

  8. Functional Analysis of Dopaminergic Systems in a DYT1 Knock-in Mouse Model of Dystonia

    PubMed Central

    Song, Chang-Hyun; Fan, Xueliang; Exeter, Cicely J.; Hess, Ellen J.; Jinnah, H. A.

    2012-01-01

    The dystonias are a group of disorders characterized by involuntary twisting movements and abnormal posturing. The most common of the inherited dystonias is DYT1 dystonia, which is due to deletion of a single GAG codon (ΔE) in the TOR1A gene that encodes torsinA. Since some forms of dystonia have been linked with dysfunction of brain dopamine pathways, the integrity of these pathways was explored in a knock-in mouse model of DYT1 dystonia. In DYT1(ΔE) knock-in mice, neurochemical measures revealed only small changes in the content of dopamine or its metabolites in tissue homogenates from caudoputamen or midbrain, but microdialysis studies revealed robust decreases in baseline and amphetamine-stimulated extracellular dopamine in the caudoputamen. Quantitative stereological methods revealed no evidence for striatal or midbrain atrophy, but substantia nigra neurons immunopositive for tyrosine hydroxylase were slightly reduced in numbers and enlarged in size. Behavioral studies revealed subtle abnormalities in gross motor activity and motor coordination without overt dystonia. Neuropharmacological challenges of dopamine systems revealed normal behavioral responses to amphetamine and a minor increase in sensitivity to haloperidol. These results demonstrate that this DYT1(ΔE) knock-in mouse model of dystonia harbors neurochemical and structural changes of the dopamine pathways, as well as motor abnormalities. PMID:22659308

  9. Characterization of a knock-in mouse model of the homozygous p.V37I variant in Gjb2

    PubMed Central

    Chen, Ying; Hu, Lingxiang; Wang, Xueling; Sun, Changling; Lin, Xin; li, Lei; Mei, Ling; Huang, Zhiwu; Yang, Tao; Wu, Hao

    2016-01-01

    The homozygous p.V37I variant in GJB2 is prevalent in East and Southeast Asians and may lead to mild-to-moderate hearing loss with reduced penetrance. To investigate the pathogenic mechanism underlying this variant, we generated a knock-in mouse model of homozygous p.V37I by an embryonic stem cell gene targeting method. Auditory brainstem response test showed that the knock-in mice developed progressive, mild-to-moderate hearing loss over the first 4–9 months. Overall no significant developmental and morphological abnormality was observed in the knock-in mouse cochlea, while confocal immunostaining and electron microscopic scanning revealed minor loss of the outer hair cells. Gene expression microarray analysis identified 105 up-regulated and 43 down-regulated genes in P5 knock-in mouse cochleae (P < 0.05 adjusted by the Benjamini & Hochberg method), among which four top candidate genes with the highest fold-changes or implication to deafness Fcer1g, Nnmt and Lars2 and Cuedc1 were verified by quantitative real-time PCR. Our study demonstrated that the homozygous p.V37I knock-in mouse modeled the hearing phenotype of the human patients and can serve as a useful animal model for further studies. The differentially expressed genes identified in this study may shed new insights into the understanding of the pathogenic mechanism and the phenotypic modification of homozygous p.V37I. PMID:27623246

  10. Generation and characterization of T1R2-LacZ knock-in mouse.

    PubMed

    Iwatsuki, Ken; Nomura, Masatoshi; Shibata, Atsushi; Ichikawa, Reiko; Enciso, Patricio L M; Wang, Lixiang; Takayanagi, Ryoichi; Torii, Kunio; Uneyama, Hisayuki

    2010-11-19

    Taste cells are chemosensory epithelial cells that sense distinct taste quality such as umami, sweet, bitter, sour and salty. Taste cells utilize G protein-coupled receptors to detect umami, sweet and bitter taste whereas ion channels are responsible for detecting salty and sour taste. Among these taste receptors, taste receptor type 2, T1R2 (or Tas1r2), has been identified as a sole sweet taste receptor in mammals that mediates sweet signals upon dimerization with T1R3. However, because of limited availability of reliable antibodies and low expression level of G protein-coupled receptors, it is uneasy to identify the cell-types that express these receptors in non-taste tissues. In this study, we have generated a T1R2-LacZ reporter knock-in mouse to investigate tissue distribution of T1R2 at a single-cell level. We found that the LacZ gene expression in these mice was faithful to the expression of T1R2 in the taste tissue and in the gastrointestinal tract where T1R3 expression has been reported. Surprisingly, T1R2 expression was also found in the testis. Mice homozygous for T1R2 deletion lacked T1R2 protein analyzed by the antibody raised against T1R2 peptide sequences. In summary, the T1R2 knock-in mouse is a powerful tool to analyze the putative targets for sweeteners as well as to study the physiological roles of T1R2 in detecting sugars. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Generation of a tamoxifen inducible Tnnt2MerCreMer knock-in mouse model for cardiac studies.

    PubMed

    Yan, Jianyun; Sultana, Nishat; Zhang, Lu; Park, David S; Shekhar, Akshay; Hu, Jun; Bu, Lei; Cai, Chen-Leng

    2015-06-01

    Tnnt2, encoding thin-filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2(MerCreMer/+)) knock-in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock-in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2(MerCreMer/+) mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre-LoxP technology. The Tnnt2(MerCreMer/+) mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury.

  12. Knock-in mouse model of alternating hemiplegia of childhood: behavioral and electrophysiologic characterization.

    PubMed

    Hunanyan, Arsen S; Fainberg, Nina A; Linabarger, Molly; Arehart, Eric; Leonard, A Soren; Adil, Syed M; Helseth, Ashley R; Swearingen, Amanda K; Forbes, Stacy L; Rodriguiz, Ramona M; Rhodes, Theodore; Yao, Xiaodi; Kibbi, Nadine; Hochman, Daryl W; Wetsel, William C; Hochgeschwender, Ute; Mikati, Mohamad A

    2015-01-01

    Mutations in the ATP1α3 subunit of the neuronal Na+/K+-ATPase are thought to be responsible for seizures, hemiplegias, and other symptoms of alternating hemiplegia of childhood (AHC). However, the mechanisms through which ATP1A3 mutations mediate their pathophysiologic consequences are not yet understood. The following hypotheses were investigated: (1) Our novel knock-in mouse carrying the most common heterozygous mutation causing AHC (D801N) will exhibit the manifestations of the human condition and display predisposition to seizures; and (2) the underlying pathophysiology in this mouse model involves increased excitability in response to electrical stimulation of Schaffer collaterals and abnormal predisposition to spreading depression (SD). We generated the D801N mutant mouse (Mashlool, Mashl+/-) and compared mutant and wild-type (WT) littermates. Behavioral tests, amygdala kindling, flurothyl-induced seizure threshold, spontaneous recurrent seizures (SRS), and other paroxysmal activities were compared between groups. In vitro electrophysiologic slice experiments on hippocampus were performed to assess predisposition to hyperexcitability and SD. Mutant mice manifested a distinctive phenotype similar to that of humans with AHC. They had abnormal impulsivity, memory, gait, motor coordination, tremor, motor control, endogenous nociceptive response, paroxysmal hemiplegias, diplegias, dystonias, and SRS, as well as predisposition to kindling, to flurothyl-induced seizures, and to sudden unexpected death. Hippocampal slices of mutants, in contrast to WT animals, showed hyperexcitable responses to 1 Hz pulse-trains of electrical stimuli delivered to the Schaffer collaterals and had significantly longer duration of K+-induced SD responses. Our model reproduces the major characteristics of human AHC, and indicates that ATP1α3 dysfunction results in abnormal short-term plasticity with increased excitability (potential mechanism for seizures) and a predisposition to more

  13. Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models

    PubMed Central

    Menalled, Liliana; El-Khodor, Bassem F.; Patry, Monica; Suarez-Farinas, Mayte; Orenstein, Samantha; Zahasky, Benjamin; Leahy, Christina; Wheeler, Vanessa; Yang, X. William; MacDonald, Marcy; Morton, Jennifer A.; Bates, Gill; Leeds, Janet; Park, Larry; Howland, David; Signer, Ethan; Tobin, Allan; Brunner, Daniela

    2009-01-01

    Huntington’s disease (HD) is one of the few neurodegenerative diseases with a known genetic cause, knowledge that has enabled the creation of animal models using genetic manipulations that aim to recapitulate HD pathology. The study of behavioral and neuropathological phenotypes of these HD models, however, has been plagued by inconsistent results across laboratories stemming from the lack of standardized husbandry and testing conditions, in addition to the intrinsic differences between the models. We have compared different HD models using standardized conditions to identify the most robust phenotypic differences, best suited for preclinical therapeutic efficacy studies. With a battery of tests of sensory-motor function, such as the open field and prepulse inhibition tests, we replicate previous results showing a strong and progressive behavioral deficit in the R6/2 line with an average of 129 CAG repeats in a mixed CBA/J and C57BL/6J background. We present the first behavioral characterization of a new model, an R6/2 line with an average of 248 CAG repeats in a pure C57BL/6J background, which also showed a progressive and robust phenotype. The BACHD in a FVB/N background showed robust and progressive behavioral phenotype, while the YAC128 full-length model on either an FVB/N or a C57BL/6J background generally showed milder deficits. Finally, the HdhQ111 knock-in mouse on a CD1 background showed very mild deficits. This first extensive standardized cross-characterization of several HD animal models under standardized conditions highlights several behavioral outcomes, such as hypoactivity, amenable to standardized preclinical therapeutic drug screening. PMID:19464370

  14. Generation of an estrogen receptor beta-iCre knock-in mouse

    PubMed Central

    Cacioppo, Joseph A; Koo, Yongbum; Patrick Lin, Po-Ching; Osmulski, Sarah A; Ko, Chunjoo D; Ko, CheMyong

    2015-01-01

    A novel knock-in mouse that expresses codon-improved Cre recombinase (iCre) under regulation of the estrogen receptor beta (Esr2) promoter was developed for conditional deletion of genes and for the spatial and/or temporal localization of Esr2 expression. ESR2 is one of two classical nuclear estrogen receptors and displays a spatio-temporal expression pattern and functions that are different from the other estrogen receptor, ESR1. A cassette was constructed that contained iCre, a polyadenylation sequence, and a neomycin selection marker. This construct was used to insert iCre in front of the endogenous start codon of the Esr2 gene of a C57BL/6J embryonic stem cell line via homologous recombination. Resulting Esr2-iCre mice were bred with ROSA26-lacZ and Ai9-RFP reporter mice to visualize cells of functional iCre expression. Strong expression was observed in the ovary, the pituitary, the interstitium of the testes, the head and tail but not body of the epididymis, skeletal muscle, the coagulation gland (anterior prostate), the lung, and the preputial gland. Additional diffuse or patchy expression was observed in the cerebrum, the hypothalamus, the heart, the adrenal gland, the colon, the bladder, and the pads of the paws. Overall, Esr2-iCre mice will serve as a novel line for conditionally ablating genes in Esr2-expressing tissues, identifying novel Esr2-expressing cells, and differentiating the functions of ESR2 and ESR1. PMID:26663382

  15. A new knock-in mouse model of l-DOPA-responsive dystonia

    PubMed Central

    Rose, Samuel J.; Yu, Xin Y.; Heinzer, Ann K.; Harrast, Porter; Fan, Xueliang; Raike, Robert S.; Thompson, Valerie B.; Pare, Jean-Francois; Weinshenker, David; Smith, Yoland; Jinnah, Hyder A.

    2015-01-01

    Abnormal dopamine neurotransmission is associated with many different genetic and acquired dystonic disorders. For instance, mutations in genes critical for the synthesis of dopamine, including GCH1 and TH cause l-DOPA-responsive dystonia. Despite evidence that implicates abnormal dopamine neurotransmission in dystonia, the precise nature of the pre- and postsynaptic defects that result in dystonia are not known. To better understand these defects, we generated a knock-in mouse model of l-DOPA-responsive dystonia (DRD) mice that recapitulates the human p.381Q>K TH mutation (c.1141C>A). Mice homozygous for this mutation displayed the core features of the human disorder, including reduced TH activity, dystonia that worsened throughout the course of the active phase, and improvement in the dystonia in response to both l-DOPA and trihexyphenidyl. Although the gross anatomy of the nigrostriatal dopaminergic neurons was normal in DRD mice, the microstructure of striatal synapses was affected whereby the ratio of axo-spinous to axo-dendritic corticostriatal synaptic contacts was reduced. Microinjection of l-DOPA directly into the striatum ameliorated the dystonic movements but cerebellar microinjections of l-DOPA had no effect. Surprisingly, the striatal dopamine concentration was reduced to ∼1% of normal, a concentration more typically associated with akinesia, suggesting that (mal)adaptive postsynaptic responses may also play a role in the development of dystonia. Administration of D1- or D2-like dopamine receptor agonists to enhance dopamine signalling reduced the dystonic movements, whereas administration of D1- or D2-like dopamine receptor antagonists to further reduce dopamine signalling worsened the dystonia, suggesting that both receptors mediate the abnormal movements. Further, D1-dopamine receptors were supersensitive; adenylate cyclase activity, locomotor activity and stereotypy were exaggerated in DRD mice in response to the D1-dopamine receptor agonist SKF

  16. Do Structural Missense Variants in the ATM Gene Found in Women With Breast Cancer Cause Breast Cancer in "Knock-in" Mouse Strains?

    DTIC Science & Technology

    2006-04-01

    W81XWH-05-1-0282 TITLE: Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in...5a. CONTRACT NUMBER Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in" Mouse...human cohort-specific missense mutations will develop breast cancer with dominant inheritance in a subset of animals. It also is hypothesized that

  17. Characterisation of a C1qtnf5 Ser163Arg knock-in mouse model of late-onset retinal macular degeneration.

    PubMed

    Shu, Xinhua; Luhmann, Ulrich F O; Aleman, Tomas S; Barker, Susan E; Lennon, Alan; Tulloch, Brian; Chen, Mei; Xu, Heping; Jacobson, Samuel G; Ali, Robin; Wright, Alan F

    2011-01-01

    A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD) in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse "knock-in" model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct.

  18. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency.

    PubMed

    Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat

    2015-10-01

    Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models.

    PubMed

    Träger, Ulrike; Andre, Ralph; Magnusson-Lind, Anna; Miller, James R C; Connolly, Colúm; Weiss, Andreas; Grueninger, Stephan; Silajdžić, Edina; Smith, Donna L; Leavitt, Blair R; Bates, Gillian P; Björkqvist, Maria; Tabrizi, Sarah J

    2015-01-01

    Inflammation is a growing area of research in neurodegeneration. In Huntington's disease (HD), a fatal inherited neurodegenerative disease caused by a CAG-repeat expansion in the gene encoding huntingtin, patients have increased plasma levels of inflammatory cytokines and circulating monocytes that are hyper-responsive to immune stimuli. Several mouse models of HD also show elevated plasma levels of inflammatory cytokines. To further determine the degree to which these models recapitulate observations in HD patients, we evaluated various myeloid cell populations from different HD mouse models to determine whether they are similarly hyper-responsive, as well as measuring other aspects of myeloid cell function. Myeloid cells from each of the three mouse models studied, R6/2, HdhQ150 knock-in and YAC128, showed increased cytokine production when stimulated. However, bone marrow CD11b(+) cells did not show the same hyper-responsive phenotype as spleen and blood cells. Furthermore, macrophages isolated from R6/2 mice show increased levels of phagocytosis, similar to findings in HD patients. Taken together, these results show significant promise for these mouse models to be used to study targeting innate immune pathways identified in human cells, thereby helping to understand the role the peripheral immune system plays in HD progression. Copyright © 2014. Published by Elsevier Inc.

  20. VE-cadherin Y685F knock-in mouse is sensitive to vascular permeability in recurrent angiogenic organs.

    PubMed

    Sidibé, Adama; Polena, Helena; Pernet-Gallay, Karin; Razanajatovo, Jeremy; Mannic, Tiphaine; Chaumontel, Nicolas; Bama, Soumalamaya; Maréchal, Irène; Huber, Philippe; Gulino-Debrac, Danielle; Bouillet, Laurence; Vilgrain, Isabelle

    2014-08-01

    Covalent modifications such as tyrosine phosphorylation are associated with the breakdown of endothelial cell junctions and increased vascular permeability. We previously showed that vascular endothelial (VE)-cadherin was tyrosine phosphorylated in vivo in the mouse reproductive tract and that Y685 was a target site for Src in response to vascular endothelial growth factor in vitro. In the present study, we aimed to understand the implication of VE-cadherin phosphorylation at site Y685 in cyclic angiogenic organs. To achieve this aim, we generated a knock-in mouse carrying a tyrosine-to-phenylalanine point mutation of VE-cadherin Y685 (VE-Y685F). Although homozygous VE-Y685F mice were viable and fertile, the nulliparous knock-in female mice exhibited enlarged uteri with edema. This phenotype was observed in 30% of females between 4 to 14 mo old. Histological examination of longitudinal sections of the VE-Y685F uterus showed an extensive disorganization of myometrium and endometrium with highly edematous uterine glands, numerous areas with sparse cells, and increased accumulation of collagen fibers around blood vessels, indicating a fibrotic state. Analysis of cross section of ovaries showed the appearance of spontaneous cysts, which suggested increased vascular hyperpermeability. Electron microscopy analysis of capillaries in the ovary showed a slight but significant increase in the gap size between two adjacent endothelial cell membranes in the junctions of VE-Y685F mice (wild-type, 11.5 ± 0.3, n = 78; and VE-Y685F, 12.48 ± 0.3, n = 65; P = 0.045), as well as collagen fiber accumulation around capillaries. Miles assay revealed that either basal or vascular endothelial growth factor-stimulated permeability in the skin was increased in VE-Y685F mice. Since edema and fibrotic appearance have been identified as hallmarks of initial increased vascular permeability, we conclude that the site Y685 in VE-cadherin is involved in the physiological regulation of capillary

  1. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow

    PubMed Central

    2014-01-01

    Background Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer’s disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood–brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer’s disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Results Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Conclusions Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence

  2. Visualization and Quantification of Browning Using a Ucp1-2A-Luciferase Knock-in Mouse Model.

    PubMed

    Mao, Liufeng; Nie, Baoming; Nie, Tao; Hui, Xiaoyan; Gao, Xuefei; Lin, Xiaoliang; Liu, Xin; Xu, Yong; Tang, Xiaofeng; Yuan, Ran; Li, Kuai; Li, Peng; Ding, Ke; Wang, Yu; Xu, Aimin; Fei, Jian; Han, Weiping; Liu, Pentao; Madsen, Lise; Kristiansen, Karsten; Zhou, Zhiguang; Ding, Sheng; Wu, Donghai

    2017-02-01

    Both mammals and adult humans possess classic brown adipocytes and beige adipocytes, and the amount and activity of these adipocytes are considered key factors in combating obesity and its associated metabolic diseases. Uncoupling protein 1 (Ucp1) is the functional marker of both brown and beige adipocytes. To facilitate a reliable, easy, and sensitive measurement of Ucp1 expression both in vivo and in vitro, we generated a Ucp1-2A-luciferase knock-in mouse by deleting the stop codon for the mouse Ucp1 gene and replacing it with a 2A peptide. This peptide was followed by the luciferase coding sequence to recapitulate the expression of the Ucp1 gene at the transcriptional and translational levels. With this mouse, we discovered a cold-sensitive brown/beige adipose depot underneath the skin of the ears, which we named uBAT. Because of the sensitivity and high dynamic range of luciferase activity, the Ucp1-2A-luciferase mouse is useful for both in vitro quantitative determination and in vivo visualization of nonshivering thermogenesis. With the use of this model, we identified and characterized axitinib, an oral small-molecule tyrosine kinase inhibitor, as an effective browning agent.

  3. Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation.

    PubMed

    Yang, Baoxue; Zhao, Dan; Verkman, A S

    2009-02-01

    Mutations in aquaporin-2 (AQP2) that interfere with its cellular processing can produce autosomal recessive nephrogenic diabetes insipidus (NDI). Prior gene knock-in of the human NDI-causing AQP2 mutation T126M produced mutant mice that died by age 7 days. Here, we used a novel "conditional gene knock-in" strategy to generate adult, AQP2-T126M mutant mice. Mice separately heterozygous for floxed wild-type AQP2 and AQP2-T126M were bred to produce hemizygous mice, which following excision of the wild-type AQP2 gene by tamoxifen-induced Cre-recombinase gave AQP2(T126M/-) mice. AQP2(T126M/-) mice were polyuric (9-14 ml urine/day) compared to AQP2(+/+) mice (1.6 ml/day) and had reduced urine osmolality (400 vs. 1800 mosmol). Kidneys of AQP2(T126M/-) mice expressed core-glycosylated AQP2-T126M protein in an endoplasmic reticulum pattern. Screening of candidate protein folding "correctors" in AQP2-T126M-transfected kidney cells showed increased AQP2-T126M plasma membrane expression with the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). 17-AAG increased urine osmolality in AQP2(T126M/-) mice by >300 mosmol but had no effect in AQP2(-/-) mice. Kidneys of 17-AAG-treated AQP2(T126M/-) mice showed partial rescue of defective AQP2-T126M cellular processing. Our results establish an adult mouse model of NDI and demonstrate partial restoration of urinary concentration function by a compound currently in clinical trials for other indications.

  4. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration

    PubMed Central

    Chavali, Venkata R.M.; Khan, Naheed W.; Cukras, Catherine A.; Bartsch, Dirk-Uwe; Jablonski, Monica M.; Ayyagari, Radha

    2011-01-01

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5+/−) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5+/−mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies. PMID:21349921

  5. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.

    PubMed

    Chavali, Venkata R M; Khan, Naheed W; Cukras, Catherine A; Bartsch, Dirk-Uwe; Jablonski, Monica M; Ayyagari, Radha

    2011-05-15

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.

  6. Knock-in human FGFR3 achondroplasia mutation as a mouse model for human skeletal dysplasia

    PubMed Central

    Lee, Yi-Ching; Song, I-Wen; Pai, Ya-Ju; Chen, Sheng-De; Chen, Yuan-Tsong

    2017-01-01

    Achondroplasia (ACH), the most common genetic dwarfism in human, is caused by a gain-of function mutation in fibroblast growth factor receptor 3 (FGFR3). Currently, there is no effective treatment for ACH. The development of an appropriate human-relevant model is important for testing potential therapeutic interventions before human clinical trials. Here, we have generated an ACH mouse model in which the endogenous mouse Fgfr3 gene was replaced with human FGFR3G380R (FGFR3ACH) cDNA, the most common mutation in human ACH. Heterozygous (FGFR3ACH/+) and homozygous (FGFR3ACH/ACH) mice expressing human FGFR3G380R recapitulate the phenotypes observed in ACH patients, including growth retardation, disproportionate shortening of the limbs, round head, mid-face hypoplasia at birth, and kyphosis progression during postnatal development. We also observed premature fusion of the cranial sutures and low bone density in newborn FGFR3G380R mice. The severity of the disease phenotypes corresponds to the copy number of activated FGFR3G380R, and the phenotypes become more pronounced during postnatal skeletal development. This mouse model offers a tool for assessing potential therapeutic approaches for skeletal dysplasias related to over-activation of human FGFR3, and for further studies of the underlying molecular mechanisms. PMID:28230213

  7. Characterisation of a C1qtnf5 Ser163Arg Knock-In Mouse Model of Late-Onset Retinal Macular Degeneration

    PubMed Central

    Shu, Xinhua; Luhmann, Ulrich F. O.; Aleman, Tomas S.; Barker, Susan E.; Lennon, Alan; Tulloch, Brian; Chen, Mei; Xu, Heping; Jacobson, Samuel G.; Ali, Robin; Wright, Alan F.

    2011-01-01

    A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD) in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse “knock-in” model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct. PMID:22110650

  8. Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model.

    PubMed

    Bochner, Ron; Ziv, Yael; Zeevi, David; Donyo, Maya; Abraham, Lital; Ashery-Padan, Ruth; Ast, Gil

    2013-07-15

    Familial dysautonomia (FD) is a severe neurodegenerative genetic disorder restricted to the Ashkenazi Jewish population. The most common mutation in FD patients is a T-to-C transition at position 6 of intron 20 of the IKBKAP gene. This mutation causes aberrant skipping of exon 20 in a tissue-specific manner, leading to reduction of the IκB kinase complex-associated protein (IKAP) protein in the nervous system. We established a homozygous humanized mouse strain carrying human exon 20 and its two flanking introns; the 3' intron has the transition observed in the IKBKAP gene of FD patients. Although our FD humanized mouse does not display FD symptoms, the unique, tissue-specific splicing pattern of the IKBKAP in these mice allowed us to evaluate the effect of therapies on gene expression and exon 20 splicing. The FD mice were supplemented with phosphatidylserine (PS), a safe food supplement that increases mRNA and protein levels of IKBKAP in cell lines generated from FD patients. Here we demonstrated that PS treatment increases IKBAKP mRNA and IKAP protein levels in various tissues of FD mice without affecting exon 20 inclusion levels. We also observed that genes associated with transcription regulation and developmental processes were up-regulated in the cerebrum of PS-treated mice. Thus, PS holds promise for the treatment of FD.

  9. Generation of a Tlx1(CreER-Venus) knock-in mouse strain for the study of spleen development.

    PubMed

    Nakahara, Ryo; Kawai, Yasuhiro; Oda, Akihisa; Nishimura, Miyuki; Murakami, Akikazu; Azuma, Takachika; Kaifu, Tomonori; Goitsuka, Ryo

    2014-11-01

    The spleen is a lymphoid organ that serves as a unique niche for immune reactions, extramedullary hematopoiesis, and the removal of aged erythrocytes from the circulation. While much is known about the immunological functions of the spleen, the mechanisms governing the development and organization of its stromal microenvironment remain poorly understood. Here we report the generation and analysis of a Tlx1(Cre) (ER) (-Venus) knock-in mouse strain engineered to simultaneously express tamoxifen-inducible CreER(T2) and Venus fluorescent protein under the control of regulatory elements of the Tlx1 gene, which encodes a transcription factor essential for spleen development. We demonstrated that Venus as well as CreER expression recapitulates endogenous Tlx1 transcription within the spleen microenvironment. When Tlx1(Cre) (ER) (-Venus) mice were crossed with the Cre-inducible reporter strain, Tlx1-expressing cells as well as their descendants were specifically labeled following tamoxifen administration. We also showed by cell lineage tracing that asplenia caused by Tlx1 deficiency is attributable to altered contribution of mesenchymal cells in the spleen anlage to the pancreatic mesenchyme. Thus, Tlx1(Cre) (ER) (-Venus) mice represent a new tool for lineage tracing and conditional gene manipulation of spleen mesenchymal cells, essential approaches for understanding the molecular mechanisms of spleen development.

  10. A Knock-in Mouse Model of Human PHD2 Gene-associated Erythrocytosis Establishes a Haploinsufficiency Mechanism*

    PubMed Central

    Arsenault, Patrick R.; Pei, Fei; Lee, Rebecca; Kerestes, Heddy; Percy, Melanie J.; Keith, Brian; Simon, M. Celeste; Lappin, Terence R. J.; Khurana, Tejvir S.; Lee, Frank S.

    2013-01-01

    The central pathway for controlling red cell mass is the PHD (prolyl hydroxylase domain protein):hypoxia-inducible factor (HIF) pathway. HIF, which is negatively regulated by PHD, activates numerous genes, including ones involved in erythropoiesis, such as the ERYTHROPOIETIN (EPO) gene. Recent studies have implicated PHD2 as the key PHD isoform regulating red cell mass. Studies of humans have identified erythrocytosis-associated, heterozygous point mutations in the PHD2 gene. A key question concerns the mechanism by which human mutations lead to phenotypes. In the present report, we generated and characterized a mouse line in which a P294R knock-in mutation has been introduced into the mouse Phd2 locus to model the first reported human PHD2 mutation (P317R). Phd2P294R/+ mice display a degree of erythrocytosis equivalent to that seen in Phd2+/− mice. The Phd2P294R/+-associated erythrocytosis is reversed in a Hif2a+/−, but not a Hif1a+/− background. Additional studies using various conditional knock-outs of Phd2 reveal that erythrocytosis can be induced by homozygous and heterozygous knock-out of Phd2 in renal cortical interstitial cells using a Pax3-Cre transgene or by homozygous knock-out of Phd2 in hematopoietic progenitors driven by a Vav1-Cre transgene. These studies formally prove that a missense mutation in PHD2 is the cause of the erythrocytosis, show that this occurs through haploinsufficiency, and point to multifactorial control of red cell mass by PHD2. PMID:24121508

  11. Distribution of corticotropin-releasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse.

    PubMed

    Kono, Junko; Konno, Kohtarou; Talukder, Ashraf Hossain; Fuse, Toshimitsu; Abe, Manabu; Uchida, Katsuya; Horio, Shuhei; Sakimura, Kenji; Watanabe, Masahiko; Itoi, Keiichi

    2017-05-01

    We examined the morphological features of corticotropin-releasing factor (CRF) neurons in a mouse line in which modified yellow fluorescent protein (Venus) was expressed under the CRF promoter. We previously generated the CRF-Venus knock-in mouse, in which Venus is inserted into the CRF gene locus by homologous recombination. In the present study, the neomycin phosphotransferase gene (Neo), driven by the pgk-1 promoter, was deleted from the CRF-Venus mouse genome, and a CRF-Venus∆Neo mouse was generated. Venus expression is much more prominent in the CRF-Venus∆Neo mouse when compared to the CRF-Venus mouse. In addition, most Venus-expressing neurons co-express CRF mRNA. Venus-expressing neurons constitute a discrete population of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVH) that project to the median eminence. Venus-expressing neurons were also found in brain regions outside the neuroendocrine PVH, including the olfactory bulb, the piriform cortex (Pir), the extended amygdala, the hippocampus, the neocortices, Barrington's nucleus, the midbrain/pontine dorsal tegmentum, the periaqueductal gray, and the inferior olivary nucleus (IO). Venus-expressing perikarya co-expressing CRF mRNA could be observed clearly even in regions where CRF-immunoreactive perikarya could hardly be identified. We demonstrated that the CRF neurons contain glutamate in the Pir and IO, while they contain gamma-aminobutyric acid in the neocortex, the bed nucleus of the stria terminalis, the hippocampus, and the amygdala. A population of CRF neurons was demonstrated to be cholinergic in the midbrain tegmentum. The CRF-Venus∆Neo mouse may be useful for studying the structural and functional properties of CRF neurons in the mouse brain.

  12. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model

    PubMed Central

    Li, Li; Piloto, Obdulio; Nguyen, Ho Bao; Greenberg, Kathleen; Takamiya, Kogo; Racke, Frederick; Huso, David; Small, Donald

    2008-01-01

    Constitutive activation of FMS-like tyrosine kinase 3 (FLT3) by internal tandem duplication (ITD) mutations is one of the most common molecular alterations known in acute myeloid leukemia (AML). To investigate the role FLT3/ITD mutations play in the development of leukemia, we generated a FLT3/ITD knock-in mouse model by inserting an ITD mutation into the juxtamembrane domain of murine Flt3. FLT3wt/ITD mice developed myeloproliferative disease, characterized by splenomegaly, leukocytosis, and myeloid hypercellularity, which progressed to mortality by 6 to 20 months. Bone marrow (BM) and spleen from FLT3wt/ITD mice had an increased fraction of granulocytes/monocytes and dendritic cells, and a decreased fraction of B-lymphocytes. No sign of acute leukemia was observed over the lifetime of these mice. BM from FLT3wt/ITD mice showed enhanced potential to generate myeloid colonies in vitro. BM from FLT3wt/ITD mice also produced more spleen colonies in the in vivo colony-forming unit (CFU)–spleen assay. In the long-term competitive repopulation assay, BM cells from FLT3wt/ITD mice outgrew the wild-type competitor cells and showed increased myeloid and reduced lymphoid expansion activity. In summary, our data indicate that expression of FLT3/ITD mutations alone is capable of conferring normal hematopoietic stem/progenitor cells (HSPCs) with enhanced myeloid expansion. It also appears to suppress B lymphoid maturation. Additional cooperative events appear to be required to progress to acute leukemia. PMID:18245664

  13. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote.

    PubMed

    Raveux, Aurélien; Vandormael-Pournin, Sandrine; Cohen-Tannoudji, Michel

    2017-02-17

    Microinjection of the CRISPR/Cas9 system in zygotes is an efficient and comparatively fast method to generate genetically modified mice. So far, only few knock-in mice have been generated using this approach, and because no systematic study has been performed, parameters controlling the efficacy of CRISPR/Cas9-mediated targeted insertion are not fully established. Here, we evaluated the effect of several parameters on knock-in efficiency changing only one variable at a time. We found that knock-in efficiency was dependent on injected Cas9 mRNA and single-guide RNA concentrations and that cytoplasmic injection resulted in more genotypic complexity compared to pronuclear injection. Our results also indicated that injection into the pronucleus compared to the cytoplasm is preferable to generate knock-in alleles with an oligonucleotide or a circular plasmid. Finally, we showed that Cas9D10A nickase variant was less efficient than wild-type Cas9 for generating knock-in alleles and caused a higher rate of mosaicism. Thus, our study provides valuable information that will help to improve the future production of precise genetic modifications in mice.

  14. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote

    PubMed Central

    Raveux, Aurélien; Vandormael-Pournin, Sandrine; Cohen-Tannoudji, Michel

    2017-01-01

    Microinjection of the CRISPR/Cas9 system in zygotes is an efficient and comparatively fast method to generate genetically modified mice. So far, only few knock-in mice have been generated using this approach, and because no systematic study has been performed, parameters controlling the efficacy of CRISPR/Cas9-mediated targeted insertion are not fully established. Here, we evaluated the effect of several parameters on knock-in efficiency changing only one variable at a time. We found that knock-in efficiency was dependent on injected Cas9 mRNA and single-guide RNA concentrations and that cytoplasmic injection resulted in more genotypic complexity compared to pronuclear injection. Our results also indicated that injection into the pronucleus compared to the cytoplasm is preferable to generate knock-in alleles with an oligonucleotide or a circular plasmid. Finally, we showed that Cas9D10A nickase variant was less efficient than wild-type Cas9 for generating knock-in alleles and caused a higher rate of mosaicism. Thus, our study provides valuable information that will help to improve the future production of precise genetic modifications in mice. PMID:28209967

  15. Reduction in open field activity in the absence of memory deficits in the App(NL-G-F) knock-in mouse model of Alzheimer's disease.

    PubMed

    Whyte, Lauren S; Hemsley, Kim M; Lau, Adeline A; Hassiotis, Sofia; Saito, Takashi; Saido, Takaomi C; Hopwood, John J; Sargeant, Timothy J

    2018-01-15

    The recent development of knock-in mouse models of Alzheimer's disease provides distinct advantages over traditional transgenic mouse models that rely on over-expression of amyloid precursor protein. Two such knock-in models that have recently been widely adopted by Alzheimer's researchers are the App(NL-F) and App(NL-G-F) mice. This study aimed to further characterise the behavioural phenotype and amyloid plaque distribution of App(NL-G-F/NL-G-F) (C57BL/6J background) mice at six-months of age. An attempt to replicate a previous study that observed deficits in working memory in the Y-maze, showed no difference between App(NL-G-F/NL-G-F) and wild-type mice. Further assessment of these mice using the novel object recognition test and Morris water maze also revealed no differences between App(NL-G-F/NL-G-F) and wild-type mice. Despite a lack of demonstrated cognitive deficits, we report a reduction in locomotor/exploratory activity in an open field. Histological examination of App(NL-G-F/NL-G-F) mice showed widespread distribution of amyloid plaques at this age. We conclude that whilst at six-months of age, memory deficits are not sufficiently robust to be replicated in varying environments, amyloid plaque burden is significant in App(NL-G-F/NL-G-F) knock-in brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Current Protocols in Mouse Biology Tissue-specific regulation of oncogene expression using Cre-inducible ROSA26 knock-in transgenic mice

    PubMed Central

    Carofino, Brandi L.; Justice, Monica J.

    2015-01-01

    Cre-inducible mouse models are often utilized for the spatial and temporal expression of oncogenes. With the wide number of Cre recombinase lines available, inducible transgenesis represents a tractable approach to achieve discrete oncogene expression. Here, we describe a protocol for targeting Cre-inducible genes using a loxP-STOP-loxP approach to the ubiquitously expressed ROSA26 locus. Gene targeting provides several advantages over standard transgenic techniques, including a known site of integration and previously characterized pattern of expression. Historically, an inherent instability of ROSA26 targeting vectors has hampered the efficiency of developing ROSA26 knock-in lines. In this protocol, we provide individual steps for utilizing Gateway recombination for cloning, and detailed instructions for screening targeted ES cell clones. By following this protocol, one can achieve germline transmission of a ROSA26 knock-in line within several months. PMID:26069083

  17. VCP Associated Inclusion Body Myopathy and Paget Disease of Bone Knock-In Mouse Model Exhibits Tissue Pathology Typical of Human Disease

    PubMed Central

    Kitazawa, Masashi; Su, Hailing; Tanaja, Jasmin; Dec, Eric; Wallace, Douglas C.; Mukherjee, Jogeshwar; Caiozzo, Vincent; Warman, Matthew; Kimonis, Virginia E.

    2010-01-01

    Dominant mutations in the valosin containing protein (VCP) gene cause inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD). We have generated a knock-in mouse model with the common R155H mutation. Mice demonstrate progressive muscle weakness starting approximately at the age of 6 months. Histology of mutant muscle showed progressive vacuolization of myofibrils and centrally located nuclei, and immunostaining shows progressive cytoplasmic accumulation of TDP-43 and ubiquitin-positive inclusion bodies in quadriceps myofibrils and brain. Increased LC3-II staining of muscle sections representing increased number of autophagosomes suggested impaired autophagy. Increased apoptosis was demonstrated by elevated caspase-3 activity and increased TUNEL-positive nuclei. X-ray microtomography (uCT) images show radiolucency of distal femurs and proximal tibiae in knock-in mice and uCT morphometrics shows decreased trabecular pattern and increased cortical wall thickness. Bone histology and bone marrow derived macrophage cultures in these mice revealed increased osteoclastogenesis observed by TRAP staining suggestive of Paget bone disease. The VCPR155H/+ knock-in mice replicate the muscle, bone and brain pathology of inclusion body myopathy, thus representing a useful model for preclinical studies. PMID:20957154

  18. The effect of sevoflurane inhalation on gabaergic neurons activation: observation on the GAD67-GFP knock-in mouse.

    PubMed

    Han, Li-Chun; Zhang, Hui; Wang, Wei; Wei, Yan-Yan; Sun, Xing-Xing; Yanagawa, Youchio; Li, Yun-Qing; Xu, Li-Xian; Wu, Sheng-Xi

    2010-12-01

    The mechanisms underlying volatile anesthesia agents are not well elucidated. Emerging researches have focused on the participation of γ-aminobutyric acid (GABA) neurons but there still lacks morphological evidence. To elucidate the possible activation of GABAergic neurons by sevoflurane inhalation in morphology, Fos (as neuronal activity marker) and GABA neurons double labeling were observed on the brain of glutamic acid decarboxylase (GAD) 67-GFP knock-in mice after sevoflurane inhalation. Twenty GAD67-GFP knock-in mice were divided into three groups: S1 group: incomplete anesthesia state induced by sevoflurane; S2 group: complete anesthesia state induced by sevoflurane; control(C) group. Sevoflurane induced a significant increase of Fos expression in the dorsomedial hypothalamic nucleus (DM), periaqueductal grey (PAG), hippocampus (CA1, DG), paraventricular thalamic nucleus (PV), lateral septal nucleus (LS), and cingulate cortex (Cg1 and Cg2) in S1 group compared to C group, and increase of Fos expression in S2 group compared to S1 group. In S2 group, Fos was only expressed in the medial amygdaloid nucleus (MeA), Edinger-Westphal (E-W) nucleus, arcuate hypothalamic nucleus (Arc) and the ventral part of paraventricular hypothalamic nucleus (PaV). Double immunofluroscent staining indicated that in LS, almost all Fos were present in GABAergic neurons. In CA1, DG, DM, cg1, cg2, and PAG, Fos was expressed as well, but only few were present in GABAergic neurons. Fos expression was very high in thalamus, but no coexistence were found as no GABAergic neuron was detected in this area. Our results provided morphological evidence that GABAergic transmission in specific brain areas may participate in the sevoflurane-induced anesthesia.

  19. Longitudinal in vivo MRI in a Huntington’s disease mouse model: Global atrophy in the absence of white matter microstructural damage

    PubMed Central

    Steventon, Jessica J.; Trueman, Rebecca C.; Ma, Da; Yhnell, Emma; Bayram-Weston, Zubeyde; Modat, Marc; Cardoso, Jorge; Ourselin, Sebastian; Lythgoe, Mark; Stewart, Andrew; Rosser, Anne E.; Jones, Derek K.

    2016-01-01

    Huntington’s disease (HD) is a genetically-determined neurodegenerative disease. Characterising neuropathology in mouse models of HD is commonly restricted to cross-sectional ex vivo analyses, beset by tissue fixation issues. In vivo longitudinal magnetic resonance imaging (MRI) allows for disease progression to be probed non-invasively. In the HdhQ150 mouse model of HD, in vivo MRI was employed at two time points, before and after the onset of motor signs, to assess brain macrostructure and white matter microstructure. Ex vivo MRI, immunohistochemistry, transmission electron microscopy and behavioural testing were also conducted. Global brain atrophy was found in HdhQ150 mice at both time points, with no neuropathological progression across time and a selective sparing of the cerebellum. In contrast, no white matter abnormalities were detected from the MRI images or electron microscopy images alike. The relationship between motor function and MR-based structural measurements was different for the HdhQ150 and wild-type mice, although there was no relationship between motor deficits and histopathology. Widespread neuropathology prior to symptom onset is consistent with patient studies, whereas the absence of white matter abnormalities conflicts with patient data. The myriad reasons for this inconsistency require further attention to improve the translatability from mouse models of disease. PMID:27581950

  20. The de-ubiquitinating enzyme ataxin-3 does not modulate disease progression in a knock-in mouse model of Huntington disease.

    PubMed

    Zeng, Li; Tallaksen-Greene, Sara J; Wang, Bo; Albin, Roger L; Paulson, Henry L

    2013-01-01

    Ataxin-3 is a deubiquitinating enzyme (DUB) that participates in ubiquitin-dependent protein quality control pathways and, based on studies in model systems, may be neuroprotective against toxic polyglutamine proteins such as the Huntington's disease (HD) protein, huntingtin (htt). HD is one of at least nine polyglutamine neurodegenerative diseases in which disease-causing proteins accumulate in ubiquitin-positive inclusions within neurons. In studies crossing mice null for ataxin-3 to an established HD knock-in mouse model (HdhQ200), we tested whether loss of ataxin-3 alters disease progression, perhaps by impairing the clearance of mutant htt or the ubiquitination of inclusions. While loss of ataxin-3 mildly exacerbated age-dependent motor deficits, it did not alter inclusion formation, ubiquitination of inclusions or levels of mutant or normal htt. Ataxin-3, itself a polyglutamine-containing protein with multiple ubiquitin binding domains, was not observed to localize to htt inclusions. Changes in neurotransmitter receptor binding known to occur in HD knock-in mice also were not altered by the loss of ataxin-3, although we unexpectedly observed increased GABAA receptor binding in the striatum of HdhQ200 mice, which has not previously been noted. Finally, we confirmed that CNS levels of hsp70 are decreased in HD mice as has been reported in other HD mouse models, regardless of the presence or absence of ataxin-3. We conclude that while ataxin-3 may participate in protein quality control pathways, it does not critically regulate the handling of mutant htt or contribute to major features of disease pathogenesis in HD.

  1. Characterization of the MPS I-H knock-in mouse reveals increased femoral biomechanical integrity with compromised material strength and altered bone geometry.

    PubMed

    Oestreich, Arin K; Garcia, Mekka R; Yao, Xiaomei; Pfeiffer, Ferris M; Nobakhti, Sabah; Shefelbine, Sandra J; Wang, Yong; Brodeur, Amanda C; Phillips, Charlotte L

    2015-12-01

    Mucopolysaccharidosis type I (MPS I), is an autosomal recessive lysosomal storage disorder caused by a deficiency in the α-L-iduronidase enzyme, resulting in decreased enzymatic activity and accumulation of glycosaminoglycans. The disorder phenotypically manifests with increased urine glycosaminoglycan excretion, facial dysmorphology, neuropathology, cardiac manifestations, and bone deformities. While the development of new treatment strategies have shown promise in attenuating many symptoms associated with the disorder, the bone phenotype remains unresponsive. The aim of this study was to investigate and further characterize the skeletal manifestations of the Idua-W392X knock-in mouse model, which carries a nonsense mutation corresponding to the IDUA-W402X mutation found in Hurler syndrome (MPS I-H) patients. μCT analysis of the microarchitecture demonstrated increased cortical thickness, trabecular number, and trabecular connectivity along with decreased trabecular separation in the tibiae of female homozygous Idua-W392X knock-in (IDUA(-/-)) mice, and increased cortical thickness in male IDUA(-/-) tibiae. Cortical density, as determined by μCT, and bone mineral density distribution, as determined by quantitative backscattered microscopy, were equivalent in IDUA(-/-) and wildtype (Wt) bone. However, tibial porosity was increased in IDUA(-/-) cortical bone. Raman spectroscopy results indicated that tibiae from female IDUA(-/-) had decreased phosphate to matrix ratios and increased carbonate to phosphate ratios compared to Wt female tibiae, whereas these ratios remained equivalent in male IDUA(-/-) and Wt tibiae. Femora demonstrated altered geometry and upon torsional loading to failure analysis, female IDUA(-/-) mouse femora exhibited increased torsional ultimate strength, with a decrease in material strength relative to Wt littermates. Taken together, these findings suggest that the IDUA(-/-) mutation results in increased bone torsional strength by altering the

  2. Generation of a Nkx2.2(Cre) knock-in mouse line: Analysis of cell lineages in the central nervous system.

    PubMed

    Jarrar, Wassan; Vauti, Franz; Arnold, Hans-Henning; Holz, Andreas

    2015-01-01

    A Nkx2.2(cre) knock-in mutant mouse line was generated that on the appropriate reporter strain enables cell fate analysis of the Nkx2.2 cell lineage in the central nervous system and elsewhere. We here demonstrate that Nkx2.2 lineage-marked cells reside in the ventral p3 region along the entire length of the CNS and also in pancreas of mouse embryos. Nkx2.2(+) progenitor cells develop into V3 interneurons in spinal cord and generate the branchio-visceral motor nuclei of cranial nerves in hindbrain. Nkx2.2(+) cells in hindbrain also form serotonergic neurons and oligodendrocytes during later developmental stages. In mouse mutants lacking Nkx2.2 protein the neuronal progenitor cells in spinal cord are transformed to the distinct fate of somatic motor neurons including their axonal projections that exit the CNS ventrally and no longer cross the midline at the commissure. These data identify Nkx2.2 as key regulator to determine neuronal subtypes in the p3 domain of the central nervous system.

  3. Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43.

    PubMed

    Stribl, Carola; Samara, Aladin; Trümbach, Dietrich; Peis, Regina; Neumann, Manuela; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Beckers, Johannes; Horsch, Marion; Neff, Frauke; Kremmer, Elisabeth; Koob, Sebastian; Reichert, Andreas S; Hans, Wolfgang; Rozman, Jan; Klingenspor, Martin; Aichler, Michaela; Walch, Axel Karl; Becker, Lore; Klopstock, Thomas; Glasl, Lisa; Hölter, Sabine M; Wurst, Wolfgang; Floss, Thomas

    2014-04-11

    The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43(A315TKi) mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43(A315TKi) animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration.

  4. Mitochondrial Dysfunction and Decrease in Body Weight of a Transgenic Knock-in Mouse Model for TDP-43*

    PubMed Central

    Stribl, Carola; Samara, Aladin; Trümbach, Dietrich; Peis, Regina; Neumann, Manuela; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Beckers, Johannes; Horsch, Marion; Neff, Frauke; Kremmer, Elisabeth; Koob, Sebastian; Reichert, Andreas S.; Hans, Wolfgang; Rozman, Jan; Klingenspor, Martin; Aichler, Michaela; Walch, Axel Karl; Becker, Lore; Klopstock, Thomas; Glasl, Lisa; Hölter, Sabine M.; Wurst, Wolfgang; Floss, Thomas

    2014-01-01

    The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43A315TKi mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43A315TKi animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration. PMID:24515116

  5. Quantitative Electroencephalographic Analysis Provides an Early-Stage Indicator of Disease Onset and Progression in the zQ175 Knock-In Mouse Model of Huntington's Disease

    PubMed Central

    Fisher, Simon P.; Schwartz, Michael D.; Wurts-Black, Sarah; Thomas, Alexia M.; Chen, Tsui-Ming; Miller, Michael A.; Palmerston, Jeremiah B.; Kilduff, Thomas S.; Morairty, Stephen R.

    2016-01-01

    Study Objectives: Patients with Huntington's disease (HD) show a high prevalence of sleep disorders that typically occur prior to the onset of motoric symptoms and neurodegeneration. Our understanding of the pathophysiological alterations in premanifest HD is limited, hindering the ability to measure disease modification in response to treatment. We used a full-length knock-in HD model to determine early changes in the electroencephalogram (EEG) and sleep that may predict the onset and progression of the disease. Methods: A 10-month longitudinal study was designed to determine the effect of the HD mutation on the EEG and sleep/wake changes in heterozygous (HET) and homozygous (HOM) zQ175 mice and wild-type (WT) littermates from 8 to 48 w of age. Mice were instrumented with tethered headmounts to record EEG/electromyography signals. Telemeters were implanted to continuously measure locomotor activity (LMA) and body temperature (Tb). Sleep deprivation (SDep) was performed at 8, 12, 16, 24, 32, and 48 w of age. Results: The HD mutation disrupted the EEG field potential from 8–12 w in an age- and mutant huntington dose-dependent manner, prior to changes in sleep/wake states, LMA, and Tb. Prominent effects of the HD mutation on the EEG included a progressive reduction in low frequency power, a slowing of rapid eye movement peak theta frequency, and the emergence of state-dependent beta/gamma oscillations. There was no effect of genotype on the relative increase in nonrapid eye movement delta power or sleep time in response to SDep. Conclusions: The expression of the Huntington's disease (HD) mutation results in complex EEG alterations that occur prior to deficits in behavioral measures and are one of the earliest phenotypes uncovered in this mouse model. Despite these EEG changes, homeostatic responses to sleep loss were preserved in HET and HOM zQ175 mice. Greater insight into the localization and response of these EEG alterations to novel therapies may enable early

  6. An enhanced Q175 knock-in mouse model of Huntington disease with higher mutant huntingtin levels and accelerated disease phenotypes

    PubMed Central

    Southwell, Amber L.; Smith-Dijak, Amy; Kay, Chris; Sepers, Marja; Villanueva, Erika B.; Parsons, Matthew P.; Xie, Yuanyun; Anderson, Lisa; Felczak, Boguslaw; Waltl, Sabine; Ko, Seunghyun; Cheung, Daphne; Dal Cengio, Louisa; Slama, Ramy; Petoukhov, Eugenia; Raymond, Lynn A.; Hayden, Michael R.

    2016-01-01

    Huntington disease (HD) model mice with heterozygous knock-in (KI) of an expanded CAG tract in exon 1 of the mouse huntingtin (Htt) gene homolog genetically recapitulate the mutation that causes HD, and might be favoured for preclinical studies. However, historically these mice have failed to phenotypically recapitulate the human disease. Thus, homozygous KI mice, which lack wildtype Htt, and are much less relevant to human HD, have been used. The zQ175 model was the first KI mouse to exhibit significant HD-like phenotypes when heterozygous. In an effort to exacerbate HD-like phenotypes and enhance preclinical utility, we have backcrossed zQ175 mice to FVB/N, a strain highly susceptible to neurodegeneration. These Q175F mice display significant HD-like phenotypes along with sudden early death from fatal seizures. The zQ175 KI allele retains a floxed neomycin resistance cassette upstream of the Htt gene locus and produces dramatically reduced mutant Htt as compared to the endogenous wildtype Htt allele. By intercrossing with mice expressing cre in germ line cells, we have excised the neo cassette from Q175F mice generating a new line, Q175FΔneo (Q175FDN). Removal of the neo cassette resulted in a ∼2 fold increase in mutant Htt and rescue of fatal seizures, indicating that the early death phenotype of Q175F mice is caused by Htt deficiency rather than by mutant Htt. Additionally, Q175FDN mice exhibit earlier onset and a greater variety and severity of HD-like phenotypes than Q175F mice or any previously reported KI HD mouse model, making them valuable for preclinical studies. PMID:27378694

  7. Progressive gene dose-dependent disruption of the methamphetamine-sensitive circadian oscillator-driven rhythms in a knock-in mouse model of Huntington's disease.

    PubMed

    Ouk, Koliane; Aungier, Juliet; Morton, A Jennifer

    2016-12-01

    Huntington's disease (HD) is a progressive genetic neurodegenerative disorder characterised by motor and cognitive deficits, as well as sleep and circadian abnormalities. In the R6/2 mouse, a fragment model of HD, rest-activity rhythms controlled by the suprachiasmatic nucleus disintegrate completely by 4months of age. Rhythms driven by a second circadian oscillator, the methamphetamine-sensitive circadian oscillator (MASCO), are disrupted even earlier, and cannot be induced after 2months of age. Here, we studied the effect of the HD mutation on the expression of MASCO-driven rhythms in a more slowly developing, genetically relevant mouse model of HD, the Q175 'knock-in' mouse. We induced expression of MASCO output by administering low dose methamphetamine (0.005%) chronically via the drinking water. We measured locomotor activity in constant darkness in wild-type and Q175 mice at 2 (presymptomatic), 6 (early symptomatic), and 12 (symptomatic) months of age. At 2months, all mice expressed MASCO-driven rhythms, regardless of genotype. At older ages, however, there was a progressive gene dose-dependent deficit in MASCO output in Q175 mice. At 6months of age, these rhythms could be observed in only 45% of heterozygous and 15% of homozygous mice. By 1year of age, 90% of homozygous mice had an impaired MASCO output. There was also an age-dependent disruption of MASCO output seen in wild-type mice. The fact that the progressive deficit in MASCO-driven rhythms in Q175 mice is HD gene dose-dependent suggests that, whatever its role in humans, abnormalities in MASCO output may contribute to the HD circadian phenotype.

  8. Foxc2(CreERT2) knock-in mice mark stage-specific Foxc2-expressing cells during mouse organogenesis.

    PubMed

    Amin, Mohammed Badrul; Miura, Naoyuki; Uddin, Mohammad Khaja Mafij; Islam, Mohammod Johirul; Yoshida, Nobuaki; Iseki, Sachiko; Kume, Tsutomu; Trainor, Paul A; Saitsu, Hirotomo; Aoto, Kazushi

    2017-01-01

    Foxc2, a member of the winged helix transcription factor family, is essential for eye, calvarial bone, cardiovascular and kidney development in mice. Nevertheless, how Foxc2-expressing cells and their descendent cells contribute to the development of these tissues and organs has not been elucidated. Here, we generated a Foxc2 knock-in (Foxc2(CreERT2) ) mouse, in which administration of estrogen receptor antagonist tamoxifen induces nuclear translocation of Cre recombinase in Foxc2-expressing cells. By crossing with ROSA-LacZ reporter mice (Foxc2(CreERT2) ; R26R), the fate of Foxc2 positive (Foxc2(+) ) cells was analyzed through LacZ staining at various embryonic stages. We found Foxc2(+) cell descendants in the supraoccipital and exoccipital bone in E18.5 embryos, when tamoxifen was administered at embryonic day (E) 8.5. Furthermore, Foxc2(+) descendant cranial neural crest cells at E8-10 were restricted to the corneal mesenchyme, while Foxc2(+) cell derived cardiac neural crest cells at E6-12 were found in the aorta, pulmonary trunk and valves, and endocardial cushions. Foxc2(+) cell descendant contributions to the glomerular podocytes in the kidney were also observed following E6.5 tamoxifen treatment. Our results are consistent with previous reports of Foxc2 expression during early embryogenesis and the Foxc2(CreERT2) mouse provides a tool to investigate spatiotemporal roles of Foxc2 and contributions of Foxc2(+) expressing cells during mouse embryogenesis.

  9. A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression.

    PubMed

    Zeineldin, M; Cunningham, J; McGuinness, W; Alltizer, P; Cowley, B; Blanchat, B; Xu, W; Pinson, D; Neufeld, K L

    2012-05-10

    Mutation of the tumor suppressor adenomatous polyposis coli (APC) is considered an initiating step in the genesis of the vast majority of colorectal cancers. APC inhibits the Wnt-signaling pathway by targeting the proto-oncogene β-catenin for destruction by cytoplasmic proteasomes. In the presence of a Wnt signal, or in the absence of functional APC, β-catenin can serve as a transcription cofactor for genes required for cell proliferation such as cyclin-D1 and c-Myc. In cultured cells, APC shuttles between the nucleus and the cytoplasm, with nuclear APC implicated in the inhibition of Wnt target gene expression. Adopting a genetic approach to evaluate the functions of nuclear APC in the context of a whole organism, we generated a mouse model with mutations that inactivate the nuclear localization signals (NLSs) of Apc (Apc(mNLS)). Apc(mNLS/mNLS) mice are viable and fractionation of mouse embryonic fibroblasts (MEFs) isolated from these mice revealed a significant reduction in nuclear Apc as compared with Apc(+/+) MEFs. The levels of Apc and β-catenin protein were not significantly altered in small intestinal epithelia from Apc(mNLS/mNLS) mice. Compared with Apc(+/+) mice, Apc(mNLS/mNLS) mice showed increased proliferation in epithelial cells from the jejunum, ileum and colon. These same tissues from Apc(mNLS/mNLS) mice showed more mRNA from three genes upregulated in response to canonical Wnt signal, c-Myc, axin-2 and cyclin-D1, and less mRNA from Hath-1, which is downregulated in response to Wnt. These observations suggest a role for nuclear Apc in the inhibition of canonical Wnt signaling and the control of epithelial proliferation in intestinal tissue. Furthermore, we found Apc(Min/+) mice, which harbor a mutation that truncates Apc, to have an increased polyp size and multiplicity if they also carry the Apc(mNLS) allele. Taken together, this analysis of the novel Apc(mNLS) mouse model supports a role for nuclear Apc in the control of Wnt target genes

  10. A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression

    PubMed Central

    Zeineldin, Maged; Cunningham, Jamie; McGuinness, William; Alltizer, Preston; Cowley, Brett; Blanchat, Bryan; Xu, Wenhao; Pinson, David; Neufeld, Kristi L.

    2011-01-01

    Mutation of the tumor suppressor adenomatous polyposis coli (APC) is considered an initiating step in the genesis of the vast majority of colorectal cancers. APC inhibits the Wnt signaling pathway by targeting proto-oncogene β-catenin for destruction by cytoplasmic proteasomes. In the presence of a Wnt signal, or in the absence of functional APC, β-catenin can serve as a transcription co-factor for genes required for cell proliferation such as cyclin D1 and c-Myc. In cultured cells, APC shuttles between the nucleus and cytoplasm, with nuclear APC implicated in inhibition of Wnt target gene expression. Taking a genetic approach to evaluate the functions of nuclear APC in the context of a whole organism, we generated a mouse model with mutations that inactivate the nuclear localization signals of Apc (ApcmNLS). ApcmNLS/mNLS mice are viable and fractionation of embryonic fibroblasts (MEFs) isolated from these mice revealed a significant reduction in nuclear Apc compared to Apc+/+ MEFs. The levels of Apc and β-catenin protein were not significantly altered in small intestinal epithelia from ApcmNLS/mNLS mice. Compared to Apc+/+ mice, ApcmNLS/mNLS mice displayed increased proliferation in epithelial cells from the jejunum, ileum, and colon. These same tissues from ApcmNLS/mNLS mice displayed more mRNA from three genes up-regulated in response to canonical Wnt signal, c-Myc, Axin2, and Cyclin D1, and less mRNA from Hath 1 which is down-regulated in response to Wnt. These observations suggest a role for nuclear Apc in inhibition of canonical Wnt signaling and control of epithelial proliferation in intestinal tissue. Furthermore, we found ApcMin/+ mice, which harbor a mutation that truncates Apc, have increased polyp size and multiplicity if they also carry the ApcmNLS allele. Taken together, this analysis of the novel ApcmNLS mouse model supports a role for nuclear Apc in control of Wnt target genes, intestinal epithelial cell proliferation and polyp formation. PMID

  11. Dysfunction of the CNS-Heart Axis in Mouse Models of Huntington's Disease

    PubMed Central

    Mielcarek, Michal; Inuabasi, Linda; Bondulich, Marie K.; Muller, Thomas; Osborne, Georgina F.; Franklin, Sophie A.; Smith, Donna L.; Neueder, Andreas; Rosinski, Jim; Rattray, Ivan; Protti, Andrea; Bates, Gillian P.

    2014-01-01

    Cardiac remodelling and contractile dysfunction occur during both acute and chronic disease processes including the accumulation of insoluble aggregates of misfolded amyloid proteins that are typical features of Alzheimer's, Parkinson's and Huntington's disease (HD). While HD has been described mainly as a neurological disease, multiple epidemiological studies have shown that HD patients exhibit a high incidence of cardiovascular events leading to heart failure, and that this is the second highest cause of death. Given that huntingtin is ubiquitously expressed, cardiomyocytes may be at risk of an HD-related dysfunction. In mice, the forced expression of an expanded polyQ repeat under the control of a cardiac specific promoter led to severe heart failure followed by reduced lifespan. However the mechanism leading to cardiac dysfunction in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that pre-symptomatic animals developed connexin-43 relocation and a significant deregulation of hypertrophic markers and Bdnf transcripts. In the symptomatic animals, pronounced functional changes were visualised by cardiac MRI revealing a contractile dysfunction, which might be a part of dilatated cardiomyopathy (DCM). This was accompanied by the re-expression of foetal genes, apoptotic cardiomyocyte loss and a moderate degree of interstitial fibrosis. To our surprise, we could identify neither mutant HTT aggregates in cardiac tissue nor a HD-specific transcriptional dysregulation, even at the end stage of disease. We postulate that the HD-related cardiomyopathy is caused by altered central autonomic pathways although the pathogenic effects of mutant HTT acting intrinsically in the heart may also be a contributing factor. PMID:25101683

  12. Dysfunction of the CNS-heart axis in mouse models of Huntington's disease.

    PubMed

    Mielcarek, Michal; Inuabasi, Linda; Bondulich, Marie K; Muller, Thomas; Osborne, Georgina F; Franklin, Sophie A; Smith, Donna L; Neueder, Andreas; Rosinski, Jim; Rattray, Ivan; Protti, Andrea; Bates, Gillian P

    2014-08-01

    Cardiac remodelling and contractile dysfunction occur during both acute and chronic disease processes including the accumulation of insoluble aggregates of misfolded amyloid proteins that are typical features of Alzheimer's, Parkinson's and Huntington's disease (HD). While HD has been described mainly as a neurological disease, multiple epidemiological studies have shown that HD patients exhibit a high incidence of cardiovascular events leading to heart failure, and that this is the second highest cause of death. Given that huntingtin is ubiquitously expressed, cardiomyocytes may be at risk of an HD-related dysfunction. In mice, the forced expression of an expanded polyQ repeat under the control of a cardiac specific promoter led to severe heart failure followed by reduced lifespan. However the mechanism leading to cardiac dysfunction in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that pre-symptomatic animals developed connexin-43 relocation and a significant deregulation of hypertrophic markers and Bdnf transcripts. In the symptomatic animals, pronounced functional changes were visualised by cardiac MRI revealing a contractile dysfunction, which might be a part of dilatated cardiomyopathy (DCM). This was accompanied by the re-expression of foetal genes, apoptotic cardiomyocyte loss and a moderate degree of interstitial fibrosis. To our surprise, we could identify neither mutant HTT aggregates in cardiac tissue nor a HD-specific transcriptional dysregulation, even at the end stage of disease. We postulate that the HD-related cardiomyopathy is caused by altered central autonomic pathways although the pathogenic effects of mutant HTT acting intrinsically in the heart may also be a contributing factor.

