Sample records for hdr quality control

  1. TU-C-201-02: Clinical Implementation of HDR: Afterloader and Applicator Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esthappan, J.

    2015-06-15

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for eachmore » institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.« less

  2. TU-C-201-01: Clinical Implementation of HDR: A New User’s Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hallaq, H.

    2015-06-15

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for eachmore » institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.« less

  3. TU-C-201-00: Clinical Implementation of HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for eachmore » institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.« less

  4. TU-C-201-03: The Use of Checklists and Audit Tools for Safety and QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisciandaro, J.

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for eachmore » institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.« less

  5. Analysis of visual quality improvements provided by known tools for HDR content

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Alshina, Elena; Lee, JongSeok; Park, Youngo; Choi, Kwang Pyo

    2016-09-01

    In this paper, the visual quality of different solutions for high dynamic range (HDR) compression using MPEG test contents is analyzed. We also simulate the method for an efficient HDR compression which is based on statistical property of the signal. The method is compliant with HEVC specification and also easily compatible with other alternative methods which might require HEVC specification changes. It was subjectively tested on commercial TVs and compared with alternative solutions for HDR coding. Subjective visual quality tests were performed using SUHD TVs model which is SAMSUNG JS9500 with maximum luminance up to 1000nit in test. The solution that is based on statistical property shows not only improvement of objective performance but improvement of visual quality compared to other HDR solutions, while it is compatible with HEVC specification.

  6. Performance evaluation of objective quality metrics for HDR image compression

    NASA Astrophysics Data System (ADS)

    Valenzise, Giuseppe; De Simone, Francesca; Lauga, Paul; Dufaux, Frederic

    2014-09-01

    Due to the much larger luminance and contrast characteristics of high dynamic range (HDR) images, well-known objective quality metrics, widely used for the assessment of low dynamic range (LDR) content, cannot be directly applied to HDR images in order to predict their perceptual fidelity. To overcome this limitation, advanced fidelity metrics, such as the HDR-VDP, have been proposed to accurately predict visually significant differences. However, their complex calibration may make them difficult to use in practice. A simpler approach consists in computing arithmetic or structural fidelity metrics, such as PSNR and SSIM, on perceptually encoded luminance values but the performance of quality prediction in this case has not been clearly studied. In this paper, we aim at providing a better comprehension of the limits and the potentialities of this approach, by means of a subjective study. We compare the performance of HDR-VDP to that of PSNR and SSIM computed on perceptually encoded luminance values, when considering compressed HDR images. Our results show that these simpler metrics can be effectively employed to assess image fidelity for applications such as HDR image compression.

  7. SU-F-T-234: Quality Improvements in the Electronic Medical Record of Patients Treated with High Dose-Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diener, T; Wilkinson, D

    Purpose: To improve workflow efficiency and patient safety by assessing the quality control documentation for HDR brachytherapy within our Electronic Medical Record System (Mosaiq). Methods: A list of parameters based on NRC regulations, our quality management program (QMP), recommendations of the ACR and the American Brachytherapy Society, and HDR treatment planning risks identified in our previous FMEA study was made. Next, the parameter entries were classified according to the type of data input—manual, electronic, or both. Manual entry included the electronic Brachytherapy Treatment Record (BTR) and pre-treatment Mosaiq Assessments list. Oncentra Treatment Reports (OTR) from the Oncentra Treatment Control Systemmore » constituted the electronic data. The OTR includes a Pre-treatment Report for each fraction, and a Treatment Summary Report at the completion of treatment. Each entry was then examined for appropriateness and completeness of data; adjustments and additions as necessary were then made. Results: Ten out of twenty-one recorded treatment parameters were identified to be documented within both the BTR and OTR. Of these ten redundancies, eight were changed from recorded values to a simple checklist in the BTR to avoid recording errors. The other redundancies were kept in both documents due to their value to ensuring patient safety. An edit was made to the current BTR quality assessment; this change revises the definition of a medical event in accordance with ODH Regulation 3701:1-58-101. One addition was made to the current QMP documents regarding HDR. This addition requires a physician to be present through the duration of HDR treatment in accordance with ODH Regulation 3701:1-58-59; Paragraph (F); Section (2); Subsection (a). Conclusion: Careful examination of HDR documentation that originates from different sources can help to improve the accuracy and reliability of the documents. In addition, there may be a small improvement in efficiency due to elimination of unnecessary redundancies.« less

  8. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    PubMed Central

    Viani, Gustavo A; Manta, Gustavo B; Stefano, Eduardo J; de Fendi, Ligia I

    2009-01-01

    Background The literature supporting high-dose rate brachytherapy (HDR) in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR) brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients) of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52), local recurrence (p = 0.68), or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06) rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix cancer. PMID:19344527

  9. Quality assurance of HDR prostate plans: program implementation at a community hospital.

    PubMed

    Rush, Jennifer B; Thomas, Michael D

    2005-01-01

    Adenocarcinoma of the prostate is currently the most commonly diagnosed cancer in men in the United States, and the second leading cause of cancer mortality. The utilization of radiation therapy is regarded as the definitive local therapy of choice for intermediate- and high-risk disease, in which there is increased risk for extracapsular extension, seminal vesicle invasion, or regional node involvement. High-dose-rate (HDR) brachytherapy is a logical treatment modality to deliver the boost dose to an external beam radiation therapy (EBRT) treatment to increase local control rates. From a treatment perspective, the utilization of a complicated treatment delivery system, the compressed time frame in which the procedure is performed, and the small number of large dose fractions make the implementation of a comprehensive quality assurance (QA) program imperative. One aspect of this program is the QA of the HDR treatment plan. Review of regulatory and medical physics professional publications shows that substantial general guidance is available. We provide some insight to the implementation of an HDR prostate plan program at a community hospital. One aspect addressed is the utilization of the low-dose-rate (LDR) planning system and the use of existing ultrasound image sets to familiarize the radiation therapy team with respect to acceptable HDR implant geometries. Additionally, the use of the LDR treatment planning system provided a means to prospectively determine the relationship between the treated isodose volume and the product of activity and time for the department's planning protocol prior to the first HDR implant. For the first 12 HDR prostate implants, the root-mean-square (RMS) deviation was 3.05% between the predicted product of activity and time vs. the actual plan values. Retrospective re-evaluation of the actual implant data reduced the RMS deviation to 2.36%.

  10. A JPEG backward-compatible HDR image compression

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Ebrahimi, Touradj

    2012-10-01

    High Dynamic Range (HDR) imaging is expected to become one of the technologies that could shape next generation of consumer digital photography. Manufacturers are rolling out cameras and displays capable of capturing and rendering HDR images. The popularity and full public adoption of HDR content is however hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of Low Dynamic Range (LDR) displays that are unable to render HDR. To facilitate wide spread of HDR usage, the backward compatibility of HDR technology with commonly used legacy image storage, rendering, and compression is necessary. Although many tone-mapping algorithms were developed for generating viewable LDR images from HDR content, there is no consensus on which algorithm to use and under which conditions. This paper, via a series of subjective evaluations, demonstrates the dependency of perceived quality of the tone-mapped LDR images on environmental parameters and image content. Based on the results of subjective tests, it proposes to extend JPEG file format, as the most popular image format, in a backward compatible manner to also deal with HDR pictures. To this end, the paper provides an architecture to achieve such backward compatibility with JPEG and demonstrates efficiency of a simple implementation of this framework when compared to the state of the art HDR image compression.

  11. Touch HDR: photograph enhancement by user controlled wide dynamic range adaptation

    NASA Astrophysics Data System (ADS)

    Verrall, Steve; Siddiqui, Hasib; Atanassov, Kalin; Goma, Sergio; Ramachandra, Vikas

    2013-03-01

    High Dynamic Range (HDR) technology enables photographers to capture a greater range of tonal detail. HDR is typically used to bring out detail in a dark foreground object set against a bright background. HDR technologies include multi-frame HDR and single-frame HDR. Multi-frame HDR requires the combination of a sequence of images taken at different exposures. Single-frame HDR requires histogram equalization post-processing of a single image, a technique referred to as local tone mapping (LTM). Images generated using HDR technology can look less natural than their non- HDR counterparts. Sometimes it is only desired to enhance small regions of an original image. For example, it may be desired to enhance the tonal detail of one subject's face while preserving the original background. The Touch HDR technique described in this paper achieves these goals by enabling selective blending of HDR and non-HDR versions of the same image to create a hybrid image. The HDR version of the image can be generated by either multi-frame or single-frame HDR. Selective blending can be performed as a post-processing step, for example, as a feature of a photo editor application, at any time after the image has been captured. HDR and non-HDR blending is controlled by a weighting surface, which is configured by the user through a sequence of touches on a touchscreen.

  12. Evaluating HDR photos using Web 2.0 technology

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Mei, Yujie; Duan, Jiang

    2011-01-01

    High dynamic range (HDR) photography is an emerging technology that has the potential to dramatically enhance the visual quality and realism of digital photos. One of the key technical challenges of HDR photography is displaying HDR photos on conventional devices through tone mapping or dynamic range compression. Although many different tone mapping techniques have been developed in recent years, evaluating tone mapping operators prove to be extremely difficult. Web2.0, social media and crowd-sourcing are emerging Internet technologies which can be harnessed to harvest the brain power of the mass to solve difficult problems in science, engineering and businesses. Paired comparison is used in the scientific study of preferences and attitudes and has been shown to be capable of obtaining an interval-scale ordering of items along a psychometric dimension such as preference or importance. In this paper, we exploit these technologies for evaluating HDR tone mapping algorithms. We have developed a Web2.0 style system that enables Internet users from anywhere to evaluate tone mapped HDR photos at any time. We adopt a simple paired comparison protocol, Internet users are presented a pair of tone mapped images and are simply asked to select the one that they think is better or click a "no difference" button. These user inputs are collected in the web server and analyzed by a rank aggregation algorithm which ranks the tone mapped photos according to the votes they received. We present experimental results which demonstrate that the emerging Internet technologies can be exploited as a new paradigm for evaluating HDR tone mapping algorithms. The advantages of this approach include the potential of collecting large user inputs under a variety of viewing environments rather than limited user participation under controlled laboratory environments thus enabling more robust and reliable quality assessment. We also present data analysis to correlate user generated qualitative indices with quantitative image statistics which may provide useful guidance for developing better tone mapping operators.

  13. SU-G-201-16: Thermal Imaging in Source Visualization and Radioactivity Measurement for High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X; Lei, Y; Zheng, D

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy poses a special challenge to radiation safety and quality assurance (QA) due to its high radioactivity, and it is thus critical to verify the HDR source location and its radioactive strength. This study demonstrates a new method for measuring HDR source location and radioactivity utilizing thermal imaging. A potential application would relate to HDR QA and safety improvement. Methods: Heating effects by an HDR source were studied using Finite Element Analysis (FEA). Thermal cameras were used to visualize an HDR source inside a plastic applicator made of polyvinylidene difluoride (PVDF). Using different source dwellmore » times, correlations between the HDR source strength and heating effects were studied, thus establishing potential daily QA criteria using thermal imaging Results: For an Ir1?2 source with a radioactivity of 10 Ci, the decay-induced heating power inside the source is ∼13.3 mW. After the HDR source was extended into the PVDF applicator and reached thermal equilibrium, thermal imaging visualized the temperature gradient of 10 K/cm along the PVDF applicator surface, which agreed with FEA modeling. For Ir{sup 192} source activities ranging from 4.20–10.20 Ci, thermal imaging could verify source activity with an accuracy of 6.3% with a dwell time of 10 sec, and an accuracy of 2.5 % with 100 sec. Conclusion: Thermal imaging is a feasible tool to visualize HDR source dwell positions and verify source integrity. Patient safety and treatment quality will be improved by integrating thermal measurements into HDR QA procedures.« less

  14. Prediction of HDR quality by combining perceptually transformed display measurements with machine learning

    NASA Astrophysics Data System (ADS)

    Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott

    2017-09-01

    We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.

  15. Context-dependent JPEG backward-compatible high-dynamic range image compression

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  16. Forward and backward tone mapping of high dynamic range images based on subband architecture

    NASA Astrophysics Data System (ADS)

    Bouzidi, Ines; Ouled Zaid, Azza

    2015-01-01

    This paper presents a novel High Dynamic Range (HDR) tone mapping (TM) system based on sub-band architecture. Standard wavelet filters of Daubechies, Symlets, Coiflets and Biorthogonal were used to estimate the proposed system performance in terms of Low Dynamic Range (LDR) image quality and reconstructed HDR image fidelity. During TM stage, the HDR image is firstly decomposed in sub-bands using symmetrical analysis-synthesis filter bank. The transform coefficients are then rescaled using a predefined gain map. The inverse Tone Mapping (iTM) stage is straightforward. Indeed, the LDR image passes through the same sub-band architecture. But, instead of reducing the dynamic range, the LDR content is boosted to an HDR representation. Moreover, in our TM sheme, we included an optimization module to select the gain map components that minimize the reconstruction error, and consequently resulting in high fidelity HDR content. Comparisons with recent state-of-the-art methods have shown that our method provides better results in terms of visual quality and HDR reconstruction fidelity using objective and subjective evaluations.

  17. Single-layer HDR video coding with SDR backward compatibility

    NASA Astrophysics Data System (ADS)

    Lasserre, S.; François, E.; Le Léannec, F.; Touzé, D.

    2016-09-01

    The migration from High Definition (HD) TV to Ultra High Definition (UHD) is already underway. In addition to an increase of picture spatial resolution, UHD will bring more color and higher contrast by introducing Wide Color Gamut (WCG) and High Dynamic Range (HDR) video. As both Standard Dynamic Range (SDR) and HDR devices will coexist in the ecosystem, the transition from Standard Dynamic Range (SDR) to HDR will require distribution solutions supporting some level of backward compatibility. This paper presents a new HDR content distribution scheme, named SL-HDR1, using a single layer codec design and providing SDR compatibility. The solution is based on a pre-encoding HDR-to-SDR conversion, generating a backward compatible SDR video, with side dynamic metadata. The resulting SDR video is then compressed, distributed and decoded using standard-compliant decoders (e.g. HEVC Main 10 compliant). The decoded SDR video can be directly rendered on SDR displays without adaptation. Dynamic metadata of limited size are generated by the pre-processing and used to reconstruct the HDR signal from the decoded SDR video, using a post-processing that is the functional inverse of the pre-processing. Both HDR quality and artistic intent are preserved. Pre- and post-processing are applied independently per picture, do not involve any inter-pixel dependency, and are codec agnostic. Compression performance, and SDR quality are shown to be solidly improved compared to the non-backward and backward-compatible approaches, respectively using the Perceptual Quantization (PQ) and Hybrid Log Gamma (HLG) Opto-Electronic Transfer Functions (OETF).

  18. Quality assurance of the international computerised 24 h dietary recall method (EPIC-Soft).

    PubMed

    Crispim, Sandra P; Nicolas, Genevieve; Casagrande, Corinne; Knaze, Viktoria; Illner, Anne-Kathrin; Huybrechts, Inge; Slimani, Nadia

    2014-02-01

    The interview-administered 24 h dietary recall (24-HDR) EPIC-Soft® has a series of controls to guarantee the quality of dietary data across countries. These comprise all steps that are part of fieldwork preparation, data collection and data management; however, a complete characterisation of these quality controls is still lacking. The present paper describes in detail the quality controls applied in EPIC-Soft, which are, to a large extent, built on the basis of the EPIC-Soft error model and are present in three phases: (1) before, (2) during and (3) after the 24-HDR interviews. Quality controls for consistency and harmonisation are implemented before the interviews while preparing the seventy databases constituting an EPIC-Soft version (e.g. pre-defined and coded foods and recipes). During the interviews, EPIC-Soft uses a cognitive approach by helping the respondent to recall the dietary intake information in a stepwise manner and includes controls for consistency (e.g. probing questions) as well as for completeness of the collected data (e.g. system calculation for some unknown amounts). After the interviews, a series of controls can be applied by dietitians and data managers to further guarantee data quality. For example, the interview-specific 'note files' that were created to track any problems or missing information during the interviews can be checked to clarify the information initially provided. Overall, the quality controls employed in the EPIC-Soft methodology are not always perceivable, but prove to be of assistance for its overall standardisation and possibly for the accuracy of the collected data.

  19. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  20. SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, F Maria; Podder, T; Yu, Y

    Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostatemore » HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system’s performance and reliability is in progress.« less

  1. Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays

    NASA Astrophysics Data System (ADS)

    Froehlich, Jan; Grandinetti, Stefan; Eberhardt, Bernd; Walter, Simon; Schilling, Andreas; Brendel, Harald

    2014-03-01

    High quality video sequences are required for the evaluation of tone mapping operators and high dynamic range (HDR) displays. We provide scenic and documentary scenes with a dynamic range of up to 18 stops. The scenes are staged using professional film lighting, make-up and set design to enable the evaluation of image and material appearance. To address challenges for HDR-displays and temporal tone mapping operators, the sequences include highlights entering and leaving the image, brightness changing over time, high contrast skin tones, specular highlights and bright, saturated colors. HDR-capture is carried out using two cameras mounted on a mirror-rig. To achieve a cinematic depth of field, digital motion picture cameras with Super-35mm size sensors are used. We provide HDR-video sequences to serve as a common ground for the evaluation of temporal tone mapping operators and HDR-displays. They are available to the scientific community for further research.

  2. Risk assessment in ginecology and obstetrics in Sicily: an approach based on Wolff's Criteria.

    PubMed

    Matranga, D; Marsala, M G L; Vadalà, M; Morici, M; Restivo, V; Ferrara, C; Vitale, F; Firenze, A

    2013-01-01

    To apply Wolff's Criteria to hospital discharge records (HDR) in order to detect adverse events worthy of further study. Gynecology and Obstetrics Units of three Sicilian hospitals were considered and HDR regarding ordinary and day hospital admissions in 2008 were collected. A matched case-control study was designed, by random selection of 10 controls at maximum for each case. Matching was performed on the variables age and speciality of admission (gynecology or obstetrics). Out of a total of 7011 HDR examined, 114 cases were identified with Wolff's Criteria. Multivariate analysis confirmed a statistically significant association with the origin of admission, diagnosis at the acceptance and length of stay: there was a decreased risk of Wolff's event in patients having urgent admission compared to elective (OR = 0.47, 95% CI = [0.28-0.78]), an increased risk in patients reporting tumor (OR = 5:41, 95 % CI [1.89-15.47]) and other causes (OR = 2.16, 95% CI [1.10-4.24]) compared to delivery diagnosis at acceptance and in patients whose length of stay was more than 6 days (OR = 23.17, 95% CI = [12.56-42.7]) compared to less or equal than 3 days Wolff's Criteria can be applied for the analysis of clinical risk in hospitals with different structural characteristics, on condition that the HDR database is complete and good quality.

  3. A radiation quality correction factor k for well-type ionization chambers for the measurement of the reference air kerma rate of (60)Co HDR brachytherapy sources.

    PubMed

    Schüller, Andreas; Meier, Markus; Selbach, Hans-Joachim; Ankerhold, Ulrike

    2015-07-01

    The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor kQ can be determined in order to measure the reference air kerma rate of (60)Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for (192)Ir HDR sources. The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of (60)Co and (192)Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor kQ was determined as the ratio of the calibration coefficients for (60)Co and (192)Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor kQ is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor kQ is 1.05. Both kQ values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of kQ is UkQ = 2.1% for both chamber types. The calibration coefficient of a well-type chamber for radiation fields of (60)Co HDR brachytherapy sources can be calculated from a given calibration coefficient for (192)Ir radiation by using a chamber-type-specific radiation quality correction factor kQ. However, the uncertainty of a (60)Co calibration coefficient calculated via kQ is at least twice as large as that for a direct calibration with a (60)Co source.

  4. WE-E-BRD-01: HDR Brachytherapy I: Overview of Clinical Application and QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, B; Showalter, T

    2014-06-15

    With the increased usage of high dose rate (HDR) brachytherapy and the introduction of dedicated image guided brachytherapy suites, it is necessary to review the processes and procedures associated with safely delivering these treatments in the expedited time scales that dedicated treatment suites afford. The speakers will present the clinical aspects of switching from LDR to HDR treatments, including guidelines for patient selection, and the clinical outcomes comparing LDR to HDR. The speakers will also discuss the HDR treatment process itself, because the shortened clinical timeline involved with a streamlined scan/plan/treat workflow can introduce other issues. Safety and QA aspectsmore » involved with the streamlined process, including increased personnel required for parallel tasks, and possible interfering tasks causing delays in patient treatments will also be discussed. Learning Objectives: To understand the clinical aspects of HDR Brachytherapy, including common clinical indications, patient selection, and the evolving evidence in support of this therapeutic modality To review the current prominent clinical trials for HDR brachytherapy To interpret the established guidelines for HDR brachytherapy quality assurance for implementation into practical clinical settings. To introduce the basic requirements for image guided brachytherapy.« less

  5. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.

    PubMed

    King, Christopher R

    2002-01-01

    Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (<70 Gy), but similar to results from dose escalation series. LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy using current dose regimens. However, HDR brachytherapy dose escalation regimens might be able to achieve higher biologically effective doses of irradiation in comparison to LDR, and hence improved outcomes. This advantage over LDR would be amplified should prostate cancer possess a high sensitivity to dose fractionation (i.e., a low alpha/beta ratio) as the current evidence suggests.

  6. Limb neurovascular control during altered otolithic input in humans

    NASA Technical Reports Server (NTRS)

    Monahan, Kevin D.; Ray, Chester A.

    2002-01-01

    Head-down rotation (HDR), which activates the vestibulosympathetic reflex, increases leg muscle sympathetic nerve activity (MSNA) and produces calf vasoconstriction with no change in either cardiac output or arterial blood pressure. Based on animal studies, it was hypothesized that differential control of arm and leg MSNA explains why HDR does not alter arterial blood pressure. Fifteen healthy subjects were studied. Heart rate, arterial blood pressure, forearm and calf blood flow, and leg MSNA responses were measured during HDR in these subjects. Simultaneous recordings of arm and leg MSNA were obtained from five of the subjects. Forearm and calf blood flow, vascular conductances, and vascular resistances were similar before HDR, as were arm and leg MSNA. HDR elicited similar significant increases in leg (Delta 6 +/- 1 bursts min(-1); 59 +/- 16 % from baseline) and arm MSNA (Delta 5 +/- 1 bursts min(-1); 80 +/- 28 % from baseline). HDR significantly decreased calf (-19 +/- 2 %) and forearm vascular conductance (-12 +/- 2 %) and significantly increased calf (25 +/- 4 %) and forearm vascular resistance (15 +/- 2 %), with 60 % greater vasoconstriction in the calf than in the forearm. Arterial blood pressure and heart rate were not altered by HDR. These results indicate that there is no differential control of MSNA in the arm and leg during altered feedback from the otolith organs in humans, but that greater vasoconstriction occurs in the calf than in the forearm. These findings indicate that vasodilatation occurs in other vascular bed(s) to account for the lack of increase in arterial blood pressure during HDR.

  7. Transition from LDR to HDR brachytherapy for cervical cancer: Evaluation of tumor control, survival, and toxicity.

    PubMed

    Romano, K D; Pugh, K J; Trifiletti, D M; Libby, B; Showalter, T N

    In 2012, our institution transitioned from low-dose-rate (LDR) brachytherapy to high dose-rate (HDR) brachytherapy. We report clinical outcomes after brachytherapy for cervical cancer at our institution over a continuous 10-year period. From 2004 to 2014, 258 women (184 LDR and 74 HDR) were treated with tandem and ovoid brachytherapy in the multidisciplinary management of International Federation of Gynecology and Obstetrics Stages IA-IVB cervical cancer. Clinical and treatment-related prognostic factors including age, stage, smoking status, relevant doses, and toxicity data were recorded. Median followup for the LDR and HDR groups was 46 months and 12 months, respectively. The majority of patients (92%) received external beam radiotherapy as well as concurrent chemotherapy (83%) before the start of brachytherapy. For all stages, the 1-year local control and overall survival (OS) rates were comparable between the LDR and HDR groups (87% vs. 81%, p = 0.12; and 75% vs. 85%, p = 0.16), respectively. Factors associated with OS on multivariate analysis include age, stage, and nodal involvement. On multivariate analysis, severe toxicity (acute or chronic) was higher with HDR than LDR (24% vs. 10%, p = 0.04). Additional prognostic factors associated with increased severe toxicity include former/current smokers and total dose to lymph nodes. This comparative retrospective analysis of a large cohort of women treated with brachytherapy demonstrates no significant difference in OS or local control between the LDR and HDR. Acute and chronic toxicity increased shortly after the implementation of HDR, highlighting the importance of continued refinement of HDR methods, including integrating advanced imaging. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. Design and testing of a phantom and instrumented gynecological applicator based on GaN dosimeter for use in high dose rate brachytherapy quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiral, P.; Ribouton, J.; Jalade, P.

    Purpose: High dose rate brachytherapy (HDR-BT) is widely used to treat gynecologic, anal, prostate, head, neck, and breast cancers. These treatments are typically administered in large dose per fraction (>5 Gy) and with high-gradient-dose-distributions, with serious consequences in case of a treatment delivery error (e.g., on dwell position and dwell time). Thus, quality assurance (QA) or quality control (QC) should be systematically and independently implemented. This paper describes the design and testing of a phantom and an instrumented gynecological applicator for pretreatment QA and in vivo QC, respectively. Methods: The authors have designed a HDR-BT phantom equipped with four GaN-basedmore » dosimeters. The authors have also instrumented a commercial multichannel HDR-BT gynecological applicator by rigid incorporation of four GaN-based dosimeters in four channels. Specific methods based on the four GaN dosimeter responses are proposed for accurate determination of dwell time and dwell position inside phantom or applicator. The phantom and the applicator have been tested for HDR-BT QA in routine over two different periods: 29 and 15 days, respectively. Measurements in dwell position and time are compared to the treatment plan. A modified position–time gamma index is used to monitor the quality of treatment delivery. Results: The HDR-BT phantom and the instrumented applicator have been used to determine more than 900 dwell positions over the different testing periods. The errors between the planned and measured dwell positions are 0.11 ± 0.70 mm (1σ) and 0.01 ± 0.42 mm (1σ), with the phantom and the applicator, respectively. The dwell time errors for these positions do not exhibit significant bias, with a standard deviation of less than 100 ms for both systems. The modified position–time gamma index sets a threshold, determining whether the treatment run passes or fails. The error detectability of their systems has been evaluated through tests on intentionally introduced error protocols. With a detection threshold of 0.7 mm, the error detection rate on dwell position is 22% at 0.5 mm, 96% at 1 mm, and 100% at and beyond 1.5 mm. On dwell time with a dwell time threshold of 0.1 s, it is 90% at 0.2 s and 100% at and beyond 0.3 s. Conclusions: The proposed HDR-BT phantom and instrumented applicator have been tested and their main characteristics have been evaluated. These systems perform unsupervised measurements and analysis without prior treatment plan information. They allow independent verification of dwell position and time with accuracy of measurements comparable with other similar systems reported in the literature.« less

  9. SU-F-T-32: Evaluation of the Performance of a Multiple-Array-Diode Detector for Quality Assurance Tests in High-Dose-Rate Brachytherapy with Ir-192 Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpool, K; De La Fuente Herman, T; Ahmad, S

    Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dosemore » verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and linearity that is superior to Gafchromic-films and ionization chamber used for geometric and dosimetric QA in HDR-brachytherapy, respectively.« less

  10. [Quality indicators for the assessment of ST-segment elevation acute myocardial infarction (STEMI) networks. How hospital discharge records could be integrated with Emergency medical services data: the Emilia-Romagna STEMI network experience].

    PubMed

    Pavesi, Pier Camillo; Guastaroba, Paolo; Casella, Gianni; Berti, Elena; De Palma, Rossana; Di Bartolomeo, Stefano; Di Pasquale, Giuseppe

    2015-09-01

    The assessment of the regional network for ST-segment elevation acute myocardial infarction (STEMI) is fundamental for quality assurance. Since 2011 all Italian Health Authorities, in addition to hospital discharge records (HDR), must provide a standardized information flow (ERD) about emergency department (ED) and emergency medical system (EMS) activities. The aim of this study was to evaluate whether data integration of ERD with HDR may allow the development of appropriate quality indicators. Patients admitted to coronary care units (CCU) for STEMI between January 1 to December 31, 2013, were identified from the regional HDR database. All data were linked to those of the regional ERD database. Four quality indicators were defined: 1) rates of EMS activation, 2) rates of EMS direct transfer to the catheterization laboratory (Cath-lab), 3) transfer rates from a Spoke to a Hub hospital with angioplasty facilities, and 4) median time spent in ED. In 2013, 2793 patients with STEMI were admitted to the CCU. Of these, 1684 patients (60%) activated EMS and were transported to Spoke or Hub hospitals; 955 (57%) entered directly in CCU/Cath-lab; 677 were transferred directly to a Hub hospital ED without being admitted to a Spoke hospital. The median ED time in Hub hospital was 47 min (IQR 24-136) and in Spoke hospital 53 min (IQR 30-131). The integration among administrative data banks (i.e., HDR with ERD) allowed the assessment of the regional STEMI network and the identification of potentially useful quality indicators. Their easy availability should enable comparisons with local, national and international standards, and may favor quality improvement.

  11. SU-F-T-65: AutomaticTreatment Planning for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Y; Tan, J; Jiang, S

    Purpose: High dose rate (HDR) brachytherapy treatment planning is conventionally performed in a manual fashion. Yet it is highly desirable to perform computerized automated planning to improve treatment planning efficiency, eliminate human errors, and reduce plan quality variation. The goal of this research is to develop an automatic treatment planning tool for HDR brachytherapy with a cylinder applicator for vaginal cancer. Methods: After inserting the cylinder applicator into the patient, a CT scan was acquired and was loaded to an in-house developed treatment planning software. The cylinder applicator was automatically segmented using image-processing techniques. CTV was generated based on user-specifiedmore » treatment depth and length. Locations of relevant points (apex point, prescription point, and vaginal surface point), central applicator channel coordinates, and dwell positions were determined according to their geometric relations with the applicator. Dwell time was computed through an inverse optimization process. The planning information was written into DICOM-RT plan and structure files to transfer the automatically generated plan to a commercial treatment planning system for plan verification and delivery. Results: We have tested the system retrospectively in nine patients treated with vaginal cylinder applicator. These cases were selected with different treatment prescriptions, lengths, depths, and cylinder diameters to represent a large patient population. Our system was able to generate treatment plans for these cases with clinically acceptable quality. Computation time varied from 3–6 min. Conclusion: We have developed a system to perform automated treatment planning for HDR brachytherapy with a cylinder applicator. Such a novel system has greatly improved treatment planning efficiency and reduced plan quality variation. It also served as a testbed to demonstrate the feasibility of automatic HDR treatment planning for more complicated cases.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüller, Andreas, E-mail: andreas.schueller@ptb.de; Meier, Markus; Selbach, Hans-Joachim

    Purpose: The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor k{sub Q} can be determined in order to measure the reference air kerma rate of {sup 60}Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for {sup 192}Ir HDR sources. Methods: The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of {sup 60}Co and {sup 192}Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor k{sub Q} was determined as the ratio of the calibration coefficients for {supmore » 60}Co and {sup 192}Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. Results: For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor k{sub Q} is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor k{sub Q} is 1.05. Both k{sub Q} values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of k{sub Q} is U{sub k{sub Q}} = 2.1% for both chamber types. Conclusions: The calibration coefficient of a well-type chamber for radiation fields of {sup 60}Co HDR brachytherapy sources can be calculated from a given calibration coefficient for {sup 192}Ir radiation by using a chamber-type-specific radiation quality correction factor k{sub Q}. However, the uncertainty of a {sup 60}Co calibration coefficient calculated via k{sub Q} is at least twice as large as that for a direct calibration with a {sup 60}Co source.« less

  13. HDR video synthesis for vision systems in dynamic scenes

    NASA Astrophysics Data System (ADS)

    Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried

    2016-09-01

    High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.

  14. Results of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of obstructive endobronchial non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Weinberg, Benjamin D.; Allison, Ron R.; Sibata, Claudio; Parent, Teresa; Downie, Gordon

    2009-06-01

    We reviewed the outcome of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) for patients with symptomatic obstruction from endobronchial non-small cell lung cancer. Methods: Nine patients who received combined PDT and HDR for endobronchial cancers were identified and their charts reviewed. The patients were eight males and one female aged 52-73 at diagnosis, initially presenting with various stages of disease: stage IA (N=1), stage IIA (N=1), stage III (N=6), and stage IV (N=1). Intervention was with HDR (500 cGy to 5 mm once weekly for 3 weeks) and PDT (2 mg/kg Photofrin, followed by 200 J/cm2 illumination 48 hours post infusion). Treatment group 1 (TG-1, N=7) received HDR first; Treatment group 2 (TG-2, N=2) received PDT first. Patients were followed by regular bronchoscopies. Results: Treatments were well tolerated, all patients completed therapy, and none were lost to follow-up. In TG-1, local tumor control was achieved in six of seven patients for: 3 months (until death), 15 months, 2+ years (until death), 2+ years (ongoing), and 5+ years (ongoing, N=2). In TG-2, local control was achieved in only one patient, for 84 days. Morbidities included: stenosis and/or other reversible benign local tissue reactions (N=8); photosensitivity reaction (N=2), and self-limited pleural effusion (N=2). Conclusions: Combined HDR/PDT treatment for endobronchial tumors is well tolerated and can achieve prolonged local control with acceptable morbidity when PDT follows HDR and when the spacing between treatments is one month or less. This treatment regimen should be studied in a larger patient population.