  13. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia

    PubMed Central

    Hobbs, Catherine M.; Manning, Harriet; Bennett, Cavan; Vasquez, Louella; Severin, Sonia; Brain, Lauren; Mazharian, Alexandra; Guerrero, Jose A.; Li, Juan; Soranzo, Nicole; Green, Anthony R.; Watson, Steve P.

    2013-01-01

    The principal morbidity and mortality in patients with essential thrombocythemia (ET) and polycythemia rubra vera (PV) stems from thrombotic events. Most patients with ET/PV harbor a JAK2V617F mutation, but its role in the thrombotic diathesis remains obscure. Platelet function studies in patients are difficult to interpret because of interindividual heterogeneity, reflecting variations in the proportion of platelets derived from the malignant clone, differences in the presence of additional mutations, and the effects of medical treatments. To circumvent these issues, we have studied a JAK2V617F knock-in mouse model of ET in which all megakaryocytes and platelets express JAK2V617F at a physiological level, equivalent to that present in human ET patients. We show that, in addition to increased differentiation, JAK2V617F-positive megakaryocytes display greater migratory ability and proplatelet formation. We demonstrate in a range of assays that platelet reactivity to agonists is enhanced, with a concomitant increase in platelet aggregation in vitro and a reduced duration of bleeding in vivo. These data suggest that JAK2V617F leads to intrinsic changes in both megakaryocyte and platelet biology beyond an increase in cell number. In support of this hypothesis, we identify multiple differentially expressed genes in JAK2V617F megakaryocytes that may underlie the observed biological differences. PMID:24085768

  14. Reduction in neuronal L-type calcium channel activity in a double knock-in mouse model of Alzheimer’s disease

    PubMed Central

    Thibault, Olivier; Pancani, Tristano; Landfield, Philip W.; Norris, Christopher M.

    2012-01-01

    Increased function of neuronal L-type voltage-sensitive Ca2+ channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer’s disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal “zipper” slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca2+ dysregulation can differ substantially between animal models of normal aging and models of pathological aging. PMID:22265986

  15. An S-opsin knock-in mouse (F81Y) reveals a role for the native ligand 11-cis-retinal in cone opsin biosynthesis.

    PubMed

    Insinna, Christine; Daniele, Lauren L; Davis, Jason A; Larsen, DeLaine D; Kuemmel, Colleen; Wang, Jinhua; Nikonov, Sergei S; Knox, Barry E; Pugh, Edward N

    2012-06-06

    In absence of their natural ligand, 11-cis-retinal, cone opsin G-protein-coupled receptors fail to traffic normally, a condition associated with photoreceptor degeneration and blindness. We created a mouse with a point mutation (F81Y) in cone S-opsin. As expected, cones with this knock-in mutation respond to light with maximal sensitivity red-shifted from 360 to 420 nm, consistent with an altered interaction between the apoprotein and ligand, 11-cis-retinal. However, cones expressing F81Y S-opsin showed an ∼3-fold reduced absolute sensitivity that was associated with a corresponding reduction in S-opsin protein expression. The reduced S-opsin expression did not arise from decreased S-opsin mRNA or cone degeneration, but rather from enhanced endoplasmic reticulum (ER)-associated degradation of the nascent protein. Exogenously increased 11-cis-retinal restored F81Y S-opsin protein expression to normal levels, suggesting that ligand binding in the ER facilitates proper folding. Immunohistochemistry and electron microscopy of normal retinas showed that Mueller cells, which synthesize a precursor of 11-cis-retinal, are closely adjoined to the cone ER, so they could deliver the ligand to the site of opsin synthesis. Together, these results suggest that the binding of 11-cis-retinal in the ER is important for normal folding during cone opsin biosynthesis.

  16. Conditional activation of Pik3caH1047R in a knock-in mouse model promotes mammary tumorigenesis and emergence of mutations

    PubMed Central

    Yuan, W; Stawiski, E; Janakiraman, V; Chan, E; Durinck, S; Edgar, K A; Kljavin, N M; Rivers, C S; Gnad, F; Roose-Girma, M; Haverty, P M; Fedorowicz, G; Heldens, S; Soriano, R H; Zhang, Z; Wallin, J J; Johnson, L; Merchant, M; Modrusan, Z; Stern, H M; Seshagiri, S

    2013-01-01

    Oncogenic mutations in PIK3CA, which encodes the phosphoinositide-3-kinase (PI3K) catalytic subunit p110α, occur in ∼25% of human breast cancers. In this study, we report the development of a knock-in mouse model for breast cancer where the endogenous Pik3ca allele was modified to allow tissue-specific conditional expression of a frequently found Pik3caH1047R (Pik3cae20H1047R) mutant allele. We found that activation of the latent Pik3caH1047R allele resulted in breast tumors with multiple histological types. Whole-exome analysis of the Pik3caH1047R-driven mammary tumors identified multiple mutations, including Trp53 mutations that appeared spontaneously during the development of adenocarinoma and spindle cell tumors. Further, we used this model to test the efficacy of GDC-0941, a PI3K inhibitor, in clinical development, and showed that the tumors respond to PI3K inhibition. PMID:22370636

  17. Treadmill exercise delays the onset of non-motor behaviors and striatal pathology in the CAG140 knock-in mouse model of Huntington's disease.

    PubMed

    Stefanko, D P; Shah, V D; Yamasaki, W K; Petzinger, G M; Jakowec, M W

    2017-09-01

    Depression, cognitive impairments, and other neuropsychiatric disturbances are common during the prodromal phase of Huntington's disease (HD) well before the onset of classical motor symptoms of this degenerative disorder. The purpose of this study was to examine the potential impact of physical activity in the form of exercise on a motorized treadmill on non-motor behavioral features including depression-like behavior and cognition in the CAG140 knock-in (KI) mouse model of HD. The CAG140 KI mouse model has a long lifespan compared to other HD rodent models with HD motor deficits emerging after 12months of age and thus provides the opportunity to investigate early life interventions such as exercise on disease progression. Motorized treadmill running was initiated at 4weeks of age (1h per session, 3 times per week) and continued for 6months. Non-motor behaviors were assessed up to 6months of age and included analysis of depression-like behavior (using the tail-suspension and forced-swim tests) and cognition (using the T-maze and object recognition tests). At both 4 and 6months of age, CAG140 KI mice displayed significant depression-like behavior in the forced swim and tail suspension tests and cognitive impairment by deficits in reversal relearning in the T-maze test. These deficits were not evident in mice engaged in treadmill running. In addition, exercise restored striatal dopamine D2 receptor expression and dopamine neurotransmitter levels both reduced in sedentary HD mice. Finally, we examined the pattern of striatal expression of mutant huntingtin (mHTT) protein and showed that the number and intensity of immunohistochemical staining patterns of intranuclear aggregates were significantly reduced with exercise. Altogether these findings begin to address the potential impact of lifestyle and early intervention such as exercise on modifying HD progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Disruption of the developmentally-regulated Col2a1 pre-mRNA alternative splicing switch in a transgenic knock-in mouse model

    PubMed Central

    Lewis, Renate; Ravindran, Soumya; Wirthlin, Louisa; Traeger, Geoffrey; Fernandes, Russell J.; McAlinden, Audrey

    2012-01-01

    The present study describes the generation of a knock-in mouse model to address the role of type II procollagen (Col2a1) alternative splicing in skeletal development and maintenance. Alternative splicing of Col2a1 precursor mRNA is a developmentally-regulated event that only occurs in chondrogenic tissue. Normally, chondroprogenitor cells synthesize predominantly exon 2-containing mRNA isoforms (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. Another isoform, IIC, has also been identified that contains a truncated exon 2 and is not translated into protein. The biological significance of this IIA/IID to IIB splicing switch is not known. Utilizing a splice site targeting knock-in approach, a 4 nucleotide mutation was created to convert the 5 splice site of Col2a1 exon 2 from a weak, non-consensus sequence to a strong, consensus splice site. This resulted in apparent expression of only the IIA mRNA isoform, as confirmed in vitro by splicing of a type II procollagen mini-gene containing the 5′ splice site mutation. To test the splice site targeting approach in vivo, homozygote mice engineered to retain IIA exon 2 (Col2a1+ex2) were generated. Chondrocytes from hindlimb epiphyseal cartilage of homozygote mice were shown to express only IIA mRNA and protein at all pre- and post-natal developmental stages analyzed (E12.5, E16.5, P0, P3, P7, P14, P28 and P70). As expected, type IIB procollagen was the major isoform produced in wild type cartilage at all post-natal time points. Col2a1+ex2 homozygote mice are viable, appear healthy and display no overt phenotype to date. However, research is currently underway to investigate the biological consequence of persistent expression of the exon 2-encoded conserved cysteine-rich domain in post-natal skeletal tissues. PMID:22248926

  19. TP53 mutations induced by BPDE in Xpa-WT and Xpa-Null human TP53 knock-in (Hupki) mouse embryo fibroblasts

    PubMed Central

    Kucab, Jill E.; van Steeg, Harry; Luijten, Mirjam; Schmeiser, Heinz H.; White, Paul A.; Phillips, David H.; Arlt, Volker M.

    2015-01-01

    Somatic mutations in the tumour suppressor gene TP53 occur in more than 50% of human tumours; in some instances exposure to environmental carcinogens can be linked to characteristic mutational signatures. The Hupki (human TP53 knock-in) mouse embryo fibroblast (HUF) immortalization assay (HIMA) is a useful model for studying the impact of environmental carcinogens on TP53 mutagenesis. In an effort to increase the frequency of TP53-mutated clones achievable in the HIMA, we generated nucleotide excision repair (NER)-deficient HUFs by crossing the Hupki mouse with an Xpa-knockout (Xpa-Null) mouse. We hypothesized that carcinogen-induced DNA adducts would persist in the TP53 sequence of Xpa-Null HUFs leading to an increased propensity for mismatched base pairing and mutation during replication of adducted DNA. We found that Xpa-Null Hupki mice, and HUFs derived from them, were more sensitive to the environmental carcinogen benzo[a]pyrene (BaP) than their wild-type (Xpa-WT) counterparts. Following treatment with the reactive metabolite of BaP, benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), Xpa-WT and Xpa-Null HUF cultures were subjected to the HIMA. A significant increase in TP53 mutations on the transcribed strand was detected in Xpa-Null HUFs compared to Xpa-WT HUFs, but the TP53-mutant frequency overall was not significantly different between the two genotypes. BPDE induced mutations primarily at G:C base pairs, with approximately half occurring at CpG sites, and the predominant mutation type was G:C > T:A in both Xpa-WT and Xpa-Null cells. Further, several of the TP53 mutation hotspots identified in smokers’ lung cancer were mutated by BPDE in HUFs (codons 157, 158, 245, 248, 249, 273). Therefore, the pattern and spectrum of BPDE-induced TP53 mutations in the HIMA are consistent with TP53 mutations detected in lung tumours of smokers. While Xpa-Null HUFs exhibited increased sensitivity to BPDE-induced damage on the transcribed strand, NER-deficiency did not

  20. TP53 mutations induced by BPDE in Xpa-WT and Xpa-Null human TP53 knock-in (Hupki) mouse embryo fibroblasts.

    PubMed

    Kucab, Jill E; van Steeg, Harry; Luijten, Mirjam; Schmeiser, Heinz H; White, Paul A; Phillips, David H; Arlt, Volker M

    2015-03-01

    Somatic mutations in the tumour suppressor gene TP53 occur in more than 50% of human tumours; in some instances exposure to environmental carcinogens can be linked to characteristic mutational signatures. The Hupki (human TP53 knock-in) mouse embryo fibroblast (HUF) immortalization assay (HIMA) is a useful model for studying the impact of environmental carcinogens on TP53 mutagenesis. In an effort to increase the frequency of TP53-mutated clones achievable in the HIMA, we generated nucleotide excision repair (NER)-deficient HUFs by crossing the Hupki mouse with an Xpa-knockout (Xpa-Null) mouse. We hypothesized that carcinogen-induced DNA adducts would persist in the TP53 sequence of Xpa-Null HUFs leading to an increased propensity for mismatched base pairing and mutation during replication of adducted DNA. We found that Xpa-Null Hupki mice, and HUFs derived from them, were more sensitive to the environmental carcinogen benzo[a]pyrene (BaP) than their wild-type (Xpa-WT) counterparts. Following treatment with the reactive metabolite of BaP, benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), Xpa-WT and Xpa-Null HUF cultures were subjected to the HIMA. A significant increase in TP53 mutations on the transcribed strand was detected in Xpa-Null HUFs compared to Xpa-WT HUFs, but the TP53-mutant frequency overall was not significantly different between the two genotypes. BPDE induced mutations primarily at G:C base pairs, with approximately half occurring at CpG sites, and the predominant mutation type was G:C>T:A in both Xpa-WT and Xpa-Null cells. Further, several of the TP53 mutation hotspots identified in smokers' lung cancer were mutated by BPDE in HUFs (codons 157, 158, 245, 248, 249, 273). Therefore, the pattern and spectrum of BPDE-induced TP53 mutations in the HIMA are consistent with TP53 mutations detected in lung tumours of smokers. While Xpa-Null HUFs exhibited increased sensitivity to BPDE-induced damage on the transcribed strand, NER-deficiency did not enhance TP53

  1. Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofuscin

    PubMed Central

    Vasireddy, Vidyullatha; Jablonski, Monica M.; Khan, Naheed W.; Wang, Xiao Fei; Sahu, Priya; Sparrow, Janet R; Ayyagari, Radha

    2009-01-01

    The mechanism underlying photoreceptor degeneration in autosomal dominant Stargardt like macular degeneration (STGD3) due to mutations in the elongation of very long chain fatty acids-4 (ELOVL4) gene is not fully understood. To evaluate the pathological events associated with STGD3, we used a mouse model that mimics the human STGD3 phenotype and studied the progression of retinal degeneration. Morphological changes in the retina of Elovl4 5 bp-deletion knock-in mice (E_mut+/− ) were evaluated at 22 months of age. The localization of ELOVL4, and the expression pattern of inner retinal tissue marker proteins, and ubiquitin were determined by immunofluorescence labeling of retinal sections. Levels of the retinal pigment epithelium (RPE) lipofuscin fluorophores were measured by quantitative HPLC. Morphological evaluation of the retina revealed an accumulation of RPE debris in the subretinal space. A significant increase in the amount of ELOVL4 was observed in the outer plexiform layer in E_mut +/− mice compared to controls. Apart from the accumulation of ELOVL4, E_mut +/− mice also exhibited high expression of ubiquitin in the retina. Analysis of lipofuscin fluorophores in the RPE showed a significant elevation of A2E and compounds of the all-trans- retinal dimer series in retinas from four and ten month old E_mut +/− mice compared to wild-type littermates. These observations suggest that abnormal accumulation of ELOVL4 protein and lipofuscin may lead to photoreceptor degeneration in E_mut +/− mice. PMID:19682985

  2. Abnormal dendrite and spine morphology in primary visual cortex in the CGG knock-in mouse model of the fragile X premutation.

    PubMed

    Berman, Robert F; Murray, Karl D; Arque, Gloria; Hunsaker, Michael R; Wenzel, H Jürgen

    2012-06-01

    The fragile X mental retardation 1 gene (Fmr1) is polymorphic for CGG trinucleotide repeat number in the 5'-untranslated region, with repeat lengths <45 associated with typical development and repeat lengths >200 resulting in hypermethylation and transcriptional silencing of the gene and mental retardation in the fragile X Syndrome (FXS). Individuals with CGG repeat expansions between 55 and 200 are carriers of the fragile X premutation (PM). PM carriers show a phenotype that can include anxiety, depression, social phobia, and memory deficits. They are also at risk for developing fragile X-associated tremor/ataxia syndrome (FXTAS), a late onset neurodegenerative disorder characterized by tremor, ataxia, cognitive impairment, and neuropathologic features including intranuclear inclusions in neurons and astrocytes, loss of Purkinje cells, and white matter disease. However, very little is known about dendritic morphology in PM or in FXTAS. Therefore, we carried out a Golgi study of dendritic complexity and dendritic spine morphology in layer II/III pyramidal neurons in primary visual cortex in a knock-in (KI) mouse model of the PM. These CGG KI mice carry an expanded CGG trinucleotide repeat on Fmr1, and model many features of the PM and FXTAS. Compared to wild-type (WT) mice, CGG KI mice showed fewer dendritic branches proximal to the soma, reduced total dendritic length, and a higher frequency of longer dendritic spines. The distribution of morphologic spine types (e.g., stubby, mushroom, filopodial) did not differ between WT and KI mice. These findings demonstrate that synaptic circuitry is abnormal in visual cortex of mice used to model the PM, and suggest that such changes may underlie neurologic features found in individuals carrying the PM as well as in individuals with FXTAS. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  3. Time course of choice reaction time deficits in the Hdh(Q92) knock-in mouse model of Huntington's disease in the operant serial implicit learning task (SILT).

    PubMed

    Trueman, Rebecca C; Brooks, Simon P; Jones, Lesley; Dunnett, Stephen B

    2008-06-03

    A range of transgenic and knock-in mouse models of Huntington's disease have been created since identification in 1993 of the disease mutation in the HD gene. Knock-in models that express the full-length mutant protein tend to exhibit less severe behavioural deficits than transgenic models and so require more sensitive tasks in order to reveal impairments. To achieve this, we therefore used a Serial Implicit Learning Task (SILT), which measures serial reaction times to visual stimuli, requiring detection and responding in both predictable and unpredictable locations in the 9-hole operant chamber. We have previously reported that knock-in Hdh(Q92/Q92) mice exhibit a modest impairment in learning the SILT tasks at 4 months of age, prior to the formation of overt neuronal nuclear inclusions. In the present study we have explored the time course of the development of impairments from 5 to 14 months of age. The deficit previously found in accuracy and reaction time was present at all ages examined in these Hdh(Q92/Q92) mice; the deficit was not progressive, and did not correlate with the evolution of neuronal nuclear inclusions.

  4. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse.

    PubMed

    Karsten, Christian M; Laumonnier, Yves; Eurich, Benjamin; Ender, Fanny; Bröker, Katharina; Roy, Sreeja; Czabanska, Anna; Vollbrandt, Tillman; Figge, Julia; Köhl, Jörg

    2015-02-15

    Many of the biological properties of C5a are mediated through activation of its receptor (C5aR1), the expression of which has been demonstrated convincingly on myeloid cells, such as neutrophils, monocytes, and macrophages. In contrast, conflicting results exist regarding C5aR1 expression in dendritic cells (DCs) and lymphoid lineage cells. In this article, we report the generation of a floxed GFP-C5aR1 reporter knock-in mouse. Using this mouse strain, we confirmed strong C5aR1 expression in neutrophils from bone marrow, blood, lung, and spleen, as well as in peritoneal macrophages. Further, we show C5aR1 expression in lung eosinophils, lung- and lamina propria-resident and alveolar macrophages, bone marrow-derived DCs, and lung-resident CD11b(+) and monocyte-derived DCs, whereas intestinal and pulmonary CD103(+) DCs stained negative. Also, some splenic NKT cells expressed GFP, whereas naive NK cells and B2 cells lacked GFP expression. Finally, we did not observe any C5aR1 expression in naive or activated CD4(+) Th cells in vitro or in vivo. Mating the floxed GFP-C5aR1 mouse strain with LysMCre mice, we were able to specifically delete C5aR1 in neutrophils and macrophages, whereas C5aR1 expression was retained in DCs. In summary, our findings suggest that C5aR1 expression in mice is largely restricted to cells of the myeloid lineage. The novel floxed C5aR1 reporter knock-in mouse will prove useful to track C5aR1 expression in experimental models of acute and chronic inflammation and to conditionally delete C5aR1 in immune cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. High resolution magnetic resonance imaging for characterization of the neuroligin-3 knock-in mouse model associated with autism spectrum disorder.

    PubMed

    Kumar, Manoj; Duda, Jeffery T; Hwang, Wei-Ting; Kenworthy, Charles; Ittyerah, Ranjit; Pickup, Stephen; Brodkin, Edward S; Gee, James C; Abel, Ted; Poptani, Harish

    2014-01-01

    Autism spectrum disorders (ASD) comprise an etiologically heterogeneous set of neurodevelopmental disorders. Neuroligin-3 (NL-3) is a cell adhesion protein that mediates synapse development and has been implicated in ASD. We performed ex-vivo high resolution magnetic resonance imaging (MRI), including diffusion tensor imaging (DTI) and behavioral (social approach and zero maze) tests at 3 different time points (30, 50 and 70 days-of-age) on NL-3 and wild-type littermates to assess developmental brain abnormalities in NL-3 mice. MRI data were segmented in 39 different gray and white matter regions. Volumetric measurements, along with DTI indices from these segmented regions were also performed. After controlling for age and gender, the NL-3 knock-in animals demonstrated significantly reduced sociability and lower anxiety-related behavior in comparison to their wild type littermates. Significantly reduced volume of several white and gray matter regions in the NL-3 knock-in mice were also observed after considering age, gender and time point as covariates. These findings suggest that structural changes in the brain of NL-3 mice are induced by the mutation in the NL-3 gene. No significant differences in DTI indices were observed, which suggests that the NL-3 mutation may not have a profound effect on water diffusion as detected by DTI. The volumetric and DTI studies aid in understanding the biology of disrupting function on an ASD risk model and may assist in the development of imaging biomarkers for ASD.

  6. Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse.

    PubMed

    Nakamura, Yasuko; Morrow, Danielle H; Modgil, Amit; Huyghe, Deborah; Deeb, Tarek Z; Lumb, Michael J; Davies, Paul A; Moss, Stephen J

    2016-06-03

    The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1-3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.

  7. TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts

    PubMed Central

    Kucab, Jill E.; Zwart, Edwin P.; van Steeg, Harry; Luijten, Mirjam; Schmeiser, Heinz H.; Phillips, David H.; Arlt, Volker M.

    2016-01-01

    3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:C > T:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision repair (NER) on 3-NBA-induced mutagenesis of the human tumour suppressor gene TP53 and the reporter gene lacZ. To this end we utilised Xpa -knockout (Xpa-Null) human TP53 knock-in (Hupki) embryo fibroblasts (HUFs). As Xpa is essential for NER of bulky DNA adducts, we hypothesized that DNA adducts induced by 3-NBA would persist in the genomes of Xpa-Null cells and lead to an increased frequency of mutation. The HUF immortalisation assay was used to select for cells harbouring TP53 mutations following mutagen exposure. We found that Xpa-Null Hupki mice and HUFs were more sensitive to 3-NBA treatment than their wild-type (Xpa-WT) counterparts. However, following 3-NBA treatment and immortalisation, a similar frequency of TP53-mutant clones arose from Xpa-WT and Xpa-Null HUF cultures. In cells from both Xpa genotypes G:C > T:A transversion was the predominant TP53 mutation type and mutations exhibited bias towards the non-transcribed strand. Thirty-two percent of 3-NBA-induced TP53 mutations occurred at CpG sites, all of which are hotspots for mutation in smokers’ lung cancer (codons 157, 158, 175, 245, 248, 273, 282). We also examined 3-NBA-induced mutagenesis of an integrated lacZ reporter gene in HUFs, where we again observed a similar mutant frequency in Xpa-WT and Xpa-Null cells. Our findings suggest that 3-NBA-DNA adducts may evade removal by global genomic NER; the persistence of 3-NBA adducts in DNA may be an important factor in its mutagenicity. PMID:26723900

  8. TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts.

    PubMed

    Kucab, Jill E; Zwart, Edwin P; van Steeg, Harry; Luijten, Mirjam; Schmeiser, Heinz H; Phillips, David H; Arlt, Volker M

    2016-03-01

    3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:CT:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision repair (NER) on 3-NBA-induced mutagenesis of the human tumour suppressor gene TP53 and the reporter gene lacZ. To this end we utilised Xpa -knockout (Xpa-Null) human TP53 knock-in (Hupki) embryo fibroblasts (HUFs). As Xpa is essential for NER of bulky DNA adducts, we hypothesized that DNA adducts induced by 3-NBA would persist in the genomes of Xpa-Null cells and lead to an increased frequency of mutation. The HUF immortalisation assay was used to select for cells harbouring TP53 mutations following mutagen exposure. We found that Xpa-Null Hupki mice and HUFs were more sensitive to 3-NBA treatment than their wild-type (Xpa-WT) counterparts. However, following 3-NBA treatment and immortalisation, a similar frequency of TP53-mutant clones arose from Xpa-WT and Xpa-Null HUF cultures. In cells from both Xpa genotypes G:CT:A transversion was the predominant TP53 mutation type and mutations exhibited bias towards the non-transcribed strand. Thirty-two percent of 3-NBA-induced TP53 mutations occurred at CpG sites, all of which are hotspots for mutation in smokers' lung cancer (codons 157, 158, 175, 245, 248, 273, 282). We also examined 3-NBA-induced mutagenesis of an integrated lacZ reporter gene in HUFs, where we again observed a similar mutant frequency in Xpa-WT and Xpa-Null cells. Our findings suggest that 3-NBA-DNA adducts may evade removal by global genomic NER; the persistence of 3-NBA adducts in DNA may be an important factor in its mutagenicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Construction of a viral T2A-peptide based knock-in mouse model for enhanced Cre recombinase activity and fluorescent labeling of podocytes.

    PubMed

    Koehler, Sybille; Brähler, Sebastian; Braun, Fabian; Hagmann, Henning; Rinschen, Markus M; Späth, Martin R; Höhne, Martin; Wunderlich, F Thomas; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T

    2017-02-07

    Podocyte injury is a key event in glomerular disease leading to proteinuria and opening the path toward glomerular scarring. As a consequence, glomerular research strives to discover molecular mechanisms and signaling pathways affecting podocyte health. The hNphs2.Cre mouse model has been a valuable tool to manipulate podocyte-specific genes and to label podocytes for lineage tracing and purification. Here we designed a novel podocyte-specific tricistronic Cre mouse model combining codon improved Cre expression and fluorescent cell labeling with mTomato under the control of the endogenous Nphs2 promoter using viral T2A-peptides. Independent expression of endogenous podocin, codon improved Cre, and mTomato was confirmed by immunofluorescence, fluorescent activated cell sorting and protein analyses. Nphs2(pod.T2A.ciCre.T2A.mTomato/wild-type) mice developed normally and did not show any signs of glomerular disease or off-target effects under basal conditions and in states of disease. Nphs2(pod.T2A.ciCre.T2A.mTomato/wild-type)-mediated gene recombination was superior to conventional hNphs2.Cre mice-mediated gene recombination. Last, we compared Cre efficiency in a disease model by mating Nphs2(pod.T2A.ciCre.T2A.mTomato/wild-type) and hNphs2.Cre mice to Phb2(fl/fl) mice. The podocyte-specific Phb2 knockout by Nphs2(pod.T2A.ciCre.T2A.mTomato/wild-type) mice resulted in an aggravated glomerular injury as compared to a podocyte-specific Phb2 gene deletion triggered by hNphs2.Cre. Thus, we generated the first tricistronic podocyte mouse model combining enhanced Cre recombinase efficiency and fluorescent labeling in podocytes without the need for additional matings with conventional reporter mouse lines.

  10. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias

    PubMed Central

    Zorko, Nicholas A.; Bernot, Kelsie M.; Whitman, Susan P.; Siebenaler, Ronald F.; Ahmed, Elshafa H.; Marcucci, Gabriele G.; Yanes, Daniel A.; McConnell, Kathleen K.; Mao, Charlene; Kalu, Chidimma; Zhang, Xiaoli; Jarjoura, David; Dorrance, Adrienne M.; Heerema, Nyla A.; Lee, Benjamin H.; Huang, Gang; Marcucci, Guido

    2012-01-01

    The MLL-partial tandem duplication (PTD) associates with high-risk cytogenetically normal acute myeloid leukemia (AML). Concurrent presence of FLT3-internal tandem duplication (ITD) is observed in 25% of patients with MLL-PTD AML. However, mice expressing either Mll-PTD or Flt3-ITD do not develop AML, suggesting that 2 mutations are necessary for the AML phenotype. Thus, we generated a mouse expressing both Mll-PTD and Flt3-ITD. MllPTD/WT:Flt3ITD/WT mice developed acute leukemia with 100% penetrance, at a median of 49 weeks. As in human MLL-PTD and/or the FLT3-ITD AML, mouse blasts exhibited normal cytogenetics, decreased Mll-WT-to-Mll-PTD ratio, loss of the Flt3-WT allele, and increased total Flt3. Highlighting the adverse impact of FLT3-ITD dosage on patient survival, mice with homozygous Flt3-ITD alleles, MllPTD/WT:Flt3ITD/ITD, demonstrated a nearly 30-week reduction in latency to overt AML. Here we demonstrate, for the first time, that Mll-PTD contributes to leukemogenesis as a gain-of-function mutation and describe a novel murine model closely recapitulating human AML. PMID:22674806

  11. Post-natal heart adaptation in a knock-in mouse model of calsequestrin 2-linked recessive catecholaminergic polymorphic ventricular tachycardia.

    PubMed

    Valle, Giorgia; Boncompagni, Simona; Sacchetto, Roberta; Protasi, Feliciano; Volpe, Pompeo

    2014-02-15

    Cardiac calsequestrin (CASQ2) contributes to intracellular Ca(2+) homeostasis by virtue of its low-affinity/high-capacity Ca(2+) binding properties, maintains sarcoplasmic reticulum (SR) architecture and regulates excitation-contraction coupling, especially or exclusively upon β-adrenergic stimulation. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease associated with cardiac arrest in children or young adults. Recessive CPVT variants are due to mutations in the CASQ2 gene. Molecular and ultra-structural properties were studied in hearts of CASQ2(R33Q/R33Q) and of CASQ2(-/-) mice from post-natal day 2 to week 8. The drastic reduction of CASQ2-R33Q is an early developmental event and is accompanied by down-regulation of triadin and junctin, and morphological changes of jSR and of SR-transverse-tubule junctions. Although endoplasmic reticulum stress is activated, no signs of either apoptosis or autophagy are detected. The other model of recessive CPVT, the CASQ2(-/-) mouse, does not display the same adaptive pattern. Expression of CASQ2-R33Q influences molecular and ultra-structural heart development; post-natal, adaptive changes appear capable of ensuring until adulthood a new pathophysiological equilibrium. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Generation and Characterization of Knock-in Mouse Models Expressing Versions of Huntingtin with Either an N17 or a Combined PolyQ and Proline-Rich Region Deletion.

    PubMed

    André, Emily A; Braatz, Elise M; Liu, Jeh-Ping; Zeitlin, Scott O

    2017-01-01

    The polyglutamine (polyQ) stretch of the Huntingtin protein (HTT) in mammals is flanked by a highly conserved 17 amino acid N-terminal domain (N17), and a proline-rich region (PRR). The PRR is a binding site for many HTT-interacting proteins, and the N17 domain regulates several normal HTT functions, including HTT's ability to associate with membranes and organelles. This study investigates the consequence of deleting mouse Huntingtin's (Htt's) N17 domain or a combination of its polyQ stretch and PRR (QP) on normal Htt function in mice. Knock-in mice expressing versions of Htt lacking either the N17 domain (HttΔN17) or both the polyQ and PRR domains (HttΔQP) were generated, and their behavior, autophagy function, and neuropathology were evaluated. Homozygous and hemizygous HttΔQP/ΔQP, HttΔN17/ΔN17, HttΔQP/-, and HttΔN17/- mice were generated at the expected Mendelian frequency. HttΔQP/ΔQP mutants exhibit improvements in motor coordination compared to controls (Htt+/+). In contrast, HttΔN17/ΔN17 mutants do not exhibit any changes in motor coordination, but they do display variable changes in spatial learning that are dependent on their age at testing. Neither mutant exhibited any changes in basal autophagy in comparison to controls, but thalamostriatal synapses in the dorsal striatum of 24-month-old HttΔN17/ΔN17 mice were decreased compared to controls. These findings support the hypothesis that Htt's N17 and QP domains are dispensable for its critical functions during early embryonic development, but are likely more important for Htt functions in CNS development or maintenance.

  13. Differential loss of thalamostriatal and corticostriatal input to striatal projection neuron types prior to overt motor symptoms in the Q140 knock-in mouse model of Huntington's disease.

    PubMed

    Deng, Yun-Ping; Wong, Ting; Wan, Jim Y; Reiner, Anton

    2014-01-01

    Motor slowing and forebrain white matter loss have been reported in premanifest Huntington's disease (HD) prior to substantial striatal neuron loss. These findings raise the possibility that early motor defects in HD may be related to loss of excitatory input to striatum. In a prior study, we showed that in the heterozygous Q140 knock-in mouse model of HD that loss of thalamostriatal axospinous terminals is evident by 4 months, and loss of corticostriatal axospinous terminals is evident at 12 months, before striatal projection neuron pathology. In the present study, we specifically characterized the loss of thalamostriatal and corticostriatal terminals on direct (dSPN) and indirect (iSPN) pathway striatal projection neurons, using immunolabeling to identify thalamostriatal (VGLUT2+) and corticostriatal (VGLUT1+) axospinous terminals, and D1 receptor immunolabeling to distinguish dSPN (D1+) and iSPN (D1-) synaptic targets. We found that the loss of corticostriatal terminals at 12 months of age was preferential for D1+ spines, and especially involved smaller terminals, presumptively of the intratelencephalically projecting (IT) type. By contrast, indirect pathway D1- spines showed little loss of axospinous terminals at the same age. Thalamostriatal terminal loss was comparable for D1+ and D1- spines at both 4 and 12 months. Regression analysis showed that the loss of VGLUT1+ terminals on D1+ spines was correlated with a slight decline in open field motor parameters at 12 months. Our overall results raise the possibility that differential thalamic and cortical input loss to SPNs is an early event in human HD, with cortical loss to dSPNs in particular contributing to premanifest motor slowing.

  14. Altered sensitivity of cerebellar granule cells to glutamate receptor overactivation in the Cln3Δex7/8-knock-in mouse model of juvenile neuronal ceroid lipofuscinosis

    PubMed Central

    Finn, Rozzy; Kovács, Attila D.; Pearce, David A.

    2011-01-01

    The juvenile onset form of neuronal ceroid lipofuscinoses (JNCL) is a recessively inherited lysosomal storage disorder characterized by progressive neurodegeneration. JNCL results from mutations in the CLN3 gene that encodes a lysosomal membrane protein with unknown function. Utilizing a Cln3-knock-out mouse model of JNCL that was created on the 129S6/SvEv genetic background, we have previously demonstrated that CLN3-deficient cerebellar granule cells (CGCs) have a selectively increased sensitivity to AMPA-type glutamate receptor-mediated toxicity. Our recent findings that CGCs from 129S6/SvEv and C57BL/6J wild type (WT) mice have significant differences in glutamate receptor expression and in excitotoxic vulnerability indicated that the genetic background possibly have a strong influence on how glutamate receptor function is dysregulated in CLN3-deficient neurons. Indeed, here we show that in the Cln3Δex7/8-knock-in mouse model, that is on the C57BL/6J genetic background, mimics the most frequent mutation observed in JNCL patients and considered a null mutant, the sensitivity of CGCs to both AMPA- and NMDA-type glutamate receptor overactivations is altered. Cultured wild type and Cln3Δex7/8 CGCs were equally sensitive to AMPA toxicity after 2 or 3 weeks in vitro, whereas the subunit-selective AMPA receptor agonist, CPW-399, induced significantly more cell death in mature, 3-week-old Cln3Δex7/8 cultures. NMDA receptor-mediated toxicity changed during in vitro development: Cln3Δex7/8 CGCs were less sensitive to high concentration of NMDA after 2 weeks in culture but became more vulnerable than their WT counterparts after 3 weeks in vitro. Abnormally altered glutamate receptor function in the cerebellum may result in motor deficits, and we confirmed that 7-week-old Cln3Δex7/8 mice, similarly to Cln3-knock-out mice, have a motor coordination deficit as measured by an accelerating rotarod. Our results demonstrate altered glutamate receptor function in Cln3Δex7

  15. Vulnerability of calbindin, calretinin and parvalbumin in a transgenic/knock-in APPswe/PS1dE9 mouse model of Alzheimer disease together with disruption of hippocampal neurogenesis.

    PubMed

    Verdaguer, Ester; Brox, Susana; Petrov, Dmitry; Olloquequi, Jordi; Romero, Rafael; de Lemos, M Luisa; Camins, Antoni; Auladell, Carme

    2015-09-01

    The pathogenesis of Alzheimer disease (AD) is characterized by accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) and by the presence of intracellular neurofibrillary tangles (NFTs), leading to neurotoxicity. The exact mechanisms whereby Aβ triggers brain alterations are unclear. However, accumulating evidence suggests that a deregulation of Ca(2+) signaling may play a major role in disease progression. Calcium-buffering proteins, including calbindin-D28K (CB), calretinin (CR) and parvalbumin (PV), may offer neuroprotection by maintaining calcium homeostasis. Although marked reductions in these proteins have been observed in the brains of mice and humans with AD, their contribution to AD pathology remains unclear. The aim of the present study was to analyze distribution patterns of CB(+,) CR(+) and PV(+) interneurons in different areas of the hippocampus, a brain region that is severely affected in AD. A transgenic knock-in APPswe/PS1dE9 mouse model of familial AD was used. The data were obtained from the brains of 3- and 12-month-old animals. These ages roughly correspond to an early mature adult (prior to clinical manifestations) and a late middle-age (clinical symptoms readily detectable) phase in human AD patients. Immunostaining revealed increases in CB and PV immunoreactivity (IR) in the hippocampus of 3-month-old transgenic mice, compared to wild-type animals. Possibly, these proteins are upregulated in an attempt to control cellular homeostasis and synaptic plasticity. However, the pattern of CB-IR was reversed in 12-month-old animals, potentially indicating a loss of cellular capacity to respond to pathophysiological processes. In addition, at this age, a noticeable increase in PV-IR was observed, suggesting the presence of hippocampal network hyperactivity in older AD-like mice. Our results indicate that CaBP(+) neuronal subpopulations play a role in adult neurogenesis and in AD pathology, particularly at early disease

  16. Estrogen Receptor Alpha G525L Knock-In-Mice

    DTIC Science & Technology

    2006-03-01

    Padilla-Banks E, Clark G, Newbold RR. Assessing estrogenic activity of phytochemicals using transcriptional activation and immature mouse...AD_________________ Award Number: W81XWH-04-1-0347 TITLE: Estrogen Receptor Alpha G525L...TITLE AND SUBTITLE Estrogen Receptor Alpha G525L Knock-In Mice 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-04-1-0347 5c. PROGRAM ELEMENT

  17. A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal huntingtin’s polyglutamine stretch on CAG140 mouse model pathogenesis

    PubMed Central

    2012-01-01

    Background Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ) stretch within Huntingtin (htt), the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR) in modulating HD mouse model pathogenesis is currently unknown. Results We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh) encoding N-terminal hemaglutinin (HA) or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt) and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt). Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q) htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt’s polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis. Conclusion In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes. PMID:22892315

  18. Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid.

    PubMed

    Vodicka, Petr; Mo, Shunyan; Tousley, Adelaide; Green, Karin M; Sapp, Ellen; Iuliano, Maria; Sadri-Vakili, Ghazaleh; Shaffer, Scott A; Aronin, Neil; DiFiglia, Marian; Kegel-Gleason, Kimberly B

    2015-01-01

    Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes. We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism. Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR. Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus. These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.

  19. Knocking in an Internal-combustion Engine

    NASA Technical Reports Server (NTRS)

    Sokolik, A; Voinov, A

    1940-01-01

    The question remains open of the relation between the phenomena of knocking in the engine and the explosion wave. The solution of this problem is the object of this paper. The tests were conducted on an aircraft engine with a pyrex glass window in the cylinder head. Photographs were then taken of various combinations of fuels and conditions.

  20. Depressed Frank-Starling mechanism in the left ventricular muscle of the knock-in mouse model of dilated cardiomyopathy with troponin T deletion mutation ΔK210.

    PubMed

    Inoue, Takahiro; Kobirumaki-Shimozawa, Fuyu; Kagemoto, Tatsuya; Fujii, Teruyuki; Terui, Takako; Kusakari, Yoichiro; Hongo, Kenichi; Morimoto, Sachio; Ohtsuki, Iwao; Hashimoto, Kazuhiro; Fukuda, Norio

    2013-10-01

    It has been reported that the Frank-Starling mechanism is coordinately regulated in cardiac muscle via thin filament "on-off" equilibrium and titin-based lattice spacing changes. In the present study, we tested the hypothesis that the deletion mutation ΔK210 in the cardiac troponin T gene shifts the equilibrium toward the "off" state and accordingly attenuate the sarcomere length (SL) dependence of active force production, via reduced cross-bridge formation. Confocal imaging in isolated hearts revealed that the cardiomyocytes were enlarged, especially in the longitudinal direction, in ΔK210 hearts, with striation patterns similar to those in wild type (WT) hearts, suggesting that the number of sarcomeres is increased in cardiomyocytes but the sarcomere length remains unaltered. For analysis of the SL dependence of active force, skinned muscle preparations were obtained from the left ventricle of WT and knock-in (ΔK210) mice. An increase in SL from 1.90 to 2.20μm shifted the mid-point (pCa50) of the force-pCa curve leftward by ~0.21pCa units in WT preparations. In ΔK210 muscles, Ca(2+) sensitivity was lower by ~0.37pCa units, and the SL-dependent shift of pCa50, i.e., ΔpCa50, was less pronounced (~0.11pCa units), with and without protein kinase A treatment. The rate of active force redevelopment was lower in ΔK210 preparations than in WT preparations, showing blunted thin filament cooperative activation. An increase in thin filament cooperative activation upon an increase in the fraction of strongly bound cross-bridges by MgADP increased ΔpCa50 to ~0.21pCa units. The depressed Frank-Starling mechanism in ΔK210 hearts is the result of a reduction in thin filament cooperative activation.

  1. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington’s Disease Knock-In Mice

    PubMed Central

    Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R.; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C.; Pinto, Ricardo Mouro

    2017-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. PMID:27913616

  2. Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington's Disease Knock-In Mice.

    PubMed

    Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C; Pinto, Ricardo Mouro

    2017-02-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability.

  3. Generation and initial characterization of FDD knock in mice.

    PubMed

    Giliberto, Luca; Matsuda, Shuji; Vidal, Ruben; D'Adamio, Luciano

    2009-11-18

    Mutations in the integral membrane protein 2B, also known as BRI(2), a type II trans-membrane domain protein cause two autosomal dominant neurodegenerative diseases, Familial British and Danish Dementia. In these conditions, accumulation of a C-terminal peptide (ABri and ADan) cleaved off from the mutated precursor protein by the pro-protein convertase furin, leads to amyloid deposition in the walls of blood vessels and parenchyma of the brain. Recent advances in the understanding of the generation of amyloid in Alzheimer's disease has lead to the finding that BRI(2) interacts with the Amyloid Precursor Protein (APP), decreasing the efficiency of APP processing to generate Abeta. The interaction between the two precursors, APP and BRI(2), and possibly between Abeta and ABri or ADan, could be important in influencing the rate of amyloid production or the tendency of these peptides to aggregate. We have generated the first BRI(2) Danish Knock-In (FDD(KI)) murine model of FDD, expressing the pathogenic decamer duplication in exon 6 of the BRI(2) gene. FDD(KI) mice do not show any evident abnormal phenotype, with normal brain histology and no detectable amyloid deposition in blood vessel walls or parenchyma. This new murine mouse model will be important to further understand the interaction between APP and BRI(2), and to provide insights into the molecular basis of FDD.

  4. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease

    PubMed Central

    Labbadia, John; Cunliffe, Helen; Weiss, Andreas; Katsyuba, Elena; Sathasivam, Kirupa; Seredenina, Tamara; Woodman, Ben; Moussaoui, Saliha; Frentzel, Stefan; Luthi-Carter, Ruth; Paganetti, Paolo; Bates, Gillian P.

    2011-01-01

    Huntington disease (HD) is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. Previous studies have proposed that activation of the heat shock response (HSR) via the transcription factor heat shock factor 1 (HSF1) may be of therapeutic benefit. However, the effect of disease progression on the HSR and the therapeutic potential of this pathway are currently unknown. Here, we used a brain-penetrating HSP90 inhibitor and physiological, molecular, and behavioral readouts to demonstrate that pharmacological activation of HSF1 improves huntingtin aggregate load, motor performance, and other HD-related phenotypes in the R6/2 mouse model of HD. However, the beneficial effects of this treatment were transient and diminished with disease progression. Molecular analyses to understand the transient nature of these effects revealed altered chromatin architecture, reduced HSF1 binding, and impaired HSR accompanied disease progression in both the R6/2 transgenic and HdhQ150 knockin mouse models of HD. Taken together, our findings reveal that the HSR, a major inducible regulator of protein homeostasis and longevity, is disrupted in HD. Consequently, pharmacological induction of HSF1 as a therapeutic approach to HD is more complex than was previously anticipated. PMID:21785217

  5. Generation of Venus reporter knock-in mice revealed MAGI-2 expression patterns in adult mice.

    PubMed

    Ihara, Kan-ichiro; Nishimura, Tomoki; Fukuda, Tomokazu; Ookura, Tetsuya; Nishimori, Katsuhiko

    2012-01-01

    The membrane-associated guanylate kinase inverted 2 (MAGI-2) protein, which is known to localize at the tight junction of epithelial cells, contains multiple copies of the PDZ and WW domains in its structure. Although the expression pattern of Magi2 mRNA in representative organs has been previously published, its detailed cellular distribution at the histological level remains unknown. Such detailed information would be useful to clarify the biological function of MAGI-2. Here, we report the generation of Venus reporter knock-in mice for Magi2 in which exon 6 of the gene was substituted by the Venus-encoding sequence. We detected the expression of the Venus reporter protein in kidney podocytes from these knock-in mice. We also detected Venus reporter protein expression in spermatids within the testes and within neurons in various regions of the brain. Detection of the reporter protein from these diverse locations indicated the endogenous expression of MAGI-2 in these tissues. Our data suggested a potential function of MAGI-2 in the glomerular filtration process and sperm cell maturation. These data indicate that the Venus reporter knock-in mouse for Magi2 is a useful model for the further study of Magi2 gene function.

  6. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes.

    PubMed

    Chu, Van Trung; Weber, Timm; Graf, Robin; Sommermann, Thomas; Petsch, Kerstin; Sack, Ulrike; Volchkov, Pavel; Rajewsky, Klaus; Kühn, Ralf

    2016-01-16

    The CRISPR/Cas9 system is increasingly used for gene inactivation in mouse zygotes, but homology-directed mutagenesis and use of inbred embryos are less established. In particular, Rosa26 knock-in alleles for the insertion of transgenes in a genomic 'safe harbor' site, have not been produced. Here we applied CRISPR/Cas9 for the knock-in of 8-11 kb inserts into Rosa26 of C57BL/6 zygotes. We found that 10-20 % of live pups derived from microinjected zygotes were founder mutants, without apparent off-target effects, and up to 50 % knock-in embryos were recovered upon coinjection of Cas9 mRNA and protein. Using this approach, we established a new mouse line for the Cre/loxP-dependent expression of Cas9. Altogether, our protocols and resources support the fast and direct generation of new Rosa26 knock-in alleles and of Cas9-mediated in vivo gene editing in the widely used C57BL/6 inbred strain.

  7. Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice.

    PubMed

    Sakurai, Keisuke; Onishi, Akishi; Imai, Hiroo; Chisaka, Osamu; Ueda, Yoshiki; Usukura, Jiro; Nakatani, Kei; Shichida, Yoshinori

    2007-07-01

    Rod and cone photoreceptor cells that are responsible for scotopic and photopic vision, respectively, exhibit photoresponses different from each other and contain similar phototransduction proteins with distinctive molecular properties. To investigate the contribution of the different molecular properties of visual pigments to the responses of the photoreceptor cells, we have generated knock-in mice in which rod visual pigment (rhodopsin) was replaced with mouse green-sensitive cone visual pigment (mouse green). The mouse green was successfully transported to the rod outer segments, though the expression of mouse green in homozygous retina was approximately 11% of rhodopsin in wild-type retina. Single-cell recordings of wild-type and homozygous rods suggested that the flash sensitivity and the single-photon responses from mouse green were three to fourfold lower than those from rhodopsin after correction for the differences in cell volume and levels of several signal transduction proteins. Subsequent measurements using heterozygous rods expressing both mouse green and rhodopsin E122Q mutant, where these pigments in the same rod cells can be selectively irradiated due to their distinctive absorption maxima, clearly showed that the photoresponse of mouse green was threefold lower than that of rhodopsin. Noise analysis indicated that the rate of thermal activations of mouse green was 1.7 x 10(-7) s(-1), about 860-fold higher than that of rhodopsin. The increase in thermal activation of mouse green relative to that of rhodopsin results in only 4% reduction of rod photosensitivity for bright lights, but would instead be expected to severely affect the visual threshold under dim-light conditions. Therefore, the abilities of rhodopsin to generate a large single photon response and to retain high thermal stability in darkness are factors that have been necessary for the evolution of scotopic vision.

  8. 'Knock, and it shall be opened': knocking out and knocking in to reveal mechanisms of disease and novel therapies.

    PubMed

    Hacking, Douglas F

    2008-12-01

    Recent significant advances in molecular biology have generated genetically modified bacteria, yeast, nematodes, fruit flies, and fish. However, it is the genetic modification of mammalian model organisms, particularly the mouse, that has the greatest potential to shed light on human development, physiology and pathology in ways that have significant implications for neonatal and paediatric clinical practice. Here, we review some of the techniques for knocking out (inactivating), mutating and knocking in (inserting) selected genes that are important to neonatology and show how this research will lead both to a better understanding of disease and to novel therapies for infants and children.

  9. Profoundly different prion diseases in knock-in mice carrying single PrP codon substitutions associated with human diseases

    PubMed Central

    Jackson, Walker S.; Borkowski, Andrew W.; Watson, Nicki E.; King, Oliver D.; Faas, Henryk; Jasanoff, Alan; Lindquist, Susan

    2013-01-01

    In man, mutations in different regions of the prion protein (PrP) are associated with infectious neurodegenerative diseases that have remarkably different clinical signs and neuropathological lesions. To explore the roots of this phenomenon, we created a knock-in mouse model carrying the mutation associated with one of these diseases [Creutzfeldt–Jakob disease (CJD)] that was exactly analogous to a previous knock-in model of a different prion disease [fatal familial insomnia (FFI)]. Together with the WT parent, this created an allelic series of three lines, each expressing the same protein with a single amino acid difference, and with all native regulatory elements intact. The previously described FFI mice develop neuronal loss and intense reactive gliosis in the thalamus, as seen in humans with FFI. In contrast, CJD mice had the hallmark features of CJD, spongiosis and proteinase K-resistant PrP aggregates, initially developing in the hippocampus and cerebellum but absent from the thalamus. A molecular transmission barrier protected the mice from any infectious prion agents that might have been present in our mouse facility and allowed us to conclude that the diseases occurred spontaneously. Importantly, both models created agents that caused a transmissible neurodegenerative disease in WT mice. We conclude that single codon differences in a single gene in an otherwise normal genome can cause remarkably different neurodegenerative diseases and are sufficient to create distinct protein-based infectious elements. PMID:23959875

  10. Immunohistochemical Detection of FLAG-Tagged Endogenous Proteins in Knock-In Mice

    PubMed Central

    Newton, Kim; Chu, Felix; Webster, Joshua D.; French, Dorothy M.

    2015-01-01

    With recent advances in immunohistochemical (IHC) techniques, immunohistochemistry now plays a more important role in research, especially in mouse models where characterization of cellular patterns of protein expression has become critical. Even with these recent advances, a paucity of IHC quality antibodies for some proteins still exists. To address this, we have developed a novel IHC assay that utilizes a commercially available goat anti-DDDDK peptide polyclonal antibody on paraffin-embedded tissues from knock-in mice expressing proteins of interest tagged with a 3×FLAG epitope at physiologically relevant levels. Focusing on two 3×FLAG-tagged proteins for which specific antibodies were available, USP48 and RIPK3, we were able to validate our anti-DDDDK assay by comparing the IHC directed against the actual proteins to the anti-DDDDK IHC assay, which recognizes the FLAG epitope. We were also able to detect a third 3×FLAG-tagged protein, BAP1, for which quality reagents were not available. This universal IHC method will enable researchers to characterize the expression patterns of proteins of interest when specific antibodies are lacking. PMID:25575566

  11. Analyzing the Functions of Mast Cells In Vivo Using 'Mast Cell Knock-in' Mice.

    PubMed

    Gaudenzio, Nicolas; Sibilano, Riccardo; Starkl, Philipp; Tsai, Mindy; Galli, Stephen J; Reber, Laurent L

    2015-05-27

    Mast cells (MCs) are hematopoietic cells which reside in various tissues, and are especially abundant at sites exposed to the external environment, such as skin, airways and gastrointestinal tract. Best known for their detrimental role in IgE-dependent allergic reactions, MCs have also emerged as important players in host defense against venom and invading bacteria and parasites. MC phenotype and function can be influenced by microenvironmental factors that may differ according to anatomic location and/or based on the type or stage of development of immune responses. For this reason, we and others have favored in vivo approaches over in vitro methods to gain insight into MC functions. Here, we describe methods for the generation of mouse bone marrow-derived cultured MCs (BMCMCs), their adoptive transfer into genetically MC-deficient mice, and the analysis of the numbers and distribution of adoptively transferred MCs at different anatomical sites. This method, named the 'mast cell knock-in' approach, has been extensively used over the past 30 years to assess the functions of MCs and MC-derived products in vivo. We discuss the advantages and limitations of this method, in light of alternative approaches that have been developed in recent years.

  12. Spontaneous generation of prion infectivity in fatal familial insomnia knock-in mice

    PubMed Central

    Jackson, Walker S.; Borkowski, Andrew; Faas, Henryk; Steele, Andrew; King, Oliver D.; Watson, Nicki; Jasanoff, Alan; Lindquist, Susan

    2009-01-01

    SUMMARY A crucial tenet of the prion hypothesis is that misfolding of the prion protein (PrP) induced by mutations associated with familial prion disease is, in an otherwise normal mammalian brain, sufficient to generate the infectious agent. Yet this has never been demonstrated. We engineered knock-in mice to express a PrP mutation associated with a distinct human prion disease, fatal familial insomnia (FFI). An additional substitution created a strong transmission barrier against pre-existing prions. The mice spontaneously developed a disease distinct from that of other mouse prion models and highly reminiscent of FFI. Unique pathology was transmitted from FFI mice to mice expressing wild-type PrP sharing the same transmission barrier. FFI mice were highly resistant to infection by pre-existing prions, confirming infectivity did not arise from contaminating agents. Thus a single amino acid change in PrP is sufficient to induce a distinct neurodegenerative disease and the spontaneous generation of prion infectivity. PMID:19709627

  13. Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in Knock-in Huntington’s disease mice

    PubMed Central

    Hickey, Miriam A.; Kosmalska, Agata; Enayati, Joseph; Cohen, Rachel; Zeitlin, Scott; Levine, Michael S.; Chesselet, Marie-Françoise

    2008-01-01

    Huntington’s disease is a neurodegenerative disorder, caused by an elongation of CAG repeats in the huntingtin gene. Mice with an insertion of an expanded polyglutamine repeat in the mouse huntingtin gene (knock-in mice) most closely model the disease because the mutation is expressed in the proper genomic and protein context. However, few knock-in mouse lines have been extensively characterized and available data suggest marked differences in the extent and time course of their behavioral and pathological phenotype. We have previously described behavioral anomalies in the open field as early as 1 month of age, followed by the appearance at 2 months of progressive huntingtin neuropathology, in a mouse carrying a portion of human exon 1 with approximately 140 CAG repeats inserted into the mouse huntingtin gene. Here we extend these observations by showing that early behavioral anomalies exist in a wide range of motor (climbing, vertical pole, rotarod, and running wheel performance) and non-motor functions (fear conditioning and anxiety) starting at 1–4 months of age, and are followed by progressive gliosis and decrease in DARPP32 (12 months) and a loss of striatal neurons at 2 years. At this age, mice also present striking spontaneous behavioral deficits in their home cage. The data show that this line of knock-in mice reproduces canonical characteristics of Huntington’s disease, preceded by deficits which may correspond to the protracted pre-manifest phase of the disease in humans. Accordingly, they provide a useful model to elucidate early mechanisms of pathophysiology and the progression to overt neurodegeneration. PMID:18805465

  14. Periodontal Defects in the A116T Knock-in Murine Model of Odontohypophosphatasia

    PubMed Central

    Foster, B.L.; Sheen, C.R.; Hatch, N.E.; Liu, J.; Cory, E.; Narisawa, S.; Kiffer-Moreira, T.; Sah, R.L.; Whyte, M.P.; Somerman, M.J.

    2015-01-01

    Mutations in ALPL result in hypophosphatasia (HPP), a disease causing defective skeletal mineralization. ALPL encodes tissue nonspecific alkaline phosphatase (ALP), an enzyme that promotes mineralization by reducing inorganic pyrophosphate, a mineralization inhibitor. In addition to skeletal defects, HPP causes dental defects, and a mild clinical form of HPP, odontohypophosphatasia, features only a dental phenotype. The Alpl knockout (Alpl-/-) mouse phenocopies severe infantile HPP, including profound skeletal and dental defects. However, the severity of disease in Alpl-/- mice prevents analysis at advanced ages, including studies to target rescue of dental tissues. We aimed to generate a knock-in mouse model of odontohypophosphatasia with a primarily dental phenotype, based on a mutation (c.346G>A) identified in a human kindred with autosomal dominant odontohypophosphatasia. Biochemical, skeletal, and dental analyses were performed on the resulting Alpl+/A116T mice to validate this model. Alpl+/A116T mice featured 50% reduction in plasma ALP activity compared with wild-type controls. No differences in litter size, survival, or body weight were observed in Alpl+/A116T versus wild-type mice. The postcranial skeleton of Alpl+/A116T mice was normal by radiography, with no differences in femur length, cortical/trabecular structure or mineral density, or mechanical properties. Parietal bone trabecular compartment was mildly altered. Alpl+/A116T mice featured alterations in the alveolar bone, including radiolucencies and resorptive lesions, osteoid accumulation on the alveolar bone crest, and significant differences in several bone properties measured by micro–computed tomography. Nonsignificant changes in acellular cementum did not appear to affect periodontal attachment or function, although circulating ALP activity was correlated significantly with incisor cementum thickness. The Alpl+/A116T mouse is the first model of odontohypophosphatasia, providing insights on

  15. Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice.

    PubMed

    Kollmann, K; Damme, M; Markmann, S; Morelle, W; Schweizer, M; Hermans-Borgmeyer, I; Röchert, A K; Pohl, S; Lübke, T; Michalski, J-C; Käkelä, R; Walkley, S U; Braulke, T

    2012-09-01

    Mucolipidosis II is a neurometabolic lysosomal trafficking disorder of infancy caused by loss of mannose 6-phosphate targeting signals on lysosomal proteins, leading to lysosomal dysfunction and accumulation of non-degraded material. However, the identity of storage material and mechanisms of neurodegeneration in mucolipidosis II are unknown. We have generated 'knock-in' mice with a common mucolipidosis II patient mutation that show growth retardation, progressive brain atrophy, skeletal abnormalities, elevated lysosomal enzyme activities in serum, lysosomal storage in fibroblasts and brain and premature death, closely mimicking the mucolipidosis II disease in humans. The examination of affected mouse brains at different ages by immunohistochemistry, ultrastructural analysis, immunoblotting and mass spectrometric analyses of glycans and anionic lipids revealed that the expression and proteolytic processing of distinct lysosomal proteins such as α-l-fucosidase, β-hexosaminidase, α-mannosidase or Niemann-Pick C2 protein are more significantly impacted by the loss of mannose 6-phosphate residues than enzymes reaching lysosomes independently of this targeting mechanism. As a consequence, fucosylated N-glycans, GM2 and GM3 gangliosides, cholesterol and bis(monoacylglycero)phosphate accumulate progressively in the brain of mucolipidosis II mice. Prominent astrogliosis and the accumulation of organelles and storage material in focally swollen axons were observed in the cerebellum and were accompanied by a loss of Purkinje cells. Moreover, an increased neuronal level of the microtubule-associated protein 1 light chain 3 and the formation of p62-positive neuronal aggregates indicate an impairment of constitutive autophagy in the mucolipidosis II brain. Our findings demonstrate the essential role of mannose 6-phosphate for selected lysosomal proteins to maintain the capability for degradation of sequestered components in lysosomes and autophagolysosomes and prevent

  16. Formation and progression of sub-retinal pigment epithelium deposits in Efemp1 mutation knock-in mice: a model for the early pathogenic course of macular degeneration.

    PubMed

    Marmorstein, Lihua Y; McLaughlin, Precious J; Peachey, Neal S; Sasaki, Takako; Marmorstein, Alan D

    2007-10-15

    Malattia leventinese (ML) is a dominantly inherited macular degenerative disease characterized by the presence of sub-retinal pigment epithelium (RPE) deposits. With the exception of an earlier age of onset, ML patients exhibit symptoms and histopathology compatible with the diagnosis of age-related macular degeneration (AMD), the most common cause of incurable blindness. ML is caused by a mutation (R345W) in the gene EFEMP1 which encodes fibulin-3, a protein of unknown function. We generated a knock-in mouse carrying the disease-associated mutation in the murine Efemp1 gene. Small, isolated sub-RPE deposits developed as early as 4 months of age in both heterozygous and homozygous knock-in mice. Over time these deposits increased in size and number eventually becoming continuous sheets. In older mice membranous debris was observed within the deposits and within Bruch's membrane, and was accompanied by general RPE and choroidal abnormalities including degeneration, vacuolation, loss or disruption of the RPE basal infoldings, choroidal atrophy, and focal thickening of and invasion of cellular processes into Bruch's membrane. Fibulin-3 was found to accumulate in the sub-RPE deposits. Thus, the Efemp1 knock-in mice reconstitute the most important histopathologic symptoms of both ML and AMD. We conclude that these mice are a valuable tool for studying the primary pathogenic course of basal deposits associated with macular degeneration and for testing prevention and treatment strategies for this class of diseases.

  17. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.

    PubMed

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y Eugene; Zhang, Jifeng

    2016-01-28

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells.