  15. Inverse Tone Mapping Based upon Retina Response

    PubMed Central

    Huo, Yongqing; Yang, Fan; Brost, Vincent

    2014-01-01

    The development of high dynamic range (HDR) display arouses the research of inverse tone mapping methods, which expand dynamic range of the low dynamic range (LDR) image to match that of HDR monitor. This paper proposed a novel physiological approach, which could avoid artifacts occurred in most existing algorithms. Inspired by the property of the human visual system (HVS), this dynamic range expansion scheme performs with a low computational complexity and a limited number of parameters and obtains high-quality HDR results. Comparisons with three recent algorithms in the literature also show that the proposed method reveals more important image details and produces less contrast loss and distortion. PMID:24744678

  16. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, R; Zhu, X; Li, S

    Purpose: High Dose Rate (HDR) brachytherapy forward planning is principally an iterative process; hence, plan quality is affected by planners’ experiences and limited planning time. Thus, this may lead to sporadic errors and inconsistencies in planning. A statistical tool based on previous approved clinical treatment plans would help to maintain the consistency of planning quality and improve the efficiency of second checking. Methods: An independent dose calculation tool was developed from commercial software. Thirty-three previously approved cervical HDR plans with the same prescription dose (550cGy), applicator type, and treatment protocol were examined, and ICRU defined reference point doses (bladder, vaginalmore » mucosa, rectum, and points A/B) along with dwell times were collected. Dose calculation tool then calculated appropriate range with a 95% confidence interval for each parameter obtained, which would be used as the benchmark for evaluation of those parameters in future HDR treatment plans. Model quality was verified using five randomly selected approved plans from the same dataset. Results: Dose variations appears to be larger at the reference point of bladder and mucosa as compared with rectum. Most reference point doses from verification plans fell between the predicted range, except the doses of two points of rectum and two points of reference position A (owing to rectal anatomical variations & clinical adjustment in prescription points, respectively). Similar results were obtained for tandem and ring dwell times despite relatively larger uncertainties. Conclusion: This statistical tool provides an insight into clinically acceptable range of cervical HDR plans, which could be useful in plan checking and identifying potential planning errors, thus improving the consistency of plan quality.« less

  18. Is there a preference for linearity when viewing natural images?

    NASA Astrophysics Data System (ADS)

    Kane, David; Bertamío, Marcelo

    2015-01-01

    The system gamma of the imaging pipeline, defined as the product of the encoding and decoding gammas, is typically greater than one and is stronger for images viewed with a dark background (e.g. cinema) than those viewed in lighter conditions (e.g. office displays).1-3 However, for high dynamic range (HDR) images reproduced on a low dynamic range (LDR) monitor, subjects often prefer a system gamma of less than one,4 presumably reflecting the greater need for histogram equalization in HDR images. In this study we ask subjects to rate the perceived quality of images presented on a LDR monitor using various levels of system gamma. We reveal that the optimal system gamma is below one for images with a HDR and approaches or exceeds one for images with a LDR. Additionally, the highest quality scores occur for images where a system gamma of one is optimal, suggesting a preference for linearity (where possible). We find that subjective image quality scores can be predicted by computing the degree of histogram equalization of the lightness distribution. Accordingly, an optimal, image dependent system gamma can be computed that maximizes perceived image quality.

  19. Phase III randomized trial comparing LDR and HDR brachytherapy in treatment of cervical carcinoma.

    PubMed

    Lertsanguansinchai, Prasert; Lertbutsayanukul, Chawalit; Shotelersuk, Kanjana; Khorprasert, Chonlakiet; Rojpornpradit, Prayuth; Chottetanaprasith, Taywin; Srisuthep, Apiradee; Suriyapee, Sivalee; Jumpangern, Chotika; Tresukosol, Damrong; Charoonsantikul, Chulee

    2004-08-01

    Intracavitary brachytherapy plays an important role in the treatment of cervical carcinoma. Previous results have shown controversy between the effect of dose rate on tumor control and the occurrence of complications. We performed a prospective randomized clinical trial to compare the clinical outcomes between low-dose-rate (LDR) and high-dose-rate (HDR) intracavitary brachytherapy for treatment of invasive uterine cervical carcinoma. A total of 237 patients with previously untreated invasive carcinoma of the uterine cervix treated at King Chulalongkorn Memorial Hospital were randomized between June 1995 and December 2001. Excluding ineligible, incomplete treatment, and incomplete data patients, 109 and 112 patients were in the LDR and HDR groups, respectively. All patients were treated with external beam radiotherapy and LDR or HDR intracavitary brachytherapy using the Chulalongkorn treatment schedule. The median follow-up for the LDR and HDR groups was 40.2 and 37.2 months, respectively. The actuarial 3-year overall and relapse-free survival rate for all patients was 69.6% and 70%, respectively. The 3-year overall survival rate in the LDR and HDR groups was 70.9% and 68.4% (p = 0.75) and the 3-year pelvic control rate was 89.1% and 86.4% (p = 0.51), respectively. The 3-year relapse-free survival rate in both groups was 69.9% (p = 0.35). Most recurrences were distant metastases, especially in Stage IIB and IIIB patients. Grade 3 and 4 complications were found in 2.8% and 7.1% of the LDR and HDR groups (p = 0.23). Comparable outcomes were demonstrated between LDR and HDR intracavitary brachytherapy. Concerning patient convenience, the lower number of medical personnel needed, and decreased radiation to health care workers, HDR intracavitary brachytherapy is an alternative to conventional LDR brachytherapy. The high number of distant failure suggests that other modalities such as systemic concurrent or adjuvant chemotherapy might lower this high recurrence, especially in Stage IIB and IIIB.

  20. Time Course and Accumulated Risk of Severe Urinary Adverse Events After High- Versus Low-Dose-Rate Prostate Brachytherapy With or Without External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tward, Jonathan D., E-mail: Jonathan.Tward@hci.utah.edu; Jarosek, Stephanie; Chu, Haitao

    Purpose: Severe urinary adverse events (UAEs) include surgical treatment of urethral stricture, urinary incontinence, and radiation cystitis. We compared the incidence of grade 3 UAEs, according to the Common Terminology Criteria for Adverse Events, after low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy, as well as after LDR plus external beam radiation therapy (EBRT) and HDR plus EBRT. Methods and Materials: Men aged >65 years with nonmetastatic prostate cancer were identified from the Surveillance, Epidemiology, and End Results–Medicare database who were treated with LDR (n=12,801), HDR (n=685), LDR plus EBRT (n=8518), or HDR plus EBRT (n=2392). The populations were balanced by propensity weighting, andmore » the Kaplan-Meier incidence of severe UAEs was compared. Propensity-weighted Cox proportional hazards models were used to compare the adjusted hazard of UAEs. These UAEs were compared with those in a cohort of men not treated for prostate cancer. Results: Median follow-up was 4.3 years. At 8 years, the propensity-weighted cumulative UAE incidence was highest after HDR plus EBRT (26.6% [95% confidence interval, 23.8%-29.7%]) and lowest after LDR (15.7% [95% confidence interval, 14.8%-16.6%]). The absolute excess risk over nontreated controls at 8 years was 1.9%, 3.8%, 8.4%, and 12.9% for LDR, HDR, LDR plus EBRT, and HDR plus EBRT, respectively. These represent numbers needed to harm of 53, 26, 12, and 8 persons, respectively. The additional risk of development of a UAE related to treatment for LDR, LDR plus EBRT, and HDR plus EBRT was greatest within the 2 years after treatment and then continued to decline over time. Beyond 4 years, the risk of development of a new severe UAE matched the baseline risk of the control population for all treatments. Conclusions: Toxicity differences were observed between LDR and HDR, but the differences did not meet statistical significance. However, combination radiation therapy (either HDR plus EBRT or LDR plus EBRT) increases the risk of severe UAEs compared with HDR alone or LDR alone. The highest increased risk of urinary toxicity occurs within the 2 years after therapy and then declines to an approximately 1% increase in incidence per year.« less

  1. Time Course and Accumulated Risk of Severe Urinary Adverse Events After High- Versus Low-Dose-Rate Prostate Brachytherapy With or Without External Beam Radiation Therapy.

    PubMed

    Tward, Jonathan D; Jarosek, Stephanie; Chu, Haitao; Thorpe, Cameron; Shrieve, Dennis C; Elliott, Sean

    2016-08-01

    Severe urinary adverse events (UAEs) include surgical treatment of urethral stricture, urinary incontinence, and radiation cystitis. We compared the incidence of grade 3 UAEs, according to the Common Terminology Criteria for Adverse Events, after low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy, as well as after LDR plus external beam radiation therapy (EBRT) and HDR plus EBRT. Men aged >65 years with nonmetastatic prostate cancer were identified from the Surveillance, Epidemiology, and End Results-Medicare database who were treated with LDR (n=12,801), HDR (n=685), LDR plus EBRT (n=8518), or HDR plus EBRT (n=2392). The populations were balanced by propensity weighting, and the Kaplan-Meier incidence of severe UAEs was compared. Propensity-weighted Cox proportional hazards models were used to compare the adjusted hazard of UAEs. These UAEs were compared with those in a cohort of men not treated for prostate cancer. Median follow-up was 4.3 years. At 8 years, the propensity-weighted cumulative UAE incidence was highest after HDR plus EBRT (26.6% [95% confidence interval, 23.8%-29.7%]) and lowest after LDR (15.7% [95% confidence interval, 14.8%-16.6%]). The absolute excess risk over nontreated controls at 8 years was 1.9%, 3.8%, 8.4%, and 12.9% for LDR, HDR, LDR plus EBRT, and HDR plus EBRT, respectively. These represent numbers needed to harm of 53, 26, 12, and 8 persons, respectively. The additional risk of development of a UAE related to treatment for LDR, LDR plus EBRT, and HDR plus EBRT was greatest within the 2 years after treatment and then continued to decline over time. Beyond 4 years, the risk of development of a new severe UAE matched the baseline risk of the control population for all treatments. Toxicity differences were observed between LDR and HDR, but the differences did not meet statistical significance. However, combination radiation therapy (either HDR plus EBRT or LDR plus EBRT) increases the risk of severe UAEs compared with HDR alone or LDR alone. The highest increased risk of urinary toxicity occurs within the 2 years after therapy and then declines to an approximately 1% increase in incidence per year. Copyright © 2016. Published by Elsevier Inc.

  2. A Novel Method to Increase LinLog CMOS Sensors’ Performance in High Dynamic Range Scenarios

    PubMed Central

    Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J.; Iborra, Andrés

    2011-01-01

    Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor’s maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method. PMID:22164083

  3. A novel method to increase LinLog CMOS sensors' performance in high dynamic range scenarios.

    PubMed

    Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J; Iborra, Andrés

    2011-01-01

    Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor's maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method.

  4. The use of nomograms in LDR-HDR prostate brachytherapy.

    PubMed

    Pujades, Ma Carmen; Camacho, Cristina; Perez-Calatayud, Jose; Richart, José; Gimeno, Jose; Lliso, Françoise; Carmona, Vicente; Ballester, Facundo; Crispín, Vicente; Rodríguez, Silvia; Tormo, Alejandro

    2011-09-01

    The common use of nomograms in Low Dose Rate (LDR) permanent prostate brachytherapy (BT) allows to estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for each clinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adapted to High Dose Rate (HDR). This work sets nomograms for LDR and HDR prostate-BT implants, which are applied to three different institutions that use different implant techniques. Patients treated throughout 2010 till April 2011 were considered for this study. This example was chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficient number of cases for both BT modalities, prescription dose and different work methodology (depending on the institution) were taken into account. The specific nomograms were built using the correlation between the prostate volume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, number of implanted seeds in LDR or total radiation time in HDR. For each institution and BT modality, nomograms normalized to the prescribed dose were obtained and fitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting. It should be noted that for each institution these linear function parameters are different, indicating that each centre should construct its own nomograms. Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific for each institution. Nevertheless, their use should be complementary to the necessary independent verification.

  5. The use of nomograms in LDR-HDR prostate brachytherapy

    PubMed Central

    Camacho, Cristina; Perez-Calatayud, Jose; Richart, José; Gimeno, Jose; Lliso, Françoise; Carmona, Vicente; Ballester, Facundo; Crispín, Vicente; Rodríguez, Silvia; Tormo, Alejandro

    2011-01-01

    Purpose The common use of nomograms in Low Dose Rate (LDR) permanent prostate brachytherapy (BT) allows to estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for each clinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adapted to High Dose Rate (HDR). This work sets nomograms for LDR and HDR prostate-BT implants, which are applied to three different institutions that use different implant techniques. Material and methods Patients treated throughout 2010 till April 2011 were considered for this study. This example was chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficient number of cases for both BT modalities, prescription dose and different work methodology (depending on the institution) were taken into account. The specific nomograms were built using the correlation between the prostate volume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, number of implanted seeds in LDR or total radiation time in HDR. Results For each institution and BT modality, nomograms normalized to the prescribed dose were obtained and fitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting. It should be noted that for each institution these linear function parameters are different, indicating that each centre should construct its own nomograms. Conclusions Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific for each institution. Nevertheless, their use should be complementary to the necessary independent verification. PMID:23346120

  6. Brachytherapy for Buccal Cancer: From Conventional Low Dose Rate (LDR) or Mold Technique to High Dose Rate Interstitial Brachytherapy (HDR-ISBT).

    PubMed

    Kotsuma, Tadayuki; Yamazaki, Hideya; Masui, Koji; Yoshida, Ken; Shimizutani, Kimishige; Akiyama, Hironori; Murakami, Shumei; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Tanaka, Eiichi

    2017-12-01

    To examine the effectiveness of newly-installed high-dose-rate interstitial brachytherapy (HDR-ISBT) for buccal cancer. We retrospectively reviewed 36 patients (25 men and 11 women) with buccal cancer treated with curative brachytherapy with or without external radiotherapy with a median follow-up of 99 months. A total of 15 HDR-ISBT (median 48 Gy/ 8 fractions, range=24-60 Gy) patients were compared to conventional 15 cases LDR-ISBT (70 Gy, range=42.8-110 Gy) and 7 molds techniques (15 Gy, range=9-74 Gy). A total of 31 patients also underwent external radiotherapy (30 Gy, range=24-48 Gy). They comprised of 3T1, 23 T2, 8 T3, 3 T4 including 11 node positive cases. HDR-ISBT provided 82% of local control rate at 5 years, whereas conventional brachytherapy showed 72% [p=0.44; LDR-ISBT (65%), mold therapy (85.7%)]. Patients with early lesions (T1-2 or stage I-II) showed better local control rates than those with advanced lesions (T3-4 or stage III-IV). Severe late grade 3 complications developed in two patients treated with LDR-ISBT and EBRT. There is no significant difference in toxicity grade ≤2 between conventional brachytherapy (5/15=33%) and HDR-ISBT (7/32=32%, p=0.92). HDR-ISBT achieved good and comparable local control rates to conventional brachytherapy without elevating the toxicity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. An automated approach for tone mapping operator parameter adjustment in security applications

    NASA Astrophysics Data System (ADS)

    Krasula, LukáÅ.¡; Narwaria, Manish; Le Callet, Patrick

    2014-05-01

    High Dynamic Range (HDR) imaging has been gaining popularity in recent years. Different from the traditional low dynamic range (LDR), HDR content tends to be visually more appealing and realistic as it can represent the dynamic range of the visual stimuli present in the real world. As a result, more scene details can be faithfully reproduced. As a direct consequence, the visual quality tends to improve. HDR can be also directly exploited for new applications such as video surveillance and other security tasks. Since more scene details are available in HDR, it can help in identifying/tracking visual information which otherwise might be difficult with typical LDR content due to factors such as lack/excess of illumination, extreme contrast in the scene, etc. On the other hand, with HDR, there might be issues related to increased privacy intrusion. To display the HDR content on the regular screen, tone-mapping operators (TMO) are used. In this paper, we present the universal method for TMO parameters tuning, in order to maintain as many details as possible, which is desirable in security applications. The method's performance is verified on several TMOs by comparing the outcomes from tone-mapping with default and optimized parameters. The results suggest that the proposed approach preserves more information which could be of advantage for security surveillance but, on the other hand, makes us consider possible increase in privacy intrusion.

  8. Quality Control of High-Dose-Rate Brachytherapy: Treatment Delivery Analysis Using Statistical Process Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Able, Charles M., E-mail: cable@wfubmc.edu; Bright, Megan; Frizzell, Bart

    Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles withmore » 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.« less

  9. Hdr Imaging for Feature Detection on Detailed Architectural Scenes

    NASA Astrophysics Data System (ADS)

    Kontogianni, G.; Stathopoulou, E. K.; Georgopoulos, A.; Doulamis, A.

    2015-02-01

    3D reconstruction relies on accurate detection, extraction, description and matching of image features. This is even truer for complex architectural scenes that pose needs for 3D models of high quality, without any loss of detail in geometry or color. Illumination conditions influence the radiometric quality of images, as standard sensors cannot depict properly a wide range of intensities in the same scene. Indeed, overexposed or underexposed pixels cause irreplaceable information loss and degrade digital representation. Images taken under extreme lighting environments may be thus prohibitive for feature detection/extraction and consequently for matching and 3D reconstruction. High Dynamic Range (HDR) images could be helpful for these operators because they broaden the limits of illumination range that Standard or Low Dynamic Range (SDR/LDR) images can capture and increase in this way the amount of details contained in the image. Experimental results of this study prove this assumption as they examine state of the art feature detectors applied both on standard dynamic range and HDR images.

  10. SU-G-201-01: An Automated Treatment Plan Quality Assurance Program for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Y; Tan, J; Jiang, S

    Purpose: Plan specific quality assurance (QA) is an important step in high dose rate (HDR) brachytherapy to ensure the integrity of a treatment plan. The conventional approach is to assemble a set of plan screen-captures in a document and have an independent plan-checker to verify it. Not only is this approach cumbersome and time-consuming, using a document also limits the items that can be verified, hindering plan quality and patient safety. We have initiated efforts to develop a web-based HDR brachytherapy QA system called AutoBrachy QA, for comprehensive and efficient QA. This abstract reports a new plugin in this systemmore » for the QA of a cylinder HDR brachytherapy treatment. Methods: A cylinder plan QA module was developed using Python. It was plugged into our AutoBrachy QA system. This module extracted information from CT images and treatment plan. Image processing techniques were employed to obtain geometric parameters, e.g. cylinder diameter. A comprehensive set of eight geometrical and eight dosimetric features of the plan were validated against user specified planning parameter, such as prescription value, treatment depth and length, etc. A PDF document was generated, consisting of a summary QA sheet with all the QA results, as well as images showing plan details. Results: The cylinder QA program has been implemented in our clinic. To date, it has been used in 11 patient cases and was able to successfully perform QA tests in all of them. The QA program reduced the average plan QA time from 7 min using conventional manual approach to 0.5 min. Conclusion: Being a new module in our AutoBrachy QA system, an automated treatment plan QA module for cylinder HDR brachytherapy has been successfully developed and clinically implemented. This module improved clinical workflow and plan integrity compared to the conventional manual approach.« less

  11. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of High-Dose-Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Beth A.; Demanes, D. Jeffrey; Ibbott, Geoffrey S.

    2011-03-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal,more » breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.« less

  12. High-dose-rate intraoperative radiation therapy: the nuts and bolts of starting a program

    PubMed Central

    Moningi, Shalini; Armour, Elwood P.; Terezakis, Stephanie A.; Efron, Jonathan E.; Gearhart, Susan L.; Bivalacqua, Trinity J.; Kumar, Rachit; Le, Yi; Kien Ng, Sook; Wolfgang, Christopher L.; Zellars, Richard C.; Ellsworth, Susannah G.; Ahuja, Nita

    2014-01-01

    High-dose-rate intraoperative radiation therapy (HDR-IORT) has historically provided effective local control (LC) for patients with unresectable and recurrent tumors. However, IORT is limited to only a few specialized institutions and it can be difficult to initiate an HDR-IORT program. Herein, we provide a brief overview on how to initiate and implement an HDR-IORT program for a selected group of patients with gastrointestinal and pelvic solid tumors using a multidisciplinary approach. Proper administration of HDR-IORT requires institutional support and a joint effort among physics staff, oncologists, surgeons, anesthesiologists, and nurses. In order to determine the true efficacy of IORT for various malignancies, collaboration among institutions with established IORT programs is needed. PMID:24790628

  13. Do medical students generate sound arguments during small group discussions in problem-based learning?: an analysis of preclinical medical students' argumentation according to a framework of hypothetico-deductive reasoning.

    PubMed

    Ju, Hyunjung; Choi, Ikseon; Yoon, Bo Young

    2017-06-01

    Hypothetico-deductive reasoning (HDR) is an essential learning activity and a learning outcome in problem-based learning (PBL). It is important for medical students to engage in the HDR process through argumentation during their small group discussions in PBL. This study aimed to analyze the quality of preclinical medical students' argumentation according to each phase of HDR in PBL. Participants were 15 first-year preclinical students divided into two small groups. A set of three 2-hour discussion sessions from each of the two groups during a 1-week-long PBL unit on the cardiovascular system was audio-recorded. The arguments constructed by the students were analyzed using a coding scheme, which included four types of argumentation (Type 0: incomplete, Type 1: claim only, Type 2: claim with data, and Type 3: claim with data and warrant). The mean frequency of each type of argumentation according to each HDR phase across the two small groups was calculated. During small group discussions, Type 1 arguments were generated most often (frequency=120.5, 43%), whereas the least common were Type 3 arguments (frequency=24.5, 8.7%) among the four types of arguments. The results of this study revealed that the students predominantly made claims without proper justifications; they often omitted data for supporting their claims or did not provide warrants to connect the claims and data. The findings suggest instructional interventions to enhance the quality of medical students' arguments in PBL, including promoting students' comprehension of the structure of argumentation for HDR processes and questioning.

  14. Clinical implementation and failure mode and effects analysis of HDR skin brachytherapy using Valencia and Leipzig surface applicators.

    PubMed

    Sayler, Elaine; Eldredge-Hindy, Harriet; Dinome, Jessie; Lockamy, Virginia; Harrison, Amy S

    2015-01-01

    The planning procedure for Valencia and Leipzig surface applicators (VLSAs) (Nucletron, Veenendaal, The Netherlands) differs substantially from CT-based planning; the unfamiliarity could lead to significant errors. This study applies failure modes and effects analysis (FMEA) to high-dose-rate (HDR) skin brachytherapy using VLSAs to ensure safety and quality. A multidisciplinary team created a protocol for HDR VLSA skin treatments and applied FMEA. Failure modes were identified and scored by severity, occurrence, and detectability. The clinical procedure was then revised to address high-scoring process nodes. Several key components were added to the protocol to minimize risk probability numbers. (1) Diagnosis, prescription, applicator selection, and setup are reviewed at weekly quality assurance rounds. Peer review reduces the likelihood of an inappropriate treatment regime. (2) A template for HDR skin treatments was established in the clinic's electronic medical record system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planner as well as increases the detectability of an error. (3) A screen check was implemented during the second check to increase detectability of an error. (4) To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display, facilitating data entry and verification. (5) VLSAs are color coded and labeled to match the electronic medical record prescriptions, simplifying in-room selection and verification. Multidisciplinary planning and FMEA increased detectability and reduced error probability during VLSA HDR brachytherapy. This clinical model may be useful to institutions implementing similar procedures. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. Handheld directional reflectometer: an angular imaging device to measure BRDF and HDR in real time

    NASA Astrophysics Data System (ADS)

    Mattison, Phillip R.; Dombrowski, Mark S.; Lorenz, James M.; Davis, Keith J.; Mann, Harley C.; Johnson, Philip; Foos, Bryan

    1998-10-01

    Many applications require quantitative measurements of surface light scattering, including quality control on production lines, inspection of painted surfaces, inspection of field repairs, etc. Instruments for measuring surface scattering typically fall into two main categories, namely bidirectional reflectometers, which measure the angular distribution of scattering, and hemispherical directional reflectometers, which measure the total scattering into the hemisphere above the surface. Measurement of the bi-directional reflectance distribution function (BRDF) gives the greatest insight into how light is scattered from a surface. Measurements of BRDF, however, are typically very lengthy measurements taken by moving a source and detector to map the scattering. Since BRDF has four angular degrees of freedom, such measurements can require hours to days to complete. Instruments for measuring BRDF are also typically laboratory devices, although a field- portable bi-directional reflectometer does exist. Hemispherical directional reflectance (HDR) is a much easier measurement to make, although care must be taken to use the proper methodology when measuring at wavelengths beyond 10 micrometer, since integrating spheres (typically used to make such measurements) are very energy inefficient and lose their integrating properties at very long wavelengths. A few field- portable hemispherical directional reflectometers do exist, but typically measure HDR only at near-normal angles. Boeing Defense and Space Group and Surface Optics Corporation, under a contract from the Air Force Research Laboratory, have developed a new hand-held instrument capable of measuring both BRDF and HDR using a unique, patented angular imaging technique. A combination of an hemi-ellipsoidal mirror and an additional lens translate the angular scatter from a surface into a two-dimensional spatial distribution, which is recorded by an imaging array. This configuration fully maps the scattering from a half-hemisphere above the surface with more than 30,000 angularly-resolved points and update rates to 60 measurements per second. The instrument then computes HDR from the measured BDR. For ease of use, the instrument can also compare both the BRDF and HDR to preset limits, generating a Pass/Fail indicator for HDR and a high-acceptable-low image display of BRDF. Beam incidence elevation is variable from normal incidence ((theta) equals 0 degrees) to 5 degrees off grazing ((theta) equals 85 degrees), while scattering is measured to nearly 90 degrees off normal. Such capability is extremely important for any application requiring knowledge of surface appearance at oblique viewing angles. The current instrument operates over the range of 3 micrometer to 12 micrometer, with extension into the visible band possible.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folkert, Michael R.; Tong, William Y.; LaQuaglia, Michael P.

    Purpose: To assess outcomes and toxicity of high-dose-rate intraoperative radiation therapy (HDR-IORT) in the management of pediatric sarcoma. Methods and Materials: Seventy-five pediatric patients underwent HDR-IORT for sarcoma from May 1993 to November 2013. The median age was 9 years old (36 patients were ≤6 years old). HDR-IORT was part of initial therapy in 37 patients (49%) and for recurrent disease in 38 patients (51%). Forty-one patients (55%) received HDR-IORT and postoperative external beam RT (PORT), and 22 patients (29%) were previously treated with external beam radiation therapy to the IORT site. Local control (LC), overall survival (OS) and event-free survival (EFS)more » were estimated using Kaplan-Meier methods. Results: At a median follow-up of 7.8 years for surviving patients, 5-year projected rates of LC, EFS, and OS were 63% (95% confidence interval [CI] 50%-76%), 33% (95% CI 21%-45%), and 43% (95% CI 30%-55%), with a median survival of 3.1 years. The 5-year LC, EFS, and OS rates for patients with recurrent disease were 46% (95% CI, 28%-64%), 30% (95% CI, 13%-46%), and 36% (95% CI, 18%-54%). Acute toxicity ≥grade 3 occurred in 2 (2.5%) treatments; late toxicity ≥grade 3 occurred in 4 (5.3%) patients 0.3-9.9 years after HDR-IORT. The incidence of toxicity ≥grade 3 was not associated with HDR-IORT applicator size, HDR-IORT dose, prior RT or PORT, or prior or postoperative chemotherapy, but all toxicity ≥grade 3 occurred in patients ≤6 years treated with HDR-IORT doses ≥12 Gy. Conclusions: HDR-IORT is a well-tolerated component of multimodality therapy for pediatric sarcoma, allowing additional local treatment while reducing external beam exposure. Taking clinical considerations into account, doses between 8-12 Gy are appropriate for HDR-IORT in patients ≤6 years of age.« less

  17. New segmentation-based tone mapping algorithm for high dynamic range image

    NASA Astrophysics Data System (ADS)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  18. Hierarchical tone mapping for high dynamic range image visualization

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Duan, Jiang

    2005-07-01

    In this paper, we present a computationally efficient, practically easy to use tone mapping techniques for the visualization of high dynamic range (HDR) images in low dynamic range (LDR) reproduction devices. The new method, termed hierarchical nonlinear linear (HNL) tone-mapping operator maps the pixels in two hierarchical steps. The first step allocates appropriate numbers of LDR display levels to different HDR intensity intervals according to the pixel densities of the intervals. The second step linearly maps the HDR intensity intervals to theirs allocated LDR display levels. In the developed HNL scheme, the assignment of LDR display levels to HDR intensity intervals is controlled by a very simple and flexible formula with a single adjustable parameter. We also show that our new operators can be used for the effective enhancement of ordinary images.

  19. Evaluation of the response of concurrent high dose rate intracavitary brachytherapy with external beam radiotherapy in management of early stage carcinoma cervix.

    PubMed

    Patidar, Arvind Kumar; Kumar, H S; Walke, Rahul V; Hirapara, Pushpendra H; Jakhar, Shankar Lal; Bardia, M R

    2012-10-01

    To evaluate local disease control and early complications of concomitant brachytherapy with external beam-radiotherapy in early stage carcinoma cervix. Fifty patients of early stage carcinoma cervix (FIGO-IB/IIA) were randomly divided into study group concomitant external beam irradiation (EBRT) and HDR-ICBT (intra-cavitary brachytherapy, xrt = 50 Gy/25 Fr, HDR 5.2 Gy*5 Fr) and the control group EBRT followed by HDR-ICBT (xrt = 50 Gy/25 Fr, HDR 7.5 Gy*3 Fr). Acute reactions and local disease response were compared between treatment and at 6-month follow up. Median overall treatment times were 38 and 61 days in the study and the control groups, respectively. Acute skin reactions and diarrhea were more in the study but manageable. At the completion of the study, there were 80 and 68 % complete responses, 16 and 20 % partial responses, 0 and 8 % stable diseases in the study group and the control group, respectively. Response was better in the study group but statistically insignificant. Larger number of patients and longer follow up are required to arrive at concrete conclusion.

  20. Evaluation of time, attendance of medical staff, and resources during interstitial brachytherapy for prostate cancer : DEGRO-QUIRO trial.

    PubMed

    Tselis, N; Maurer, U; Popp, W; Sack, H; Zamboglou, N

    2014-04-01

    The German Society of Radiation Oncology initiated a multicenter trial to evaluate core processes and subprocesses of radiotherapy by prospective evaluation of all important procedures in the most frequent malignancies treated by radiation therapy. The aim of this analysis was to assess the required resources for interstitial high-dose-rate (HDR) and low-dose-rate (LDR) prostate brachytherapy (BRT) based on actual time measurements regarding allocation of personnel and room occupation needed for specific procedures. Two radiotherapy centers (community hospital of Offenbach am Main and community hospital of Eschweiler) participated in this prospective study. Working time of the different occupational groups and room occupancies for the workflow of prostate BRT were recorded and methodically assessed during a 3-month period. For HDR and LDR BRT, a total of 560 and 92 measurements, respectively, were documented. The time needed for treatment preplanning was median 24 min for HDR (n = 112 measurements) and 6 min for LDR BRT (n = 21). Catheter implantation with intraoperative HDR real-time planning (n = 112), postimplantation HDR treatment planning (n = 112), and remotely controlled HDR afterloading irradiation (n = 112) required median 25, 39, and 50 min, respectively. For LDR real-time planning (n = 39) and LDR treatment postplanning (n = 32), the assessed median duration was 91 and 11 min, respectively. Room occupancy and overall mean medical staff times were 194 and 910 min respectively, for HDR, and 113 and 371 min, respectively, for LDR BRT. In this prospective analysis, the resource requirements for the application of HDR and LDR BRT of prostate cancer were assessed methodically and are presented for first time.

  1. High Dynamic Range Imaging Using Multiple Exposures

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  2. Effect of tone mapping operators on visual attention deployment

    NASA Astrophysics Data System (ADS)

    Narwaria, Manish; Perreira Da Silva, Matthieu; Le Callet, Patrick; Pepion, Romuald

    2012-10-01

    High Dynamic Range (HDR) images/videos require the use of a tone mapping operator (TMO) when visualized on Low Dynamic Range (LDR) displays. From an artistic intention point of view, TMOs are not necessarily transparent and might induce different behavior to view the content. In this paper, we investigate and quantify how TMOs modify visual attention (VA). To that end both objective and subjective tests in the form of eye-tracking experiments have been conducted on several still image content that have been processed by 11 different TMOs. Our studies confirm that TMOs can indeed modify human attention and fixation behavior significantly. Therefore our studies suggest that VA needs consideration for evaluating the overall perceptual impact of TMOs on HDR content. Since the existing studies so far have only considered the quality or aesthetic appeal angle, this study brings in a new perspective regarding the importance of VA in HDR content processing for visualization on LDR displays.

  3. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D.; Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114; Baltas, D.