  18. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency

    PubMed Central

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y. Eugene; Zhang, Jifeng

    2016-01-01

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells. PMID:26817820

  19. Characterization of Transgenic Gfrp Knock-In Mice: Implications for Tetrahydrobiopterin in Modulation of Normal Tissue Radiation Responses

    PubMed Central

    Pathak, Rupak; Pawar, Snehalata A.; Fu, Qiang; Gupta, Prem K.; Berbée, Maaike; Garg, Sarita; Sridharan, Vijayalakshmi; Wang, Wenze; Biju, Prabath G.; Krager, Kimberly J.; Boerma, Marjan; Ghosh, Sanchita P.; Cheema, Amrita K.; Hendrickson, Howard P.; Aykin-Burns, Nukhet

    2014-01-01

    Abstract Aims: The free radical scavenger and nitric oxide synthase cofactor, 5,6,7,8-tetrahydrobiopterin (BH4), plays a well-documented role in many disorders associated with oxidative stress, including normal tissue radiation responses. Radiation exposure is associated with decreased BH4 levels, while BH4 supplementation attenuates aspects of radiation toxicity. The endogenous synthesis of BH4 is catalyzed by the enzyme guanosine triphosphate cyclohydrolase I (GTPCH1), which is regulated by the inhibitory GTP cyclohydrolase I feedback regulatory protein (GFRP). We here report and characterize a novel, Cre-Lox-driven, transgenic mouse model that overexpresses Gfrp. Results: Compared to control littermates, transgenic mice exhibited high transgene copy numbers, increased Gfrp mRNA and GFRP expression, enhanced GFRP–GTPCH1 interaction, reduced BH4 levels, and low glutathione (GSH) levels and differential mitochondrial bioenergetic profiles. After exposure to total body irradiation, transgenic mice showed decreased BH4/7,8-dihydrobiopterin ratios, increased vascular oxidative stress, and reduced white blood cell counts compared with controls. Innovation and Conclusion: This novel Gfrp knock-in transgenic mouse model allows elucidation of the role of GFRP in the regulation of BH4 biosynthesis. This model is a valuable tool to study the involvement of BH4 in whole body and tissue-specific radiation responses and other conditions associated with oxidative stress. Antioxid. Redox Signal. 20, 1436–1446. PMID:23521531

  20. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    PubMed

    Hölter, Sabine M; Stromberg, Mary; Kovalenko, Marina; Garrett, Lillian; Glasl, Lisa; Lopez, Edith; Guide, Jolene; Götz, Alexander; Hans, Wolfgang; Becker, Lore; Rathkolb, Birgit; Rozman, Jan; Schrewed, Anja; Klingenspor, Martin; Klopstock, Thomas; Schulz, Holger; Wolf, Eckhard; Wursta, Wolfgang; Gillis, Tammy; Wakimoto, Hiroko; Seidman, Jonathan; MacDonald, Marcy E; Cotman, Susan; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Lee, Jong-Min; Wheeler, Vanessa C

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  1. A Broad Phenotypic Screen Identifies Novel Phenotypes Driven by a Single Mutant Allele in Huntington’s Disease CAG Knock-In Mice

    PubMed Central

    Kovalenko, Marina; Garrett, Lillian; Glasl, Lisa; Lopez, Edith; Guide, Jolene; Götz, Alexander; Hans, Wolfgang; Becker, Lore; Rathkolb, Birgit; Rozman, Jan; Schrewed, Anja; Klingenspor, Martin; Klopstock, Thomas; Schulz, Holger; Wolf, Eckhard; Wursta, Wolfgang; Gillis, Tammy; Wakimoto, Hiroko; Seidman, Jonathan; MacDonald, Marcy E.; Cotman, Susan; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Lee, Jong-Min; Wheeler, Vanessa C.

    2013-01-01

    Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing. PMID:24278347

  2. Mouse phenotyping.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin

    2011-02-01

    Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age.

    PubMed

    Vaidya, Amita; Mao, Zhiyong; Tian, Xiao; Spencer, Brianna; Seluanov, Andrei; Gorbunova, Vera

    2014-07-01

    Accumulation of genome rearrangements is a characteristic of aged tissues. Since genome rearrangements result from faulty repair of DNA double strand breaks (DSBs), we hypothesized that DNA DSB repair becomes less efficient with age. The Non-Homologous End Joining (NHEJ) pathway repairs a majority of DSBs in vertebrates. To examine age-associated changes in NHEJ, we have generated an R26NHEJ mouse model in which a GFP-based NHEJ reporter cassette is knocked-in to the ROSA26 locus. In this model, NHEJ repair of DSBs generated by the site-specific endonuclease, I-SceI, reconstitutes a functional GFP gene. In this system NHEJ efficiency can be compared across tissues of the same mouse and in mice of different age. Using R26NHEJ mice, we found that NHEJ efficiency was higher in the skin, lung, and kidney fibroblasts, and lower in the heart fibroblasts and brain astrocytes. Furthermore, we observed that NHEJ efficiency declined with age. In the 24-month old animals compared to the 5-month old animals, NHEJ efficiency declined 1.8 to 3.8-fold, depending on the tissue, with the strongest decline observed in the skin fibroblasts. The sequence analysis of 300 independent NHEJ repair events showed that, regardless of age, mice utilize microhomology sequences at a significantly higher frequency than expected by chance. Furthermore, the frequency of microhomology-mediated end joining (MMEJ) events increased in the heart and lung fibroblasts of old mice, suggesting that NHEJ becomes more mutagenic with age. In summary, our study provides a versatile mouse model for the analysis of NHEJ in a wide range of tissues and demonstrates that DNA repair by NHEJ declines with age in mice, which could provide a mechanism for age-related genomic instability and increased cancer incidence with age.

  4. Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice

    PubMed Central

    Gedicke-Hornung, Christina; Behrens-Gawlik, Verena; Reischmann, Silke; Geertz, Birgit; Stimpel, Doreen; Weinberger, Florian; Schlossarek, Saskia; Précigout, Guillaume; Braren, Ingke; Eschenhagen, Thomas; Mearini, Giulia; Lorain, Stéphanie; Voit, Thomas; Dreyfus, Patrick A; Garcia, Luis; Carrier, Lucie

    2013-01-01

    Exon skipping mediated by antisense oligoribonucleotides (AON) is a promising therapeutic approach for genetic disorders, but has not yet been evaluated for cardiac diseases. We investigated the feasibility and efficacy of viral-mediated AON transfer in a Mybpc3-targeted knock-in (KI) mouse model of hypertrophic cardiomyopathy (HCM). KI mice carry a homozygous G>A transition in exon 6, which results in three different aberrant mRNAs. We identified an alternative variant (Var-4) deleted of exons 5–6 in wild-type and KI mice. To enhance its expression and suppress aberrant mRNAs we designed AON-5 and AON-6 that mask splicing enhancer motifs in exons 5 and 6. AONs were inserted into modified U7 small nuclear RNA and packaged in adeno-associated virus (AAV-U7-AON-5+6). Transduction of cardiac myocytes or systemic administration of AAV-U7-AON-5+6 increased Var-4 mRNA/protein levels and reduced aberrant mRNAs. Injection of newborn KI mice abolished cardiac dysfunction and prevented left ventricular hypertrophy. Although the therapeutic effect was transient and therefore requires optimization to be maintained over an extended period, this proof-of-concept study paves the way towards a causal therapy of HCM. PMID:23716398

  5. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization

    PubMed Central

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin (Simon); Williams, Melissa; Zaveri, Nurulain T.; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L.

    2015-01-01

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [35S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. SIGNIFICANCE STATEMENT The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native

  6. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities*

    PubMed Central

    Igoucheva, Olga; Alexeev, Vitali; Halabi, Carmen M.; Adams, Sheila M.; Stoilov, Ivan; Sasaki, Takako; Arita, Machiko; Donahue, Adele; Mecham, Robert P.; Birk, David E.; Chu, Mon-Li

    2015-01-01

    Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B. PMID:26178373

  7. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities.

    PubMed

    Igoucheva, Olga; Alexeev, Vitali; Halabi, Carmen M; Adams, Sheila M; Stoilov, Ivan; Sasaki, Takako; Arita, Machiko; Donahue, Adele; Mecham, Robert P; Birk, David E; Chu, Mon-Li

    2015-08-28

    Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis

    PubMed Central

    Sakami, Sanae; Kolesnikov, Alexander V.; Kefalov, Vladimir J.; Palczewski, Krzysztof

    2014-01-01

    Retinal rod photoreceptor cells have double membrane discs located in their outer segments (ROS) that are continuously formed proximally from connecting cilia (CC) and phagocytized distally by the retinal pigmented epithelium. The major component of these rod discs, the light-sensitive visual pigment rhodopsin (Rho), consists of an opsin protein linked to 11-cis-retinal. The P23H mutation of rod opsin (P23H opsin) is the most common cause of human blinding autosomal dominant retinitis pigmentosa (adRP). A mouse model of adRP with this mutation (RhoP23H/+) shows low levels of P23H opsin protein, partial misalignment of discs and progressive retinal degeneration. However, the impact of mutant P23H opsin on the formation of abnormal discs is unclear and it is still unknown whether this mutant pigment can mediate phototransduction. Using transretinal ERG recordings, we demonstrate that P23H mutant Rho can trigger phototransduction but RhoP23H/P23H rods are ∼17 000-fold less sensitive to light than Rho+/+ rods and produce abnormally fast photo-responses. By analyzing homozygous RhoP23H/P23H knock-in mice, we show that P23H opsin is transported to ciliary protrusions where it forms sagittally elongated discs. Transmission electron microscopy of postnatal day (PND) 14 RhoP23H/+ mouse retina revealed disordered sagittally oriented discs before the onset of retinal degeneration. Surprisingly, we also observed smaller, immature sagittally oriented discs in PND14 Rho+/− and Rho+/+ mice that were not seen in older animals. These findings provide fundamental insights into the pathogenesis of the P23H mutant opsin and reveal a novel early sagittally aligned disc formation step in normal ROS disc expansion. PMID:24214395

  9. Effects of short-term Western diet on cerebral oxidative stress and diabetes related factors in APP x PS1 knock-in mice.

    PubMed

    Studzinski, Christa M; Li, Feng; Bruce-Keller, Annadora J; Fernandez-Kim, Sun Ok; Zhang, Le; Weidner, Adam M; Markesbery, William R; Murphy, M Paul; Keller, Jeffrey N

    2009-02-01

    A chronic high fat Western diet (WD) promotes a variety of morbidity factors although experimental evidence for short-term WD mediating brain dysfunction remains to be elucidated. The amyloid precursor protein and presenilin-1 (APP x PS1) knock-in mouse model has been demonstrated to recapitulate some key features of Alzheimer's disease pathology, including amyloid-beta (Abeta) pathogenesis. In this study, we placed 1-month-old APP x PS1 mice and non-transgenic littermates on a WD for 4 weeks. The WD resulted in a significant elevation in protein oxidation and lipid peroxidation in the brain of APP x PS1 mice relative to non-transgenic littermates, which occurred in the absence of increased Abeta levels. Altered adipokine levels were also observed in APP x PS1 mice placed on a short-term WD, relative to non-transgenic littermates. Taken together, these data indicate that short-term WD is sufficient to selectively promote cerebral oxidative stress and metabolic disturbances in APP x PS1 knock-in mice, with increased oxidative stress preceding alterations in Abeta. These data have important implications for understanding how WD may potentially contribute to brain dysfunction and the development of neurodegenerative disorders such as Alzheimer's disease.

  10. Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice.

    PubMed

    Gillis, Caitlin M; Jönsson, Friederike; Mancardi, David A; Tu, Naxin; Beutier, Héloïse; Van Rooijen, Nico; Macdonald, Lynn E; Murphy, Andrew J; Bruhns, Pierre

    2017-04-01

    Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights

  11. Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease.

    PubMed

    Duncan, Marilyn J; Smith, J Tyler; Franklin, Kathleen M; Beckett, Tina L; Murphy, M Paul; St Clair, Daret K; Donohue, Kevin D; Striz, Martin; O'Hara, Bruce F

    2012-08-01

    Profound disruptions of circadian rhythms and sleep/wake cycles constitute a major cause of institutionalization of AD patients. This study investigated whether a rodent model of AD, APP(NLH/NLH)/PS-1(P264L/264L) (APPxPS1) mice, exhibits circadian alterations. The APPxPS1 mice were generated using CD-1/129 mice and Cre-lox knock-in technology to "humanize" the mouse amyloid (A)β sequence and create a presenilin-1 mutation identified in familial early-onset AD patients. APPxPS1 and WT mice of several ages (~4, 11, and 15 months) were monitored for circadian rhythms in wheel running, cage activity, and sleep:wake behavior. After rhythm assessment, the mice were euthanized at zeitgeber time (ZT) 2 or 10 (i.e., 2 or 10 h after lights-on) and brains were dissected. Amyloidβ levels were measured in cortical samples and brain sections of the hypothalamus and hippocampus were prepared and used for in situ hybridization of circadian or neuropeptide genes. The most significant effects of the APPxPS1 transgenes were phase delays of ~2 h in the onset of daytime wakefulness bouts (P<0.005) and peak wakefulness (P<0.02), potentially relevant to phase delays previously reported in AD patients. However, genotype did not affect the major activity peaks or phases of wheel running, wake, or general movement, which were bimodal with dominant dawn and dusk activity. Expression of Period 2 in the suprachiasmatic nucleus was affected by ZT (P<0.0001) with a marginal interaction effect of age, genotype, and ZT (P<0.08). A separate analysis of the old animals indicated a robust interaction between ZT and genotype, as well as main effects of these parameters. Aging also altered sleep (e.g., bout length and amount of daytime sleep) and the amount of wheel running and cage activity. In conclusion, the APPxPS1 knock-in mice exhibit some alterations in their sleep:wake rhythm and clock gene expression, but do not show robust, genotype-related changes in activity rhythms. The prominent daytime

  12. A Murine Niemann-Pick C1 I1061T Knock-In Model Recapitulates the Pathological Features of the Most Prevalent Human Disease Allele

    PubMed Central

    Praggastis, Maria; Tortelli, Brett; Zhang, Jessie; Fujiwara, Hideji; Sidhu, Rohini; Chacko, Anita; Chen, Zhouji; Chung, Chan; Lieberman, Andrew P.; Sikora, Jakub; Davidson, Cristin; Walkley, Steven U.; Pipalia, Nina H.; Maxfield, Frederick R.; Schaffer, Jean E.

    2015-01-01

    Niemann-Pick Type C1 (NPC1) disease is a rare neurovisceral, cholesterol–sphingolipid lysosomal storage disorder characterized by ataxia, motor impairment, progressive intellectual decline, and dementia. The most prevalent mutation, NPC1I1061T, encodes a misfolded protein with a reduced half-life caused by ER-associated degradation. Therapies directed at stabilization of the mutant NPC1 protein reduce cholesterol storage in fibroblasts but have not been tested in vivo because of lack of a suitable animal model. Whereas the prominent features of human NPC1 disease are replicated in the null Npc1−/− mouse, this model is not amenable to examining proteostatic therapies. The objective of the present study was to develop an NPC1 I1061T knock-in mouse in which to test proteostatic therapies. Compared with the Npc1−/− mouse, this Npc1tm(I1061T)Dso model displays a less severe, delayed form of NPC1 disease with respect to weight loss, decreased motor coordination, Purkinje cell death, lipid storage, and premature death. The murine NPC1I1061T protein has a reduced half-life in vivo, consistent with protein misfolding and rapid ER-associated degradation, and can be stabilized by histone deacetylase inhibition. This novel mouse model faithfully recapitulates human NPC1 disease and provides a powerful tool for preclinical evaluation of therapies targeting NPC1 protein variants with compromised stability. PMID:26019327

  13. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.

    PubMed

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-05-04

    The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.

  14. Epitope-tagged dopamine transporter knock-in mice reveal rapid endocytic trafficking and filopodia targeting of the transporter in dopaminergic axons

    PubMed Central

    Rao, Anjali; Richards, Toni L.; Simmons, Diana; Zahniser, Nancy R.; Sorkin, Alexander

    2012-01-01

    The plasma membrane dopamine (DA) transporter (DAT) is essential for reuptake of extracellular DA. DAT function in heterologous cells is regulated by subcellular targeting, endocytosis, and intracellular trafficking, but the mechanisms regulating neuronal DAT remain poorly understood. Hence, we generated a knock-in mouse expressing a hemagglutinin (HA)-epitope-tagged DAT to study endogenous transporter trafficking. Introduction of the HA tag into the second extracellular loop of mouse DAT did not perturb its expression level, distribution pattern, or substrate uptake kinetics. Live-cell fluorescence microscopy imaging using fluorescently labeled HA-specific antibody and a quantitative HA-antibody endocytosis assay demonstrated that in axons HA-DAT was primarily located in the plasma membrane and internalized mostly in growth cones and varicosities, where synaptic vesicle markers were also concentrated. Formation of varicosities was frequently preceded or accompanied by highly dynamic filopodia-like membrane protrusions. Remarkably, HA-DAT often concentrated at the tips of these filopodia. This pool of HA-DATs exhibited low lateral membrane mobility. Thus, DAT-containing filopodia may be involved in synaptogenesis in developing DA neurons. Treatment of neurons with amphetamine increased mobility of filopodial HA-DAT and accelerated HA-DAT endocytosis in axons, suggesting that chronic amphetamine may interfere with DA synapse development. Interestingly, phorbol esters did not accelerate endocytosis of axonal DAT.—Rao, A., Richards, T. L., Simmons, D., Zahniser, N. R., Sorkin, A. Epitope-tagged dopamine transporter knock-in mice reveal rapid endocytic trafficking and filopodia targeting of the transporter in dopaminergic axons. PMID:22267337

  15. Bone marrow transplantation improves autoinflammation and inflammatory bone loss in SH3BP2 knock-in cherubism mice.

    PubMed

    Yoshitaka, Teruhito; Kittaka, Mizuho; Ishida, Shu; Mizuno, Noriyoshi; Mukai, Tomoyuki; Ueki, Yasuyoshi

    2015-02-01

    Cherubism (OMIM#118400) is a genetic disorder in children characterized by excessive jawbone destruction with proliferation of fibro-osseous lesions containing a large number of osteoclasts. Mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for cherubism. Analysis of the knock-in (KI) mouse model of cherubism showed that homozygous cherubism mice (Sh3bp2(KI/KI)) spontaneously develop systemic autoinflammation and inflammatory bone loss and that cherubism is a TNF-α-dependent hematopoietic disorder. In this study, we investigated whether bone marrow transplantation (BMT) is effective for the treatment of inflammation and bone loss in Sh3bp2(KI/KI) mice. Bone marrow (BM) cells from wild-type (Sh3bp2(+/+)) mice were transplanted to 6-week-old Sh3bp2(KI/KI) mice with developing inflammation and to 10-week-old Sh3bp2(KI/KI) mice with established inflammation. Six-week-old Sh3bp2(KI/KI) mice transplanted with Sh3bp2(+/+) BM cells exhibited improved body weight loss, facial swelling, and survival rate. Inflammatory lesions in the liver and lung as well as bone loss in calvaria and mandibula were ameliorated at 10weeks after BMT compared to Sh3bp2(KI/KI) mice transplanted with Sh3bp2(KI/KI) BM cells. Elevation of serum TNF-α levels was not detected after BMT. BMT was effective for up to 20weeks in 6-week-old Sh3bp2(KI/KI) mice transplanted with Sh3bp2(+/+) BM cells. BMT also ameliorated the inflammation and bone loss in 10-week-old Sh3bp2(KI/KI) mice. Thus our study demonstrates that BMT improves the inflammation and bone loss in cherubism mice. BMT may be effective for the treatment of cherubism patients. Copyright © 2013. Published by Elsevier Inc.

  16. Bone Marrow Transplantation Improves Autoinflammation and Inflammatory Bone Loss in SH3BP2 Knock-In Cherubism Mice

    PubMed Central

    Yoshitaka, Teruhito; Kittaka, Mizuho; Ishida, Shu; Mizuno, Noriyoshi; Mukai, Tomoyuki; Ueki, Yasuyoshi

    2014-01-01

    Cherubism (OMIM#118400) is a genetic disorder in children characterized by excessive jawbone destruction with proliferation of fibro-osseous lesions containing a large number of osteoclasts. Mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for cherubism. Analysis of the knock-in (KI) mouse model of cherubism showed that homozygous cherubism mice (Sh3bp2KI/KI) spontaneously develop systemic autoinflammation and inflammatory bone loss and that cherubism is a TNF-α-dependent hematopoietic disorder. In this study, we investigated whether bone marrow transplantation (BMT) is effective for the treatment of inflammation and bone loss in Sh3bp2KI/KI mice. Bone marrow (BM) cells from wild-type (Sh3bp2+/+) mice were transplanted to 6-week-old Sh3bp2KI/KI mice with developing inflammation and to 10-week-old Sh3bp2KI/KI mice with established inflammation. Six-week-old Sh3bp2KI/KI mice transplanted with Sh3bp2+/+ BM cells exhibited improved body weight loss, facial swelling, and survival rate. Inflammatory lesions in the liver and lung as well as bone loss in calvaria and mandibula were ameliorated at 10 weeks after BMT compared to Sh3bp2KI/KI mice transplanted with Sh3bp2KI/KI BM cells. Elevation of serum TNF-α levels was not detected after BMT. BMT was effective for up to 20 weeks in 6-week-old Sh3bp2KI/KI mice transplanted with Sh3bp2+/+ BM cells. BMT also ameliorated the inflammation and bone loss in 10-week-old Sh3bp2KI/KI mice. Thus our study demonstrates that BMT improves the inflammation and bone loss in cherubism mice. BMT may be effective for the treatment of cherubism patients. PMID:25445458

  17. Enamel defects and ameloblast-specific expression in Enam knock-out/lacz knock-in mice.

    PubMed

    Hu, Jan C-C; Hu, Yuanyuan; Smith, Charles E; McKee, Marc D; Wright, J Timothy; Yamakoshi, Yasuo; Papagerakis, Petros; Hunter, Graeme K; Feng, Jerry Q; Yamakoshi, Fumiko; Simmer, James P

    2008-04-18

    Enamelin is critical for proper dental enamel formation, and defects in the human enamelin gene cause autosomal dominant amelogenesis imperfecta. We used gene targeting to generate a knock-in mouse carrying a null allele of enamelin (Enam) that has a lacZ reporter gene replacing the Enam translation initiation site and gene sequences through exon 7. Correct targeting of the transgene was confirmed by Southern blotting and PCR analyses. No enamelin protein could be detected by Western blotting in the Enam-null mice. Histochemical 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside (X-gal) staining demonstrated ameloblast-specific expression of enamelin. The enamel of the Enam(+/-) mice was nearly normal in the maxillary incisors, but the mandibular incisors were discolored and tended to wear rapidly where they contacted the maxillary incisors. The Enam(-/-) mice showed no true enamel. Radiography, microcomputed tomography, and light and scanning electron microscopy were used to document changes in the enamel of Enam(-/-) mice but did not discern any perturbations of bone, dentin, or any other tissue besides the enamel layer. Although a thick layer of enamel proteins covered normal-appearing dentin of unerupted teeth, von Kossa staining revealed almost a complete absence of mineral formation in this protein layer. However, a thin, highly irregular, mineralized crust covered the dentin on erupted teeth, apparently arising from the formation and fusion of small mineralization foci (calcospherites) in the deeper part of the accumulated enamel protein layer. These results demonstrate ameloblast-specific expression of enamelin and reveal that enamelin is essential for proper enamel matrix organization and mineralization.

  18. A novel conditional knock-in approach defines molecular and circuit effects of the DYT1 dystonia mutation

    PubMed Central

    Weisheit, Corinne E.; Dauer, William T.

    2015-01-01

    DYT1 dystonia, the most common inherited form of primary dystonia, is a neurodevelopmental disease caused by a dominant mutation in TOR1A. This mutation (‘ΔE’) removes a single glutamic acid from the encoded protein, torsinA. The effects of this mutation, at the molecular and circuit levels, and the reasons for its neurodevelopmental onset, remain incompletely understood. To uniquely address key questions of disease pathogenesis, we generated a conditional Tor1a knock-in allele that is converted from wild-type to DYT1 mutant (‘induced’ ΔE: Tor1ai-ΔE), following Cre recombination. We used this model to perform a gene dosage study exploring the effects of the ΔE mutation at the molecular, neuropathological and organismal levels. These analyses demonstrated that ΔE-torsinA is a hypomorphic allele and showed no evidence for any gain-of-function toxic properties. The unique capabilities of this model also enabled us to test a circuit-level hypothesis of DYT1 dystonia, which predicts that expression of the DYT1 genotype (Tor1aΔE/+) selectively within hindbrain structures will produce an overtly dystonic animal. In contrast to this prediction, we find no effect of this anatomic-specific expression of the DYT1 genotype, a finding that has important implications for the interpretation of the human and mouse diffusion tensor-imaging studies upon which it is based. These studies advance understanding of the molecular effects of the ΔE mutation, challenge current concepts of the circuit dysfunction that characterize the disease and establish a powerful tool that will be valuable for future studies of disease pathophysiology. PMID:26370418

  19. Retina Restored and Brain Abnormalities Ameliorated by Single-Copy Knock-In of Human NR2E1 in Null Mice

    PubMed Central

    Schmouth, J.-F.; Banks, K. G.; Mathelier, A.; Gregory-Evans, C. Y.; Castellarin, M.; Holt, R. A.; Gregory-Evans, K.; Wasserman, W. W.

    2012-01-01

    Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified. PMID:22290436

  20. HDAC4-Myogenin Axis As an Important Marker of HD-Related Skeletal Muscle Atrophy

    PubMed Central

    Smeets, Cleo J. L. M.; Franklin, Sophie A.; Bondulich, Marie K.; Jolinon, Nelly; Muller, Thomas; Ahmed, Mhoriam; Dick, James R. T.; Piotrowska, Izabela; Greensmith, Linda; Smolenski, Ryszard T.; Bates, Gillian P.

    2015-01-01

    Skeletal muscle remodelling and contractile dysfunction occur through both acute and chronic disease processes. These include the accumulation of insoluble aggregates of misfolded amyloid proteins that is a pathological feature of Huntington’s disease (HD). While HD has been described primarily as a neurological disease, HD patients’ exhibit pronounced skeletal muscle atrophy. Given that huntingtin is a ubiquitously expressed protein, skeletal muscle fibres may be at risk of a cell autonomous HD-related dysfunction. However the mechanism leading to skeletal muscle abnormalities in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that symptomatic animals developed a progressive impairment of the contractile characteristics of the hind limb muscles tibialis anterior (TA) and extensor digitorum longus (EDL), accompanied by a significant loss of motor units in the EDL. In symptomatic animals, these pronounced functional changes were accompanied by an aberrant deregulation of contractile protein transcripts and their up-stream transcriptional regulators. In addition, HD mouse models develop a significant reduction in muscle force, possibly as a result of a deterioration in energy metabolism and decreased oxidation that is accompanied by the re-expression of the HDAC4-DACH2-myogenin axis. These results show that muscle dysfunction is a key pathological feature of HD. PMID:25748626

  1. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii.

    PubMed

    Shin, Sung-Eun; Lim, Jong-Min; Koh, Hyun Gi; Kim, Eun Kyung; Kang, Nam Kyu; Jeon, Seungjib; Kwon, Sohee; Shin, Won-Sub; Lee, Bongsoo; Hwangbo, Kwon; Kim, Jungeun; Ye, Sung Hyeok; Yun, Jae-Young; Seo, Hogyun; Oh, Hee-Mock; Kim, Kyung-Jin; Kim, Jin-Soo; Jeong, Won-Joong; Chang, Yong Keun; Jeong, Byeong-Ryool

    2016-06-13

    Genome editing is crucial for genetic engineering of organisms for improved traits, particularly in microalgae due to the urgent necessity for the next generation biofuel production. The most advanced CRISPR/Cas9 system is simple, efficient and accurate in some organisms; however, it has proven extremely difficult in microalgae including the model alga Chlamydomonas. We solved this problem by delivering Cas9 ribonucleoproteins (RNPs) comprising the Cas9 protein and sgRNAs to avoid cytotoxicity and off-targeting associated with vector-driven expression of Cas9. We obtained CRISPR/Cas9-induced mutations at three loci including MAA7, CpSRP43 and ChlM, and targeted mutagenic efficiency was improved up to 100 fold compared to the first report of transgenic Cas9-induced mutagenesis. Interestingly, we found that unrelated vectors used for the selection purpose were predominantly integrated at the Cas9 cut site, indicative of NHEJ-mediated knock-in events. As expected with Cas9 RNPs, no off-targeting was found in one of the mutagenic screens. In conclusion, we improved the knockout efficiency by using Cas9 RNPs, which opens great opportunities not only for biological research but also industrial applications in Chlamydomonas and other microalgae. Findings of the NHEJ-mediated knock-in events will allow applications of the CRISPR/Cas9 system in microalgae, including "safe harboring" techniques shown in other organisms.

  2. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii

    PubMed Central

    Shin, Sung-Eun; Lim, Jong-Min; Koh, Hyun Gi; Kim, Eun Kyung; Kang, Nam Kyu; Jeon, Seungjib; Kwon, Sohee; Shin, Won-Sub; Lee, Bongsoo; Hwangbo, Kwon; Kim, Jungeun; Ye, Sung Hyeok; Yun, Jae-Young; Seo, Hogyun; Oh, Hee-Mock; Kim, Kyung-Jin; Kim, Jin-Soo; Jeong, Won-Joong; Chang, Yong Keun; Jeong, Byeong-ryool

    2016-01-01

    Genome editing is crucial for genetic engineering of organisms for improved traits, particularly in microalgae due to the urgent necessity for the next generation biofuel production. The most advanced CRISPR/Cas9 system is simple, efficient and accurate in some organisms; however, it has proven extremely difficult in microalgae including the model alga Chlamydomonas. We solved this problem by delivering Cas9 ribonucleoproteins (RNPs) comprising the Cas9 protein and sgRNAs to avoid cytotoxicity and off-targeting associated with vector-driven expression of Cas9. We obtained CRISPR/Cas9-induced mutations at three loci including MAA7, CpSRP43 and ChlM, and targeted mutagenic efficiency was improved up to 100 fold compared to the first report of transgenic Cas9-induced mutagenesis. Interestingly, we found that unrelated vectors used for the selection purpose were predominantly integrated at the Cas9 cut site, indicative of NHEJ-mediated knock-in events. As expected with Cas9 RNPs, no off-targeting was found in one of the mutagenic screens. In conclusion, we improved the knockout efficiency by using Cas9 RNPs, which opens great opportunities not only for biological research but also industrial applications in Chlamydomonas and other microalgae. Findings of the NHEJ-mediated knock-in events will allow applications of the CRISPR/Cas9 system in microalgae, including “safe harboring” techniques shown in other organisms. PMID:27291619

  3. GABAergic Interneuron Dysfunction Impairs Hippocampal Neurogenesis in Adult Apolipoprotein E4 Knock-in Mice

    PubMed Central

    Li, Gang; Bien-Ly, Nga; Andrews-Zwilling, Yaisa; Xu, Qin; Bernardo, Aubrey; Ring, Karen; Halabisky, Brian; Deng, Changhui; Mahley, Robert W.; Huang, Yadong

    2010-01-01

    SUMMARY Apolipoprotein (apo) E has important and diverse functions in neurobiology, and apoE4 is the major known genetic risk factor for Alzheimer’s disease. Here we report that adult neural stem/progenitor cells (NSCs) express apoE. In apoE knockout mice, neurogenesis in the hippocampus was ~60% lower than in wildtype mice, and most newborn cells developed into astrocytes rather than into neurons as in wildtype mice. This impairment was not observed in human apoE3 knock-in mice. In apoE4 knock-in mice, however, the maturation and dendritic development of newborn hippocampal neurons was significantly impaired as a result of apoE4 and its fragment-caused GABAergic interneuron dysfunction. This impairment was fully rescued by treatment with a GABAA receptor potentiator. These findings demonstrate the importance of apoE in adult hippocampal neurogenesis and show that apoE4 inhibits hippocampal neurogenesis by impairing neuronal maturation mediated by GABA signaling. PMID:19951691

  4. Inhibitory Interneuron Progenitor Transplantation Restores Normal Learning and Memory in ApoE4 Knock-In Mice without or with Aβ Accumulation

    PubMed Central

    Tong, Leslie M.; Djukic, Biljana; Arnold, Christine; Gillespie, Anna K.; Yoon, Seo Yeon; Wang, Max M.; Zhang, Olivia; Knoferle, Johanna; Rubenstein, John L.R.; Alvarez-Buylla, Arturo

    2014-01-01

    Excitatory and inhibitory balance of neuronal network activity is essential for normal brain function and may be of particular importance to memory. Apolipoprotein (apo) E4 and amyloid-β (Aβ) peptides, two major players in Alzheimer's disease (AD), cause inhibitory interneuron impairments and aberrant neuronal activity in the hippocampal dentate gyrus in AD-related mouse models and humans, leading to learning and memory deficits. To determine whether replacing the lost or impaired interneurons rescues neuronal signaling and behavioral deficits, we transplanted embryonic interneuron progenitors into the hippocampal hilus of aged apoE4 knock-in mice without or with Aβ accumulation. In both conditions, the transplanted cells developed into mature interneurons, functionally integrated into the hippocampal circuitry, and restored normal learning and memory. Thus, restricted hilar transplantation of inhibitory interneurons restores normal cognitive function in two widely used AD-related mouse models, highlighting the importance of interneuron impairments in AD pathogenesis and the potential of cell replacement therapy for AD. More broadly, it demonstrates that excitatory and inhibitory balance are crucial for learning and memory, and suggests an avenue for investigating the processes of learning and memory and their alterations in healthy aging and diseases. PMID:25031394

  5. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation.

    PubMed

    Tong, Leslie M; Djukic, Biljana; Arnold, Christine; Gillespie, Anna K; Yoon, Seo Yeon; Wang, Max M; Zhang, Olivia; Knoferle, Johanna; Rubenstein, John L R; Alvarez-Buylla, Arturo; Huang, Yadong

    2014-07-16

    Excitatory and inhibitory balance of neuronal network activity is essential for normal brain function and may be of particular importance to memory. Apolipoprotein (apo) E4 and amyloid-β (Aβ) peptides, two major players in Alzheimer's disease (AD), cause inhibitory interneuron impairments and aberrant neuronal activity in the hippocampal dentate gyrus in AD-related mouse models and humans, leading to learning and memory deficits. To determine whether replacing the lost or impaired interneurons rescues neuronal signaling and behavioral deficits, we transplanted embryonic interneuron progenitors into the hippocampal hilus of aged apoE4 knock-in mice without or with Aβ accumulation. In both conditions, the transplanted cells developed into mature interneurons, functionally integrated into the hippocampal circuitry, and restored normal learning and memory. Thus, restricted hilar transplantation of inhibitory interneurons restores normal cognitive function in two widely used AD-related mouse models, highlighting the importance of interneuron impairments in AD pathogenesis and the potential of cell replacement therapy for AD. More broadly, it demonstrates that excitatory and inhibitory balance are crucial for learning and memory, and suggests an avenue for investigating the processes of learning and memory and their alterations in healthy aging and diseases. Copyright © 2014 the authors 0270-6474/14/349506-10$15.00/0.

  6. Early and brain region-specific decrease of de novo cholesterol biosynthesis in Huntington's disease: A cross-validation study in Q175 knock-in mice.

    PubMed

    Shankaran, Mahalakshmi; Di Paolo, Eleonora; Leoni, Valerio; Caccia, Claudio; Ferrari Bardile, Costanza; Mohammed, Hussein; Di Donato, Stefano; Kwak, Seung; Marchionini, Deanna; Turner, Scott; Cattaneo, Elena; Valenza, Marta

    2017-02-01

    Cholesterol precursors and cholesterol levels are reduced in brain regions of Huntington's disease (HD) mice. Here we quantified the rate of in vivo de novo cholesterol biosynthesis in the HD brain. Samples from different brain regions and blood of the heterozygous knock-in mouse model carrying 175 CAG repeats (Q175) at different phenotypic stages were processed independently by two research units to quantify cholesterol synthesis rate by (2)H2O labeling and measure the concentrations of lathosterol, cholesterol and its brain-specific cholesterol catabolite 24-hydroxy-cholesterol (24OHC) by isotope dilution mass spectrometry. The daily synthesis rate of cholesterol and the corresponding concentration of lathosterol were significantly reduced in the striatum of heterozygous Q175 mice early in the disease course. We also report that the decrease in lathosterol was inversely correlated with CAG-size at symptomatic stage, as observed in striatal samples from an allelic series of HD mice. There was also a significant correlation between the fractional synthesis rates of total cholesterol and 24OHC in brain of wild-type (WT) and Q175 mice, supporting the evidence that plasma 24OHC may reflect cholesterol synthesis in the adult brain. This comprehensive analysis demonstrates consistent cholesterol biosynthesis defects in HD mouse models and suggests that plasma 24OHC may serve as a biomarker of brain cholesterol metabolism.

  7. Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila.

    PubMed

    Xue, Zhaoyu; Ren, Mengda; Wu, Menghua; Dai, Junbiao; Rong, Yikang S; Gao, Guanjun

    2014-03-21

    Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor.

  8. Knock-In of Human BACE1 Cleaves Murine APP and Reiterates Alzheimer-like Phenotypes

    PubMed Central

    Plucińska, Kaja; Crouch, Barry; Koss, David; Robinson, Lianne; Siebrecht, Michael

    2014-01-01

    Key neuropathological hallmarks of Alzheimer's disease (AD) are elevated levels of amyloid β-peptide (Aβ) species generated via amyloid precursor protein (APP) endoproteolysis and cleavage by the rate-limiting β-site enzyme 1 (BACE1). Because rodents do not develop amyloid pathologies, we here investigated whether AD-like endophenotypes can be created in mice by expression of human bace1. To avoid pitfalls of existing models, we introduced hbace1 via knock-in under the control of the CaMKII α promoter into the safe HPRT locus. We report amyloidogenic processing of murine APP in the hBACE1 mice (termed PLB4), resulting in the formation of toxic APP metabolites that accumulate intra- and extraneuronally in hippocampus and cortex. Pronounced accumulation of Aβ*56 and Aβ hexamers in the absence of plaque deposition was detected in brain tissue from symptomatic PLB4 mice. Heightened levels of inflammation (gliosis) also appeared in several AD-related brain regions (dentate gyrus, hippocampal area CA1, piriform and parietal cortices) at 6 and 12 months of age. Behaviorally, deficits in habituation to a novel environment and semantic-like memory (social transmission of food preference) were detected from 3 to 4 months of age. Impairments in spatial learning strategies in long-term reference (water maze) and working memory (Y-maze) tasks presented at 6 months, and were distinct from reductions in locomotor activity and anxiety. Overall, our data indicate for the first time that targeted, subtle forebrain-specific expression through single gene knock-in of hBACE1 is sufficient to generate AD-relevant cognitive impairments amid corresponding histopathologies, confirming human BACE as the key parameter in amyloid pathogenesis. PMID:25100603

  9. Knock-in of human BACE1 cleaves murine APP and reiterates Alzheimer-like phenotypes.

    PubMed

    Plucińska, Kaja; Crouch, Barry; Koss, David; Robinson, Lianne; Siebrecht, Michael; Riedel, Gernot; Platt, Bettina

    2014-08-06

    Key neuropathological hallmarks of Alzheimer's disease (AD) are elevated levels of amyloid β-peptide (Aβ) species generated via amyloid precursor protein (APP) endoproteolysis and cleavage by the rate-limiting β-site enzyme 1 (BACE1). Because rodents do not develop amyloid pathologies, we here investigated whether AD-like endophenotypes can be created in mice by expression of human bace1. To avoid pitfalls of existing models, we introduced hbace1 via knock-in under the control of the CaMKII α promoter into the safe HPRT locus. We report amyloidogenic processing of murine APP in the hBACE1 mice (termed PLB4), resulting in the formation of toxic APP metabolites that accumulate intra- and extraneuronally in hippocampus and cortex. Pronounced accumulation of Aβ*56 and Aβ hexamers in the absence of plaque deposition was detected in brain tissue from symptomatic PLB4 mice. Heightened levels of inflammation (gliosis) also appeared in several AD-related brain regions (dentate gyrus, hippocampal area CA1, piriform and parietal cortices) at 6 and 12 months of age. Behaviorally, deficits in habituation to a novel environment and semantic-like memory (social transmission of food preference) were detected from 3 to 4 months of age. Impairments in spatial learning strategies in long-term reference (water maze) and working memory (Y-maze) tasks presented at 6 months, and were distinct from reductions in locomotor activity and anxiety. Overall, our data indicate for the first time that targeted, subtle forebrain-specific expression through single gene knock-in of hBACE1 is sufficient to generate AD-relevant cognitive impairments amid corresponding histopathologies, confirming human BACE as the key parameter in amyloid pathogenesis. Copyright © 2014 the authors 0270-6474/14/3410710-19$15.00/0.

  10. Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current

    PubMed Central

    Schutte, Ryan J.; Schutte, Soleil S.; Algara, Jacqueline; Barragan, Eden V.; Gilligan, Jeff; Staber, Cynthia; Savva, Yiannis A.; Smith, Martin A.; Reenan, Robert

    2014-01-01

    Hundreds of mutations in the SCN1A sodium channel gene confer a wide spectrum of epileptic disorders, requiring efficient model systems to study cellular mechanisms and identify potential therapeutic targets. We recently demonstrated that Drosophila knock-in flies carrying the K1270T SCN1A mutation known to cause a form of genetic epilepsy with febrile seizures plus (GEFS+) exhibit a heat-induced increase in sodium current activity and seizure phenotype. To determine whether different SCN1A mutations cause distinct phenotypes in Drosophila as they do in humans, this study focuses on a knock-in line carrying a mutation that causes a more severe seizure disorder termed Dravet syndrome (DS). Introduction of the DS SCN1A mutation (S1231R) into the Drosophila sodium channel gene para results in flies that exhibit spontaneous and heat-induced seizures with distinct characteristics and lower onset temperature than the GEFS+ flies. Electrophysiological studies of GABAergic interneurons in the brains of adult DS flies reveal, for the first time in an in vivo model system, that a missense DS mutation causes a constitutive and conditional reduction in sodium current activity and repetitive firing. In addition, feeding with the serotonin precursor 5-HTP suppresses heat-induced seizures in DS but not GEFS+ flies. The distinct alterations of sodium currents in DS and GEFS+ GABAergic interneurons demonstrate that both loss- and gain-of-function alterations in sodium currents are capable of causing reduced repetitive firing and seizure phenotypes. The mutation-specific effects of 5-HTP on heat-induced seizures suggest the serotonin pathway as a potential therapeutic target for DS. PMID:24805083

  11. Gene correction of a duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in.

    PubMed

    Popplewell, Linda; Koo, Taeyoung; Leclerc, Xavier; Duclert, Aymeric; Mamchaoui, Kamel; Gouble, Agnés; Mouly, Vincent; Voit, Thomas; Pâques, Frédéric; Cédrone, Frédéric; Isman, Olga; Yáñez-Muñoz, Rafael J; Dickson, George

    2013-07-01

    Duchenne muscular dystrophy (DMD) is a severe inherited, muscle-wasting disorder caused by mutations in the DMD gene. Gene therapy development for DMD has concentrated on vector-based DMD minigene transfer, cell-based gene therapy using genetically modified adult muscle stem cells or healthy wild-type donor cells, and antisense oligonucleotide-induced exon-skipping therapy to restore the reading frame of the mutated DMD gene. This study is an investigation into DMD gene targeting-mediated correction of deletions in human patient myoblasts using a target-specific meganuclease (MN) and a homologous recombination repair matrix. The MN was designed to cleave within DMD intron 44, upstream of a deletion hotspot, and integration-competent lentiviral vectors expressing the nuclease (LVcMN) were generated. MN western blotting and deep gene sequencing for LVcMN-induced non-homologous end-joining InDels (microdeletions or microinsertions) confirmed efficient MN expression and activity in transduced DMD myoblasts. A homologous repair matrix carrying exons 45-52 (RM45-52) was designed and packaged into integration-deficient lentiviral vectors (IDLVs; LVdRM45-52). After cotransduction of DMD myoblasts harboring a deletion of exons 45 to 52 with LVcMN and LVdRM45-52 vectors, targeted knock-in of the RM45-52 region in the correct location in DMD intron 44, and expression of full-length, correctly spliced wild-type dystrophin mRNA containing exons 45-52 were observed. This work demonstrates that genome surgery on human DMD gene mutations can be achieved by MN-induced locus-specific genome cleavage and homologous recombination knock-in of deleted exons. The feasibility of human DMD gene repair in patient myoblasts has exciting therapeutic potential.

  12. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.

    PubMed

    Schumann, Kathrin; Lin, Steven; Boyer, Eric; Simeonov, Dimitre R; Subramaniam, Meena; Gate, Rachel E; Haliburton, Genevieve E; Ye, Chun J; Bluestone, Jeffrey A; Doudna, Jennifer A; Marson, Alexander

    2015-08-18

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently "knock out" genes and "knock in" targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4(+) T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ∼40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ∼20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.

  13. Alterations in Ethanol-Induced Behaviors and Consumption in Knock-In Mice Expressing Ethanol-Resistant NMDA Receptors

    PubMed Central

    den Hartog, Carolina R.; Beckley, Jacob T.; Smothers, Thetford C.; Lench, Daniel H.; Holseberg, Zack L.; Fedarovich, Hleb; Gilstrap, Meghin J.; Homanics, Gregg E.; Woodward, John J.

    2013-01-01

    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75–2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. PMID:24244696

  14. Novel ROSA26 Cre-reporter knock-in C57BL/6N mice exhibiting green emission before and red emission after Cre-mediated recombination.

    PubMed

    Hasegawa, Yoshikazu; Daitoku, Yoko; Sekiguchi, Keito; Tanimoto, Yoko; Mizuno-Iijima, Saori; Mizuno, Seiya; Kajiwara, Noriko; Ema, Masatsugu; Miwa, Yoshihiro; Mekada, Kazuyuki; Yoshiki, Atsushi; Takahashi, Satoru; Sugiyama, Fumihiro; Yagami, Ken-ichi

    2013-01-01

    The Cre/loxP system is a strategy for controlling temporal and/or spatial gene expression through genome alteration in mice. As successful Cre/loxP genome alteration depends on Cre-driver mice, Cre-reporter mice are essential for validation of Cre gene expression in vivo. In most Cre-reporter mouse strains, although the presence of reporter product indicates the expression of Cre recombinase, it has remained unclear whether a lack of reporter signal indicates either no Cre recombinase expression or insufficient reporter gene promoter activity. We produced a novel ROSA26 knock-in Cre-reporter C57BL/6N strain exhibiting green emission before and red after Cre-mediated recombination, designated as strain R26GRR. Ubiquitous green fluorescence and no red fluorescence were observed in R26GRR mice. To investigate the activation of tdsRed, EGFP-excised R26GRR, R26RR, mice were produced through the crossing of C57BL/6N mice with R26GRR/Ayu1-Cre F1 mice. R26RR mice showed extraordinarily strong red fluorescence in almost all tissues examined, suggesting ubiquitous activation of the second reporter in all tissues after Cre/loxP recombination. Moreover, endothelial cell lineage and pancreatic islet-specific expression of red fluorescence were detected in R26GRR/Tie2-Cre F1 mice and R26GRR /Ins1-Cre F1 mice, respectively. These results indicated that R26GRR mice are a useful novel Cre-reporter mouse strain. In addition, R26GRR mice with a pure C57BL/6N background represent a valuable source of green-to-red photoconvertible cells following Cre/loxP recombination for application in transplantation studies. The R26GRR mouse strain will be available from RIKEN BioResource Center (http://www.brc.riken.jp/lab/animal/en/).

  15. Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy.

    PubMed

    Rusmini, Paola; Polanco, Maria Josefa; Cristofani, Riccardo; Cicardi, Maria Elena; Meroni, Marco; Galbiati, Mariarita; Piccolella, Margherita; Messi, Elio; Giorgetti, Elisa; Lieberman, Andrew P; Milioto, Carmelo; Rocchi, Anna; Aggarwal, Tanya; Pennuto, Maria; Crippa, Valeria; Poletti, Angelo

    2015-10-22

    Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGFβ1 and PGC-1α were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3:BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments.

  16. Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy

    PubMed Central

    Rusmini, Paola; Polanco, Maria Josefa; Cristofani, Riccardo; Cicardi, Maria Elena; Meroni, Marco; Galbiati, Mariarita; Piccolella, Margherita; Messi, Elio; Giorgetti, Elisa; Lieberman, Andrew P.; Milioto, Carmelo; Rocchi, Anna; Aggarwal, Tanya; Pennuto, Maria; Crippa, Valeria; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGFβ1 and PGC-1α were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3:BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments. PMID:26490709

  17. Hyperactivation of Alk induces neonatal lethality in knock-in AlkF1178L mice

    PubMed Central

    Lopez-Delisle, Lucille; Pierre-Eugène, Cécile; Bloch-Gallego, Evelyne; Birling, Marie-Christine; Duband, Jean-Loup; Durand, Estelle; Bourgeois, Thomas; Matrot, Boris; Sorg, Tania; Huerre, Michel; Meziane, Hamid; Roux, Michel J.; Champy, Marie-France; Gallego, Jorge; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    The ALK (Anaplastic Lymphoma Kinase) gene encodes a tyrosine kinase receptor preferentially expressed in the central and peripheral nervous systems. A syndromic presentation associating congenital neuroblastoma with severe encephalopathy and an abnormal shape of the brainstem has been described in patients harbouring de novo germline F1174V and F1245V ALK mutations. Here, we investigated the phenotype of knock-in (KI) mice bearing the AlkF1178L mutation (F1174L in human). Although heterozygous KI mice did not reproduce the severe breathing and feeding difficulties observed in human patients, behavioral tests documented a reduced activity during dark phases and an increased anxiety of mutated mice. Matings of heterozygotes yielded the expected proportions of wild-type, heterozygotes and homozygotes at birth but a high neonatal lethality was noticed for homozygotes. We documented Alk expression in several motor nuclei of the brainstem involved in the control of sucking and swallowing. Evaluation of basic physiological functions 12 hours after birth revealed slightly more apneas but a dramatic reduced milk intake for homozygotes compared to control littermates. Overall, our data demonstrate that Alk activation above a critical threshold is not compatible with survival in mice, in agreement with the extremely severe phenotype of patients carrying aggressive de novo ALK germline mutations. PMID:24811761

  18. Fluorescent knock-in mice to decipher the physiopathological role of G protein-coupled receptors

    PubMed Central

    Ceredig, Rhian A.; Massotte, Dominique

    2015-01-01

    G protein-coupled receptors (GPCRs) modulate most physiological functions but are also critically involved in numerous pathological states. Approximately a third of marketed drugs target GPCRs, which places this family of receptors in the main arena of pharmacological pre-clinical and clinical research. The complexity of GPCR function demands comprehensive appraisal in native environment to collect in-depth knowledge of receptor physiopathological roles and assess the potential of therapeutic molecules. Identifying neurons expressing endogenous GPCRs is therefore essential to locate them within functional circuits whereas GPCR visualization with subcellular resolution is required to get insight into agonist-induced trafficking. Both remain frequently poorly investigated because direct visualization of endogenous receptors is often hampered by the lack of appropriate tools. Also, monitoring intracellular trafficking requires real-time visualization to gather in-depth knowledge. In this context, knock-in mice expressing a fluorescent protein or a fluorescent version of a GPCR under the control of the endogenous promoter not only help to decipher neuroanatomical circuits but also enable real-time monitoring with subcellular resolution thus providing invaluable information on their trafficking in response to a physiological or a pharmacological challenge. This review will present the animal models and discuss their contribution to the understanding of the physiopathological role of GPCRs. We will also address the drawbacks associated with this methodological approach and browse future directions. PMID:25610398

  19. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish.

    PubMed

    Auer, Thomas O; Del Bene, Filippo

    2014-09-01

    The targeted introduction of mutations utilizing sequence specific transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system (RNA-guided nucleases, RGNs) has revolutionized reverse genetic approaches in numerous model organisms. In zebrafish, both systems were successfully applied to generate loss-of-function alleles by targeting open reading frames or deletion and inversion of whole chromosomal regions. In addition to the production of these loss-of-function alleles, genomic engineering by insertion of short sequences utilizing single stranded DNA oligonucleotides as templates for homology based repair was made possible, enabling effective insertion of loxP sites or tags for protein coding genes. Recent studies based on homologous recombination and non-homologous end joining have also broadened the repertoire for genome editing. These approaches allow the targeted insertion of open reading frames or even whole donor vectors. In this review we summarize the use of TALENs and RNA-guided nucleases in the field of zebrafish genetics with a special focus on knock-in approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock in mice

    PubMed Central

    Yue, M.; Hinkle, K.; Davies, P.; Trushina, E.; Fiesel, F.; Christenson, T.; Schroeder, A.; Zhang, L.; Bowles, E.; Behrouz, B.; Lincoln, S.; Beevers, J.; Milnerwood, A.; Kurti, A.; McLean, P. J.; Fryer, J. D.; Springer, W.; Dickson, D.; Farrer, M.; Melrose, H.

    2015-01-01

    Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson’s disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock in mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24 months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6 months, by 12 months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug- evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S mice, which are consistent with mitochondrial fission arrest. We anticipate the G2019S will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression. PMID:25836420

  1. Specific expression of FOXP2 in cerebellum improves ultrasonic vocalization in heterozygous but not in homozygous Foxp2 (R552H) knock-in pups.

    PubMed

    Fujita-Jimbo, Eriko; Momoi, Takashi

    2014-04-30

    The R553H mutation has been found in the FOXP2 gene of patients with speech-language disorder. Foxp2(R552H) knock-in (KI) mice exhibit poor dendritic development of Purkinje cells in the cerebellum and impaired ultrasonic vocalization (USV), which is related to human speech and language; compared with wild-type mice, heterozygous Foxp2(R552H)-KI pups exhibit the reduced number of whistle-type USVs and the increased short-type ones, while homozygous pups exhibit only click-type USVs but no whistle-type or short-type ones. To make clear the relationship between the role of Foxp2 in the cerebellum and whistle-type USVs activity, we prepared transgenic (Tg) mice specifically expressing human FOXP2-myc in cerebellum (Pcp2-FOXP2-myc-Tg mice) by using purkinje cell protein-2 (Pcp2) promoter. FOXP2-myc expression in the cerebellum increased the relative numbers of whistle-type USVs in the heterozygous Foxp2(R552H)-KI pups and recovered their USVs but did not in the homozygous ones. Foxp2 in the cerebellum may pertain to the brain network engaged in whistle-type USVs activities including modification, but not their production. There may be common molecular contribution of Purkinje cells to human FOXP2-mediated speech-language and mouse Foxp2-mediated USVs.

  2. Generation of knock-in mice that express nuclear enhanced green fluorescent protein and tamoxifen-inducible Cre recombinase in the notochord from Foxa2 and T loci.

    PubMed

    Imuta, Yu; Kiyonari, Hiroshi; Jang, Chuan-Wei; Behringer, Richard R; Sasaki, Hiroshi

    2013-03-01

    The node and the notochord are important embryonic signaling centers that control embryonic pattern formation. Notochord progenitor cells present in the node and later in the posterior end of the notochord move anteriorly to generate the notochord. To understand the dynamics of cell movement during notochord development and the molecular mechanisms controlling this event, analyses of cell movements using time-lapse imaging and conditional manipulation of gene activities are required. To achieve this goal, we generated two knock-in mouse lines that simultaneously express nuclear enhanced green fluorescent protein (EGFP) and tamoxifen-inducible Cre, CreER(T2) , from two notochord gene loci, Foxa2 and T (Brachury). In Foxa2(nEGFP-CreERT2/+) and T(nEGFP-CreERT2/+) embryos, nuclei of the Foxa2 or T-expressing cells, which include the node, notochord, and endoderm (Foxa2) or wide range of posterior mesoderm (T), were labeled with EGFP at intensities that can be used for live imaging. Cre activity was also induced in cells expressing Foxa2 and T 1 day after tamoxifen administration. These mice are expected to be useful tools for analyzing the mechanisms of notochord development.

  3. Widespread non-central nervous system organ pathology in fragile X premutation carriers with fragile X-associated tremor/ataxia syndrome and CGG knock-in mice.

    PubMed

    Hunsaker, Michael R; Greco, Claudia M; Spath, Marian A; Smits, Arie P T; Navarro, Celestine S; Tassone, Flora; Kros, Johan M; Severijnen, Lies-Anne; Berry-Kravis, Elizabeth M; Berman, Robert F; Hagerman, Paul J; Willemsen, Rob; Hagerman, Randi J; Hukema, Renate K

    2011-10-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder generally presenting with intention tremor and gait ataxia, but with a growing list of co-morbid medical conditions including hypothyroidism, hypertension, peripheral neuropathy, and cognitive decline. The pathological hallmark of FXTAS is the presence of intranuclear inclusions in both neurons and astroglia. However, it is unknown to what extent such inclusions are present outside the central nervous system (CNS). To address this issue, we surveyed non-CNS organs in ten human cases with FXTAS and in a CGG repeat knock-in (CGG KI) mouse model known to possess neuronal and astroglial inclusions. We find inclusions in multiple tissues from FXTAS cases and CGG KI mice, including pancreas, thyroid, adrenal gland, gastrointestinal, pituitary gland, pineal gland, heart, and mitral valve, as well as throughout the associated autonomic ganglia. Inclusions were observed in the testes, epididymis, and kidney of FXTAS cases, but were not observed in mice. These observations demonstrate extensive involvement of the peripheral nervous system and systemic organs. The finding of intranuclear inclusions in non-CNS somatic organ systems, throughout the PNS, and in the enteric nervous system of both FXTAS cases as well as CGG KI mice suggests that these tissues may serve as potential sites to evaluate early intervention strategies or be used as diagnostic factors.

  4. Conditional Expression of E2A-HLF Induces B-Cell Precursor Death and Myeloproliferative-Like Disease in Knock-In Mice

    PubMed Central

    Duque-Afonso, Jesús; Smith, Kevin S.; Cleary, Michael L.

    2015-01-01

    Chromosomal translocations are driver mutations of human cancers, particularly leukemias. They define disease subtypes and are used as prognostic markers, for minimal residual disease monitoring and therapeutic targets. Due to their low incidence, several translocations and their biological consequences remain poorly characterized. To address this, we engineered mouse strains that conditionally express E2A-HLF, a fusion oncogene from the translocation t(17;19) associated with 1% of pediatric B-cell precursor ALL. Conditional oncogene activation and expression were directed to the B-cell compartment by the Cre driver promoters CD19 or Mb1 (Igα, CD79a), or to the hematopoietic stem cell compartment by the Mx1 promoter. E2A-HLF expression in B-cell progenitors induced hyposplenia and lymphopenia, whereas expression in hematopoietic stem/progenitor cells was embryonic lethal. Increased cell death was detected in E2A-HLF expressing cells, suggesting the need for cooperating genetic events that suppress cell death for B-cell oncogenic transformation. E2A-HLF/Mb1.Cre aged mice developed a fatal myeloproliferative-like disorder with low frequency characterized by leukocytosis, anemia, hepatosplenomegaly and organ-infiltration by mature myelocytes. In conclusion, we have developed conditional E2A-HLF knock-in mice, which provide an experimental platform to study cooperating genetic events and further elucidate translational biology in cross-species comparative studies. PMID:26588248

  5. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2

    PubMed Central

    Kerr, Niall; Holmes, Fiona E.; Hobson, Sally-Ann; Vanderplank, Penny; Leard, Alan; Balthasar, Nina; Wynick, David

    2015-01-01

    The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1–3 gene products). There is a wealth of data on expression of Gal1–3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs). PMID:26292267

  6. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

    SciTech Connect

    Schumann, Kathrin; Lin, Steven; Boyer, Eric; Simeonov, Dimitre R.; Subramaniam, Meena; Gate, Rachel E.; Haliburton, Genevieve E.; Ye, Chun J.; Bluestone, Jeffrey A.; Doudna, Jennifer A.; Marson, Alexander

    2015-07-27

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4+ T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ~40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ~20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.

  7. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

    DOE PAGES

    Schumann, Kathrin; Lin, Steven; Boyer, Eric; ...

    2015-07-27

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4+ T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9more » RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ~40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ~20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.« less

  8. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

    PubMed Central

    Schumann, Kathrin; Lin, Steven; Boyer, Eric; Simeonov, Dimitre R.; Subramaniam, Meena; Gate, Rachel E.; Haliburton, Genevieve E.; Ye, Chun J.; Bluestone, Jeffrey A.; Doudna, Jennifer A.; Marson, Alexander

    2015-01-01

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4+ T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ∼40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ∼20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells. PMID:26216948

  9. A Blau syndrome-associated Nod2 mutation alters expression of full length NOD2 and limits responses to muramyl dipeptide in knock-in mice

    PubMed Central

    Dugan, Jae; Griffiths, Eric; Snow, Paige; Rosenzweig, Holly; Lee, Ellen; Brown, Brieanna; Carr, Daniel W.; Rose, Carlos; Rosenbaum, James; Davey, Michael P.

    2014-01-01

    The biochemical mechanism by which mutations in nucleotide-binding oligomerization domain containing 2 (NOD2) cause Blau syndrome is unknown. Several studies have examined the effect of mutations associated with Blau syndrome in vitro, but none have looked at the implication of the mutations in vivo. To test the hypothesis that mutated NOD2 causes alterations in signaling pathways downstream of NOD2, we created a Nod2 knock-in mouse carrying the most common mutation seen in Blau syndrome, R314Q (corresponding to R334Q in humans). The endogenous regulatory elements of mouse Nod2 were unaltered. R314Q mice showed reduced cytokine production in response to i.p. and intravitreal muramyl dipeptide (MDP). Macrophages from R314Q mice showed reduced NF-κB and IL-6 responses, blunted phosphorylation of MAPKs, and deficient ubiquitination of receptor-interacting protein 2 in response to MDP. R314Q mice expressed a truncated 80 kDa form of NOD2 that was most likely generated by a posttranslational event since there was no evidence for a stop codon or alternative splicing event. Human macrophages from 2 patients with Blau syndrome also showed a reduction of both cytokine production and phosphorylation of p38 in response to MDP, indicating that both R314Q mice and cells from patients with Blau syndrome show reduced responses to MDP. These data indicate that the R314Q mutation when studied with the Nod2 endogenous regulatory elements left intact is associated with marked structural and biochemical changes that are significantly different from those observed from studies of the mutation using over-expression, transient transfection systems. PMID:25429073

  10. An Allosteric Potentiator of the Dopamine D1 Receptor Increases Locomotor Activity in Human D1 Knock-In Mice without Causing Stereotypy or Tachyphylaxis

    PubMed Central

    Heinz, Beverly A.; Schaus, John M.; Beck, James P.; Hao, Junliang; Krushinski, Joseph H.; Reinhard, Matthew R.; Cohen, Michael P.; Hellman, Sarah L.; Getman, Brian G.; Wang, Xushan; Menezes, Michelle M.; Maren, Deanna L.; Falcone, Julie F.; Anderson, Wesley H.; Wright, Rebecca A.; Morin, S. Michelle; Knopp, Kelly L.; Adams, Benjamin L.; Rogovoy, Borys; Okun, Ilya; Suter, Todd M.; Statnick, Michael A.; Gehlert, Donald R.; Nelson, David L.; Lucaites, Virginia L.; Emkey, Renee; DeLapp, Neil W.; Wiernicki, Todd R.; Cramer, Jeffrey W.; Yang, Charles R.; Bruns, Robert F.

    2017-01-01

    Allosteric potentiators amplify the sensitivity of physiologic control circuits, a mode of action that could provide therapeutic advantages. This hypothesis was tested with the dopamine D1 receptor potentiator DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one]. In human embryonic kidney 293 (HEK293) cells expressing the human D1 receptor, DETQ induced a 21-fold leftward shift in the cAMP response to dopamine, with a Kb of 26 nM. The maximum response to DETQ alone was ∼12% of the maximum response to dopamine, suggesting weak allosteric agonist activity. DETQ was ∼30-fold less potent at rat and mouse D1 receptors and was inactive at the human D5 receptor. To enable studies in rodents, an hD1 knock-in mouse was generated. DETQ (3–20 mg/kg orally) caused a robust (∼10-fold) increase in locomotor activity (LMA) in habituated hD1 mice but was inactive in wild-type mice. The LMA response to DETQ was blocked by the D1 antagonist SCH39166 and was dependent on endogenous dopamine. LMA reached a plateau at higher doses (30–240 mg/kg) even though free brain levels of DETQ continued to increase over the entire dose range. In contrast, the D1 agonists SKF 82958, A-77636, and dihydrexidine showed bell-shaped dose-response curves with a profound reduction in LMA at higher doses; video-tracking confirmed that the reduction in LMA caused by SKF 82958 was due to competing stereotyped behaviors. When dosed daily for 4 days, DETQ continued to elicit an increase in LMA, whereas the D1 agonist A-77636 showed complete tachyphylaxis by day 2. These results confirm that allosteric potentiators may have advantages compared with direct-acting agonists. PMID:27811173

  11. Detailed expression pattern of aldolase C (Aldoc) in the cerebellum, retina and other areas of the CNS studied in Aldoc-Venus knock-in mice.

    PubMed

    Fujita, Hirofumi; Aoki, Hanako; Ajioka, Itsuki; Yamazaki, Maya; Abe, Manabu; Oh-Nishi, Arata; Sakimura, Kenji; Sugihara, Izumi

    2014-01-01

    Aldolase C (Aldoc, also known as "zebrin II"), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes. High levels of Venus expression were observed in cerebellar PCs, cartwheel cells in the dorsal cochlear nucleus, sensory epithelium of the inner ear and in all major types of retinal cells, while moderate levels of Venus expression were observed in astrocytes and satellite cells in the dorsal root ganglion. The striped arrangement of PCs that express Venus to different degrees was carefully traced with serial section alignment analysis and mapped on the unfolded scheme of the entire cerebellar cortex to re-identify all individual Aldoc stripes. A longitudinally striped boundary of Aldoc expression was first identified in the mouse flocculus, and was correlated with the climbing fiber projection pattern and expression of another compartmental marker molecule, heat shock protein 25 (HSP25). As in the rat, the cerebellar nuclei were divided into the rostrodorsal negative and the caudoventral positive portions by distinct projections of Aldoc-positive and negative PC axons in the mouse. Identification of the cerebellar Aldoc stripes in this study, as indicated in sample coronal and horizontal sections as well as in sample surface photos of whole-mount preparations, can be referred to in future experiments.

  12. Mouse Genome Editing Using the CRISPR/Cas System.

    PubMed

    Harms, Donald W; Quadros, Rolen M; Seruggia, Davide; Ohtsuka, Masato; Takahashi, Gou; Montoliu, Lluis; Gurumurthy, Channabasavaiah B

    2014-10-01

    The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much more quickly than the previously used techniques, and, more importantly, multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one-cell mouse embryos to create knockout or knock-in mouse models.

  13. Mouse Genome Editing using CRISPR/Cas System

    PubMed Central

    Harms, Donald W; Quadros, Rolen M; Seruggia, Davide; Ohtsuka, Masato; Takahashi, Gou

    2015-01-01

    The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much faster than the previously used techniques and more importantly multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one cell mouse embryos to create knockout or knock-in mouse models. PMID:25271839

  14. A novel luciferase knock-in reporter system for studying transcriptional regulation of the human Sox2 gene.

    PubMed

    Xiao, Dan; Zhang, Weifeng; Li, Yan; Liu, Kuan; Zhao, Junli; Sun, Xiaohong; Shan, Linlin; Mao, Qinwen; Xia, Haibin

    2016-02-10

    Sox2 is an important transcriptional factor that has multiple functions in stem cell maintenance and tumorigenesis. To investigate the transcriptional regulation of the Sox2 gene, a luciferase knock-in reporter system was established in HEK293 cells by placing the luciferase gene in the genome under the control of the Sox2 gene promoter using a transcription activator-like effector nuclease (TALEN)-mediated genome editing technique. PCR and Southern blot results confirmed the site-specific integration of a single copy of the exogenous luciferase gene into the genome. To prove the reliability and sensitivity of this novel luciferase knock-in system, a CRISPR/Cas transcription activation system for the Sox2 gene was constructed and applied to the knock-in system. The results indicated that luciferase activity was directly correlated with the activity of the Sox2 endogenous promoter. This novel system will be a useful tool to study the transcriptional regulation of Sox2, and has great potential in medical and industrial applications.

  15. Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes

    USDA-ARS?s Scientific Manuscript database

    The domestic pig is an important “dual purpose” animal model for agricultural and biomedical applications. There is an emerging consensus in the biomedical community that even though mouse is a powerhouse genetic model, there is a requirement for large animal models such as pigs that can either ser...

  16. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development

    PubMed Central

    Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael

    2017-01-01

    The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development. PMID:28713249

  17. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development.

    PubMed

    Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael

    2017-01-01

    The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.

  18. Combination of starvation interval and food volume determines the phase of liver circadian rhythm in Per2::Luc knock-in mice under two meals per day feeding.

    PubMed

    Hirao, Akiko; Nagahama, Hiroki; Tsuboi, Takuma; Hirao, Mizuho; Tahara, Yu; Shibata, Shigenobu

    2010-11-01

    Although the circadian liver clock is entrained by the feeding cycle, factors such as food volume and starvation interval are poorly understood. Per2::Luc knock-in mice were given two meals per day with different food volume sizes and/or with different intervals of starvation between two mealtimes with the total food volume per day fixed at 3.6 g (80 food pellets, ∼75% of free feeding) per mouse. The bioluminescence rhythm in the liver produced a unimodal peak but not bimodal peak under the regimen of two meals per day over 14-15 days. Peak Per2 expression occurred concurrently with the mealtime of the larger food volume, when the first and second meal were given as different food volume ratios under a 12 h feeding interval. When an equal volume of food was given under different starvation interval (8 h:16 h), the peak of the Per2 rhythm was close to peak by mealtime after long starvation (16 h). When food volumes for each mealtime were changed under 8 h:16 h, the peak rhythm was influenced by combined factors of food volume and starvation interval. Food intake after the 16-h starvation caused a significant increase in liver Per2, Dec1, and Bmal1 gene expression compared with food intake after the 8-h starvation with 8 h:16 h feeding intervals. In conclusion, the present results clearly demonstrate that food-induced entrainment of the liver clock is dependent on both food volume and the starvation interval between two meals. Therefore, normal feeding habits may help to maintain normal clock function in the liver organ.

  19. Time-restricted feeding of rapidly digested starches causes stronger entrainment of the liver clock in PER2::LUCIFERASE knock-in mice.

    PubMed

    Itokawa, Misa; Hirao, Akiko; Nagahama, Hiroki; Otsuka, Makiko; Ohtsu, Teiji; Furutani, Naoki; Hirao, Kazuko; Hatta, Tamao; Shibata, Shigenobu

    2013-02-01

    Restricting feeding to daytime can entrain circadian clocks in peripheral organs of rodents, and nutrients that rapidly increase the blood glucose level are suitable for inducing entrainment. However, dietetic issues, for example, whether or not the diet comprises heated food, have not been fully explored. We therefore hypothesized that rapidly digested starch causes stronger entrainment than slowly digested starch. The entrainment ability of the liver clock in PER2::LUCIFERASE knock-in mice, blood glucose levels, insulin levels, and acute changes in liver clock gene expression were compared between a β-starch (native)-substituted AIN-93M standard diet and an α-starch (gelatinized)-substituted diet. β-Corn and β-rice starch induced larger phase delays of the liver clock, larger blood glucose increases, and higher Per2 gene expression in the liver compared with β-potato starch. Starch granule size, as examined by electron microscopy, was larger for β-potato starch than for β-corn or β-rice starch. After heating, we obtained gelatinized α-potato, α-corn, and α-rice starch, which showed destruction of the crystal structure and a high level of gelatinization. No difference in the increase of blood glucose or insulin levels was observed between β-corn and α-corn starch, or between β-rice and α-rice starch. In contrast, α-potato starch caused higher levels of glucose and insulin compared with β-potato starch. An α-potato starch-substituted diet induced larger phase delays of the liver clock than did β-potato starch. Therefore, rapidly digested starch is appropriate for peripheral clock entrainment. Dietetic issues (heated vs unheated) are important when applying basic mouse data to humans.

  20. Oxidative damage in brain from human mutant APP/PS-1 double knock-in mice as a function of age.

    PubMed

    Abdul, Hafiz Mohmmad; Sultana, Rukhsana; St Clair, Daret K; Markesbery, William R; Butterfield, D Allan

    2008-11-15

    Oxidative stress is strongly implicated in the progressive decline of cognition associated with aging and neurodegenerative disorders. In the brain, free radical-mediated oxidative stress plays a critical role in the age-related decline of cellular function as a result of the oxidation of proteins, lipids, and nucleic acids. A number of studies indicate that an increase in protein oxidation and lipid peroxidation is associated with age-related neurodegenerative diseases and cellular dysfunction observed in aging brains. Oxidative stress is one of the important factors contributing to Alzheimer's disease (AD), one of whose major hallmarks includes brain depositions of amyloid beta-peptide (Abeta) derived from amyloid precursor protein (APP). Mutation in APP and PS-1 genes, which increases production of the highly amyloidogenic amyloid beta-peptide (Abeta42), is the major cause of familial AD. In the present study, protein oxidation and lipid peroxidation in the brain from knock-in mice expressing human mutant APP and PS-1 were compared with brain from wild type, as a function of age. The results suggest that there is an increased oxidative stress in the brain of wild-type mice as a function of age. In APP/PS-1 mouse brain, there is a basal increase (at 1 month) in oxidative stress compared to the wild type (1 month), as measured by protein oxidation and lipid peroxidation. In addition, age-related elevation of oxidative damage was observed in APP/PS-1 mice brain compared to that of wild-type mice brain. These results are discussed with reference to the importance of Abeta42-associated oxidative stress in the pathogenesis of AD.

  1. A Dominant Mutation in Rpe65, D477G, Delays Dark Adaptation and Disturbs the Visual Cycle in the Mutant Knock-In Mice.

    PubMed

    Shin, Younghwa; Moiseyev, Gennadiy; Chakraborty, Dibyendu; Ma, Jian-Xing

    2017-03-01

    RPE65 is an indispensable component of the retinoid visual cycle in vertebrates, through which the visual chromophore 11-cis-retinal (11-cis-RAL) is generated to maintain normal vision. Various blinding conditions in humans, such as Leber congenital amaurosis and retinitis pigmentosa (RP), are attributed to either homozygous or compound heterozygous mutations in RPE65. Herein, we investigated D477G missense mutation, an unprecedented dominant-acting mutation of RPE65 identified in patients with autosomal dominant RP. We generated a D477G knock-in (KI) mouse and characterized its phenotypes. Although RPE65 protein levels were decreased in heterozygous KI mice, their scotopic, maximal, and photopic electroretinography responses were comparable to those of wild-type (WT) mice in stationary condition. As shown by high-performance liquid chromatography analysis, levels of 11-cis-RAL in fully dark-adapted heterozygous KI mice were similar to that in WT mice. However, kinetics of 11-cis-RAL regeneration after light exposure were significantly slower in heterozygous KI mice compared with WT and RPE65 heterozygous knockout mice. Furthermore, heterozygous KI mice exhibited lower A-wave recovery compared with WT mice after photobleaching, suggesting a delayed dark adaptation. Taken together, these observations suggest that D477G acts as a dominant-negative mutant of RPE65 that delays chromophore regeneration. The KI mice provide a useful model for further understanding of the pathogenesis of RP associated with this RPE65 mutant and for the development of therapeutic strategies.

  2. Epigallocatechin-3-Gallate Accelerates Relaxation and Ca(2+) Transient Decay and Desensitizes Myofilaments in Healthy and Mybpc3-Targeted Knock-in Cardiomyopathic Mice.

    PubMed

    Friedrich, Felix W; Flenner, Frederik; Nasib, Mahtab; Eschenhagen, Thomas; Carrier, Lucie

    2016-01-01

    Background: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac muscle disease with left ventricular hypertrophy, interstitial fibrosis and diastolic dysfunction. Increased myofilament Ca(2+) sensitivity could be the underlying cause of diastolic dysfunction. Epigallocatechin-3-gallate (EGCg), a catechin found in green tea, has been reported to decrease myofilament Ca(2+) sensitivity in HCM models with troponin mutations. However, whether this is also the case for HCM-associated thick filament mutations is not known. Therefore, we evaluated whether EGCg affects the behavior of cardiomyocytes and myofilaments of an HCM mouse model carrying a gene mutation in cardiac myosin-binding protein C and exhibiting both increased myofilament Ca(2+) sensitivity and diastolic dysfunction. Methods and Results: Acute effects of EGCg were tested on fractional sarcomere shortening and Ca(2+) transients in intact ventricular myocytes and on force-Ca(2+) relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI) and wild-type (WT) mice. Fractional sarcomere shortening and Ca(2+) transients were analyzed at 37°C under 1-Hz pacing in the absence or presence of EGCg (1.8 μM). At baseline and in the absence of Fura-2, KI cardiomyocytes displayed lower diastolic sarcomere length, higher fractional sarcomere shortening, longer time to peak shortening and time to 50% relengthening than WT cardiomyocytes. In WT and KI neither diastolic sarcomere length nor fractional sarcomere shortening were influenced by EGCg treatment, but relaxation time was reduced, to a greater extent in KI cells. EGCg shortened time to peak Ca(2+) and Ca(2+) transient decay in Fura-2-loaded WT and KI cardiomyocytes. EGCg did not influence phosphorylation of phospholamban. In skinned cardiac muscle strips, EGCg (30 μM) decreased Ca(2+) sensitivity in both groups. Conclusion: EGCg hastened relaxation and Ca(2+) transient decay to a larger extent in KI than in WT

  3. Epigallocatechin-3-Gallate Accelerates Relaxation and Ca2+ Transient Decay and Desensitizes Myofilaments in Healthy and Mybpc3-Targeted Knock-in Cardiomyopathic Mice

    PubMed Central

    Friedrich, Felix W.; Flenner, Frederik; Nasib, Mahtab; Eschenhagen, Thomas; Carrier, Lucie

    2016-01-01

    Background: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac muscle disease with left ventricular hypertrophy, interstitial fibrosis and diastolic dysfunction. Increased myofilament Ca2+ sensitivity could be the underlying cause of diastolic dysfunction. Epigallocatechin-3-gallate (EGCg), a catechin found in green tea, has been reported to decrease myofilament Ca2+ sensitivity in HCM models with troponin mutations. However, whether this is also the case for HCM-associated thick filament mutations is not known. Therefore, we evaluated whether EGCg affects the behavior of cardiomyocytes and myofilaments of an HCM mouse model carrying a gene mutation in cardiac myosin-binding protein C and exhibiting both increased myofilament Ca2+ sensitivity and diastolic dysfunction. Methods and Results: Acute effects of EGCg were tested on fractional sarcomere shortening and Ca2+ transients in intact ventricular myocytes and on force-Ca2+ relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI) and wild-type (WT) mice. Fractional sarcomere shortening and Ca2+ transients were analyzed at 37°C under 1-Hz pacing in the absence or presence of EGCg (1.8 μM). At baseline and in the absence of Fura-2, KI cardiomyocytes displayed lower diastolic sarcomere length, higher fractional sarcomere shortening, longer time to peak shortening and time to 50% relengthening than WT cardiomyocytes. In WT and KI neither diastolic sarcomere length nor fractional sarcomere shortening were influenced by EGCg treatment, but relaxation time was reduced, to a greater extent in KI cells. EGCg shortened time to peak Ca2+ and Ca2+ transient decay in Fura-2-loaded WT and KI cardiomyocytes. EGCg did not influence phosphorylation of phospholamban. In skinned cardiac muscle strips, EGCg (30 μM) decreased Ca2+ sensitivity in both groups. Conclusion: EGCg hastened relaxation and Ca2+ transient decay to a larger extent in KI than in WT cardiomyocytes. This

  4. TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna.

    PubMed

    Nakanishi, Takashi; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2016-11-07

    Transcription activator-like effector nucleases (TALENs) are versatile tools that enable the insertion of DNA into different organisms. Here, we confirmed TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna, a model organism for ecological and toxicological genomics. We tested two different TALENs, ey1 TALEN and ey2 TALEN, both of which target the eyeless locus. The donor DNA plasmid, harbouring the H2B-GFP reporter gene, was designed to contain both TALEN target sites and was co-injected with each TALEN mRNA into eggs. The ey1 TALEN and ey2 TALEN constructs both resulted in H2B-GFP expression in Daphnia with a germline transmission efficiency of 3%. Of the three transgenic animals generated, two had donor DNA at the targeted genomic site, which suggested concurrent cleavage of the injected plasmid DNA and genome DNA. The availability of such tools that are capable of targeted knock-in of foreign genes will be extremely useful for advancing the knowledge of gene function and contribute to an increased understanding of functional genomics in Daphnia.

  5. TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna

    PubMed Central

    Nakanishi, Takashi; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2016-01-01

    Transcription activator-like effector nucleases (TALENs) are versatile tools that enable the insertion of DNA into different organisms. Here, we confirmed TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna, a model organism for ecological and toxicological genomics. We tested two different TALENs, ey1 TALEN and ey2 TALEN, both of which target the eyeless locus. The donor DNA plasmid, harbouring the H2B-GFP reporter gene, was designed to contain both TALEN target sites and was co-injected with each TALEN mRNA into eggs. The ey1 TALEN and ey2 TALEN constructs both resulted in H2B-GFP expression in Daphnia with a germline transmission efficiency of 3%. Of the three transgenic animals generated, two had donor DNA at the targeted genomic site, which suggested concurrent cleavage of the injected plasmid DNA and genome DNA. The availability of such tools that are capable of targeted knock-in of foreign genes will be extremely useful for advancing the knowledge of gene function and contribute to an increased understanding of functional genomics in Daphnia. PMID:27819301

  6. A Progressive Translational Mouse Model of Human VCP Disease: The VCP R155H/+ Mouse

    PubMed Central

    Nalbandian, Angèle; Llewellyn, Katrina J.; Badadani, Mallikarjun; Yin, Hong Z.; Nguyen, Christopher; Katheria, Veeral; Watts, Giles; Mukherjee, Jogeshwar; Vesa, Jouni; Caiozzo, Vincent; Mozaffar, Tahseen; Weiss, John H.; Kimonis, Virginia E.

    2012-01-01

    Introduction Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion Body Myopathy (hIBM) associated with Paget disease of bone (PDB), and frontotemporal dementia (FTD). More recently they have been linked to 2% of familial ALS cases. A knock-in mouse model offers the opportunity to study VCP-associated pathogenesis. Methods The VCPR155H/+ knock-in mouse model was assessed for muscle strength, immunohistochemical, Western, apoptosis, autophagy and MicroPET/CT imaging analyses. Results VCPR155H/+ mice developed significant progressive muscle weakness, and the quadriceps and brain developed progressive cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-II staining. MicroCT analyses revealed Paget-like lesions at the ends of long bones. Spinal cord demonstrated neurodegenerative changes, ubiquitin, and TDP-43 pathology of motor neurons. Discussion VCPR155H/+ knock-in mice represent an excellent pre-clinical model for understanding VCP-associated disease mechanisms and future treatments. PMID:23169451

  7. Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes.

    PubMed

    Park, Ki-Eun; Powell, Anne; Sandmaier, Shelley E S; Kim, Chan-Mi; Mileham, Alan; Donovan, David M; Telugu, Bhanu P

    2017-02-14

    The domestic pig is an important "dual purpose" animal model for agricultural and biomedical applications. There is an emerging consensus in the biomedical community for the use of large animal models such as pigs to either serve as an alternative, or complement investigations from the mouse. However, the use of pig has not proven popular due to technical difficulties and time required in generating models with desired genetic modifications. In this regard, the ability to directly modify the genome in the zygote and generate edited animals is highly desirable. This report demonstrates for the first time, the generation of gene targeted animals by direct injection of Cas9 ribonucleoprotein complex and short stretches of DNA sequences into porcine zygotes. The Cas9 protein from Streptococcus pyogenes was pre-complexed with a single guide RNA targeting downstream of the ubiquitously expressed COL1A gene, and co-injected with a single-stranded repair template into porcine zygotes. Using this approach a line of pigs that carry pseudo attP sites within the COL1A locus to enable phiC31 integrase mediated introduction of transgenes has been generated. This new route for genome engineering in pigs via zygote injection should greatly enhance applications in both agriculture and biomedicine.

  8. Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes

    PubMed Central

    Park, Ki-Eun; Powell, Anne; Sandmaier, Shelley E. S.; Kim, Chan-Mi; Mileham, Alan; Donovan, David M.; Telugu, Bhanu P.

    2017-01-01

    The domestic pig is an important “dual purpose” animal model for agricultural and biomedical applications. There is an emerging consensus in the biomedical community for the use of large animal models such as pigs to either serve as an alternative, or complement investigations from the mouse. However, the use of pig has not proven popular due to technical difficulties and time required in generating models with desired genetic modifications. In this regard, the ability to directly modify the genome in the zygote and generate edited animals is highly desirable. This report demonstrates for the first time, the generation of gene targeted animals by direct injection of Cas9 ribonucleoprotein complex and short stretches of DNA sequences into porcine zygotes. The Cas9 protein from Streptococcus pyogenes was pre-complexed with a single guide RNA targeting downstream of the ubiquitously expressed COL1A gene, and co-injected with a single-stranded repair template into porcine zygotes. Using this approach a line of pigs that carry pseudo attP sites within the COL1A locus to enable phiC31 integrase mediated introduction of transgenes has been generated. This new route for genome engineering in pigs via zygote injection should greatly enhance applications in both agriculture and biomedicine. PMID:28195163

  9. Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin.

    PubMed

    Yang, Shao H; Chang, Sandy Y; Ren, Shuxun; Wang, Yibin; Andres, Douglas A; Spielmann, H Peter; Fong, Loren G; Young, Stephen G

    2011-02-01

    Hutchinson-Gilford progeria syndrome (HGPS) is caused by a mutant prelamin A, progerin, that terminates with a farnesylcysteine. HGPS knock-in mice (Lmna(HG/+)) develop severe progeria-like disease phenotypes. These phenotypes can be ameliorated with a protein farnesyltransferase inhibitor (FTI), suggesting that progerin's farnesyl lipid is important for disease pathogenesis and raising the possibility that FTIs could be useful for treating humans with HGPS. Subsequent studies showed that mice expressing non-farnesylated progerin (Lmna(nHG/+) mice, in which progerin's carboxyl-terminal -CSIM motif was changed to -SSIM) also develop severe progeria, raising doubts about whether any treatment targeting protein prenylation would be particularly effective. We suspected that those doubts might be premature and hypothesized that the persistent disease in Lmna(nHG/+) mice could be an unanticipated consequence of the cysteine-to-serine substitution that was used to eliminate farnesylation. To test this hypothesis, we generated a second knock-in allele yielding non-farnesylated progerin (Lmna(csmHG)) in which the carboxyl-terminal -CSIM motif was changed to -CSM. We then compared disease phenotypes in mice harboring the Lmna(nHG) or Lmna(csmHG) allele. As expected, Lmna(nHG/+) and Lmna(nHG/nHG) mice developed severe progeria-like disease phenotypes, including osteolytic lesions and rib fractures, osteoporosis, slow growth and reduced survival. In contrast, Lmna(csmHG/+) and Lmna(csmHG/csmHG) mice exhibited no bone disease and displayed entirely normal body weights and survival. The frequencies of misshapen cell nuclei were lower in Lmna(csmHG/+) and Lmna(csmHG/csmHG) fibroblasts. These studies show that the ability of non-farnesylated progerin to elicit disease depends on the carboxyl-terminal mutation used to eliminate protein prenylation.

  10. Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes.

    PubMed

    Kwon, Dae-Jin; Kim, Dong-Hwan; Hwang, In-Sul; Kim, Dong-Ern; Kim, Hyung-Joo; Kim, Jang-Seong; Lee, Kichoon; Im, Gi-Sun; Lee, Jeong-Woong; Hwang, Seongsoo

    2017-02-01

    Recent progress in genetic manipulation of pigs designated for xenotransplantation ha6s shown considerable promise on xenograft survival in primates. However, genetic modification of multiple genes in donor pigs by knock-out and knock-in technologies, aiming to enhance immunological tolerance against transplanted organs in the recipients, has not been evaluated for health issues of donor pigs. We produced transgenic Massachusetts General Hospital piglets by knocking-out the α-1,3-galactosyltransferase (GT) gene and by simultaneously knocking-in an expression cassette containing five different human genes including, DAF, CD39, TFPI, C1 inhibitor (C1-INH), and TNFAIP3 (A20) [GT(-(DAF/CD39/TFPI/C1-INH/TNFAIP3)/+)] that are connected by 2A peptide cleavage sequences to release individual proteins from a single translational product. All five individual protein products were successfully produced as determined by western blotting of umbilical cords from the newborn transgenic pigs. Although gross observation and histological examination revealed no significant pathological abnormality in transgenic piglets, hematological examination found that the transgenic piglets had abnormally low numbers of platelets and WBCs, including neutrophils, eosinophils, basophils, and lymphocytes. However, transgenic piglets had similar numbers of RBC and values of parameters related to RBC compared to the control littermate piglets. These data suggest that transgenic expression of those human genes in pigs impaired hematopoiesis except for erythropoiesis. In conclusion, our data suggest that transgenic expression of up to five different genes can be efficiently achieved and provide the basis for determining optimal dosages of transgene expression and combinations of the transgenes to warrant production of transgenic donor pigs without health issues.

  11. [BLG gene knockout and hLF gene knock-in at BLG locus in goat by TALENs].

    PubMed

    Song, Shaozheng; Zhu, Mengmin; Yuan, Yuguo; Rong, Yao; Xu, Sheng; Chen, Si; Mei, Junyan; Cheng, Yong

    2016-03-01

    To knock out β-lactoglobulin (BLG) gene and insert human lactoferrin (hLF) coding sequence at BLG locus of goat, the transcription activator-like effector nucleases (TALEN) mediated recombination was used to edit the BLG gene of goat fetal fibroblast, then as donor cells for somatic cell nuclear transfer. We designed a pair of specific plasmid TALEN-3-L/R for goat BLG exon III recognition sites, and BLC14-TK vector containing a negative selection gene HSV-TK, was used for the knock in of hLF gene. TALENs plasmids were transfected into the goat fetal fibroblast cells, and the cells were screened three days by 2 μg/mL puromycin. DNA cleavage activities of cells were verified by PCR amplification and DNA production sequencing. Then, targeting vector BLC14-TK and plasmids TALEN-3-L/R were co-transfected into goat fetal fibroblasts, both 700 μg/mL G418 and 2 μg/mL GCV were simultaneously used to screen G418-resistant cells. Detections of integration and recombination were implemented to obtain cells with hLF gene site-specific integration. We chose targeting cells as donor cells for somatic cell nuclear transfer. The mutagenicity of TALEN-3-L/R was between 25% and 30%. A total of 335 reconstructed embryos with 6 BLG-/hLF+ targeting cell lines were transferred into 16 recipient goats. There were 9 pregnancies confirmed by ultrasound on day 30 to 35 (pregnancy rate of 39.1%), and one of 50-day-old fetus with BLG-/hLF+ was achieved. These results provide the basis for hLF gene knock-in at BLG locus of goat and cultivating transgenic goat of low allergens and rich hLF in the milk.

  12. Etanercept Administration to Neonatal SH3BP2 Knock-In Cherubism Mice Prevents TNF-α-induced Inflammation and Bone Loss

    PubMed Central

    Yoshitaka, Teruhito; Ishida, Shu; Mukai, Tomoyuki; Kittaka, Mizuho; Reichenberger, Ernst J.; Ueki, Yasuyoshi

    2014-01-01

    Cherubism is a genetic disorder of the craniofacial skeleton caused by gain-of-function mutations in the signaling adaptor protein, SH3-domain binding protein 2 (SH3BP2). In a knock-in mouse model for cherubism, we previously demonstrated that homozygous mutant mice develop T/B cell-independent systemic macrophage inflammation leading to bone erosion and joint destruction. Homozygous mice develop multiostotic bone lesions while cherubism lesions in humans are limited to jawbones. We identified a critical role of TNF-α in the development of autoinflammation by creating homozygous TNF-α-deficient cherubism mutants, where systemic inflammation and bone destruction were rescued. In the current study, we examined whether postnatal administration of an anti-TNF-α antagonist can prevent or ameliorate the disease progression in cherubism mice. Neonatal homozygous mutants, where active inflammation has not yet developed, were treated with a high dose of etanercept (25 mg/kg, twice/week) for 7 weeks. Etanercept-treated neonatal mice showed strong rescue of facial swelling and bone loss in jaws and calvariae. Destruction of joints was fully rescued in the high dose group. Moreover, the high dose treatment group showed a significant decrease in lung and liver inflammatory lesions. However, inflammation and bone loss, which were successfully treated by etanercept administration recurred after etanercept discontinuation. No significant effect was observed in low dose- (0.5 mg/kg, twice/week) and vehicle-treated groups. In contrast, when 10-week-old cherubism mice with fully active inflammation were treated with etanercept for 7 weeks, even the high dose administration did not decrease bone loss, lung or liver inflammation. Taken together, the results suggest that anti-TNF-α therapy may be effective in young cherubism patients, if treated before the inflammatory phase or bone resorption occurs. Therefore, early genetic diagnosis and early treatment with anti

  13. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated homology-independent knock-in system.

    PubMed

    Katoh, Yohei; Michisaka, Saki; Nozaki, Shohei; Funabashi, Teruki; Hirano, Tomoaki; Takei, Ryota; Nakayama, Kazuhisa

    2017-02-08

    The CRISPR/Cas9 system has revolutionized genome editing in virtually all organisms. Although the CRISPR/Cas9 system enables the targeted cleavage of genomic DNA, its use for gene knock-in remains challenging because levels of homologous recombination activity vary among various cells. In contrast, the efficiency of homology-independent DNA repair is relatively high in most cell types. Therefore, the utilization of a homology-independent repair mechanism is a possible alternative for efficient genome editing. Here, we constructed a donor knock-in vector optimized for the CRISPR/Cas9 system, and developed a practical system that enables efficient disruption of target genes by exploiting homology-independent repair. Using this practical knock-in system, we successfully disrupted genes encoding proteins involved ciliary protein trafficking, including IFT88 and IFT20, in hTERT-RPE1 cells, which have low homologous recombination activity. The most critical concern using the CRISPR/Cas9 system is off-target cleavage. To reduce the off-target cleavage frequency and to increase the versatility of our knock-in system, we further constructed a universal donor vector and an expression vector containing Cas9 with enhanced specificity and tandem sgRNA expression cassettes. We demonstrated that the second version of our system has improved usability.

  14. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids.

    PubMed

    Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi

    2015-10-09

    Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins.

  15. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation.

    PubMed

    Homma, Kohei; Usui, Sumiko; Kaneda, Makoto

    2017-03-01

    Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  16. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids

    PubMed Central

    Sakuma, Tetsushi; Takenaga, Mitsumasa; Kawabe, Yoshinori; Nakamura, Takahiro; Kamihira, Masamichi; Yamamoto, Takashi

    2015-01-01

    Gene knock-in techniques have rapidly evolved in recent years, along with the development and maturation of genome editing technology using programmable nucleases. We recently reported a novel strategy for microhomology-mediated end-joining-dependent integration of donor DNA by using TALEN or CRISPR/Cas9 and optimized targeting vectors, named PITCh (Precise Integration into Target Chromosome) vectors. Here we describe TALEN and PITCh vector-mediated integration of long gene cassettes, including a single-chain Fv-Fc (scFv-Fc) gene, in Chinese hamster ovary (CHO) cells, with comparison of targeting and cloning efficiency among several donor design and culture conditions. We achieved 9.6-kb whole plasmid integration and 7.6-kb backbone-free integration into a defined genomic locus in CHO cells. Furthermore, we confirmed the reasonable productivity of recombinant scFv-Fc protein of the knock-in cells. Using our protocol, the knock-in cell clones could be obtained by a single transfection and a single limiting dilution using a 96-well plate, without constructing targeting vectors containing long homology arms. Thus, the study described herein provides a highly practical strategy for gene knock-in of large DNA in CHO cells, which accelerates high-throughput generation of cell lines stably producing any desired biopharmaceuticals, including huge antibody proteins. PMID:26473830

  17. Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques

    PubMed Central

    Uemura, Takeshi; Mori, Takuma; Kurihara, Taiga; Kawase, Shiori; Koike, Rie; Satoga, Michiru; Cao, Xueshan; Li, Xue; Yanagawa, Toru; Sakurai, Takayuki; Shindo, Takayuki; Tabuchi, Katsuhiko

    2016-01-01

    Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons. These signals were particularly abundant in the head of dendritic spines, corresponding to the localization of the endogenous β-actin protein. EGFP knock-in neurons showed no detectable changes in spine density and basic electrophysiological properties. In contrast, exogenously overexpressed EGFP-β-actin showed increased spine density and EPSC frequency, and changed resting membrane potential. Thus, our technique provides a potential tool to elucidate the localization of various endogenous proteins in neurons by epitope tagging without altering neuronal and synaptic functions. This technique can be also useful for introducing a specific mutation into genes to study the function of proteins and genomic elements in brain neurons. PMID:27782168

  18. Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice

    PubMed Central

    Smith, Hilary; Toth, Rachel; Arthur, J. Simon C.

    2013-01-01

    The roles of IL-1R-associated kinase (IRAK)2 and IRAK1 in cytokine production were investigated using immune cells from knock-in mice expressing the TNFR-associated factor 6 (TRAF6) binding-defective mutant IRAK2[E525A] or the catalytically inactive IRAK1[D359A] mutant. In bone marrow-derived macrophages (BMDMs), the IRAK2-TRAF6 interaction was required for the late (2-8 h) but not the early phase (0-2 h) of il6, and tnfa mRNA production and hence for IL-6 and TNF-α secretion by TLR agonists that signal via MyD88. Loss of the IRAK2-TRAF6 interaction had little effect on the MyD88-dependent production of anti-inflammatory molecules produced during the early phase, such as Dual Specificity Phosphatase 1, and a modest effect on IL-10 secretion. The LPS/TLR4-stimulated production of il6 and tnfa mRNA and IL-6 and TNF-α secretion was hardly affected, because the Toll/IL-1R domain-containing adapter-inducing IFN-β (TRIF) signaling pathway was used instead of the IRAK2-TRAF6 interaction to sustain late-phase mRNA production. IRAK1 catalytic activity was not rate-limiting for il6, tnfa or il10 mRNA production or the secretion of these cytokines by BMDMs, but IFN-β mRNA induction by TLR7 and TLR9 agonists was greatly delayed in plasmacytoid dendritic cells (pDCs) from IRAK1[D359A] mice. In contrast, IFN-β mRNA production was little affected in pDCs from IRAK2[E525A] mice, but subsequent IFN-α mRNA production and IFN-α secretion were reduced. IFN-β and IFN-α production were abolished in pDCs from IRAK1[D359A]×IRAK2[E525A] double knock-in mice. Our results establish that the IRAK2-TRAF6 interaction is rate limiting for the late, but not the early phase of cytokine production in BMDM and pDCs, and that the IRAK2-TRAF6 interaction is needed to sustain IκB-inducing kinase β activity during prolonged activation of the MyD88 signalling network. PMID:23918981

  19. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response.

    PubMed

    Larroquette, Frédérique; Seto, Lesley; Gaub, Perrine L; Kamal, Brishna; Wallis, Deeann; Larivière, Roxanne; Vallée, Joanne; Robitaille, Richard; Tsuda, Hiroshi

    2015-11-15

    Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes

    PubMed Central

    Yoshimi, Kazuto; Kunihiro, Yayoi; Kaneko, Takehito; Nagahora, Hitoshi; Voigt, Birger; Mashimo, Tomoji

    2016-01-01

    The CRISPR-Cas system is a powerful tool for generating genetically modified animals; however, targeted knock-in (KI) via homologous recombination remains difficult in zygotes. Here we show efficient gene KI in rats by combining CRISPR-Cas with single-stranded oligodeoxynucleotides (ssODNs). First, a 1-kb ssODN co-injected with guide RNA (gRNA) and Cas9 messenger RNA produce GFP-KI at the rat Thy1 locus. Then, two gRNAs with two 80-bp ssODNs direct efficient integration of a 5.5-kb CAG-GFP vector into the Rosa26 locus via ssODN-mediated end joining. This protocol also achieves KI of a 200-kb BAC containing the human SIRPA locus, concomitantly knocking out the rat Sirpa gene. Finally, three gRNAs and two ssODNs replace 58-kb of the rat Cyp2d cluster with a 6.2-kb human CYP2D6 gene. These ssODN-mediated KI protocols can be applied to any target site with any donor vector without the need to construct homology arms, thus simplifying genome engineering in living organisms. PMID:26786405

  1. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells.

    PubMed

    Ge, Xianglian; Xi, Haitao; Yang, Fayu; Zhi, Xiao; Fu, Yanghua; Chen, Ding; Xu, Ren-He; Lin, Ge; Qu, Jia; Zhao, Junzhao; Gu, Feng

    2016-01-01

    Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  2. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells.

    PubMed

    Ge, Xianglian; Xi, Haitao; Yang, Fayu; Zhi, Xiao; Fu, Yanghua; Chen, Ding; Xu, Ren-He; Lin, Ge; Qu, Jia; Zhao, Junzhao; Gu, Feng

    2016-11-29

    Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  3. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells

    PubMed Central

    Ge, Xianglian; Xi, Haitao; Yang, Fayu; Zhi, Xiao; Fu, Yanghua; Chen, Ding; Xu, Ren-He; Lin, Ge; Qu, Jia; Zhao, Junzhao; Gu, Feng

    2016-01-01

    Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome. PMID:27898094

  4. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice

    PubMed Central

    Ito, Hikaru; Fujita, Kyota; Tagawa, Kazuhiko; Chen, Xigui; Homma, Hidenori; Sasabe, Toshikazu; Shimizu, Jun; Shimizu, Shigeomi; Tamura, Takuya; Muramatsu, Shin-ichi; Okazawa, Hitoshi

    2015-01-01

    Mutant ataxin-1 (Atxn1), which causes spinocerebellar ataxia type 1 (SCA1), binds to and impairs the function of high-mobility group box 1 (HMGB1), a crucial nuclear protein that regulates DNA architectural changes essential for DNA damage repair and transcription. In this study, we established that transgenic or virus vector-mediated complementation with HMGB1 ameliorates motor dysfunction and prolongs lifespan in mutant Atxn1 knock-in (Atxn1-KI) mice. We identified mitochondrial DNA damage repair by HMGB1 as a novel molecular basis for this effect, in addition to the mechanisms already associated with HMGB1 function, such as nuclear DNA damage repair and nuclear transcription. The dysfunction and the improvement of mitochondrial DNA damage repair functions are tightly associated with the exacerbation and rescue, respectively, of symptoms, supporting the involvement of mitochondrial DNA quality control by HMGB1 in SCA1 pathology. Moreover, we show that the rescue of Purkinje cell dendrites and dendritic spines by HMGB1 could be downstream effects. Although extracellular HMGB1 triggers inflammation mediated by Toll-like receptor and receptor for advanced glycation end products, upregulation of intracellular HMGB1 does not induce such side effects. Thus, viral delivery of HMGB1 is a candidate approach by which to modify the disease progression of SCA1 even after the onset. PMID:25510912

  5. Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2

    PubMed Central

    Lee, John M.; Tu, Yiping; Tatar, Angelica; Wu, Daniel; Nobumori, Chika; Jung, Hea-Jin; Yoshinaga, Yuko; Coffinier, Catherine; de Jong, Pieter J.; Fong, Loren G.; Young, Stephen G.

    2014-01-01

    Lamins B1 and B2 (B-type lamins) have very similar sequences and are expressed ubiquitously. In addition, both Lmnb1- and Lmnb2-deficient mice die soon after birth with neuronal layering abnormalities in the cerebral cortex, a consequence of defective neuronal migration. The similarities in amino acid sequences, expression patterns, and knockout phenotypes raise the question of whether the two proteins have redundant functions. To investigate this topic, we generated “reciprocal knock-in mice”—mice that make lamin B2 from the Lmnb1 locus (Lmnb1B2/B2) and mice that make lamin B1 from the Lmnb2 locus (Lmnb2B1/B1). Lmnb1B2/B2 mice produced increased amounts of lamin B2 but no lamin B1; they died soon after birth with neuronal layering abnormalities in the cerebral cortex. However, the defects in Lmnb1B2/B2 mice were less severe than those in Lmnb1-knockout mice, indicating that increased amounts of lamin B2 partially ameliorate the abnormalities associated with lamin B1 deficiency. Similarly, increased amounts of lamin B1 in Lmnb2B1/B1 mice did not prevent the neurodevelopmental defects elicited by lamin B2 deficiency. We conclude that lamins B1 and B2 have unique roles in the developing brain and that increased production of one B-type lamin does not fully complement loss of the other. PMID:24672053

  6. Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice.

    PubMed

    Stöhr, Andrea; Friedrich, Felix W; Flenner, Frederik; Geertz, Birgit; Eder, Alexandra; Schaaf, Sebastian; Hirt, Marc N; Uebeler, June; Schlossarek, Saskia; Carrier, Lucie; Hansen, Arne; Eschenhagen, Thomas

    2013-10-01

    Myosin-binding protein C (Mybpc3)-targeted knock-in mice (KI) recapitulate typical aspects of human hypertrophic cardiomyopathy. We evaluated whether these functional alterations can be reproduced in engineered heart tissue (EHT) and yield novel mechanistic information on the function of cMyBP-C. EHTs were generated from cardiac cells of neonatal KI, heterozygous (HET) or wild-type controls (WT) and developed without apparent morphological differences. KI had 70% and HET 20% lower total cMyBP-C levels than WT, accompanied by elevated fetal gene expression. Under standard culture conditions and spontaneous beating, KI EHTs showed more frequent burst beating than WT and occasional tetanic contractions (14/96). Under electrical stimulation (6Hz, 37°C) KI EHTs exhibited shorter contraction and relaxation times and a twofold higher sensitivity to external [Ca(2+)]. Accordingly, the sensitivity to verapamil was 4-fold lower and the response to isoprenaline or the Ca(2+) sensitizer EMD 57033 2- to 4-fold smaller. The loss of EMD effect was verified in 6-week-old KI mice in vivo. HET EHTs were apparently normal under basal conditions, but showed similarly altered contractile responses to [Ca(2+)], verapamil, isoprenaline and EMD. In contrast, drug-induced changes in intracellular Ca(2+) transients (Fura-2) were essentially normal. In conclusion, the present findings in auxotonically contracting EHTs support the idea that cMyBP-C's normal role is to suppress force generation at low intracellular Ca(2+) and stabilize the power-stroke step of the cross bridge cycle. Pharmacological testing in EHT unmasked a disease phenotype in HET. The altered drug response may be clinically relevant.

  7. New Lmna knock-in mice provide a molecular mechanism for the 'segmental aging' in Hutchinson-Gilford progeria syndrome.

    PubMed

    Jung, Hea-Jin; Tu, Yiping; Yang, Shao H; Tatar, Angelica; Nobumori, Chika; Wu, Daniel; Young, Stephen G; Fong, Loren G

    2014-03-15

    Lamins A and C (products of the LMNA gene) are found in roughly equal amounts in peripheral tissues, but the brain produces mainly lamin C and little lamin A. In HeLa cells and fibroblasts, the expression of prelamin A (the precursor to lamin A) can be reduced by miR-9, but the relevance of those cell culture studies to lamin A regulation in the brain was unclear. To address this issue, we created two new Lmna knock-in alleles, one (Lmna(PLAO-5NT)) with a 5-bp mutation in a predicted miR-9 binding site in prelamin A's 3' UTR, and a second (Lmna(PLAO-UTR)) in which prelamin A's 3' UTR was replaced with lamin C's 3' UTR. Neither allele had significant effects on lamin A levels in peripheral tissues; however, both substantially increased prelamin A transcript levels and lamin A protein levels in the cerebral cortex and the cerebellum. The increase in lamin A expression in the brain was more pronounced with the Lmna(PLAO-UTR) allele than with the Lmna(PLAO-5NT) allele. With both alleles, the increased expression of prelamin A transcripts and lamin A protein was greater in the cerebral cortex than in the cerebellum. Our studies demonstrate the in vivo importance of prelamin A's 3' UTR and its miR-9 binding site in regulating lamin A expression in the brain. The reduced expression of prelamin A in the brain likely explains why children with Hutchinson-Gilford progeria syndrome (a progeroid syndrome caused by a mutant form of prelamin A) are spared from neurodegenerative disease.

  8. Exaggerated Nighttime Sleep and Defective Sleep Homeostasis in a Drosophila Knock-In Model of Human Epilepsy.

    PubMed

    Petruccelli, Emily; Lansdon, Patrick; Kitamoto, Toshihiro

    2015-01-01

    Despite an established link between epilepsy and sleep behavior, it remains unclear how specific epileptogenic mutations affect sleep and subsequently influence seizure susceptibility. Recently, Sun et al. (2012) created a fly knock-in model of human generalized epilepsy with febrile seizures plus (GEFS+), a wide-spectrum disorder characterized by fever-associated seizing in childhood and lifelong affliction. GEFS+ flies carry a disease-causing mutation in their voltage-gated sodium channel (VGSC) gene and display semidominant heat-induced seizing, likely due to reduced GABAergic inhibitory activity at high temperature. Here, we show that at room temperature the GEFS+ mutation dominantly modifies sleep, with mutants exhibiting rapid sleep onset at dusk and increased nighttime sleep as compared to controls. These characteristics of GEFS+ sleep were observed regardless of sex, mating status, and genetic background. GEFS+ mutant sleep phenotypes were more resistant to pharmacologic reduction of GABA transmission by carbamazepine (CBZ) than controls, and were mitigated by reducing GABAA receptor expression specifically in wake-promoting pigment dispersing factor (PDF) neurons. These findings are consistent with increased GABAergic transmission to PDF neurons being mainly responsible for the enhanced nighttime sleep of GEFS+ mutants. Additionally, analyses under other light conditions suggested that the GEFS+ mutation led to reduced buffering of behavioral responses to light on and off stimuli, which contributed to characteristic GEFS+ sleep phenotypes. We further found that GEFS+ mutants had normal circadian rhythms in free-running dark conditions. Interestingly, the mutants lacked a homeostatic rebound following mechanical sleep deprivation, and whereas deprivation treatment increased heat-induced seizure susceptibility in control flies, it unexpectedly reduced seizure activity in GEFS+ mutants. Our study has revealed the sleep architecture of a Drosophila VGSC mutant

  9. Exaggerated Nighttime Sleep and Defective Sleep Homeostasis in a Drosophila Knock-In Model of Human Epilepsy

    PubMed Central

    Petruccelli, Emily; Lansdon, Patrick; Kitamoto, Toshihiro

    2015-01-01

    Despite an established link between epilepsy and sleep behavior, it remains unclear how specific epileptogenic mutations affect sleep and subsequently influence seizure susceptibility. Recently, Sun et al. (2012) created a fly knock-in model of human generalized epilepsy with febrile seizures plus (GEFS+), a wide-spectrum disorder characterized by fever-associated seizing in childhood and lifelong affliction. GEFS+ flies carry a disease-causing mutation in their voltage-gated sodium channel (VGSC) gene and display semidominant heat-induced seizing, likely due to reduced GABAergic inhibitory activity at high temperature. Here, we show that at room temperature the GEFS+ mutation dominantly modifies sleep, with mutants exhibiting rapid sleep onset at dusk and increased nighttime sleep as compared to controls. These characteristics of GEFS+ sleep were observed regardless of sex, mating status, and genetic background. GEFS+ mutant sleep phenotypes were more resistant to pharmacologic reduction of GABA transmission by carbamazepine (CBZ) than controls, and were mitigated by reducing GABAA receptor expression specifically in wake-promoting pigment dispersing factor (PDF) neurons. These findings are consistent with increased GABAergic transmission to PDF neurons being mainly responsible for the enhanced nighttime sleep of GEFS+ mutants. Additionally, analyses under other light conditions suggested that the GEFS+ mutation led to reduced buffering of behavioral responses to light on and off stimuli, which contributed to characteristic GEFS+ sleep phenotypes. We further found that GEFS+ mutants had normal circadian rhythms in free-running dark conditions. Interestingly, the mutants lacked a homeostatic rebound following mechanical sleep deprivation, and whereas deprivation treatment increased heat-induced seizure susceptibility in control flies, it unexpectedly reduced seizure activity in GEFS+ mutants. Our study has revealed the sleep architecture of a Drosophila VGSC mutant

  10. Immune tolerance negatively regulates B cells in knock-in mice expressing broadly neutralizing HIV antibody 4E10

    PubMed Central

    Cooper, Anthony B.; Ota, Takayuki; Skog, Patrick; Dawson, Phillip E.; Zwick, Michael B.; Schief, William R.; Burton, Dennis R.; Nemazee, David

    2013-01-01

    A major goal of HIV research is to develop vaccines reproducibly eliciting broadly neutralizing antibodies (bNAbs). This has proved to be challenging, however. One suggested explanation for this difficulty is that epitopes seen by bNAbs mimic self, leading to immune tolerance. We generated “knock-in” mice expressing bNAb 4E10, which recognizes the membrane proximal external region of gp41. Unlike b12 knock-in mice, described in the accompanying study, 4E10HL mice were found to undergo profound negative selection of B cells, indicating that 4E10 is, to a physiologically significant extent, autoreactive. Negative selection occurred by various mechanisms including receptor editing, clonal deletion and receptor downregulation. Despite significant deletion, small amounts of IgM and IgG anti-gp41 were found in the sera of 4E10HL mice. On a Rag1−/− background 4E10HL mice had virtually no serum immunoglobulins of any kind. These results are consistent with a model in which B cells with 4E10 specificity are counterselected, raising the question of how 4E10 was generated in the patient from whom it was isolated. This represents the second example of an MPER-directed bNAb that is apparently autoreactive in a physiological setting. The relative conservation in HIV of the 4E10 epitope might reflect the fact that it is under less intense immunological selection as a result of B cell self-tolerance. The safety and desirability of targeting this epitope by a vaccine is discussed in light of the newly-described bNAb 10E8. PMID:23940276

  11. N-terminal Huntingtin Knock-In Mice: Implications of Removing the N-terminal Region of Huntingtin for Therapy.

    PubMed

    Liu, Xudong; Wang, Chuan-En; Hong, Yan; Zhao, Ting; Wang, Guohao; Gaertig, Marta A; Sun, Miao; Li, Shihua; Li, Xiao-Jiang

    2016-05-01

    The Huntington's disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knockout neurons, we found that loss of Htt selectively affects the survival of developing neuronal cells, but not astrocytes, in culture. This neuronal degeneration could be rescued by a truncated HTT lacking the first 237 amino acids, but not by N-terminal HTT (1-208 amino acids). Also, the rescue effect depends on the region in HTT known to be involved in intracellular trafficking. Thus, the N-terminal HTT region may not be essential for the survival of developing neurons, but when carrying a large polyQ repeat, can cause selective neuropathology. These findings imply a possible therapeutic benefit of removing the N-terminal region of HTT containing the polyQ repeat to treat the neurodegeneration in HD.

  12. Mouse models of sickle cell disease.

    PubMed

    Beuzard, Y

    2008-01-01

    In the absence of a natural animal model for sickle cell disease, transgenic mouse models have been generated to better understand the complex pathophysiology of the disease and to evaluate potential specific therapies. In the early nineties, the simple addition of human globin genes induced the expression of hemoglobin S (HbS) or HbS-related human hemoglobins in mice still expressing mouse hemoglobin. To increase the proportion of human hemoglobin and the severity of the mouse sickle cell syndrome, the proportion of mouse hemoglobin could be decreased by a combination of mouse alpha- and beta-thalassemic defects, leading to complex genotypes and mild disease. Following the discovery of gene targeting in the mouse embryonic stem cells (ES cells), it was made possible to knock out all mouse adult globin genes (2alpha and 2beta) and to add the human homologous genes elsewhere in the mouse genome. In addition, the human gamma gene of fetal hemoglobin was protecting the fetus from HbS polymer formation. Accordingly, the resulting adult mouse models obtained in 1997, expressing human HbS-only, had a very severe anemia (Hb=5-6 g/dL). In order to survive, these "HbS-only mice" had to reduce the HbS concentration within the red blood cells. The phenotype could be less severe by adding modified human gamma genes, still expressed in adult mice. In 2006, a last "S-only" model was obtained by homologous knock in, replacing the mouse globin genes by human genes. This array of models contributes to better understand the role of different interacting factors in the complexity of sickle cell events, such as red cell defects, changes in blood flow and vaso-occlusion, hyperhemolysis, vascular tone dysregulation, oxidations, inflammation, activation and adhesion of cells, ischemia, reperfusion... In addition, each model has an appropriate usefulness to evaluate experimental therapies in vivo and to perform preclinical studies.

  13. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.

    PubMed

    He, Xiangjun; Tan, Chunlai; Wang, Feng; Wang, Yaofeng; Zhou, Rui; Cui, Dexuan; You, Wenxing; Zhao, Hui; Ren, Jianwei; Feng, Bo

    2016-05-19

    CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Testing the silence of mutations: Transcriptomic and behavioral studies of GABA(A) receptor α1 and α2 subunit knock-in mice.

    PubMed

    Harris, R A; Osterndorff-Kahanek, E; Ponomarev, I; Homanics, G E; Blednov, Y A

    2011-01-13

    Knock-in mice were constructed with mutations in the α1 (H(270), A(277)) and α2 (H(270), A(277)) subunits of the GABAA receptor, which resulted in receptors that lacked modulation by ethanol but retained normal responses to GABA in vitro. A key question is whether these mutant receptors also function normally in vivo. Perturbation of brain function was evaluated by gene expression profiling in the cerebral cortex and by behavioral pharmacology experiments with GABAergic drugs. Analysis of individual transcripts found only six transcripts that were changed in α1 knock-in mice and three in the α2 mutants (p<0.05, corrected for multiple comparisons). Two transcripts that are sensitive to neuronal activity, Arc and Fos, increased about 250% in the α2 mutants, and about 50% in the α1 mutants. Behavioral effects (loss of righting reflex, rotarod) of flurazepam and pentobarbital were not different between α2 mutants and wild-type, but they were enhanced for α1 knock-in mice. These results indicate that introduction of these mutations in the α2 subunit of the GABAA receptor does not produce marked perturbation of brain function, as measured by gene expression and GABAergic behavioral responses, but the same mutations in the α1 subunit produce more pronounced changes, especially in GABAergic function.

  15. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair

    PubMed Central

    He, Xiangjun; Tan, Chunlai; Wang, Feng; Wang, Yaofeng; Zhou, Rui; Cui, Dexuan; You, Wenxing; Zhao, Hui; Ren, Jianwei; Feng, Bo

    2016-01-01

    CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells. PMID:26850641

  16. A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes.

    PubMed

    Nakao, Harumi; Harada, Takeshi; Nakao, Kazuki; Kiyonari, Hiroshi; Inoue, Kenichi; Furuta, Yasuhide; Aiba, Atsu

    2016-02-01

    The CRISPR/Cas system has rapidly emerged recently as a new tool for genome engineering, and is expected to allow for controlled manipulation of specific genomic elements in a variety of species. A number of recent studies have reported the use of CRISPR/Cas for gene disruption (knockout) or targeted insertion of foreign DNA elements (knock-in). Despite the ease of simple gene knockout and small insertions or nucleotide substitutions in mouse zygotes by the CRISPR/Cas system, targeted insertion of large DNA elements remains an apparent challenge. Here the generation of knock-in mice with successful targeted insertion of large donor DNA elements ranged from 3.0 to 7.1 kb at the ROSA26 locus using the CRISPR/Cas system was achieved. Multiple independent knock-in founder mice were obtained by injection of hCas9 mRNA/sgRNA/donor vector mixtures into the cytoplasm of C57BL/6N zygotes when the injected zygotes were treated with an inhibitor of actin polymerization, cytochalasin. Successful germ line transmission of three of these knock-in alleles was also confirmed. The results suggested that treatment of zygotes with actin polymerization inhibitors following microinjection could be a viable method to facilitate targeted insertion of large DNA elements by the CRISPR/Cas system, enabling targeted knock-in readily attainable in zygotes.

  17. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse.

    PubMed

    Huang, Ching-Yu; Bredemeyer, Andrea L; Walker, Laura M; Bassing, Craig H; Sleckman, Barry P

    2008-02-01

    c-Myc induces widely varying cellular effects, including cell proliferation and cell death. These different cellular effects are determined, in part, by c-Myc protein expression levels, which are regulated through several transcriptional and post-transcriptional pathways. c-Myc transcripts can be detected in cells at all stages of B and T lymphocyte development. However, little is known about c-Myc protein expression, and how it varies, in developing lymphocytes. Here mice have been generated in which the endogenous c-Myc locus has been modified (c-Myc(G)) so that it encodes a GFP-c-Myc fusion protein. c-Myc(G/G) mice are viable, appear normal and exhibit grossly normal lymphocyte development. Flow cytometric analyses revealed significant heterogeneity in c-Myc protein expression levels in developing c-Myc(G/G) B and T lymphocytes. GFP-c-Myc expression levels were highest in proliferating lymphocytes, suggesting that c-Myc up-regulation is important for promoting lymphocyte cell division, and demonstrating that GFP-c-Myc expression is a marker of proliferating lymphocytes in vivo.

  18. Expression of Wild-Type Rp1 Protein in Rp1 Knock-in Mice Rescues the Retinal Degeneration Phenotype

    PubMed Central

    Liu, Qin; Collin, Rob W. J.; Cremers, Frans P. M.; den Hollander, Anneke I.; van den Born, L. Ingeborgh; Pierce, Eric A.

    2012-01-01

    Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of autosomal dominant retinitis pigmentosa (adRP), and have also been found to cause autosomal recessive RP (arRP) in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39) are located in the 4th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3rd exon of RP1 (c.686delC; p.P229QfsX35) found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled. PMID:22927954

  19. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice

    PubMed Central

    2013-01-01

    Background The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome’) strategy to expand our understanding of human gene regulation in vivo. Results In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. Conclusions We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression. PMID:24124870

  20. A universal vector for high-efficiency multi-fragment recombineering of BACs and knock-in constructs.

    PubMed

    Dolt, Karamjit Singh; Lawrence, Melanie L; Miller-Hodges, Eve; Slight, Joan; Thornburn, Anna; Devenney, Paul S; Hohenstein, Peter

    2013-01-01

    There is an increasing need for more efficient generation of transgenic constructs. Here we present a universal multi-site Gateway vector for use in recombineering reactions. Using transgenic mouse models, we show its use for the generation of BAC transgenics and targeting vectors. The modular nature of the vector allows for rapid modification of constructs to generate different versions of the same construct. As such it will help streamline the generation of series of related transgenic models.

  1. Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development

    SciTech Connect

    Takasato, Minoru; Kobayashi, Chiyoko; Okabayashi, Koji; Kiyonari, Hiroshi; Oshima, Naoko; Asashima, Makoto; Nishinakamura, Ryuichi

    2008-09-05

    Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development.

  2. Deletion of Stat3 enhances myeloid cell expansion and increases the severity of myeloproliferative neoplasms in Jak2V617F knock-in mice

    PubMed Central

    Yan, Dongqing; Jobe, Fatoumata; Hutchison, Robert E.; Mohi, Golam

    2015-01-01

    The JAK2V617F mutation commonly found in myeloproliferative neoplasms (MPNs) induces constitutive phosphorylation/activation of the signal transducer and activator of transcription 3 (Stat3). However, the contribution of Stat3 in MPN evoked by JAK2V617F remains unknown. To determine the role of Stat3 in JAK2V617F-induced MPN, we generated Stat3-deficient Jak2V617F-expressing mice. Whereas expression of Jak2V617F resulted in a PV-like disease characterized by increased red blood cells (RBC), hematocrit, neutrophils and platelets in the peripheral blood of Jak2V617F knock-in mice, deletion of Stat3 slightly reduced RBC, and hematocrit parameters and modestly increased platelet numbers in Jak2V617F knock-in mice. Moreover, deletion of Stat3 significantly increased the neutrophil counts/percentages and markedly reduced the survival of mice expressing Jak2V617F. These phenotypic manifestations were reproduced upon bone marrow transplantation into wild-type animals. Flow cytometric analysis showed increased hematopoietic stem cell and granulocyte-macrophage progenitor populations in the bone marrow and spleens of Stat3-deficient Jak2V617F mice. Stat3 deficiency also caused a marked expansion of Gr-1+/Mac-1+ myeloid cells in Jak2V617F knock-in mice. Histopathologic analysis revealed marked increase in granulocytes in the bone marrow, spleens and livers of Stat3-deficient Jak2V617F-expressing mice. Together, these results suggest that deletion of Stat3 increases the severity of MPN induced by Jak2V617F. PMID:26044284

  3. Retigabine, a Kv7.2/Kv7.3-Channel Opener, Attenuates Drug-Induced Seizures in Knock-In Mice Harboring Kcnq2 Mutations

    PubMed Central

    Ihara, Yukiko; Tomonoh, Yuko; Deshimaru, Masanobu; Zhang, Bo; Uchida, Taku; Ishii, Atsushi; Hirose, Shinichi

    2016-01-01

    The hetero-tetrameric voltage-gated potassium channel Kv7.2/Kv7.3, which is encoded by KCNQ2 and KCNQ3, plays an important role in limiting network excitability in the neonatal brain. Kv7.2/Kv7.3 dysfunction resulting from KCNQ2 mutations predominantly causes self-limited or benign epilepsy in neonates, but also causes early onset epileptic encephalopathy. Retigabine (RTG), a Kv7.2/ Kv7.3-channel opener, seems to be a rational antiepileptic drug for epilepsies caused by KCNQ2 mutations. We therefore evaluated the effects of RTG on seizures in two strains of knock-in mice harboring different Kcnq2 mutations, in comparison to the effects of phenobarbital (PB), which is the first-line antiepileptic drug for seizures in neonates. The subjects were heterozygous knock-in mice (Kcnq2Y284C/+ and Kcnq2A306T/+) bearing the Y284C or A306T Kcnq2 mutation, respectively, and their wild-type (WT) littermates, at 63–100 days of age. Seizures induced by intraperitoneal injection of kainic acid (KA, 12mg/kg) were recorded using a video-electroencephalography (EEG) monitoring system. Effects of RTG on KA-induced seizures of both strains of knock-in mice were assessed using seizure scores from a modified Racine’s scale and compared with those of PB. The number and total duration of spike bursts on EEG and behaviors monitored by video recording were also used to evaluate the effects of RTG and PB. Both Kcnq2Y284C/+ and Kcnq2A306T/+ mice showed significantly more KA-induced seizures than WT mice. RTG significantly attenuated KA-induced seizure activities in both Kcnq2Y284C/+ and Kcnq2A306T/+ mice, and more markedly than PB. This is the first reported evidence of RTG ameliorating KA-induced seizures in knock-in mice bearing mutations of Kcnq2, with more marked effects than those observed with PB. RTG or other Kv7.2-channel openers may be considered as first-line antiepileptic treatments for epilepsies resulting from KCNQ2 mutations. PMID:26910900

  4. Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing.

    PubMed

    Pinder, Jordan; Salsman, Jayme; Dellaire, Graham

    2015-10-30

    CRISPR is a genome-editing platform that makes use of the bacterially-derived endonuclease Cas9 to introduce DNA double-strand breaks at precise locations in the genome using complementary guide RNAs. We developed a nuclear domain knock-in screen, whereby the insertion of a gene encoding the green fluorescent protein variant Clover is inserted by Cas9-mediated homology directed repair (HDR) within the first exon of genes that are required for the structural integrity of subnuclear domains such as the nuclear lamina and promyelocytic leukemia nuclear bodies (PML NBs). Using this approach, we compared strategies for enhancing CRISPR-mediated HDR, focusing on known genes and small molecules that impact non-homologous end joining (NHEJ) and homologous recombination (HR). Ultimately, we identified the small molecule RS-1 as a potent enhancer of CRISPR-based genome editing, enhancing HDR 3- to 6-fold depending on the locus and transfection method. We also characterized U2OS human osteosarcoma cells expressing Clover-tagged PML and demonstrate that this strategy generates cell lines with PML NBs that are structurally and functionally similar to bodies in the parental cell line. Thus, the nuclear domain knock-in screen that we describe provides a simple means of rapidly evaluating methods and small molecules that have the potential to enhance Cas9-mediated HDR.

  5. Knock-in Mutation of the Distal Four Tyrosines of Linker for Activation of T Cells Blocks Murine T Cell Development

    PubMed Central

    Sommers, Connie L.; Menon, Rashmi K.; Grinberg, Alexander; Zhang, Weiguo; Samelson, Lawrence E.; Love, Paul E.