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the differentmore » dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.« less

  4. Semi-3D dosimetry of high dose rate brachytherapy using a novel Gafchromic EBT3 film-array water phantom

    NASA Astrophysics Data System (ADS)

    Palmer, A. L.; Nisbet, A.; Bradley, D. A.

    2013-06-01

    There is a need to modernise clinical brachytherapy dosimetry measurement beyond traditional point dose verification to enable appropriate quality control within 3D treatment environments. This is to keep pace with the 3D clinical and planning approaches which often include significant patient-specific optimisation away from 'standard loading patterns'. A multi-dimension measurement system is required to provide assurance of the complex 3D dose distributions, to verify equipment performance, and to enable quality audits. However, true 3D dose measurements around brachytherapy applicators are often impractical due to their complex shapes and the requirement for close measurement distances. A solution utilising an array of radiochromic film (Gafchromic EBT3) positioned within a water filled phantom is presented. A calibration function for the film has been determined over 0 to 90Gy dose range using three colour channel analysis (FilmQAPro software). Film measurements of the radial dose from a single HDR source agree with TPS and Monte Carlo calculations within 5 % up to 50 mm from the source. Film array measurements of the dose distribution around a cervix applicator agree with TPS calculations generally within 4 mm distance to agreement. The feasibility of film array measurements for semi-3D dosimetry in clinical HDR applications is demonstrated.

  5. Does an Algorithmic Approach to Using Brachytherapy and External Beam Radiation Result in Good Function, Local Control Rates, and Low Morbidity in Patients With Extremity Soft Tissue Sarcoma?

    PubMed

    Klein, Jason; Ghasem, Alex; Huntley, Samuel; Donaldson, Nathan; Keisch, Martin; Conway, Sheila

    2018-03-01

    High-dose-rate brachytherapy (HDR-BT) and external-beam radiation therapy (EBRT) are two modalities used in the treatment of soft tissue sarcoma. Previous work at our institution showed early complications and outcomes for patients treated with HDR-BT, EBRT, or a combination of both radiation therapy modalities. As the general indications for each of these approaches to radiation therapy differ, it is important to evaluate the use of each in an algorithmic way, reflecting how they are used in contemporary practice at sites that use these treatments. QUESTION/PURPOSES: (1) To determine the proportions of intermediate- and long-term complications associated with the use of brachytherapy in the treatment of primary high-grade extremity soft tissue sarcomas; (2), to characterize the long-term morbidity of the three radiation treatment groups using the Radiation Therapy Oncology Group/ European Organization for Research and Treatment of Cancer (RTOG/EORTC) Late Radiation Morbidity Scoring Scheme; (3) to determine whether treatment with HDR-BT, EBRT, and HDR-BT+EBRT therapy, in combination with limb-salvage surgery, results in acceptable local control in this high-risk group of sarcomas. We retrospectively studied data from 171 patients with a diagnosis of high-grade extremity soft tissue sarcoma treated with limb-sparing surgery and radiation therapy between 1990 and 2012 at our institution, with a mean followup of 72 months. Of the 171 patients, 33 (20%) were treated with HDR-BT, 128 (75%) with EBRT, and 10 (6%) with HDR-BT+EBRT. We excluded 265 patients with soft tissue sarcomas owing to axial tumor location, previous radiation to the affected extremity, incomplete patient records, patients receiving primary amputation, recurrent tumors, pediatric patients, low- and intermediate-grade tumors, and rhabdoid histology. Fifteen patients (9%) were lost to followup for any reason including died of disease or other causes during the first 12 months postoperatively. This included four patients who received HDR-BT (12%), 11 who received EBRT (9%), and none who received HDR-BT+EBRT (0%) with less than 12 months followup. Determination of radiation therapy technique for each patient was individualized in a multidisciplinary forum of sarcoma specialists. Anticipated close or positive surgical margins and a low likelihood of complex soft tissue procedures were factors that encouraged use of brachytherapy, whereas the anticipated need for secondary procedures and/or soft tissue coverage encouraged use of EBRT alone. Combination therapy was used when the treatment volume exceeded the treatment field of the brachytherapy catheters or when the catheters were used to boost a close or positive surgical margin. Local recurrence, complications, and morbidity outcomes scores (RTOG) were calculated based on chart review. Between-group comparisons pertaining to the proportion of patients experiencing complications, morbidity outcomes scores, and local recurrence rates were not performed because of dissimilarities among the patients in each group at baseline. The HDR-BT treatment group showed a high incidence of intermediate-term complications, with the three most common being: deep infection (33%, 11 of 33); dehiscence and delayed wound healing (24%, eight of 33); and seroma and hematoma (21%, seven of 33). The EBRT group showed a high incidence of intermediate- and long-term complications with the three most common being: chronic radiation dermatitis (35%, 45 of 128); fibrosis (27%, 35 of 128); and chronic pain and neuritis (13%, 16 of 128). The RTOG scores for each treatment group were: HDR-BT 0.8 ± SD 1.2; EBRT 1.9 ± 2.0; and HDR-BT+EBRT 1.7 ± 1.7. Overall, 142 of 169 (84%) patients were free from local recurrence: 27 (82%) in the HDR-BT group, 108 (86%) in the EBRT group, and seven (70%) in the combination therapy group. In this single-institution study, an algorithmic approach to using HDR-BT and EBRT in the treatment of patients with high-grade soft tissue sarcomas can yield acceptable complication rates, good morbidity outcome scores, and a high degree of local control. Based on these results, we believe HDR-BT is best for patients with an anticipated close margin, a positive surgical margin, and for patients who are unlikely to receive a complex soft tissue procedure. Conversely, if a secondary procedure and/or soft tissue coverage are likely to be used, EBRT alone may be reasonable. Finally, combination therapy might be considered when the treatment volume exceeded the treatment field capacity for HDR-BT or when the catheters were used to boost a close or positive surgical margin. Level IV, therapeutic study.

  6. Catheter-based ultrasound hyperthermia with HDR brachytherapy for treatment of locally advanced cancer of the prostate and cervix

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Wootton, Jeff; Prakash, Punit; Salgaonkar, Vasant; Juang, Titania; Scott, Serena; Chen, Xin; Cunha, Adam; Pouliot, Jean; Hsu, I. C.

    2011-03-01

    A clinical treatment delivery platform has been developed and is being evaluated in a clinical pilot study for providing 3D controlled hyperthermia with catheter-based ultrasound applicators in conjunction with high dose rate (HDR) brachytherapy. Catheter-based ultrasound applicators are capable of 3D spatial control of heating in both angle and length of the devices, with enhanced radial penetration of heating compared to other hyperthermia technologies. Interstitial and endocavity ultrasound devices have been developed specifically for applying hyperthermia within HDR brachytherapy implants during radiation therapy in the treatment of cervix and prostate. A pilot study of the combination of catheter based ultrasound with HDR brachytherapy for locally advanced prostate and cervical cancer has been initiated, and preliminary results of the performance and heating distributions are reported herein. The treatment delivery platform consists of a 32 channel RF amplifier and a 48 channel thermocouple monitoring system. Controlling software can monitor and regulate frequency and power to each transducer section as required during the procedure. Interstitial applicators consist of multiple transducer sections of 2-4 cm length × 180 deg and 3-4 cm × 360 deg. heating patterns to be inserted in specific placed 13g implant catheters. The endocavity device, designed to be inserted within a 6 mm OD plastic tandem catheter within the cervix, consists of 2-3 transducers × dual 180 or 360 deg sectors. 3D temperature based treatment planning and optimization is dovetailed to the HDR optimization based planning to best configure and position the applicators within the catheters, and to determine optimal base power levels to each transducer section. To date we have treated eight cervix implants and six prostate implants. 100 % of treatments achieved a goal of >60 min duration, with therapeutic temperatures achieved in all cases. Thermal dosimetry within the hyperthermia target volume (HTV) and clinical target volume (CTV) are reported. Catheter-based ultrasound hyperthermia with HDR appears feasible with therapeutic temperature coverage of the target volume within the prostate or cervix while sparing surrounding more sensitive regions.

  7. Objective quality assessment of tone-mapped images.

    PubMed

    Yeganeh, Hojatollah; Wang, Zhou

    2013-02-01

    Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.

  8. Live HDR video streaming on commodity hardware

    NASA Astrophysics Data System (ADS)

    McNamee, Joshua; Hatchett, Jonathan; Debattista, Kurt; Chalmers, Alan

    2015-09-01

    High Dynamic Range (HDR) video provides a step change in viewing experience, for example the ability to clearly see the soccer ball when it is kicked from the shadow of the stadium into sunshine. To achieve the full potential of HDR video, so-called true HDR, it is crucial that all the dynamic range that was captured is delivered to the display device and tone mapping is confined only to the display. Furthermore, to ensure widespread uptake of HDR imaging, it should be low cost and available on commodity hardware. This paper describes an end-to-end HDR pipeline for capturing, encoding and streaming high-definition HDR video in real-time using off-the-shelf components. All the lighting that is captured by HDR-enabled consumer cameras is delivered via the pipeline to any display, including HDR displays and even mobile devices with minimum latency. The system thus provides an integrated HDR video pipeline that includes everything from capture to post-production, archival and storage, compression, transmission, and display.

  9. A Prospective Cohort Study to Compare Treatment Results Between 2 Fractionation Schedules of High-Dose-Rate Intracavitary Brachytherapy (HDR-ICBT) in Patients With Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Eng-Yen; School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taiwan; Sun, Li-Min

    Purpose: To compare the treatment results of 2 fractionation schedules for high-dose-rate intracavitary brachytherapy (HDR-ICBT) in patients with cervical cancer. Methods and Materials: From June 2001 through January 2008, 267 patients with stage IB-IVA cervical cancer were enrolled in the study. All patients underwent 4-field pelvic irradiation and HDR-ICBT. The median central and parametrial doses were 39.6 Gy and 45 Gy, respectively. Patient underwent either 6 Gy Multiplication-Sign 4 (HDR-4) (n=144) or 4.5 Gy Multiplication-Sign 6 (HDR-6) (n=123) to point A of ICBT using {sup 192}Ir isotope twice weekly. The rates of overall survival, locoregional failure, distant metastasis, proctitis, cystitis,more » and enterocolitis were compared between HDR-4 and HDR-6. Results: There were no significant differences in the demographic data between HDR-4 and HDR-6 except for total treatment time. The 5-year proctitis rates were 23.0% and 21.5% in HDR-4 and HDR-6 (P=.399), respectively. The corresponding rates of grade 2-4 proctitis were 18.7% and 9.6% (P=.060). The corresponding rates of grades 3-4 proctitis were 5.2% and 1.3% (P=.231). Subgroup analysis revealed that HDR-4 significantly increased grade 2-4 proctitis in patients aged {>=}62 years old (P=.012) but not in patients aged <62 years (P=.976). The rates of overall survival, locoregional failure, distant metastasis, cystitis, and enterocolitis were not significantly different between HDR-4 and HDR-6 schedules. Conclusion: The small fraction size of HDR-ICBT is associated with grade 2 proctitis without compromise of prognosis in elderly patients. This schedule is suggested for patients who tolerate an additional 2 applications of HDR-ICBT.« less

  10. Changes of loading tensile force-stretch relationships of rabbit mesenteric vein after 21 days of head-down rest

    NASA Astrophysics Data System (ADS)

    Yao, Yong-Jie; Sun, Hui-Pin; Yue, Yong; Sun, Xi-Qing; Wu, Xing-Yu

    Changes of venous compliance may contribute to postflight orthostatic intolerance; however, direct animal studies to address the changes of venous compliance to microgravity have been rare. The purpose of this study was to determine compliance changes of mesenteric veins of rabbits after 21 days of head-down rest (HDR). Twenty-four healthy male New Zealand Rabbits were randomly divided into 21 days of HDR group, horizontal immobilization group (HIG) and control group (Ctrl), with eight in each. Loading tensile force-stretch relationships of mesenteric vein segments were constructed after 21 d HDR. With the increase of loading tensile force, both longitudinal and circumferential stretches of vein samples increased significantly. Under the same loading tensile force, mesenteric vein of the HDR showed significant increase both in circumferential stretch and longitudinal stretches compared to those of Ctrl group and HIG group. These results indicate that, a 21-day simulated weightlessness leads to increase of mesenteric venous compliance.

  11. SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safigholi, H; Soliman, A; Song, W Y

    Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap withmore » a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical surface applicator must be used with a protective plastic end-cap to eliminate electron contamination and over-dosage of the skin.« less

  12. The evolution of brachytherapy for prostate cancer.

    PubMed

    Zaorsky, Nicholas G; Davis, Brian J; Nguyen, Paul L; Showalter, Timothy N; Hoskin, Peter J; Yoshioka, Yasuo; Morton, Gerard C; Horwitz, Eric M

    2017-06-30

    Brachytherapy (BT), using low-dose-rate (LDR) permanent seed implantation or high-dose-rate (HDR) temporary source implantation, is an acceptable treatment option for select patients with prostate cancer of any risk group. The benefits of HDR-BT over LDR-BT include the ability to use the same source for other cancers, lower operator dependence, and - typically - fewer acute irritative symptoms. By contrast, the benefits of LDR-BT include more favourable scheduling logistics, lower initial capital equipment costs, no need for a shielded room, completion in a single implant, and more robust data from clinical trials. Prospective reports comparing HDR-BT and LDR-BT to each other or to other treatment options (such as external beam radiotherapy (EBRT) or surgery) suggest similar outcomes. The 5-year freedom from biochemical failure rates for patients with low-risk, intermediate-risk, and high-risk disease are >85%, 69-97%, and 63-80%, respectively. Brachytherapy with EBRT (versus brachytherapy alone) is an appropriate approach in select patients with intermediate-risk and high-risk disease. The 10-year rates of overall survival, distant metastasis, and cancer-specific mortality are >85%, <10%, and <5%, respectively. Grade 3-4 toxicities associated with HDR-BT and LDR-BT are rare, at <4% in most series, and quality of life is improved in patients who receive brachytherapy compared with those who undergo surgery.

  13. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodesmore » by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.« less

  14. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea

    PubMed Central

    Yan, Zhen

    2017-01-01

    ABSTRACT Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO2-reducing methanogenic anaerobes (methanogens) from the domain Archaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F420 (F420H2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F420H2 and reduction of ferredoxin with the exergonic oxidation of F420H2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. PMID:28174314

  15. High dose rate 192Ir source calibration: A single institution experience

    NASA Astrophysics Data System (ADS)

    Abdullah, R.; Abdullah, N. H.; Mohamed, M.; Idris, N. R. N.; Yusoff, A. L.; Chen, S. C.; Zakaria, A.

    2017-05-01

    Measurement of source strength of new high dose rate (HDR) 192Ir supplied by the manufacturer is part of quality assurance recommended by Radiation Safety Section, Ministry of Health of Malaysia. The source strength is determined in reference air kerma rate (RAKR). The purpose of this study was to evaluate RAKR measurement of 192Ir using well-type ionisation chamber with RAKR stated in the certificate provided by the manufacturer. A retrospective study on 19 MicroSelectron HDR 192Ir Classic from 2001 to 2009 and 12 MicroSelectron HDR 192Ir V2 sources from 2009 to 2016 supplied by manufacturer were compared. From the study, the agreement between measured RAKR and RAKR stated in the certificate by manufacturer for all 32 sources supplied were within ±2.5%. As a conclusion, a threshold level of ±2.5% can be used as suitable indicator to spot problems of the brachytherapy system in Department of Nuclear Medicine Radiotherapy and Oncology, Hospital USM.

  16. Hypofractionated accelerated CT-guided interstitial ¹⁹²Ir-HDR-Brachytherapy as re-irradiation in inoperable recurrent cervical lymphadenopathy from head and neck cancer.

    PubMed

    Tselis, Nikolaos; Ratka, Markus; Vogt, Hans-Georg; Kolotas, Christos; Baghi, Mehran; Baltas, Dimos; Fountzilas, George; Georgoulias, Vassilios; Ackermann, Hanns; Zamboglou, Nikolaos

    2011-01-01

    Despite significant improvements in the treatment of head and neck cancer (HNC), lymph node recurrences remain a clinical challenge after primary radiotherapy. The value of interstitial (IRT) brachytherapy (BRT) for control of lymph node recurrence remains unclear. In order to clarify its role a retrospective review was undertaken on the value of computed tomography (CT)-guided IRT high-dose-rate (HDR)-BRT in isolated recurrent disease from HNC. From 2000 to 2007, 74 patients were treated for inoperable recurrent cervical lymphadenopathy. All patients had previously been treated with radical radiotherapy or chemoradiation with or without surgery. The HDR-BRT delivered a median salvage dose of 30.0 Gy (range, 12.0-36.0 Gy) in twice-daily fractions of 2.0-5.0 Gy in 71 patients and of 30.0 Gy (range, 10.0-36.0 Gy) in once-daily fractions of 6.0-10.0 Gy in three patients. The overall and disease-free survival rates at one, two and three years were 42%, 19%, 6%, and 42%, 37% and 19%, respectively. The local control probability at one, two and three years was 67% at all three time points. Grade III-IV complications occurred in 13% of patients. In patients with inoperable recurrent neck disease from HNC, hypofractionated accelerated CT-guided IRT-HDR-BRT can play an important role in providing palliation and tumor control. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. 78 FR 37782 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... staff from state agencies who deal with issues such as coastal water quality and habitat management. The... Ocean Science (NCCOS) and HDR, Inc., an environmental consulting firm. NOAA has a long history of...

  18. Research on Formation Mechanisms of Hot Dry Rock Resources in China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Xi, Y.

    2017-12-01

    As an important geothermal resource, hot dry rock(HDR) reserves have been studied in many countries. HDR resources in China have huge capacity and have become one of the most important resources for the potential replacement of fossil fuels. However, HDR resources are difficult to develop and utilise. Technologies for use with HDR, such as high-temperature drilling, reservoir characterisation, reservoir fracturing, microseismic monitoring and high-temperature power stations, originate from the field of oil and drilling. Addressing how to take advantage of these developed technologies is a key factor in the development of HDR reserves. Based on the thermal crustal structure in China, HDR resources can be divided into four types: high radioactive heat production, sedimentary basin, modern volcano and the inner-plate active tectonic belt. The prospective regions of HDR resources are located in South Tibet, West Yunnan, the southeast coast of China, Bohai Rim, Songliao Basin and Guanzhong Basin. The related essential technologies are relatively mature, and the prospect of HDR power generation is promising. Therefore, analysing the formation mechanisms of HDR resources and promoting the transformation of technological achievements, large-scale development and the utilisation of HDR resources can be achieved in China.

  19. SU-F-T-27: A Comparative Case Study Among Four Modalities for the Superficial Treatment of Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashenafi, M; Koch, N; Peng, J

    Purpose: We performed a comparative planning study among High Dose Rate (HDR) brachytherapy, superficial electrons, Volume Modulated Arc Therapy (VMAT), and Helical IMRT (Tomotherapy) for squamous cell carcinoma of the abdominal wall with consideration for the underlining bowel. Methods: A 69-year old female presented with squamous cell carcinoma protruding 8mm beyond the anterior skin surface of the midabdomen was considered for treatment. The patient had a ventral hernia which resulted in the reduction of the abdominal wall thickness and the adjacent small bowel being the dose limiting structure. Four plans were generated using different treatment modalities: a) an enface electronmore » field (eMC, Eclipse v. 11), b) Tomotherapy (HI-Art II v.5.0.5), c) VMAT (Acuros, Eclipse v. 11), and d) HDR using a Freiburg applicator (Oncentra v. 4.3). The following plan objectives were used for all four plans: for the CTV target, V90% ≥90% (61.8Gy2/2).For the small bowel, D0.1cc < 56.2 Gy2/2 was a hard constraint and expressed as a percentage of the prescription for comparison to demonstrate the dose fall-off achieved among the modalities.For HDR, V200% <0.1cc was an additional constraint. Multiple dosimetric parameters, including those listed above, were compared among the four modalities. Results: The HDR plan showed comparable target coverage compared to the Tomotherapy plan and better coverage compared to the electron plan. Small bowel doses (D0.1cc) were lower in HDR plan compared to Tomotherapy, electron, & VMAT plans (88.8%, 89.6%, 90.9%, & 96.6%). Integral dose to the whole body (V5%) was much higher for HDR, VMAT, and Tomotherapy when compared to electron plan by factors of seven, eight, and ten, respectively. After reviewing all treatment modalities, the physician selected HDR owing to better control of the small bowel dose while maintaining adequate target coverage. Conclusion: This case study demonstrated HDR can successfully treat superficial lesions with superior sparing of underlying structures.« less

  20. A Ferredoxin- and F 420 H 2 -Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhen; Wang, Mingyu; Ferry, James G.

    Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; but, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2-reducing methanogenic anaerobes (methanogens) from the domainArchaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogenMethanosarcina acetivoranswith unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologsmore » of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domainsBacteriaandArchaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes inEscherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420(F 420H 2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420H 2and reduction of ferredoxin with the exergonic oxidation of F 420H 2and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) byM. acetivoransand uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth ofM. acetivoransand proposed to be essential for growth in the environment when acetate is limiting.IMPORTANCEDiscovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2-reducing methanogens to include diverse prokaryotes from the domainsBacteriaandArchaea. Furthermore, the unprecedented coenzyme F 420-dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH 4-oxidizing pathways. Our results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth’s biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation.« less

  1. A Ferredoxin- and F 420 H 2 -Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea

    DOE PAGES

    Yan, Zhen; Wang, Mingyu; Ferry, James G.; ...

    2017-02-07

    Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; but, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2-reducing methanogenic anaerobes (methanogens) from the domainArchaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogenMethanosarcina acetivoranswith unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologsmore » of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domainsBacteriaandArchaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes inEscherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420(F 420H 2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420H 2and reduction of ferredoxin with the exergonic oxidation of F 420H 2and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) byM. acetivoransand uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth ofM. acetivoransand proposed to be essential for growth in the environment when acetate is limiting.IMPORTANCEDiscovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2-reducing methanogens to include diverse prokaryotes from the domainsBacteriaandArchaea. Furthermore, the unprecedented coenzyme F 420-dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH 4-oxidizing pathways. Our results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth’s biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation.« less

  2. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea.

    PubMed

    Yan, Zhen; Wang, Mingyu; Ferry, James G

    2017-02-07

    Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2 -reducing methanogenic anaerobes (methanogens) from the domain Archaea Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420 (F 420 H 2 ) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420 H 2 and reduction of ferredoxin with the exergonic oxidation of F 420 H 2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. Discovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2 -reducing methanogens to include diverse prokaryotes from the domains Bacteria and Archaea The unprecedented coenzyme F 420 -dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH 4 -oxidizing pathways. The results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth's biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation. Copyright © 2017 Yan et al.

  3. HDR and LDR Brachytherapy in the Treatment of Lip Cancer: the Experience of the Catalan Institute of Oncology.

    PubMed

    Ayerra, Arrate Querejeta; Mena, Estefanía Palacios; Fabregas, Joan Pera; Miguelez, Cristina Gutiérrez; Guedea, Ferran

    2010-03-01

    Lip cancer can be treated by surgery, external radiotherapy, and/or brachytherapy (BT). In recent years, BT has become increasingly favored for this type of cancer. The aim of the present study was to analyze local control and survival of patients treated at our institution between July 1989 and June 2008. We performed a retrospective study of 121 patients (109 males and 12 females) who underwent lip cancer brachytherapy from July 1989 to June 2008. Median age was 67 years and median follow-up was 31.8 months (range 20-188 months). Out of 121 patients, 100 (82.6%) were treated with low dose rate (LDR) BT while the remaining 21 patients (17.4%) received high dose rate (HDR) BT. The most common cell type was squamous cell carcinoma (115 cases; 95%) and most tumors were located on the lower lip (107 patients; 88.4%). Most cases were either stage T1 (62 patients; 51.2%), or T2 (44 cases; 36.4%). After 15 years of follow-up, overall survival was 89.5%, cause-specific survival 97.8%, and disease-free survival 86.6%. Local, regional, and distant control at 15 years were 90%, 92%, and 98.8%, respectively. Grade 3 mucosal toxicity was observed in 23% of patients treated with LDR compared to 33% of HDR patients, and grade 4 mucosal toxicity in 9% versus 0% in the HDR group. Our findings confirm that brachytherapy is an effective treatment for lip cancer. The results from our series are in line with those published elsewhere. Based on our limited data, HDR appears to be equally as good as LDR, although this needs to be confirmed by further studies.

  4. Gamut mapping in a high-dynamic-range color space

    NASA Astrophysics Data System (ADS)

    Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp

    2014-01-01

    In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.

  5. Building gene co-expression networks using transcriptomics data for systems biology investigations: Comparison of methods using microarray data

    PubMed Central

    Kadarmideen, Haja N; Watson-haigh, Nathan S

    2012-01-01

    Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine microarray transcriptomics datasets representing four different treatments with Metyrapone, an inhibitor of cortisol biosynthesis. We conducted several microarray quality control checks before applying GCN methods to filtered datasets. Then we compared the outputs of two methods using connectivity as a criterion, as it measures how well a node (gene) is connected within a network. The two GCN construction methods used were, Weighted Gene Co-expression Network Analysis (WGCNA) and Partial Correlation and Information Theory (PCIT) methods. Nodes were ranked based on their connectivity measures in each of the four different networks created by WGCNA and PCIT and node ranks in two methods were compared to identify those nodes which are highly differentially ranked (HDR). A total of 1,017 HDR nodes were identified across one or more of four networks. We investigated HDR nodes by gene enrichment analyses in relation to their biological relevance to phenotypes. We observed that, in contrast to WGCNA method, PCIT algorithm removes many of the edges of the most highly interconnected nodes. Removal of edges of most highly connected nodes or hub genes will have consequences for downstream analyses and biological interpretations. In general, for large GCN construction (with > 20000 genes) access to large computer clusters, particularly those with larger amounts of shared memory is recommended. PMID:23144540

  6. Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus.

    PubMed

    Boughanemi, Souhela; Lyonnet, Jordan; Infossi, Pascale; Bauzan, Marielle; Kosta, Artémis; Lignon, Sabrina; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2016-08-01

    The Hdr (heterodisulfide reductase)-like enzyme is predicted, from gene transcript profiling experiments previously published, to be essential in oxidative sulfur metabolism in a number of bacteria and archaea. Nevertheless, no biochemical and physicochemical data are available so far about this enzyme. Genes coding for it were identified in Aquifex aeolicus, a Gram-negative, hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium that uses inorganic sulfur compounds as electron donor to grow. We provide biochemical evidence that this Hdr-like enzyme is present in this sulfur-oxidizing prokaryote (cultivated with thiosulfate or elemental sulfur). We demonstrate, by immunolocalization and cell fractionation, that Hdr-like enzyme is associated, presumably monotopically, with the membrane fraction. We show by co-immunoprecipitation assay or partial purification, that the Hdr proteins form a stable complex composed of at least five subunits, HdrA, HdrB1, HdrB2, HdrC1 and HdrC2, present in two forms of high molecular mass on native gel (∼240 and 450 kDa). These studies allow us to propose a revised model for dissimilatory sulfur oxidation pathways in A. aeolicus, with Hdr predicted to generate sulfite. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes.

    PubMed

    Zhou, Xiaoyang; Wang, Lulu; Du, Yinan; Xie, Fei; Li, Liang; Liu, Yu; Liu, Chuanhong; Wang, Shiqiang; Zhang, Shibing; Huang, Xingxu; Wang, Yong; Wei, Hong

    2016-01-01

    Precise genetic mutation of model animals is highly valuable for functional investigation of human mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-induced homology-directed repair (HDR) is usually used for precise genetic mutation, being limited by the relatively low efficiency compared with that of non-homologous end joining (NHEJ). Although inhibition of NHEJ was shown to enhance HDR-derived mutation, in this work, without inhibition of NHEJ, we first generated gene-modified pigs harboring precise orthologous human mutation (Sox10 c.A325>T) via CRISPR/Cas9-induced HDR in zygotes using single-strand oligo DNA (ssODN) as template with an efficiency as high as 80%, indicating that pig zygotes exhibited high activities of HDR relative to NHEJ and were highly amendable to genetic mutation via CIRSPR/Cas9-induced HDR. Besides, we found a higher concentration of ssODN remarkably reduced HDR-derived mutation in pig zygotes, suggesting a possible balance for optimal HDR-derived mutation in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ which appeared to be negatively correlated to ssODN concentration. In addition, the HDR-derived mutation, as well as those from NHEJ, extensively integrated into various tissues including gonad of founder pig without detected off-targeting, suggesting CRISPR/Cas9-induced HDR in zygotes is a reliable approach for precise genetic mutation in pigs. © 2015 WILEY PERIODICALS, INC.

  8. Towards high dynamic range extensions of HEVC: subjective evaluation of potential coding technologies

    NASA Astrophysics Data System (ADS)

    Hanhart, Philippe; Řeřábek, Martin; Ebrahimi, Touradj

    2015-09-01

    This paper reports the details and results of the subjective evaluations conducted at EPFL to evaluate the responses to the Call for Evidence (CfE) for High Dynamic Range (HDR) and Wide Color Gamut (WCG) Video Coding issued by Moving Picture Experts Group (MPEG). The CfE on HDR/WCG Video Coding aims to explore whether the coding efficiency and/or the functionality of the current version of HEVC standard can be signi_cantly improved for HDR and WCG content. In total, nine submissions, five for Category 1 and four for Category 3a, were compared to the HEVC Main 10 Profile based Anchor. More particularly, five HDR video contents, compressed at four bit rates by each proponent responding to the CfE, were used in the subjective evaluations. Further, the side-by-side presentation methodology was used for the subjective experiment to discriminate small differences between the Anchor and proponents. Subjective results shows that the proposals provide evidence that the coding efficiency can be improved in a statistically noticeable way over MPEG CfE Anchors in terms of perceived quality within the investigated content. The paper further benchmarks the selected objective metrics based on their correlations with the subjective ratings. It is shown that PSNR-DE1000, HDRVDP- 2, and PSNR-Lx can reliably detect visible differences between the proposed encoding solutions and current HEVC standard.

  9. A dosimetric comparison of {sup 169}Yb versus {sup 192}Ir for HDR prostate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.

    2005-12-15

    For the purpose of evaluating the use of {sup 169}Yb for prostate High Dose Rate brachytherapy (HDR), a hypothetical {sup 169}Yb source is assumed with the exact same design of the new microSelectron source replacing the {sup 192}Ir active core by pure {sup 169}Yb metal. Monte Carlo simulation is employed for the full dosimetric characterization of both sources and results are compared following the AAPM TG-43 dosimetric formalism. Monte Carlo calculated dosimetry results are incorporated in a commercially available treatment planning system (SWIFT{sup TM}), which features an inverse treatment planning option based on a multiobjective dose optimization engine. The qualitymore » of prostate HDR brachytherapy using the real {sup 192}Ir and hypothetical {sup 169}Yb source is compared in a comprehensive analysis of different prostate implants in terms of the multiobjective dose optimization solutions as well as treatment quality indices such as Dose Volume Histograms (DVH) and the Conformal Index (COIN). Given that scattering overcompensates for absorption in intermediate photon energies and distances in the range of interest to prostate HDR brachytherapy, {sup 169}Yb proves at least equivalent to {sup 192}Ir irrespective of prostate volume. This has to be evaluated in view of the shielding requirements for the {sup 169}Yb energies that are minimal relative to that for {sup 192}Ir.« less

  10. Near constant-time optimal piecewise LDR to HDR inverse tone mapping

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Su, Guan-Ming; Yin, Peng

    2015-02-01

    In a backward compatible HDR image/video compression, it is a general approach to reconstruct HDR from compressed LDR as a prediction to original HDR, which is referred to as inverse tone mapping. Experimental results show that 2- piecewise 2nd order polynomial has the best mapping accuracy than 1 piece high order or 2-piecewise linear, but it is also the most time-consuming method because to find the optimal pivot point to split LDR range to 2 pieces requires exhaustive search. In this paper, we propose a fast algorithm that completes optimal 2-piecewise 2nd order polynomial inverse tone mapping in near constant time without quality degradation. We observe that in least square solution, each entry in the intermediate matrix can be written as the sum of some basic terms, which can be pre-calculated into look-up tables. Since solving the matrix becomes looking up values in tables, computation time barely differs regardless of the number of points searched. Hence, we can carry out the most thorough pivot point search to find the optimal pivot that minimizes MSE in near constant time. Experiment shows that our proposed method achieves the same PSNR performance while saving 60 times computation time compared to the traditional exhaustive search in 2-piecewise 2nd order polynomial inverse tone mapping with continuous constraint.

  11. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-08-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  12. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue.