    2001-01-01

    The integral membrane adapter protein linker for activation of T cells (LAT) performs a critical function in T cell antigen receptor (TCR) signal transduction by coupling the TCR to downstream signaling pathways. After TCR engagement, LAT is tyrosine phosphorylated by ZAP-70 creating docking sites for multiple src homology 2–containing effector proteins. In the Jurkat T cell line, the distal four tyrosines of LAT bind PLCγ-1, Grb2, and Gads. Mutation of these four tyrosine residues to phenylalanine (4YF) blocked TCR-mediated calcium mobilization, Erk activation, and nuclear factor (NF)-AT activation. In this study, we examined whether these four tyrosine residues were essential for T cell development by generating LAT “knock-in” mutant mice that express the 4YF mutant protein under the control of endogenous LAT regulatory sequences. Significantly, the phenotype of 4YF knock-in mice was identical to LAT−/− (null) mice; thymocyte development was arrested at the immature CD4−CD8− stage and no mature T cells were present. Knock-in mice expressing wild-type LAT protein, generated by a similar strategy, displayed a normal T cell developmental profile. These results demonstrate that the distal four tyrosine residues of LAT are essential for preTCR signaling and T cell development in vivo. PMID:11457888

  6. Potential in vivo amelioration by N-acetyl-L-cysteine of oxidative stress in brain in human double mutant APP/PS-1 knock-in mice: toward therapeutic modulation of mild cognitive impairment.

    PubMed

    Huang, Quanzhen; Aluise, Christopher D; Joshi, Gururaj; Sultana, Rukhsana; St Clair, Daret K; Markesbery, William R; Butterfield, D Allan

    2010-09-01

    Alzheimer's disease (AD) is the most prevalent form of dementia among the elderly. Although the underlying cause has yet to be established, numerous data have shown that oxidative stress is implicated in AD as well as in preclinical stages of AD, such as mild cognitive impairment (MCI). The oxidative stress observed in brains of subjects with AD and MCI may be due, either fully or in part, to increased free radicals mediated by amyloid-beta peptide (Abeta). By using double human mutant APP/PS-1 knock-in mice as the AD model, the present work demonstrates that the APP/PS-1 double mutation results in elevated protein oxidation (as indexed by protein carbonyls), protein nitration (as indexed by 3-nitrotyrosine), as well as lipid peroxidation (as indexed by protein-bound 4-hydroxy-2-nonenal) in brains of mice aged 9 months and 12 months. APP/PS-1 mice also exhibited lower levels of brain glutathione peroxidase (GPx) in both age groups studied, whereas glutathione reductase (GR) levels in brain were unaffected by the mutation. The activities of both of these antioxidant enzymes were significantly decreased in APP/PS-1 mouse brains, whereas the activity of glucose-6-phosphate dehydrogenase (G6PDH) was increased relative to controls in both age groups. Levels of peptidyl prolyl isomerase 1 (Pin1) were significantly decreased in APP/PS-1 mouse brain aged 9 and 12 months. Administration of N-acetyl-L-cysteine (NAC), a glutathione precursor, to APP/PS-1 mice via drinking water suppressed increased protein oxidation and nitration and also significantly augmented levels and activity of GPx in brain from both age groups. Oral administration of NAC also increased the diminished activity of GR and protected against lipid peroxidation in brains of 9-month-old APP/PS-1 mice only. Pin1 levels, GR levels, and G6PDH activity in brain were unaffected by oral administration of NAC in both age groups. These results are discussed with reference to the therapeutic potential of this brain

  7. Dataset of Sgo1 expression in cardiac, gastrointestinal, hepatic and neuronal tissue in mouse.

    PubMed

    Song, Andrew T; Galli, Antonella; Leclerc, Severine; Nattel, Stanley; Mandato, Craig; Andelfinger, Gregor

    2017-08-01

    The data shown in this article are related to the research article entitled "Characterization of Sgo1 expression pattern in developing and adult mouse" (Song et al., 2017) [3]. The article provides novel data on Sgo1 gene expression pattern utilizing Sgo1_LacZ_Knock in mouse line and immunohistochemistry in wild type mice. The data presents Sgo1 expression pattern during development, and in post-developmental proliferative and quiescent tissue. The article describes following tissues: developing heart, neural tube, adult colon, cerebellum, cerebral cortex, liver, and testis.

  8. Characterization of an unusual transmissible spongiform encephalopathy in goat by transmission in knock-in transgenic mice.

    PubMed

    Wilson, Rona; King, Declan; Hunter, Nora; Goldmann, Wilfred; Barron, Rona M

    2013-08-01

    Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder of cattle, and its transmission to humans through contaminated food is thought to be the cause of the variant form of Creutzfeldt-Jakob disease. BSE is believed to have spread from the recycling in cattle of ruminant tissue in meat and bone meal (MBM). However, during this time, sheep and goats were also exposed to BSE-contaminated MBM. Both sheep and goats are experimentally susceptible to BSE, and while there have been no reported natural BSE cases in sheep, two goat BSE field cases have been documented. While cases of BSE are rare in small ruminants, the existence of scrapie in both sheep and goats is well established. In the UK, during 2006-2007, a serious outbreak of clinical scrapie was detected in a large dairy goat herd. Subsequently, 200 goats were selected for post-mortem examination, one of which showed biochemical and immunohistochemical features of the disease-associated prion protein (PrP(TSE)) which differed from all other infected goats. In the present study, we investigated this unusual case by performing transmission bioassays into a panel of mouse lines. Following characterization, we found that strain properties such as the ability to transmit to different mouse lines, lesion profile pattern, degree of PrP deposition in the brain and biochemical features of this unusual goat case were neither consistent with goat BSE nor with a goat scrapie herdmate control. However, our results suggest that this unusual case has BSE-like properties and highlights the need for continued surveillance.

  9. Altered immunoglobulin hypermutation pattern and frequency in complementary mouse models of DNA polymerase ζ activity

    PubMed Central

    Daly, Janssen; Bebenek, Katarzyna; Watt, Danielle L.; Richter, Kathleen; Jiang, Chuancang; Zhao, Ming-Lang; Ray, Madhumita; McGregor, W. Glenn; Kunkel, Thomas A.; Diaz, Marilyn

    2012-01-01

    To test the hypothesis that DNA polymerase ζ participates in immunoglobulin hypermutation, we generated two mouse models of Pol ζ function: a B-cell specific conditional knock-out and a knock-in strain with a Pol ζ mutagenesis-enhancing mutation. Pol ζ-deficient B-cells had a reduction in mutation frequency at immunoglobulin loci in the spleen and in Peyer’s Patches, while knock-in mice with a mutagenic Pol ζ, displayed a marked increase in mutation frequency in Peyer’s Patches revealing a pattern that was similar to mutations in yeast strains with a homologous mutation in the gene encoding the catalytic subunit of Pol ζ. Combined, these data are best explained by a direct role for DNA polymerase ζ in immunoglobulin hypermutation. PMID:22547703

  10. CRISPR/Cas9 Genome Editing in Caenorhabditis elegans: Evaluation of Templates for Homology-Mediated Repair and Knock-Ins by Homology-Independent DNA Repair.

    PubMed

    Katic, Iskra; Xu, Lan; Ciosk, Rafal

    2015-06-03

    Precise genome editing by the Cas9 nuclease depends on exogenously provided templates for homologous recombination. Here, we compare oligonucleotides with short homology and circular DNA molecules with extensive homology to genomic targets as templates for homology-based repair of CRISPR/Cas9 induced double-strand breaks. We find oligonucleotides to be templates of choice for introducing small sequence changes into the genome based on editing efficiency and ease of use. We show that polarity of oligonucleotide templates greatly affects repair efficiency: oligonucleotides in the sense orientation with respect to the target gene are better templates. In addition, combining a gene loss-of-function phenotype screen with detection of integrated fluorescent markers, we demonstrate that targeted knock-ins in Caenorhabditis elegans also can be achieved by homology-independent repair. Copyright © 2015 Katic et al.

  11. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense.

    PubMed

    Wei, Min; Shinkura, Reiko; Doi, Yasuko; Maruya, Mikako; Fagarasan, Sidonia; Honjo, Tasuku

    2011-03-01

    To elucidate the specific role of somatic hypermutation (SHM) in mucosal immunity, we generated mice carrying a knock-in point mutation in Aicda, which encodes activation-induced cytidine deaminase (AID), an enzyme essential to SHM and class-switch recombination (CSR). These mutant AID(G23S) mice had much less SHM but had normal amounts of immunoglobulin in both serum and intestinal secretions. AID(G23S) mice developed hyperplasia of germinal center B cells in gut-associated lymphoid tissues, accompanied by expansion of microflora in the small intestine. Moreover, AID(G23S) mice had more translocation of Yersinia enterocolitica into mesenteric lymph nodes and were more susceptible than wild-type mice to oral challenge with cholera toxin. Together our results indicate that SHM is critical in maintaining intestinal homeostasis and efficient mucosal defense.

  12. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation.

    PubMed

    Guo, Q; Sebastian, L; Sopher, B L; Miller, M W; Ware, C B; Martin, G M; Mattson, M P

    1999-03-01

    Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Overexpression of PS1 mutations in cultured PC12 cells increases their vulnerability to apoptosis-induced trophic factor withdrawal and oxidative insults. We now report that primary hippocampal neurons from PS1 mutant knock-in mice, which express the human PS1M146V mutation at normal levels, exhibit increased vulnerability to amyloid beta-peptide toxicity. The endangering action of mutant PS1 was associated with increased superoxide production, mitochondrial membrane depolarization, and caspase activation. The peroxynitrite-scavenging antioxidant uric acid and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone protected hippocampal neurons expressing mutant PS1 against cell death induced by amyloid beta-peptide. Increased oxidative stress may contribute to the pathogenic action of PS1 mutations, and antioxidants may counteract the adverse property of such AD-linked mutations.

  13. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    PubMed

    He, Xiaolin; Han, Bing; Mura, Marco; Li, Li; Cypel, Marcelo; Soderman, Avery; Picha, Kristen; Yang, Jing; Liu, Mingyao

    2008-01-30

    Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  14. Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature

    PubMed Central

    Brunetti, Orazio; Imbrici, Paola; Botti, Fabio Massimo; Pettorossi, Vito Enrico; D'Adamo, Maria Cristina; Valentino, Mario; Zammit, Christian; Mora, Marina; Gibertini, Sara; Di Giovanni, Giuseppe; Muscat, Richard; Pessia, Mauro

    2012-01-01

    Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K+ channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1V408A/+). Here, we investigated the neuromuscular transmission of Kv1.1V408A/+ ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve–muscle from Kv1.1+/+ and Kv1.1V408A/+ mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca2 + signals that occurred abnormally only in preparations dissected from Kv1.1V408A/+ mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca2 + homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K+ channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during fatigue or

  15. Erectile Dysfunction in Heme-Deficient Nitric Oxide-Unresponsive Soluble Guanylate Cyclase Knock-In Mice.

    PubMed

    Decaluwé, Kelly; Pauwels, Bart; Boydens, Charlotte; Thoonen, Robrecht; Buys, Emmanuel S; Brouckaert, Peter; Van de Voorde, Johan

    2017-02-01

    The nitric oxide (NO), soluble guanylate cyclase (sGC), and cyclic guanosine monophosphate (cGMP) pathway is the leading pathway in penile erection. To assess erectile function in a mouse model in which sGC is deficient in heme (apo-sGC) and unresponsive to NO. Mutant mice (sGCβ1(ki/ki)) that express an sGC enzyme that retains basal activity but fails to respond to NO because of heme deficiency (apo-sGC) were used. Isolated corpora cavernosa from sGCβ1(ki/ki) and wild-type mice were mounted in vitro for isometric tension recordings in response to sGC-dependent and -independent vasorelaxant agents. In addition, the erectile effects of some of these agents were tested in vivo at intracavernosal injection. In vitro and in vivo recordings of erectile responses in sGCβ1(ki/ki) and wild-type mice after stimulation with sGC-dependent and -independent vasorelaxant agents. NO-induced responses were abolished in sGCβ1(ki/ki) mice in vitro and in vivo. The ability of the heme-dependent, NO-independent sGC stimulator BAY 41-2272 to relax the corpora cavernosa was markedly attenuated in sGCβ1(ki/ki) mice. In contrast, the relaxation response to the heme- and NO-independent sGC activator BAY 58-2667 was significantly enhanced in sGCβ1(ki/ki) mice. The relaxing effect of sGC-independent vasorelaxant agents was similar in wild-type and sGCβ1(ki/ki) mice, illustrating that the observed alterations in vasorelaxation are limited to NO-sGC-cGMP-mediated processes. Our results suggest that sGC is the sole target of NO in erectile physiology. Furthermore, this study provides indirect evidence that, in addition to sGCα1β1, sGCα2β1 is important for erectile function. In addition, the significant relaxation observed in sGCβ1(ki/ki) mice with the cumulative addition of the sGC activator BAY 58-2667 indicates that sGC activators might offer value in treating erectile dysfunction. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All

  16. Mouse models for the study of colon carcinogenesis

    PubMed Central

    Rosenberg, Daniel W.; Giardina, Charles; Tanaka, Takuji

    2009-01-01

    The study of experimental colon carcinogenesis in rodents has a long history, dating back almost 80 years. There are many advantages to studying the pathogenesis of carcinogen-induced colon cancer in mouse models, including rapid and reproducible tumor induction and the recapitulation of the adenoma–carcinoma sequence that occurs in humans. The availability of recombinant inbred mouse panels and the existence of transgenic, knock-out and knock-in genetic models further increase the value of these studies. In this review, we discuss the general mechanisms of tumor initiation elicited by commonly used chemical carcinogens and how genetic background influences the extent of disease. We will also describe the general features of lesions formed in response to carcinogen treatment, including the underlying molecular aberrations and how these changes may relate to the pathogenesis of human colorectal cancer. PMID:19037092

  17. Age-related loss of phospholipid asymmetry in APPNLh/APPNLh × PS-1P264L/PS-1P264L human double knock-in mice: Relevance to Alzheimer disease

    PubMed Central

    Bader Lange, Miranda L.; Clair, Daret St.; Markesbery, William R.; Studzinski, Christa M.; Murphy, M. Paul; Butterfield, D. Allan

    2010-01-01

    Using APPNLh/APPNLh×PS-1P246L/PS-1P246L human double knock-in (APP/PS-1) mice, we examined whether phosphatidylserine (PtdSer) asymmetry is significantly altered in brain of this familial Alzheimer disease mouse model in an age-dependent manner as a result of oxidative stress, toxic Aβ(1–42) oligomer production, and/or apoptosis. Annexin V (AV) and NBD-PS fluorescence in synaptosomes of wild-type (WT) and APP/PS-1 mice were used to determine PtdSer exposure with age, while Mg2+ATPase activity was determined to correlate PtdSer asymmetry changes with PtdSer translocase, flippase, activity. AV and NBD-PS results demonstrated significant PtdSer exposure beginning at 9 months compared to 1 month-old WT controls for both assays, a trend that was exacerbated in synaptosomes of APP/PS-1 mice. Decreasing Mg2+ATPase activity confirms that the age-related loss of PtdSer asymmetry is likely due to loss of flippase activity, more prominent in APP/PS-1 brain. Two-site sandwich ELISA on SDS- and FA-soluble APP/PS-1 brain fractions were conducted to correlate Aβ(1–40) and Aβ(1–42) levels with age-related trends determined from the AV, NBD-PS, and Mg2+ATPase assays. ELISA revealed a significant increase in both SDS- and FA-soluble Aβ(1–40) and Aβ(1–42) with age, consistent with PtdSer and flippase assay trends. Lastly, because PtdSer exposure is affected by pro-apoptotic caspase-3, levels of both latent and active forms were measured. Western blotting results demonstrated an increase in both active fragments of caspase-3 with age, while levels of pro-caspase-3 decrease. These results are discussed with relevance to loss of lipid asymmetry and consequent neurotoxicity in brain of subjects with Alzheimer disease. PMID:20083199

  18. Age-related loss of phospholipid asymmetry in APP(NLh)/APP(NLh) x PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice: relevance to Alzheimer disease.

    PubMed

    Bader Lange, Miranda L; St Clair, Daret; Markesbery, William R; Studzinski, Christa M; Murphy, M Paul; Butterfield, D Allan

    2010-04-01

    Using APP(NLh)/APP(NLh) x PS-1(P246L)/PS-1(P246L) human double knock-in (APP/PS-1) mice, we examined whether phosphatidylserine (PtdSer) asymmetry is significantly altered in brain of this familial Alzheimer disease mouse model in an age-dependent manner as a result of oxidative stress, toxic Abeta(1-42) oligomer production, and/or apoptosis. Annexin V (AV) and NBD-PS fluorescence in synaptosomes of wild-type (WT) and APP/PS-1 mice were used to determine PtdSer exposure with age, while Mg(2+) ATPase activity was determined to correlate PtdSer asymmetry changes with PtdSer translocase, flippase, activity. AV and NBD-PS results demonstrated significant PtdSer exposure beginning at 9 months compared to 1-month-old WT controls for both assays, a trend that was exacerbated in synaptosomes of APP/PS-1 mice. Decreasing Mg(2+) ATPase activity confirms that the age-related loss of PtdSer asymmetry is likely due to loss of flippase activity, more prominent in APP/PS-1 brain. Two-site sandwich ELISA on SDS- and FA-soluble APP/PS-1 brain fractions were conducted to correlate Abeta(1-40) and Abeta(1-42) levels with age-related trends determined from the AV, NBD-PS, and Mg(2+) ATPase assays. ELISA revealed a significant increase in both SDS- and FA-soluble Abeta(1-40) and Abeta(1-42) with age, consistent with PtdSer and flippase assay trends. Lastly, because PtdSer exposure is affected by pro-apoptotic caspase-3, levels of both latent and active forms were measured. Western blotting results demonstrated an increase in both active fragments of caspase-3 with age, while levels of pro-caspase-3 decrease. These results are discussed with relevance to loss of lipid asymmetry and consequent neurotoxicity in brain of subjects with Alzheimer disease. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Knock-In of the Recurrent R368X Mutation of PRKAR1A that Represses cAMP-Dependent Protein Kinase A Activation: A Model of Type 1 Acrodysostosis.

    PubMed

    Le Stunff, Catherine; Tilotta, Francoise; Sadoine, Jérémy; Le Denmat, Dominique; Briet, Claire; Motte, Emmanuelle; Clauser, Eric; Bougnères, Pierre; Chaussain, Catherine; Silve, Caroline

    2017-02-01

    In humans, activating mutations in the PRKAR1A gene cause acrodysostosis 1 (ACRDYS1). These mutations result in a reduction in PKA activation caused by an impaired ability of cAMP to dissociate mutant PRKAR1A from catalytic PKA subunits. Two striking features of this rare developmental disease are renal resistance to PTH and chondrodysplasia resulting from the constitutive inhibition of PTHR1/Gsa/AC/cAMP/PKA signaling. We developed a knock-in of the recurrent ACRDYS1 R368X PRKAR1A mutation in the mouse. No litters were obtained from [R368X]/[+] females (thus no homozygous [R368X]/[R368X] mice). In [R368X]/[+] mice, Western blot analysis confirmed mutant allele heterozygous expression. Growth retardation, peripheral acrodysostosis (including brachydactyly affecting all digits), and facial dysostosis were shown in [R368X]/[+] mice by weight curves and skeletal measurements (μCT scan) as a function of time. [R368X]/[+] male and female mice were similarly affected. Unexpected, however, whole-mount skeletal preparations revealed a striking delay in mineralization in newborn mutant mice, accompanied by a decrease in the height of terminal hypertrophic chondrocyte layer, an increase in the height of columnar proliferative prehypertrophic chondrocyte layer, and changes in the number and spatial arrangement of proliferating cell nuclear antigen (PCNA)-positive chondrocytes. Plasma PTH and basal urinary cAMP were significantly higher in [R368X]/[+] compared to WT mice. PTH injection increased urinary cAMP similarly in [R368X]/[+] and WT mice. PRKACA expression was regulated in a tissue (kidney not bone and liver) manner. This model, the first describing the germline expression of a PRKAR1A mutation causing dominant repression of cAMP-dependent PKA, reproduced the main features of ACRDYS1 in humans. It should help decipher the specificity of the cAMP/PKA signaling pathway, crucial for numerous stimuli. In addition, our results indicate that PRKAR1A, by tempering

  20. Generation and characterization of a humanized PPARδ mouse model

    PubMed Central

    Gross, B; Hennuyer, N; Bouchaert, E; Rommens, C; Grillot, D; Mezdour, H; Staels, B

    2011-01-01

    BACKGROUND AND PURPOSE Humanized mice for the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ), termed PPARδ knock-in (PPARδ KI) mice, were generated for the investigation of functional differences between mouse and human PPARδ and as tools for early drug efficacy assessment. EXPERIMENTAL APPROACH Human PPARδ function in lipid metabolism was assessed at baseline, after fasting or when challenged with the GW0742 compound in mice fed a chow diet or high-fat diet (HFD). KEY RESULTS Analysis of PPARδ mRNA levels revealed a hypomorph expression of human PPARδ in liver, macrophages, small intestine and heart, but not in soleus and quadriceps muscles, white adipose tissue and skin. PPARδ KI mice displayed a small decrease of high-density lipoprotein-cholesterol whereas other lipid parameters were unaltered. Plasma metabolic parameters were similar in wild-type and PPARδ KI mice when fed chow or HFD, and following physiological (fasting) and pharmacological (GW0742 compound) activation of PPARδ. Gene expression profiling in liver, soleus muscle and macrophages showed similar gene patterns regulated by mouse and human PPARδ. The anti-inflammatory potential of human PPARδ was also similar to mouse PPARδ in liver and isolated macrophages. CONCLUSIONS AND IMPLICATIONS These data indicate that human PPARδ can compensate for mouse PPARδ in the regulation of lipid metabolism and inflammation. Overall, this novel PPARδ KI mouse model shows full responsiveness to pharmacological challenge and represents a useful tool for the preclinical assessment of PPARδ activators with species-specific activity. PMID:21426320

  1. Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis

    PubMed Central

    Beauvais, Genevieve; Bode, Nicole M.; Watson, Jaime L.; Wen, Hsiang; Glenn, Kevin A.; Kawano, Hiroyuki; Harata, N. Charles; Ehrlich, Michelle E.

    2016-01-01

    Dystonia type 1 (DYT1) is a dominantly inherited neurological disease caused by mutations in TOR1A, the gene encoding the endoplasmic reticulum (ER)-resident protein torsinA. Previous work mostly completed in cell-based systems suggests that mutant torsinA alters protein processing in the secretory pathway. We hypothesized that inducing ER stress in the mammalian brain in vivo would trigger or exacerbate mutant torsinA-induced dysfunction. To test this hypothesis, we crossed DYT1 knock-in with p58(IPK)-null mice. The ER co-chaperone p58(IPK) interacts with BiP and assists in protein maturation by helping to fold ER cargo. Its deletion increases the cellular sensitivity to ER stress. We found a lower generation of DYT1 knock-in/p58 knock-out mice than expected from this cross, suggesting a developmental interaction that influences viability. However, surviving animals did not exhibit abnormal motor function. Analysis of brain tissue uncovered dysregulation of eiF2α and Akt/mTOR translational control pathways in the DYT1 brain, a finding confirmed in a second rodent model and in human brain. Finally, an unbiased proteomic analysis identified relevant changes in the neuronal protein landscape suggesting abnormal ER protein metabolism and calcium dysregulation. Functional studies confirmed the interaction between the DYT1 genotype and neuronal calcium dynamics. Overall, these findings advance our knowledge on dystonia, linking translational control pathways and calcium physiology to dystonia pathogenesis and identifying potential new pharmacological targets. SIGNIFICANCE STATEMENT Dystonia type 1 (DYT1) is one of the different forms of inherited dystonia, a neurological disorder characterized by involuntary, disabling movements. DYT1 is caused by mutations in the gene that encodes the endoplasmic reticulum (ER)-resident protein torsinA. How mutant torsinA causes neuronal dysfunction remains unknown. Here, we show the behavioral and molecular consequences of stressing

  2. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.

    PubMed

    Kovalenko, Marina; Dragileva, Ella; St Claire, Jason; Gillis, Tammy; Guide, Jolene R; New, Jaclyn; Dong, Hualing; Kucherlapati, Raju; Kucherlapati, Melanie H; Ehrlich, Michelle E; Lee, Jong-Min; Wheeler, Vanessa C

    2012-01-01

    The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT) exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR) pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111) with mice carrying a conditional (floxed) Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.

  3. CRISPR/Cas9-based Pten knock-out and Sleeping Beauty Transposon-mediated Nras knock-in induces hepatocellular carcinoma and hepatic lipid accumulation in mice.

    PubMed

    Gao, Mingming; Liu, Dexi

    2017-07-03

    Both Pten and Nras are downstream mediators of receptor tyrosine kinase activation that plays important roles in controlling cell survival and proliferation. Here, we investigated whether and how Pten loss cross-talks with Nras activation in driving liver cancer development in mice. Somatic disruption of hepatic Pten and overexpression of Nras were achieved in out-bred immunocompetent CD-1 mice through a hydrodynamic delivery of plasmids carrying Sleeping Beauty transposon-based integration of Nras and the CRISPR/Cas9-mediated Pten knockout system. Concurrent Pten knockout and Nras knock-in induced hepatocellular carcinoma, while individual gene manipulation failed. Tumor development was associated with liver fibrosis, hyperlipidemia, hepatic deposition of lipid droplets and glycogen, and hepatomegaly. At the molecular level, lipid droplet formation was primarily contributed by upregulated expression of genes responsible for lipogenesis and fatty acid sequestration, such as Srebpf1, Acc, Pparg and its downstream targets. Our findings demonstrated that Pten disruption was synergized by Nras overexpression in driving hepatocyte malignant transformation, which correlated with extensive formation of lipid droplets.

  4. B cells from knock-in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates.

    PubMed

    Ota, Takayuki; Doyle-Cooper, Colleen; Cooper, Anthony B; Doores, Katherine J; Aoki-Ota, Miyo; Le, Khoa; Schief, William R; Wyatt, Richard T; Burton, Dennis R; Nemazee, David

    2013-09-15

    Broadly neutralizing Abs against HIV protect from infection, but their routine elicitation by vaccination has not been achieved. To generate small animal models to test vaccine candidates, we have generated targeted transgenic ("knock-in") mice expressing, in the physiological Ig H and L chain loci, two well-studied broadly neutralizing Abs: 4E10, which interacts with the membrane proximal external region of gp41, and b12, which binds to the CD4 binding site on gp120. 4E10HL mice are described in the companion article (Doyle-Cooper et al., J. Immunol. 191: 3186-3191). In this article, we describe b12 mice. B cells in b12HL mice, in contrast to the case in 4E10 mice, were abundant and essentially monoclonal, retaining the b12 specificity. In cell culture, b12HL B cells responded avidly to HIV envelope gp140 trimers and to BCR ligands. Upon transfer to wild-type recipients, b12HL B cells responded robustly to vaccination with gp140 trimers. Vaccinated b12H mice, although generating abundant precursors and Abs with affinity for Env, were unable to rapidly generate neutralizing Abs, highlighting the importance of developing Ag forms that better focus responses to neutralizing epitopes. The b12HL and b12H mice should be useful in optimizing HIV vaccine candidates to elicit a neutralizing response while avoiding nonprotective specificities.

  5. Initial elevations in glutamate and dopamine neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in mice.

    PubMed

    Volta, Mattia; Beccano-Kelly, Dayne A; Paschall, Sarah A; Cataldi, Stefano; MacIsaac, Sarah E; Kuhlmann, Naila; Kadgien, Chelsie A; Tatarnikov, Igor; Fox, Jesse; Khinda, Jaskaran; Mitchell, Emma; Bergeron, Sabrina; Melrose, Heather; Farrer, Matthew J; Milnerwood, Austen J

    2017-09-20

    LRRK2 mutations produce end-stage Parkinson's disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD.

  6. An efficient method to enrich for knock-out and knock-in cellular clones using the CRISPR/Cas9 system.

    PubMed

    Niccheri, Francesca; Pecori, Riccardo; Conticello, Silvestro G

    2017-09-01

    Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9 nuclease (CRISPR/Cas9) and Transcription Activator-Like Effector Nucleases (TALENs) are versatile tools for genome editing. Here we report a method to increase the frequency of Cas9-targeted cellular clones. Our method is based on a chimeric construct with a Blasticidin S Resistance gene (bsr) placed out-of-frame by a surrogate target sequence. End joining of the CRISPR/Cas9-induced double-strand break on the surrogate target can place the bsr in frame, thus providing temporary resistance to Blasticidin S: this is used to enrich for cells where Cas9 is active. By this approach, in a real experimental setting, we disrupted the Aicda gene in ~70% of clones from CH12F3 lymphoma cells (>40% biallelically). With the same approach we knocked in a single nucleotide to reconstruct the frame of Aicda in these null cells, restoring the function in ~37% of the clones (less than 10% by the standard approach). Targeting of single nucleotide changes in other genes yielded analogous results. These results support our enrichment method as an efficient tool in genome editing.

  7. Micro RNA-214 contributes to proteasome independent downregulation of beta catenin in Huntington's disease knock-in striatal cell model STHdhQ111/Q111.

    PubMed

    Ghatak, Supratim; Raha, Sanghamitra

    2015-04-10

    Role of beta catenin in Huntington's disease (HD) is not clear. Previous studies on HD reported varied levels of beta catenin. In the present study we showed that beta catenin is post transcriptionally down-regulated in mutant huntingtin knock-in cell model STHdhQ111/Q111. This in turn leads to decreased level of wnt/beta catenin responsive genes. We observed that Gsk3beta or Gsk3beta (phospho Ser 9) is unaltered in HD and this down-regulation of beta catenin is independent of proteasomal degradation. Finally, we showed that the overexpression of miR-214 leads to the down-regulation of beta catenin at protein level only and reduces its transcriptional activity. We concluded that, miR-214 contributes to the processes that result in proteasome independent post transcriptional down-regulation of beta catenin in STHdhQ111/Q111, probably through inhibition of protein synthesis from beta catenin mRNA.

  8. Mouse genome engineering using designer nucleases.

    PubMed

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F; Pelczar, Pawel

    2014-04-02

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.

  9. Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse.

    PubMed

    Wang, Y; Kakizaki, T; Sakagami, H; Saito, K; Ebihara, S; Kato, M; Hirabayashi, M; Saito, Y; Furuya, N; Yanagawa, Y

    2009-12-15

    Inhibitory neurons play important roles in a number of brain functions. They are composed of GABAergic neurons and glycinergic neurons, and vesicular GABA transporter (VGAT) is specifically expressed in these neurons. Since the inhibitory neurons are scattered around in the CNS, it is difficult to identify these cells in living brain preparations. The glutamate decarboxylase (GAD) 67-GFP knock-in mouse has been widely used for the identification of GABAergic neurons, but their GAD67 expression was decreased compared to the wild-type mice. To overcome such a problem and to highlight the function and morphology of inhibitory neurons, we generated four lines of VGAT-Venus transgenic mice (lines #04, #29, #39 and #49) expressing Venus fluorescent protein under the control of mouse VGAT promoter. We found higher expression level of Venus transcripts and proteins as well as brighter fluorescent signal in line #39 mouse brains, compared to brains of other lines examined. By Western blots and spectrofluorometric measurements of forebrain, the line #39 mouse showed stronger GFP immunoreactivity and brighter fluorescent intensity than the GAD67-GFP knock-in mouse. In addition, Venus was present not only in somata, but also in neurites in the line #39 mouse by histological studies. In situ hybridization analysis showed that the expression pattern of Venus in the line #39 mouse was similar to that of endogenous VGAT. Double immunostaining analysis in line #39 mouse showed that Venus-expressing cells are primarily immunoreactive for GABA in cerebral cortex, hippocampus and cerebellar cortex and for GABA or glycine in dorsal cochlear nucleus. These results demonstrate that the VGAT-Venus line #39 mouse should be useful for studies on function and morphology of inhibitory neurons in the CNS.

  10. Novel In Vivo Model for Combinatorial Fluorescence Labeling in Mouse Prostate

    PubMed Central

    Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J. Mark; Balaji, K.C.

    2015-01-01

    BACKGROUND The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. METHODS We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-RasG12D knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. RESULTS In vivo XFP signals were observed in prostate of PKD1 knock-out, K-RasG12D knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. CONCLUSIONS The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. PMID:25753731

  11. FAAH genetic variation enhances fronto-amygdala function in mouse and human.

    PubMed

    Dincheva, Iva; Drysdale, Andrew T; Hartley, Catherine A; Johnson, David C; Jing, Deqiang; King, Elizabeth C; Ra, Stephen; Gray, J Megan; Yang, Ruirong; DeGruccio, Ann Marie; Huang, Chienchun; Cravatt, Benjamin F; Glatt, Charles E; Hill, Matthew N; Casey, B J; Lee, Francis S

    2015-03-03

    Cross-species studies enable rapid translational discovery and produce the broadest impact when both mechanism and phenotype are consistent across organisms. We developed a knock-in mouse that biologically recapitulates a common human mutation in the gene for fatty acid amide hydrolase (FAAH) (C385A; rs324420), the primary catabolic enzyme for the endocannabinoid anandamide. This common polymorphism impacts the expression and activity of FAAH, thereby increasing anandamide levels. Here, we show that the genetic knock-in mouse and human variant allele carriers exhibit parallel alterations in biochemisty, neurocircuitry and behaviour. Specifically, there is reduced FAAH expression associated with the variant allele that selectively enhances fronto-amygdala connectivity and fear extinction learning, and decreases anxiety-like behaviours. These results suggest a gain of function in fear regulation and may indicate for whom and for what anxiety symptoms FAAH inhibitors or exposure-based therapies will be most efficacious, bridging an important translational gap between the mouse and human.

  12. FAAH genetic variation enhances fronto-amygdala function in mouse and human

    PubMed Central

    Dincheva, Iva; Drysdale, Andrew T.; Hartley, Catherine A.; Johnson, David C.; Jing, Deqiang; King, Elizabeth C.; Ra, Stephen; Gray, Megan; Yang, Ruirong; DeGruccio, Ann Marie; Huang, Chienchun; Cravatt, Benjamin F.; Glatt, Charles E.; Hill, Matthew N.; Casey, B. J.; Lee, Francis S.

    2015-01-01

    Cross-species studies enable rapid translational discovery and produce the broadest impact when both mechanism and phenotype are consistent across organisms. We developed a knock-in mouse that biologically recapitulates a common human mutation in the gene for fatty acid amide hydrolase (FAAH) (C385A; rs324420), the primary catabolic enzyme for the endocannabinoid anandamide. This common polymorphism impacts the expression and activity of FAAH, thereby increasing anandamide levels. Here, we show that the genetic knock-in mouse and human variant allele carriers exhibit parallel alterations in biochemisty, neurocircuitry, and behavior. Specifically, there is reduced FAAH expression associated with the variant allele that selectively enhances fronto-amygdala connectivity and fear extinction learning, and decreases anxiety-like behaviors. These results suggest a gain-of-function in fear regulation and may indicate for whom and for what anxiety symptoms FAAH inhibitors or exposure-based therapies will be most efficacious, bridging an important translational gap between the mouse and human. PMID:25731744

  13. Hard Knocks in Tyrrhena Terra

    NASA Image and Video Library

    2017-02-02

    NASA Mars Reconnaissance Orbiter observed a small portion of a dark crater floor in the Tyrrhena Terra region of Mars. This is largely ancient hard bedrock that has been cratered by numerous impacts over the eons. http://photojournal.jpl.nasa.gov/catalog/PIA11179

  14. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein

    PubMed Central

    Much, Christian; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O’Carroll, Dónal

    2016-01-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse. PMID:27254021

  15. Behavior of knock-in mice with a cocaine-insensitive dopamine transporter after virogenetic restoration of cocaine sensitivity in the striatum.

    PubMed

    O'Neill, Brian; Tilley, Michael R; Han, Dawn D; Thirtamara-Rajamani, Keerthi; Hill, Erik R; Bishop, Georgia A; Zhou, Fu-Ming; During, Matthew J; Gu, Howard H

    2014-04-01

    Cocaine's main pharmacological actions are the inhibition of the dopamine, serotonin, and norepinephrine transporters. Its main behavioral effects are reward and locomotor stimulation, potentially leading to addiction. Using knock-in mice with a cocaine-insensitive dopamine transporter (DAT-CI mice) we have shown previously that inhibition of the dopamine transporter (DAT) is necessary for both of these behaviors. In this study, we sought to determine brain regions in which DAT inhibition by cocaine stimulates locomotor activity and/or produces reward. We used adeno-associated viral vectors to re-introduce the cocaine-sensitive wild-type DAT in specific brain regions of DAT-CI mice, which otherwise only express a cocaine-insensitive DAT globally. Viral-mediated expression of wild-type DAT in the rostrolateral striatum restored cocaine-induced locomotor stimulation and sensitization in DAT-CI mice. In contrast, the expression of wild-type DAT in the dorsal striatum, or in the medial nucleus accumbens, did not restore cocaine-induced locomotor stimulation. These data help to determine cocaine's molecular actions and anatomical loci that cause hyperlocomotion. Interestingly, cocaine did not produce significant reward - as measured by conditioned place-preference - in any of the three cohorts of DAT-CI mice with the virus injections. Therefore, the locus or loci underlying cocaine-induced reward remain underdetermined. It is possible that multiple dopamine-related brain regions are involved in producing the robust rewarding effect of cocaine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    PubMed

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  17. Gain of Function in FHM-1 Cav2.1 Knock-In Mice Is Related to the Shape of the Action Potential

    PubMed Central

    Inchauspe, Carlota González; Urbano, Francisco J.; Di Guilmi, Mariano N.; Forsythe, Ian D.; Ferrari, Michel D.; van den Maagdenberg, Arn M.J.M.

    2010-01-01

    Familial hemiplegic migraine type-1 FHM-1 is caused by missense mutations in the CACNA1A gene that encodes the α1A pore-forming subunit of CaV2.1 Ca2+ channels. We used knock-in (KI) transgenic mice harboring the pathogenic FHM-1 mutation R192Q to study neurotransmission at the calyx of Held synapse and cortical layer 2/3 pyramidal cells (PCs). Using whole cell patch-clamp recordings in brain stem slices, we confirmed that KI CaV2.1 Ca2+ channels activated at more hyperpolarizing potentials. However, calyceal presynaptic calcium currents (IpCa) evoked by presynaptic action potentials (APs) were similar in amplitude, kinetic parameters, and neurotransmitter release. CaV2.1 Ca2+ channels in cortical layer 2/3 PCs from KI mice also showed a negative shift in their activation voltage. PCs had APs with longer durations and smaller amplitudes than the calyx of Held. AP-evoked Ca2+ currents (ICa) from PCs were larger in KI compared with wild-type (WT) mice. In contrast, when ICawas evoked in PCs by calyx of Held AP waveforms, we observed no amplitude differences between WT and KI mice. In the same way, Ca2+ currents evoked at the presynaptic terminals (IpCa)of the calyx of Held by the AP waveforms of the PCs had larger amplitudes in R192Q KI mice that in WT. These results suggest that longer time courses of pyramidal APs were a key factor for the expression of a synaptic gain of function in the KI mice. In addition, our results indicate that consequences of FHM-1 mutations might vary according to the shape of APs in charge of triggering synaptic transmission (neurons in the calyx of Held vs. excitatory/inhibitory neurons in the cortex), adding to the complexity of the pathophysiology of migraine. PMID:20484531

  18. Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice: an animal model of Autism

    PubMed Central

    Pizzarelli, Rocco; Cherubini, Enrico

    2013-01-01

    Autism Spectrum Disorders (ASDs) comprise an heterogeneous group of neuro-developmental abnormalities, mainly of genetic origin, characterized by impaired social interactions, communications deficits, and stereotyped behaviors. In a small percentage of cases, ASDs have been found to be associated with single mutations in genes involved in synaptic function. One of these involves the postsynaptic cell adhesion molecule neuroligin (NL) 3. NLs interact with presynaptic neurexins (Nrxs) to ensure a correct cross talk between post and presynaptic specializations. Here, transgenic mice carrying the human R451C mutation of Nlgn3, were used to study GABAergic signaling in the hippocampus early in postnatal life. Whole cell recordings from CA3 pyramidal neurons in slices from NL3R451C knock-in mice revealed an enhanced frequency of Giant Depolarizing Potentials (GDPs), as compared to controls. This effect was probably dependent on an increased GABAergic drive to principal cells as demonstrated by the enhanced frequency of miniature GABAA-mediated (GPSCs), but not AMPA-mediated postsynaptic currents (EPSCs). Changes in frequency of mGPSCs were associated with an acceleration of their decay kinetics, in the absence of any change in unitary synaptic conductance or in the number of GABAA receptor channels, as assessed by peak scaled non-stationary fluctuation analysis. The enhanced GABAergic but not glutamatergic transmission early in postnatal life may change the excitatory/inhibitory balance known to play a key role in the construction and refinement of neuronal circuits during postnatal development. This may lead to behavioral deficits reminiscent of those observed in ASDs patients. PMID:23761734

  19. Functional redundancy of the kinases MEK1 and MEK2: Rescue of the Mek1 mutant phenotype by Mek2 knock-in reveals a protein threshold effect.

    PubMed

    Aoidi, Rifdat; Maltais, Annie; Charron, Jean

    2016-01-26

    The mammalian genome contains two mitogen-activated protein kinase (MAPK) kinase (MEK)-encoding genes, Mek1 and Mek2. MEKs phosphorylate and activate the two extracellular signal-regulated kinase (ERK) isoforms ERK1 and ERK2. Mek1(-/-) embryos die due to placental defects, whereas Mek2(-/-) mice survive with a normal life span and fertility, suggesting that MEK1 has functions not shared by MEK2. However, most Mek1(+/-)Mek2(+/-) embryos also die from placental defects, indicating that both Mek genes contribute to placental development. To assess the functional specificity of the Mek1 and Mek2 genes, we produced a Mek1 knock-in allele in which the Mek2 coding sequences were placed under the control of Mek1 regulatory sequences (Mek1(2) allele). Mek1(2/2) mice were viable with no apparent phenotype, indicating rescue by MEK2 and functional redundancy between the two MEK proteins. However, Mek1(2/-) embryos with Mek2 in only one of the Mek1 alleles and the other Mek1 allele null died from abnormal placenta, suggesting a dosage effect. Analysis of mice from a Mek1 Mek2 allelic series revealed that the occurrence of the placenta phenotype correlated with the amount of MEK protein independently of which MEK isoform was produced. Thus, although MEK1 and MEK2 can substitute for each other, a minimum amount of MEK is critical for placenta development and embryo survival. Copyright © 2016, American Association for the Advancement of Science.

  20. Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice.

    PubMed

    Brown, Ritchie E; McKenna, James T; Winston, Stuart; Basheer, Radhika; Yanagawa, Yuchio; Thakkar, Mahesh M; McCarley, Robert W

    2008-01-01

    Recent experiments suggest that brainstem GABAergic neurons may control rapid-eye-movement (REM) sleep. However, understanding their pharmacology/physiology has been hindered by difficulty in identification. Here we report that mice expressing green fluorescent protein (GFP) under the control of the GAD67 promoter (GAD67-GFP knock-in mice) exhibit numerous GFP-positive neurons in the central gray and reticular formation, allowing on-line identification in vitro. Small (10-15 microm) or medium-sized (15-25 microm) GFP-positive perikarya surrounded larger serotonergic, noradrenergic, cholinergic and reticular neurons, and > 96% of neurons were double-labeled for GFP and GABA, confirming that GFP-positive neurons are GABAergic. Whole-cell recordings in brainstem regions important for promoting REM sleep [subcoeruleus (SubC) or pontine nucleus oralis (PnO) regions] revealed that GFP-positive neurons were spontaneously active at 3-12 Hz, fired tonically, and possessed a medium-sized depolarizing sag during hyperpolarizing steps. Many neurons also exhibited a small, low-threshold calcium spike. GFP-positive neurons were tested with pharmacological agents known to promote (carbachol) or inhibit (orexin A) REM sleep. SubC GFP-positive neurons were excited by the cholinergic agonist carbachol, whereas those in the PnO were either inhibited or excited. GFP-positive neurons in both areas were excited by orexins/hypocretins. These data are congruent with the hypothesis that carbachol-inhibited GABAergic PnO neurons project to, and inhibit, REM-on SubC reticular neurons during waking, whereas carbachol-excited SubC and PnO GABAergic neurons are involved in silencing locus coeruleus and dorsal raphe aminergic neurons during REM sleep. Orexinergic suppression of REM during waking is probably mediated in part via excitation of acetylcholine-inhibited GABAergic neurons.

  1. A high-protein diet is anti-steatotic and has no pro-inflammatory side effects in dyslipidaemic APOE2 knock-in mice.

    PubMed

    Garcia Caraballo, Sonia C; Comhair, Tine M; Dejong, Cornelis H C; Lamers, Wouter H; Köhler, S Eleonore

    2014-10-28

    High-protein (HP) diets are effective anti-steatotic treatment options for patients with non-alcoholic fatty liver disease, but whether these diets also decrease steatosis in hyperlipidaemic conditions is not known. The aim of the present study was to determine the effects of a HP diet on hepatic steatosis and inflammation in hyperlipidaemic mice. Hyperlipidaemic male and female APOE2 knock-in (APOE2ki) mice were fed a semi-synthetic low-protein (LP) or HP diet in combination with a low-fat diet or a high-fat diet for 3 weeks. The HP diets reduced hepatic fat and cholesterol concentrations to 40-55 % of those induced by the corresponding LP diets and attenuated hepatic inflammation mildly. The VLDL-associated plasma cholesterol concentrations decreased to 60-80 %, but those of TAG increased 3-4-fold. APOE2-mediated restriction of fat import into the liver did not modify the effects of a HP diet previously observed in wild-type mice. Female APOE2ki mice exhibited a higher expression of lipogenic, cholesterol-synthesising, inflammatory and cell-stress genes than wild-type female or male APOE2ki mice, but a similar response to HP diets. Low Apob expression and unchanged plasma APOB100 concentrations suggest that HP diets increase the plasma concentrations of TAG by slowing their clearance. The decrease in plasma leptin and hepatic fat and glycogen concentrations and the increase in fatty acid-oxidising gene and phosphoenolpyruvate carboxykinase 1 protein expression suggest a HP diet-mediated increase in mitochondrial metabolism. In conclusion, a HP diet reduces hepatic lipid content in dyslipidaemic mice and lowers the activation status of inflammatory cells in the liver.

  2. Visualization of RelB expression and activation at the single-cell level during dendritic cell maturation in Relb-Venus knock-in mice.

    PubMed

    Seki, Takao; Yamamoto, Mami; Taguchi, Yuu; Miyauchi, Maki; Akiyama, Nobuko; Yamaguchi, Noritaka; Gohda, Jin; Akiyama, Taishin; Inoue, Jun-ichiro

    2015-12-01

    RelB is activated by the non-canonical NF-κB pathway, which is crucial for immunity by establishing lymphoid organogenesis and B-cell and dendritic cell (DC) maturation. To elucidate the mechanism of the RelB-mediated immune cell maturation, a precise understanding of the relationship between cell maturation and RelB expression and activation at the single-cell level is required. Therefore, we generated knock-in mice expressing a fusion protein between RelB and fluorescent protein (RelB-Venus) from the Relb locus. The Relb(Venus/Venus) mice developed without any abnormalities observed in the Relb(-/-) mice, allowing us to monitor RelB-Venus expression and nuclear localization as RelB expression and activation. Relb(Venus/Venus) DC analyses revealed that DCs consist of RelB(-), RelB(low) and RelB(high) populations. The RelB(high) population, which included mature DCs with projections, displayed RelB nuclear localization, whereas RelB in the RelB(low) population was in the cytoplasm. Although both the RelB(low) and RelB(-) populations barely showed projections, MHC II and co-stimulatory molecule expression were higher in the RelB(low) than in the RelB(-) splenic conventional DCs. Taken together, our results identify the RelB(low) population as a possible novel intermediate maturation stage of cDCs and the Relb(Venus/Venus) mice as a useful tool to analyse the dynamic regulation of the non-canonical NF-κB pathway.

  3. Restoration of cocaine stimulation and reward by reintroducing wild type dopamine transporter in adult knock-in mice with a cocaine-insensitive dopamine transporter.

    PubMed

    Wu, Haiyin; O'Neill, Brian; Han, Dawn D; Thirtamara-Rajamani, Keerthi; Wang, Yanlin; Gu, Howard H

    2014-11-01

    In previous studies, we generated knock-in mice with a cocaine-insensitive dopamine transporter (DAT-CI mice) and found cocaine does not stimulate locomotion or produce reward in these mice, indicating DAT inhibition is necessary for cocaine stimulation and reward. However, DAT uptake is reduced in DAT-CI mice and thus the lack of cocaine responses could be due to adaptive changes. To test this, we used adeno-associated virus (AAV) to reintroduce the cocaine-sensitive wild type DAT (AAV-DATwt) back into adult DAT-CI mice, which restores cocaine inhibition of DAT in affected brain regions but does not reverse the adaptive changes. In an earlier study we showed that AAV-DATwt injections in regions covering the lateral nucleus accumbens (NAc) and lateral caudate-putamen (CPu) restored cocaine stimulation but not cocaine reward. In the current study, we expanded the AAV-DATwt infected areas to cover the olfactory tubercle (Tu) and the ventral midbrain (vMB) containing the ventral tegmental area (VTA) and substantia nigra (SN) in addition to CPu and NAc with multiple injections. These mice displayed the restoration of both locomotor stimulation and cocaine reward. We further found that AAV-DATwt injection in the vMB alone was sufficient to restore both cocaine stimulation and reward in DAT-CI mice. AAV injected in the VTA and SN resulted in DATwt expression and distribution to the DA terminal regions. In summary, cocaine induced locomotion and reward can be restored in fully developed DAT-CI mice, and cocaine inhibition of DAT expressed in dopaminergic neurons originated from the ventral midbrain mediates cocaine reward and stimulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Expression and Dendritic Trafficking of BDNF-6 Splice Variant are Impaired in Knock-In Mice Carrying Human BDNF Val66Met Polymorphism

    PubMed Central

    Baj, Gabriele; Ieraci, Alessandro; Corna, Stefano; Musazzi, Laura; Lee, Francis S.; Tongiorgi, Enrico; Popoli, Maurizio

    2015-01-01

    Background: The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. Methods: In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNFMet allele, we measured expression levels, epigenetic changes at promoters, and dendritic trafficking of distinct BDNF transcripts using quantitative PCR, chromatin immunoprecipitation (ChIP), and in situ hybridization. Results: BDNF-4 and BDNF-6 transcripts were reduced in BDNFMet/Met mice, compared with BDNFVal/Val mice. ChIP for acetyl-histone H3, a marker of active gene transcription, and trimethyl-histone-H3-Lys27 (H3K27me3), a marker of gene repression, showed higher H3K27me3 binding to exon 5, 6, and 8 promoters in BDNFMet/Met. The H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) is involved in epigenetic regulation of BDNF expression, because in neuroblastoma cells BDNF expression was increased both by short interference RNA for EZH2 and incubation with 3-deazaneplanocin A, an inhibitor of EZH2. In situ hybridization for BDNF-2, BDNF-4, and BDNF-6 after pilocarpine treatment showed that BDNF-6 transcript was virtually absent from distal dendrites of the CA1 and CA3 regions in BDNFMet/Met mice, while no changes were found for BDNF-2 and BDNF-4. Conclusions: Impaired BDNF expression and dendritic targeting in BDNFMet/Met mice may contribute to reduced regulated secretion of BDNF at synapses, and may be a specific correlate of pathology in individuals carrying the Met allele. PMID:26108221

  5. Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 ΔGAG heterozygous knock-in mice

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Liu, Jun; Gandre, Jason R.; Kwon, Kelly; Yuen, Robert; Li, Yuqing

    2014-01-01

    DYT1 dystonia is a movement disorder caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), corresponding to a glutamic acid loss in the C-terminal region of torsinA. Functional alterations in the basal ganglia circuits have been reported in both DYT1 dystonia patients and rodent models. Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits and decreased striatal dopamine receptor 2 (D2R) binding activity, suggesting a malfunction of the indirect pathway. However, the role of the direct pathway in pathogenesis of dystonia is not yet clear. Here, we report that Dyt1 KI mice exhibit significantly decreased striatal dopamine receptor 1 (D1R) binding activity and D1R protein levels, suggesting the alteration of the direct pathway. The decreased D1R may be caused by translational or post-translational processes since Dyt1 KI mice had normal levels of striatal D1R mRNA and a normal number of striatal neurons expressing D1R. Levels of striatal ionotropic glutamate receptor subunits, dopamine transporter, acetylcholine muscarinic M4 receptor and adenosine A2A receptor were not altered suggesting a specificity of affected polytopic membrane-associated proteins. Contribution of the direct pathway to motor-skill learning has been suggested in another pharmacological rat model injected with a D1R antagonist. In the present study, we developed a novel motor skill transfer test for mice and found deficits in Dyt1 KI mice. Further characterization of both the direct and the indirect pathways in Dyt1 KI mice will aid the development of novel therapeutic drugs. PMID:25451552

  6. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics.

    PubMed

    Kazdoba, Tatiana M; Leach, Prescott T; Yang, Mu; Silverman, Jill L; Solomon, Marjorie; Crawley, Jacqueline N

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism.

  7. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics

    PubMed Central

    Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie

    2016-01-01

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922

  8. Bone marrow-specific knock-in of a non-activatable Ikkα kinase mutant influences haematopoiesis but not atherosclerosis in Apoe-deficient mice.

    PubMed

    Tilstam, Pathricia V; Gijbels, Marion J; Habbeddine, Mohamed; Cudejko, Céline; Asare, Yaw; Theelen, Wendy; Zhou, Baixue; Döring, Yvonne; Drechsler, Maik; Pawig, Lukas; Simsekyilmaz, Sakine; Koenen, Rory R; de Winther, Menno P J; Lawrence, Toby; Bernhagen, Jürgen; Zernecke, Alma; Weber, Christian; Noels, Heidi

    2014-01-01

    The Ikkα kinase, a subunit of the NF-κB-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikkα mutant knock-in on haematopoiesis and atherosclerosis in mice. Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (Ikkα(AA/AA)Apoe(-/-) ) or with Ikkα(+/+)Apoe(-/-) BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in Ikkα(AA/AA)Apoe(-/-) BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of Ikkα(AA/AA)Apoe(-/-) vs Ikkα(+/+)Apoe(-/-) BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from Ikkα(AA/AA)Apoe(-/-) vs Ikkα(+/+)Apoe(-/-) mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of Ikkα(AA) mutant BM did not affect atherosclerosis in Apoe(-/-) mice. This suggests that the diverse functions of Ikk

  9. Bone Marrow-Specific Knock-In of a Non-Activatable Ikkα Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice

    PubMed Central

    Tilstam, Pathricia V.; Gijbels, Marion J.; Habbeddine, Mohamed; Cudejko, Céline; Asare, Yaw; Theelen, Wendy; Zhou, Baixue; Döring, Yvonne; Drechsler, Maik; Pawig, Lukas; Simsekyilmaz, Sakine; Koenen, Rory R.; de Winther, Menno P. J.; Lawrence, Toby; Bernhagen, Jürgen; Zernecke, Alma

    2014-01-01

    Background The Ikkα kinase, a subunit of the NF-κB-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikkα mutant knock-in on haematopoiesis and atherosclerosis in mice. Methods and Results Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (IkkαAA/AAApoe−/−) or with Ikkα+/+Apoe−/− BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in IkkαAA/AAApoe−/− BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of IkkαAA/AAApoe−/− vs Ikkα+/+Apoe−/− BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from IkkαAA/AAApoe−/− vs Ikkα+/+Apoe−/− mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Conclusion Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of IkkαAA mutant BM did not affect atherosclerosis in Apoe−/− mice. This

  10. Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci

    PubMed Central

    2013-01-01

    Background Metabolic engineering projects often require integration of multiple genes in order to control the desired phenotype. However, this often requires iterative rounds of engineering because many current insertion approaches are limited by the size of the DNA that can be transferred onto the chromosome. Consequently, construction of highly engineered strains is very time-consuming. A lack of well-characterised insertion loci is also problematic. Results A series of knock-in/knock-out (KIKO) vectors was constructed for integration of large DNA sequences onto the E. coli chromosome at well-defined loci. The KIKO plasmids target three nonessential genes/operons as insertion sites: arsB (an arsenite transporter); lacZ (β-galactosidase); and rbsA-rbsR (a ribose metabolism operon). Two homologous ‘arms’ target each insertion locus; insertion is mediated by λ Red recombinase through these arms. Between the arms is a multiple cloning site for the introduction of exogenous sequences and an antibiotic resistance marker (either chloramphenicol or kanamycin) for selection of positive recombinants. The resistance marker can subsequently be removed by flippase-mediated recombination. The insertion cassette is flanked by hairpin loops to isolate it from the effects of external transcription at the integration locus. To characterize each target locus, a xylanase reporter gene (xynA) was integrated onto the chromosomes of E. coli strains W and K-12 using the KIKO vectors. Expression levels varied between loci, with the arsB locus consistently showing the highest level of expression. To demonstrate the simultaneous use of all three loci in one strain, xynA, green fluorescent protein (gfp) and a sucrose catabolic operon (cscAKB) were introduced into lacZ, arsB and rbsAR respectively, and shown to be functional. Conclusions The KIKO plasmids are a useful tool for efficient integration of large DNA fragments (including multiple genes and pathways) into E. coli. Chromosomal

  11. Novel NG2-CreERT2 knock-in mice demonstrate heterogeneous differentiation potential of NG2 glia during development.

    PubMed

    Huang, Wenhui; Zhao, Na; Bai, Xianshu; Karram, Khalad; Trotter, Jacqueline; Goebbels, Sandra; Scheller, Anja; Kirchhoff, Frank

    2014-06-01

    NG2 (nerve/glia antigen-2) is a type I transmembrane glycoprotein and also known as chondroitin sulfate proteoglycan 4. In the parenchyma of the central nervous system, NG2-expressing (NG2(+) ) cells have been identified as a novel type of glia with a strong potential to generate oligodendrocytes (OLs) in the developing white matter. However, the differentiation potential of NG2 glia remained controversial, largely attributable to shortcomings of transgenic mouse models used for fate mapping. To minimize these restrictions and to more faithfully mimic the endogenous NG2 expression in vivo, we generated a mouse line in which the open reading frame of the tamoxifen-inducible form of the Cre DNA recombinase (CreERT2) was inserted into the NG2 locus by homologous recombination. Results from this novel mouse line demonstrate that at different developmental stages of the brain, NG2(+) cells either stayed as NG2 glia or differentiated into OLs during the whole life span. Interestingly, when Cre activity was induced at embryonic stages, a significant number of reporter(+) astrocytes could be detected in the gray matter after birth. However, in other brain regions, such as olfactory bulb, brain stem, and cerebellum, all of the NG2 glia was restricted to the OL lineage. In addition, tamoxifen-sensitive and NG2 gene locus-dependent gene recombination could be detected in a small, but persistent population of cortical NeuN(+) neurons starting from the second postnatal week.

  12. Connexin diversity in the heart: insights from transgenic mouse models

    PubMed Central

    Verheule, Sander; Kaese, Sven

    2013-01-01

    Cardiac conduction is mediated by gap junction channels that are formed by connexin (Cx) protein subunits. The connexin family of proteins consists of more than 20 members varying in their biophysical properties and ability to combine with other connexins into heteromeric gap junction channels. The mammalian heart shows regional differences both in connexin expression profile and in degree of electrical coupling. The latter reflects functional requirements for conduction velocity which needs to be low in the sinoatrial and atrioventricular nodes and high in the ventricular conduction system. Over the past 20 years knowledge of the biology of gap junction channels and their role in the genesis of cardiac arrhythmias has increased enormously. This review focuses on the insights gained from transgenic mouse models. The mouse heart expresses Cx30, 30.2, 37, 40, 43, 45, and 46. For these connexins a variety of knock-outs, heart-specific knock-outs, conditional knock-outs, double knock-outs, knock-ins and overexpressors has been studied. We discuss the cardiac phenotype in these models and compare Cx expression between mice and men. Mouse models have enhanced our understanding of (patho)-physiological implications of Cx diversity in the heart. In principle connexin-specific modulation of electrical coupling in the heart represents an interesting treatment strategy for cardiac arrhythmias and conduction disorders. PMID:23818881

  13. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models

    PubMed Central

    Cebrian-Serrano, Alberto; Zha, Shijun; Hanssen, Lars; Biggs, Daniel; Preece, Christopher

    2017-01-01

    Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply. PMID:28081254

  14. Functional mutations in mouse norepinephrine transporter reduce sensitivity to cocaine inhibition

    PubMed Central

    Wei, Hua; Hill, Erik R; Gu, Howard H.

    2009-01-01

    Summary The transporters of dopamine, norepinephrine and serotonin are molecular targets of cocaine, amphetamine, and therapeutic antidepressants. The residues involved in binding these drugs are unknown. We have performed several rounds of random and site-directed mutagenesis in the mouse norepinephrine transporter and screened for mutants with altered sensitivity to cocaine inhibition of substrate uptake. We have identified a triple mutation that retains close to wild-type transport function but displays a 37-fold decrease in cocaine sensitivity and 24-fold decrease in desipramine sensitivity. In contrast, the mutant’s sensitivities to amphetamine, methamphetamine, and methylphenidate are only slightly changed. Our data reveal critical residues contributing to the potent uptake inhibitions by these important drugs. Furthermore, this drug-resistant triple mutant can be used to generate a unique knock-in mouse line to study the role of norepinephrine transporter in the addictive effects of cocaine and the therapeutic effects of desipramine. PMID:18824182

  15. [Genetically engineered mice: mouse models for cancer research].

    PubMed

    Szymańska, Hanna

    2007-10-26

    Genetically engineered mice (GEM) have been extensively used to model human cancer. Mouse models mimic the morphology, histopathology, phenotype, and genotype of the corresponding cancer in humans. GEM mice are created by random integration of a transgene into the genome, which results in gene overexpression (transgenic mice); gene deletion (knock-out mice); or targeted insertion of the transgene in a selected locus (knock-in mice). Knock-out may be constitutive, i.e. total inactivation of the gene of interest in any cell, or conditional, i.e. tissue-specific inactivation of the gene. Gene knock-down (RNAi) and humanization of the mouse are more sophisticated models of GEM mice. RNA interference (RNAi) is a mechanism in which double-stranded RNAs inhibits the respective gene expression by inducing degradation of its mRNA. Humanization is based on replacing a mouse gene by its human counterpart. The alterations in genes in GEM have to be heritable. The opportunities provided by employing GEM cancer models are: analysis of the role of specific cancer genes and modifier genes, evaluation of conventional cancer therapies and new drugs, identification of cancer markers of tumor growth, analysis of the influence of the tumor's microenvironment on tumor formation, and the definition of the pre-clinical, discrete steps of tumorigenesis. The validation of mouse models of human cancer is the task of the MMHCC (Mouse Models of Human Cancer Consortium). The GEM models of breast, pancreatic, intestinal and colon, and prostate cancer are the most actively explored. In contrast, the models of brain tumors and ovary, cervical, and skin cancer are in the early stage of investigation.

  16. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease.

    PubMed

    Yhnell, Emma; Dunnett, Stephen B; Brooks, Simon P

    2016-05-31

    Huntington's disease (HD) is a rare, incurable neurodegenerative disorder caused by a CAG trinucleotide expansion with the first exon of the huntingtin gene. Numerous knock-in mouse models are currently available for modelling HD. However, before their use in scientific research, these models must be characterised to determine their face and predictive validity as models of the disease and their reliability in recapitulating HD symptoms. Manifest HD is currently diagnosed upon the onset of motor symptoms, thus we sought to longitudinally characterise the progression and severity of motor signs in the HdhQ111 knock-in mouse model of HD, in heterozygous mice. An extensive battery of motor tests including: rotarod, inverted lid test, balance beam, spontaneous locomotor activity and gait analysis were applied longitudinally to a cohort of HdhQ111 heterozygous mice in order to progressively assess motor function. A progressive failure to gain body weight was demonstrated from 11 months of age and motor problems in all measures of balance beam performance were shown in HdhQ111 heterozygous animals in comparison to wild type control animals from 9 months of age. A decreased latency to fall from the rotarod was demonstrated in HdhQ111 heterozygous animals in comparison to wild type animals, although this was not progressive with time. No genotype specific differences were demonstrated in any of the other motor tests included in the test battery. The HdhQ111 heterozygous mouse demonstrates a subtle and progressive motor phenotype that begins at 9 months of age. This mouse model represents an early disease stage and would be ideal for testing therapeutic strategies that require elongated lead-in times, such as viral gene therapies or striatal transplantation.

  17. Rax-CreERT2 knock-in mice: a tool for selective and conditional gene deletion in progenitor cells and radial glia of the retina and hypothalamus.

    PubMed

    Pak, Thomas; Yoo, Sooyeon; Miranda-Angulo, Ana L; Miranda-Angulo, Ana M; Wang, Hong; Blackshaw, Seth

    2014-01-01

    To study gene function in neural progenitors and radial glia of the retina and hypothalamus, we developed a Rax-CreERT2 mouse line in which a tamoxifen-inducible Cre recombinase is inserted into the endogenous Rax locus. By crossing Rax-CreER(T2) with the Cre-dependent Ai9 reporter line, we demonstrate that tamoxifen-induced Cre activity recapitulates the endogenous Rax mRNA expression pattern. During embryonic development, Cre recombinase activity in Rax-CreER(T2) is confined to retinal and hypothalamic progenitor cells, as well as progenitor cells of the posterior pituitary. At postnatal time points, selective Cre recombinase activity is seen in radial glial-like cell types in these organs--specifically Müller glia and tanycytes--as well as pituicytes. We anticipate that this line will prove useful for cell lineage analysis and investigation of gene function in the developing and mature retina, hypothalamus and pituitary.

  18. Glycine receptor mouse mutants: model systems for human hyperekplexia

    PubMed Central

    Schaefer, Natascha; Langlhofer, Georg; Kluck, Christoph J; Villmann, Carmen

    2013-01-01

    Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations. PMID:23941355

  19. Dental Abnormalities in a Mouse Model for Craniometaphyseal Dysplasia

    PubMed Central

    Dutra, E.H.; Chen, I.-P.; Reichenberger, E.J.

    2012-01-01

    Mice carrying a knock-in mutation (Phe377del) in the Ank gene replicate many skeletal characteristics of human craniometaphyseal dysplasia, including hyperostotic mandibles. AnkKI/KI mice have normal morphology of erupted molars and incisors but excessive cementum deposition with increased numbers of Ibsp- and Dmp1-positive cells on root surfaces. The cervical loops of adult AnkKI/KI lower incisors are at the level of the third molars, while they are close to the mandibular foramen in Ank+/+ mice. Furthermore, AnkKI/KI incisors show decreased eruption rates, decreased proliferation of odontoblast precursors, and increased cell apoptosis in the stellate reticulum. However, their capability for continuous elongation is not compromised. Quantification of TRAP-positive cells in the apical ends of AnkKI/KI incisors revealed decreased osteoclast numbers and osteoclast surfaces. Bisphosphonate injections in Ank+/+ mice replicate the AnkKI/KI incisor phenotype. These results and a comparison with the dental phenotype of Ank loss-of-function mouse models suggest that increased cementum thickness may be caused by decreased extracellular PPi levels and that the incisor phenotype is likely due to hyperostosis of mandibles, which distinguishes AnkKI/KI mice from the other Ank mouse models. PMID:23160629

  20. Corticofugal GABAergic projection neurons in the mouse frontal cortex

    PubMed Central

    Tomioka, Ryohei; Sakimura, Kenji; Yanagawa, Yuchio

    2015-01-01

    Cortical projection neurons are classified by hodology in corticocortical, commissural and corticofugal subtypes. Although cortical projection neurons had been regarded as only glutamatergic neurons, recently corticocortical GABAergic projection neurons has been also reported in several species. Here, we demonstrate corticofugal GABAergic projection neurons in the mouse frontal cortex. We employed viral-vector-mediated anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize neocortical GABAergic projection neurons. Injections of the Cre-dependent adeno-associated virus into glutamate decarboxylase 67 (GAD67)-Cre knock-in mice revealed neocortical GABAergic projections widely to the forebrain, including the cerebral cortices, caudate putamen (CPu), ventral pallidum (VP), lateral globus pallidus (LGP), nucleus accumbens, and olfactory tubercle (Tu). Minor GABAergic projections were also found in the mediodorsal thalamic nucleus, diagonal band of Broca, medial globus pallidus, substantial nigra, and dorsal raphe nucleus. Retrograde tracing studies also demonstrated corticofugal GABAergic projection neurons in the mouse frontal cortex. Further immunohistochemical screening with neurochemical markers revealed the majority of corticostriatal GABAergic projection neurons were positive for somatostatin (SS)-immunoreactivity. In contrast, corticothalamic GABAergic projection neurons were not identified by representative neurochemical markers for GABAergic neurons. These findings suggest that corticofugal GABAergic projection neurons are heterogeneous in terms of their neurochemical properties and target nuclei, and provide axonal innervations mainly to the nuclei in the basal ganglia. PMID:26578895

  1. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  2. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  3. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  4. Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis

    PubMed Central

    Li, Songhua; Samardzija, Marijana; Yang, Zhihui; Grimm, Christian

    2016-01-01

    RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. SIGNIFICANCE STATEMENT LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or

  5. Identification and developmental analysis of endothelin receptor type-A expressing cells in the mouse kidney.

    PubMed

    Kitazawa, Taro; Sato, Takahiro; Nishiyama, Koichi; Asai, Rieko; Arima, Yuichiro; Uchijima, Yasunobu; Kurihara, Yukiko; Kurihara, Hiroki

    2011-10-01

    The endothelin (Edn) system plays pleiotropic roles in renal function and various disease processes through two distinct G protein-coupled receptors, Edn receptors type-A (Ednra) and type-B (Ednrb). However, difficulties in the accurate identification of receptor-expressing cells in situ have made it difficult to dissect their diverse action in renal (patho)physiology. We have recently established mouse lines in which lacZ and EGFP are 'knocked-in' to the Ednra locus to faithfully mark Ednra-expressing cells. Here we analyzed these mice for their expression in the kidney to characterize Ednra-expressing cells. Ednra expression was first observed in undifferentiated mesenchymal cells around the ureteric bud at E12.5. Thereafter, Ednra expression was widely observed in vascular smooth muscle cells, JG cells and mesenchymal cells in the interstitium. After growth, the expression became confined to vascular smooth muscle cells, pericytes and renin-producing JG cells. By contrast, most cells in the nephron and vascular endothelial cells did not express Ednra. These results indicate that Ednra expression may be linked with non-epithelial fate determination and differentiation of metanephric mesenchyme. Ednra-lacZ/EGFP knock-in mice may serve as a useful tool in studies on renal function and pathophysiology of various renal diseases.

  6. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    PubMed

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  7. Genetically engineered mouse models of pancreatic adenocarcinoma.

    PubMed

    Guerra, Carmen; Barbacid, Mariano

    2013-04-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of human cancer for which there are no effective therapies. Deep sequencing of PDAC tumors has revealed the presence of a high number of mutations (>50) that affect at least a dozen key signaling pathways. This scenario highlights the urgent need to develop experimental models that faithfully reproduce the natural history of these human tumors in order to understand their biology and to design therapeutic approaches that might effectively interfere with their multiple mutated pathways. Over the last decade, several models, primarily based on the genetic activation of resident KRas oncogenes knocked-in within the endogenous KRas locus have been generated. These models faithfully reproduce the histological lesions that characterize human pancreatic tumors. Decoration of these models with additional mutations, primarily involving tumor suppressor loci known to be also mutated in human PDAC tumors, results in accelerated tumor progression and in the induction of invasive and metastatic malignancies. Mouse PDACs also display a desmoplastic stroma and inflammatory responses that closely resemble those observed in human patients. Interestingly, adult mice appear to be resistant to PDAC development unless the animals undergo pancreatic damage, mainly in the form of acute, chronic or even temporary pancreatitis. In this review, we describe the most representative models available to date and how their detailed characterization is allowing us to understand their cellular origin as well as the events involved in tumor progression. Moreover, their molecular dissection is starting to unveil novel therapeutic strategies that could be translated to the clinic in the very near future. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum

    PubMed Central

    Loy, Ryan E.; Orynbayev, Murat; Xu, Le; Andronache, Zoita; Apostol, Simona; Zvaritch, Elena; MacLennan, David H.; Meissner, Gerhard; Melzer, Werner

    2011-01-01

    The type 1 isoform of the ryanodine receptor (RYR1) is the Ca2+ release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation–contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1I4898T mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca2+ content, and RYR1 Ca2+ release channel function using adult heterozygous Ryr1I4895T/+ knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca2+ content, both electrically evoked and 4-chloro-m-cresol–induced Ca2+ release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4–6-mo-old IT/+ mice. The sensitivity of the SR Ca2+ release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca2+ permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca2+ release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca2+ ion permeation. PMID:21149547

  9. Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum.

    PubMed

    Loy, Ryan E; Orynbayev, Murat; Xu, Le; Andronache, Zoita; Apostol, Simona; Zvaritch, Elena; MacLennan, David H; Meissner, Gerhard; Melzer, Werner; Dirksen, Robert T

    2011-01-01

    The type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca(2+) content, and RYR1 Ca(2+) release channel function using adult heterozygous Ryr1(I4895T/+) knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca(2+) content, both electrically evoked and 4-chloro-m-cresol-induced Ca(2+) release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4-6-mo-old IT/+ mice. The sensitivity of the SR Ca(2+) release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca(2+) permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca(2+) release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca(2+) ion permeation.

  10. Development and function of human innate immune cells in a humanized mouse model

    PubMed Central

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

    2014-01-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

  11. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington’s Disease

    PubMed Central

    Yhnell, Emma; Dunnett, Stephen B.; Brooks, Simon P.

    2016-01-01

    Background: Huntington’s disease (HD) is a rare, incurable neurodegenerative disorder caused by a CAG trinucleotide expansion with the first exon of the huntingtin gene. Numerous knock-in mouse models are currently available for modelling HD. However, before their use in scientific research, these models must be characterised to determine their face and predictive validity as models of the disease and their reliability in recapitulating HD symptoms. Objective: Manifest HD is currently diagnosed upon the onset of motor symptoms, thus we sought to longitudinally characterise the progression and severity of motor signs in the HdhQ111 knock-in mouse model of HD, in heterozygous mice. Methods: An extensive battery of motor tests including: rotarod, inverted lid test, balance beam, spontaneous locomotor activity and gait analysis were applied longitudinally to a cohort of HdhQ111 heterozygous mice in order to progressively assess motor function. Results: A progressive failure to gain body weight was demonstrated from 11 months of age and motor problems in all measures of balance beam performance were shown in HdhQ111 heterozygous animals in comparison to wild type control animals from 9 months of age. A decreased latency to fall from the rotarod was demonstrated in HdhQ111 heterozygous animals in comparison to wild type animals, although this was not progressive with time. No genotype specific differences were demonstrated in any of the other motor tests included in the test battery. Conclusions: The HdhQ111 heterozygous mouse demonstrates a subtle and progressive motor phenotype that begins at 9 months of age. This mouse model represents an early disease stage and would be ideal for testing therapeutic strategies that require elongated lead-in times, such as viral gene therapies or striatal transplantation. PMID:27258586

  12. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin

    PubMed Central

    2017-01-01

    Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line (“Ai32” mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a

  13. Multiple phenotypes in Huntington disease mouse neural stem cells.

    PubMed

    Ritch, James J; Valencia, Antonio; Alexander, Jonathan; Sapp, Ellen; Gatune, Leah; Sangrey, Gavin R; Sinha, Saurabh; Scherber, Cally M; Zeitlin, Scott; Sadri-Vakili, Ghazaleh; Irimia, Daniel; Difiglia, Marian; Kegel, Kimberly B

    2012-05-01

    Neural stem (NS) cells are a limitless resource, and thus superior to primary neurons for drug discovery provided they exhibit appropriate disease phenotypes. Here we established NS cells for cellular studies of Huntington's disease (HD). HD is a heritable neurodegenerative disease caused by a mutation resulting in an increased number of glutamines (Q) within a polyglutamine tract in Huntingtin (Htt). NS cells were isolated from embryonic wild-type (Htt(7Q/7Q)) and "knock-in" HD (Htt(140Q/140Q)) mice expressing full-length endogenous normal or mutant Htt. NS cells were also developed from mouse embryonic stem cells that were devoid of Htt (Htt(-/-)), or knock-in cells containing human exon1 with an N-terminal FLAG epitope tag and with 7Q or 140Q inserted into one of the mouse alleles (Htt(F7Q/7Q) and Htt(F140Q/7Q)). Compared to Htt(7Q/7Q) NS cells, HD Htt(140Q/140Q) NS cells showed significantly reduced levels of cholesterol, increased levels of reactive oxygen species (ROS), and impaired motility. The heterozygous Htt(F140Q/7Q) NS cells had increased ROS and decreased motility compared to Htt(F7Q/7Q). These phenotypes of HD NS cells replicate those seen in HD patients or in primary cell or in vivo models of HD. Huntingtin "knock-out" NS cells (Htt(-/-)) also had impaired motility, but in contrast to HD cells had increased cholesterol. In addition, Htt(140Q/140Q) NS cells had higher phospho-AKT/AKT ratios than Htt(7Q/7Q) NS cells in resting conditions and after BDNF stimulation, suggesting mutant htt affects AKT dependent growth factor signaling. Upon differentiation, the Htt(7Q/7Q) and Htt(140Q/140Q) generated numerous Beta(III)-Tubulin- and GABA-positive neurons; however, after 15 days the cellular architecture of the differentiated Htt(140Q/140Q) cultures changed compared to Htt(7Q/7Q) cultures and included a marked increase of GFAP-positive cells. Our findings suggest that NS cells expressing endogenous mutant Htt will be useful for study of mechanisms of HD

  14. The Knockout Mouse Project

    PubMed Central

    Austin, Christopher P; Battey, James F; Bradley, Allan; Bucan, Maja; Capecchi, Mario; Collins, Francis S; Dove, William F; Duyk, Geoffrey; Dymecki, Susan; Eppig, Janan T; Grieder, Franziska B; Heintz, Nathaniel; Hicks, Geoff; Insel, Thomas R; Joyner, Alexandra; Koller, Beverly H; Lloyd, K C Kent; Magnuson, Terry; Moore, Mark W; Nagy, Andras; Pollock, Jonathan D; Roses, Allen D; Sands, Arthur T; Seed, Brian; Skarnes, William C; Snoddy, Jay; Soriano, Philippe; Stewart, David J; Stewart, Francis; Stillman, Bruce; Varmus, Harold; Varticovski, Lyuba; Verma, Inder M; Vogt, Thomas F; von Melchner, Harald; Witkowski, Jan; Woychik, Richard P; Wurst, Wolfgang; Yancopoulos, George D; Young, Stephen G; Zambrowicz, Brian

    2009-01-01

    Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain. PMID:15340423

  15. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    PubMed

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  16. The roles of a ribosomal protein S19 polymer in a mouse model of carrageenan-induced acute pleurisy.

    PubMed

    Yamanegi, Koji; Kawakami, Toru; Yamada, Naoko; Kumanishi, Shunsuke; Futani, Hiroyuki; Nakasho, Keiji; Nishiura, Hiroshi

    2017-02-07

    C5-deficient mice usually present moderate neutrophil activation during the initiation phase of acute inflammation. Conversely, C5a receptor (C5aR)-deficient mice show unusually excessive activation of neutrophils. We identified the ribosomal protein S19 (RP S19) polymer, which is cross-linked at Lys122 and Gln137 by transglutaminases in apoptotic neutrophils, as a second C5aR ligand during the resolution phase of acute inflammation. The RP S19 polymer promotes apoptosis via the neutrophil C5aR and phagocytosis via the macrophage C5aR. To confirm the roles of the RP S19 polymer, we employed a carrageenan-induced acute pleurisy mouse model using C57BL/6J mice with a knock-in of the Gln137Glu mutant RP S19 gene and replaced the RP S19 polymer with either an S-tagged C5a/RP S19 recombinant protein or the RP S19(122-145) peptide monomer and dimer (as functional C5aR agonists/antagonists) and the RP S19(122-145) peptide trimer (as a functional C5aR antagonist). Neutrophils and macrophages were still present in the thoracic cavities of the knock-in mice at 24h and 7days after carrageenan injection, respectively. Knock-in mice showed structural organization and severe hemorrhaging from the surrounding small vessels of the alveolar walls in the lung parenchyma. In contrast to the RP S19(122-145) peptide monomer and trimer, the simultaneous presence of S-tagged C5a/RP S19 and the RP S19(122-145) peptide dimer completely improved the physiological and pathological acute inflammatory cues. The RP S19 polymer, especially the dimer, appears to play a role at the resolution phase of carrageenan-induced acute pleurisy in C57BL/6J model mice.

  17. The MOUSE Squad

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  18. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  19. A Longitudinal Operant Assessment of Cognitive and Behavioural Changes in the HdhQ111 Mouse Model of Huntington’s Disease

    PubMed Central

    Dunnett, Stephen B.; Brooks, Simon P.

    2016-01-01

    Huntington’s disease (HD) is characterised by motor symptoms which are often preceded by cognitive and behavioural changes, that can significantly contribute to disease burden for people living with HD. Numerous knock-in mouse models of HD are currently available for scientific research. However, before their use, they must be behaviourally characterised to determine their suitability in recapitulating the symptoms of the human condition. Thus, we sought to longitudinally characterise the nature, severity and time course of cognitive and behavioural changes observed in HdhQ111 heterozygous knock-in mice.To determine changes in cognition and behaviour an extensive battery of operant tests including: fixed ratio, progressive ratio, the five choice serial reaction time task and the serial implicit learning task, were applied longitudinally to HdhQ111 and wild type mice. The operant test battery was conducted at 6, 12 and 18 months of age. Significant deficits were observed in HdhQ111 animals in comparison to wild type animals in all operant tests indicating altered cognition (attentional and executive function) and motivation. However, the cognitive and behavioural deficits observed were not shown to be progressive over time in the longitudinal testing paradigm that was utilised. The results therefore demonstrate that the HdhQ111 mouse model of HD reflects some features of the cognitive and behavioural changes shown in the human condition of HD. Although, the cognitive and behavioural deficits demonstrated were not shown to be progressive over time. PMID:27701442

  20. Mouse models of NPM1-mutated acute myeloid leukemia: biological and clinical implications.

    PubMed

    Sportoletti, P; Varasano, E; Rossi, R; Mupo, A; Tiacci, E; Vassiliou, G; Martelli, M P; Falini, B

    2015-02-01

    Acute myeloid leukemia (AML) carrying nucleophosmin (NPM1) mutations displays distinct biological and clinical features that led to its inclusion as a provisional disease entity in the 2008 World Health Organization (WHO) classification of myeloid neoplasms. Studies of the molecular mechanisms underlying the pathogenesis of NPM1-mutated AML have benefited greatly from several mouse models of this leukemia developed over the past few years. Immunocompromised mice xenografted with NPM1-mutated AML served as the first valuable tool for defining the biology of the disease in vivo. Subsequently, genetically engineered mouse models of the NPM1 mutation, including transgenic and knock-in alleles, allowed the generation of mice with a constant genotype and a reproducible phenotype. These models have been critical for investigating the nature of the molecular effects of these mutations, defining the function of leukemic stem cells in NPM1-mutated AML, identifying chemoresistant preleukemic hemopoietic stem cells and unraveling the key molecular events that cooperate with NPM1 mutations to induce AML in vivo. Moreover, they can serve as a platform for the discovery and validation of new antileukemic drugs in vivo. Advances derived from the analysis of these mouse models promise to greatly accelerate the development of new molecularly targeted therapies for patients with NPM1-mutated AML.

  1. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.

    PubMed

    Ribeiro, Márcio; Rosenstock, Tatiana R; Oliveira, Ana M; Oliveira, Catarina R; Rego, A Cristina

    2014-09-01

    Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit.

  2. Biological Characteristics of the Leukemia-Associated Transcriptional Factor AML1 Disclosed by Hematopoietic Rescue of AML1-Deficient Embryonic Stem Cells by Using a Knock-in Strategy

    PubMed Central

    Okuda, Tsukasa; Takeda, Kiyoshi; Fujita, Yasuko; Nishimura, Motohiro; Yagyu, Shigeki; Yoshida, Makie; Akira, Shizuo; Downing, James R.; Abe, Tatsuo

    2000-01-01

    AML1 is one of the most frequently mutated genes associated with human acute leukemia and encodes the DNA-binding subunit of the heterodimering transcriptional factor complex, core-binding factor (CBF) (or polyoma enhancer binding protein 2 [PEBP2]). A null mutation in either AML1 or its dimerizing partner, CBFβ, results in embryonic lethality secondary to a complete block in fetal liver hematopoiesis, indicating an essential role of this transcription complex in the development of definitive hematopoiesis. The hematopoietic phenotype that results from the loss of AML1 can be replicated in vitro with a two-step culture system of murine embryonic stem (ES) cells. Using this experimental system, we now demonstrate that this hematopoietic defect can be rescued by expressing the PEBP2αB1 (AML1b) isoform under the endogenous AML1-regulatory sequences through a knock-in (targeted insertion) approach. Moreover, we demonstrate that the rescued AML1−/− ES cell clones contribute to lymphohematopoiesis within the context of chimeric animals. Rescue requires the transcription activation domain of AML1 but does not require the C-terminal VWRPY motif, which is conserved in all AML1 family members and has been shown to interact with the transcriptional corepressor, Groucho/transducin-like Enhancer of split. Taken together, these data provide compelling evidence that the phenotype seen in AML1-deficient mice is due solely to the loss of transcriptionally active AML1. PMID:10594034

  3. Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model

    PubMed Central

    Bøttger, Pernille; Glerup, Simon; Gesslein, Bodil; Illarionova, Nina B.; Isaksen, Toke J.; Heuck, Anders; Clausen, Bettina H.; Füchtbauer, Ernst-Martin; Gramsbergen, Jan B.; Gunnarson, Eli; Aperia, Anita; Lauritzen, Martin; Lambertsen, Kate L.; Nissen, Poul; Lykke-Hartmann, Karin

    2016-01-01

    Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na+/K+-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2+/G301R) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2G301R/G301R E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2+/G301R male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2+/G301R behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2. PMID:26911348

  4. Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model.

    PubMed

    Bøttger, Pernille; Glerup, Simon; Gesslein, Bodil; Illarionova, Nina B; Isaksen, Toke J; Heuck, Anders; Clausen, Bettina H; Füchtbauer, Ernst-Martin; Gramsbergen, Jan B; Gunnarson, Eli; Aperia, Anita; Lauritzen, Martin; Lambertsen, Kate L; Nissen, Poul; Lykke-Hartmann, Karin

    2016-02-25

    Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na(+)/K(+)-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2(+/G301R)) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2(G301R/G301R) E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2(+/G301R) male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2(+/G301R) behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2.

  5. Translation of the prion protein mRNA is robust in astrocytes but does not amplify during reactive astrocytosis in the mouse brain.

    PubMed

    Jackson, Walker S; Krost, Clemens; Borkowski, Andrew W; Kaczmarczyk, Lech

    2014-01-01

    Prion diseases induce neurodegeneration in specific brain areas for undetermined reasons. A thorough understanding of the localization of the disease-causing molecule, the prion protein (PrP), could inform on this issue but previous studies have generated conflicting conclusions. One of the more intriguing disagreements is whether PrP is synthesized by astrocytes. We developed a knock-in reporter mouse line in which the coding sequence of the PrP expressing gene (Prnp), was replaced with that for green fluorescent protein (GFP). Native GFP fluorescence intensity varied between and within brain regions. GFP was present in astrocytes but did not increase during reactive gliosis induced by scrapie prion infection. Therefore, reactive gliosis associated with prion diseases does not cause an acceleration of local PrP production. In addition to aiding in Prnp gene activity studies, this reporter mouse line will likely prove useful for analysis of chimeric animals produced by stem cell and tissue transplantation experiments.

  6. [Echocardiography in mouse].

    PubMed

    Fayssoil, A

    2008-06-01

    Assessing cardiac phenotype requires invasive or noninvasive techniques in mouse. Echocardiography is a noninvasive technique for evaluating cardiac function. The purpose of this paper is to underline echocardiography modalities and new tools Doppler applications like tissue Doppler imaging.

  7. Knocking in the Otto-cycle Engine

    NASA Technical Reports Server (NTRS)

    Weinhart, H

    1939-01-01

    Engine knock is, as is known, preceded by normal burning of the first part of the charge, and only the part burned last (residual charge), knocks. The aim of the present measurements was, first, to reexamine the combustion form in this residual charge, because of the absence of uniform and frequently contradictory results in the very extensive literature on the subject. On top of that, an attempt was to be made to gain a deeper insight into the mechanism accompanying the combustion process, by means of the electrical test equipment perfected in recent years.

  8. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  9. Practical Application of Microelectroporation into Developing Mouse Brain

    NASA Astrophysics Data System (ADS)

    Shimogori, Tomomi; Ogawa, Masaharu

    One key approach toward understanding the genetic mechanisms underlying embryonic development involves the overexpression or misexpression of target genes in specific regions and at specific time points. The mouse gene-knockout system has been used extensively for loss-of-function studies due to the availability of a large number of mutant lines and the technical advantages of this system. In contrast, gain-of-function analyses have been performed through the production of knock-in and transgenic animals and with the use of various viruses (Cornetta 2006; Jakobsson et al., 2003; Hashimoto and Mikoshiba, 2004). However, it is not always possible to express or suppress genes in a spatially and temporally restricted manner, and the generation of genetically modified mice and recombinant viruses is time consuming and labor intensive. With the aim of solving these problems, many attempts have been made to apply the electroporation technique in research on developmental biology. Due to the accessibility of the avian embryo, it has been used as a classic model system for the study of developmental events in vertebrates. A novel technique for successful gene delivery into chick embryos has been established; this technique is known as in ovo electroporation and appears to be an excellent method, permitting quick and direct examination of the function of the delivered genes (Muramatsu et al., 1997; Itasaki et al., 1999; Momose et al., 1999; Nakamura et al., 2000; Yasuda et al., 2000). It seems that this technique can be adapted to the mouse embryo and would permit more rapid functional analysis of genes than is achieved by the generation of knockout or transgenic mouse lines. However, the inaccessibility of embryos in the mammalian uterus renders in utero manipulations targeting precise regions difficult or impossible at most stages of development. Efforts have been undertaken by various researchers to establish an in utero electroporation system, and there have been several

  10. TALEN/CRISPR-Mediated eGFP Knock-In Add-On at the OCT4 Locus Does Not Impact Differentiation of Human Embryonic Stem Cells towards Endoderm

    PubMed Central

    Krentz, Nicole A. J.; Nian, Cuilan; Lynn, Francis C.

    2014-01-01

    Human embryonic stem cells (hESCs) have great promise as a source of unlimited transplantable cells for regenerative medicine. However, current progress on producing the desired cell type for disease treatment has been limited due to an insufficient understanding of the developmental processes that govern their differentiation, as well as a paucity of tools to systematically study differentiation in the lab. In order to overcome these limitations, cell-type reporter hESC lines will be required. Here we outline two strategies using Transcription Activator Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated protein (Cas) to create OCT4-eGFP knock-in add-on hESC lines. Thirty-one and forty-seven percent of clones were correctly modified using the TALEN and CRISPR-Cas9 systems, respectively. Further analysis of three correctly targeted clones demonstrated that the insertion of eGFP in-frame with OCT4 neither significantly impacted expression from the wild type allele nor did the fusion protein have a dramatically different biological stability. Importantly, the OCT4-eGFP fusion was easily detected using microscopy, flow cytometry and western blotting. The OCT4 reporter lines remained equally competent at producing CXCR4+ definitive endoderm that expressed a panel of endodermal genes. Moreover, the genomic modification did not impact the formation of NKX6.1+/SOX9+ pancreatic progenitor cells following directed differentiation. In conclusion, these findings demonstrate for the first time that CRISPR-Cas9 can be used to modify OCT4 and highlight the feasibility of creating cell-type specific reporter hESC lines utilizing genome-editing tools that facilitate homologous recombination. PMID:25474420

  11. A retrograde signal from RyR1 alters DHP receptor inactivation and limits window Ca2+ release in muscle fibers of Y522S RyR1 knock-in mice.

    PubMed

    Andronache, Zoita; Hamilton, Susan L; Dirksen, Robert T; Melzer, Werner

    2009-03-17

    Malignant hyperthermia (MH) is a life-threatening hypermetabolic condition caused by dysfunctional Ca(2+) homeostasis in skeletal muscle, which primarily originates from genetic alterations in the Ca(2+) release channel (ryanodine receptor, RyR1) of the sarcoplasmic reticulum (SR). Owing to its physical interaction with the dihydropyridine receptor (DHPR), RyR1 is controlled by the electrical potential across the transverse tubular (TT) membrane. The DHPR exhibits both voltage-dependent activation and inactivation. Here we determined the impact of an MH mutation in RyR1 (Y522S) on these processes in adult muscle fibers isolated from heterozygous RyR1(Y522S)-knock-in mice. The voltage dependence of DHPR-triggered Ca(2+) release flux was left-shifted by approximately 8 mV. As a consequence, the voltage window for steady-state Ca(2+) release extended to more negative holding potentials in muscle fibers of the RyR1(Y522S)-mice. A rise in temperature from 20 degrees to 30 degrees C caused a further shift to more negative potentials of this window (by approximately 20 mV). The activation of the DHPR-mediated Ca(2+) current was minimally changed by the mutation. However, surprisingly, the voltage dependence of steady-state inactivation of DHPR-mediated calcium conductance and release were also shifted by approximately 10 mV to more negative potentials, indicating a retrograde action of the RyR1 mutation on DHPR inactivation that limits window Ca(2+) release. This effect serves as a compensatory response to the lowered voltage threshold for Ca(2+) release caused by the Y522S mutation and represents a novel mechanism to counteract excessive Ca(2+) leak and store depletion in MH-susceptible muscle.

  12. Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL.

    PubMed

    Pierroz, Dominique D; Bonnet, Nicolas; Baldock, Paul A; Ominsky, Michael S; Stolina, Marina; Kostenuik, Paul J; Ferrari, Serge L

    2010-09-03

    PTH stimulates osteoblastic cells to form new bone and to produce osteoblast-osteoclast coupling factors such as RANKL. Whether osteoclasts or their activity are needed for PTH anabolism remains uncertain. We treated ovariectomized huRANKL knock-in mice with a human RANKL inhibitor denosumab (DMAb), alendronate (Aln), or vehicle for 4 weeks, followed by co-treatment with intermittent PTH for 4 weeks. Loss of bone mass and microarchitecture was prevented by Aln and further significantly improved by DMAb. PTH improved bone mass, microstructure, and strength, and was additive to Aln but not to DMAb. Aln inhibited biochemical and histomorphometrical indices of bone turnover,--i.e. osteocalcin and bone formation rate (BFR) on cancellous bone surfaces-, and Dmab inhibited them further. However Aln increased whereas Dmab suppressed osteoclast number and surfaces. PTH significantly increased osteocalcin and bone formation indices, in the absence or presence of either antiresorptive, although BFR remained lower in presence of Dmab. To further evaluate PTH effects in the complete absence of osteoclasts, high dose PTH was administered to RANK(-/-) mice. PTH increased osteocalcin similarly in RANK(-/-) and WT mice. It also increased BMD in RANK(-/-) mice, although less than in WT. These results further indicate that osteoclasts are not strictly required for PTH anabolism, which presumably still occurs via stimulation of modeling-based bone formation. However the magnitude of PTH anabolic effects on the skeleton, in particular its additive effects with antiresorptives, depends on the extent of the remodeling space, as determined by the number and activity of osteoclasts on bone surfaces.

  13. 4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6

    PubMed Central

    Jayabal, Sriram; Chang, Hui Ho Vanessa; Cullen, Kathleen E.; Watt, Alanna J.

    2016-01-01

    Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA684Q/+) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA684Q/84Q) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA684Q/84Q mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6. PMID:27381005

  14. Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review.

    PubMed

    Alves-Cruzeiro, João M Da Conceição; Mendonça, Liliana; Pereira de Almeida, Luís; Nóbrega, Clévio

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant ataxia caused by an expansion of CAG repeats in the exon 1 of the gene ATXN2, conferring a gain of toxic function that triggers the appearance of the disease phenotype. SCA2 is characterized by several symptoms including progressive gait ataxia and dysarthria, slow saccadic eye movements, sleep disturbances, cognitive impairments, and psychological dysfunctions such as insomnia and depression, among others. The available treatments rely on palliative care, which mitigate some of the major symptoms but ultimately fail to block the disease progression. This persistent lack of effective therapies led to the development of several models in yeast, C. elegans, D. melanogaster, and mice to serve as platforms for testing new therapeutic strategies and to accelerate the research on the complex disease mechanisms. In this work, we review 4 transgenic and 1 knock-in mouse that exhibit a SCA2-related phenotype and discuss their usefulness in addressing different scientific problems. The knock-in mice are extremely faithful to the human disease, with late onset of symptoms and physiological levels of mutant ataxin-2, while the other transgenic possess robust and well-characterized motor impairments and neuropathological features. Furthermore, a new BAC model of SCA2 shows promise to study the recently explored role of non-coding RNAs as a major pathogenic mechanism in this devastating disorder. Focusing on specific aspects of the behavior and neuropathology, as well as technical aspects, we provide a highly practical description and comparison of all the models with the purpose of creating a useful resource for SCA2 researchers worldwide.

  15. Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review

    PubMed Central

    Alves-Cruzeiro, João M. Da Conceição; Mendonça, Liliana; Pereira de Almeida, Luís; Nóbrega, Clévio

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant ataxia caused by an expansion of CAG repeats in the exon 1 of the gene ATXN2, conferring a gain of toxic function that triggers the appearance of the disease phenotype. SCA2 is characterized by several symptoms including progressive gait ataxia and dysarthria, slow saccadic eye movements, sleep disturbances, cognitive impairments, and psychological dysfunctions such as insomnia and depression, among others. The available treatments rely on palliative care, which mitigate some of the major symptoms but ultimately fail to block the disease progression. This persistent lack of effective therapies led to the development of several models in yeast, C. elegans, D. melanogaster, and mice to serve as platforms for testing new therapeutic strategies and to accelerate the research on the complex disease mechanisms. In this work, we review 4 transgenic and 1 knock-in mouse that exhibit a SCA2-related phenotype and discuss their usefulness in addressing different scientific problems. The knock-in mice are extremely faithful to the human disease, with late onset of symptoms and physiological levels of mutant ataxin-2, while the other transgenic possess robust and well-characterized motor impairments and neuropathological features. Furthermore, a new BAC model of SCA2 shows promise to study the recently explored role of non-coding RNAs as a major pathogenic mechanism in this devastating disorder. Focusing on specific aspects of the behavior and neuropathology, as well as technical aspects, we provide a highly practical description and comparison of all the models with the purpose of creating a useful resource for SCA2 researchers worldwide. PMID:28018166

  16. Mouse bladder wall injection.

    PubMed

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  17. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF

    PubMed Central

    Olleros, Maria L.; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L.; Vesin, Dominique; Kruglov, Andrey A.; Drutskaya, Marina S.; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V.; Chouchkova, Miliana; Kozlov, Sergei V.; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F. J.; Nedospasov, Sergei A.

    2015-01-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF. PMID:26123801

  18. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF.

    PubMed

    Olleros, Maria L; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L; Vesin, Dominique; Kruglov, Andrey A; Drutskaya, Marina S; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V; Chouchkova, Miliana; Kozlov, Sergei V; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F J; Nedospasov, Sergei A; Garcia, Irene

    2015-09-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF.

  19. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models

    PubMed Central

    Su, Nan; Jin, Min; Chen, Lin

    2014-01-01

    Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis. PMID:26273516

  20. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome.

    PubMed

    Lee, Yong-Seok; Ehninger, Dan; Zhou, Miou; Oh, Jun-Young; Kang, Minkyung; Kwak, Chuljung; Ryu, Hyun-Hee; Butz, Delana; Araki, Toshiyuki; Cai, Ying; Balaji, J; Sano, Yoshitake; Nam, Christine I; Kim, Hyong Kyu; Kaang, Bong-Kiun; Burger, Corinna; Neel, Benjamin G; Silva, Alcino J

    2014-12-01

    In Noonan syndrome (NS) 30-50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in Ptpn11, which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele PTPN11(D61G) in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras-extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult Ptpn11(D61G/+) mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.

  1. CRISPRtools: a flexible computational platform for performing CRISPR/Cas9 experiments in the mouse.

    PubMed

    Peterson, Kevin A; Beane, Glen L; Goodwin, Leslie O; Kutny, Peter M; Reinholdt, Laura G; Murray, Stephen A

    2017-03-09

    Genome editing using the CRISPR/Cas9 RNA-guided endonuclease system has rapidly become a driving force for discovery in modern biomedical research. This simple yet elegant system has been widely used to generate both loss-of-function alleles and precision knock-in mutations using single-stranded donor oligonucleotides. Our CRISPRtools platform supports both of these applications in order to facilitate the use of CRISPR/Cas9. While there are several tools that facilitate CRISPR/Cas9 design and screen for potential off-target sites, the process is typically performed sequentially on single genes, limiting scalability for large-scale programs. Here, the design principle underlying gene ablation is based upon using paired guides flanking a critical region/exon of interest to create deletions. Guide pairs are rank ordered based upon published efficiency scores and off-target analyses, and reported in a concise format for downstream implementation. The exon deletion strategy simplifies characterization of founder animals and is the strategy employed for the majority of knockouts in the mouse. In proof-of-principle experiments, the effectiveness of this approach is demonstrated using microinjection and electroporation to introduce CRISPR/Cas9 components into mouse zygotes to delete critical exons.

  2. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain

    PubMed Central

    Ye, Xin; Smallwood, Philip; Nathans, Jeremy

    2011-01-01

    The Norrie disease gene (Ndp) codes for a secreted protein, Norrin, that activates canonical Wnt signaling by binding to its receptor, Frizzled-4. This signaling system is required for normal vascular development in the retina and for vascular survival in the cochlea. In mammals, the pattern of Ndp expression beyond the retina is poorly defined due to the low abundance of Norrin mRNA and protein. Here we characterize Ndp expression during mouse development by studying a knock-in mouse that carries the coding sequence of human placental alkaline phosphatase (AP) inserted at the Ndp locus (NdpAP). In the CNS, NdpAP expression is apparent by E10.5 and is dynamic and complex. The anatomically delimited regions of NdpAP expression observed prenatally in the CNS are replaced postnatally by widespread expression in astrocytes in the forebrain and midbrain, Bergman glia in the cerebellum, and Müller glia in the retina. In the developing and adult cochlea, NdpAP expression is closely associated with two densely vascularized regions, the stria vascularis and a capillary plexus between the organ of Corti and the spiral ganglion. These observations suggest the possibility that Norrin may have developmental and/or homeostatic functions beyond the retina and cochlea. PMID:21055480

  3. Distinct functions and regulation of epithelial progesterone receptor in the mouse cervix, vagina, and uterus.

    PubMed

    Mehta, Fabiola F; Son, Jieun; Hewitt, Sylvia C; Jang, Eunjung; Lydon, John P; Korach, Kenneth S; Chung, Sang-Hyuk

    2016-04-05

    While the function of progesterone receptor (PR) has been studied in the mouse vagina and uterus, its regulation and function in the cervix has not been described. We selectively deleted epithelial PR in the female reproductive tracts using the Cre/LoxP recombination system. We found that epithelial PR was required for induction of apoptosis and suppression of cell proliferation by progesterone (P4) in the cervical and vaginal epithelium. We also found that epithelial PR was dispensable for P4 to suppress apoptosis and proliferation in the uterine epithelium. PR is encoded by the Pgr gene, which is regulated by estrogen receptor α (ERα) in the female reproductive tracts. Using knock-in mouse models expressing ERα mutants, we determined that the DNA-binding domain (DBD) and AF2 domain of ERα were required for upregulation of Pgr in the cervix and vagina as well as the uterine stroma. The ERα AF1 domain was required for upregulation of Pgr in the vaginal stroma and epithelium and cervical epithelium, but not in the uterine and cervical stroma. ERα DBD, AF1, and AF2 were required for suppression of Pgr in the uterine epithelium, which was mediated by stromal ERα. Epithelial ERα was responsible for upregulation of epithelial Pgr in the cervix and vagina. Our results indicate that regulation and functions of epithelial PR are different in the cervix, vagina, and uterus.

  4. An encyclopedia of mouse DNA elements (Mouse ENCODE)

    PubMed Central

    2012-01-01

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome. PMID:22889292

  5. Nicotine-induced dystonic arousal complex in a mouse line harboring a human autosomal-dominant nocturnal frontal lobe epilepsy mutation.

    PubMed

    Teper, Yaroslav; Whyte, Douglas; Cahir, Elizabeth; Lester, Henry A; Grady, Sharon R; Marks, Michael J; Cohen, Bruce N; Fonck, Carlos; McClure-Begley, Tristan; McIntosh, J Michael; Labarca, Cesar; Lawrence, Andrew; Chen, Feng; Gantois, Ilse; Davies, Philip J; Petrou, Steven; Murphy, Mark; Waddington, John; Horne, Malcolm K; Berkovic, Samuel F; Drago, John

    2007-09-19

    We generated a mouse line harboring an autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE) mutation: the alpha4 nicotinic receptor S248F knock-in strain. In this mouse, modest nicotine doses (1-2 mg/kg) elicit a novel behavior termed the dystonic arousal complex (DAC). The DAC includes stereotypical head movements, body jerking, and forelimb dystonia; these behaviors resemble some core features of ADNFLE. A marked Straub tail is an additional component of the DAC. Similar to attacks in ADNFLE, the DAC can be partially suppressed by the sodium channel blocker carbamazepine or by pre-exposure to a very low dose of nicotine (0.1 mg/kg). The DAC is centrally mediated, genetically highly penetrant, and, surprisingly, not associated with overt ictal electrical activity as assessed by (1) epidural or frontal lobe depth-electrode electroencephalography or (2) hippocampal c-fos-regulated gene expression. Heterozygous knock-in mice are partially protected from nicotine-induced seizures. The noncompetitive antagonist mecamylamine does not suppress the DAC, although it suppresses high-dose nicotine-induced wild-type-like seizures. Experiments on agonist-induced 86Rb+ and neurotransmitter efflux from synaptosomes and on alpha4S248Fbeta2 receptors expressed in oocytes confirm that the S248F mutation confers resistance to mecamylamine blockade. Genetic background, gender, and mutant gene expression levels modulate expression of the DAC phenotype in mice. The S248F mouse thus appears to provide a model for the paroxysmal dystonic element of ADNFLE semiology. Our model complements what is seen in other ADNFLE animal models. Together, these mice cover the spectrum of behavioral and electrographic events seen in the human condition.

  6. Serine 302 Phosphorylation of Mouse Insulin Receptor Substrate 1 (IRS1) Is Dispensable for Normal Insulin Signaling and Feedback Regulation by Hepatic S6 Kinase*

    PubMed Central

    Copps, Kyle D.; Hançer, Nancy J.; Qiu, Wei; White, Morris F.

    2016-01-01

    Constitutive activation of the mammalian target of rapamycin complex 1 and S6 kinase (mTORC1→ S6K) attenuates insulin-stimulated Akt activity in certain tumors in part through “feedback” phosphorylation of the upstream insulin receptor substrate 1 (IRS1). However, the significance of this mechanism for regulating insulin sensitivity in normal tissue remains unclear. We investigated the function of Ser-302 in mouse IRS1, the major site of its phosphorylation by S6K in vitro, through genetic knock-in of a serine-to-alanine mutation (A302). Although insulin rapidly stimulated feedback phosphorylation of Ser-302 in mouse liver and muscle, homozygous A302 mice (A/A) and their knock-in controls (S/S) exhibited similar glucose homeostasis and muscle insulin signaling. Furthermore, both A302 and control primary hepatocytes from which Irs2 was deleted showed marked inhibition of insulin-stimulated IRS1 tyrosine phosphorylation and PI3K binding after emetine treatment to raise intracellular amino acids and activate mTORC1 → S6K signaling. To specifically activate mTORC1 in mouse tissue, we deleted hepatic Tsc1 using Cre adenovirus. Although it moderately decreased IRS1/PI3K association and Akt phosphorylation in liver, Tsc1 deletion failed to cause glucose intolerance or promote hyperinsulinemia in mixed background A/A or S/S mice. Moreover, Tsc1 deletion failed to stimulate phospho-Ser-302 or other putative S6K sites within IRS1, whereas ribosomal S6 protein was constitutively phosphorylated. Following acute Tsc1 deletion from hepatocytes, Akt phosphorylation, but not IRS1/PI3K association, was rapidly restored by treatment with the mTORC1 inhibitor rapamycin. Thus, within the hepatic compartment, mTORC1 → S6K signaling regulates Akt largely through IRS-independent means with little effect upon physiologic insulin sensitivity. PMID:26846849

  7. Researchers Create Artificial Mouse 'Embryo'

    MedlinePlus

    ... news/fullstory_163881.html Researchers Create Artificial Mouse 'Embryo' Experiment used two types of gene-modified stem ... they've created a kind of artificial mouse embryo using stem cells, which can be coaxed to ...

  8. LBH589, A Hydroxamic Acid-Derived HDAC Inhibitor, is Neuroprotective in Mouse Models of Huntington's Disease.

    PubMed

    Chopra, Vanita; Quinti, Luisa; Khanna, Prarthana; Paganetti, Paolo; Kuhn, Rainer; Young, Anne B; Kazantsev, Aleksey G; Hersch, Steven

    2016-12-15

    Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington's disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency or brain bioavailability. In the present study, we assessed the therapeutic potential of LBH589, an orally bioavailable hydroxamic acid-derived nonselective HDAC inhibitor in mouse models of HD. The efficacy of LBH589 is tested in two HD mouse models using various biochemical, behavioral and neuropathological outcome measures. We show that LBH589 crosses the blood brain barrier; induces histone hyperacetylation and prevents striatal neuronal shrinkage in R6/2 HD mice. In full-length knock-in HD mice LBH589-treatment improves motor performance and reduces neuronal atrophy. Our efficacious results of LBH589 in fragment and full-length mouse models of HD suggest that LBH589 is a promising candidate for clinical assessment in HD patients and provides confirmation that non-selective HDAC inhibitors can be viable clinical candidates.

  9. LBH589, A Hydroxamic Acid-Derived HDAC Inhibitor, is Neuroprotective in Mouse Models of Huntington’s Disease

    PubMed Central

    Chopra, Vanita; Quinti, Luisa; Khanna, Prarthana; Paganetti, Paolo; Kuhn, Rainer; Young, Anne B.; Kazantsev, Aleksey G.; Hersch, Steven

    2016-01-01

    Background: Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington’s disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency or brain bioavailability. Objective: In the present study, we assessed the therapeutic potential of LBH589, an orally bioavailable hydroxamic acid-derived nonselective HDAC inhibitor in mouse models of HD. Method: The efficacy of LBH589 is tested in two HD mouse models using various biochemical, behavioral and neuropathological outcome measures. Results: We show that LBH589 crosses the blood brain barrier; induces histone hyperacetylation and prevents striatal neuronal shrinkage in R6/2 HD mice. In full-length knock-in HD mice LBH589-treatment improves motor performance and reduces neuronal atrophy. Conclusions: Our efficacious results of LBH589 in fragment and full-length mouse models of HD suggest that LBH589 is a promising candidate for clinical assessment in HD patients and provides confirmation that non-selective HDAC inhibitors can be viable clinical candidates. PMID:27983565

  10. The Mouse SAGE Site: database of public mouse SAGE libraries.

    PubMed

    Divina, Petr; Forejt, Jirí

    2004-01-01

    The Mouse SAGE Site is a web-based database of all available public libraries generated by the Serial Analysis of Gene Expression (SAGE) from various mouse tissues and cell lines. The database contains mouse SAGE libraries organized in a uniform way and provides web-based tools for browsing, comparing and searching SAGE data with reliable tag-to-gene identification. A modified approach based on the SAGEmap database is used for reliable tag identification. The Mouse SAGE Site is maintained on an ongoing basis at the Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and is accessible at the internet address http://mouse.biomed.cas.cz/sage/.

  11. Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis.

    PubMed

    Li, Songhua; Samardzija, Marijana; Yang, Zhihui; Grimm, Christian; Jin, Minghao

    2016-05-25

    RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or combination therapy to

  12. Modelling Human Regulatory Variation in Mouse: Finding the Function in Genome-Wide Association Studies and Whole-Genome Sequencing

    PubMed Central

    Schmouth, Jean-François; Bonaguro, Russell J.; Corso-Diaz, Ximena; Simpson, Elizabeth M.

    2012-01-01

    An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs), in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX). This method can be applied to most human genes for which a bacterial artificial chromosome (BAC) construct can be derived and a mouse-null allele exists. This strategy comprises (1) the use of recombineering technology to create a human variant–harbouring BAC, (2) knock-in of this BAC into the mouse genome using Hprt docking technology, and (3) allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation. PMID:22396661

  13. AHCODA-DB: a data repository with web-based mining tools for the analysis of automated high-content mouse phenomics data.

    PubMed

    Koopmans, Bastijn; Smit, August B; Verhage, Matthijs; Loos, Maarten

    2017-04-04

    Systematic, standardized and in-depth phenotyping and data analyses of rodent behaviour empowers gene-function studies, drug testing and therapy design. However, no data repositories are currently available for standardized quality control, data analysis and mining at the resolution of individual mice. Here, we present AHCODA-DB, a public data repository with standardized quality control and exclusion criteria aimed to enhance robustness of data, enabled with web-based mining tools for the analysis of individually and group-wise collected mouse phenotypic data. AHCODA-DB allows monitoring in vivo effects of compounds collected from conventional behavioural tests and from automated home-cage experiments assessing spontaneous behaviour, anxiety and cognition without human interference. AHCODA-DB includes such data from mutant mice (transgenics, knock-out, knock-in), (recombinant) inbred strains, and compound effects in wildtype mice and disease models. AHCODA-DB provides real time statistical analyses with single mouse resolution and versatile suite of data presentation tools. On March 9th, 2017 AHCODA-DB contained 650 k data points on 2419 parameters from 1563 mice. AHCODA-DB provides users with tools to systematically explore mouse behavioural data, both with positive and negative outcome, published and unpublished, across time and experiments with single mouse resolution. The standardized (automated) experimental settings and the large current dataset (1563 mice) in AHCODA-DB provide a unique framework for the interpretation of behavioural data and drug effects. The use of common ontologies allows data export to other databases such as the Mouse Phenome Database. Unbiased presentation of positive and negative data obtained under the highly standardized screening conditions increase cost efficiency of publicly funded mouse screening projects and help to reach consensus conclusions on drug responses and mouse behavioural phenotypes. The website is publicly

  14. The Mouse That Soared

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  15. Mouse Phenome Database

    PubMed Central

    Grubb, Stephen C.; Bult, Carol J.; Bogue, Molly A.

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  16. RIKEN mouse genome encyclopedia.

    PubMed

    Hayashizaki, Yoshihide

    2003-01-01

    We have been working to establish the comprehensive mouse full-length cDNA collection and sequence database to cover as many genes as we can, named Riken mouse genome encyclopedia. Recently we are constructing higher-level annotation (Functional ANnoTation Of Mouse cDNA; FANTOM) not only with homology search based annotation but also with expression data profile, mapping information and protein-protein database. More than 1,000,000 clones prepared from 163 tissues were end-sequenced to classify into 159,789 clusters and 60,770 representative clones were fully sequenced. As a conclusion, the 60,770 sequences contained 33,409 unique. The next generation of life science is clearly based on all of the genome information and resources. Based on our cDNA clones we developed the additional system to explore gene function. We developed cDNA microarray system to print all of these cDNA clones, protein-protein interaction screening system, protein-DNA interaction screening system and so on. The integrated database of all the information is very useful not only for analysis of gene transcriptional network and for the connection of gene to phenotype to facilitate positional candidate approach. In this talk, the prospect of the application of these genome resourced should be discussed. More information is available at the web page: http://genome.gsc.riken.go.jp/.

  17. Mouse Models of Aneuploidy

    PubMed Central

    Sheppard, Olivia; Wiseman, Frances K.; Ruparelia, Aarti; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.

    2012-01-01

    Abnormalities of chromosome copy number are called aneuploidies and make up a large health load on the human population. Many aneuploidies are lethal because the resulting abnormal gene dosage is highly deleterious. Nevertheless, some whole chromosome aneuploidies can lead to live births. Alterations in the copy number of sections of chromosomes, which are also known as segmental aneuploidies, are also associated with deleterious effects. Here we examine how aneuploidy of whole chromosomes and segmental aneuploidy of chromosomal regions are modeled in the mouse. These models provide a whole animal system in which we aim to investigate the complex phenotype-genotype interactions that arise from alteration in the copy number of genes. Although our understanding of this subject is still in its infancy, already research in mouse models is highlighting possible therapies that might help alleviate the cognitive effects associated with changes in gene number. Thus, creating and studying mouse models of aneuploidy and copy number variation is important for understanding what it is to be human, in both the normal and genomically altered states. PMID:22262951

  18. Mouse models in oncoimmunology.

    PubMed

    Zitvogel, Laurence; Pitt, Jonathan M; Daillère, Romain; Smyth, Mark J; Kroemer, Guido

    2016-12-01

    Fundamental cancer research and the development of efficacious antineoplastic treatments both rely on experimental systems in which the relationship between malignant cells and immune cells can be studied. Mouse models of transplantable, carcinogen-induced or genetically engineered malignancies - each with their specific advantages and difficulties - have laid the foundations of oncoimmunology. These models have guided the immunosurveillance theory that postulates that evasion from immune control is an essential feature of cancer, the concept that the long-term effects of conventional cancer treatments mostly rely on the reinstatement of anticancer immune responses and the preclinical development of immunotherapies, including currently approved immune checkpoint blockers. Specific aspects of pharmacological development, as well as attempts to personalize cancer treatments using patient-derived xenografts, require the development of mouse models in which murine genes and cells are replaced with their human equivalents. Such 'humanized' mouse models are being progressively refined to characterize the leukocyte subpopulations that belong to the innate and acquired arms of the immune system as they infiltrate human cancers that are subjected to experimental therapies. We surmise that the ever-advancing refinement of murine preclinical models will accelerate the pace of therapeutic optimization in patients.

  19. Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse

    PubMed Central

    Lou, Shan; Adam, Yoav; Weinstein, Eli N.; Williams, Erika; Williams, Katherine; Parot, Vicente; Kavokine, Nikita; Liberles, Stephen; Madisen, Linda; Zeng, Hongkui

    2016-01-01

    Recent advances in optogenetics have enabled simultaneous optical perturbation and optical readout of membrane potential in diverse cell types. Here, we develop and characterize a Cre-dependent transgenic Optopatch2 mouse line that we call Floxopatch. The animals expressed a blue-shifted channelrhodopsin, CheRiff, and a near infrared Archaerhodopsin-derived voltage indicator, QuasAr2, via targeted knock-in at the rosa26 locus. In Optopatch-expressing animals, we tested for overall health, genetically targeted expression, and function of the optogenetic components. In offspring of Floxopatch mice crossed with a variety of Cre driver lines, we observed spontaneous and optically evoked activity in vitro in acute brain slices and in vivo in somatosensory ganglia. Cell-type-specific expression allowed classification and characterization of neuronal subtypes based on their firing patterns. The Floxopatch mouse line is a useful tool for fast and sensitive characterization of neural activity in genetically specified cell types in intact tissue. SIGNIFICANCE STATEMENT Optical recordings of neural activity offer the promise of rapid and spatially resolved mapping of neural function. Calcium imaging has been widely applied in this mode, but is insensitive to the details of action potential waveforms and subthreshold events. Simultaneous optical perturbation and optical readout of single-cell electrical activity (“Optopatch”) has been demonstrated in cultured neurons and in organotypic brain slices, but not in acute brain slices or in vivo. Here, we describe a transgenic mouse in which expression of Optopatch constructs is controlled by the Cre-recombinase enzyme. This animal enables fast and robust optical measurements of single-cell electrical excitability in acute brain slices and in somatosensory ganglia in vivo, opening the door to rapid optical mapping of neuronal excitability. PMID:27798186

  20. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome.

    PubMed

    Siegmund, Stephanie; Yang, Hua; Sharma, Rohit; Javors, Martin; Skinner, Owen; Mootha, Vamsi; Hirano, Michio; Schon, Eric A

    2017-09-01

    Mitochondrial disorders affecting oxidative phosphorylation (OxPhos) are caused by mutations in both the nuclear and mitochondrial genomes. One promising candidate for treatment is the drug rapamycin, which has been shown to extend lifespan in multiple animal models, and which was previously shown to ameliorate mitochondrial disease in a knock-out mouse model lacking a nuclear-encoded gene specifying an OxPhos structural subunit (Ndufs4). In that model, relatively high-dose intraperitoneal rapamycin extended lifespan and improved markers of neurological disease, via an unknown mechanism. Here, we administered low-dose oral rapamycin to a knock-in (KI) mouse model of authentic mtDNA disease, specifically, progressive mtDNA depletion syndrome, resulting from a mutation in the mitochondrial nucleotide salvage enzyme thymidine kinase 2 (TK2). Importantly, low-dose oral rapamycin was sufficient to extend Tk2KI/KI mouse lifespan significantly, and did so in the absence of detectable improvements in mitochondrial dysfunction. We found no evidence that rapamycin increased survival by acting through canonical pathways, including mitochondrial autophagy. However, transcriptomics and metabolomics analyses uncovered systemic metabolic changes pointing to a potential "rapamycin metabolic signature." These changes also implied that rapamycin may have enabled the Tk2KI/KI mice to utilize alternative energy reserves, and possibly triggered indirect signaling events that modified mortality through developmental reprogramming. From a therapeutic standpoint, our results support the possibility that low-dose rapamycin, while not targeting the underlying mtDNA defect, could represent a crucial therapy for the treatment of mtDNA-driven, and some nuclear DNA-driven, mitochondrial diseases. © The Author 2017. Published by Oxford University Press.

  1. Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons.

    PubMed

    Rodríguez-Martín, Teresa; Pooler, Amy M; Lau, Dawn H W; Mórotz, Gábor M; De Vos, Kurt J; Gilley, Jonathan; Coleman, Michael P; Hanger, Diane P

    2016-01-01

    Expression of the frontotemporal dementia-related tau mutation, P301L, at physiological levels in adult mouse brain (KI-P301L mice) results in overt hypophosphorylation of tau and age-dependent alterations in axonal mitochondrial transport in peripheral nerves. To determine the effects of P301L tau expression in the central nervous system, we examined the kinetics of mitochondrial axonal transport and tau phosphorylation in primary cortical neurons from P301L knock-in (KI-P301L) mice. We observed a significant 50% reduction in the number of mitochondria in the axons of cortical neurons cultured from KI-P301L mice compared to wild-type neurons. Expression of murine P301L tau did not change the speed, direction of travel or likelihood of movement of mitochondria. Notably, the angle that defines the orientation of the mitochondria in the axon, and the volume of individual moving mitochondria, were significantly increased in neurons expressing P301L tau. We found that murine tau phosphorylation in KI-P301L mouse neurons was diminished and the ability of P301L tau to bind to microtubules was also reduced compared to tau in wild-type neurons. The P301L mutation did not influence the ability of murine tau to associate with membranes in cortical neurons or in adult mouse brain. We conclude that P301L tau is associated with mitochondrial changes and causes an early reduction in murine tau phosphorylation in neurons coupled with impaired microtubule binding of tau. These results support the association of mutant tau with detrimental effects on mitochondria and will be of significance for the pathogenesis of tauopathies.

  2. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    PubMed Central

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed for the successful generation of gene knockout embryonic stem cells using homologous recombination technologies. PMID:19731225

  3. Mouse genetics: catalogue and scissors.

    PubMed

    Sung, Young Hoon; Baek, In-Jeoung; Seong, Je Kyung; Kim, Jin Soo; Lee, Han-Woong

    2012-12-01

    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics.

  4. A new mouse model for infantile neuroaxonal dystrophy, inad mouse, maps to mouse chromosome 1.

    PubMed

    Matsushima, Yoshibumi; Kikuchi, Tateki; Kikuchi, Hisae; Ichihara, Nobutsune; Ishikawa, Akira; Ishijima, Yasushi; Tachibana, Masayoshi

    2005-02-01

    Infantile neuroaxonal dystrophy (INAD) is a rare autosomal recessive hereditary neurodegenerative disease of humans. So far, no responsible gene has been cloned or mapped to any chromosome. For chromosome mapping and positional cloning of the responsible gene, establishment of an animal model would be useful. Here we describe a new mouse model for INAD, named inad mouse. In this mouse, the phenotype is inherited in an autosomal recessive manner, symptoms occur in the infantile period, and the mouse dies before sexual maturity. Axonal dystrophic change appearing as spheroid bodies in central and peripheral nervous system was observed. These features more closely resembled human INAD than did those of the gad mouse, the traditional mouse model for INAD. Linkage analysis linked the inad gene to mouse Chromosome 1, with the highest LOD score (=128.6) at the D1Mit45 marker, and haplotype study localized the inad gene to a 7.5-Mb region between D1Mit84 and D1Mit25. In this linkage area some 60 genes exist: Mutation of one of these 60 genes is likely responsible for the inad mouse phenotype. Our preliminary mutation analysis in 15 genes examining the nucleotide sequence of exons of these genes did not find any sequence difference between inad mouse and C57BL/6 mouse.

  5. Mechanistically Distinct Mouse Models for CRX-Associated Retinopathy

    PubMed Central

    Tran, Nicholas M.; Zhang, Alan; Zhang, Xiaodong; Huecker, Julie B.; Hennig, Anne K.; Chen, Shiming

    2014-01-01

    Cone-rod homeobox (CRX) protein is a “paired-like” homeodomain transcription factor that is essential for regulating rod and cone photoreceptor transcription. Mutations in human CRX are associated with the dominant retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD) and Leber Congenital Amaurosis (LCA), with variable severity. Heterozygous Crx Knock-Out (KO) mice (“+/−”) have normal vision as adults and fail to model the dominant human disease. To investigate how different mutant CRX proteins produce distinct disease pathologies, we generated two Crx Knock-IN (K-IN) mouse models: CrxE168d2 (“E168d2”) and CrxR90W (“R90W”). E168d2 mice carry a frameshift mutation in the CRX activation domain, Glu168del2, which is associated with severe dominant CoRD or LCA in humans. R90W mice carry a substitution mutation in the CRX homeodomain, Arg90Trp, which is associated with dominant mild late-onset CoRD and recessive LCA. As seen in human patients, heterozygous E168d2 (“E168d2/+”) but not R90W (“R90W/+”) mice show severely impaired retinal function, while mice homozygous for either mutation are blind and undergo rapid photoreceptor degeneration. E168d2/+ mice also display abnormal rod/cone morphology, greater impairment of CRX target gene expression than R90W/+ or +/− mice, and undergo progressive photoreceptor degeneration. Surprisingly, E168d2/+ mice express more mutant CRX protein than wild-type CRX. E168d2neo/+, a subline of E168d2 with reduced mutant allele expression, displays a much milder retinal phenotype, demonstrating the impact of Crx expression level on disease severity. Both CRX[E168d2] and CRX[R90W] proteins fail to activate transcription in vitro, but CRX[E168d2] interferes more strongly with the function of wild type (WT) CRX, supporting an antimorphic mechanism. E168d2 and R90W are mechanistically distinct mouse models for CRX-associated disease that will allow the elucidation of molecular mechanisms and testing of

  6. Human anti-mouse antibodies.

    PubMed

    Klee, G G

    2000-06-01

    Human anti-mouse antibodies (HAMA) are human immunoglobulins with specificity for mouse immunoglobulins. This topic currently is of interest because of the increased use of monoclonal mouse antibodies as diagnostic reagents both for in vitro laboratory measurements and for in vivo imaging studies. Monoclonal mouse antibodies also are being used therapeutically. This short article reviews the production of HAMA in patients receiving monoclonal antibodies and illustrates the potential ways that HAMA can interfere with immunoassay measurements. Methods for measuring and neutralizing HAMA also are discussed.