    PubMed

    Brenner, David J; Martinez, Alvaro A; Edmundson, Gregory K; Mitchell, Christina; Thames, Howard D; Armour, Elwood P

    2002-01-01

    A direct approach to the question of whether prostate tumors have an atypically high sensitivity to fractionation (low alpha/beta ratio), more typical of the surrounding late-responding normal tissue. Earlier estimates of alpha/beta for prostate cancer have relied on comparing results from external beam radiotherapy (EBRT) and brachytherapy, an approach with significant pitfalls due to the many differences between the treatments. To circumvent this, we analyze recent data from a single EBRT + high-dose-rate (HDR) brachytherapy protocol, in which the brachytherapy was given in either 2 or 3 implants, and at various doses. For the analysis, standard models of tumor cure based on Poisson statistics were used in conjunction with the linear-quadratic formalism. Biochemical control at 3 years was the clinical endpoint. Patients were matched between the 3 HDR vs. 2 HDR implants by clinical stage, pretreatment prostate-specific antigen (PSA), Gleason score, length of follow-up, and age. The estimated value of alpha/beta from the current analysis of 1.2 Gy (95% CI: 0.03, 4.1 Gy) is consistent with previous estimates for prostate tumor control. This alpha/beta value is considerably less than typical values for tumors (> or =8 Gy), and more comparable to values in surrounding late-responding normal tissues. This analysis provides strong supporting evidence that alpha/beta values for prostate tumor control are atypically low, as indicated by previous analyses and radiobiological considerations. If true, hypofractionation or HDR regimens for prostate radiotherapy (with appropriate doses) should produce tumor control and late sequelae that are at least as good or even better than currently achieved, with the added possibility that early sequelae may be reduced.

  13. SU-E-T-124: Dosimetric Comparison of HDR Brachytherapy and Intensity Modulated Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J; Wu, H; Das, I

    2014-06-01

    Purpose: Brachytherapy is known to be able to deliver more radiation dose to tumor while minimizing radiation dose to surrounding normal tissues. Proton therapy also provides superior dose distribution due to Bragg peak. Since both HDR and Intensity Modulated Proton Therapy (IMPT) are beneficial for their quick dose drop off, our goal in this study is to compare the pace of dose gradient drop-off between HDR and IMPT plans based on the same CT image data-set. In addition, normal tissues sparing were also compared among HDR, IMPT and SBRT. Methods: Five cervical cancer cases treated with EBRT + HDR boostmore » combination with Tandem and Ovoid applicator were used for comparison purpose. Original HDR plans with prescribed dose of 5.5 Gy x 5 fractions were generated and optimized. The 100% isodose line of HDR plans was converted to a dose volume, and treated as CTV for IMPT and SBRT planning. The same HDR CT scans were also used for IMPT plan and SBRT plan for direct comparison. The philosophy of the IMPT and SBRT planning was to create the same CTV coverage as HDR plans. All three modalities treatment plans were compared to each other with a set of predetermined criteria. Results: With similar target volume coverage in cervix cancer boost treatment, HDR provides a slightly sharper dose drop-off from 100% to 50% isodose line, averagely in all directions compared to IMPT. However, IMPT demonstrated more dose gradient drop-off at the junction of the target and normal tissues by providing more normal tissue sparing and superior capability to reduce integral dose. Conclusion: IMPT is capable of providing comparable dose drop-off as HDR. IMPT can be explored as replacement for HDR brachytherapy in various applications.« less

  14. High versus low-dose rate brachytherapy for cervical cancer.

    PubMed

    Patankar, Sonali S; Tergas, Ana I; Deutsch, Israel; Burke, William M; Hou, June Y; Ananth, Cande V; Huang, Yongmei; Neugut, Alfred I; Hershman, Dawn L; Wright, Jason D

    2015-03-01

    Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Women with stages IB2-IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003-2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (P<0.0001). In a multivariable model, year of diagnosis was the strongest predictor of use of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% CI 0.83-1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. High versus Low-Dose Rate Brachytherapy for Cervical Cancer

    PubMed Central

    Patankar, Sonali S.; Tergas, Ana I.; Deutsch, Israel; Burke, William M.; Hou, June Y.; Ananth, Cande V.; Huang, Yongmei; Neugut, Alfred I.; Hershman, Dawn L.; Wright, Jason D.

    2015-01-01

    Objectives Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Methods Women with stage IB2–IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003–2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. Results A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (P<0.0001). In a multivariable model, year of diagnosis was the strongest predictor of use of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% 0.83–1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. Conclusions The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. PMID:25575481

  16. Multi-exposure high dynamic range image synthesis with camera shake correction

    NASA Astrophysics Data System (ADS)

    Li, Xudong; Chen, Yongfu; Jiang, Hongzhi; Zhao, Huijie

    2017-10-01

    Machine vision plays an important part in industrial online inspection. Owing to the nonuniform illuminance conditions and variable working distances, the captured image tends to be over-exposed or under-exposed. As a result, when processing the image such as crack inspection, the algorithm complexity and computing time increase. Multiexposure high dynamic range (HDR) image synthesis is used to improve the quality of the captured image, whose dynamic range is limited. Inevitably, camera shake will result in ghost effect, which blurs the synthesis image to some extent. However, existed exposure fusion algorithms assume that the input images are either perfectly aligned or captured in the same scene. These assumptions limit the application. At present, widely used registration based on Scale Invariant Feature Transform (SIFT) is usually time consuming. In order to rapidly obtain a high quality HDR image without ghost effect, we come up with an efficient Low Dynamic Range (LDR) images capturing approach and propose a registration method based on ORiented Brief (ORB) and histogram equalization which can eliminate the illumination differences between the LDR images. The fusion is performed after alignment. The experiment results demonstrate that the proposed method is robust to illumination changes and local geometric distortion. Comparing with other exposure fusion methods, our method is more efficient and can produce HDR images without ghost effect by registering and fusing four multi-exposure images.

  17. High dose rate brachytherapy for oral cancer

    PubMed Central

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  18. High dose rate brachytherapy for oral cancer.

    PubMed

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  19. High- and low-dose-rate intraoperative radiotherapy for thoracic malignancies resected with close or positive margins.

    PubMed

    Fleming, Christopher; Rimner, Andreas; Cohen, Gil'ad N; Woo, Kaitlin M; Zhang, Zhigang; Rosenzweig, Kenneth E; Alektiar, Kaled M; Zelefsky, Michael J; Bains, Manjit S; Wu, Abraham J

    2016-01-01

    Local recurrence is a significant problem after surgical resection of thoracic tumors. As intraoperative radiotherapy (IORT) can deliver radiation directly to the threatened margin, we have used this therapy in an attempt to reduce local recurrence, using high-dose-rate (HDR) as well as low-dose-rate (LDR) techniques. We performed a retrospective review of patients undergoing LDR ((125)I) mesh placement or HDR ((192)Ir) afterloading therapy during lung tumor resection between 2001 and 2013 at our institution. Competing risks methods were used to estimate the cumulative incidence of local failure. We also assessed possible predictive factors of local failure. Fifty-nine procedures (41 LDR and 18 HDR) were performed on 58 patients. Median follow-up was 55.1 months. Cumulative incidence of local failure at 1, 2, and 3 years was 28.5%, 34.2%, and 34.2%, respectively. Median overall survival was 39.9 months. There was no significant difference in local failure according to margin status, HDR vs. LDR, use of adjuvant external beam radiotherapy, or metastatic vs. primary tumor. Two patients (3.4%) experienced Grade 3+ toxicities likely related to brachytherapy. Additionally, 7 patients experienced Grade 3+ postsurgical complications unlikely related to brachytherapy. IORT is associated with good local control after resection of thoracic tumors otherwise at very high risk for local recurrence. There is a low incidence of severe toxicity attributable to brachytherapy. HDR-IORT appears to have equivalent outcomes to LDR-IORT. HDR or LDR-IORT can, therefore, be considered in situations where the oncologic completeness of thoracic tumor resection is in doubt. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants.

    PubMed

    Mavroidis, Panayiotis; Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos

    2010-09-01

    One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P + and the biologically effective uniform dose ([Formula: see text]) were used for treatment plan evaluation and comparison. Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical plans demonstrated a lower total dwell time by a mean of 1.4% that was proved to be statistically significant ( p = 0.002). The HIPO with MR treatment plans produced a higher P + by 0.5%, which stemmed from a better sparing of the OARs by 1.0%. Both the dosimetric and radiobiological comparison shows that the modulation restricted optimization gives on average similar results with the optimization without modulation restriction in the examined clinical cases. Concluding, based on our results, it appears that the applied dwell time regularization technique is expected to introduce a minor improvement in the effectiveness of the optimized HDR dose distributions.

  1. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants

    PubMed Central

    Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos

    2010-01-01

    Purpose One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. Material and methods The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P+ and the biologically effective uniform dose (D¯¯) were used for treatment plan evaluation and comparison. Results Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical plans demonstrated a lower total dwell time by a mean of 1.4% that was proved to be statistically significant (p = 0.002). The HIPO with MR treatment plans produced a higher P+ by 0.5%, which stemmed from a better sparing of the OARs by 1.0%. Conclusions Both the dosimetric and radiobiological comparison shows that the modulation restricted optimization gives on average similar results with the optimization without modulation restriction in the examined clinical cases. Concluding, based on our results, it appears that the applied dwell time regularization technique is expected to introduce a minor improvement in the effectiveness of the optimized HDR dose distributions. PMID:27853473

  2. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  3. Towards a robust HDR imaging system

    NASA Astrophysics Data System (ADS)

    Long, Xin; Zeng, Xiangrong; Huangpeng, Qizi; Zhou, Jinglun; Feng, Jing

    2016-07-01

    High dynamic range (HDR) images can show more details and luminance information in general display device than low dynamic image (LDR) images. We present a robust HDR imaging system which can deal with blurry LDR images, overcoming the limitations of most existing HDR methods. Experiments on real images show the effectiveness and competitiveness of the proposed method.

  4. Evaluation of privacy in high dynamic range video sequences

    NASA Astrophysics Data System (ADS)

    Řeřábek, Martin; Yuan, Lin; Krasula, Lukáš; Korshunov, Pavel; Fliegel, Karel; Ebrahimi, Touradj

    2014-09-01

    The ability of high dynamic range (HDR) to capture details in environments with high contrast has a significant impact on privacy in video surveillance. However, the extent to which HDR imaging affects privacy, when compared to a typical low dynamic range (LDR) imaging, is neither well studied nor well understood. To achieve such an objective, a suitable dataset of images and video sequences is needed. Therefore, we have created a publicly available dataset of HDR video for privacy evaluation PEViD-HDR, which is an HDR extension of an existing Privacy Evaluation Video Dataset (PEViD). PEViD-HDR video dataset can help in the evaluations of privacy protection tools, as well as for showing the importance of HDR imaging in video surveillance applications and its influence on the privacy-intelligibility trade-off. We conducted a preliminary subjective experiment demonstrating the usability of the created dataset for evaluation of privacy issues in video. The results confirm that a tone-mapped HDR video contains more privacy sensitive information and details compared to a typical LDR video.

  5. β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass

    PubMed Central

    Peyot, Marie-Line; Pepin, Emilie; Lamontagne, Julien; Latour, Martin G.; Zarrouki, Bader; Lussier, Roxane; Pineda, Marco; Jetton, Thomas L.; Madiraju, S.R. Murthy; Joly, Erik; Prentki, Marc

    2010-01-01

    OBJECTIVE C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about β-cell failure in these mice. RESEARCH DESIGN AND METHODS DIO mice were separated in two groups according to body weight gain: low- and high-HFD responders (LDR and HDR). We examined whether mild hyperglycemia in HDR mice is due to reduced β-cell mass or function and studied islet metabolism and signaling. RESULTS HDR mice were more obese, hyperinsulinemic, insulin resistant, and hyperglycemic and showed a more altered plasma lipid profile than LDR. LDR mice largely compensated insulin resistance, whereas HDR showed perturbed glucose homeostasis. Neither LDR nor HDR mice showed reduced β-cell mass, altered islet glucose metabolism, and triglyceride deposition. Insulin secretion in response to glucose, KCl, and arginine was impaired in LDR and almost abolished in HDR islets. Palmitate partially restored glucose- and KCl-stimulated secretion. The glucose-induced rise in ATP was reduced in both DIO groups, and the glucose-induced rise in Ca2+ was reduced in HDR islets relatively to LDR. Glucose-stimulated lipolysis was decreased in LDR and HDR islets, whereas fat oxidation was increased in HDR islets only. Fatty acid esterification processes were markedly diminished, and free cholesterol accumulated in HDR islets. CONCLUSIONS β-Cell failure in HDR mice is not due to reduced β-cell mass and glucose metabolism or steatosis but to a secretory dysfunction that is possibly due to altered ATP/Ca2+ and lipid signaling, as well as free cholesterol deposition. PMID:20547980

  6. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film dosimetry and gamma comparison to DICOM RTDose files has been demonstrated as suitable to fulfil this need.« less

  7. SU-E-T-149: Brachytherapy Patient Specific Quality Assurance for a HDR Vaginal Cylinder Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbiere, J; Napoli, J; Ndlovu, A

    2015-06-15

    Purpose: Commonly Ir-192 HDR treatment planning system commissioning is only based on a single absolute measurement of source activity supplemented by tabulated parameters for multiple factors without independent verification that the planned distribution corresponds to the actual delivered dose. The purpose on this work is to present a methodology using Gafchromic film with a statistically valid calibration curve that can be used to validate clinical HDR vaginal cylinder cases by comparing the calculated plan dose distribution in a plane with the corresponding measured planar dose. Methods: A vaginal cylinder plan was created with Oncentra treatment planning system. The 3D dosemore » matrix was exported to a Varian Eclipse work station for convenient extraction of a 2D coronal dose plane corresponding to the film position. The plan was delivered with a sheet of Gafchromic EBT3 film positioned 1mm from the catheter using an Ir-192 Nucletron HDR source. The film was then digitized with an Epson 10000 XL color scanner. Film analysis is performed with MatLab imaging toolbox. A density to dose calibration curve was created using TG43 formalism for a single dwell position exposure at over 100 points for statistical accuracy. The plan and measured film dose planes were registered using a known dwell position relative to four film marks. The plan delivered 500 cGy to points 2 cm from the sources. Results: The distance to agreement of the 500 cGy isodose between the plan and film measurement laterally was 0.5 mm but can be as much as 1.5 mm superior and inferior. The difference between the computed plan dose and film measurement was calculated per pixel. The greatest errors up to 50 cGy are near the apex. Conclusion: The methodology presented will be useful to implement more comprehensive quality assurance to verify patient-specific dose distributions.« less

  8. 3D workflow for HDR image capture of projection systems and objects for CAVE virtual environments authoring with wireless touch-sensitive devices

    NASA Astrophysics Data System (ADS)

    Prusten, Mark J.; McIntyre, Michelle; Landis, Marvin

    2006-02-01

    A 3D workflow pipeline is presented for High Dynamic Range (HDR) image capture of projected scenes or objects for presentation in CAVE virtual environments. The methods of HDR digital photography of environments vs. objects are reviewed. Samples of both types of virtual authoring being the actual CAVE environment and a sculpture are shown. A series of software tools are incorporated into a pipeline called CAVEPIPE, allowing for high-resolution objects and scenes to be composited together in natural illumination environments [1] and presented in our CAVE virtual reality environment. We also present a way to enhance the user interface for CAVE environments. The traditional methods of controlling the navigation through virtual environments include: glove, HUD's and 3D mouse devices. By integrating a wireless network that includes both WiFi (IEEE 802.11b/g) and Bluetooth (IEEE 802.15.1) protocols the non-graphical input control device can be eliminated. Therefore wireless devices can be added that would include: PDA's, Smart Phones, TabletPC's, Portable Gaming consoles, and PocketPC's.

  9. Is there a place for brachytherapy in the salvage treatment of cervical lymph node metastases of head and neck cancers?

    PubMed

    Bartochowska, Anna; Skowronek, Janusz; Wierzbicka, Malgorzata; Leszczynska, Malgorzata; Szyfter, Witold

    2015-01-01

    Therapeutic options are limited for unresectable isolated cervical lymph node recurrences. The purpose of the study was to evaluate the feasibility, safety, and efficacy of high-dose-rate (HDR) and pulsed-dose-rate (PDR) brachytherapy (BT) in such cases. Sixty patients have been analyzed. All them had previously been treated with radical radiotherapy or chemoradiotherapy with or without surgery. PDR-BT and HDR-BT were used in 49 and 11 patients, respectively. In PDR-BT, a dose per pulse of 0.6-0.8 Gy (median 0.7 Gy) was given up to a median total dose of 20 Gy (range, 20-40 Gy). HDR-BT delivered a median total dose of 24 Gy (range, 7-60 Gy) in 3-10 fractions at 3-6 Gy per fraction. The overall survival and lymph node control rates at 1 and 2 years were estimated for 31.7% and 19%, and 41.4% and 27.3%, respectively. Serious late side effects (soft tissue necrosis) were observed in 11.7% of patients. Adverse events occurred statistically more often in patients >59 years (p = 0.02). HDR-BT and PDR-BT are feasible in previously irradiated patients with isolated regional lymph node metastases of head and neck cancers. The techniques should be considered if surgery is contraindicated. They provide acceptable toxicity and better tumor control than chemotherapy alone. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Poster - Thur Eve - 03: LDR to HDR: RADPOS applications in brachytherapy.

    PubMed

    Cherpak, A J; Cygler, J E; Kertzscher, G; E, C; Perry, G

    2012-07-01

    The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor and either one or five MOSFET dosimeters. The feasibility of using the system for quality control has been explored for a range of radiotherapy treatment techniques including most recently transperineal interstitial permanent prostate brachytherapy and high dose rate (HDR) treatments. Dose and position information was collected by a RADPOS array detector inside a Foley catheter within patients' urethra during permanent seed implantation. Ten patients were studied, and average displacement during implantation was Δr = (1.4-5.1) mm, with movements up to 9.7 mm due to the removal of the transrectal ultrasound probe. Maximum integral dose in the prostatic urethra ranged from 110-195 Gy, and it was found that the dose can change up to 63 cGy (62.0%) depending on whether the rectal probe is in place. For HDR, a RADPOS detector was first calibrated with an Ir-192 source. A treatment was then simulated using a total of 50 dwell positions in 5 catheters in an acrylic phantom. Dwell positions ranged from 1 to 10 cm away from the RADPOS detector and dose was measured for each source position. An average calibration coefficient of 0.74±0.11 cGy/mV was calculated for the detector and the average absolute difference between measured values and expected dose was 0.7±5.4 cGy (5±20%). The demonstrated accuracy of RADPOS dose measurements along with its ability to simultaneously measure displacement makes it a powerful tool for brachytherapy treatments, where high dose gradients can present unique in vivo dosimetry challenges. © 2012 American Association of Physicists in Medicine.

  11. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator

    NASA Astrophysics Data System (ADS)

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-06-01

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  12. The feasibility study and characterization of a two-dimensional diode array in "magic phantom" for high dose rate brachytherapy quality assurance.

    PubMed

    Espinoza, A; Beeksma, B; Petasecca, M; Fuduli, I; Porumb, C; Cutajar, D; Corde, S; Jackson, M; Lerch, M L F; Rosenfeld, A B

    2013-11-01

    High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly (192)Ir with an air KERMA strength range between 20,000 and 40,000 U, where 1 U = 1 μGy m(2)/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named "magic phantom." The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array "magic plate" (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the (192)Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a (192)Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ. The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of the epitaxial diodes used in the MP is in good agreement (within 8%) with radial dose function measurements found within the TG-43 protocol, with SDD of up to 70 mm showing a 40% over response. A method for four-dimensional localization of the HDR source was developed, allowing the source dwell position to be derived within 0.50 mm of the expected position. An estimation of the average transit speed for varying step sizes was determined and was found to increase from (12.8 ± 0.3) up to (38.6 ± 0.4) cm/s for a step size of 2.5 and 50 mm, respectively. Our characterization of the designed QA "magic phantom" with MP in realistic HDR photon fields demonstrates the promising performance for real-time source position tracking in four dimensions and measurements of transit times. Further development of this system will allow a full suite for QA in HDR brachytherapy and analysis, and for future in vivo tracking.

  13. Interstitial radiation therapy for early-stage nasal vestibule cancer: A continuing quest for optimal tumor control and cosmesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levendag, Peter C.; Nijdam, Wideke M.; Moolenburgh, Sanne E. van

    Introduction: This article reports on the effectiveness, cosmetic outcome, and costs of interstitial high-dose-rate (HDR) brachytherapy for early-stage cancer of the nasal vestibule (NV) proper and/or columella high-dose-rate (HDR). Methods and Materials: Tumor control, survival, cosmetic outcome, functional results, and costs were established in 64 T1/T2N0 nasal vestibule cancers treated from 1991-2005 by fractionated interstitial radiation therapy (IRT) only. Total dose is 44 Gy: 2 fractions of 3 Gy per day, 6-hour interval, first and last fraction 4 Gy. Cosmesis is noted in the chart by the medical doctor during follow-up, by the patient (visual analog scale), and by amore » panel. Finally, full hospital costs are computed. Results: A local relapse-free survival rate of 92% at 5 years was obtained. Four local failures were observed; all four patients were salvaged. The neck was not treated electively; no neck recurrence in follow-up was seen. Excellent cosmetic and functional results were observed. With 10 days admission for full treatment, hospital costs amounted to Euro 5772 ($7044). Conclusion: Excellent tumor control, cosmesis, and function of nasal airway passage can be achieved when HDR-IRT for T1/T2N0 NV cancers is used. For the more advanced cancers (Wang classification: T3 tumor stage), we elect to treat by local excision followed by a reconstructive procedure. The costs, admission to hospital inclusive, for treatment by HDR-IRT amounts to Euro 5772 ($7044 US). This contrasts substantially with the full hospital costs when NV cancers are treated by plastic reconstructive surgery, being on average threefold as expensive.« less

  14. A Pilot Study of Catheter-Based Ultrasound Hyperthermia with HDR Brachytherapy for Treatment of Locally Advanced Cancer of the Prostate and Cervix

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Wootton, Jeff; Prakash, Punit; Salgaonkar, Vasant; Juang, Titania; Scott, Serena; Chen, Xin; Cunha, Adam; Pouliot, Jean; Hsu, I. C.

    2011-09-01

    Interstitial and endocavity ultrasound devices have been developed specifically for applying hyperthermia within temporary HDR brachytherapy implants during radiation therapy. Catheter-based ultrasound applicators are capable of 3D spatial control of heating in both angle and length of the devices, with enhanced radial penetration of heating compared to other hyperthermia technologies. A pilot study of the combination of catheter based ultrasound with HDR brachytherapy for locally advanced prostate and cervical cancer has been initiated, and preliminary results of the performance and heating distributions are reported herein. The treatment delivery platform consists of a 32 channel RF amplifier and a 48 channel thermocouple monitoring system. Controlling software can monitor and regulate frequency and power to each transducer section as required during the procedure. Interstitial applicators consist of multiple transducer sections of 2-4 cm length×180 deg and 3-4 cm×360 deg. heating patterns to be inserted in specific placed 13g implant catheters. The endocavity device, designed to be inserted within a 6 mm OD plastic tandem catheter within the cervix, consists of 2-3 transducers x dual 180 or 360 deg sectors. 3D temperature based treatment planning and optimization is dovetailed to the HDR optimization based planning to best configure and position the applicators within the catheters, and to determine optimal base power levels to each transducer section. To date we have treated eight cervix implants and four prostate implants. 100% of treatments achieved a goal of >60 min duration, with therapeutic temperatures achieved in all cases. Thermal dosimetry within the hyperthermia target volume (HTV) and clinical target volume (CTV) are reported. Catheter-based ultrasound hyperthermia with HDR appears feasible with therapeutic temperature coverage of the target volume within the prostate or cervix while sparing surrounding more sensitive regions.

  15. MO-C-17A-11: A Segmentation and Point Matching Enhanced Deformable Image Registration Method for Dose Accumulation Between HDR CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, X; Chen, H; Zhou, L

    2014-06-15

    Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the randommore » walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no 81301940)« less

  16. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression

    PubMed Central

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition to early diabetes (HDR) is associated with major alterations in gene expression. PMID:27043434

  17. MO-B-BRC-04: MRI-Based Prostate HDR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourtada, F.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  18. MO-B-BRC-00: Prostate HDR Treatment Planning - Considering Different Imaging Modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  19. MO-B-BRC-02: Ultrasound Based Prostate HDR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  20. A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showalter, Shayna L., E-mail: snl2t@virginia.edu; Petroni, Gina; Trifiletti, Daniel M.

    Purpose: Existing intraoperative radiation therapy (IORT) techniques are criticized for the lack of image guided treatment planning and energy deposition with, at times, poor resultant dosimetry and low radiation dose. We pioneered a novel method of IORT that incorporates customized, computed tomography (CT)-based treatment planning and high-dose-rate (HDR) brachytherapy to overcome these drawbacks: CT-HDR-IORT. Methods and Materials: A phase 1 study was conducted to demonstrate the feasibility and safety of CT-HDR-IORT. Eligibility criteria included age ≥50 years, invasive or in situ breast cancer, tumor size <3 cm, and N0 disease. Patients were eligible before or within 30 days of breast-conserving surgery (BCS). BCSmore » was performed, and a multilumen balloon catheter was placed. CT images were obtained, a customized HDR brachytherapy plan was created, and a dose of 12.5 Gy was delivered to 1-cm depth from the balloon surface. The catheter was removed, and the skin was closed. The primary endpoints were feasibility and acute toxicity. Feasibility was defined as IORT treatment interval (time from CT acquisition until IORT completion) ≤90 minutes. The secondary endpoints included dosimetry, cosmetic outcome, quality of life, and late toxicity. Results: Twenty-eight patients were enrolled. The 6-month follow-up assessments were completed by 93% of enrollees. The median IORT treatment interval was 67.2 minutes (range, 50-108 minutes). The treatment met feasibility criteria in 26 women (93%). The dosimetric goals were met in 22 patients (79%). There were no Radiation Therapy Oncology Group grade 3+ toxicities; 6 patients (21%) experienced grade 2 events. Most patients (93%) had good/excellent cosmetic outcomes at the last follow-up visit. Conclusions: CT-HDR-IORT is feasible and safe. This promising approach for a conformal, image-based, higher-dose breast IORT is being evaluated in a phase 2 trial.« less

  1. SU-E-T-254: Development of a HDR-BT QA Tool for Verification of Source Position with Oncentra Applicator Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumazaki, Y; Miyaura, K; Hirai, R

    2015-06-15

    Purpose: To develop a High Dose Rate Brachytherapy (HDR-BT) quality assurance (QA) tool for verification of source position with Oncentra applicator modeling, and to report the results of radiation source positions with this tool. Methods: We developed a HDR-BT QA phantom and automated analysis software for verification of source position with Oncentra applicator modeling for the Fletcher applicator used in the MicroSelectron HDR system. This tool is intended for end-to-end tests that mimic the clinical 3D image-guided brachytherapy (3D-IGBT) workflow. The phantom is a 30x30x3 cm cuboid phantom with radiopaque markers, which are inserted into the phantom to evaluate applicatormore » tips and reference source positions; positions are laterally shifted 10 mm from the applicator axis. The markers are lead-based and scatter radiation to expose the films. Gafchromic RTQA2 films are placed on the applicators. The phantom includes spaces to embed the applicators. The source position is determined as the distance between the exposed source position and center position of two pairs of the first radiopaque markers. We generated a 3D-IGBT plan with applicator modeling. The first source position was 6 mm from the applicator tips, and the second source position was 10 mm from the first source position. Results: All source positions were consistent with the exposed positions within 1 mm for all Fletcher applicators using in-house software. Moreover, the distance between source positions was in good agreement with the reference distance. Applicator offset, determined as the distance from the applicator tips at the first source position in the treatment planning system, was accurate. Conclusion: Source position accuracy of applicator modeling used in 3D-IGBT was acceptable. This phantom and software will be useful as a HDR-BT QA tool for verification of source position with Oncentra applicator modeling.« less

  2. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks.

    PubMed

    Wang, Huichen; Boecker, Wilfried; Wang, Hongyan; Wang, Xiang; Guan, Jun; Thompson, Larry H; Nickoloff, Jac A; Iliakis, George

    2004-01-22

    We recently reported that two Chinese hamster mutants deficient in the RAD51 paralogs XRCC2 and XRCC3 show reduced radiosensitization after treatment with caffeine, thus implicating homology-directed repair (HDR) of DNA double-strand breaks (DSBs) in the mechanism of caffeine radiosensitization. Here, we investigate directly the effect of caffeine on HDR initiated by DSBs induced by a rare cutting endonuclease (I-SceI) into one of two direct DNA repeats. The results demonstrate a strong inhibition by caffeine of HDR in wild-type cells, and a substantial reduction of this effect in HDR-deficient XRCC3 mutant cells. Inhibition of HDR and cell radiosensitization to killing shows similar dependence on caffeine concentration suggesting a cause-effect relationship between these effects. UCN-01, a kinase inhibitor that effectively abrogates checkpoint activation in irradiated cells, has only a small effect on HDR, indicating that similar to radiosensitization, inhibition of checkpoint signaling is not sufficient for HDR inhibition. Recombination events occurring during treatment with caffeine are characterized by rearrangements reminiscent to those previously reported for the XRCC3 mutant, and immunofluorescence microscopy demonstrates significantly reduced formation of IR-specific RAD51 foci after caffeine treatment. In summary, our results identify inhibition of HDR as a significant contributor to caffeine radiosensitization.

  3. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair.

    PubMed

    Chen, Chun-Chin; Kass, Elizabeth M; Yen, Wei-Feng; Ludwig, Thomas; Moynahan, Mary Ellen; Chaudhuri, Jayanta; Jasin, Maria

    2017-07-18

    BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1 S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1 S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1 S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1-53BP1 antagonism and that its HDR function can become critical in certain contexts.

  4. Parallel evolution of Batesian mimicry supergene in two Papilio butterflies, P. polytes and P. memnon

    PubMed Central

    Itoh, Takehiko

    2018-01-01

    Batesian mimicry protects animals from predators when mimics resemble distasteful models. The female-limited Batesian mimicry in Papilio butterflies is controlled by a supergene locus switching mimetic and nonmimetic forms. In Papilio polytes, recent studies revealed that a highly diversified region (HDR) containing doublesex (dsx-HDR) constitutes the supergene with dimorphic alleles and is likely maintained by a chromosomal inversion. In the closely related Papilio memnon, which exhibits a similar mimicry polymorphism, we performed whole-genome sequence analyses in 11 butterflies, which revealed a nearly identical dsx-HDR containing three genes (dsx, Nach-like, and UXT) with dimorphic sequences strictly associated with the mimetic/nonmimetic phenotypes. In addition, expression of these genes, except that of Nach-like in female hind wings, showed differences correlated with phenotype. The dimorphic dsx-HDR in P. memnon is maintained without a chromosomal inversion, suggesting that a separate mechanism causes and maintains allelic divergence in these genes. More abundant accumulation of transposable elements and repetitive sequences in the dsx-HDR than in other genomic regions may contribute to the suppression of chromosomal recombination. Gene trees for Dsx, Nach-like, and UXT indicated that mimetic alleles evolved independently in the two Papilio species. These results suggest that the genomic region involving the above three genes has repeatedly diverged so that two allelic sequences of this region function as developmental switches for mimicry polymorphism in the two Papilio species. The supergene structures revealed here suggest that independent evolutionary processes with different genetic mechanisms have led to parallel evolution of similar female-limited polymorphisms underlying Batesian mimicry in Papilio butterflies. PMID:29675466

  5. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    PubMed

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases

    PubMed Central

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J.; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-01-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. PMID:24989021

  7. Clinical outcome of high-dose-rate interstitial brachytherapy in vulvar cancer: A single institutional experience.

    PubMed

    Mahantshetty, Umesh; Naga, Pushpa; Engineer, Reena; Sastri, Supriya; Ghadi, Yogesh; Upreti, Udita; Somesan, Vijaya; Kadam, Sudarshan; Kohle, Satish; Deshpande, Deepak; Shrivastava, Shyam Kishore

    With an aim to evaluate and report high dose date interstitial brachytherapy (HDR-ISBT) in vulvar cancers, we undertook this retrospective analysis. Histologically proven vulvar cancers treated with HDR-ISBT between 2001 and 2016 were analyzed. Radiotherapy details, clinical outcome in terms of local control rates, survivals, and toxicities were evaluated. A total of 38 patients received HDR-ISBT, with definitive radiation in 29 (76.3%), adjuvant postoperative in six (15.8%) and salvage radiation in three (7.9%) patients. Of them, 29 patients received brachytherapy boost and nine patients ISBT alone. BT procedure included freehand plastic tube technique in 23 (single [n = 5] or multiple plane [n = 18]), 13 patients with template based and two patients combined approach. Patients with brachytherapy alone received median EQD2 of 38.4 Gy 10 (35.5-46.7 Gy 10 ), as boost received median 23.3 Gy 10 (13-37.3 Gy 10 ). At 3-month post-treatment response evaluation, 30 patients achieved clinically complete response, two patients partial response and six maintained postoperative status. With a median follow-up of 30 months, 29 (76.3%) were disease free, and 9 (23.7%) patients had relapsed disease with four patients expired due to disease and two died of other causes. The 5-year overall survival, disease free survival, and local control rates were 82%, 51%, and 77%, respectively. HDR-ISBT in vulvar cancer is a feasible and a viable option with acceptable and comparable outcomes. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. A Cysteine-Rich CCG Domain Contains a Novel [4Fe-4S] Cluster Binding Motif As Deduced From Studies With Subunit B of Heterodisulfide Reductase From Methanothermobacter Marburgensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, N.; Mander, G.J.; Shokes, J.E.

    Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]{sup 3+} cluster with CoM-SH as a ligand. Subunit HdrB of the Methanothermobacter marburgensis HdrABC holoenzyme contains two cysteine-rich sequence motifs (CX{sub 31-39}CCX{sub 35-36}CXXC), designated as CCG domain in the Pfam database and conserved in many proteins. Here we present experimental evidence that the C-terminal CCG domain of HdrB binds this unusualmore » [4Fe-4S] cluster. HdrB was produced in Escherichia coli, and an iron-sulfur cluster was subsequently inserted by in vitro reconstitution. In the oxidized state the cluster without the substrate exhibited a rhombic EPR signal (g{sub zyx} = 2.015, 1.995, and 1.950) reminiscent of the CoM-HDR signal. {sup 57}Fe ENDOR spectroscopy revealed that this paramagnetic species is a [4Fe-4S] cluster with {sup 57}Fe hyperfine couplings very similar to that of CoM-HDR. CoM-{sup 33}SH resulted in a broadening of the EPR signal, and upon addition of CoM-SH the midpoint potential of the cluster was shifted to values observed for CoM-HDR, both indicating binding of CoM-SH to the cluster. Site-directed mutagenesis of all 12 cysteine residues in HdrB identified four cysteines of the C-terminal CCG domain as cluster ligands. Combined with the previous detection of CoM-HDR-like EPR signals in other CCG domain-containing proteins our data indicate a general role of the C-terminal CCG domain in coordination of this novel [4Fe-4S] cluster. In addition, Zn K-edge X-ray absorption spectroscopy identified an isolated Zn site with an S{sub 3}(O/N){sub 1} geometry in HdrB and the HDR holoenzyme. The N-terminal CCG domain is suggested to provide ligands to the Zn site.« less

  9. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  10. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images.

    PubMed

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-07

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  11. An Evaluation of Research Students' Writing Support Intervention

    ERIC Educational Resources Information Center

    O'Mahony, Barry; Verezub, Elena; Dalrymple, John; Bertone, Santina

    2013-01-01

    Purpose: Achieving quality standards in postgraduate education, particularly among Higher Degree by Research (HDR) students, can be challenging. In addition to the diverse educational and cultural backgrounds of these students, thesis writing frequently involves the development of new skills associated with the comprehension of a large volume of…

  12. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.

    PubMed

    Miyaoka, Yuichiro; Berman, Jennifer R; Cooper, Samantha B; Mayerl, Steven J; Chan, Amanda H; Zhang, Bin; Karlin-Neumann, George A; Conklin, Bruce R

    2016-03-31

    Precise genome-editing relies on the repair of sequence-specific nuclease-induced DNA nicking or double-strand breaks (DSBs) by homology-directed repair (HDR). However, nonhomologous end-joining (NHEJ), an error-prone repair, acts concurrently, reducing the rate of high-fidelity edits. The identification of genome-editing conditions that favor HDR over NHEJ has been hindered by the lack of a simple method to measure HDR and NHEJ directly and simultaneously at endogenous loci. To overcome this challenge, we developed a novel, rapid, digital PCR-based assay that can simultaneously detect one HDR or NHEJ event out of 1,000 copies of the genome. Using this assay, we systematically monitored genome-editing outcomes of CRISPR-associated protein 9 (Cas9), Cas9 nickases, catalytically dead Cas9 fused to FokI, and transcription activator-like effector nuclease at three disease-associated endogenous gene loci in HEK293T cells, HeLa cells, and human induced pluripotent stem cells. Although it is widely thought that NHEJ generally occurs more often than HDR, we found that more HDR than NHEJ was induced under multiple conditions. Surprisingly, the HDR/NHEJ ratios were highly dependent on gene locus, nuclease platform, and cell type. The new assay system, and our findings based on it, will enable mechanistic studies of genome-editing and help improve genome-editing technology.

  13. Display of high dynamic range images under varying viewing conditions

    NASA Astrophysics Data System (ADS)

    Borer, Tim

    2017-09-01

    Recent demonstrations of high dynamic range (HDR) television have shown that superb images are possible. With the emergence of an HDR television production standard (ITU-R Recommendation BT.2100) last year, HDR television production is poised to take off. However research to date has focused principally on HDR image display only under "dark" viewing conditions. HDR television will need to be displayed at varying brightness and under varying illumination (for example to view sport in daytime or on mobile devices). We know, from common practice with conventional TV, that the rendering intent (gamma) should change under brighter conditions, although this is poorly quantified. For HDR the need to render images under varying conditions is all the more acute. This paper seeks to explore the issues surrounding image display under varying conditions. It also describes how visual adaptation is affected by display brightness, surround illumination, screen size and viewing distance. Existing experimental results are presented and extended to try to quantify these effects. Using the experimental results it is described how HDR images may be displayed so that they are perceptually equivalent under different viewing conditions. A new interpretation of the experimental results is reported, yielding a new, luminance invariant model for the appropriate display "gamma". In this way the consistency of HDR image reproduction should be improved, thereby better maintaining "creative intent" in television.

  14. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-x(L)

    NASA Technical Reports Server (NTRS)

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy; Chatterjee, A. (Principal Investigator)

    2002-01-01

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in DSB repair in human cells. However, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We demonstrated previously that overexpression of BCL-2 or BCL-x(L) enhanced the frequency of X-ray-induced TK1 mutations, including loss of heterozygosity events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells and to determine whether ectopic expression of BCL-x(L) affects HDR. Using TK6-neo cells, we find that a single DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold, demonstrating efficient DSB repair by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3-4-fold more frequent in TK6 cells that stably overexpress the antiapoptotic protein BCL-X(L). Thus, HDR plays an important role in maintaining genomic integrity in human cells, and ectopic expression of BCL-x(L) enhances HDR of DSBs. This is the first study to highlight a function for BCL-x(L) in modulating DSB repair in human cells.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoberi, J.

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  16. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair

    PubMed Central

    Chen, Chun-Chin; Kass, Elizabeth M.; Yen, Wei-Feng; Ludwig, Thomas; Moynahan, Mary Ellen; Chaudhuri, Jayanta; Jasin, Maria

    2017-01-01

    BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1–53BP1 antagonism and that its HDR function can become critical in certain contexts. PMID:28659469

  17. Comparative dosimetric and radiobiological assessment among a nonstandard RapidArc, standard RapidArc, classical intensity-modulated radiotherapy, and 3D brachytherapy for the treatment of the vaginal vault in patients affected by gynecologic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedicini, Piernicola, E-mail: ppiern@libero.it; Caivano, Rocchina; Fiorentino, Alba

    2012-01-01

    To evaluate a nonstandard RapidArc (RA) modality as alternative to high-dose-rate brachytherapy (HDR-BRT) or IMRT treatments of the vaginal vault in patients with gynecological cancer (GC). Nonstandard (with vaginal applicator) and standard (without vaginal applicator) RapidArc plans for 27 women with GC were developed to compare with HDR-BRT and IMRT. Dosimetric and radiobiological comparison were performed by means of dose-volume histogram and equivalent uniform dose (EUD) for planning target volume (PTV) and organs at risk (OARs). In addition, the integral dose and the overall treatment times were evaluated. RA, as well as IMRT, results in a high uniform dose onmore » PTV compared with HDR-BRT. However, the average of EUD for HDR-BRT was significantly higher than those with RA and IMRT. With respect to the OARs, standard RA was equivalent of IMRT but inferior to HDR-BRT. Furthermore, nonstandard RA was comparable with IMRT for bladder and sigmoid and better than HDR-BRT for the rectum because of a significant reduction of d{sub 2cc}, d{sub 1cc}, and d{sub max} (p < 0.01). Integral doses were always higher than HDR-BRT, although the values were very low. Delivery times were about the same and more than double for HDR-BRT compared with IMRT and RA, respectively. In conclusion, the boost of dose on vaginal vault in patients affected by GC delivered by a nonstandard RA technique was a reasonable alternative to the conventional HDR-BRT because of a reduction of delivery time and rectal dose at substantial comparable doses for the bladder and sigmoid. However HDR-BRT provides better performance in terms of PTV coverage as evidenced by a greater EUD.« less

  18. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE.

    PubMed

    Hsieh, Wei-Yu; Sung, Tzu-Ying; Wang, Hsin-Tzu; Hsieh, Ming-Hsiun

    2014-09-01

    The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Iridium-Knife: Another knife in radiation oncology.

    PubMed

    Milickovic, Natasa; Tselis, Nikolaos; Karagiannis, Efstratios; Ferentinos, Konstantinos; Zamboglou, Nikolaos

    Intratarget dose escalation with superior conformity is a defining feature of three-dimensional (3D) iridium-192 ( 192 Ir) high-dose-rate (HDR) brachytherapy (BRT). In this study, we analyzed the dosimetric characteristics of interstitial 192 Ir HDR BRT for intrathoracic and cerebral malignancies. We examined the dose gradient sharpness of HDR BRT compared with that of linear accelerator-based stereotactic radiosurgery and stereotactic body radiation therapy, usually called X-Knife, to demonstrate that it may as well be called a Knife. Treatment plans for 10 patients with recurrent glioblastoma multiforme or intrathoracic malignancies, five of each entity, treated with X-Knife (stereotactic radiosurgery for glioblastoma multiforme and stereotactic body radiation therapy for intrathoracic malignancies) were replanned for simulated HDR BRT. For 3D BRT planning, we used identical structure sets and dose prescription as for the X-Knife planning. The indices for qualitative treatment plan analysis encompassed planning target volume coverage, conformity, dose falloff gradient, and the maximum dose-volume limits to different organs at risk. Volume coverage in HDR plans was comparable to that calculated for X-Knife plans with no statistically significant difference in terms of conformity. The dose falloff gradient-sharpness-of the HDR plans was considerably steeper compared with the X-Knife plans. Both 3D 192 Ir HDR BRT and X-Knife are effective means for intratarget dose escalation with HDR BRT achieving at least equal conformity and a steeper dose falloff at the target volume margin. In this sense, it can reasonably be argued that 3D 192 Ir HDR BRT deserves also to be called a Knife, namely Iridium-Knife. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Electromagnetic tracking (EMT) technology for improved treatment quality assurance in interstitial brachytherapy.

    PubMed

    Kellermeier, Markus; Herbolzheimer, Jens; Kreppner, Stephan; Lotter, Michael; Strnad, Vratislav; Bert, Christoph

    2017-01-01

    Electromagnetic Tracking (EMT) is a novel technique for error detection and quality assurance (QA) in interstitial high dose rate brachytherapy (HDR-iBT). The purpose of this study is to provide a concept for data acquisition developed as part of a clinical evaluation study on the use of EMT during interstitial treatment of breast cancer patients. The stability, accuracy, and precision of EMT-determined dwell positions were quantified. Dwell position reconstruction based on EMT was investigated on CT table, HDR table and PDR bed to examine the influence on precision and accuracy in a typical clinical workflow. All investigations were performed using a precise PMMA phantom. The track of catheters inserted in that phantom was measured by manually inserting a 5 degree of freedom (DoF) sensor while recording the position of three 6DoF fiducial sensors on the phantom surface to correct motion influences. From the corrected data, dwell positions were reconstructed along the catheter's track. The accuracy of the EMT-determined dwell positions was quantified by the residual distances to reference dwell positions after using a rigid registration. Precision and accuracy were investigated for different phantom-table and sensor-field generator (FG) distances. The measured precision of the EMT-determined dwell positions was ≤ 0.28 mm (95th percentile). Stability tests showed a drift of 0.03 mm in the first 20 min of use. Sudden shaking of the FG or (large) metallic objects close to the FG degrade the precision. The accuracy with respect to the reference dwell positions was on all clinical tables < 1 mm at 200 mm FG distance and 120 mm phantom-table distance. Phantom measurements showed that EMT-determined localization of dwell positions in HDR-iBT is stable, precise, and sufficiently accurate for clinical assessment. The presented method may be viable for clinical applications in HDR-iBT, like implant definition, error detection or quantification of uncertainties. Further clinical investigations are needed. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. A study of optimization techniques in HDR brachytherapy for the prostate

    NASA Astrophysics Data System (ADS)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives. Based on our study, DVH based objective function performed better than traditional variance based objective function in creating a clinically acceptable plan when executed under identical conditions. Thirdly, we studied the multiobjective optimization strategy using both DVH and variance based objective functions. The optimization strategy was to create several Pareto optimal solutions by scanning the clinically relevant part of the Pareto front. This strategy was adopted to decouple optimization from decision such that user could select final solution from the pool of alternative solutions based on his/her clinical goals. The overall quality of treatment plan improved using this approach compared to traditional class solution approach. In fact, the final optimized plan selected using decision engine with DVH based objective was comparable to typical clinical plan created by an experienced physicist. Next, we studied the hybrid technique comprising both stochastic and deterministic algorithm to optimize both dwell positions and dwell times. The simulated annealing algorithm was used to find optimal catheter distribution and the DVH based algorithm was used to optimize 3D dose distribution for given catheter distribution. This unique treatment planning and optimization tool was capable of producing clinically acceptable highly reproducible treatment plans in clinically reasonable time. As this algorithm was able to create clinically acceptable plans within clinically reasonable time automatically, it is really appealing for real time procedures. Next, we studied the feasibility of multiobjective optimization using evolutionary algorithm for real time HDR brachytherapy for the prostate. The algorithm with properly tuned algorithm specific parameters was able to create clinically acceptable plans within clinically reasonable time. However, the algorithm was let to run just for limited number of generations not considered optimal, in general, for such algorithms. This was done to keep time window desirable for real time procedures. Therefore, it requires further study with improved conditions to realize the full potential of the algorithm.

  2. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    NASA Astrophysics Data System (ADS)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  3. MO-B-BRC-01: Introduction [Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisciandaro, J.

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less

  4. MR-based source localization for MR-guided HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Beld, E.; Moerland, M. A.; Zijlstra, F.; Viergever, M. A.; Lagendijk, J. J. W.; Seevinck, P. R.

    2018-04-01

    For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4–0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15–1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.

  5. Institutional experience of interstitial brachytherapy for head and neck cancer with a comparison of high- and low dose rate practice.

    PubMed

    Mohanti, Bidhu Kalyan; Sahai, Puja; Thakar, Alok; Sikka, Kapil; Bhasker, Suman; Sharma, Atul; Sharma, Seema; Bahadur, Sudhir

    2014-01-01

    To describe our institutional experience with high dose rate (HDR) interstitial brachytherapy (IBT) compared with previously reported results on the low dose rate (LDR) practice for head and neck cancer. Eighty-four patients with oral cavity (n=70) or oropharyngeal cancer (n=14) were treated with 192Ir HDR-IBT. Seventy-eight patients had stage I or II tumour. The patients treated with IBT alone (n=42) received 39-42 Gy/10-14 fractions (median=40 Gy/10 fractions). With respect to the combination therapy group (n=42), prescription dose comprised of 12-18 Gy/3-6 fractions (median=15 Gy/5 fractions) for IBT and 40-50 Gy/20-25 fractions (median=50 Gy/25 fractions) for external radiotherapy. Brachytherapy was given as 2 fractions per day 6 hours apart with 4 Gy per fraction for monotherapy and 3 Gy per fraction for combination therapy. Four patients were not evaluable in the analysis of outcome. The primary site relapse rates were 23.8% (10/42) and 68.4% (26/38) in patients treated with IBT alone and combination therapy, respectively (p<0.001). Salvage surgery was performed in 19 patients. The 5-year local control rate was estimated at 62% and the disease-free survival (DFS) rate at 52% for all patients. Local control with respect to T1 and T2 tumours was 84% and 42%, respectively. Our present series on HDR-IBT and the previous report on LDR-IBT for head and neck cancer demonstrated similar DFS rates at 5 years (52%). The rate of regional failure in node-negative patients was <20% in both of our series. HDR-IBT offers similar results to LDR-IBT for head and neck cancer.

  6. Custom-made micro applicators for high-dose-rate brachytherapy treatment of chronic psoriasis.

    PubMed

    Buzurovic, Ivan M; O'Farrell, Desmond A; Bhagwat, Mandar S; Hansen, Jorgen L; Harris, Thomas C; Friesen, Scott; Cormack, Robert A; Devlin, Phillip M

    2017-06-01

    In this study, we present the treatment of the psoriatic nail beds of patients refractory to standard therapies using high-dose-rate (HDR) brachytherapy. The custom-made micro applicators (CMMA) were designed and constructed for radiation dose delivery to small curvy targets with complicated topology. The role of the HDR brachytherapy treatment was to stimulate the T cells for an increased immune response. The patient diagnosed with psoriatic nail beds refractory to standard therapies received monthly subunguinal injections that caused significant pain and discomfort in both hands. The clinical target was defined as the length from the fingertip to the distal interphalangeal joint. For the accurate and reproducible setup in the multi-fractional treatment delivery, the CMMAs were designed. Five needles were embedded into the dense plastic mesh and covered with 5 mm bolus material for each micro applicator. Five CMMAs were designed, resulting in the usage of 25 catheters in total. The prescription dose was planned to the depth of the anterior surface of the distal phalanx, allowing for the sparing of the surrounding tissue. The total number of the active dwell positions was 145 with step size of 5 mm. The total treatment time was 115 seconds with a 7.36 Ci activity of the 192 Ir source. The treatment resulted in good pain control. The patient did not require further injections to the nail bed. After this initial treatment, additional two patients with similar symptoms received HDR brachytherapy. The treatment outcome was favorable in all cases. The first HDR brachytherapy treatment of psoriasis of the nail bed is presented. The initial experience revealed that brachytherapy treatment was well-tolerated and resulted in adequate control of the disease. A larger cohort of patients will be required for additional conclusions related to the long-term clinical benefits.

  7. Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer – between options

    PubMed Central

    2013-01-01

    Purpose Permanent low-dose-rate (LDR-BT) and temporary high-dose-rate (HDR-BT) brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never to be conducted comparing these two forms of brachytherapy, a comparative analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. The aim of this paper is to look for possible similarities and differences between both brachytherapy modalities. Indications and contraindications for monotherapy and for brachytherapy as a boost to external beam radiation therapy (EBRT) are presented. It is suggested that each of these techniques has attributes that advocates for one or the other. First, they represent the extreme ends of the spectrum with respect to dose rate and fractionation, and therefore have inherently different radiobiological properties. Low-dose-rate brachytherapy has the great advantage of being practically a one-time procedure, and enjoys a long-term follow-up database supporting its excellent outcomes and low morbidity. Low-dose-rate brachytherapy has been a gold standard for prostate brachytherapy in low risk patients since many years. On the other hand, HDR is a fairly invasive procedure requiring several sessions associated with a brief hospital stay. Although lacking in significant long-term data, it possesses the technical advantage of control over its postimplant dosimetry (by modulating the source dwell time and position), which is absent in LDR brachytherapy. This important difference in dosimetric control allows HDR doses to be escalated safely, a flexibility that does not exist for LDR brachytherapy. Conclusions Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy, using current dose regimens. At present, all available clinical data regarding these two techniques suggests that they are equally effective, stage for stage, in providing high tumor control rates. PMID:23634153

  8. The Influence of Prostate Volume on Outcome After High-Dose-Rate Brachytherapy Alone for Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Hien, E-mail: hien.le@health.sa.gov.au; Rojas, Ana; Alonzi, Roberto

    2013-10-01

    Objective: To determine whether late genitourinary toxicity, biochemical control of prostate cancer, and dosimetric parameters in patients with large prostate glands is different from those variables in men with smaller glands after treatment with high-dose-rate brachytherapy alone (HDR-BT). Methods: From November 2003 to July 2009, 164 patients with locally advanced prostate carcinoma were sequentially enrolled and treated with 34 or 36 Gy in 4 fractions and 31.5 Gy in 3 fractions of {sup 192}Ir HDR-BT alone. The median follow-up time was 71 months. Gland size was not considered in the selection criteria for this study. Estimates of freedom from biochemicalmore » relapse (FFbR) and late morbidity, stratified by median clinical target volume (CTV), were obtained, and differences were compared. Results: The median CTV volume was 60 cc (range, 15-208 cc). Dose–volume parameters D90 and V100 (ie, minimum dose to 90% of the prostate volume and volume receiving 100% of the prescribed isodose) achieved in patients with glands ≥60 cc were not significantly different from those with glands <60 cc (P≥.2). Nonetheless, biochemical control in patients with larger CTV was significantly higher (91% vs 78% at 6 years; P=.004). In univariate and multivariate analysis, CTV was a significant predictor for risk of biochemical relapse. This was not at the expense of an increase in either moderate (P=.6) or severe (P=.3) late genitourinary toxicity. The use of hormonal therapy was 17% lower in the large gland group (P=.01). Conclusions: Prostate gland size does not affect dosimetric parameters in HDR-BT assessed by D90 and V100. In patients with larger glands, a significantly higher biochemical control of disease was observed, with no difference in late toxicity. This improvement cannot be attributed to differences in dosimetry. Gland size should not be considered in the selection of patients for HDR-BT.« less

  9. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    PubMed

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair.

    PubMed

    Kato-Inui, Tomoko; Takahashi, Gou; Hsu, Szuyin; Miyaoka, Yuichiro

    2018-05-18

    Genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) predominantly induces non-homologous end joining (NHEJ), which generates random insertions or deletions, whereas homology-directed repair (HDR), which generates precise recombination products, is useful for wider applications. However, the factors that determine the ratio of HDR to NHEJ products after CRISPR/Cas9 editing remain unclear, and methods by which the proportion of HDR products can be increased have not yet been fully established. We systematically analyzed the HDR and NHEJ products after genome editing using various modified guide RNAs (gRNAs) and Cas9 variants with an enhanced conformational checkpoint to improve the fidelity at endogenous gene loci in HEK293T cells and HeLa cells. We found that these modified gRNAs and Cas9 variants were able to enhance HDR in both single-nucleotide substitutions and a multi-kb DNA fragment insertion. Our results suggest that the original CRISPR/Cas9 system from the bacterial immune system is not necessarily the best option for the induction of HDR in genome editing and indicate that the modulation of the kinetics of conformational checkpoints of Cas9 can optimize the HDR/NHEJ ratio.

  11. Prospects for the commercial development of hot dry rock geothermal energy in New Mexico

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.; Goff, F.

    A vast store of energy is available to the world in the form of hot dry rock (HDR) which exists almost everywhere beneath the surface of the earth. The Los Alamos National Laboratory has developed technology to mine the heat from HDR by using techniques developed in the petroleum industry. In practice, an artificial reservoir is created in the hot rock and water is circulated through the reservoir to extract the thermal energy and bring it to the surface. There are virtually no adverse environmental effects from an HDR plant when the system is operated in a closed-loop mode with the process water continually recirculated. An experimental plant at Fenton Hill, NM is now undergoing long-term testing to demonstrate that energy can be obtained from HDR on a sustained basis with operational procedures which are readily adaptable to industry. Significant HDR resources exist in the state of New Mexico. Resources in the Valles Caldera, Zuni Uplift, and Rio Grande Rift have been evaluated in detail. Studies indicate that it should be possible to economically develop high grade HDR resources with technology available today. As advanced concepts for developing and operating HDR systems are investigated, even more widespread utilization of the technology will be commercially feasible.

  12. Commissioning of a well type chamber for HDR and LDR brachytherapy applications: a review of methodology and outcomes.

    PubMed

    Mukwada, Godfrey; Neveri, Gabor; Alkhatib, Zaid; Waterhouse, David K; Ebert, Martin

    2016-03-01

    For safe and accurate dose delivery in brachytherapy, associated equipment is subject to commissioning and ongoing quality assurance (QA). Many centres depend on the use of a well-type chamber ('well chamber') for performing brachytherapy dosimetry. Documentation of well chamber commissioning is scarce despite the important role the chamber plays in the whole brachytherapy QA process. An extensive and structured commissioning of the HDR 1000 plus well chamber (Standard Imaging Inc, Middleton WI) for HDR and LDR dosimetry was undertaken at Sir Charles Gairdner Hospital. The methodology and outcomes of this commissioning is documented and presented as a guideline to others involved in brachytherapy. The commissioning tests described include mechanical integrity, leakage current, directional dependence, response, length of uniform response, the influence of insert holders, ion collection efficiency, polarity effect, accuracy of measured air kerma strength (S(K)) or reference air kerma rate (K(R)) and baseline setting (for ongoing constancy checks). For the HDR 1000 plus well chamber, some of the insert holders modify the response curve. The measured sweet length was 2.5 cm which is within 0.5% of that specified by the manufacturer. Correction for polarity was negligible (0.9999) and ion recombination was small (0.9994). Directional dependence was small (less than 0.2%) and leakage current was negligible. The measured K(R) for (192)Ir agreed within 0.11% compared with a second well chamber of similar model and was within 0.5% of that determined via a free-in-air measurement method. Routine constancy checks over a year agreed with the baseline within 0.4%.

  13. A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment.

    PubMed

    Palmer, Antony L; Diez, Patricia; Gandon, Laura; Wynn-Jones, Andrea; Bownes, Peter; Lee, Chris; Aird, Edwin; Bidmead, Margaret; Lowe, Gerry; Bradley, David; Nisbet, Andrew

    2015-02-01

    To undertake the first multicentre fully 'end to end' dosimetry audit for HDR cervix brachytherapy, comparing planned and delivered dose distributions around clinical treatment applicators, with review of local procedures. A film-dosimetry audit was performed at 46 centres, including imaging, applicator reconstruction, treatment planning and delivery. Film dose maps were calculated using triple-channel dosimetry and compared to RTDose data from treatment planning systems. Deviations between plan and measurement were quantified at prescription Point A and using gamma analysis. Local procedures were also discussed. The mean difference between planned and measured dose at Point A was -0.6% for plastic applicators and -3.0% for metal applicators, at standard uncertainty 3.0% (k=1). Isodose distributions agreed within 1mm over a dose range 2-16Gy. Mean gamma passing rates exceeded 97% for plastic and metal applicators at 3% (local) 2mm criteria. Two errors were found: one dose normalisation error and one applicator library misaligned with the imaged applicator. Suggestions for quality improvement were also made. The concept of 'end to end' dosimetry audit for HDR brachytherapy has been successfully implemented in a multicentre environment, providing evidence that a high level of accuracy in brachytherapy dosimetry can be achieved. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer.

    PubMed

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  15. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR andmore » LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.« less

  16. Hemispheric language dominance measured by repetitive navigated transcranial magnetic stimulation and postoperative course of language function in brain tumor patients.

    PubMed

    Ille, Sebastian; Kulchytska, Nataliia; Sollmann, Nico; Wittig, Regina; Beurskens, Eva; Butenschoen, Vicki M; Ringel, Florian; Vajkoczy, Peter; Meyer, Bernhard; Picht, Thomas; Krieg, Sandro M

    2016-10-01

    The resection of left-sided perisylvian brain lesions harbors the risk of postoperative aphasia. Because it is known that language function can shift between hemispheres in brain tumor patients, the preoperative knowledge of the patient's language dominance could be helpful. We therefore investigated the hemispheric language dominance by repetitive navigated transcranial magnetic stimulation (rTMS) and surgery-related deficits of language function. We pooled the bicentric language mapping data of 80 patients undergoing the resection of left-sided perisylvian brain lesions in our two university neurosurgical departments. We calculated error rates (ERs; ER = errors per stimulations) for both hemispheres and defined the hemispheric dominance ratio (HDR) as the quotient of the left- and right-sided ER (HDR >1= left dominant; HDR <1= right dominant). The course of the patient's language function was evaluated and correlated with the preoperative HDR. Only three of 80 patients (4%) presented with permanent surgery-related aphasia and 24 patients (30%) with transient surgery-related aphasia. The mean HDR (± standard deviation) of patients with new aphasia after five days was significantly higher (1.68±1.07) than the HDR of patients with no new language deficit (1.37±1.08) (p=0.0482). With a predefined cut-off value of 0.5 for HDR, we achieved a sensitivity for predicting new aphasia of 100%. A higher preoperative HDR significantly correlates with an increased risk for transient aphasia. Moreover, the intensive preoperative workup in this study led to a considerably low rate of permanent aphasia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. HDR syndrome with a novel mutation in GATA3 mimicking a congenital X-linked stapes gusher: a case report.

    PubMed

    Yang, Aram; Kim, Jinsup; Ki, Chang-Seok; Hong, Sung Hwa; Cho, Sung Yoon; Jin, Dong-Kyu

    2017-10-26

    Hypoparathyroidism, sensorineural hearing loss, and renal disease (HDR) syndrome, also known as Barakat syndrome, is a rare genetic disorder with high phenotypic heterogeneity caused by haploinsufficiency of the GATA3 gene on chromosome 10p14-p15. For these reasons, the diagnosis of HDR syndrome is challenging and requires a high index of suspicion as well as genetic analysis. A 14-month-old boy, with sensorineural hearing loss in both ears, showed typical radiological features of X-linked stapes gusher on preoperative temporal bone computed tomography (CT) for cochlear implantations. Then after his discharge from hospital, he suffered a hypocalcemic seizure and we discovered a renal cyst during investigation of hypocalcemia. He was finally diagnosed with HDR syndrome by clinical findings, which were confirmed by molecular genetic testing. Direct sequencing of the GATA3 gene showed a heterozygous 2-bp deletion (c.1201_1202delAT), which is predicted to cause a frameshift of the reading frame (p.Met401Valfs*106). To our knowledge, this is the first case of HDR syndrome with a novel de novo variant mimicking a congenital X-linked stapes gusher syndrome. Novel mutations and the diversity of clinical manifestations expand the genotypic and phenotypic spectrum of HDR syndrome. Diagnosis of HDR syndrome is still challenging, but clinicians should consider it in their differential diagnosis for children with a wide range of clinical manifestations including hypocalcemia induced seizures and deafness. We hope that this case will contribute to further understanding and studies of HDR-associated GATA3 mutations.

  18. Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy

    NASA Astrophysics Data System (ADS)

    Kallis, Karoline; Kreppner, Stephan; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    2018-05-01

    Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE  =  1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.

  19. Time-driven activity-based costing of low-dose-rate and high-dose-rate brachytherapy for low-risk prostate cancer.

    PubMed

    Ilg, Annette M; Laviana, Aaron A; Kamrava, Mitchell; Veruttipong, Darlene; Steinberg, Michael; Park, Sang-June; Burke, Michael A; Niedzwiecki, Douglas; Kupelian, Patrick A; Saigal, Christopher

    Cost estimates through traditional hospital accounting systems are often arbitrary and ambiguous. We used time-driven activity-based costing (TDABC) to determine the true cost of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy for prostate cancer and demonstrate opportunities for cost containment at an academic referral center. We implemented TDABC for patients treated with I-125, preplanned LDR and computed tomography based HDR brachytherapy with two implants from initial consultation through 12-month followup. We constructed detailed process maps for provision of both HDR and LDR. Personnel, space, equipment, and material costs of each step were identified and used to derive capacity cost rates, defined as price per minute. Each capacity cost rate was then multiplied by the relevant process time and products were summed to determine total cost of care. The calculated cost to deliver HDR was greater than LDR by $2,668.86 ($9,538 vs. $6,869). The first and second HDR treatment day cost $3,999.67 and $3,955.67, whereas LDR was delivered on one treatment day and cost $3,887.55. The greatest overall cost driver for both LDR and HDR was personnel at 65.6% ($4,506.82) and 67.0% ($6,387.27) of the total cost. After personnel costs, disposable materials contributed the second most for LDR ($1,920.66, 28.0%) and for HDR ($2,295.94, 24.0%). With TDABC, the true costs to deliver LDR and HDR from the health system perspective were derived. Analysis by physicians and hospital administrators regarding the cost of care afforded redesign opportunities including delivering HDR as one implant. Our work underscores the need to assess clinical outcomes to understand the true difference in value between these modalities. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. A quality assurance device for measuring afterloader performance and transit dose for nasobiliary high-dose-rate brachytherapy.