  7. MouseBook: an integrated portal of mouse resources.

    PubMed

    Blake, Andrew; Pickford, Karen; Greenaway, Simon; Thomas, Steve; Pickard, Amanda; Williamson, Christine M; Adams, Niels C; Walling, Alison; Beck, Tim; Fray, Martin; Peters, Jo; Weaver, Tom; Brown, Steve D M; Hancock, John M; Mallon, Ann-Marie

    2010-01-01

    The MouseBook (http://www.mousebook.org) databases and web portal provide access to information about mutant mouse lines held as live or cryopreserved stocks at MRC Harwell. The MouseBook portal integrates curated information from the MRC Harwell stock resource, and other Harwell databases, with information from external data resources to provide value-added information above and beyond what is available through other routes such as International Mouse Stain Resource (IMSR). MouseBook can be searched either using an intuitive Google style free text search or using the Mammalian Phenotype (MP) ontology tree structure. Text searches can be on gene, allele, strain identifier (e.g. MGI ID) or phenotype term and are assisted by automatic recognition of term types and autocompletion of gene and allele names covered by the database. Results are returned in a tabbed format providing categorized results identified from each of the catalogs in MouseBook. Individual result lines from each catalog include information on gene, allele, chromosomal location and phenotype, and provide a simple click-through link to further information as well as ordering the strain. The infrastructure underlying MouseBook has been designed to be extensible, allowing additional data sources to be added and enabling other sites to make their data directly available through MouseBook.

  8. Chandra Catches the `Mouse'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  9. Dominant Cone-Rod Dystrophy: A Mouse Model Generated by Gene Targeting of the GCAP1/Guca1a Gene

    PubMed Central

    Buch, Prateek K.; Mihelec, Marija; Cottrill, Phillippa; Wilkie, Susan E.; Pearson, Rachael A.; Duran, Yanai; West, Emma L.; Michaelides, Michel; Ali, Robin R.; Hunt, David M.

    2011-01-01

    Cone dystrophy 3 (COD3) is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1). The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients. Disease progression in this novel mouse model of cone dystrophy was determined by a variety of techniques including electroretinography (ERG), retinal histology, immunohistochemistry and measurement of cGMP levels. It was established that although retinal development was normal up to 3 months of age, there was a subsequent progressive decline in retinal function, with a far greater alteration in cone than rod responses, associated with a corresponding loss of photoreceptors. In addition, we have demonstrated that accumulation of cyclic GMP precedes the observed retinal degeneration and is likely to contribute to the disease mechanism. Importantly, this knock-in mutant mouse has many features in common with the human disease, thereby making it an excellent model to further probe disease pathogenesis and investigate therapeutic interventions. PMID:21464903

  10. Mouse models for neurological disease.

    PubMed

    Hafezparast, Majid; Ahmad-Annuar, Azlina; Wood, Nicholas W; Tabrizi, Sarah J; Fisher, Elizabeth M C

    2002-08-01

    The mouse has many advantages over human beings for the study of genetics, including the unique property that genetic manipulation can be routinely carried out in the mouse genome. Most importantly, mice and human beings share the same mammalian genes, have many similar biochemical pathways, and have the same diseases. In the minority of cases where these features do not apply, we can still often gain new insights into mouse and human biology. In addition to existing mouse models, several major programmes have been set up to generate new mouse models of disease. Alongside these efforts are new initiatives for the clinical, behavioural, and physiological testing of mice. Molecular genetics has had a major influence on our understanding of the causes of neurological disorders in human beings, and much of this has come from work in mice.

  11. Mouse models of gastrointestinal tumors.

    PubMed

    Taketo, Makoto Mark

    2006-05-01

    The laboratory mouse (Mus musculus) has become one of the best model animal species in biomedical research today because of its abundant genetic/genomic information, and easy mutagenesis using transgenic and gene knockout technology. Genetically engineered mice have become essential tools in both mechanistic studies and drug development. In this article I will review recent topics in gastrointestinal cancer model mice, with emphasis on the results obtained in our laboratory. They include: (i) mouse models for familial adenomatous polyposis (Apc mutant mice; modifier genes of Apc intestinal polyposis; stabilizing beta-catenin mutant mice); (ii) mouse models for colon cancer (mouse models for hereditary non-polyposis colon cancer; additional mutations in Apc mutant mice; models with mutations in other genes; models for colon cancer associated with inflammatory bowel diseases); and (iii) mouse models for gastric cancer.

  12. The gene expression database for mouse development (GXD): putting developmental expression information at your fingertips.

    PubMed

    Smith, Constance M; Finger, Jacqueline H; Kadin, James A; Richardson, Joel E; Ringwald, Martin

    2014-10-01

    Because molecular mechanisms of development are extraordinarily complex, the understanding of these processes requires the integration of pertinent research data. Using the Gene Expression Database for Mouse Development (GXD) as an example, we illustrate the progress made toward this goal, and discuss relevant issues that apply to developmental databases and developmental research in general. Since its first release in 1998, GXD has served the scientific community by integrating multiple types of expression data from publications and electronic submissions and by making these data freely and widely available. Focusing on endogenous gene expression in wild-type and mutant mice and covering data from RNA in situ hybridization, in situ reporter (knock-in), immunohistochemistry, reverse transcriptase-polymerase chain reaction, Northern blot, and Western blot experiments, the database has grown tremendously over the years in terms of data content and search utilities. Currently, GXD includes over 1.4 million annotated expression results and over 260,000 images. All these data and images are readily accessible to many types of database searches. Here we describe the data and search tools of GXD; explain how to use the database most effectively; discuss how we acquire, curate, and integrate developmental expression information; and describe how the research community can help in this process. Copyright © 2014 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  13. Loss of Axin2 Causes Ocular Defects During Mouse Eye Development

    PubMed Central

    Alldredge, Ashley; Fuhrmann, Sabine

    2016-01-01

    Purpose The scaffold protein Axin2 is an antagonist and universal target of the Wnt/β-catenin pathway. Disruption of Axin2 may lead to developmental eye defects; however, this has not been examined. The purpose of this study was to investigate the role of Axin2 during ocular and extraocular development in mouse. Methods Animals heterozygous and homozygous for a Axin2lacZ knock-in allele were analyzed at different developmental stages for reporter expression, morphology as well as for the presence of ocular and extraocular markers using histologic and immunohistochemical techniques. Results During early eye development, the Axin2lacZ reporter was expressed in the periocular mesenchyme, RPE, and optic stalk. In the developing retina, Axin2lacZ reporter expression was initiated in ganglion cells at late embryonic stages and robustly expressed in subpopulations of amacrine and horizontal cells postnatally. Activation of the Axin2lacZ reporter overlapped with labeling of POU4F1, PAX6, and Calbindin. Germline deletion of Axin2 led to variable ocular phenotypes ranging from normal to severely defective eyes exhibiting microphthalmia, coloboma, lens defects, and expanded ciliary margin. These defects were correlated with abnormal tissue patterning in individual affected tissues, such as the optic fissure margins in the ventral optic cup and in the expanded ciliary margin. Conclusions Our results reveal a critical role for Axin2 during ocular development, likely by restricting the activity of the Wnt/β-catenin pathway. PMID:27701636

  14. Loss of Axin2 Causes Ocular Defects During Mouse Eye Development.

    PubMed

    Alldredge, Ashley; Fuhrmann, Sabine

    2016-10-01

    The scaffold protein Axin2 is an antagonist and universal target of the Wnt/β-catenin pathway. Disruption of Axin2 may lead to developmental eye defects; however, this has not been examined. The purpose of this study was to investigate the role of Axin2 during ocular and extraocular development in mouse. Animals heterozygous and homozygous for a Axin2lacZ knock-in allele were analyzed at different developmental stages for reporter expression, morphology as well as for the presence of ocular and extraocular markers using histologic and immunohistochemical techniques. During early eye development, the Axin2lacZ reporter was expressed in the periocular mesenchyme, RPE, and optic stalk. In the developing retina, Axin2lacZ reporter expression was initiated in ganglion cells at late embryonic stages and robustly expressed in subpopulations of amacrine and horizontal cells postnatally. Activation of the Axin2lacZ reporter overlapped with labeling of POU4F1, PAX6, and Calbindin. Germline deletion of Axin2 led to variable ocular phenotypes ranging from normal to severely defective eyes exhibiting microphthalmia, coloboma, lens defects, and expanded ciliary margin. These defects were correlated with abnormal tissue patterning in individual affected tissues, such as the optic fissure margins in the ventral optic cup and in the expanded ciliary margin. Our results reveal a critical role for Axin2 during ocular development, likely by restricting the activity of the Wnt/β-catenin pathway.

  15. Mouse δ opioid receptors are located on presynaptic afferents to hippocampal pyramidal cells.

    PubMed

    Rezaï, Xavier; Faget, Lauren; Bednarek, Ewa; Schwab, Yannick; Kieffer, Brigitte L; Massotte, Dominique

    2012-05-01

    Delta opioid receptors participate in the control of chronic pain and emotional responses. Recent data have also identified their implication in drug-context associations pointing to a modulatory role on hippocampal activity. We used fluorescent knock-in mice that express a functional delta opioid receptor fused at its carboxy terminus with the green fluorescent protein in place of the native receptor to investigate the receptor neuroanatomical distribution in this structure. Fine mapping of the pyramidal layer was performed in hippocampal acute brain slices and organotypic cultures using fluorescence confocal imaging, co-localization with pre- and postsynaptic markers and correlative light-electron microscopy. The different approaches concurred to identify delta opioid receptors on presynaptic afferents to glutamatergic principal cells. In the latter, only scarce receptors were detected that were confined within the Golgi or vesicular intracellular compartments with no receptor present at the cell surface. In the mouse hippocampus, expression of functional delta opioid receptors is therefore mostly associated with interneurons emphasizing a presynaptic modulatory effect on the pyramidal cell firing rate.

  16. A PTH-responsive circadian clock operates in ex vivo mouse femur fracture healing site.

    PubMed

    Kunimoto, Tatsuya; Okubo, Naoki; Minami, Yoichi; Fujiwara, Hiroyoshi; Hosokawa, Toshihiro; Asada, Maki; Oda, Ryo; Kubo, Toshikazu; Yagita, Kazuhiro

    2016-02-29

    The circadian clock contains clock genes including Bmal1 and Period2, and it maintains an interval rhythm of approximately 24 hours (the circadian rhythm) in various organs including growth plate and articular cartilage. As endochondral ossification is involved not only in growth plate but also in fracture healing, we investigated the circadian clock functions in fracture sites undergoing healing. Our fracture models using external fixation involved femurs of Period2::Luciferase knock-in mice which enables the monitoring of endogenous circadian clock state via bioluminescence. Organ culture was performed by collecting femurs, and fracture sites were observed using bioluminescence imaging systems. Clear bioluminescence rhythms of 24-hour intervals were revealed in fracture healing sites. When parathyroid hormone (PTH) was administered to fractured femurs in organ culture, peak time of Period2::Luciferase activity in fracture sites and growth plates changed, indicating that PTH-responsive circadian clock functions in the mouse femur fracture healing site. While PTH is widely used in treating osteoporosis, many studies have reported that it contributes to improvement of fracture healing. Future studies of the role of this local clock in wound healing may reveal a novel function of the circadian timing mechanism in skeletal cells.

  17. Widespread expression of the Supv3L1 mitochondrial RNA helicase in the mouse

    PubMed Central

    Paul, Erin; Kielbasinski, Marissa; Sedivy, John M.; Murga-Zamalloa, Carlos; Khanna, Hemant; Klysik, Jan E.

    2009-01-01

    Supv3L1 is an evolutionarily conserved helicase that plays a critical role in the mitochondrial RNA surveillance and degradation machinery. Conditional ablation of Supv3L1 in adult mice leads to premature aging phenotypes including loss of muscle mass and adipose tissue and severe skin abnormalities. To get insights into the spatial and temporal expression of Supv3L1 in the mouse, we generated knock-in and transgenic strains in which an EGFP reporter was placed under control of the Supv3L1 native promoter. During development, expression of Supv3L1 begins at the blastocyst stage, becomes widespread and strong in all fetal tissues and cell types, and continues during postnatal growth. In mature animals reporter expression is only slightly diminished in most tissues and continues to be highly expressed in the brain, peripheral sensory organs, and testis. Together, these data confirm that Supv3L1 is an important developmentally regulated gene, which continues to be expressed in all mature tissues, particularly the rapidly proliferating cells of testes, but also in the brain and sensory organs. The transgenic mice and cell lines derived from them constitute a valuable tool for the examination of the spatial and temporal aspects of Supv3L1 promoter activity, and should facilitate future screens for small molecules that regulate Supv3L1 expression. PMID:19937380

  18. Altered gene expression profile in a mouse model of SCN8A encephalopathy.

    PubMed

    Sprissler, Ryan S; Wagnon, Jacy L; Bunton-Stasyshyn, Rosie K; Meisler, Miriam H; Hammer, Michael F

    2017-02-01

    SCN8A encephalopathy is a severe, early-onset epilepsy disorder resulting from de novo gain-of-function mutations in the voltage-gated sodium channel Nav1.6. To identify the effects of this disorder on mRNA expression, RNA-seq was performed on brain tissue from a knock-in mouse expressing the patient mutation p.Asn1768Asp (N1768D). RNA was isolated from forebrain, cerebellum, and brainstem both before and after seizure onset, and from age-matched wildtype littermates. Altered transcript profiles were observed only in forebrain and only after seizures. The abundance of 50 transcripts increased more than 3-fold and 15 transcripts decreased more than 3-fold after seizures. The elevated transcripts included two anti-convulsant neuropeptides and more than a dozen genes involved in reactive astrocytosis and response to neuronal damage. There was no change in the level of transcripts encoding other voltage-gated sodium, potassium or calcium channels. Reactive astrocytosis was observed in the hippocampus of mutant mice after seizures. There is considerable overlap between the genes affected in this genetic model of epilepsy and those altered by chemically induced seizures, traumatic brain injury, ischemia, and inflammation. The data support the view that gain-of-function mutations of SCN8A lead to pathogenic alterations in brain function contributing to encephalopathy. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes.

    PubMed

    Hasenberg, Anja; Hasenberg, Mike; Männ, Linda; Neumann, Franziska; Borkenstein, Lars; Stecher, Manuel; Kraus, Andreas; Engel, Daniel R; Klingberg, Anika; Seddigh, Pegah; Abdullah, Zeinab; Klebow, Sabrina; Engelmann, Swen; Reinhold, Annegret; Brandau, Sven; Seeling, Michaela; Waisman, Ari; Schraven, Burkhart; Göthert, Joachim R; Nimmerjahn, Falk; Gunzer, Matthias

    2015-05-01

    Neutrophil granulocyte biology is a central issue of immunological research, but the lack of animal models that allow for neutrophil-selective genetic manipulation has delayed progress. By modulating the neutrophil-specific locus Ly6G with a knock-in allele expressing Cre recombinase and the fluorescent protein tdTomato, we generated a mouse model termed Catchup that exhibits strong neutrophil specificity. Transgene activity was found only in very few eosinophils and basophils and was undetectable in bone marrow precursors, including granulomonocytic progenitors (GMPs). Cre-mediated reporter-gene activation allowed for intravital two-photon microscopy of neutrophils without adoptive transfer. Homozygous animals were Ly6G deficient but showed normal leukocyte cellularity in all measured organs. Ly6G-deficient neutrophils were functionally normal in vitro and in multiple models of sterile or infectious inflammation in vivo. However, Cre-mediated deletion of FcγRIV in neutrophils reduced the cells' recruitment to immune-complex-mediated peritonitis, suggesting a cell-intrinsic role for activating Fc receptors in neutrophil trafficking.

  20. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120

    PubMed Central

    Itokawa, Misa; Nagahama, Hiroki; Ohtsu, Teiji; Furutani, Naoki; Kamagata, Mayo; Yang, Zhi-Hong; Hirasawa, Akira; Tahara, Yu; Shibata, Shigenobu

    2015-01-01

    The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock. PMID:26161796

  1. A mouse model for a partially inactive obesity-associated human MC3R variant

    PubMed Central

    Lee, Bonggi; Koo, Jashin; Yun Jun, Joo; Gavrilova, Oksana; Lee, Yongjun; Seo, Arnold Y.; Taylor-Douglas, Dezmond C.; Adler-Wailes, Diane C.; Chen, Faye; Gardner, Ryan; Koutzoumis, Dimitri; Sherafat Kazemzadeh, Roya; Roberson, Robin B.; Yanovski, Jack A.

    2016-01-01

    We previously reported children homozygous for two MC3R sequence variants (C17A+G241A) have greater fat mass than controls. Here we show, using homozygous knock-in mouse models in which we replace murine Mc3r with wild-type human (MC3RhWT/hWT) and double-mutant (C17A+G241A) human (MC3RhDM/hDM) MC3R, that MC3RhDM/hDM have greater weight and fat mass, increased energy intake and feeding efficiency, but reduced length and fat-free mass compared with MC3RhWT/hWT. MC3RhDM/hDM mice do not have increased adipose tissue inflammatory cell infiltration or greater expression of inflammatory markers despite their greater fat mass. Serum adiponectin levels are increased in MC3RhDM/hDM mice and MC3RhDM/hDM human subjects. MC3RhDM/hDM bone- and adipose tissue-derived mesenchymal stem cells (MSCs) differentiate into adipocytes that accumulate more triglyceride than MC3RhWT/hWT MSCs. MC3RhDM/hDM impacts nutrient partitioning to generate increased adipose tissue that appears metabolically healthy. These data confirm the importance of MC3R signalling in human metabolism and suggest a previously-unrecognized role for the MC3R in adipose tissue development. PMID:26818770

  2. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease

    PubMed Central

    Atherton, Jeremy F; McIver, Eileen L; Mullen, Matthew RM; Wokosin, David L; Surmeier, D James; Bevan, Mark D

    2016-01-01

    The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course. DOI: http://dx.doi.org/10.7554/eLife.21616.001 PMID:27995895

  3. Cortical Spreading Depression Causes Unique Dysregulation of Inflammatory Pathways in a Transgenic Mouse Model of Migraine.

    PubMed

    Eising, Else; Shyti, Reinald; 't Hoen, Peter A C; Vijfhuizen, Lisanne S; Huisman, Sjoerd M H; Broos, Ludo A M; Mahfouz, Ahmed; Reinders, Marcel J T; Ferrari, Michel D; Tolner, Else A; de Vries, Boukje; van den Maagdenberg, Arn M J M

    2017-05-01

    Familial hemiplegic migraine type 1 (FHM1) is a rare monogenic subtype of migraine with aura caused by mutations in CACNA1A that encodes the α1A subunit of voltage-gated CaV2.1 calcium channels. Transgenic knock-in mice that carry the human FHM1 R192Q missense mutation ('FHM1 R192Q mice') exhibit an increased susceptibility to cortical spreading depression (CSD), the mechanism underlying migraine aura. Here, we analysed gene expression profiles from isolated cortical tissue of FHM1 R192Q mice 24 h after experimentally induced CSD in order to identify molecular pathways affected by CSD. Gene expression profiles were generated using deep serial analysis of gene expression sequencing. Our data reveal a signature of inflammatory signalling upon CSD in the cortex of both mutant and wild-type mice. However, only in the brains of FHM1 R192Q mice specific genes are up-regulated in response to CSD that are implicated in interferon-related inflammatory signalling. Our findings show that CSD modulates inflammatory processes in both wild-type and mutant brains, but that an additional unique inflammatory signature becomes expressed after CSD in a relevant mouse model of migraine.

  4. Mouse anesthesia and analgesia.

    PubMed

    Adams, Sean; Pacharinsak, Cholawat

    2015-03-02

    Providing anesthesia and analgesia for mouse subjects is a common and critical practice in the laboratory setting. These practices are necessary for performing invasive procedures, achieving prolonged immobility for sensitive imaging modalities (magnetic resonance imaging for instance), and providing intra- and post-procedural pain relief. In addition to facilitating the procedures performed by the investigator, the provision of anesthesia and analgesia is crucial for the preservation of animal welfare and for humane treatment of animals used in research. Furthermore, anesthesia and analgesia are important components of animal use protocols reviewed by Institutional Animal Care and Use Committees, requiring careful consideration and planning for the particular animal model. In this article, we provide technical outlines for the investigator covering the provision of anesthesia by two routes (injectable and inhalant), guidelines for monitoring anesthesia, current techniques for recognition of pain, and considerations for administering preventative analgesia. Copyright © 2015 John Wiley & Sons, Inc.

  5. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  6. Finding the most appropriate mouse model of juvenile CLN3 (Batten) disease for therapeutic studies: the importance of genetic background and gender

    PubMed Central

    Kovács, Attila D.; Pearce, David A.

    2015-01-01

    Mutations in the CLN3 gene cause a fatal neurodegenerative disorder: juvenile CLN3 disease, also known as juvenile Batten disease. The two most commonly utilized mouse models of juvenile CLN3 disease are Cln3-knockout (Cln3−/−) and Cln3Δex7/8-knock-in mice, the latter mimicking the most frequent disease-causing human mutation. To determine which mouse model has the most pronounced neurological phenotypes that can be used as outcome measures for therapeutic studies, we compared the exploratory activity, motor function and depressive-like behavior of 1-, 3- and 6-month-old Cln3−/− and Cln3Δex7/8-knock-in mice on two different genetic backgrounds (129S6/SvEv and C57BL/6J). Although, in many cases, the behavior of Cln3−/− and Cln3Δex7/8 mice was similar, we found genetic-background-, gender- and age-dependent differences between the two mouse models. We also observed large differences in the behavior of the 129S6/SvEv and C57BL/6J wild-type strains, which highlights the strong influence that genetic background can have on phenotype. Based on our results, Cln3−/− male mice on the 129S6/SvEv genetic background are the most appropriate candidates for therapeutic studies. They exhibit motor deficits at 1 and 6 months of age in the vertical pole test, and they were the only mice to show impaired motor coordination in the rotarod test at both 3 and 6 months. Cln3−/− males on the C57BL/6J background and Cln3Δex7/8 males on the 129S6/SvEv background also provide good outcome measures for therapeutic interventions. Cln3−/− (C57BL/6J) males had serious difficulties in climbing down (at 1 and 6 months) and turning downward on (at 1, 3 and 6 months) the vertical pole, whereas Cln3Δex7/8 (129S6/SvEv) males climbed down the vertical pole drastically slower than wild-type males at 3 and 6 months of age. Our study demonstrates the importance of testing mouse models on different genetic backgrounds and comparing males and females in order to find the most

  7. Finding the most appropriate mouse model of juvenile CLN3 (Batten) disease for therapeutic studies: the importance of genetic background and gender.

    PubMed

    Kovács, Attila D; Pearce, David A

    2015-04-01

    Mutations in the CLN3 gene cause a fatal neurodegenerative disorder: juvenile CLN3 disease, also known as juvenile Batten disease. The two most commonly utilized mouse models of juvenile CLN3 disease are Cln3-knockout (Cln3(-/-)) and Cln3(Δex7/8)-knock-in mice, the latter mimicking the most frequent disease-causing human mutation. To determine which mouse model has the most pronounced neurological phenotypes that can be used as outcome measures for therapeutic studies, we compared the exploratory activity, motor function and depressive-like behavior of 1-, 3- and 6-month-old Cln3(-/-) and Cln3(Δex7/8)-knock-in mice on two different genetic backgrounds (129S6/SvEv and C57BL/6J). Although, in many cases, the behavior of Cln3(-/-) and Cln3(Δex7/8) mice was similar, we found genetic-background-, gender- and age-dependent differences between the two mouse models. We also observed large differences in the behavior of the 129S6/SvEv and C57BL/6J wild-type strains, which highlights the strong influence that genetic background can have on phenotype. Based on our results, Cln3(-/-) male mice on the 129S6/SvEv genetic background are the most appropriate candidates for therapeutic studies. They exhibit motor deficits at 1 and 6 months of age in the vertical pole test, and they were the only mice to show impaired motor coordination in the rotarod test at both 3 and 6 months. Cln3(-/-) males on the C57BL/6J background and Cln3(Δex7/8) males on the 129S6/SvEv background also provide good outcome measures for therapeutic interventions. Cln3(-/-) (C57BL/6J) males had serious difficulties in climbing down (at 1 and 6 months) and turning downward on (at 1, 3 and 6 months) the vertical pole, whereas Cln3(Δex7/8) (129S6/SvEv) males climbed down the vertical pole drastically slower than wild-type males at 3 and 6 months of age. Our study demonstrates the importance of testing mouse models on different genetic backgrounds and comparing males and females in order to find the most

  8. Cell cycle in mouse development.

    PubMed

    Ciemerych, Maria A; Sicinski, Peter

    2005-04-18

    Mice likely represent the most-studied mammalian organism, except for humans. Genetic engineering in embryonic stem cells has allowed derivation of mouse strains lacking particular cell cycle proteins. Analyses of these mutant mice, and cells derived from them, facilitated the studies of the functions of cell cycle apparatus at the organismal and cellular levels. In this review, we give some background about the cell cycle progression during mouse development. We next discuss some insights about in vivo functions of the cell cycle proteins, gleaned from mouse knockout experiments. Our text is meant to provide examples of the recent experiments, rather than to supply an extensive and complete list.

  9. Confirmation of the "protein-traffic-hypothesis" and the "protein-localization-hypothesis" using the diabetes-mellitus-type-1-knock-in and transgenic-murine-models and the trepitope sequences.

    PubMed

    Arneth, Borros

    2012-10-01

    As possible mechanisms to explain the emergence of autoimmune diseases, the current author has suggested in earlier papers two new pathways: the "protein localization hypothesis" and the "protein traffic hypothesis". The "protein localization hypothesis" states that an autoimmune disease develops if a protein accumulates in a previously unoccupied compartment, that did not previously contain that protein. Similarly, the "protein traffic hypothesis" states that a sudden error within the transport of a certain protein leads to the emergence of an autoimmune disease. The current article discusses the usefulness of the different commercially available transgenic murine models of diabetes mellitus type 1 to confirm the aforementioned hypotheses. This discussion shows that several transgenic murine models of diabetes mellitus type 1 are in-line and confirm the aforementioned hypotheses. Furthermore, these hypotheses are additionally inline with the occurrence of several newly discovered protein sequences, the so-called trepitope sequences. These sequences modulate the immune response to certain proteins. The current study analyzed to what extent the hypotheses are supported by the occurrence of these new sequences. Thereby the occurrence of the trepitope sequences provides additional evidence supporting the aforementioned hypotheses. Both the "protein localization hypothesis" and the "protein traffic hypothesis" have the potential to lead to new causal therapy concepts. The "protein localization hypothesis" and the "protein traffic hypothesis" provide conceptional explanations for the diabetes mouse models as well as for the newly discovered trepitope sequences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A novel mouse model that recapitulates adult-onset glycogenosis type 4

    PubMed Central

    Orhan Akman, H.; Emmanuele, Valentina; Kurt, Yasemin Gülcan; Kurt, Bülent; Sheiko, Tatiana; DiMauro, Salvatore; Craigen, William J.

    2015-01-01

    Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme (GBE). The diagnostic hallmark of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age at onset. Complete loss of enzyme activity is lethal in utero or in infancy and affects primarily the muscle and the liver. However, residual enzyme activity as low as 5–20% leads to juvenile or adult onset of a disorder that primarily affects the central and peripheral nervous system and muscles and in the latter is termed adult polyglucosan body disease (APBD). Here, we describe a mouse model of GSD IV that reflects this spectrum of disease. Homologous recombination was used to knock in the most common GBE1 mutation p.Y329S c.986A > C found in APBD patients of Ashkenazi Jewish decent. Mice homozygous for this allele (Gbe1ys/ys) exhibit a phenotype similar to APBD, with widespread accumulation of PG. Adult mice exhibit progressive neuromuscular dysfunction and die prematurely. While the onset of symptoms is limited to adult mice, PG accumulates in tissues of newborn mice but is initially absent from the cerebral cortex and heart muscle. Thus, PG is well tolerated in most tissues, but the eventual accumulation in neurons and their axons causes neuropathy that leads to hind limb spasticity and premature death. This mouse model mimics the pathology and pathophysiologic features of human adult-onset branching enzyme deficiency. PMID:26385640

  11. Minocycline Reduces Spontaneous Hemorrhage in Mouse Models of Cerebral Amyloid Angiopathy

    PubMed Central

    Liao, Fan; Xiao, Qingli; Kraft, Andrew; Gonzales, Ernie; Perez, Ron; Greenberg, Steven M.; Holtzman, David; Lee, Jin-Moo

    2015-01-01

    Background and Purpose Cerebral Amyloid Angiopathy (CAA) is a common cause of recurrent intracerebral hemorrhage (ICH) in the elderly. Previous studies have shown that CAA induces inflammation and expression of matrix metalloproteinase-2 and -9 (gelatinases) in amyloid-laden vessels. Here, we inhibited both using minocycline in CAA mouse models to determine if spontaneous ICH could be reduced. Methods Tg2576 (n=16) and 5×FAD/ApoE4 knock-in mice (n=16), aged to 17 and 12 months, respectively, were treated with minocycline (50 mg/kg, i.p.) or saline every other day for two months. Brains were extracted and stained with X-34 (to quantify amyloid), Perl’s blue (to quantify hemorrhage), and immunostained to examined Aβ load, gliosis (GFAP, Iba-1), and vascular markers of blood-brain-barrier integrity (ZO-1 and collagen IV). Brain extracts were used to quantify mRNA for a variety of inflammatory genes. Results Minocycline treatment significantly reduced hemorrhage frequency in the brains of Tg2576 and 5×FAD/ApoE4 mice relative to the saline-treated mice, without affecting CAA load. Gliosis (GFAP and Iba-1 immunostaining), gelatinase activity, and expression of a variety of inflammatory genes (MMP-9, Nox4, CD45, S-100b, Iba-1) were also significantly reduced. Higher levels of microvascular tight junction and basal lamina proteins were found in the brains of minocycline-treated Tg2576 mice relative to saline-treated controls. Conclusions Minocycline reduced gliosis, inflammatory gene expression, gelatinase activity, and spontaneous hemorrhage in two different mouse models of CAA, supporting the importance of MMP-related and inflammatory pathways in ICH pathogenesis. As an FDA-approved drug, minocycline might be considered for clinical trials to test efficacy in preventing CAA-related ICH. PMID:25944329

  12. Alterations in Cortical Excitation and Inhibition in Genetic Mouse Models of Huntington’s Disease

    PubMed Central

    Cummings, Damian M.; André, Véronique M.; Uzgil, Besim O.; Gee, Steven M.; Fisher, Yvette E.; Cepeda, Carlos; Levine, Michael S.

    2009-01-01

    Previously, we identified progressive alterations in spontaneous excitatory (EPSCs) and inhibitory (IPSCs) postsynaptic currents in the striatum of the R6/2 mouse model of Huntington’s disease (HD). Medium-sized spiny neurons (MSNs) from these mice displayed a lower frequency of EPSCs and a population of cells exhibited an increased frequency of IPSCs beginning at about 40 days, a time point when the overt behavioral phenotype begins. The cortex provides the major excitatory drive to the striatum and is affected during disease progression. We examined spontaneous EPSCs and IPSCs of somatosensory cortical pyramidal neurons in layers II/III in slices from three different mouse models of HD, the R6/2, the YAC128 and the CAG140 knock-in. Results revealed that spontaneous EPSCs occurred at a higher frequency and evoked EPSCs were larger in behaviorally phenotypic mice while spontaneous IPSCs were initially increased in frequency in all models and subsequently decreased in R6/2 mice after they displayed the typical R6/2 overt behavioral phenotype. Changes in miniature IPSCs and evoked IPSC paired-pulse ratios suggested altered probability of GABA release. Also, in R6/2 mice, blockade of GABAA receptors induced complex discharges in slices and seizures in vivo at all ages. In conclusion, altered excitatory and inhibitory inputs to pyramidal neurons in the cortex in HD appear to be a prevailing deficit throughout the development of the disease. Furthermore, the differences between synaptic phenotypes in cortex and striatum are important for the development of future therapeutic approaches, which may need to be targeted early in the development of the phenotype. PMID:19692612

  13. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu.

    PubMed

    Fry, Elizabeth A; Taneja, Pankaj; Inoue, Kazushi

    2017-02-01

    The human c-ErbB2 (HER2) gene is amplified in ∼20% of human breast cancers (BCs), but the protein is overexpressed in ∼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.

  14. Transient expression of neuropeptide W in postnatal mouse hypothalamus--a putative regulator of energy homeostasis.

    PubMed

    Motoike, T; Skach, A G; Godwin, J K; Sinton, C M; Yamazaki, M; Abe, M; Natsume, R; Sakimura, K; Yanagisawa, M

    2015-08-20

    Neuropeptide B and W (NPB and NPW) are cognate peptide ligands for NPBWR1 (GPR7), a G protein-coupled receptor. In rodents, they have been implicated in the regulation of energy homeostasis, neuroendocrine/autonomic responses, and social interactions. Although localization of these peptides and their receptors in adult rodent brain has been well documented, their expression in mouse brain during development is unknown. Here we demonstrate the transient expression of NPW mRNA in the dorsomedial hypothalamus (DMH) of postnatal mouse brain and its co-localization with neuropeptide Y (NPY) mRNA. Neurons expressing both NPW and NPY mRNAs begin to emerge in the DMH at about postnatal day 0 (P-0) through P-3. Their expression is highest around P-14, declines after P-21, and by P-28 only a faint expression of NPW and NPY mRNA remains. In P-18 brains, we detected NPW neurons in the region spanning the subincertal nucleus (SubI), the lateral hypothalamic (LH) perifornical (PF) areas, and the DMH, where the highest expression of NPW mRNA was observed. The majority of these postnatal hypothalamic NPW neurons co-express NPY mRNA. A cross of NPW-iCre knock-in mice with a Cre-dependent tdTomato reporter line revealed that more than half of the reporter-positive neurons in the adult DMH, which mature from the transiently NPW-expressing neurons, are sensitive to peripherally administrated leptin. These data suggest that the DMH neurons that transiently co-express NPW and NPY in the peri-weaning period might play a role in regulating energy homeostasis during postnatal development. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Sex-Dependent Behavioral Impairments in the HdhQ350/+ Mouse Line.

    PubMed

    Cao, Jessica K; Detloff, Peter J; Gardner, Richard G; Stella, Nephi

    2017-09-16

    Huntington's Disease (HD) is an autosomal dominant neurodegenerative disease characterized by gradual deterioration of motor and cognitive functions and development of psychiatric deficits. Animal models provide powerful means to study the pathological processes, molecular dysfunctions and symptoms associated with HD. We performed a longitudinal behavioral study of the newly developed HdhQ350/+ mouse line, a knock-in model that expresses a repeat of 350 glutamines. We found remarkable sex-dependent differences on symptom onset and severity. While both sexes lose weight and grip strength, only HdhQ350/+ males have impaired motor coordination as measured by the rotarod and alterations in gait as measured by the catwalk assay. While HdhQ350/+ females do not exhibit impairment in motor coordination, we found a reduction in dark phase locomotor activity. Male and female HdhQ350/+ mice do not show anxiety as measured by the elevated plus maze or changes in exploration as measured by the open field test. To investigate these sex-dependent differences, we performed western blot analyses of striatal tissue. We measured equal mutant huntingtin protein expression in both sexes and found evidence of aggregation. We found the expected decrease of DARPP-32 expression only in female HdhQ350/+ mice. Remarkably, we found no evidence of reduction in synaptophysin and CB1 receptors in HdhQ350/+ tissue of either sex. Our study indicates that male and female HdhQ350/+ mice differentially recapitulate select behavioral impairments commonly measured in other HD mouse models with limited sex-dependent changes in recognized histopathological markers. We conclude that expanded polyglutamine repeats influence HD pathogenesis in a sex-dependent manner. Copyright © 2017. Published by Elsevier B.V.

  16. Phenotype consequences of myophosphorylase dysfunction: insights from the McArdle mouse model

    PubMed Central

    Brull, Astrid; de Luna, Noemí; Blanco-Grau, Albert; Lucia, Alejandro; Martin, Miguel Angel; Arenas, Joaquin; Martí, Ramon; Andreu, Antoni L; Pinós, Tomàs

    2015-01-01

    McArdle disease, caused by inherited deficiency of the enzyme muscle glycogen phosphorylase (GP-MM), is arguably the paradigm of exercise intolerance. The recent knock-in (p.R50X/p.R50X) mouse disease model allows an investigation of the phenotypic consequences of muscle glycogen unavailability and the physiopathology of exercise intolerance. We analysed, in 2-month-old mice [wild-type (wt/wt), heterozygous (p.R50X/wt) and p.R50X/p.R50X)], maximal endurance exercise capacity and the molecular consequences of an absence of GP-MM in the main glycogen metabolism regulatory enzymes: glycogen synthase, glycogen branching enzyme and glycogen debranching enzyme, as well as glycogen content in slow-twitch (soleus), intermediate (gastrocnemius) and glycolytic/fast-twitch (extensor digitorum longus; EDL) muscles. Compared with wt/wt, exercise capacity (measured in a treadmill test) was impaired in p.R50X/p.R50X (∼48%) and p.R50X/wt mice (∼18%). p.R50X/p.R50X mice showed an absence of GP-MM in the three muscles. GP-MM was reduced in p.R50X/wt mice, especially in the soleus, suggesting that the function of ‘slow-twitch’ muscles is less dependent on glycogen catabolism. p.R50X/p.R50X mice showed increased glycogen debranching enzyme in the soleus, increased glycogen branching enzyme in the gastrocnemius and EDL, as well as reduced levels of mucle glycogen synthase protein in the three muscles (mean ∼70%), reflecting a protective mechanism for preventing deleterious glycogen accumulation. Additionally, glycogen content was highest in the EDL of p.R50X/p.R50X mice. Amongst other findings, the present study shows that the expression of the main muscle glycogen regulatory enzymes differs depending on the muscle phenotype (slow- vs. fast-twitch) and that even partial GP-MM deficiency affects maximal endurance capacity. Our knock-in model might help to provide insights into the importance of glycogen on muscle function. PMID:25873271

  17. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  18. Reactivity of mouse antibodies against bromelain-treated mouse erythrocytes with thrombin-treated mouse platelets.

    PubMed Central

    Kawaguchi, S

    1989-01-01

    The reactivity of mouse antibodies against bromelain-treated mouse erythrocytes (BrMRBC) with mouse platelets before and after thrombin treatment was assessed by flow cytometry. Anti-BrMRBC antibodies could bind to thrombin-treated platelets, although normal platelets were also weakly reactive with the antibodies. The binding of anti-BrMRBC antibodies to platelets was confirmed by complement-dependent lysis. It is suggested that thrombin-activated platelets may be a real target for anti-BrMRBC antibodies. PMID:2467876

  19. Mouse Phenome Database

    PubMed Central

    Grubb, Stephen C.; Maddatu, Terry P.; Bult, Carol J.; Bogue, Molly A.

    2009-01-01

    The Mouse Phenome Database (MPD; http://www.jax.org/phenome) is an open source, web-based repository of phenotypic and genotypic data on commonly used and genetically diverse inbred strains of mice and their derivatives. MPD is also a facility for query, analysis and in silico hypothesis testing. Currently MPD contains about 1400 phenotypic measurements contributed by research teams worldwide, including phenotypes relevant to human health such as cancer susceptibility, aging, obesity, susceptibility to infectious diseases, atherosclerosis, blood disorders and neurosensory disorders. Electronic access to centralized strain data enables investigators to select optimal strains for many systems-based research applications, including physiological studies, drug and toxicology testing, modeling disease processes and complex trait analysis. The ability to select strains for specific research applications by accessing existing phenotype data can bypass the need to (re)characterize strains, precluding major investments of time and resources. This functionality, in turn, accelerates research and leverages existing community resources. Since our last NAR reporting in 2007, MPD has added more community-contributed data covering more phenotypic domains and implemented several new tools and features, including a new interactive Tool Demo available through the MPD homepage (quick link: http://phenome.jax.org/phenome/trytools). PMID:18987003

  20. Mouse genetics: Catalogue and scissors

    PubMed Central

    Sung, Young Hoon; Baek, In-Jeoung; Seong, Je Kyung; Kim, Jin-Soo; Lee, Han-Woong

    2012-01-01

    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics. [BMB Reports 2012; 45(12): 686-692] PMID:23261053

  1. Engagement of TLR2 Does not Reverse the Suppressor Function of Mouse Regulatory T Cells, but Promotes Their Survival1

    PubMed Central

    Chen, Qian; Davidson, Todd S.; Huter, Eva N.; Shevach, Ethan M.

    2009-01-01

    TLRs are a class of conserved pattern recognition receptors that are used by cells of the innate immune system. Recent studies have demonstrated the expression of TLRs on both human and mouse T cells raising the possibility that TLRs play a direct role in adaptive immunity. TLR2 is activated primarily by bacterial wall components including peptidoglycan and lipoproteins. Several studies have shown that mouse regulatory T (Treg) express TLR2 and claimed that engagement of TLR2 by synthetic ligands reversed their suppressive function. In contrary, enhancement of Treg function was observed following engagement of TLR2 on human Treg. We have re-examined the expression and function of TLR2 on mouse Treg purified from Foxp3-GFP knock in mice. TLR2 ligation by TLR2 agonist, the synthetic bacterial lipoprotein (BLP) Pam3CSK4, enhanced the proliferative responses of both conventional T cells and Treg in response to TLR stimulation in the absence of APC. Treatment of Foxp3+ Treg with Pam3CSK4 did not alter their suppressive function in vitro or in vivo and did not reduce their level of Foxp3 expression. An additional effect of TLR2 stimulation of Treg was induction of Bcl-xL resulting in enhanced survival in vitro. Treatment of mice with the TLR2 agonist enhanced the antigen-driven proliferation of Treg in vivo, but did not abolish their ability to suppress the development of EAE. Development of methods to selectively stimulate TLR2 on Treg may lead to a novel approaches for the treatment of autoimmune diseases. PMID:19748987

  2. Engagement of TLR2 does not reverse the suppressor function of mouse regulatory T cells, but promotes their survival.

    PubMed

    Chen, Qian; Davidson, Todd S; Huter, Eva N; Shevach, Ethan M

    2009-10-01

    TLRs are a class of conserved pattern recognition receptors that are used by cells of the innate immune system. Recent studies have demonstrated the expression of TLRs on both human and mouse T cells raising the possibility that TLRs play a direct role in adaptive immunity. TLR2 is activated primarily by bacterial wall components including peptidoglycan and lipoproteins. Several studies have shown that mouse regulatory T (Treg) cells express TLR2 and claimed that engagement of TLR2 by synthetic ligands reversed their suppressive function. In contrary, enhancement of Treg function was observed following engagement of TLR2 on human Treg. We have reexamined the expression and function of TLR2 on mouse Treg purified from Foxp3-GFP knock-in mice. TLR2 ligation by TLR2 agonist, the synthetic bacterial lipoprotein Pam3CSK4, enhanced the proliferative responses of both conventional T cells and Treg in response to TLR stimulation in the absence of APC. Treatment of Foxp3+ Treg with Pam3CSK4 did not alter their suppressive function in vitro or in vivo and did not reduce their level of Foxp3 expression. An additional effect of TLR2 stimulation of Treg was induction of Bcl-x(L) resulting in enhanced survival in vitro. Treatment of mice with the TLR2 agonist enhanced the Ag-driven proliferation of Treg in vivo, but did not abolish their ability to suppress the development of experimental autoimmune encephalomyelitis. Development of methods to selectively stimulate TLR2 on Treg may lead to a novel approaches for the treatment of autoimmune diseases.

  3. Mouse models for graft arteriosclerosis.

    PubMed

    Qin, Lingfeng; Yu, Luyang; Min, Wang

    2013-05-14

    Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional

  4. Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes

    PubMed Central

    Hur, Stella K.; Freschi, Andrea; Ideraabdullah, Folami; Thorvaldsen, Joanne L.; Luense, Lacey J.; Weller, Angela H.; Berger, Shelley L.; Cerrato, Flavia; Riccio, Andrea; Bartolomei, Marisa S.

    2016-01-01

    Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1. We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19+/hIC1 mice will elucidate the molecular mechanisms that may underlie SRS. PMID:27621468

  5. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex.

    PubMed

    Furukawa, Tomonori; Yamada, Junko; Akita, Tenpei; Matsushima, Yoshitaka; Yanagawa, Yuchio; Fukuda, Atsuo

    2014-01-01

    γ-Aminobutyric acid (GABA) depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR) contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67(GFP/GFP)) to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose-response properties of labeled cells to GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67(GFP/GFP) mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidino)ethanesulfonic acid (GES), and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid, as examined through high-performance liquid chromatography. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the developing neocortex.

  6. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex

    PubMed Central

    Furukawa, Tomonori; Yamada, Junko; Akita, Tenpei; Matsushima, Yoshitaka; Yanagawa, Yuchio; Fukuda, Atsuo

    2014-01-01

    γ-Aminobutyric acid (GABA) depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR) contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67GFP/GFP) to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose–response properties of labeled cells to GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67GFP/GFP mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidino)ethanesulfonic acid (GES), and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid, as examined through high-performance liquid chromatography. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the developing neocortex. PMID:24734001

  7. Serine 302 Phosphorylation of Mouse Insulin Receptor Substrate 1 (IRS1) Is Dispensable for Normal Insulin Signaling and Feedback Regulation by Hepatic S6 Kinase.

    PubMed

    Copps, Kyle D; Hançer, Nancy J; Qiu, Wei; White, Morris F

    2016-04-15

    Constitutive activation of the mammalian target of rapamycin complex 1 and S6 kinase (mTORC1→ S6K) attenuates insulin-stimulated Akt activity in certain tumors in part through "feedback" phosphorylation of the upstream insulin receptor substrate 1 (IRS1). However, the significance of this mechanism for regulating insulin sensitivity in normal tissue remains unclear. We investigated the function of Ser-302 in mouse IRS1, the major site of its phosphorylation by S6K in vitro, through genetic knock-in of a serine-to-alanine mutation (A302). Although insulin rapidly stimulated feedback phosphorylation of Ser-302 in mouse liver and muscle, homozygous A302 mice (A/A) and their knock-in controls (S/S) exhibited similar glucose homeostasis and muscle insulin signaling. Furthermore, both A302 and control primary hepatocytes from which Irs2 was deleted showed marked inhibition of insulin-stimulated IRS1 tyrosine phosphorylation and PI3K binding after emetine treatment to raise intracellular amino acids and activate mTORC1 → S6K signaling. To specifically activate mTORC1 in mouse tissue, we deleted hepatic Tsc1 using Cre adenovirus. Although it moderately decreased IRS1/PI3K association and Akt phosphorylation in liver, Tsc1 deletion failed to cause glucose intolerance or promote hyperinsulinemia in mixed background A/A or S/S mice. Moreover, Tsc1 deletion failed to stimulate phospho-Ser-302 or other putative S6K sites within IRS1, whereas ribosomal S6 protein was constitutively phosphorylated. Following acute Tsc1 deletion from hepatocytes, Akt phosphorylation, but not IRS1/PI3K association, was rapidly restored by treatment with the mTORC1 inhibitor rapamycin. Thus, within the hepatic compartment, mTORC1 → S6K signaling regulates Akt largely through IRS-independent means with little effect upon physiologic insulin sensitivity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  9. Mouse Models of Frontotemporal Dementia

    PubMed Central

    Roberson, Erik D.

    2012-01-01

    The pace of discovery in frontotemporal dementia (FTD) has accelerated dramatically with the discovery of new genetic causes and pathological substrates of the disease. MAPT/Tau, GRN/progranulin, and C9ORF72 have emerged as common FTD genes, and TARDBP/TDP-43, VCP, FUS, and CHMP2B have been identified as less common genetic causes. TDP-43 and FUS have joined Tau as common neuropathological substrates of the disease. Mouse models provide an important tool for understanding the role of these molecules in FTD pathogenesis. Here, we review recent progress with mouse models based on Tau, TDP-43, progranulin, VCP, and CHMP2B. We also consider future prospects for FTD models, including developing new models to address unanswered questions. There are also opportunities for capitalizing on conservation of the salience network, which is selectively vulnerable in FTD, and the availability of FTD-related behavioral paradigms to analyze mouse models of the disease. PMID:23280835

  10. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology.

    PubMed

    Vest, Katherine E; Phillips, Brittany L; Banerjee, Ayan; Apponi, Luciano H; Dammer, Eric B; Xu, Weiting; Zheng, Dinghai; Yu, Julia; Tian, Bin; Pavlath, Grace K; Corbett, Anita H

    2017-09-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Effect of Sarizotan, a 5-HT1a and D2-like receptor agonist, on respiration in three mouse models of Rett syndrome.

    PubMed

    Abdala, Ana P; Lioy, Daniel T; Garg, Saurabh K; Knopp, Sharon J; Paton, Julian F R; Bissonnette, John M

    2014-06-01

    Disturbances in respiration are common and debilitating features of Rett syndrome (RTT). A previous study showed that the 5-HT1a receptor agonist (R)-(+)-8-hydroxy-dipropyl-2-aminotetralin hydrobromide (8-OH-DPAT) significantly reduced the incidence of apnea and the irregular breathing pattern in a mouse model of the disorder. 8-OH-DPAT, however, is not available for clinical practice. Sarizotan, a full 5-HT1a agonist and a dopamine D2-like agonist/partial agonist, has been used in clinical trials for the treatment of l-dopa-induced dyskinesia. The purpose of this study was to evaluate the effects of sarizotan on respiration and locomotion in mouse models of RTT. Studies were performed in Bird and Jaenisch strains of methyl-CpG-binding protein 2--deficient heterozygous female and Jaenisch strain Mecp2 null male mice and in knock-in heterozygous female mice of a common nonsense mutation (R168X). Respiratory pattern was determined with body plethysmography, and locomotion was determined with open-field recording. Sarizotan or vehicle was administered 20 minutes before a 30-minute recording of respiratory pattern or motor behavior. In separate studies, a crossover design was used to administer the drug for 7 and for 14 days. Sarizotan reduced the incidence of apnea in all three RTT mouse models to approximately 15% of their pretreatment levels. The irregular breathing pattern was corrected to that of wild-type littermates. When administered for 7 or 14 days, apnea decreased to 25 to 33% of the incidence seen with vehicle. This study indicates that the clinically approved drug sarizotan is an effective treatment for respiratory disorders in mouse models of RTT.

  12. Effect of Sarizotan, a 5-HT1a and D2-Like Receptor Agonist, on Respiration in Three Mouse Models of Rett Syndrome

    PubMed Central

    Abdala, Ana P.; Lioy, Daniel T.; Garg, Saurabh K.; Knopp, Sharon J.; Paton, Julian F. R.

    2014-01-01

    Disturbances in respiration are common and debilitating features of Rett syndrome (RTT). A previous study showed that the 5-HT1a receptor agonist (R)-(+)-8-hydroxy-dipropyl-2-aminotetralin hydrobromide (8-OH-DPAT) significantly reduced the incidence of apnea and the irregular breathing pattern in a mouse model of the disorder. 8-OH-DPAT, however, is not available for clinical practice. Sarizotan, a full 5-HT1a agonist and a dopamine D2–like agonist/partial agonist, has been used in clinical trials for the treatment of l-dopa–induced dyskinesia. The purpose of this study was to evaluate the effects of sarizotan on respiration and locomotion in mouse models of RTT. Studies were performed in Bird and Jaenisch strains of methyl-CpG–binding protein 2-–deficient heterozygous female and Jaenisch strain Mecp2 null male mice and in knock-in heterozygous female mice of a common nonsense mutation (R168X). Respiratory pattern was determined with body plethysmography, and locomotion was determined with open-field recording. Sarizotan or vehicle was administered 20 minutes before a 30-minute recording of respiratory pattern or motor behavior. In separate studies, a crossover design was used to administer the drug for 7 and for 14 days. Sarizotan reduced the incidence of apnea in all three RTT mouse models to approximately 15% of their pretreatment levels. The irregular breathing pattern was corrected to that of wild-type littermates. When administered for 7 or 14 days, apnea decreased to 25 to 33% of the incidence seen with vehicle. This study indicates that the clinically approved drug sarizotan is an effective treatment for respiratory disorders in mouse models of RTT. PMID:24351104

  13. Muscle and Heart Function Restoration in a Limb Girdle Muscular Dystrophy 2I (LGMD2I) Mouse Model by Systemic FKRP Gene Delivery

    PubMed Central

    Qiao, Chunping; Wang, Chi-Hsien; Zhao, Chunxia; Lu, Peijuan; Awano, Hiroyuki; Xiao, Bin; Li, Jianbin; Yuan, Zhenhua; Dai, Yi; Martin, Carrie Bette; Li, Juan; Lu, Qilong; Xiao, Xiao

    2014-01-01

    Mutations in fukutin-related protein (FKRP) gene cause a wide spectrum of disease phenotypes including the mild limb-girdle muscular dystrophy 2I (LGMD2I), the severe Walker-Warburg syndrome, and muscle-eye-brain disease. FKRP deficiency results in α-dystroglycan (α-DG) hypoglycosylation in the muscle and heart, which is a biochemical hallmark of dystroglycanopathies. To study gene replacement therapy, we generated and characterized a new mouse model of LGMD2I harboring the human mutation leucine 276 to isoleucine (L276I) in the mouse alleles. The homozygous knock-in mice (L276IKI) mimic the classic late onset phenotype of LGMD2I in both skeletal and cardiac muscles. Systemic delivery of human FKRP gene by AAV9 vector in the L276IKI mice, at either neonatal age or at the age of 9 months, rendered body wide FKRP expression and restored glycosylation of α-DG in both skeletal and cardiac muscles. FKRP gene therapy ameliorated dystrophic pathology and cardiomyopathy such as muscle degeneration, fibrosis, and myofiber membrane leakage, resulting in restoration of muscle and heart contractile functions. Thus, these results demonstrated that the treatment based on FKRP gene replacement was effective. PMID:25048216

  14. Beneficial effects of bumetanide in a CaV1.1-R528H mouse model of hypokalaemic periodic paralysis.

    PubMed

    Wu, Fenfen; Mi, Wentao; Cannon, Stephen C

    2013-12-01

    Transient attacks of weakness in hypokalaemic periodic paralysis are caused by reduced fibre excitability from paradoxical depolarization of the resting potential in low potassium. Mutations of calcium channel and sodium channel genes have been identified as the underlying molecular defects that cause instability of the resting potential. Despite these scientific advances, therapeutic options remain limited. In a mouse model of hypokalaemic periodic paralysis from a sodium channel mutation (NaV1.4-R669H), we recently showed that inhibition of chloride influx with bumetanide reduced the susceptibility to attacks of weakness, in vitro. The R528H mutation in the calcium channel gene (CACNA1S encoding CaV1.1) is the most common cause of hypokalaemic periodic paralysis. We developed a CaV1.1-R528H knock-in mouse model of hypokalaemic periodic paralysis and show herein that bumetanide protects against both muscle weakness from low K+ challenge in vitro and loss of muscle excitability in vivo from a glucose plus insulin infusion. This work demonstrates the critical role of the chloride gradient in modulating the susceptibility to ictal weakness and establishes bumetanide as a potential therapy for hypokalaemic periodic paralysis arising from either NaV1.4 or CaV1.1 mutations.

  15. Generation and characterization of a novel neural crest marker allele, Inka1-LacZ, reveals a role for Inka1 in mouse neural tube closure

    PubMed Central

    Reid, Bethany S.; Sargent, Thomas D.; Williams, Trevor

    2010-01-01

    Previous studies identified Inka1 as a gene regulated by AP-2α in the neural crest required for craniofacial morphogenesis in fish and frog. Here, we extend the analysis of Inka1 function and regulation to the mouse by generating a LacZ knock-in allele. Inka1-LacZ allele expression occurs in the cephalic mesenchyme, heart, and paraxial mesoderm prior to E8.5. Subsequently, expression is observed in the migratory neural crest cells and their derivatives. Consistent with expression of Inka1 in tissues of the developing head during neurulation, a low percentage of Inka1−/− mice show exencephaly while the remainder are viable and fertile. Further studies indicate that AP-2α is not required for Inka1 expression in the mouse, and suggest that there is no significant genetic interaction between these two factors during embryogenesis. Together, these data demonstrate that while the expression domain of Inka1 is conserved among vertebrates, its function and regulation are not. PMID:20175189

  16. A novel Foxn1(eGFP/+) mouse model identifies Bmp4-induced maintenance of Foxn1 expression and thymic epithelial progenitor populations.

    PubMed

    Barsanti, Marco; Lim, Joanna M C; Hun, Michael L; Lister, Natalie; Wong, Kahlia; Hammett, Maree V; Lepletier, Ailin; Boyd, Richard L; Giudice, Antonietta; Chidgey, Ann P

    2017-02-01

    Although forkhead-box n1 (Foxn1) is a critical thymic epithelial cell regulator in thymus organogenesis, its association with epithelial differentiation and homeostasis in the postnatal and aged thymic microenvironment remains conflicting. Consequently, we have generated a Foxn1(eGFP/+) knock-in mouse model that allows for refined investigation of the aging thymic epithelium. This reporter line differs from those previously published in that concomitant expression of enhanced green fluorescent protein enables live cell sorting of Foxn1(+) cell populations. Our heterozygotes did not exhibit haploinsufficiency, with Foxn1 expression resembling that of wild-type mice. Comparative analysis between Foxn1 and enhanced green fluorescent protein at both the transcriptional and translational levels revealed co-localization, with progressive down-regulation observed predominantly in the aging cortical epithelium. Supplementation with bone morphogenetic protein (Bmp)-4 enhanced Foxn1 expression and colony forming efficiency in both embryonic and adult progenitor 3D cultures. Strikingly, selective maintenance of immature cortical and medullary epithelial cells was observed which is consistent with the higher Bmp receptor 2 expression levels seen in these progenitor populations. This study demonstrates the significance of our mouse model in unraveling the role of this master regulator in thymus development, homeostasis and aging, providing a faithful reporter system for phenotypic and functional investigations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery.

    PubMed

    Qiao, Chunping; Wang, Chi-Hsien; Zhao, Chunxia; Lu, Peijuan; Awano, Hiroyuki; Xiao, Bin; Li, Jianbin; Yuan, Zhenhua; Dai, Yi; Martin, Carrie Bette; Li, Juan; Lu, Qilong; Xiao, Xiao

    2014-11-01

    Mutations in fukutin-related protein (FKRP) gene cause a wide spectrum of disease phenotypes including the mild limb-girdle muscular dystrophy 2I (LGMD2I), the severe Walker-Warburg syndrome, and muscle-eye-brain disease. FKRP deficiency results in α-dystroglycan (α-DG) hypoglycosylation in the muscle and heart, which is a biochemical hallmark of dystroglycanopathies. To study gene replacement therapy, we generated and characterized a new mouse model of LGMD2I harboring the human mutation leucine 276 to isoleucine (L276I) in the mouse alleles. The homozygous knock-in mice (L276I(KI)) mimic the classic late onset phenotype of LGMD2I in both skeletal and cardiac muscles. Systemic delivery of human FKRP gene by AAV9 vector in the L276I(KI) mice, at either neonatal age or at the age of 9 months, rendered body wide FKRP expression and restored glycosylation of α-DG in both skeletal and cardiac muscles. FKRP gene therapy ameliorated dystrophic pathology and cardiomyopathy such as muscle degeneration, fibrosis, and myofiber membrane leakage, resulting in restoration of muscle and heart contractile functions. Thus, these results demonstrated that the treatment based on FKRP gene replacement was effective.

  18. Translation of the Prion Protein mRNA Is Robust in Astrocytes but Does Not Amplify during Reactive Astrocytosis in the Mouse Brain

    PubMed Central

    Jackson, Walker S.; Krost, Clemens; Borkowski, Andrew W.; Kaczmarczyk, Lech

    2014-01-01

    Prion diseases induce neurodegeneration in specific brain areas for undetermined reasons. A thorough understanding of the localization of the disease-causing molecule, the prion protein (PrP), could inform on this issue but previous studies have generated conflicting conclusions. One of the more intriguing disagreements is whether PrP is synthesized by astrocytes. We developed a knock-in reporter mouse line in which the coding sequence of the PrP expressing gene (Prnp), was replaced with that for green fluorescent protein (GFP). Native GFP fluorescence intensity varied between and within brain regions. GFP was present in astrocytes but did not increase during reactive gliosis induced by scrapie prion infection. Therefore, reactive gliosis associated with prion diseases does not cause an acceleration of local PrP production. In addition to aiding in Prnp gene activity studies, this reporter mouse line will likely prove useful for analysis of chimeric animals produced by stem cell and tissue transplantation experiments. PMID:24752288

  19. The homozygote VCP(R¹⁵⁵H/R¹⁵⁵H) mouse model exhibits accelerated human VCP-associated disease pathology.

    PubMed

    Nalbandian, Angèle; Llewellyn, Katrina J; Kitazawa, Masashi; Yin, Hong Z; Badadani, Mallikarjun; Khanlou, Negar; Edwards, Robert; Nguyen, Christopher; Mukherjee, Jogeshwar; Mozaffar, Tahseen; Watts, Giles; Weiss, John; Kimonis, Virginia E

    2012-01-01

    Valosin containing protein (VCP) mutations are the cause of hereditary inclusion body myopathy, Paget's disease of bone, frontotemporal dementia (IBMPFD). VCP gene mutations have also been linked to 2% of isolated familial amyotrophic lateral sclerosis (ALS). VCP is at the intersection of disrupted ubiquitin proteasome and autophagy pathways, mechanisms responsible for the intracellular protein degradation and abnormal pathology seen in muscle, brain and spinal cord. We have developed the homozygous knock-in VCP mouse (VCP(R155H/R155H)) model carrying the common R155H mutations, which develops many clinical features typical of the VCP-associated human diseases. Homozygote VCP(R155H/R155H) mice typically survive less than 21 days, exhibit weakness and myopathic changes on EMG. MicroCT imaging of the bones reveal non-symmetrical radiolucencies of the proximal tibiae and bone, highly suggestive of PDB. The VCP(R155H/R155H) mice manifest prominent muscle, heart, brain and spinal cord pathology, including striking mitochondrial abnormalities, in addition to disrupted autophagy and ubiquitin pathologies. The VCP(R155H/R155H) homozygous mouse thus represents an accelerated model of VCP disease and can be utilized to elucidate the intricate molecular mechanisms involved in the pathogenesis of VCP-associated neurodegenerative diseases and for the development of novel therapeutic strategies.

  20. A mouse model for human deafness DFNB22 reveals that hearing impairment is due to a loss of inner hair cell stimulation.