    PubMed

    Deufel, Christopher L; Mullins, John P; Zakhary, Mark J

    2018-05-17

    Nasobiliary high-dose-rate (HDR) brachytherapy has emerged as an effective tool to boost the radiation dose for patients with unresectable perihilar cholangiocarcinoma. This work describes a quality assurance (QA) tool for measuring the HDR afterloader's performance, including the transit dose, when the source wire travels through a tortuous nasobiliary catheter path. The nasobiliary QA device was designed to mimic the anatomical path of a nasobiliary catheter, including the nasal, stomach, duodenum, and bile duct loops. Two of these loops, the duodenum and bile duct loops, have adjustable radii of curvature, resulting in the ability to maximize stress on the source wire in transit. The device was used to measure the performance over time for the HDR afterloader and the differences between intraluminal catheter lots. An upper limit on the transit dose was also measured using radiochromic film and compared with a simple theoretical model. The QA device was capable of detecting performance variations among nasobiliary catheter lots and following radioactive source replacement. The transit dose from a nasobiliary treatment increased by up to one order of magnitude when the source wire encountered higher than normal friction. Three distinct travel speeds of the source wire were observed: 5.2, 17.4, and 54.7 cm/s. The maximum transit dose was 0.3 Gy at a radial distance of 5 mm from a 40.3 kU 192 Ir source. The source wire encounters substantially greater friction when it navigates through the nasobiliary brachytherapy catheter. A QA tool that mimics the nasal, stomach, duodenum, and bile duct loops may be used to evaluate transit dose and the afterloader's performance over time. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Color transfer between high-dynamic-range images

    NASA Astrophysics Data System (ADS)

    Hristova, Hristina; Cozot, Rémi; Le Meur, Olivier; Bouatouch, Kadi

    2015-09-01

    Color transfer methods alter the look of a source image with regards to a reference image. So far, the proposed color transfer methods have been limited to low-dynamic-range (LDR) images. Unlike LDR images, which are display-dependent, high-dynamic-range (HDR) images contain real physical values of the world luminance and are able to capture high luminance variations and finest details of real world scenes. Therefore, there exists a strong discrepancy between the two types of images. In this paper, we bridge the gap between the color transfer domain and the HDR imagery by introducing HDR extensions to LDR color transfer methods. We tackle the main issues of applying a color transfer between two HDR images. First, to address the nature of light and color distributions in the context of HDR imagery, we carry out modifications of traditional color spaces. Furthermore, we ensure high precision in the quantization of the dynamic range for histogram computations. As image clustering (based on light and colors) proved to be an important aspect of color transfer, we analyze it and adapt it to the HDR domain. Our framework has been applied to several state-of-the-art color transfer methods. Qualitative experiments have shown that results obtained with the proposed adaptation approach exhibit less artifacts and are visually more pleasing than results obtained when straightforwardly applying existing color transfer methods to HDR images.

  2. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approachmore » that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0.86%, and the prostate volume Dice overlap coefficient was 91.89% ± 1.19%. Conclusions: The authors have developed a novel approach to improve prostate contour utilizing intraoperative TRUS-based prostate volume in the CT-based prostate HDR treatment planning, demonstrated its clinical feasibility, and validated its accuracy with MRIs. The proposed segmentation method would improve prostate delineations, enable accurate dose planning and treatment delivery, and potentially enhance the treatment outcome of prostate HDR brachytherapy.« less

  3. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    PubMed Central

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0.86%, and the prostate volume Dice overlap coefficient was 91.89% ± 1.19%. Conclusions: The authors have developed a novel approach to improve prostate contour utilizing intraoperative TRUS-based prostate volume in the CT-based prostate HDR treatment planning, demonstrated its clinical feasibility, and validated its accuracy with MRIs. The proposed segmentation method would improve prostate delineations, enable accurate dose planning and treatment delivery, and potentially enhance the treatment outcome of prostate HDR brachytherapy. PMID:25370648

  4. Evaluation of water binding, seed coat permeability and germination characteristics of wheat seeds equilibrated at different relative humidities.

    PubMed

    Chatterjee, Nabamita; Nagarajan, Shantha

    2006-08-01

    The relative binding of seed water and seed coat membrane stability were measured in two contrasting wheat (Triticum aestivum L) varieties, HDR 77 (drought-tolerant) and HD 2009 (susceptible) using seed water sorption isotherms, electrical conductivity (EC) of leachates and desorption-absorption isotherms. Analysis of sorption isotherm at 25 degrees C showed that the seeds of HDR 77 had significantly higher number of strong binding sites, with correspondingly greater amount of seed water as strongly bound water, as compared to HD 2009. Total number of binding sites was also higher in HDR 77 than HD 2009, which explained the better desiccation tolerance and higher capacity to bind water in seeds of HDR 77. EC of seed leachate in both varieties did not change with respect to change in equilibrium relative humidity (RII), indicating the general seed coat membrane stability of wheat seeds. However, absolute conductivity values were higher for HD 2009. showing its relatively porous seed coat membrane. Significantly lower area enclosed by the desorption-absorption isotherm loop in HDR 77, as compared to HD 2009 also indicated the greater membrane integrity of HDR 77. Germination and seedling vigour of HD 2009 were reduced when equilibrated over very low and very high RH. In contrast, germination and vigour in HDR 77 were maintained high, except at very high RH, indicating again its desiccation tolerance. Thus, the study demonstrated the relative drought tolerance of HDR 77, on the basis of seed water-binding characteristics and seed membrane stability. Seed membrane stability as measured by seed leachate conductivity or as area under dehydration-rehydration loop may be used as a preliminary screening test for drought tolerance in wheat.

  5. Industrial applications of hot dry rock geothermal energy

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.

    1992-07-01

    Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

  6. Hot dry rock geothermal energy development program. Semiannual report, October 1, 1978-March 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.C.; Nunz, G.J.; Cremer, G.M.

    1979-09-01

    The potential of energy extracted from hot dry rock (HDR) was investigated as a commercailly feasible alternate energy source. Run Segments 3 and 4 were completed in the prototype reservoir of the Phase I energy-extraction system at Fenton Hill, New Mexico. Results of these tests yielded significant data on the existing system and this information will be applicable to future HDR systems. Plans and operations initiating a Phase II system are underway at the Fenton Hill site. This system, a deeper, hotter commercial-size reservoir, is intended to demonstrate the longevity and economics of an HDR system. Major activity occurred inmore » evaluation of the national resource potential and in characterizing possible future HDR geothermal sites. Work has begun in the institutional and industrial support area to assess the economics and promote commercial interest in HDR systems as an alternate energy source.« less

  7. Color sensitivity of the multi-exposure HDR imaging process

    NASA Astrophysics Data System (ADS)

    Lenseigne, Boris; Jacobs, Valéry Ann; Withouck, Martijn; Hanselaer, Peter; Jonker, Pieter P.

    2013-04-01

    Multi-exposure high dynamic range(HDR) imaging builds HDR radiance maps by stitching together different views of a same scene with varying exposures. Practically, this process involves converting raw sensor data into low dynamic range (LDR) images, estimate the camera response curves, and use them in order to recover the irradiance for every pixel. During the export, applying white balance settings and image stitching, which both have an influence on the color balance in the final image. In this paper, we use a calibrated quasi-monochromatic light source, an integrating sphere, and a spectrograph in order to evaluate and compare the average spectral response of the image sensor. We finally draw some conclusion about the color consistency of HDR imaging and the additional steps necessary to use multi-exposure HDR imaging as a tool to measure the physical quantities such as radiance and luminance.

  8. Robust image registration for multiple exposure high dynamic range image synthesis

    NASA Astrophysics Data System (ADS)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  9. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction.

    PubMed

    Wagner, Tristan; Koch, Jürgen; Ermler, Ulrich; Shima, Seigo

    2017-08-18

    In methanogenic archaea, the carbon dioxide (CO 2 ) fixation and methane-forming steps are linked through the heterodisulfide reductase (HdrABC)-[NiFe]-hydrogenase (MvhAGD) complex that uses flavin-based electron bifurcation to reduce ferredoxin and the heterodisulfide of coenzymes M and B. Here, we present the structure of the native heterododecameric HdrABC-MvhAGD complex at 2.15-angstrom resolution. HdrB contains two noncubane [4Fe-4S] clusters composed of fused [3Fe-4S]-[2Fe-2S] units sharing 1 iron (Fe) and 1 sulfur (S), which were coordinated at the CCG motifs. Soaking experiments showed that the heterodisulfide is clamped between the two noncubane [4Fe-4S] clusters and homolytically cleaved, forming coenzyme M and B bound to each iron. Coenzymes are consecutively released upon one-by-one electron transfer. The HdrABC-MvhAGD atomic model serves as a structural template for numerous HdrABC homologs involved in diverse microbial metabolic pathways. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    PubMed Central

    Catlett, Jennie L.; Ortiz, Alicia M.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  11. Radiation Parameters of High Dose Rate Iridium -192 Sources

    NASA Astrophysics Data System (ADS)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  12. A novel GATA3 nonsense mutation in a newly diagnosed adult patient of hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome.

    PubMed

    Nanba, Kazutaka; Usui, Takeshi; Nakamura, Michikazu; Toyota, Yuko; Hirota, Keisho; Tamanaha, Tamiko; Kawashima, Sachiko-Tsukamoto; Nakao, Kanako; Yuno, Akiko; Tagami, Tetsuya; Naruse, Mitsuhide; Shimatsu, Akira

    2013-01-01

    Hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an autosomal dominant disorder caused by a GATA3 gene mutation. Here we report a novel mutation of GATA3 in a patient diagnosed with HDR syndrome at the age of 58 with extensive intracranial calcification. A 58-year-old Japanese man showed severe hypocalcemia and marked calcification in the basal ganglia, cerebellum, deep white matter, and gray-white junction on computed tomography (CT). The serum intact parathyroid hormone level was relatively low against low serum calcium concentration. The patient had been diagnosed with bilateral sensorineural deafness in childhood and had a family history of hearing disorders. Imaging studies revealed no renal anomalies. The patient was diagnosed with HDR syndrome, and genetic testing was performed. Genetic analysis of GATA3 showed a novel nonsense mutation at codon 198 (S198X) in exon 3. The S198X mutation leads to a loss of two zinc finger deoxyribonucleic acid (DNA) binding domains and is considered to be responsible for HDR syndrome. We identified a novel nonsense mutation of GATA3 in an adult patient with HDR syndrome who showed extensive intracranial calcification.

  13. Under-utilisation of high-dose-rate brachytherapy boost in men with intermediate-high risk prostate cancer treated with external beam radiotherapy.

    PubMed

    Ong, Wee Loon; Evans, Sue M; Millar, Jeremy L

    2018-04-01

    The aim of this study was to evaluate the use of high-dose-rate brachytherapy (HDR-BT) boost with definitive external beam radiotherapy (EBRT) in prostate cancer (CaP) management. The study population comprised men with intermediate-high risk CaP captured in the population-based Prostate Cancer Outcome Registry Victoria (PCOR-Vic), treated with EBRT from January 2010 to December 2015. The primary outcome is the proportion of men who received HDR-BT boost. Multivariate logistic regressions were used to evaluate the effect of patient-, tumour- and treatment-factors on the likelihood of HDR-BT use. Medicare Benefit Schedule (MBS) data was accessed to evaluate the Australia-wide pattern of HDR-BT use. One thousand eight hundred and six patients were included in this study - 886 (49%) intermediate-risk, and 920 (51%) high-risk CaP patients. Overall, only 124 (7%) patients had EBRT + HDR-BT - 47 (5%) intermediate-risk and 77 (8%) high-risk CaP patients (P = 0.01). There is higher proportion of patients who had HDR-BT in public institutions (7% public vs. 3% private, P = 0.005) and in metropolitan centres (9% metropolitan vs. 2% regional, P < 0.001). In multivariate analyses, older patients were less likely to have HDR-BT (OR = 0.92; 95% CI = 0.89-0.94, P < 0.001), while patients with high-risk CaP (OR = 1.8; 95% CI = 1.3-2.7; P = 0.002) treated in metropolitan centres (OR = 5.0; 95% CI = 2.6-9.8; P < 0.001) and public institutions (OR = 3.8; 95% CI = 1.5-9.4; P = 0.005) were more likely to have EBRT + HDR-BT. There was significant decline in numbers of HDR-BT performed throughout Australia, from 313 cases in 2010 to 125 cases in 2015. High-dose-rate brachytherapy is under-utilised with EBRT in this contemporary population-based cohort of Victorian men with CaP. The decline in HDR-BT use was also observed nationally. © 2017 The Royal Australian and New Zealand College of Radiologists.

  14. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    NASA Astrophysics Data System (ADS)

    Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.

    2007-06-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  15. Time to PSA rise differentiates the PSA bounce after HDR and LDR brachytherapy of prostate cancer

    PubMed Central

    Skowronek, Janusz

    2018-01-01

    Purpose To investigate the differences in prostate-specific antigen (PSA) bounce (PB) after high-dose-rate (HDR-BT) or low-dose-rate (LDR-BT) brachytherapy alone in prostate cancer patients. Materials and methods Ninety-four patients with localized prostate cancer (T1-T2cN0), age ranged 50-81 years, were treated with brachytherapy alone between 2008 and 2010. Patients were diagnosed with adenocarcinoma, Gleason score ≤ 7. The LDR-BT total dose was 144-145 Gy, in HDR-BT – 3 fractions of 10.5 or 15 Gy. The initial PSA level (iPSA) was assessed before treatment, then PSA was rated every 3 months over the first 2 years, and every 6 months during the next 3 years. Median follow-up was 3.0 years. Results Mean iPSA was 7.8 ng/ml. In 58 cases, PSA decreased gradually without PB or biochemical failure (BF). In 24% of patients, PB was observed. In 23 cases (24%), PB was observed using 0.2 ng/ml definition; in 10 cases (11%), BF was diagnosed using nadir + 2 ng/ml definition. The HDR-BT and LDR-BT techniques were not associated with higher level of PB (26 vs. 22%, p = 0.497). Time to the first PSA rise finished with PB was significantly shorter after HDR-BT then after LDR-BT (median, 10.5 vs. 18.0 months) during follow-up. Predictors for PB were observed only after HDR-BT. Androgen deprivation therapy (ADT) and higher Gleason score decreased the risk of PB (HR = 0.11, p = 0.03; HR = 0.51, p = 0.01). The higher PSA nadir and longer time to PSA nadir increased the risk of PB (HR 3.46, p = 0.02; HR 1.04, p = 0.04). There was no predictors for PB after LDR-BT. Conclusions HDR-BT and LDR-BT for low and intermediate risk prostate cancer had similar PB rate. The PB occurred earlier after HDR-BT than after LDR-BT. ADT and higher Gleason score decreased, and higher PSA nadir and longer time to PSA nadir increased the risk of PB after HDR-BT. PMID:29619050

  16. Time to PSA rise differentiates the PSA bounce after HDR and LDR brachytherapy of prostate cancer.

    PubMed

    Burchardt, Wojciech; Skowronek, Janusz

    2018-02-01

    To investigate the differences in prostate-specific antigen (PSA) bounce (PB) after high-dose-rate (HDR-BT) or low-dose-rate (LDR-BT) brachytherapy alone in prostate cancer patients. Ninety-four patients with localized prostate cancer (T1-T2cN0), age ranged 50-81 years, were treated with brachytherapy alone between 2008 and 2010. Patients were diagnosed with adenocarcinoma, Gleason score ≤ 7. The LDR-BT total dose was 144-145 Gy, in HDR-BT - 3 fractions of 10.5 or 15 Gy. The initial PSA level (iPSA) was assessed before treatment, then PSA was rated every 3 months over the first 2 years, and every 6 months during the next 3 years. Median follow-up was 3.0 years. Mean iPSA was 7.8 ng/ml. In 58 cases, PSA decreased gradually without PB or biochemical failure (BF). In 24% of patients, PB was observed. In 23 cases (24%), PB was observed using 0.2 ng/ml definition; in 10 cases (11%), BF was diagnosed using nadir + 2 ng/ml definition. The HDR-BT and LDR-BT techniques were not associated with higher level of PB (26 vs. 22%, p = 0.497). Time to the first PSA rise finished with PB was significantly shorter after HDR-BT then after LDR-BT (median, 10.5 vs. 18.0 months) during follow-up. Predictors for PB were observed only after HDR-BT. Androgen deprivation therapy (ADT) and higher Gleason score decreased the risk of PB (HR = 0.11, p = 0.03; HR = 0.51, p = 0.01). The higher PSA nadir and longer time to PSA nadir increased the risk of PB (HR 3.46, p = 0.02; HR 1.04, p = 0.04). There was no predictors for PB after LDR-BT. HDR-BT and LDR-BT for low and intermediate risk prostate cancer had similar PB rate. The PB occurred earlier after HDR-BT than after LDR-BT. ADT and higher Gleason score decreased, and higher PSA nadir and longer time to PSA nadir increased the risk of PB after HDR-BT.

  17. WE-DE-201-07: Measurement of Real-Time Dose for Tandem and Ovoid Brachytherapy Procedures Using a High Precision Optical Fiber Radiation Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, MD; Current Address Rhode Island Hospital, Providence, RI; Faught, A

    Purpose: Development of a novel on-line dosimetry tool is needed to move toward patient-specific quality assurance measurements for Ir-192 HDR brachytherapy to verify accurate dose delivery to the intended location. This work describes the development and use of a nano-crystalline yttrium oxide inorganic scintillator based optical-fiber detector capable of acquiring real-time high-precision dose measurements during tandem and ovoid (T&O) gynecological (GYN) applicator Ir-192 HDR brachytherapy procedures. Methods: An optical-fiber detector was calibrated by acquiring light output measurements in liquid water at 3, 5, 7, and 9cm radial source-detector-distances from an Ir-192 HDR source. A regression model was fit to themore » data to describe the relative light output per unit dose (TG-43 derived) as a function of source-detector-distance. Next, the optical-fiber detector was attached to a vaginal balloon fixed to a Varian Fletcher-Suit-Delclos-style applicator (to mimic clinical setup), and localized by acquiring high-resolution computed tomography (CT) images. To compare the physical point dose to the TPS calculated values (TG-43 and Acuros-BV), a phantom measurement was performed, by submerging the T&O applicator in a liquid water bath and delivering a treatment template representative of a clinical T&O procedure. The fiber detector collected scintillation signal as a function of time, and the calibration data was applied to calculate both real-time dose rate, and cumulative dose. Results: Fiber cumulative dose values were 100.0cGy, 94.3cGy, and 348.9cGy from the tandem, left ovoid, and right ovoid dwells, respectively (total of 443.2cGy). A plot of real time dose rate during the treatment was also acquired. The TPS values at the fiber location were 458.4cGy using TG-43, and 437.6cGy using Acuros-BV calculated as Dm,m (per TG-186). Conclusion: The fiber measured dose value agreement was 3% vs TG-43 and −1% vs Acuros-BV. This fiber detector opens up new possibilities for performing patient-specific quality assurance for Ir-192 HDR GYN procedures. Funding from Coulter Foundation, Duke Bio-medical Engineering. Company is being created around the detector technology. Duke holds patents on the technology.« less

  18. Ghost detection and removal based on super-pixel grouping in exposure fusion

    NASA Astrophysics Data System (ADS)

    Jiang, Shenyu; Xu, Zhihai; Li, Qi; Chen, Yueting; Feng, Huajun

    2014-09-01

    A novel multi-exposure images fusion method for dynamic scenes is proposed. The commonly used techniques for high dynamic range (HDR) imaging are based on the combination of multiple differently exposed images of the same scene. The drawback of these methods is that ghosting artifacts will be introduced into the final HDR image if the scene is not static. In this paper, a super-pixel grouping based method is proposed to detect the ghost in the image sequences. We introduce the zero mean normalized cross correlation (ZNCC) as a measure of similarity between a given exposure image and the reference. The calculation of ZNCC is implemented in super-pixel level, and the super-pixels which have low correlation with the reference are excluded by adjusting the weight maps for fusion. Without any prior information on camera response function or exposure settings, the proposed method generates low dynamic range (LDR) images which can be shown on conventional display devices directly with details preserving and ghost effects reduced. Experimental results show that the proposed method generates high quality images which have less ghost artifacts and provide a better visual quality than previous approaches.

  19. Prostate Specific Antigen (PSA) as Predicting Marker for Clinical Outcome and Evaluation of Early Toxicity Rate after High-Dose Rate Brachytherapy (HDR-BT) in Combination with Additional External Beam Radiation Therapy (EBRT) for High Risk Prostate Cancer.

    PubMed

    Ecke, Thorsten H; Huang-Tiel, Hui-Juan; Golka, Klaus; Selinski, Silvia; Geis, Berit Christine; Koswig, Stephan; Bathe, Katrin; Hallmann, Steffen; Gerullis, Holger

    2016-11-10

    High-dose-rate brachytherapy (HDR-BT) with external beam radiation therapy (EBRT) is a common treatment option for locally advanced prostate cancer (PCa). Seventy-nine male patients (median age 71 years, range 50 to 79) with high-risk PCa underwent HDR-BT following EBRT between December 2009 and January 2016 with a median follow-up of 21 months. HDR-BT was administered in two treatment sessions (one week interval) with 9 Gy per fraction using a planning system and the Ir192 treatment unit GammaMed Plus iX. EBRT was performed with CT-based 3D-conformal treatment planning with a total dose administration of 50.4 Gy with 1.8 Gy per fraction and five fractions per week. Follow-up for all patients was organized one, three, and five years after radiation therapy to evaluate early and late toxicity side effects, metastases, local recurrence, and prostate-specific antigen (PSA) value measured in ng/mL. The evaluated data included age, PSA at time of diagnosis, PSA density, BMI (body mass index), Gleason score, D'Amico risk classification for PCa, digital rectal examination (DRE), PSA value after one/three/five year(s) follow-up (FU), time of follow-up, TNM classification, prostate volume, and early toxicity rates. Early toxicity rates were 8.86% for gastrointestinal, and 6.33% for genitourinary side effects. Of all treated patients, 84.81% had no side effects. All reported complications in early toxicity were grade 1. PSA density at time of diagnosis ( p = 0.009), PSA on date of first HDR-BT ( p = 0.033), and PSA on date of first follow-up after one year ( p = 0.025) have statistical significance on a higher risk to get a local recurrence during follow-up. HDR-BT in combination with additional EBRT in the presented design for high-risk PCa results in high biochemical control rates with minimal side-effects. PSA is a negative predictive biomarker for local recurrence during follow-up. A longer follow-up is needed to assess long-term outcome and toxicities.

  20. Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.

    PubMed

    Roué, Amélie; Venselaar, Jack L M; Ferreira, Ivaldo H; Bridier, André; Van Dam, Jan

    2007-04-01

    In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from (192)Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an (192)Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1s). To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. A method of absorbed dose to water determination in the vicinity of an (192)Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The accuracy of the procedure was determined. This method allows a check of the whole dosimetry chain for this type of brachytherapy afterloading system and can easily be performed by mail to any institution in the European area and elsewhere. Such an external audit can be an efficient QC method complementary to internal quality control as it can reveal some errors which are not observable by other means.

  1. High-dynamic range imaging techniques based on both color-separation algorithms used in conventional graphic arts and the human visual perception modeling

    NASA Astrophysics Data System (ADS)

    Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao

    2010-01-01

    The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.

  2. 'Cold shock' increases the frequency of homology directed repair gene editing in induced pluripotent stem cells.

    PubMed

    Guo, Q; Mintier, G; Ma-Edmonds, M; Storton, D; Wang, X; Xiao, X; Kienzle, B; Zhao, D; Feder, John N

    2018-02-01

    Using CRISPR/Cas9 delivered as a RNA modality in conjunction with a lipid specifically formulated for large RNA molecules, we demonstrate that homology directed repair (HDR) rates between 20-40% can be achieved in induced pluripotent stem cells (iPSC). Furthermore, low HDR rates (between 1-20%) can be enhanced two- to ten-fold in both iPSCs and HEK293 cells by 'cold shocking' cells at 32 °C for 24-48 hours following transfection. This method can also increases the proportion of loci that have undergone complete sequence conversion across the donor sequence, or 'perfect HDR', as opposed to partial sequence conversion where nucleotides more distal to the CRISPR cut site are less efficiently incorporated ('partial HDR'). We demonstrate that the structure of the single-stranded DNA oligo donor can influence the fidelity of HDR, with oligos symmetric with respect to the CRISPR cleavage site and complementary to the target strand being more efficient at directing 'perfect HDR' compared to asymmetric non-target strand complementary oligos. Our protocol represents an efficient method for making CRISPR-mediated, specific DNA sequence changes within the genome that will facilitate the rapid generation of genetic models of human disease in iPSCs as well as other genome engineered cell lines.

  3. Local contrast-enhanced MR images via high dynamic range processing.

    PubMed

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  4. [Comparison between administrative and clinical databases in the evaluation of cardiac surgery performance].

    PubMed

    Rosato, Stefano; D'Errigo, Paola; Badoni, Gabriella; Fusco, Danilo; Perucci, Carlo A; Seccareccia, Fulvia

    2008-08-01

    The availability of two contemporary sources of information about coronary artery bypass graft (CABG) interventions, allowed 1) to verify the feasibility of performing outcome evaluation studies using administrative data sources, and 2) to compare hospital performance obtainable using the CABG Project clinical database with hospital performance derived from the use of current administrative data. Interventions recorded in the CABG Project were linked to the hospital discharge record (HDR) administrative database. Only the linked records were considered for subsequent analyses (46% of the total CABG Project). A new selected population "clinical card-HDR" was then defined. Two independent risk-adjustment models were applied, each of them using information derived from one of the two different sources. Then, HDR information was supplemented with some patient preoperative conditions from the CABG clinical database. The two models were compared in terms of their adaptability to data. Hospital performances identified by the two different models and significantly different from the mean was compared. In only 4 of the 13 hospitals considered for analysis, the results obtained using the HDR model did not completely overlap with those obtained by the CABG model. When comparing statistical parameters of the HDR model and the HDR model + patient preoperative conditions, the latter showed the best adaptability to data. In this "clinical card-HDR" population, hospital performance assessment obtained using information from the clinical database is similar to that derived from the use of current administrative data. However, when risk-adjustment models built on administrative databases are supplemented with a few clinical variables, their statistical parameters improve and hospital performance assessment becomes more accurate.

  5. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  6. Modelling second malignancy risks from low dose rate and high dose rate brachytherapy as monotherapy for localised prostate cancer.

    PubMed

    Murray, Louise; Mason, Joshua; Henry, Ann M; Hoskin, Peter; Siebert, Frank-Andre; Venselaar, Jack; Bownes, Peter

    2016-08-01

    To estimate the risks of radiation-induced rectal and bladder cancers following low dose rate (LDR) and high dose rate (HDR) brachytherapy as monotherapy for localised prostate cancer and compare to external beam radiotherapy techniques. LDR and HDR brachytherapy monotherapy plans were generated for three prostate CT datasets. Second cancer risks were assessed using Schneider's concept of organ equivalent dose. LDR risks were assessed according to a mechanistic model and a bell-shaped model. HDR risks were assessed according to a bell-shaped model. Relative risks and excess absolute risks were estimated and compared to external beam techniques. Excess absolute risks of second rectal or bladder cancer were low for both LDR (irrespective of the model used for calculation) and HDR techniques. Average excess absolute risks of rectal cancer for LDR brachytherapy according to the mechanistic model were 0.71 per 10,000 person-years (PY) and 0.84 per 10,000 PY respectively, and according to the bell-shaped model, were 0.47 and 0.78 per 10,000 PY respectively. For HDR, the average excess absolute risks for second rectal and bladder cancers were 0.74 and 1.62 per 10,000 PY respectively. The absolute differences between techniques were very low and clinically irrelevant. Compared to external beam prostate radiotherapy techniques, LDR and HDR brachytherapy resulted in the lowest risks of second rectal and bladder cancer. This study shows both LDR and HDR brachytherapy monotherapy result in low estimated risks of radiation-induced rectal and bladder cancer. LDR resulted in lower bladder cancer risks than HDR, and lower or similar risks of rectal cancer. In absolute terms these differences between techniques were very small. Compared to external beam techniques, second rectal and bladder cancer risks were lowest for brachytherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A dosimetric analysis of intensity-modulated radiation therapy (IMRT) as an alternative to adjuvant high-dose-rate (HDR) brachytherapy in early endometrial cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, Bulent; Mundt, Arno J.; Department of Radiation Oncology, University of Illinois at Chicago, Chicago, IL

    2006-05-01

    Purpose: To evaluate the role of intensity-modulated radiation treatment (IMRT) as an alternative to high-dose-rate (HDR) brachytherapy in the treatment of the vagina in postoperative early endometrial cancer patients after surgery. Methods and Materials: Planning computed tomography (CT) scans of 10 patients previously treated with HDR were used in this study. In all cases, a dose of 700 cGy/fraction was prescribed at a distance of 0.5 cm from the cylinder surface. The same CT scans were then used in IMRT planning. In this paradigm, the vaginal cylinder represents a component of a hypothetical immobilization system that would be indexed tomore » the linac treatment table. Results: Our study showed that IMRT provided relatively lower rectal doses than HDR when treatment was prescribed at a distance of 0.5 cm away from the cylinder surface. Maximum rectal doses were lower with IMRT compared with HDR (average: 89.0% vs. 142.6%, respectively, p < 0.05). Moreover, the mean rectal dose was lower in IMRT plans compared with HDR plans with treatment prescribed either to the surface (average: 14.8% vs. 21.4%, respectively, p < 0.05) or to 0.5 cm (average: 19.6% vs. 33.5%, respectively, p < 0.05). IMRT plans had planning target volume (PTV) coverage comparable with HDR (average PTV minimum for treatment prescribed to 0.5 cm: 93.9% vs. 92.1%, p = 0.71, respectively) with less inhomogeneity (average PTV maximum: 110.8% vs. 381.6%, p < 0.05). Conclusion: Our dosimetric analysis suggests that when used in conjunction with a suitable immobilization system, IMRT may provide an alternative to HDR brachytherapy in women with early endometrial cancer after hysterectomy. However, more studies are needed to evaluate the clinical merit of the IMRT in these patients.« less

  8. Clinical evaluation of a medical high dynamic range display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchessoux, Cedric, E-mail: cedric.marchessoux@ba

    Purpose: Recent new medical displays do have higher contrast and higher luminance but do not have a High Dynamic Range (HDR). HDR implies a minimum luminance value close to zero. A medical HDR display prototype based on two Liquid Crystal layers has been developed. The goal of this study is to evaluate the potential clinical benefit of such display in comparison with a low dynamic range (LDR) display. Methods: The study evaluated the clinical performance of the displays in a search and detection task. Eight radiologists read chest x-ray images some of which contained simulated lung nodules. The study usedmore » a JAFROC (Jacknife Free Receiver Operating Characteristic) approach for analyzing FROC data. The calculated figure of merit (FoM) is the probability that a lesion is rated higher than all rated nonlesions on all images. Time per case and accuracy for locating the center of the nodules were also compared. The nodules were simulated using Samei’s model. 214 CR and DR images [half were “healthy images” (chest nodule-free) and half “diseased images”] were used resulting in a total number of nodules equal to 199 with 25 images with 1 nodule, 51 images with 2 nodules, and 24 images with 3 nodules. A dedicated software interface was designed for visualizing the images for each session. For the JAFROC1 statistical analysis, the study is done per nodule category: all nodules, difficult nodules, and very difficult nodules. Results: For all nodules, the averaged FoM{sub HDR} is slightly higher than FoM{sub LDR} with 0.09% of difference. For the difficult nodules, the averaged FoM{sub HDR} is slightly higher than FoM{sub LDR} with 1.38% of difference. The averaged FoM{sub HDR} is slightly higher than FoM{sub LDR} with 0.71% of difference. For the true positive fraction (TPF), both displays (the HDR and the LDR ones) have similar TPF for all nodules, but looking at difficult and very difficult nodules, there are more TP for the HDR display. The true positive fraction has been also computed in function of the local average luminance around the nodules. For the lowest luminance range, there is more than 30% in favor of the HDR display. For the highest luminance range, there is less than 6% in favor of the LDR display. Conclusions: This study shows the potential benefit of using a HDR display in radiology.« less

  9. The dorso-lateral recess of the hypothalamic ventricle in neonatal rats.

    PubMed

    Menéndez, A; Alvarez-Uría, M

    1987-10-01

    Light and electron microscopy of the hypothalamic ventricle in neonatal rats demonstrate morphological specializations of the ventricular wall at the level of the premammillary region of the third ventricle. The morphological features are: (1) A ventricular recess that we have called the "hypothalamic dorso-lateral recess" (HDR). (2) The presence of intraventricular capillaries near the dorso-lateral recess. (3) The HDR possessing a specialized ependymal lining; this consists of non-ciliated cells with short microvilli and bleb-like processes. (4) The existence of cerebrospinal fluid-contacting neurons within the HDR. (5) The presence of numerous phagocytic supraependymal cells. The HDR is not found in adult rats. This indicates that the dorso-lateral recess may play a physiological role during development.

  10. SU-C-BRD-02: A Team Focused Clinical Implementation and Failure Mode and Effects Analysis of HDR Skin Brachytherapy Using Valencia and Leipzig Surface Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, E; Harrison, A; Eldredge-Hindy, H

    Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure wasmore » evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and reduced error probability during VLA HDR Brachytherapy. This clinical model may be useful to institutions implementing similar procedures.« less

  11. SU-C-16A-05: OAR Dose Tolerance Recommendations for Prostate and Cervical HDR Brachytherapy: Dose Versus Volume Metrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geneser, S; Cunha, J; Pouliot, J

    Purpose: HDR brachytherapy consensus dose tolerance recommendations for organs at risk (OARs) remain widely debated. Prospective trials reporting metrics must be sufficiently data-dense to assess adverse affects and identify optimally predictive tolerances. We explore the tradeoffs between reporting dose-metrics versus volume-metrics and the potential impact on trial outcome analysis and tolerance recommendations. Methods: We analyzed 26 prostate patients receiving 15 Gy HDR single-fraction brachytherapy boost to 45 Gy external beam radiation therapy and 28 cervical patients receiving 28 Gy HDR brachytherapy monotherapy in 4 fractions using 2 implants. For each OAR structure, a robust linear regression fit was performed formore » the dose-metrics as a function of the volume-metrics. The plan quality information provided by recommended dose-metric and volume-metric values were compared. Results: For prostate rectal dose, D2cc and V75 lie close to the regression line, indicating they are similarly informative. Two outliers for prostate urethral dose are substantially different from the remaining cohort in terms of D0.1cc and V75, but not D1cc, suggesting the choice of reporting dose metric is essential. For prostate bladder and cervical bladder, rectum, and bowel, dose outliers are more apparent via V75 than recommended dose-metrics. This suggests that for prostate bladder dose and all cervical OAR doses, the recommended volume-metrics may be better predictors of clinical outcome than dose-metrics. Conclusion: For plan acceptance criteria, dose and volume-metrics are reciprocally equivalent. However, reporting dosemetrics or volume-metrics alone provides substantially different information. Our results suggest that volume-metrics may be more sensitive to differences in planned dose, and if one metric must be chosen, volumemetrics are preferable. However, reporting discrete DVH points severely limits the ability to identify planning tolerances most predictive of adverse effects. Thus, we recommend that full OAR DVH reporting be required for future prospective trials.« less

  12. A fast inverse treatment planning strategy facilitating optimized catheter selection in image-guided high-dose-rate interstitial gynecologic brachytherapy.

    PubMed

    Guthier, Christian V; Damato, Antonio L; Hesser, Juergen W; Viswanathan, Akila N; Cormack, Robert A

    2017-12-01

    Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the proposed methodology results in fewer catheters without a clinically significant loss in plan quality. The proposed approach can be used as a decision support tool that guides the user to find the ideal number and configuration of catheters. © 2017 American Association of Physicists in Medicine.

  13. GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea

    PubMed Central

    Luo, Xiong-jian; Deng, Min; Xie, Xiaoling; Huang, Liang; Wang, Hui; Jiang, Lichun; Liang, Guoqing; Hu, Fang; Tieu, Roger; Chen, Rui; Gan, Lin

    2013-01-01

    HDR syndrome (also known as Barakat syndrome) is a developmental disorder characterized by hypoparathyroidism, sensorineural deafness and renal disease. Although genetic mapping and subsequent functional studies indicate that GATA3 haplo-insufficiency causes human HDR syndrome, the role of Gata3 in sensorineural deafness and auditory system development is largely unknown. In this study, we show that Gata3 is continuously expressed in the developing mouse inner ear. Conditional knockout of Gata3 in the developing inner ear disrupts the morphogenesis of mouse inner ear, resulting in a disorganized and shortened cochlear duct with significant fewer hair cells and supporting cells. Loss of Gata3 function leads to the failure in the specification of prosensory domain and subsequently, to increased cell death in the cochlear duct. Moreover, though the initial generation of cochleovestibular ganglion (CVG) cells is not affected in Gata3-null mice, spiral ganglion neurons (SGNs) are nearly depleted due to apoptosis. Our results demonstrate the essential role of Gata3 in specifying the prosensory domain in the cochlea and in regulating the survival of SGNs, thus identifying a molecular mechanism underlying human HDR syndrome. PMID:23666531

  14. Fat Necrosis After Partial-Breast Irradiation With Brachytherapy or Electron Irradiation Versus Standard Whole-Breast Radiotherapy-4-Year Results of a Randomized Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loevey, Katalin; Fodor, Janos; Major, Tibor

    Purpose: To examine the incidence and clinical relevance of fat necrosis after accelerated partial-breast irradiation (PBI) using interstitial high-dose-rate brachytherapy (HDR-BT) in comparison with partial-breast electron irradiation (ELE) and whole-breast irradiation (WBI). Methods and Materials: Between 1998 and 2004, 258 early-stage breast cancer patients were randomized to receive 50 Gy WBI (n = 130) or PBI (n = 128). The latter consisted of either 7 x 5.2 Gy HDR-BT (n = 88) or 50 Gy ELE (n = 40). The incidence of fat necrosis, its impact on cosmetic outcome, accompanying radiologic features, and clinical symptoms were evaluated. Results: The 4-yearmore » actuarial rate of fat necrosis was 31.1% for all patients, and 31.9%, 36.5%, and 17.7% after WBI, HDR-BT and ELE, respectively (p{sub WBI/HDR-BT} = 0.26; p{sub WBI/ELE} = 0.11; p{sub ELE/HDR-BT} = 0.025). The respective rate of asymptomatic fat necrosis was 20.2%, 25.3%, and 10% of patients. The incidence of symptomatic fat necrosis was not significantly different after WBI (8.5%), HDR-BT (11.4%), and ELE (7.5%). Symptomatic fat necrosis was significantly associated with a worse cosmetic outcome, whereas asymptomatic fat necrosis was not. Fat necrosis was detectable with mammography and/or ultrasound in each case. Additional imaging examinations were required in 21% of cases and aspiration cytology in 42%. Conclusions: Asymptomatic fat necrosis is a common adverse event of breast-conserving therapy, having no significant clinical relevance in the majority of the cases. The incidence of both symptomatic and asymptomatic fat necrosis is similar after conventional WBI and accelerated partial-breast HDR-BT.« less

  15. Hot dry rock geothermal energy: status of exploration and assessment. Report No. 1 of the hot dry rock assessment panel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-06-01

    The status of knowledge of attempts to utilize hot dry rock (HDR) geothermal energy is summarized. It contains (1) descriptions or case histories of the ERDA-funded projects at Marysville, MT, Fenton Hill, NM, and Coso Hot Springs, CA; (2) a review of the status of existing techniques available for exploration and delineation of HDR; (3) descriptions of other potential HDR sites; (4) definitions of the probable types of HDR resource localities; and (5) an estimate of the magnitude of the HDR resource base in the conterminous United States. The scope is limited to that part of HDR resource assessment relatedmore » to the determination of the extent and character of HDR, with emphasis on the igneous-related type. It is estimated that approximately 74 Q (1 Q = 1,000 Quads) of heat is stored in these sites within the conterminous U.S. at depths less than 10 km and temperatures above 150/sup 0/C, the minimum for power generation. (Q = 10/sup 18/ BTU = 10/sup 21/J; the total U.S. consumption for 1972 was approximately 0.07 Q). Approximately 6300 Q are stored in the conduction-dominated parts of the crust in the western U.S. (23% of the total surface area), again at depths less than 10 km and temperatures above 150/sup 0/C. Nearly 10,000 Q are believed to be contained in crustal rocks underlying the entire conterminous U.S., at temperatures above 150/sup 0/C. The resource base is significantly larger for lower grade heat. (JGB)« less

  16. Interaction of the vestibular system and baroreflexes on sympathetic nerve activity in humans

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    2000-01-01

    Muscle sympathetic nerve activity (MSNA) is altered by vestibular otolith stimulation. This study examined interactive effects of the vestibular system and baroreflexes on MSNA in humans. In study 1, MSNA was measured during 4 min of lower body negative pressure (LBNP) at either -10 or -30 mmHg with subjects in prone posture. During the 3rd min of LBNP, subjects lowered their head over the end of a table (head-down rotation, HDR) to engage the otolith organs. The head was returned to baseline upright position during the 4th min. LBNP increased MSNA above baseline during both trials with greater increases during the -30-mmHg trial. HDR increased MSNA further during the 3rd min of LBNP at -10 and -30 mmHg (Delta32% and Delta34%, respectively; P < 0.01). MSNA returned to pre-HDR levels during the 4th min of LBNP when the head was returned upright. In study 2, MSNA was measured during HDR, LBNP, and simultaneously performed HDR and LBNP. The sum of MSNA responses during individual HDR and LBNP trials was not significantly different from that observed during HDR and LBNP performed together (Delta131 +/- 28 vs. Delta118 +/- 47 units and Delta340 +/- 77 vs. Delta380 +/- 90 units for the -10 and -30 trials, respectively). These results demonstrate that vestibular otolith stimulation can increase MSNA during unloading of the cardiopulmonary and arterial baroreflexes. Also, the interaction between the vestibulosympathetic reflex and baroreflexes is additive in humans. These studies indicate that the vestibulosympathetic reflex may help defend against orthostatic challenges in humans by increasing sympathetic outflow.

  17. VhuD Facilitates Electron Flow from H2 or Formate to Heterodisulfide Reductase in Methanococcus maripaludis

    PubMed Central

    Costa, Kyle C.; Lie, Thomas J.; Xia, Qin

    2013-01-01

    Flavin-based electron bifurcation has recently been characterized as an essential energy conservation mechanism that is utilized by hydrogenotrophic methanogenic Archaea to generate low-potential electrons in an ATP-independent manner. Electron bifurcation likely takes place at the flavin associated with the α subunit of heterodisulfide reductase (HdrA). In Methanococcus maripaludis the electrons for this reaction come from either formate or H2 via formate dehydrogenase (Fdh) or Hdr-associated hydrogenase (Vhu). However, how these enzymes bind to HdrA to deliver electrons is unknown. Here, we present evidence that the δ subunit of hydrogenase (VhuD) is central to the interaction of both enzymes with HdrA. When M. maripaludis is grown under conditions where both Fdh and Vhu are expressed, these enzymes compete for binding to VhuD, which in turn binds to HdrA. Under these conditions, both enzymes are fully functional and are bound to VhuD in substoichiometric quantities. We also show that Fdh copurifies specifically with VhuD in the absence of other hydrogenase subunits. Surprisingly, in the absence of Vhu, growth on hydrogen still occurs; we show that this involves F420-reducing hydrogenase. The data presented here represent an initial characterization of specific protein interactions centered on Hdr in a hydrogenotrophic methanogen that utilizes multiple electron donors for growth. PMID:24039260

  18. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.

    PubMed

    Wang, Bangmei; Li, Kunyu; Wang, Amy; Reiser, Michelle; Saunders, Thom; Lockey, Richard F; Wang, Jia-Wang

    2015-10-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) gene editing technique, based on the non-homologous end-joining (NHEJ) repair pathway, has been used to generate gene knock-outs with variable sizes of small insertion/deletions with high efficiency. More precise genome editing, either the insertion or deletion of a desired fragment, can be done by combining the homology-directed-repair (HDR) pathway with CRISPR cleavage. However, HDR-mediated gene knock-in experiments are typically inefficient, and there have been no reports of successful gene knock-in with DNA fragments larger than 4 kb. Here, we describe the targeted insertion of large DNA fragments (7.4 and 5.8 kb) into the genomes of mouse embryonic stem (ES) cells and zygotes, respectively, using the CRISPR/HDR technique without NHEJ inhibitors. Our data show that CRISPR/HDR without NHEJ inhibitors can result in highly efficient gene knock-in, equivalent to CRISPR/HDR with NHEJ inhibitors. Although NHEJ is the dominant repair pathway associated with CRISPR-mediated double-strand breaks (DSBs), and biallelic gene knock-ins are common, NHEJ and biallelic gene knock-ins were not detected. Our results demonstrate that efficient targeted insertion of large DNA fragments without NHEJ inhibitors is possible, a result that should stimulate interest in understanding the mechanisms of high efficiency CRISPR targeting in general.

  19. An HDR imaging method with DTDI technology for push-broom cameras

    NASA Astrophysics Data System (ADS)

    Sun, Wu; Han, Chengshan; Xue, Xucheng; Lv, Hengyi; Shi, Junxia; Hu, Changhong; Li, Xiangzhi; Fu, Yao; Jiang, Xiaonan; Huang, Liang; Han, Hongyin

    2018-03-01

    Conventionally, high dynamic-range (HDR) imaging is based on taking two or more pictures of the same scene with different exposure. However, due to a high-speed relative motion between the camera and the scene, it is hard for this technique to be applied to push-broom remote sensing cameras. For the sake of HDR imaging in push-broom remote sensing applications, the present paper proposes an innovative method which can generate HDR images without redundant image sensors or optical components. Specifically, this paper adopts an area array CMOS (complementary metal oxide semiconductor) with the digital domain time-delay-integration (DTDI) technology for imaging, instead of adopting more than one row of image sensors, thereby taking more than one picture with different exposure. And then a new HDR image by fusing two original images with a simple algorithm can be achieved. By conducting the experiment, the dynamic range (DR) of the image increases by 26.02 dB. The proposed method is proved to be effective and has potential in other imaging applications where there is a relative motion between the cameras and scenes.

  20. HDR imaging and color constancy: two sides of the same coin?

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2011-01-01

    At first, we think that High Dynamic Range (HDR) imaging is a technique for improved recordings of scene radiances. Many of us think that human color constancy is a variation of a camera's automatic white balance algorithm. However, on closer inspection, glare limits the range of light we can detect in cameras and on retinas. All scene regions below middle gray are influenced, more or less, by the glare from the bright scene segments. Instead of accurate radiance reproduction, HDR imaging works well because it preserves the details in the scene's spatial contrast. Similarly, on closer inspection, human color constancy depends on spatial comparisons that synthesize appearances from all the scene segments. Can spatial image processing play similar principle roles in both HDR imaging and color constancy?

  1. A Real-Time Air Dispersion Modeling System.

    DTIC Science & Technology

    1984-04-01

    8217 UNFORMATTED’) READ (SUNITI, REC=I) HD 5 ICNT=2 FLAGI-. FALSE. DO 20 I=2,HD,1 IF (.NOT. FLA6i) FLAG1-.TRUE. READ(SUNIT1, REC-I) HEAD, HDR ICHECK =0 DO 13 JG=1,9...lt IF (HDR(JG) NE. 0) ICHECKI1 13 CONTINUE IF ( ICHECK .EQ. 0) SOTO 28 IF (SKEY(2) .NE. ’*’) THEN IF (SKEY(2 .NE. 𔄁’) THEN DO 12 K-1,9,1 IF (HDR(K) .EQ

  2. TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniswaamy, G; Morrow, A; Kim, S

    Purpose: Automate brachytherapy treatment plan quality check using Eclipse v13.6 scripting API based on pre-configured rules to minimize human error and maximize efficiency. Methods: The HDR Precheck system is developed based on a rules-driven approach using Eclipse scripting API. This system checks for critical plan parameters like channel length, first source position, source step size and channel mapping. The planned treatment time is verified independently based on analytical methods. For interstitial or SAVI APBI treatment plans, a Patterson-Parker system calculation is performed to verify the planned treatment time. For endobronchial treatments, an analytical formula from TG-59 is used. Acceptable tolerancesmore » were defined based on clinical experiences in our department. The system was designed to show PASS/FAIL status levels. Additional information, if necessary, is indicated appropriately in a separate comments field in the user interface. Results: The HDR Precheck system has been developed and tested to verify the treatment plan parameters that are routinely checked by the clinical physicist. The report also serves as a reminder or checklist for the planner to perform any additional critical checks such as applicator digitization or scenarios where the channel mapping was intentionally changed. It is expected to reduce the current manual plan check time from 15 minutes to <1 minute. Conclusion: Automating brachytherapy plan prechecks significantly reduces treatment plan precheck time and reduces human errors. When fully developed, this system will be able to perform TG-43 based second check of the treatment planning system’s dose calculation using random points in the target and critical structures. A histogram will be generated along with tabulated mean and standard deviation values for each structure. A knowledge database will also be developed for Brachyvision plans which will then be used for knowledge-based plan quality checks to further reduce treatment planning errors and increase confidence in the planned treatment.« less

  3. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    PubMed

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  4. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    PubMed Central

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028

  5. The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough.

    PubMed

    Ramos, Ana Raquel; Grein, Fabian; Oliveira, Gonçalo P; Venceslau, Sofia S; Keller, Kimberly L; Wall, Judy D; Pereira, Inês A C

    2015-07-01

    Flavin-based electron bifurcation (FBEB) is an important mechanism for the energy metabolism of anaerobes. A new family of NADH dehydrogenases, the flavin oxidoreductase (FlxABCD, previously called FloxABCD), was proposed to perform FBEB in sulphate-reducing organisms coupled with heterodisulfide reductase (HdrABC). We found that the hdrABC-flxABCD gene cluster is widespread among anaerobic bacteria, pointing to a general and important role in their bioenergetics. In this work, we studied FlxABCD of Desulfovibrio vulgaris Hildenborough. The hdr-flx genes are part of the same transcriptional unit and are increased in transcription during growth in ethanol-sulfate, and to a less extent during pyruvate fermentation. Two mutant strains were generated: one where expression of the hdr-flx genes was interrupted and another lacking the flxA gene. Both strains were unable to grow with ethanol-sulfate, whereas growth was restored in a flxA-complemented strain. The mutant strains also produced very reduced amounts of ethanol compared with the wild type during pyruvate fermentation. Our results show that in D. vulgaris, the FlxABCD-HdrABC proteins are essential for NADH oxidation during growth on ethanol, probably involving a FBEB mechanism that leads to reduction of ferredoxin and the small protein DsrC, while in fermentation they operate in reverse, reducing NAD(+) for ethanol production. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose.

    PubMed

    Manimaran, S

    2007-06-01

    The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.

  7. Effect of gender on vestibular sympathoexcitation

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    2000-01-01

    Studies have suggested that premenopausal women are more prone to orthostatic intolerance than men. Additionally, it has been postulated that the vestibulosympathetic reflex is important in regulating postural-related changes in sympathetic activity. The purpose of the present study was to determine whether men and women differ in their sympathetic and cardiovascular responses to stimulation of the otolith organs elicited by head-down rotation (HDR). Heart rate (HR), arterial pressure, calf blood flow (CBF), and leg muscle sympathetic nerve activity (MSNA) were measured during 3 min of HDR in the prone posture in 33 women and 30 men. With the exception of HR (71 +/- 2 and 63 +/- 1 beats/min for women and men, respectively; P < 0.01), all baseline variables were not different between genders. There were no gender differences in responses to HDR. MSNA increased 72 +/- 33 units (43%) in the men and 88 +/- 15 units (59%) in the women during HDR (P < 0.01). CBF decreased [-0.6 +/- 0.1 (15%) and -0.5 +/- 0.1 (19%) ml. min(-1). 100 ml(-1)] and calf vascular resistance increased [8 +/- 2 (21%) and 11 +/- 3 (25%) units during HDR for men and women, respectively (P < 0.01)]. Both in the men and women, HR increased 2 +/- 1 beats/min (P < 0.01). These results demonstrate that sympathetic activation during HDR in the prone posture is similar in men and women. Therefore, these findings suggest that the vestibulosympathetic reflex is not different between healthy men and women.

  8. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  9. Real-Time Verification of a High-Dose-Rate Iridium 192 Source Position Using a Modified C-Arm Fluoroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nose, Takayuki, E-mail: nose-takayuki@nms.ac.jp; Chatani, Masashi; Otani, Yuki

    Purpose: High-dose-rate (HDR) brachytherapy misdeliveries can occur at any institution, and they can cause disastrous results. Even a patient's death has been reported. Misdeliveries could be avoided with real-time verification methods. In 1996, we developed a modified C-arm fluoroscopic verification of an HDR Iridium 192 source position prevent these misdeliveries. This method provided excellent image quality sufficient to detect errors, and it has been in clinical use at our institutions for 20 years. The purpose of the current study is to introduce the mechanisms and validity of our straightforward C-arm fluoroscopic verification method. Methods and Materials: Conventional X-ray fluoroscopic images aremore » degraded by spurious signals and quantum noise from Iridium 192 photons, which make source verification impractical. To improve image quality, we quadrupled the C-arm fluoroscopic X-ray dose per pulse. The pulse rate was reduced by a factor of 4 to keep the average exposure compliant with Japanese medical regulations. The images were then displayed with quarter-frame rates. Results: Sufficient quality was obtained to enable observation of the source position relative to both the applicators and the anatomy. With this method, 2 errors were detected among 2031 treatment sessions for 370 patients within a 6-year period. Conclusions: With the use of a modified C-arm fluoroscopic verification method, treatment errors that were otherwise overlooked were detected in real time. This method should be given consideration for widespread use.« less

  10. Real-Time Verification of a High-Dose-Rate Iridium 192 Source Position Using a Modified C-Arm Fluoroscope.

    PubMed

    Nose, Takayuki; Chatani, Masashi; Otani, Yuki; Teshima, Teruki; Kumita, Shinichirou

    2017-03-15

    High-dose-rate (HDR) brachytherapy misdeliveries can occur at any institution, and they can cause disastrous results. Even a patient's death has been reported. Misdeliveries could be avoided with real-time verification methods. In 1996, we developed a modified C-arm fluoroscopic verification of an HDR Iridium 192 source position prevent these misdeliveries. This method provided excellent image quality sufficient to detect errors, and it has been in clinical use at our institutions for 20 years. The purpose of the current study is to introduce the mechanisms and validity of our straightforward C-arm fluoroscopic verification method. Conventional X-ray fluoroscopic images are degraded by spurious signals and quantum noise from Iridium 192 photons, which make source verification impractical. To improve image quality, we quadrupled the C-arm fluoroscopic X-ray dose per pulse. The pulse rate was reduced by a factor of 4 to keep the average exposure compliant with Japanese medical regulations. The images were then displayed with quarter-frame rates. Sufficient quality was obtained to enable observation of the source position relative to both the applicators and the anatomy. With this method, 2 errors were detected among 2031 treatment sessions for 370 patients within a 6-year period. With the use of a modified C-arm fluoroscopic verification method, treatment errors that were otherwise overlooked were detected in real time. This method should be given consideration for widespread use. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2012-01-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649

  12. Penrose high-dynamic-range imaging

    NASA Astrophysics Data System (ADS)

    Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian

    2016-05-01

    High-dynamic-range (HDR) imaging is becoming increasingly popular and widespread. The most common multishot HDR approach, based on multiple low-dynamic-range images captured with different exposures, has difficulties in handling camera and object movements. The spatially varying exposures (SVE) technology provides a solution to overcome this limitation by obtaining multiple exposures of the scene in only one shot but suffers from a loss in spatial resolution of the captured image. While aperiodic assignment of exposures has been shown to be advantageous during reconstruction in alleviating resolution loss, almost all the existing imaging sensors use the square pixel layout, which is a periodic tiling of square pixels. We propose the Penrose pixel layout, using pixels in aperiodic rhombus Penrose tiling, for HDR imaging. With the SVE technology, Penrose pixel layout has both exposure and pixel aperiodicities. To investigate its performance, we have to reconstruct HDR images in square pixel layout from Penrose raw images with SVE. Since the two pixel layouts are different, the traditional HDR reconstruction methods are not applicable. We develop a reconstruction method for Penrose pixel layout using a Gaussian mixture model for regularization. Both quantitative and qualitative results show the superiority of Penrose pixel layout over square pixel layout.

  13. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques.

    PubMed

    Palmer, Antony; Bradley, David; Nisbet, Andrew

    2012-06-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.

  14. Effects of Continuous Gamma-Ray Exposure In Utero in B6C3F1 Mice on Gestation Day 18 and at 10 Weeks of Age.

    PubMed

    Gulay, K C M; Tanaka, I B; Komura, J; Tanaka, S

    2018-04-01

    Pregnant C57BL/6JJcl mice were exposed to γ rays at low dose rate (20 mGy/day, LDR) or medium dose rate (200 and 400 mGy/day, MDR) from gestation day (GD) 0-18 to total accumulated doses of 360, 3,600 and 7,200 mGy, respectively. An additional group of pregnant mice were acutely exposed to 2 Gy at high dose rate (HDR) of 0.77 Gy/min on GD 11. In experiment 1, fetuses collected via cesarean section on GD 18 were examined for external and skeletal abnormalities. While the results of LDR exposure (20 mGy/day) did not significantly differ from the nonirradiated controls in all parameters examined, MDR (200 and 400 mGy/day) and acute HDR (2 Gy) exposure caused growth retardation and significantly increased incidence of unossified bones. Increased incidence of external abnormalities was observed only in the acute HDR group. In experiment 2, the dams were allowed to give birth and the pups were clinically monitored and weighed periodically until 10 weeks of age when they were sacrificed and subjected to pathological examination. Pups exposed at MDRs of 200 and 400 mGy/dayand at acute HDR of 0.77 Gy/min had lower bodyweights from weaning (3 weeks) to 10 weeks of age except for females exposed to 400 mGy/day MDR. None of the pups exposed to an acute 2 Gy dose on GD 11 survived to 10 weeks of age. Histopathological changes were not significantly different between the nonirradiated control and the 20 mGy/day LDR groups. However, at both MDR exposures of 200 and 400 mGy/day. gonadal (testes and ovary) hypoplasia/atrophy was observed in all the 10-week-old pups. Our results show that in utero LDR exposure to 20 mGy/day for the entire gestation period did not cause any significant effect in pups when compared to the nonirradiated controls up to 10 weeks of age. However, pups exposed in utero to MDRs showed dose-related growth retardation with delayed ossifications (400 mGy/day) and gonadal hypoplasia/atrophy. These findings suggest that increased post-implantation loss in dams exposed at MDR is due to early embryonic deaths resulting in early resorption.

  15. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended to model thermal ablation, including the addition of temperature dependent attenuation, perfusion, and tissue damage. Pilot point control at the target boundaries was implemented to control power delivery to each transducer section, simulating an approach feasible for MR guided procedures. The computer model of thermal ablation was evaluated on representative patient anatomies to demonstrate the feasibility of using catheter-based ultrasound thermal ablation for treatment of benign prostate hyperplasia (BPH) and prostate cancer, and to assist in designing applicators and treatment delivery strategies.

  16. TU-AB-201-06: Evaluation of Electromagnetically Guided High- Dose Rate Brachytherapy for Ablative Treatment of Lung Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinkham, D.W.; Shultz, D.; Loo, B.W.

    Purpose: The advent of electromagnetic navigation bronchoscopy has enabled minimally invasive access to peripheral lung tumors previously inaccessible by optical bronchoscopes. As an adjunct to Stereotactic Ablative Radiosurgery (SABR), implantation of HDR catheters can provide focal treatments for multiple metastases and sites of retreatments. The authors evaluate a procedure to deliver ablative doses via Electromagnetically-Guided HDR (EMG-HDR) to lung metastases, quantify the resulting dosimetry, and assess its role in the comprehensive treatment of lung cancer. Methods: A retrospective study was conducted on ten patients, who, from 2009 to 2011, received a hypo-fractionated SABR regimen with 6MV VMAT to lesions inmore » various lobes ranging from 1.5 to 20 cc in volume. A CT visible pathway was delineated for EM guided placement of an HDR applicator (catheter) and dwell times were optimized to ensure at least 98% prescription dose coverage of the GTV. Normal tissue doses were calculated using inhomogeneity corrections via a grid-based Boltzmann solver (Acuros-BV-1.5.0). Results: With EMG-HDR, an average of 83% (+/−9% standard deviation) of each patient’s GTV received over 200% of the prescription dose, as compared to SABR where the patients received an average maximum dose of 125% (+/−5%). EMG-HDR enabled a 59% (+/−12%) decrease in the aorta maximum dose, a 63% (+/−26%) decrease in the spinal cord max dose, and 57% (+/−23%) and 70% (+/−17%) decreases in the volume of the body receiving over 50% and 25% of the prescription dose, respectively. Conclusion: EMG-HDR enables delivery of higher ablative doses to the GTV, while concurrently reducing surrounding normal tissue doses. The single catheter approach shown here is limited to targets smaller than 20 cc. As such, the technique enables ablation of small lesions and a potentially safe and effective retreatment option in situations where external beam utility is limited by normal tissue constraints.« less

  17. TU-D-201-07: Severity Indication in High Dose Rate Brachytherapy Emergency Response Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K; Rustad, F

    Purpose: Understanding the corresponding dose to different staff during the High Dose Rate (HDR) Brachytherapy emergency response procedure could help to develop a strategy in efficiency and effective action. In this study, the variation and risk analysis methodology was developed to simulation the HDR emergency response procedure based on severity indicator. Methods: A GammaMedplus iX HDR unit from Varian Medical System was used for this simulation. The emergency response procedure was decomposed based on risk management methods. Severity indexes were used to identify the impact of a risk occurrence on the step including dose to patient and dose to operationmore » staff by varying the time, HDR source activity, distance from the source to patient and staff and the actions. These actions in 7 steps were to press the interrupt button, press emergency shutoff switch, press emergency button on the afterloader keypad, turn emergency hand-crank, remove applicator from the patient, disconnect transfer tube and move afterloader from the patient, and execute emergency surgical recovery. Results: Given the accumulated time in second at the assumed 7 steps were 15, 5, 30, 15, 180, 120, 1800, and the dose rate of HDR source is 10 Ci, the accumulated dose in cGy to patient at 1cm distance were 188, 250, 625, 813, 3063, 4563 and 27063, and the accumulated exposure in rem to operator at outside the vault, 1m and 10cm distance were 0.0, 0.0, 0.1, 0.1, 22.6, 37.6 and 262.6. The variation was determined by the operators in action at different time and distance from the HDR source. Conclusion: The time and dose were estimated for a HDR unit emergency response procedure. It provided information in making optimal decision during the emergency procedure. Further investigation would be to optimize and standardize the responses for other emergency procedure by time-spatial-dose severity function.« less

  18. Fast exposure time decision in multi-exposure HDR imaging

    NASA Astrophysics Data System (ADS)

    Piao, Yongjie; Jin, Guang

    2012-10-01

    Currently available imaging and display system exists the problem of insufficient dynamic range, and the system cannot restore all the information for an high dynamic range (HDR) scene. The number of low dynamic range(LDR) image samples and fastness of exposure time decision impacts the real-time performance of the system dramatically. In order to realize a real-time HDR video acquisition system, this paper proposed a fast and robust method for exposure time selection in under and over exposure area which is based on system response function. The method utilized the monotony of the imaging system. According to this characteristic the exposure time is adjusted to an initial value to make the median value of the image equals to the middle value of the system output range; then adjust the exposure time to make the pixel value on two sides of histogram be the middle value of the system output range. Thus three low dynamic range images are acquired. Experiments show that the proposed method for adjusting the initial exposure time can converge in two iterations which is more fast and stable than average gray control method. As to the exposure time adjusting in under and over exposed area, the proposed method can use the dynamic range of the system more efficiently than fixed exposure time method.

  19. Introducing a Public Stereoscopic 3D High Dynamic Range (SHDR) Video Database

    NASA Astrophysics Data System (ADS)

    Banitalebi-Dehkordi, Amin

    2017-03-01

    High dynamic range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.

  20. Automatic face recognition in HDR imaging

    NASA Astrophysics Data System (ADS)

    Pereira, Manuela; Moreno, Juan-Carlos; Proença, Hugo; Pinheiro, António M. G.

    2014-05-01

    The gaining popularity of the new High Dynamic Range (HDR) imaging systems is raising new privacy issues caused by the methods used for visualization. HDR images require tone mapping methods for an appropriate visualization on conventional and non-expensive LDR displays. These visualization methods might result in completely different visualization raising several issues on privacy intrusion. In fact, some visualization methods result in a perceptual recognition of the individuals, while others do not even show any identity. Although perceptual recognition might be possible, a natural question that can rise is how computer based recognition will perform using tone mapping generated images? In this paper, a study where automatic face recognition using sparse representation is tested with images that result from common tone mapping operators applied to HDR images. Its ability for the face identity recognition is described. Furthermore, typical LDR images are used for the face recognition training.

  1. Aging attenuates the vestibulosympathetic reflex in humans

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    BACKGROUND: The vestibular system contributes to sympathetic activation by engagement of the otolith organs. However, there is a significant loss of vestibular function with aging. Therefore, the purpose of the present study was to determine if young and older individuals differ in their cardiovascular and sympathetic responses to otolithic stimulation (ie, head-down rotation, HDR). We hypothesized that responses to otolithic stimulation would be attenuated in older adults because of morphological and physiological alterations that occur in the vestibular system with aging. METHODS AND RESULTS: Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and head rotation were measured during HDR in 11 young (26 +/- 1 years) and 11 older (64 +/- 1 years) subjects in the prone posture. Five older subjects performed head rotation (chin to chest) in the lateral decubitus position, which simulates HDR but does not alter afferent inputs from the vestibular system. MSNA responses to HDR were significantly attenuated in older as compared with young subjects (P<0.01). MSNA increased in the older subjects by only 12 +/- 5% as compared with 85 +/- 16% in the young. Furthermore, HDR elicited significant reductions in mean arterial blood pressure in older (Delta-6 +/- 1 mm Hg; P<0.01) but not young subjects (Delta1 +/- 1 mm Hg). In contrast to HDR, head rotation performed in the lateral decubitus position did not elicit hypotension. MSNA responses to baroreceptor unloading and the cold pressor test were not different between the age groups. CONCLUSIONS: These data indicate that aging attenuates the vestibulosympathetic reflex in humans and may contribute to the increased prevalence of orthostatic hypotension with age.

  2. Low‑dose radiation‑induced apoptosis in human leukemia K562 cells through mitochondrial pathways.

    PubMed

    Xin, Yong; Zhang, Hai-Bin; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Jiang, Guan; Zhang, Long-Zhen

    2014-09-01

    High‑dose total body irradiation (TBI) has an established role as preparative regimen for bone‑marrow transplantation in the treatment of chronic myelogenous leukemia (CML), but this regimen still has a relatively high rate of acute and late toxicity. Low‑dose radiation (LDR) induces apoptosis of tumor cells and has numerous beneficial effects on normal tissues, including radiation homeostasis and adaptive response. Based on the previous evidence, in the present study, K562 cells were exposed to LDR, high‑dose radiation (HDR), and LDR in combination with HDR to investigate the possible mechanism of the apoptotic effect and hypersensitivity induced by LDR. The apoptotic rate increased in all radiation groups in a time‑dependent manner. An upregulation of Bax protein expression and a downregulation of Bcl‑xl in a dose‑dependent manner in human leukemia K562 cells was observed. However, the expression of p53 protein did not change in all of the radiation cell groups. The mitochondrial membrane potential (ΔΨm) in K562 cells decreased in all of the radiation cell groups in a dose‑dependent manner. Furthermore, the decrease of ΔΨm was enhanced in the LDR/HDR group compared with that in the LDR or HDR groups. The activity of caspase‑3 was enhanced in all of the radiation groups. In the LDR/HDR group, the activity of caspase‑3 was higher than that in the HDR or LDR groups. The present study provided preliminary experimental evidence of LDR being beneficial in combination with TBI in the treatment of CML.