    PubMed

    Lukashkin, Andrei N; Legan, P Kevin; Weddell, Thomas D; Lukashkina, Victoria A; Goodyear, Richard J; Welstead, Lindsey J; Petit, Christine; Russell, Ian J; Richardson, Guy P

    2012-11-20

    The gene causative for the human nonsyndromic recessive form of deafness DFNB22 encodes otoancorin, a 120-kDa inner ear-specific protein that is expressed on the surface of the spiral limbus in the cochlea. Gene targeting in ES cells was used to create an EGFP knock-in, otoancorin KO (Otoa(EGFP/EGFP)) mouse. In the Otoa(EGFP/EGFP) mouse, the tectorial membrane (TM), a ribbon-like strip of ECM that is normally anchored by one edge to the spiral limbus and lies over the organ of Corti, retains its general form, and remains in close proximity to the organ of Corti, but is detached from the limbal surface. Measurements of cochlear microphonic potentials, distortion product otoacoustic emissions, and basilar membrane motion indicate that the TM remains functionally attached to the electromotile, sensorimotor outer hair cells of the organ of Corti, and that the amplification and frequency tuning of the basilar membrane responses to sounds are almost normal. The compound action potential masker tuning curves, a measure of the tuning of the sensory inner hair cells, are also sharply tuned, but the thresholds of the compound action potentials, a measure of inner hair cell sensitivity, are significantly elevated. These results indicate that the hearing loss in patients with Otoa mutations is caused by a defect in inner hair cell stimulation, and reveal the limbal attachment of the TM plays a critical role in this process.

  1. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    PubMed

    Jaako, P; Debnath, S; Olsson, K; Zhang, Y; Flygare, J; Lindström, M S; Bryder, D; Karlsson, S

    2015-11-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of mouse double minute 2 (Mdm2), the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time.

  2. Mouse Models of Prostate Cancer

    PubMed Central

    Valkenburg, Kenneth C.; Williams, Bart O.

    2011-01-01

    The development and optimization of high-throughput screening methods has identified a multitude of genetic changes associated with human disease. The use of immunodeficient and genetically engineered mouse models that mimic the human disease has been crucial in validating the importance of these genetic pathways in prostate cancer. These models provide a platform for finding novel therapies to treat human patients afflicted with prostate cancer as well as those who have debilitating bone metastases. In this paper, we focus on the historical development and phenotypic descriptions of mouse models used to study prostate cancer. We also comment on how closely each model recapitulates human prostate cancer. PMID:22111002

  3. S113R mutation in SLC33A1 leads to neurodegeneration and augmented BMP signaling in a mouse model

    PubMed Central

    Liu, Pingting; Jiang, Baichun; Ma, Jian; Lin, Pengfei; Zhang, Yinshuai; Shao, Changshun; Gong, Yaoqin

    2017-01-01

    ABSTRACT The S113R mutation (c.339T>G) (MIM #603690.0001) in SLC33A1 (MIM #603690), an ER membrane acetyl-CoA transporter, has been previously identified in individuals with hereditary spastic paraplegia type 42 (SPG42; MIM #612539). SLC33A1 has also been shown to inhibit the bone morphogenetic protein (BMP) signaling pathway in zebrafish. To better understand the function of SLC33A1, we generated and characterized Slc33a1S113R knock-in mice. Homozygous Slc33a1S113R mutant mice were embryonic lethal, whereas heterozygous Slc33a1 mutant mice (Slc33a1wt/mut) exhibited behavioral abnormalities and central neurodegeneration, which is consistent with hereditary spastic paraplegia (HSP) phenotypes. Importantly, we found an upregulation of BMP signaling in the nervous system and mouse embryonic fibroblasts of Slc33a1wt/mut mice. Using a sciatic nerve crush injury model in vivo and dorsal root ganglion (DRG) culture in vitro we showed that injury-induced axonal regeneration in Slc33a1wt/mut mice was accelerated and mediated by upregulated BMP signaling. Exogenous addition of BMP signaling antagonist, noggin, could efficiently alleviate the accelerated injury-induced axonal regrowth. These results indicate that SLC33A1 can negatively regulate BMP signaling in mice, further supporting the notion that upregulation of BMP signaling is a common mechanism of a subset of hereditary spastic paraplegias. PMID:27935820

  4. A Mouse Model of Timothy Syndrome: a Complex Autistic Disorder Resulting from a Point Mutation in Cav1.2

    PubMed Central

    Bett, Glenna CL.; Lis, Agnieszka; Wersinger, Scott R.; Baizer, Joan S.; Duffey, Michael E; Rasmusson, Randall L.

    2013-01-01

    Timothy Syndrome (TS) arises from a point mutation in the human voltage-gated L-type Ca2+ channel (Cav1.2). TS is associated with cardiac arrhythmias and sudden cardiac death, as well as congenital heart disease, impaired cognitive function, and autism spectrum disorders. TS results from a de novo gain-of-function mutation which affects the voltage dependent component of Cav1.2 inactivation. We created a knock-in TS mouse. No homozygous TS mice survived, but heterozygous TS2-NEO mice (with the mutation and the neocassette in situ) had a normal outward appearance and survived to reproductive age. Previously, we have demonstrated that these mice exhibit the triad of Autistic traits. In this paper we document other aspects of these mice including Cav1.2 isoform expression levels, normal physical strength, brain anatomy and a marked propensity towards self-injurious scratching. Gross brain anatomy was not markedly different in TS2-NEO mice compared to control littermates, and no missing structures were noted. The lack of obvious changes in brain structure is consistent with theTS2-NEO mice may provide a significant tool in understanding the role of calcium channel inactivation in both cardiac function and brain development. PMID:24371506

  5. Progressive age-related changes in sleep and EEG profiles in the PLB1Triple mouse model of Alzheimer's disease.

    PubMed

    Jyoti, Amar; Plano, Andrea; Riedel, Gernot; Platt, Bettina

    2015-10-01

    Sleep disturbances are common in Alzheimer's disease (AD) and now assumed to contribute to disease onset and progression. Here, we investigated whether activity, sleep/wake pattern, and electroencephalogram (EEG) profiles are altered in the knock-in PLB1Triple mouse model from 5 to 21 months of age. PLB1Triple mice displayed a progressive increase in wakefulness and non-rapid eye movement sleep fragmentation from 9 months onward, whereas PLB1WT wild type controls showed such deterioration only at 21 months. Impaired habituation to spatial novelty was also detected in PLB1Triple mice. Hippocampal power spectra of transgenic mice revealed progressive, vigilance stage-, brain region-, and age-specific changes. Age had an impact on EEG spectra in both cohorts but led to accelerated genotype-dependent differences, ultimately affecting all bands at 21 months. Overall, although PLB1Triple animals display only subtle amyloid and tau pathologies, robust sleep-wake and EEG abnormalities emerged. We hypothesize that such endophenotypes are sensitive, noninvasive, and reliable biomarker to identify onset and progression of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A new mouse line for cell ablation by diphtheria toxin subunit A controlled by a Cre-dependent FLEx switch.

    PubMed

    Plummer, Nicholas W; Ungewitter, Erica K; Smith, Kathleen G; Yao, Humphrey H-C; Jensen, Patricia

    2017-09-05

    Recombinase responsive mouse lines expressing diphtheria toxin subunit A (DTA) are well established tools for targeted ablation of genetically defined cell populations. Here we describe a new knock-in allele at the Gt(Rosa)26Sor locus that retains the best features of previously described DTA alleles-including a CAG promoter, attenuated mutant DTA cDNA, and ubiquitous EGFP labeling-with the addition of a Cre-dependent FLEx switch for tight control of expression. The FLEx switch consists of two pairs of antiparallel lox sites requiring Cre-mediated recombination for inversion of the DTA to the proper orientation for transcription. We demonstrate its utility by Cre-dependent ablation of both a broad domain in the embryonic nervous system and a discrete population of cells in the fetal gonads. We conclude that this new DTA line is useful for targeted ablation of genetically-defined cell populations. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  7. Progressive developmental restriction, acquisition of left-right identity and cell growth behavior during lobe formation in mouse liver development.

    PubMed

    Weiss, Mary C; Le Garrec, Jean-Francois; Coqueran, Sabrina; Strick-Marchand, Helene; Buckingham, Margaret

    2016-04-01

    To identify cell-based decisions implicated in morphogenesis of the mammalian liver, we performed clonal analysis of hepatocytes/hepatoblasts in mouse liver development, using a knock-in allele of Hnf4a/laacZ This transgene randomly undergoes a low frequency of recombination that generates a functional lacZ gene that produces β-galactosidase in tissues in which Hnf4a is expressed. Two types of β-galactosidase-positive clones were found. Most have undergone three to eight cell divisions and result from independent events (Luria-Delbrück fluctuation test); we calculate that they arose between E8.5 and E13.5. A second class was mega-clones derived from early endoderm progenitors, generating many descendants. Some originated from multi-potential founder cells, with labeled cells in the liver, pancreas and/or intestine. A few mega-clones populate only one side of the liver, indicating hepatic cell chirality. The patterns of labeled cells indicate cohesive and often oriented growth, notably in broad radial stripes, potentially implicated in the formation of liver lobes. This retrospective clonal analysis gives novel insights into clonal origins, cell behavior of progenitors and distinct properties of endoderm cells that underlie the formation and morphogenesis of the liver.

  8. Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model

    PubMed Central

    Schauwaers, Kris; De Gendt, Karel; Saunders, Philippa T. K.; Atanassova, Nina; Haelens, Annemie; Callewaert, Leen; Moehren, Udo; Swinnen, Johannes V.; Verhoeven, Guido; Verrijdt, Guy; Claessens, Frank

    2007-01-01

    Androgens influence transcription of their target genes through the activation of the androgen receptor (AR) that subsequently interacts with specific DNA motifs in these genes. These DNA motifs, called androgen response elements (AREs), can be classified in two classes: the classical AREs, which are also recognized by the other steroid hormone receptors; and the AR-selective AREs, which display selectivity for the AR. For in vitro interaction with the selective AREs, the androgen receptor DNA-binding domain is dependent on specific residues in its second zinc-finger. To evaluate the physiological relevance of these selective elements, we generated a germ-line knockin mouse model, termed SPARKI (SPecificity-affecting AR KnockIn), in which the second zinc-finger of the AR was replaced with that of the glucocorticoid receptor, resulting in a chimeric protein that retains its ability to bind classical AREs but is unable to bind selective AREs. The reproductive organs of SPARKI males are smaller compared with wild-type animals, and they are also subfertile. Intriguingly, however, they do not display any anabolic phenotype. The expression of two testis-specific, androgen-responsive genes is differentially affected by the SPARKI mutation, which is correlated with the involvement of different types of response elements in their androgen responsiveness. In this report, we present the first in vivo evidence of the existence of two functionally different types of AREs and demonstrate that AR-regulated gene expression can be targeted based on this distinction. PMID:17360365

  9. A reporter model to visualize imprinting stability at the Dlk1 locus during mouse development and in pluripotent cells

    PubMed Central

    Swanzey, Emily

    2016-01-01

    Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knock-in reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this ‘imprinting reporter mouse’ can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals the role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease. PMID:27729406

  10. Characterization of the BAC Id3-enhanced green fluorescent protein transgenic mouse line for in vivo imaging of astrocytes

    PubMed Central

    Lamantia, Cassandra; Tremblay, Marie-Eve; Majewska, Ania

    2014-01-01

    Abstract. Astrocytes are highly ramified glial cells with critical roles in brain physiology and pathology. Recently, breakthroughs in imaging technology have expanded our understanding of astrocyte function in vivo. The in vivo study of astrocytic dynamics, however, is limited by the tools available to label astrocytes and their processes. Here, we characterize the bacterial artificial chromosome transgenic Id3-EGFP knock-in mouse to establish its usefulness for in vivo imaging of astrocyte processes. Using fixed brain sections, we observed enhanced green fluorescent protein expression in astrocytes and blood vessel walls throughout the brain, although the extent and cell type specificity of expression depended on the brain area and developmental age. Using in vivo two-photon imaging, we visualized astrocytes in cortical layers 1–3 in both thin skull and window preparations. In adult animals, astrocytic cell bodies and fine processes could be followed over many hours. Our results suggest that Id3 mice could be used for in vivo imaging of astrocytes and blood vessels in development and adulthood. PMID:26157970

  11. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  12. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients.

  13. Mouse models of myasthenia gravis.

    PubMed

    Ban, Joanne; Phillips, William D

    2015-01-01

    Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics.

  14. High-throughput mouse phenotyping.

    PubMed

    Gates, Hilary; Mallon, Ann-Marie; Brown, Steve D M

    2011-04-01

    Comprehensive phenotyping will be required to reveal the pleiotropic functions of a gene and to uncover the wider role of genetic loci within diverse biological systems. The challenge will be to devise phenotyping approaches to characterise the thousands of mutants that are being generated as part of international efforts to acquire a mutant for every gene in the mouse genome. In order to acquire robust datasets of broad based phenotypes from mouse mutants it is necessary to design and implement pipelines that incorporate standardised phenotyping platforms that are validated across diverse mouse genetics centres or mouse clinics. We describe here the rationale and methodology behind one phenotyping pipeline, EMPReSSslim, that was designed as part of the work of the EUMORPHIA and EUMODIC consortia, and which exemplifies some of the challenges facing large-scale phenotyping. EMPReSSslim captures a broad range of data on diverse biological systems, from biochemical to physiological amongst others. Data capture and dissemination is pivotal to the operation of large-scale phenotyping pipelines, including the definition of parameters integral to each phenotyping test and the associated ontological descriptions. EMPReSSslim data is displayed within the EuroPhenome database, where a variety of tools are available to allow the user to search for interesting biological or clinical phenotypes.

  15. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  16. Aberrant Sodium Channel Currents and Hyperexcitability of Medial Entorhinal Cortex Neurons in a Mouse Model of SCN8A Encephalopathy.

    PubMed

    Ottolini, Matteo; Barker, Bryan S; Gaykema, Ronald P; Meisler, Miriam H; Patel, Manoj K

    2017-08-09

    SCN8A encephalopathy, or early infantile epileptic encephalopathy 13 (EIEE13), is caused predominantly by de novo gain-of-function mutations in the voltage-gated Na channel Nav1.6. Affected individuals suffer from refractory seizures, developmental delay, cognitive disability, and elevated risk of sudden unexpected death in epilepsy (SUDEP). A knock-in mouse model carrying the patient mutation p.Asn1768Asp (N1768D) reproduces many features of the disorder, including spontaneous seizures and SUDEP. We used the mouse model to examine the effects of the mutation on layer II stellate neurons of the medial entorhinal cortex (mEC), which transmit excitatory input to the hippocampus. Heterozygous (Scn8a(D/+)), homozygous (Scn8a(D/D))), and WT (Scn8a(+/+)) littermates were compared at 3 weeks of age, the time of seizure onset for homozygous mice. Heterozygotes remain seizure free for another month. mEC layer II neurons of heterozygous and homozygous mice were hyperexcitable and generated long-lasting depolarizing potentials with bursts of action potentials after synaptic stimulation. Recording of Na currents revealed proexcitatory increases in persistent and resurgent currents and rightward shifts in inactivation parameters, leading to significant increases in the magnitude of window currents. The proexcitatory changes were more pronounced in homozygous mice than in heterozygotes, consistent with the earlier age of seizure onset in homozygotes. These studies demonstrate that the N1768D mutation increases the excitability of mEC layer II neurons by increasing persistent and resurgent Na currents and disrupting channel inactivation. The aberrant activities of mEC layer II neurons would provide excessive excitatory input to the hippocampus and contribute to hyperexcitability of hippocampal neurons in this model of SCN8A encephalopathy.SIGNIFICANCE STATEMENTSCN8A encephalopathy is a devastating neurological disorder that results from de novo mutations in the Na channel Nav1

  17. Modulating myosin restores muscle function in a mouse model of nemaline myopathy.

    PubMed

    Lindqvist, Johan; Levy, Yotam; Pati-Alam, Alisha; Hardeman, Edna C; Gregorevic, Paul; Ochala, Julien

    2016-02-17

    Nemaline myopathy, one of the most common congenital myopathies is associated with mutations in various genes including ACTA1. This disease is also characterised by various forms/degrees of muscle weakness with most cases being severe and resulting in death in infancy. Recent findings have provided valuable insight into the underlying pathophysiological mechanisms. Mutations in ACTA1 directly disrupt binding interactions between actin and myosin, and consequently the intrinsic force-generating capacity of muscle fibres. ACTA1 mutations are also associated with variations in myofibre size, the mechanisms of which have been unclear. In the present study, we sought to test the hypotheses that the compromised functional and morphological attributes of skeletal muscles bearing ACTA1 mutations (i) would directly be due to the inefficient actomyosin complex, and (ii) could be restored by manipulating myosin expression. We used a knock-in mouse model expressing the ACTA1 His40Tyr actin mutation found in human patients. We then performed in vivo intramuscular injections of recombinant adeno-associated viral vectors harbouring a myosin transgene known to facilitate muscle contraction. We observed that in presence of the transgene, the intrinsic force-generating capacity was restored and myofibre size was normal. This demonstrates a direct link between disrupted attachment of myosin molecules to actin monomers and muscle fibre atrophy. These data also suggest that further therapeutic interventions should primarily target myosin dysfunction to alleviate the pathology of ACTA1-related nemaline myopathy. This article is protected by copyright. All rights reserved. © 2016 American Neurological Association.

  18. Epigenetic dysregulation of leukaemic HOX code in MLL-rearranged leukaemia mouse model.

    PubMed

    Ng, Ray Kit; Kong, Cheuk Ting; So, Chi Chiu; Lui, Wing Chi; Chan, Yuen Fan; Leung, Ka Chun; So, Kam Chung; Tsang, Ho Man; Chan, Li Chong; Sham, Mai Har

    2014-01-01

    HOX genes are frequently dysregulated in human leukaemia with the gene rearrangement between mixed lineage leukaemia (MLL) and partner genes. The resultant MLL fusion proteins are known to mediate leukaemia through disruption of the normal epigenetic regulation at the target gene loci. To elucidate the pathogenic role of MLL fusion proteins in HOX dysregulation in leukaemia, we generated a novel haematopoietic lineage-specific Mll-Een knock-in mouse model using a Cre-mediated inversion strategy. The Mll(Een) (/+) invertor mice developed acute myeloid leukaemia, with organomegaly of the spleen, liver and mesenteric lymph nodes caused by infiltration of blast cells. Using Mll-Een-expressing leukaemic cell lines derived from bone marrow of Mll(Een) (/+) mutant mice, we showed that induction of Hox genes in leukaemic cells was associated with hypomethylated promoter regions and an aberrant active chromatin state at the Hox loci. Knock-down of Prmt1 was insufficient to reverse the active chromatin status and the hypomethylated Hox loci, suggesting that Prmt1-mediated histone arginine methylation was only partially involved in the maintenance of Hox expression in leukaemic cells. Furthermore, in vivo analysis of bone marrow cells of Mll(Een) (/+) mice revealed a Hox expression profile similar to that of wild-type haematopoietic stem cells. The leukaemic Hox profile was highly correlated with aberrant hypomethylation of Hox promoters in the mutant mice, which highlights the importance of DNA methylation in leukaemogenic mechanisms induced by MLL fusion proteins. Our results point to the involvement of dynamic epigenetic regulations in the maintenance of the stem cell-like HOX code that initiates leukaemic stem cells in MLL-rearranged leukaemia. This provides insights for the development of alternative strategies for leukaemia treatment. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Measuring discrimination- and reversal learning in mouse models within 4 days and without prior food deprivation.

    PubMed

    Remmelink, Esther; Smit, August B; Verhage, Matthijs; Loos, Maarten

    2016-11-01

    Many neurological and psychiatric disorders are characterized by deficits in cognitive flexibility. Modeling cognitive flexibility in mice enables the investigation of mechanisms underlying these deficits. The majority of currently available behavioral tests targeting this cognitive domain are reversal learning tasks that require scheduled food restriction, extended training periods and labor-intensive, and stress-inducing animal handling. Here, we describe a novel 4-day (4-d) continuously running task measuring discrimination- and reversal learning in an automated home cage (CognitionWall DL/RL task) that largely eliminates these limitations. In this task, mice can earn unlimited number of food rewards by passing through the correct hole of the three-holed CognitionWall. To assess the validity and sensitivity of this novel task, the performance of C57BL/6J mice, amyloid precursor protein/presenilin1 transgenic (APP/PS1) mice, α-calmodulin kinase-II (αCaMKII) T305D knock-in mice, and mice with an orbitofrontal cortex lesion were examined. We found that C57BL/6J mice reach stable performance levels within the 4 d of the task, while experiencing only slight reductions in weight and no major effects on circadian rhythm. The task detected learning deficits in APP/PS1 transgenic and αCaMKII T305D mutant mice. Additionally, we established that the orbitofrontal cortex underlies reversal learning performance in our task. Because of its short duration and the absence of food deprivation and concurrent weight loss, this novel automated home-cage task substantially improves comprehensive preclinical assessment of cognitive functions in mouse models of psychiatric and neurological disorders and also enables analysis during specific developmental stages.

  20. Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum

    PubMed Central

    Nassar, Mérie; Simonnet, Jean; Lofredi, Roxanne; Cohen, Ivan; Savary, Etienne; Yanagawa, Yuchio; Miles, Richard; Fricker, Desdemona

    2015-01-01

    The presubiculum, located between hippocampus and entorhinal cortex, plays a fundamental role in representing spatial information, notably head direction. Little is known about GABAergic interneurons of this region. Here, we used three transgenic mouse lines, Pvalb-Cre, Sst-Cre, and X98, to examine distinct interneurons labeled with tdTomato or green fluorescent protein. The distribution of interneurons in presubicular lamina for each animal line was compared to that in the GAD67-GFP knock-in animal line. Labeling was specific in the Pvalb-Cre line with 87% of labeled interneurons immunopositive for parvalbumin (PV). Immunostaining for somatostatin (SOM) revealed good specificity in the X98 line with 89% of fluorescent cells, but a lesser specificity in Sst-Cre animals where only 71% of labeled cells were immunopositive. A minority of ∼6% of interneurons co-expressed PV and SOM in the presubiculum of Sst-Cre animals. The electrophysiological and morphological properties of fluorescent interneurons from Pvalb-Cre, Sst-Cre, and X98 mice differed. Distinct physiological groups of presubicular interneurons were resolved by unsupervised cluster analysis of parameters describing passive properties, firing patterns and AP shapes. One group consisted of SOM-positive, Martinotti type neurons with a low firing threshold (cluster 1). Fast spiking basket cells, mainly from the Pvalb-Cre line, formed a distinct group (cluster 3). Another group (cluster 2) contained interneurons of intermediate electrical properties and basket-cell like morphologies. These labeled neurons were recorded from both Sst-Cre and Pvalb-Cre animals. Thus, our results reveal a wide variation in anatomical and physiological properties for these interneurons, a real overlap of interneurons immuno-positive for both PV and SOM as well as an off-target recombination in the Sst-Cre line, possibly linked to maternal cre inheritance. PMID:26005406

  1. Measuring discrimination- and reversal learning in mouse models within 4 days and without prior food deprivation

    PubMed Central

    Smit, August B.; Verhage, Matthijs

    2016-01-01

    Many neurological and psychiatric disorders are characterized by deficits in cognitive flexibility. Modeling cognitive flexibility in mice enables the investigation of mechanisms underlying these deficits. The majority of currently available behavioral tests targeting this cognitive domain are reversal learning tasks that require scheduled food restriction, extended training periods and labor-intensive, and stress-inducing animal handling. Here, we describe a novel 4-day (4-d) continuously running task measuring discrimination- and reversal learning in an automated home cage (CognitionWall DL/RL task) that largely eliminates these limitations. In this task, mice can earn unlimited number of food rewards by passing through the correct hole of the three-holed CognitionWall. To assess the validity and sensitivity of this novel task, the performance of C57BL/6J mice, amyloid precursor protein/presenilin1 transgenic (APP/PS1) mice, α-calmodulin kinase-II (αCaMKII) T305D knock-in mice, and mice with an orbitofrontal cortex lesion were examined. We found that C57BL/6J mice reach stable performance levels within the 4 d of the task, while experiencing only slight reductions in weight and no major effects on circadian rhythm. The task detected learning deficits in APP/PS1 transgenic and αCaMKII T305D mutant mice. Additionally, we established that the orbitofrontal cortex underlies reversal learning performance in our task. Because of its short duration and the absence of food deprivation and concurrent weight loss, this novel automated home-cage task substantially improves comprehensive preclinical assessment of cognitive functions in mouse models of psychiatric and neurological disorders and also enables analysis during specific developmental stages. PMID:27918287

  2. Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.

    PubMed

    Nassar, Mérie; Simonnet, Jean; Lofredi, Roxanne; Cohen, Ivan; Savary, Etienne; Yanagawa, Yuchio; Miles, Richard; Fricker, Desdemona

    2015-01-01

    The presubiculum, located between hippocampus and entorhinal cortex, plays a fundamental role in representing spatial information, notably head direction. Little is known about GABAergic interneurons of this region. Here, we used three transgenic mouse lines, Pvalb-Cre, Sst-Cre, and X98, to examine distinct interneurons labeled with tdTomato or green fluorescent protein. The distribution of interneurons in presubicular lamina for each animal line was compared to that in the GAD67-GFP knock-in animal line. Labeling was specific in the Pvalb-Cre line with 87% of labeled interneurons immunopositive for parvalbumin (PV). Immunostaining for somatostatin (SOM) revealed good specificity in the X98 line with 89% of fluorescent cells, but a lesser specificity in Sst-Cre animals where only 71% of labeled cells were immunopositive. A minority of ∼6% of interneurons co-expressed PV and SOM in the presubiculum of Sst-Cre animals. The electrophysiological and morphological properties of fluorescent interneurons from Pvalb-Cre, Sst-Cre, and X98 mice differed. Distinct physiological groups of presubicular interneurons were resolved by unsupervised cluster analysis of parameters describing passive properties, firing patterns and AP shapes. One group consisted of SOM-positive, Martinotti type neurons with a low firing threshold (cluster 1). Fast spiking basket cells, mainly from the Pvalb-Cre line, formed a distinct group (cluster 3). Another group (cluster 2) contained interneurons of intermediate electrical properties and basket-cell like morphologies. These labeled neurons were recorded from both Sst-Cre and Pvalb-Cre animals. Thus, our results reveal a wide variation in anatomical and physiological properties for these interneurons, a real overlap of interneurons immuno-positive for both PV and SOM as well as an off-target recombination in the Sst-Cre line, possibly linked to maternal cre inheritance.

  3. Novel Mouse Models of Methylmalonic Aciduria Recapitulate Phenotypic Traits with a Genetic Dosage Effect.

    PubMed

    Forny, Patrick; Schumann, Anke; Mustedanagic, Merima; Mathis, Déborah; Wulf, Marie-Angela; Nägele, Nadine; Langhans, Claus-Dieter; Zhakupova, Assem; Heeren, Joerg; Scheja, Ludger; Fingerhut, Ralph; Peters, Heidi L; Hornemann, Thorsten; Thony, Beat; Kölker, Stefan; Burda, Patricie; Froese, D Sean; Devuyst, Olivier; Baumgartner, Matthias R

    2016-09-23

    Methylmalonic aciduria (MMAuria), caused by deficiency of methylmalonyl-CoA mutase (MUT), usually presents in the newborn period with failure to thrive and metabolic crisis leading to coma or even death. Survivors remain at risk of metabolic decompensations and severe long term complications, notably renal failure and neurological impairment. We generated clinically relevant mouse models of MMAuria using a constitutive Mut knock-in (KI) allele based on the p.Met700Lys patient mutation, used homozygously (KI/KI) or combined with a knockout allele (KO/KI), to study biochemical and clinical MMAuria disease aspects. Transgenic Mut(ki/ki) and Mut(ko/ki) mice survive post-weaning, show failure to thrive, and show increased methylmalonic acid, propionylcarnitine, odd chain fatty acids, and sphingoid bases, a new potential biomarker of MMAuria. Consistent with genetic dosage, Mut(ko/ki) mice have lower Mut activity, are smaller, and show higher metabolite levels than Mut(ki/ki) mice. Further, Mut(ko/ki) mice exhibit manifestations of kidney and brain damage, including increased plasma urea, impaired diuresis, elevated biomarkers, and changes in brain weight. On a high protein diet, mutant mice display disease exacerbation, including elevated blood ammonia, and catastrophic weight loss, which, in Mut(ki/ki) mice, is rescued by hydroxocobalamin treatment. This study expands knowledge of MMAuria, introduces the discovery of new biomarkers, and constitutes the first in vivo proof of principle of cobalamin treatment in mut-type MMAuria. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Calcium homeostasis alterations in a mouse model of the Dynamin 2-related centronuclear myopathy

    PubMed Central

    Fraysse, Bodvaël; Guicheney, Pascale

    2016-01-01

    ABSTRACT Autosomal dominant centronuclear myopathy (CNM) is a rare congenital myopathy characterized by centrally located nuclei in muscle fibers. CNM results from mutations in the gene encoding dynamin 2 (DNM2), a large GTPase involved in endocytosis, intracellular membrane trafficking, and cytoskeleton regulation. We developed a knock-in mouse model expressing the most frequent DNM2-CNM mutation; i.e. the KI-Dnm2R465W model. Heterozygous (HTZ) KI-Dnm2 mice progressively develop muscle atrophy, impairment of contractile properties, histopathological abnormalities, and elevated cytosolic calcium concentration. Here, we aim at better characterizing the calcium homeostasis impairment in extensor digitorum longus (EDL) and soleus muscles from adult HTZ KI-Dnm2 mice. We demonstrate abnormal contractile properties and cytosolic Ca2+ concentration in EDL but not soleus muscles showing that calcium impairment is correlated with muscle weakness and might be a determinant factor of the spatial muscle involvement. In addition, the elevated cytosolic Ca2+ concentration in EDL muscles is associated with an increased sarcolemmal permeability to Ca2+ and releasable Ca2+ content from the sarcoplasmic reticulum. However, amplitude and kinetics characteristics of the calcium transient appear unchanged. This suggests that calcium defect is probably not a primary cause of decreased force generation by compromised sarcomere shortening but may be involved in long-term deleterious consequences on muscle physiology. Our results highlight the first pathomechanism which may explain the spatial muscle involvement occurring in DNM2-related CNM and open the way toward development of a therapeutic approach to normalize calcium content. PMID:27870637

  5. Ciliopathy is differentially distributed in the brain of a Bardet-Biedl syndrome mouse model.

    PubMed

    Agassandian, Khristofor; Patel, Milan; Agassandian, Marianna; Steren, Karina E; Rahmouni, Kamal; Sheffield, Val C; Card, J Patrick

    2014-01-01

    Bardet-Biedl syndrome (BBS) is a genetically heterogeneous inherited human disorder displaying a pleotropic phenotype. Many of the symptoms characterized in the human disease have been reproduced in animal models carrying deletions or knock-in mutations of genes causal for the disorder. Thinning of the cerebral cortex, enlargement of the lateral and third ventricles, and structural changes in cilia are among the pathologies documented in these animal models. Ciliopathy is of particular interest in light of recent studies that have implicated primary neuronal cilia (PNC) in neuronal signal transduction. In the present investigation, we tested the hypothesis that areas of the brain responsible for learning and memory formation would differentially exhibit PNC abnormalities in animals carrying a deletion of the Bbs4 gene (Bbs4-/-). Immunohistochemical localization of adenylyl cyclase-III (ACIII), a marker restricted to PNC, revealed dramatic alterations in PNC morphology and a statistically significant reduction in number of immunopositive cilia in the hippocampus and amygdala of Bbs4-/- mice compared to wild type (WT) littermates. Western blot analysis confirmed the decrease of ACIII levels in the hippocampus and amygdala of Bbs4-/- mice, and electron microscopy demonstrated pathological alterations of PNC in the hippocampus and amygdala. Importantly, no neuronal loss was found within the subregions of amygdala and hippocampus sampled in Bbs4-/- mice and there were no statistically significant alterations of ACIII immunopositive cilia in other areas of the brain not known to contribute to the BBS phenotype. Considered with data documenting a role of cilia in signal transduction these findings support the conclusion that alterations in cilia structure or neurochemical phenotypes may contribute to the cognitive deficits observed in the Bbs4-/- mouse mode.

  6. A mouse model for a partially inactive obesity-associated human MC3R variant.

    PubMed

    Lee, Bonggi; Koo, Jashin; Yun Jun, Joo; Gavrilova, Oksana; Lee, Yongjun; Seo, Arnold Y; Taylor-Douglas, Dezmond C; Adler-Wailes, Diane C; Chen, Faye; Gardner, Ryan; Koutzoumis, Dimitri; Sherafat Kazemzadeh, Roya; Roberson, Robin B; Yanovski, Jack A

    2016-01-28

    We previously reported children homozygous for two MC3R sequence variants (C17A+G241A) have greater fat mass than controls. Here we show, using homozygous knock-in mouse models in which we replace murine Mc3r with wild-type human (MC3R(hWT/hWT)) and double-mutant (C17A+G241A) human (MC3R(hDM/hDM)) MC3R, that MC3R(hDM/hDM) have greater weight and fat mass, increased energy intake and feeding efficiency, but reduced length and fat-free mass compared with MC3R(hWT/hWT). MC3R(hDM/hDM) mice do not have increased adipose tissue inflammatory cell infiltration or greater expression of inflammatory markers despite their greater fat mass. Serum adiponectin levels are increased in MC3R(hDM/hDM) mice and MC3R(hDM/hDM) human subjects. MC3R(hDM/hDM) bone- and adipose tissue-derived mesenchymal stem cells (MSCs) differentiate into adipocytes that accumulate more triglyceride than MC3R(hWT/hWT) MSCs. MC3R(hDM/hDM) impacts nutrient partitioning to generate increased adipose tissue that appears metabolically healthy. These data confirm the importance of MC3R signalling in human metabolism and suggest a previously-unrecognized role for the MC3R in adipose tissue development.

  7. Calcium homeostasis alterations in a mouse model of the Dynamin 2-related centronuclear myopathy.

    PubMed

    Fraysse, Bodvaël; Guicheney, Pascale; Bitoun, Marc

    2016-11-15

    Autosomal dominant centronuclear myopathy (CNM) is a rare congenital myopathy characterized by centrally located nuclei in muscle fibers. CNM results from mutations in the gene encoding dynamin 2 (DNM2), a large GTPase involved in endocytosis, intracellular membrane trafficking, and cytoskeleton regulation. We developed a knock-in mouse model expressing the most frequent DNM2-CNM mutation; i.e. the KI-Dnm2(R465W) model. Heterozygous (HTZ) KI-Dnm2 mice progressively develop muscle atrophy, impairment of contractile properties, histopathological abnormalities, and elevated cytosolic calcium concentration. Here, we aim at better characterizing the calcium homeostasis impairment in extensor digitorum longus (EDL) and soleus muscles from adult HTZ KI-Dnm2 mice. We demonstrate abnormal contractile properties and cytosolic Ca(2+) concentration in EDL but not soleus muscles showing that calcium impairment is correlated with muscle weakness and might be a determinant factor of the spatial muscle involvement. In addition, the elevated cytosolic Ca(2+) concentration in EDL muscles is associated with an increased sarcolemmal permeability to Ca(2+) and releasable Ca(2+) content from the sarcoplasmic reticulum. However, amplitude and kinetics characteristics of the calcium transient appear unchanged. This suggests that calcium defect is probably not a primary cause of decreased force generation by compromised sarcomere shortening but may be involved in long-term deleterious consequences on muscle physiology. Our results highlight the first pathomechanism which may explain the spatial muscle involvement occurring in DNM2-related CNM and open the way toward development of a therapeutic approach to normalize calcium content. © 2016. Published by The Company of Biologists Ltd.

  8. Distribution and Intrinsic Membrane Properties of Basal Forebrain GABAergic and Parvalbumin Neurons in the Mouse

    PubMed Central

    McKenna, James T.; Yang, Chun; Franciosi, Serena; Winston, Stuart; Abarr, Kathleen K.; Rigby, Matthew S.; Yanagawa, Yuchio; McCarley, Robert W.; Brown, Ritchie E.

    2013-01-01

    The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium-binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67-GFP knock-in mice) or PV+ neurons (PV-Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67-GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium-sized (15–20 μm) GFP+ neurons. Most medium and large-sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast-firing and spontaneously active in vitro. They exhibited prominent hyperpolarization-activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV-Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. PMID:23254904

  9. Five choice serial reaction time performance in the HdhQ92 mouse model of Huntington's disease.

    PubMed

    Trueman, R C; Dunnett, S B; Jones, L; Brooks, S P

    2012-06-01

    Huntington's disease is an autosomal dominant genetic disorder, with motor, cognitive and psychiatric symptoms. To date there is no cure. In order to understand better this disease and to develop novel treatments, many genetically modified animal models of Huntington's disease have been created. However, to utilize these models fully, appropriate functional assays need to be developed for behavioural assessments of the mice. Various facets of attention have been reported to be affected in Huntington's disease patients, and the Hdh(Q92/Q92) mice have been shown to have deficits on operant tasks which have attentional components. In the present study, the Hdh(Q92/Q92) mouse model is assessed on a well established test of attentional function, the operant 5-choice serial reaction time task (5-CSRT), in which the mice must respond with a nose poke to light stimuli presented randomly across a 5 hole light array to receive a reward. In the present paper, the Hdh(Q92/Q92) mice exhibited deficits on the 5-CSRT when pseudorandomly presented with stimuli of different durations. However, alterations in the pacing of the task, therefore requiring an increase in sustained attention, did not affect the Hdh(Q92/Q92) mice more than their wildtype littermates. This study indicates that the Hdh(Q92/Q92) mice may have deficits in aspects of attentional function, in particular disruption in the ability to maintain attention in the visuospatial domain, suggesting that this knock-in mouse model of Huntington's disease may be a relevant model of the disease for the testing of novel therapeutic interventions.

  10. Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington's disease.

    PubMed

    Miller, Benjamin R; Walker, Adam G; Shah, Anand S; Barton, Scott J; Rebec, George V

    2008-10-01

    Huntington's disease (HD) is an autosomal dominant condition that compromises behavioral output. Dysfunction of medium spiny neurons (MSNs), which are the sole output system of the striatum, is thought to underlie HD pathophysiology. What is not known is how HD alters MSN information processing during behavior, which likely drives the HD behavioral phenotype. We recorded from populations of MSNs in two freely behaving and symptomatic HD mouse models: R6/2 transgenics are based on a C57BL/6J*CBA/J background and show robust behavioral symptoms, whereas knock-in (KI) mice have a 129sv background and express relatively mild behavioral signs. At the single-unit level, we found that the MSN firing rate was elevated in R6/2 but not in KI mice compared with their respective wild-type (WT) controls. In contrast, burst activity, which corresponds to periods of high-frequency firing, was altered in both HD models compared with WT. At the population level, we found that correlated firing between pairs of MSNs was a prominent feature in WT that was reduced in both HD models. Similarly, coincident bursts, which are bursts between pairs of neurons that overlap in time and occur more often in pairs of MSNs that exhibit correlated firing, were decreased in HD mice. Our results indicate an important role in both bursting and correlated burst firing for information processing in MSNs. Dysregulation of this processing scheme, moreover, is a key component of HD pathophysiology regardless of the severity of HD symptoms, genetic construct, and background strain of the mouse models.

  11. A novel mouse model of conditional IRAK-M deficiency in myeloid cells: application in lung Pseudomonas aeruginosa infection.

    PubMed

    Jiang, Di; Matsuda, Jennifer; Berman, Reena; Schaefer, Niccolette; Stevenson, Connor; Gross, James; Zhang, Bicheng; Sanchez, Amelia; Li, Liwu; Chu, Hong Wei

    2017-02-01

    Myeloid cells such as macrophages are critical to innate defense against infection. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of TLR signaling during bacterial infection, but the role of myeloid cell IRAK-M in bacterial infection is unclear. Our goal was to generate a novel conditional knockout mouse model to define the role of myeloid cell IRAK-M during bacterial infection. Myeloid cell-specific IRAK-M knockout mice were generated by crossing IRAK-M floxed mice with LysM-Cre knock-in mice. The resulting LysM-Cre(+)/IRAK-M(fl/wt) and control (LysM-Cre(-)/IRAK-M(fl/wt)) mice were intranasally infected with Pseudomonas aeruginosa (PA). IRAK-M deletion, inflammation, myeloperoxidase (MPO) activity and PA load were measured in leukocytes, bronchoalveolar lavage (BAL) fluid and lungs. PA killing assay with BAL fluid was performed to determine mechanisms of IRAK-M-mediated host defense. IRAK-M mRNA and protein levels in alveolar and lung macrophages were significantly reduced in LysM-Cre(+)/IRAK-M(fl/wt) mice compared with control mice. Following PA infection, LysM-Cre(+)/IRAK-M(fl/wt) mice have enhanced lung neutrophilic inflammation, including MPO activity, but reduced PA load. The increased lung MPO activity in LysM-Cre(+)/IRAK-M(fl/wt) mouse BAL fluid reduced PA load. Generation of IRAK-M conditional knockout mice will enable investigators to determine precisely the function of IRAK-M in myeloid cells and other types of cells during infection and inflammation.

  12. Gating behaviour of sodium currents in adult mouse muscle recorded with an improved two-electrode voltage clamp

    PubMed Central

    Fu, Yu; Struyk, Arie; Markin, Vladislav; Cannon, Stephen

    2011-01-01

    The availability of knock-in mutant mouse models for channelopathies of skeletal muscle has generated the need for improved methods to record ionic currents under voltage clamp in fully differentiated adult muscle fibres. A two-electrode voltage clamp has been optimized for recording Na+ currents in small fibres dissociated from the footpad. Clamp speed and spatial homogeneity were achieved by using short fibres (<600 μm) that were detubulated with hyperosmolar glycerol. Series resistance errors were reduced by limiting current amplitude with low [Na+]. The quality of the voltage clamp was explored with computer simulations of a finite cable model with active conductances. Simulations quantitatively defined the range of conditions for which clamp control can be maintained, and provided estimates for the errors in the determination of gating parameters from standard pulse protocols. Sodium currents recorded from short fast-twitch muscles revealed a hyperpolarized shift in the voltage dependence of activation (V1/2−52 mV) and fast inactivation (V1/2−88 mV) compared to expression studies of NaV1.4 in mammalian cell lines. Slow inactivation occurred at depolarized potentials (V1/2−69 mV) relative to fast inactivation. These data reveal a marked divergence in the voltage dependence of fast and slow inactivation and provide normative values of Na+ channel behaviour for mouse skeletal muscle that will serve as a reference for the investigation of muscle ion channelopathies using genetically engineered mice or computer simulation. PMID:21135045

  13. Bap1 Is a Bona Fide Tumor Suppressor: Genetic Evidence from Mouse Models Carrying Heterozygous Germline Bap1 Mutations.

    PubMed

    Kadariya, Yuwaraj; Cheung, Mitchell; Xu, Jinfei; Pei, Jianming; Sementino, Eleonora; Menges, Craig W; Cai, Kathy Q; Rauscher, Frank J; Klein-Szanto, Andres J; Testa, Joseph R

    2016-05-01

    Individuals harboring inherited heterozygous germline mutations in BAP1 are predisposed to a range of benign and malignant tumor types, including malignant mesothelioma, melanoma, and kidney carcinoma. However, evidence to support a tumor-suppressive role for BAP1 in cancer remains contradictory. To test experimentally whether BAP1 behaves as a tumor suppressor, we monitored spontaneous tumor development in three different mouse models with germline heterozygous mutations in Bap1, including two models in which the knock-in mutations are identical to those reported in human BAP1 cancer syndrome families. We observed spontaneous malignant tumors in 54 of 93 Bap1-mutant mice (58%) versus 4 of 43 (9%) wild-type littermates. All three Bap1-mutant models exhibited a high incidence and similar spectrum of neoplasms, including ovarian sex cord stromal tumors, lung and mammary carcinomas, and spindle cell tumors. Notably, we also observed malignant mesotheliomas in two Bap1-mutant mice, but not in any wild-type animals. We further confirmed that the remaining wild-type Bap1 allele was lost in both spontaneous ovarian tumors and mesotheliomas, resulting in the loss of Bap1 expression. Additional studies revealed that asbestos exposure induced a highly significant increase in the incidence of aggressive mesotheliomas in the two mouse models carrying clinically relevant Bap1 mutations compared with asbestos-exposed wild-type littermates. Collectively, these findings provide genetic evidence that Bap1 is a bona fide tumor suppressor gene and offer key insights into the contribution of carcinogen exposure to enhanced cancer susceptibility. Cancer Res; 76(9); 2836-44. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Aging Research Using Mouse Models.

    PubMed

    Ackert-Bicknell, Cheryl L; Anderson, Laura C; Sheehan, Susan; Hill, Warren G; Chang, Bo; Churchill, Gary A; Chesler, Elissa J; Korstanje, Ron; Peters, Luanne L

    2015-06-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in "health-span," or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, and immune function, as well as physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process.

  15. Mouse Models of Human Phenylketonuria

    PubMed Central

    Shedlovsky, A.; McDonald, J. D.; Symula, D.; Dove, W. F.

    1993-01-01

    Phenylketonuria (PKU) results from a deficiency in phenylalanine hydroxylase, the enzyme catalyzing the conversion of phenylalanine (PHE) to tyrosine. Although this inborn error of metabolism was among the first in humans to be understood biochemically and genetically, little is known of the mechanism(s) involved in the pathology of PKU. We have combined mouse germline mutagenesis with screens for hyperphenylalaninemia to isolate three mutants deficient in phenylalanine hydroxylase (PAH) activity and cross-reactive protein. Two of these have reduced PAH mRNA and display characteristics of untreated human PKU patients. A low PHE diet partially reverses these abnormalities. Our success in using high frequency random germline point mutagenesis to obtain appropriate disease models illustrates how such mutagenesis can complement the emergent power of targeted mutagenesis in the mouse. The mutants now can be used as models in studying both maternal PKU and somatic gene therapy. PMID:8375656

  16. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  17. Dietary manipulation of mouse metabolism.

    PubMed

    Feige, Jérôme N; Lagouge, Marie; Auwerx, Johan

    2008-10-01

    The maintenance of metabolic homeostasis relies on the balanced intake of nutrients from food. Consequently, diet composition strongly impacts whole-body physiology. Dietary formulations with strong nutrient imbalances can lead to metabolic disorders, with lipids and simple sugars playing a prominent role. This unit describes how diet formulation can be modified to generate mouse models of human metabolic pathologies, and it details methodological procedures linked to dietary manipulations, including caloric restriction and introduction of a test compound.

  18. Comparison of motor performance, brain biochemistry and histology of two A30P α-synuclein transgenic mouse strains.

    PubMed

    Piltonen, M; Savolainen, M; Patrikainen, S; Baekelandt, V; Myöhänen, T T; Männistö, P T

    2013-02-12

    Three point mutations in the SNCA gene encoding α-synuclein (aSyn) have been associated with autosomal dominant forms of Parkinson's disease. To better understand the role of the A30P mutant aSyn, we compared two transgenic mouse strains: a knock-in mouse with an introduced A30P point mutation in the wild-type (WT) gene (Snca(tm(A30P))) and a transgenic (Tg) mouse overexpressing the human A30P aSyn gene under the prion promoter [tg(Prnp-SNCA A30P)]. The brain aSyn load, motor performance, brain dopamine (DA) and sensitivity to 6-hydroxydopamine (6-OHDA) were studied in these mice. aSyn was evidently accumulating with age in all mice, particularly in tg(Prnp-SNCA A30P) Tg mice. There were no robust changes in basal locomotor activities of the mice of either line at 6 months, but after 1 year, tg(Prnp-SNCA A30P) Tg mice developed severe problems with vertical movements. However, the younger Tg mice had a reduced locomotor response to 1mg/kg of d-amphetamine. Snca(tm(A30P)) mice with the targeted mutation (Tm) were slightly hyperactive at all ages. Less 6-OHDA was required in tg(Prnp-SNCA A30P) Tg (1 μg) than in WT (3μg) mice for an ipsilateral rotational bias by d-amphetamine. That was not seen with the Snca(tm(A30P)) strain. A small dose of 6-OHDA (0.33 μg) led to contralateral rotations and elevated striatal DA in Tg/Tm mice of both lines but otherwise 6-OHDA-induced striatal DA depletion was similar in all mice, indicating no A30P-aSyn-related toxin sensitivity. 3,4-Dihydroxyphenylacetic acid/DA-ratio was elevated in tg(Prnp-SNCA A30P) mice, suggesting an enhanced DA turnover. This ratio and homovanillic acid/DA-ratio were declined in Snca(tm(A30P)) mice. Our results demonstrate that the two differently constructed A30P-aSyn mouse strains have distinct behavioral and biochemical characteristics, some of which are opposite. Since the two lines with the same background were not identically produced, the deviations found may be partially caused by factors other

  19. Mouse Models of Gastric Cancer

    PubMed Central

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  20. Retinofugal Projections in the Mouse

    PubMed Central

    Morin, Lawrence P.; Studholme, Keith M.

    2014-01-01

    The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species’ visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 Am free floating sections with diaminobenzidine as the chromogen. The mouse retina projects to approximately 46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition. PMID:24889098

  1. Retinofugal projections in the mouse.

    PubMed

    Morin, Lawrence P; Studholme, Keith M

    2014-11-01

    The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species' visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 μm free-floating sections with diaminobenzidine as the chromogen. The mouse retina projects to ~46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat, and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition.

  2. Mouse models of frontotemporal dementia.

    PubMed

    Roberson, Erik D

    2012-12-01

    The pace of discovery in frontotemporal dementia (FTD) has accelerated dramatically with the discovery of new genetic causes and pathological substrates of the disease. MAPT/tau, GRN/progranulin, and C9ORF72 have emerged as common FTD genes, and TARDBP/TDP-43, VCP, FUS, and CHMP2B have been identified as less common genetic causes. TDP-43 and FUS have joined tau as common neuropathological substrates of the disease. Mouse models provide an important tool for understanding the role of these molecules in FTD pathogenesis. Here, we review recent progress with mouse models based on tau, TDP-43, progranulin, VCP, and CHMP2B. We also consider future prospects for FTD models, including developing new models to address unanswered questions. There are also opportunities for capitalizing on conservation of the salience network, which is selectively vulnerable in FTD, and the availability of FTD-related behavioral paradigms to analyze mouse models of the disease. Copyright © 2012 American Neurological Association.

  3. Mouse Models for Methylmalonic Aciduria

    PubMed Central

    Peters, Heidi L.; Pitt, James J.; Wood, Leonie R.; Hamilton, Natasha J.; Sarsero, Joseph P.; Buck, Nicole E.

    2012-01-01

    Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM). MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene). Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation. PMID:22792386

  4. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity.

    PubMed

    Riemer, P; Sreekumar, A; Reinke, S; Rad, R; Schäfer, R; Sers, C; Bläker, H; Herrmann, B G; Morkel, M

    2015-06-11

    Colon cancer cells frequently carry mutations that activate the β-catenin and mitogen-activated protein kinase (MAPK) signaling cascades. Yet how oncogenic alterations interact to control cellular hierarchies during tumor initiation and progression is largely unknown. We found that oncogenic BRAF modulates gene expression associated with cell differentiation in colon cancer cells. We therefore engineered a mouse with an inducible oncogenic BRAF transgene, and analyzed BRAF effects on cellular hierarchies in the intestinal epithelium in vivo and in primary organotypic culture. We demonstrate that transgenic expression of oncogenic BRAF in the mouse strongly activated MAPK signal transduction, resulted in the rapid development of generalized serrated dysplasia, but unexpectedly also induced depletion of the intestinal stem cell (ISC) pool. Histological and gene expression analyses indicate that ISCs collectively converted to short-lived progenitor cells after BRAF activation. As Wnt/β-catenin signals encourage ISC identity, we asked whether β-catenin activity could counteract oncogenic BRAF. Indeed, we found that intestinal organoids could be partially protected from deleterious oncogenic BRAF effects by Wnt3a or by small-molecule inhibition of GSK3β. Similarly, transgenic expression of stabilized β-catenin in addition to oncogenic BRAF partially prevented loss of stem cells in the mouse intestine. We also used BRAF(V637E) knock-in mice to follow changes in the stem cell pool during serrated tumor progression and found ISC marker expression reduced in serrated hyperplasia forming after BRAF activation, but intensified in progressive dysplastic foci characterized by additional mutations that activate the Wnt/β-catenin pathway. Our study suggests that oncogenic alterations activating the MAPK and Wnt/β-catenin pathways must be consecutively and coordinately selected to assure stem cell maintenance during colon cancer initiation and progression. Notably, loss of

  5. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    SciTech Connect

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  6. Feds come knocking in search of home-care fraud.

    PubMed

    Burns, J

    1995-06-05

    Home care has become a target for federal investigators looking for ways to reduce the amount of money Medicare doles out to fraudulent providers. Companies and executives in the multibillion-dollar industry are facing charges ranging from filing bogus claims to money laundering.

  7. Estrogen Receptor Alpha G525L Knock-In Mice

    DTIC Science & Technology

    2007-03-01

    development. Although the G525L mutation significantly reduces ERα response to endogenous estrogens, the ERα selective agonist propyl pyrazole triol (PPT...endogenous estrogens but not to the synthetic nonsteroidal ERα selective agonist propyl pyrazole triol (PPT). Therefore, ERα signaling pathways can be

  8. A Balanced Diet Is Necessary for Proper Entrainment Signals of the Mouse Liver Clock

    PubMed Central

    Hirao, Akiko; Tahara, Yu; Kimura, Ichiro; Shibata, Shigenobu

    2009-01-01

    Background The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. Principal Finding To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3–4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6–0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.]), for 2 days. When each nutrient was tested alone (100% nutrient), an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. Conclusions Our results strongly suggest the following: (1) balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2) a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary recommendations for on

  9. Mouse Model of Human Hereditary Pancreatitis

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-14-1-0331 TITLE: Mouse Model of Human Hereditary Pancreatitis PRINCIPAL INVESTIGATOR: Miklos Sahin-Toth, M.D., Ph.D...CONTRACT NUMBER Mouse Model of Human Hereditary Pancreatitis 5b. GRANT NUMBER W81XWH-14-1-0331 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...The aim of our research is to generate and characterize mouse models of human hereditary pancreatitis that develop pancreatitis spontaneously or

  10. Neural stem cell transplantation in mouse brain.

    PubMed

    Lee, Jean-Pyo; McKercher, Scott; Muller, Franz-Josef; Snyder, Evan Y

    2008-01-01

    Neural stem cells (NSCs) are the most primordial, least committed cells of the nervous system, and transplantation of these multipotent cells holds the promise of regenerative therapy for many central nervous system (CNS) diseases. This unit describes methods for NSC transplantation into neonatal mouse pups, embryonic mouse brain, and adult mouse brain. A description of options for detection of labeled donor cells in engrafted mouse brain is provided along with an example protocol for detecting lacZ-expressing cells in situ. Also included is a protocol for preparing NSCs for transplantation.

  11. Mouse models of human thalassemia

    SciTech Connect

    Anderson, W.F.; Martinell, J.; Whitney, J.B. III; Popp, R.A.

    1981-01-01

    The group of diseases called the thalassemias is the largest single-gene health problem in the world according the World Health Organization. The thalassemias are lethal hereditary anemias in which the infants cannot make their own blood. Three mouse mutants are shown to be models of the human disease ..cap alpha..-thalassemia. However, since an additional gene is affected, these mutants represent a particularly severe condition in which death occurs in the homozygous embryo even before globin genes are activated. Phenotypic and genotypic characteristics are described. (ACR)

  12. Therapeutic cloning in the mouse

    PubMed Central

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice. PMID:12949262

  13. [Psoriasis SCID-mouse model].

    PubMed

    Pfeffer, J; Kaufmann, R; Boehncke, W-H

    2006-07-01

    Psoriasis is characterized by a complex phenotype and pathogenesis along with polygenic determination. Several psoriasis animal models have only been able to incompletely reproduce the disease. A xenogeneic transplantation approach, grafting skin from psoriatic patients onto mice with a severe combined immunodeficiency (SCID), was the first to meet the criteria for a psoriasis model. During the last 10 years, this psoriasis SCID-mouse model not only allowed telling experiments focusing on pathogenetic aspects, but also proved being a powerful tool for drug discovery with a good predictive value.

  14. Proteomic identification of specifically carbonylated brain proteins in APP(NLh)/APP(NLh) × PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice model of Alzheimer disease as a function of age.

    PubMed

    Sultana, Rukhsana; Robinson, Renã A S; Di Domenico, Fabio; Abdul, Hafiz Mohmmad; St Clair, Daret K; Markesbery, William R; Cai, Jian; Pierce, William M; Butterfield, D Allan

    2011-10-19

    Alzheimer disease (AD) is the most common type of dementia and is characterized pathologically by the presence of neurofibrillary tangles (NFTs), senile plaques (SPs), and loss of synapses. The main component of SP is amyloid-beta peptide (Aβ), a 39 to 43 amino acid peptide, generated by the proteolytic cleavage of amyloid precursor protein (APP) by the action of beta- and gamma-secretases. The presenilins (PS) are components of the γ-secretase, which contains the protease active center. Mutations in PS enhance the production of the Aβ42 peptide. To date, more than 160 mutations in PS1 have been identified. Many PS mutations increase the production of the β-secretase-mediated C-terminal (CT) 99 amino acid-long fragment (CT99), which is subsequently cleaved by γ-secretase to yield Aβ peptides. Aβ has been proposed to induce oxidative stress and neurotoxicity. Previous studies from our laboratory and others showed an age-dependent increase in oxidative stress markers, loss of lipid asymmetry, and Aβ production and amyloid deposition in the brain of APP/PS1 mice. In the present study, we used APP (NLh)/APP(NLh) × PS-1(P246L)/PS-1(P246L) human double mutant knock-in APP/PS-1 mice to identify specific targets of brain protein carbonylation in an age-dependent manner. We found a number of proteins that are oxidatively modified in APP/PS1 mice compared to age-matched controls. The relevance of the identified proteins to the progression and pathogenesis of AD is discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Mouse Models of Alzheimer's Disease.

    PubMed

    Esquerda-Canals, Gisela; Montoliu-Gaya, Laia; Güell-Bosch, Jofre; Villegas, Sandra

    2017-03-10

    Alzheimer's disease (AD) is a neurodegenerative disorder that nowadays affects more than 40 million people worldwide and it is predicted to exponentially increase in the coming decades. Because no curative treatment exists, research on the pathophysiology of the disease, as well as the testing of new drugs, are mandatory. For these purposes, animal models constitute a valuable, although perfectible tool. This review takes a tour through several aspects of mouse models of AD, such as the generation of transgenic models, the relevance of the promoter driving the expression of the transgenes, and the concrete transgenes used to simulate AD pathophysiology. Then, transgenic mouse lines harboring mutated human genes at several loci such as APP, PSEN1, APOEɛ4, and ob (leptin) are reviewed. Therefore, not only the accumulation of the Aβ peptide is emulated but also cholesterol and insulin metabolism. Further novel information about the disease will allow for the development of more accurate animal models, which in turn will undoubtedly be helpful for bringing preclinical research closer to clinical trials in humans.

  16. Mouse Auditory Brainstem Response Testing

    PubMed Central

    Akil, Omar; Oursler, A. E.; Fan, Kevin; Lustig, Lawrence R.

    2016-01-01

    The auditory brainstem response (ABR) test provides information about the inner ear (cochlea) and the central pathways for hearing. The ABR reflects the electrical responses of both the cochlear ganglion neurons and the nuclei of the central auditory pathway to sound stimulation (Zhou et al., 2006; Burkard et al., 2007). The ABR contains 5 identifiable wave forms, labeled as I-V. Wave I represents the summated response from the spiral ganglion and auditory nerve while waves II-V represent responses from the ascending auditory pathway. The ABR is recorded via electrodes placed on the scalp of an anesthetized animal. ABR thresholds refer to the lowest sound pressure level (SPL) that can generate identifiable electrical response waves. This protocol describes the process of measuring the ABR of small rodents (mouse, rat, guinea pig, etc.), including anesthetizing the mouse, placing the electrodes on the scalp, recording click and tone burst stimuli and reading the obtained waveforms for ABR threshold values. As technology continues to evolve, ABR will likely provide more qualitative and quantitative information regarding the function of the auditory nerve and brainstem pathways involved in hearing.

  17. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients.

  18. Mouse models of the laminopathies

    SciTech Connect

    Stewart, Colin L. . E-mail: stewartc@ncifcrf.gov; Kozlov, Serguei; Fong, Loren G.; Young, Stephen G. . E-mail: sgyoung@mednet.ucla.edu

    2007-06-10

    The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.

  19. Genetic mouse models of depression.

    PubMed

    Barkus, Christopher

    2013-01-01

    This chapter focuses on the use of genetically modified mice in investigating the neurobiology of depressive behaviour. First, the behavioural tests commonly used as a model of depressive-like behaviour in rodents are described. These tests include those sensitive to antidepressant treatment such as the forced swim test and the tail suspension test, as well as other tests that encompass the wider symptomatology of a depressive episode. A selection of example mutant mouse lines is then presented to illustrate the use of these tests. As our understanding of depression increases, an expanding list of candidate genes is being investigated using mutant mice. Here, mice relevant to the monoamine and corticotrophin-releasing factor hypotheses of depression are covered as well as those relating to the more recent candidate, brain-derived neurotrophic factor. This selection provides interesting examples of the use of complimentary lines, such as those that have genetic removal or overexpression, and also opposing behavioural changes seen following manipulation of closely related genes. Finally, factors such as the issue of background strain and influence of environmental factors are reflected upon, before considering what can realistically be expected of a mouse model of this complex psychiatric disorder.

  20. Head Transplantation in Mouse Model.

    PubMed

    Ren, Xiao-Ping; Ye, Yi-Jie; Li, Peng-Wei; Shen, Zi-Long; Han, Ke-Cheng; Song, Yang

    2015-08-01

    The mouse model of allo-head and body reconstruction (AHBR) has recently been established to further the clinical development of this strategy for patients who are suffering from mortal bodily trauma or disease, yet whose mind remains healthy. Animal model studies are indispensable for developing such novel surgical practices. The goal of this work was to establish head transplant mouse model, then the next step through the feasible biological model to investigate immune rejection and brain function in next step, thereby promoting the goal of translation of AHBR to the clinic in the future. Our approach involves retaining adequate blood perfusion in the transplanted head throughout the surgical procedure by establishing donor-to-recipient cross-circulation by cannulating and anastomosing the carotid artery on one side of the body and the jugular vein on the other side. Neurological function was preserved by this strategy as indicated by electroencephalogram and intact cranial nerve reflexes. The results of this study support the feasibility of this method for avoiding brain ischemia during transplantation, thereby allowing for the possibility of long-term studies of head transplantation. © 2015 John Wiley & Sons Ltd.

  1. Comparative stereology of mouse atria.

    PubMed

    Bossen, E H; Sommer, J R; Waugh, R A

    1981-01-01

    The left and right atria of the mouse were compared to each other and to the mouse left ventricle using stereologic techniques. The volume fraction (Vv) and surface area per unit cell volume (Sv) of the interior junctional sarcoplasmic reticulum (IJSR), total JSR and extended JSR were greater in the left atrium than in right. The Vv and Sv of the free SR, transverse tubules, and mitochondria were similar in the two atria. It is suggested that the differences in junctional sarcoplasmic reticulum between the atria can be accounted for by a difference in distribution of two types of cells whose anatomy is analogous to working and conducting fibers in the ventricle. The Sv and Vv of the transverse tubules, mitochondria, and all the components of the sarcoplasmic reticulum except for the free SR were greater in the left ventricle than in either atrium. The greater calcium content and sensitivity to extracellular calcium of the atria may explain the greater volume of free SR in the atria as compared to the left ventricle. The Sv of the plasmalemma of the atria and of the Sv of the plasmalemma of the transverse tubules of the left ventricles supports the suggestion of others that there is a constant ratio of surface area to cell volume in cardiac cells.

  2. Targeting of GFP-Cre to the Mouse Cyp11a1 Locus Both Drives Cre Recombinase Expression in Steroidogenic Cells and Permits Generation of Cyp11a1 Knock Out Mice

    PubMed Central

    O'Hara, Laura; York, Jean Philippe; Zhang, Pumin; Smith, Lee B.

    2014-01-01

    To permit conditional gene targeting of floxed alleles in steroidogenic cell-types we have generated a transgenic mouse line that expresses Cre Recombinase under the regulation of the endogenous Cytochrome P450 side chain cleavage enzyme (Cyp11a1) promoter. Mi