  3. Trans-Pacific HDR Satellite Communications Experiment Phase-2 Project Plan and Experimental Network

    NASA Technical Reports Server (NTRS)

    Hsu, Eddie; Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Bergman, Larry; Bhasin, Kul

    2000-01-01

    The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. ATM-based 45 Mbps trans-Pacific link was established in the first phase, and the following experiments with 155 Mbps was planned as the phase 2. This paper describes the experimental network configuration and project plan of TP-HDR experiment phase 2. Additional information is provided in the original.

  4. High dynamic range coding imaging system

    NASA Astrophysics Data System (ADS)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H

    Purpose: To evaluate the dosimetric metrics of HDR Ring and Tandem applicator Brachytherapy for primary cervical cancers. Methods: The dosimetric metrics of high-risk clinical target volumes (HDR-CTV) of 12 patients (in total 60 fractions/plans) treated with the HDR ring and tandem applicators were retrospectively analyzed. Ring diameter is from 2.6 to 3.4 cm, tandem length is from 4 to 6 cm, and the angle is either 45 or 60 degrees. The first fraction plan was MR guided, the MR images were then used as a reference for contouring the HR-CTV in CT images of following 4 fractions. The nominal prescriptionmore » dose was between 5.2 and 5.8 Gy at the point A. The plans were adjusted to cover at least 90% of the HR-CTV by 90% of the prescription dose and to reduce the doses to the bladder, rectum and bowel-bag. Minimum target dose of D100 and D90 were converted into the biologically equivalent EBRT dose D90-iso and D100-iso (using α/β=10 Gy, 2 Gy/fx). Equivalent uniform doses (EUD) based on the average cancer killing across the target volume were calculated by the modified linear quadratic model (MLQ) from the differential dose volume histogram (DVH) tables. Results: The average D90iso of all plans is 8.1 Gy (ranging from 6.2 to 15 Gy, median 7.8 Gy); the average D100iso is just 4.1 Gy (ranging from 1.8 to 7.8 Gy; median 3.9 Gy). The average EUD is 7.0 Gy (ranging from 6.1 to 9.6 Gy, median 6.9 Gy), which is 87% of the D90iso, and 170% of the D100iso. Conclusion: The EUDs is smaller than D90iso but greater than D100iso. Because the EUD takes into account the intensive cancer cell killing in the high dose zone of HR-CTV, MLQ calculated EUD apparently is more relevant than D90 and D100 to describe the HDR brachytherapy treatment quality.« less

  6. SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, E; Spencer, DP; Meyer, T

    Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P{sub TP}, may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) for which empiricalmore » altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P{sub TP}, were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P{sub TP} can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) with the HDR 1000 Plus well chamber.« less

  7. Guided filter-based fusion method for multiexposure images

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Qi, Feng; Zhou, Peipei

    2016-11-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range camera. A weighted sum-based image fusion (IF) algorithm is proposed so as to express an HDR scene with a high-quality image. This method mainly includes three parts. First, two image features, i.e., gradients and well-exposedness are measured to estimate the initial weight maps. Second, the initial weight maps are refined by a guided filter, in which the source image is considered as the guidance image. This process could reduce the noise in initial weight maps and preserve more texture consistent with the original images. Finally, the fused image is constructed by a weighted sum of source images in the spatial domain. The main contributions of this method are the estimation of the initial weight maps and the appropriate use of the guided filter-based weight maps refinement. It provides accurate weight maps for IF. Compared to traditional IF methods, this algorithm avoids image segmentation, combination, and the camera response curve calibration. Furthermore, experimental results demonstrate the superiority of the proposed method in both subjective and objective evaluations.

  8. High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors †

    PubMed Central

    Mattioli Della Rocca, Francescopaolo

    2018-01-01

    This paper examines methods to best exploit the High Dynamic Range (HDR) of the single photon avalanche diode (SPAD) in a high fill-factor HDR photon counting pixel that is scalable to megapixel arrays. The proposed method combines multi-exposure HDR with temporal oversampling in-pixel. We present a silicon demonstration IC with 96 × 40 array of 8.25 µm pitch 66% fill-factor SPAD-based pixels achieving >100 dB dynamic range with 3 back-to-back exposures (short, mid, long). Each pixel sums 15 bit-planes or binary field images internally to constitute one frame providing 3.75× data compression, hence the 1k frames per second (FPS) output off-chip represents 45,000 individual field images per second on chip. Two future projections of this work are described: scaling SPAD-based image sensors to HDR 1 MPixel formats and shrinking the pixel pitch to 1–3 µm. PMID:29641479

  9. Rendering of HDR content on LDR displays: an objective approach

    NASA Astrophysics Data System (ADS)

    Krasula, Lukáš; Narwaria, Manish; Fliegel, Karel; Le Callet, Patrick

    2015-09-01

    Dynamic range compression (or tone mapping) of HDR content is an essential step towards rendering it on traditional LDR displays in a meaningful way. This is however non-trivial and one of the reasons is that tone mapping operators (TMOs) usually need content-specific parameters to achieve the said goal. While subjective TMO parameter adjustment is the most accurate, it may not be easily deployable in many practical applications. Its subjective nature can also influence the comparison of different operators. Thus, there is a need for objective TMO parameter selection to automate the rendering process. To that end, we investigate into a new objective method for TMO parameters optimization. Our method is based on quantification of contrast reversal and naturalness. As an important advantage, it does not require any prior knowledge about the input HDR image and works independently on the used TMO. Experimental results using a variety of HDR images and several popular TMOs demonstrate the value of our method in comparison to default TMO parameter settings.

  10. After low and high dose-rate interstitial brachytherapy followed by IMRT radiotherapy for intermediate and high risk prostate cancer.

    PubMed

    Nakamura, Satoshi; Murakami, Naoya; Inaba, Koji; Wakita, Akihisa; Kobayashi, Kazuma; Takahashi, Kana; Okamoto, Hiroyuki; Umezawa, Rei; Morota, Madoka; Sumi, Minako; Igaki, Hiroshi; Ito, Yoshinori; Itami, Jun

    2016-05-03

    The study aimed to compare urinary symptoms in patients with clinically localized prostate cancer after a combination of either low-dose-rate or high-dose-rate interstitial brachytherapy along with intensity-modulated radiation therapy (LDR-ISBT + IMRT or HDR-ISBT + IMRT). From June 2009 to April 2014, 16 and 22 patients were treated with LDR-ISBT + IMRT and HDR-ISBT + IMRT, respectively. No patient from these groups was excluded from this study. The prescribed dose of LDR-ISBT, HDR-ISBT, and IMRT was 115 Gy, 20 Gy in 2 fractions, and 46 Gy in 23 fractions, respectively. Obstructive and irritative urinary symptoms were assessed by the International Prostate Symptom Score (IPSS) examined before and after treatments. After ISBT, IPSS was evaluated in the 1st and 4th weeks, then every 2-3 months for the 1st year, and every 6 months thereafter. The median follow-up of the patients treated with LDR-ISBT + IMRT and HDR-ISBT + IMRT was 1070.5 days and 1048.5 days, respectively (p = 0.321). The IPSS-increment in the LDR-ISBT + IMRT group was greater than that in the HDR-ISBT + IMRT between 91 and 180 days after ISBT (p = 0.015). In the LDR-ISBT + IMRT group, the IPSS took longer time to return to the initial level than in the HDR-ISBT + IMRT group (in LDR-ISBT + IMRT group, the recovery time was 90 days later). The dose to urethra showed a statistically significant association with the IPSS-increment in the irritative urinary symptoms (p = 0.011). Clinical outcomes were comparable between both the groups. Both therapeutic modalities are safe and well suited for patients with clinically localized prostate cancer; however, it took patients longer to recover from LDR-ISBT + IMRT than from HDR-ISBT + IMRT. It is possible that fast dose delivery induced early symptoms and early recovery, while gradual dose delivery induced late symptoms and late recovery. Urethral dose reductions were associated with small increments in IPSS.

  11. High-dose rate brachytherapy in the treatment of carcinoma of uterine cervix: twenty-year experience with cobalt after-loading system.

    PubMed

    Mosalaei, A; Mohammadianpanah, M; Omidvari, S; Ahmadloo, N

    2006-01-01

    This retrospective analysis aims to report results of patients with cancer of uterine cervix treated with external-beam radiotherapy (EBR) and high-dose rate (HDR) brachytherapy, using manual treatment planning. From 1975 to 1995, 237 patients with FIGO stages IIB-IVA and mean age of 54.31 years were treated. EBR dose to the whole pelvis was 50 Gy in 25 fractions. Brachytherapy with HDR after-loading cobalt source (Cathetron) was performed following EBR completion with a dose of 30 Gy in three weekly fractions of 10 Gy to point A. Survival, local control, and genitourinary and gastrointestinal complications were assessed. In a median follow-up of 60.2 months, the 10-year overall and disease-free survival rate was 62.4%. Local recurrence was seen in 12.2% of patients. Distant metastases to the lymph nodes, peritoneum, lung, liver, and bone occurred in 25.3% of patients. Less than 6% of patients experienced severe genitourinary and/or gastrointestinal toxicity that were relieved by surgical intervention. No treatment-related mortality was seen. This series suggests that 50 Gy to the whole pelvis together with three fractions of 10 Gy to point A with HDR brachytherapy is an effective fractionation schedule in the treatment of locally advanced cancer of cervix. To decrease the complications, newer devices and treatment planning may be beneficial.

  12. HDR-192Ir intraluminal brachytherapy in treatment of malignant obstructive jaundice

    PubMed Central

    Chen, Yi; Wang, Xiao-Lin; Yan, Zhi-Ping; Cheng, Jie-Min; Wang, Jian-Hua; Gong, Gao-Quan; Qian, Sheng; Luo, Jian-Jun; Liu, Qing-Xin

    2004-01-01

    AIM: To determine the feasibility and safety of intraluminal brachytherapy in treatment of malignant obstructive jaundice (MOJ) and to evaluate the clinical effect of intraluminal brachytherapy on stent patency and patient survival. METHODS: Thirty-four patients with MOJ were included in this study. Having biliary stent placed, all patients were classified into intraluminal brachytherapy group (group A, n = 14) and control group (group B, n = 20) according to their own choice. Intraluminal brachytherapy regimen included: HDR-192Ir was used in the therapy, fractional doses of 4-7 Gy were given every 3-6 d for 3-4 times, and standard points were established at 0.5-1.0 cm. Some patients of both groups received transcatheter arterial chemoembolization (TACE) after stent placement. RESULTS: In group A, the success rate of intraluminal brachytherapy was 98.0%, RTOG grade 1 acute radiation morbidity occurred in 3 patients, RTOG/EORTC grade 1 late radiation morbidity occurred in 1 patient. Mean stent patency of group A (12.6 mo) was significantly longer than that of group B (8.3 mo) (P < 0.05). There was no significant difference in the mean survival (9.4 mo vs 6.0 mo) between the two groups. CONCLUSION: HDR-192Ir intraluminal brachytherapy is a safe palliative therapy in treating MOJ, and it may prolong stent patency and has the potentiality of extending survival of patients with MOJ. PMID:15526374

  13. Hot dry rock geothermal energy: A renewable energy resource that is ready for development now

    NASA Astrophysics Data System (ADS)

    Brown, D. W.; Potter, R. M.; Myers, C. W.

    Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow-tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.

  14. Interaction between vestibulosympathetic and skeletal muscle reflexes on sympathetic activity in humans

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    2001-01-01

    Evidence from animals indicates that skeletal muscle afferents activate the vestibular nuclei and that both vestibular and skeletal muscle afferents have inputs to the ventrolateral medulla. The purpose of the present study was to investigate the interaction between the vestibulosympathetic and skeletal muscle reflexes on muscle sympathetic nerve activity (MSNA) and arterial pressure in humans. MSNA, arterial pressure, and heart rate were measured in 17 healthy subjects in the prone position during three experimental trials. The three trials were 2 min of 1) head-down rotation (HDR) to engage the vestibulosympathetic reflex, 2) isometric handgrip (IHG) at 30% maximal voluntary contraction to activate skeletal muscle afferents, and 3) HDR and IHG performed simultaneously. The order of the three trials was randomized. HDR and IHG performed alone increased total MSNA by 46 +/- 16 and 77 +/- 24 units, respectively (P < 0.01). During the HDR plus IHG trial, MSNA increased 142 +/- 38 units (P < 0.01). This increase was not significantly different from the sum of the individual trials (130 +/- 41 units). This finding was also observed with mean arterial pressure (sum = 21 +/- 2 mmHg and HDR + IHG = 22 +/- 2 mmHg). These findings suggest that there is an additive interaction for MSNA and arterial pressure when the vestibulosympathetic and skeletal muscle reflexes are engaged simultaneously in humans. Therefore, no central modulation exists between these two reflexes with regard to MSNA output in humans.

  15. Cliché, Gossip, and Anecdote as Supervision Training

    ERIC Educational Resources Information Center

    Grealy, Liam

    2016-01-01

    This article expands on a co-authored project with Timothy Laurie on the practices and ethics of higher degree research (HDR) supervision (or advising): "What does good HDR supervision look like?" in contemporary universities. It connects that project with scholarship on the relevance of "common sense" to questions of…

  16. The Curie–Da Vinci Connection: 5-Years' Experience With Laparoscopic (Robot-Assisted) Implantation for High-Dose-Rate Brachytherapy of Solitary T2 Bladder Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steen-Banasik, Elzbieta M. van der, E-mail: E.vanderSteen-Banasik@radiotherapiegroep.nl; Smits, Geert A.H.J.; Oosterveld, Bernard J.

    Purpose: To report experience and early results of laparoscopic implantation for interstitial brachytherapy (BT) of solitary bladder tumors and the feasibility of a high-dose-rate (HDR) schedule. Methods and Materials: From December 2009 to April 2015, 57 patients with a T2 solitary bladder tumor were treated in Arnhem with transurethral bladder resection followed by external beam irradiation, applied to the bladder and regional iliac lymph nodes, 40 Gy in 20 fractions, 5 fractions per week, and within 1 week interstitial HDR BT, in selected cases combined with partial cystectomy and lymph node dissection. The BT catheters were placed via a transabdominal approach withmore » robotic assistance from a Da Vinci robot after a successful initial experience with a nonrobotic laparoscopic approach. The fraction schedule for HDR was 10 fractions of 2.5 Gy, 3 fractions per day. This was calculated to be equivalent to a reference low-dose-rate schedule of 30 Gy in 60 hours. Data for oncologic outcomes and toxicity (Common Toxicity Criteria version 4) were prospectively collected. Results: These modifications resulted in an average postoperative hospitalization of 6 days, minimal blood loss, and no wound healing problems. Two patients had severe acute toxicity: 1 pulmonary embolism grade 4 and 1 cardiac death. Late toxicity was mild (n=2 urogenital grade 3 toxicity). The median follow-up was 2 years. Using cumulative incidence competing risk analysis, the 2-year overall, disease-free, and disease-specific survival and local control rates were 59%, 71%, 87%, and 82%, respectively. Conclusions: The benefits of minimally invasive surgery for implantation of BT catheters and the feasibility of HDR BT in bladder cancer are documented. The patient outcome and adverse events are comparable to the best results published for a bladder-sparing approach.« less

  17. Favorable Preliminary Outcomes for Men With Low- and Intermediate-risk Prostate Cancer Treated With 19-Gy Single-fraction High-dose-rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Daniel J., E-mail: dkrauss@beaumont.edu; Ye, Hong; Martinez, Alvaro A.

    Purpose: To report the toxicity and preliminary clinical outcomes of a prospective trial evaluating 19-Gy, single-fraction high-dose-rate (HDR) brachytherapy for men with low- and intermediate-risk prostate cancer. Methods and Materials: A total of 63 patients were treated according to an institutional review board-approved prospective study of single-fraction HDR brachytherapy. Eligible patients had tumor stage ≤T2a, prostate-specific antigen level ≤15 ng/mL, and Gleason score ≤7. Patients with a prostate gland volume >50 cm{sup 3} and baseline American Urologic Association symptom score >12 were ineligible. Patients underwent transrectal ultrasound-guided transperineal implantation of the prostate, followed by single-fraction HDR brachytherapy. Treatment was delivered using {sup 192}Irmore » to a dose of 19 Gy prescribed to the prostate, with no additional margin applied. Results: Of the 63 patients, 58 had data available for analysis. Five patients had withdrawn consent during the follow-up period. The median follow-up period was 2.9 years (range 0.3-5.2). The median age was 61.4 years. The median gland volume at treatment was 34.8 cm{sup 3}. Of the 58 patients, 91% had T1 disease, 71% had Gleason score ≤6 (29% with Gleason score 7), and the median pretreatment prostate-specific antigen level was 5.1 ng/mL. The acute and chronic grade 2 genitourinary toxicity incidence was 12.1% and 10.3%, respectively. No grade 3 urinary toxicity occurred. No patients experienced acute rectal toxicity grade ≥2, and 2 experienced grade ≥2 chronic gastrointestinal toxicity. Three patients experienced biochemical failure, yielding a 3-year cumulative incidence estimate of 6.8%. Conclusions: Single-fraction HDR brachytherapy is well-tolerated, with favorable preliminary biochemical and clinical disease control rates.« less

  18. Feasibility and early outcome of high-dose-rate Ir-192 brachytherapy as monotherapy in two fractions within 1 day for high-/very high-risk prostate cancer.

    PubMed

    Ashida, Shingo; Yamasaki, Ichiro; Tamura, Kenji; Shimamoto, Tsutomu; Inoue, Keiji; Kariya, Shinji; Kobayashi, Kana; Yamagami, Takuji; Shuin, Taro

    2016-05-01

    The aim of the present study was to evaluate the feasibility and preliminary outcomes of high-dose-rate (HDR)-brachytherapy as a monotherapy in two fractions within 1 day for localized prostate cancer, including high-/very high-risk cases. Among the 68 patients treated with HDR monotherapy between July 2011 and December 2014, 65 had a minimal follow-up of 12 months without adjuvant androgen deprivation therapy and were enrolled in the present study [42/65 (64.6%) exhibited high-/very high-risk diseases]. HDR monotherapy was performed in two fractions with a minimal interval of 6 h and the prescribed dose was 13.5 Gy (×2). Adverse events (AEs) were assessed using Common Terminology Criteria for Adverse Events (version 4; http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_40), and biochemical failure was assessed by the Phoenix definition. The median follow-up time was 30.1 months. The majority of patients had Grade 0-1 acute AEs. Four patients (6.2%) exhibited urinary retention, requiring a Foley catheter. Grade 3 acute AEs occurred at a frequency of 3.1% and hematuria at 1.5%. The majority of patients also exhibited Grade 0-1 chronic AEs. Grade 3 chronic AEs occurred at a frequency of 1.5% and urethral stricture at 1.5%, for which endoscopic treatment was indicated. Acute and chronic gastrointestinal AEs were uncommon, and no Grade 3 or above AEs developed. Biochemical failure occurred in 4 patients who all exhibited high-/very high-risk diseases. Kaplan-Meier estimated that 3 year biochemical failure-free survival was 91.6% overall and 88.0% in high-/very high-risk cases. The present two-fraction 1 day HDR monotherapy is feasible with minimal AEs and achieved acceptable biochemical control of localized prostate cancer, including high-/very high-risk cases, although long-term follow-up is required.

  19. High-Dose-Rate Brachytherapy as a Monotherapy for Favorable-Risk Prostate Cancer: A Phase II Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkati, Maroie; Williams, Scott G., E-mail: scott.williams@petermac.org; Department of Pathology, University of Melbourne, Melbourne

    Purpose: There are multiple treatment options for favorable-risk prostate cancer. High-dose-rate (HDR) brachytherapy as a monotherapy is appealing, but its use is still investigational. A Phase II trial was undertaken to explore the value of such treatment in low-to-intermediate risk prostate cancer. Methods and Materials: This was a single-institution, prospective study. Eligible patients had low-risk prostate cancer features but also Gleason scores of 7 (51% of patients) and stage T2b to T2c cancer. Treatment with HDR brachytherapy with a single implant was administered over 2 days. One of four fractionation schedules was used in a dose escalation study design: 3more » fractions of 10, 10.5, 11, or 11.5 Gy. Patients were assessed with the Common Terminology Criteria for Adverse Events version 2.0 for urinary toxicity, the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scoring schema for rectal toxicity, and the Expanded Prostate Cancer Index Composite (EPIC) questionnaire to measure patient-reported health-related quality of life. Biochemical failure was defined as a prostate-specific antigen (PSA) nadir plus 2 ng/ml. Results: Between 2003 and 2008, 79 patients were enrolled. With a median follow-up of 39.5 months, biochemical relapse occurred in 7 patients. Three- and 5-year actuarial biochemical control rates were 88.4% (95% confidence interval [CI], 78.0-96.2%) and 85.1% (95% CI, 72.5-94.5%), respectively. Acute grade 3 urinary toxicity was seen in only 1 patient. There was no instance of acute grade 3 rectal toxicity. Rates of late grade 3 rectal toxicity, dysuria, hematuria, urinary retention, and urinary incontinence were 0%, 10.3%, 1.3%, 9.0%, and 0%, respectively. No grade 4 or greater toxicity was recorded. Among the four (urinary, bowel, sexual, and hormonal) domains assessed with the EPIC questionnaire, only the sexual domain did not recover with time. Conclusions: HDR brachytherapy as a monotherapy for favorable-risk prostate cancer, administered using a single implant over 2 days, is feasible and has acceptable acute and late toxicities. Further follow-up is still required to better evaluate the efficacy of such treatment.« less

  20. Advanced Shipboard Communications Demonstrations with ACTS

    NASA Technical Reports Server (NTRS)

    Axford, Roy A.; Jedrey, Thomas C.; Rupar, Michael A.

    2000-01-01

    For ships at sea. satellites provide the only option for high data rate (HDR), long haul communications. Furthermore the demand for HDR satellite communications (SATCOM) for military and commercial ships. and other offshore platforms is increasing. Presently the bulk of this maritime HDR SATCOM connectivity is provided via C-band and X-band. However, the shipboard antenna sizes required to achieve a data rate of, say T 1 (1.544 Mbps) with present C-/X-band SATCOM systems range from seven to ten feet in diameter. This limits the classes of ships to which HDR services can be provided to those which are large enough to accommodate the massive antennas. With its high powered K/Ka-band spot beams, the National Aeronautics and Space Administration's (NASA) Advanced Communications Technology Satellite (ACTS) was able to provide T I and higher rate services to ships at sea using much smaller shipboard antennas. This paper discusses three shipboard HDR SATCOM demonstrations that were conducted with ACTS between 1996 and 1998. The first demonstration involved a 2 Mbps link provided to the seismic survey ship MN Geco Diamond equipped with a 16-inch wide, 4.5-inch tall, mechanically steered slotted waveguide array antenna developed by the Jet Propulsion Laboratory. In this February 1996 demonstration ACTS allowed supercomputers ashore to process Geco Diamond's voluminous oceanographic seismic data in near real time. This capability allowed the ship to adjust its search parameters on a daily basis based on feedback from the processed data, thereby greatly increasing survey efficiency. The second demonstration was conducted on the US Navy cruiser USS Princeton (CG 59) with the same antenna used on Geco Diamond. Princeton conducted a six-month (January-July 1997) Western Hemisphere solo deployment during which time T1 connectivity via ACTS provided the ship with a range of valuable tools for operational, administrative and quality-of-life tasks. In one instance, video teleconferencing (VTC) via ACTS allowed the ship to provide life-saving emergency medical aid, assisted by specialists ashore. to a fellow mariner - the Master of a Greek cargo ship. The third demonstration set what is believed to be the all-time SATCOM data rate record to a ship at sea, 45 Mbps in October 1998. This Lake Michigan (Chicago area) demonstration employed one of ACTS' fixed beams and involved the smallest of the three vessels, the 45-foot Bayliner M/V Entropy equipped with a modified commercial-off-the-shelf one-meter antenna. A variety of multi-media services were provided to Entropy through a stressing range of sea states. These three demonstrations provided a preview of the capabilities that could be provided to future mariners on a more routine basis when K/Ka-band SATCOM systems are widely deployed.

  1. Evaluation of hybrid inverse planning and optimization (HIPO) algorithm for optimization in real-time, high-dose-rate (HDR) brachytherapy for prostate.

    PubMed

    Pokharel, Shyam; Rana, Suresh; Blikenstaff, Joseph; Sadeghi, Amir; Prestidge, Bradley

    2013-07-08

    The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose-volume histogram-based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real-time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose-volume histogram-based optimization (DVHO), optimizes three-dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (D(mean)) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t-test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures.

  2. Comparison of different treatment planning optimization methods for vaginal HDR brachytherapy with multichannel applicators: A reduction of the high doses to the vaginal mucosa is possible.

    PubMed

    Carrara, Mauro; Cusumano, Davide; Giandini, Tommaso; Tenconi, Chiara; Mazzarella, Ester; Grisotto, Simone; Massari, Eleonora; Mazzeo, Davide; Cerrotta, Annamaria; Pappalardi, Brigida; Fallai, Carlo; Pignoli, Emanuele

    2017-12-01

    A direct planning approach with multi-channel vaginal cylinders (MVCs) used for HDR brachytherapy of vaginal cancers is particularly challenging. Purpose of this study was to compare the dosimetric performances of different forward and inverse methods used for the optimization of MVC-based vaginal treatments for endometrial cancer, with a particular attention to the definition of strategies useful to limit the high doses to the vaginal mucosa. Twelve postoperative vaginal HDR brachytherapy treatments performed with MVCs were considered. Plans were retrospectively optimized with three different methods: Dose Point Optimization followed by Graphical Optimization (DPO + GrO), Inverse Planning Simulated Annealing with two different class solutions as starting conditions (surflPSA and homogIPSA) and Hybrid Inverse Planning Optimization (HIPO). Several dosimetric parameters related to target coverage, hot spot extensions and sparing of organs at risk were analyzed to evaluate the quality of the achieved treatment plans. Dose homogeneity index (DHI), conformal index (COIN) and a further parameter quantifying the proportion of the central catheter loading with respect to the overall loading (i.e., the central catheter loading index: CCLI) were also quantified. The achieved PTV coverage parameters were highly correlated with each other but uncorrelated with the hot spot quantifiers. HomogIPSA and HIPO achieved higher DHIs and CCLIs and lower volumes of high doses than DPO + GrO and surflPSA. Within the investigated optimization methods, HIPO and homoglPSA showed the highest dose homogeneity to the target. In particular, homogIPSA resulted also the most effective in reducing hot spots to the vaginal mucosa. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Patterns of brachytherapy practice for patients with carcinoma of the cervix (1996-1999): a patterns of care study.

    PubMed

    Erickson, Beth; Eifel, Patricia; Moughan, Jennifer; Rownd, Jason; Iarocci, Thomas; Owen, Jean

    2005-11-15

    To analyze the details of brachytherapy practice in patients treated for carcinoma of the cervix in the United States between 1996 and 1999. Radiation facilities were selected from a stratified random sample. Patients were randomly selected from lists of eligible patients treated at each facility. A total of 442 patients' records were reviewed in 59 facilities to obtain data about patients' characteristics, evaluation, tumor extent, and treatment. National estimates were made using weights that reflected the relative contribution of each institution and of each patient within the sampled institutions. From our survey we estimate that 16,375 patients were treated in the United States during this study period. Unless otherwise specified, brachytherapy practice was based on the 408 patients who had their brachytherapy or all their treatment at the surveyed facility. A total of 91.5% of patients underwent brachytherapy at the initial treating institution; 8.5% were referred to a second site for brachytherapy. Forty-two percent of U.S. facilities referred at least some patients to a second facility for brachytherapy. Of U.S. facilities that treated < or =2 eligible patients per year, 61% referred all of their patients to a second facility for brachytherapy or treated with external RT alone; none of the U.S. facilities with larger experience (>2 eligible patients per year) referred all their patients to a second facility for brachytherapy treatment, but 28% referred some patients to an outside facility for brachytherapy. Overall, 94% of patients who completed treatment with curative intent received brachytherapy. Of these patients who had brachytherapy, 77.8%, 13.3%, and 0.9%, respectively, were treated with low-dose-rate (LDR), high-dose-rate (HDR), or a combination of HDR and LDR brachytherapy; 7.9% had interstitial brachytherapy (5.7% LDR and 1.9% HDR, 0.3% mixed). In facilities that treated >2 patients per year, 15.5% and 9.4% of brachytherapy procedures included HDR or interstitial, respectively; in facilities that treated fewer patients, 3.4% had HDR brachytherapy, and only 1.2% had interstitial brachytherapy. Patients treated with LDR intracavitary radiotherapy had one (23.5%), two (74.1%), or three (2.4%) implants. For patients treated with curative intent who completed radiation therapy with LDR intracavitary radiation therapy without hysterectomy, the median brachytherapy dose to Point A was 40.3 Gy, and the median total dose to Point A was 82.9 Gy. Patients were treated with HDR intracavitary radiation therapy using a variety of treatment schedules using 1-2 fractions (7.5%), 3-4 fractions (17.4%), 5-6 fractions (38.5%), 7-9 fractions (33.5%), or 12 fractions (3%). Fraction sizes were <500 cGy (29.5%), 500-<600 (25.2%), 600 (28.1%), >600 (8%), or unknown (9.2%). For patients treated with HDR, the median total dose to Point A (corrected for fraction size using a alpha/beta = 10) was 85.8 Gy (range: 56.2-116.1 Gy). At institutions treating <500 new patients per year, the percentage of patients receiving a brachytherapy dose <40 Gy was significantly higher than at institutions treating > or =500 new patients per year (p < 0.0001). For LDR intracavitary radiation therapy, 5.8% had neither bladder nor rectal doses recorded for any of their implants, whereas in HDR intracavitary radiation therapy, 73.4% had neither bladder nor rectal doses recorded for any of their implants. The median total duration of radiation therapy was identical for patients who had HDR or LDR intracavitary radiation therapy (57 days). For LDR at institutions treating <500 new patients per year, the percentage of patients with treatment duration >56 days was significantly greater than at institutions > or =500 new patients per year (p = 0.002). Of the patients who had LDR intracavitary radiation therapy implants, 65% were treated using tandem and shielded Fletcher-Suit-Delclos colpostats; other patients had mini ovoids (10.9%), cylinders (3.9%), Henschke (3.7%), or other/mixed applicators (16.5%). In contrast, of patients treated with HDR intracavitary radiation therapy, 68.7% had tandem and rings, 18.2% Fletcher-Suit-Delclos ovoids, 7.5% mini ovoids, 2.3% cylinders, and 3.2% other or mixed applicators. The median duration of treatment and median Point A dose were very similar for patients treated with HDR or LDR. Patients with HDR were treated using a variety of treatment schedules. Different applicator types were favored for LDR vs. HDR. Of patients treated with HDR, 73.4% had no brachytherapy bladder or rectal doses recorded, suggesting that full dosimetric calculations were performed only for the first fraction in many institutions. Facility size significantly impacted on referral to another institution for brachytherapy, brachytherapy dose, and treatment duration.

  4. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    NASA Astrophysics Data System (ADS)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  5. Evaluation of High Dynamic Range Photography as a Luminance Mapping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inanici, Mehlika; Galvin, Jim

    2004-12-30

    The potential, limitations, and applicability of the High Dynamic Range (HDR) photography technique is evaluated as a luminance mapping tool. Multiple exposure photographs of static scenes are taken with a Nikon 5400 digital camera to capture the wide luminance variation within the scenes. The camera response function is computationally derived using the Photosphere software, and is used to fuse the multiple photographs into HDR images. The vignetting effect and point spread function of the camera and lens system is determined. Laboratory and field studies have shown that the pixel values in the HDR photographs can correspond to the physical quantitymore » of luminance with reasonable precision and repeatability.« less

  6. Selection-dependent and Independent Generation of CRISPR/Cas9-mediated Gene Knockouts in Mammalian Cells.

    PubMed

    Sternburg, Erin L; Dias, Kristen C; Karginov, Fedor V

    2017-06-16

    The CRISPR/Cas9 genome engineering system has revolutionized biology by allowing for precise genome editing with little effort. Guided by a single guide RNA (sgRNA) that confers specificity, the Cas9 protein cleaves both DNA strands at the targeted locus. The DNA break can trigger either non-homologous end joining (NHEJ) or homology directed repair (HDR). NHEJ can introduce small deletions or insertions which lead to frame-shift mutations, while HDR allows for larger and more precise perturbations. Here, we present protocols for generating knockout cell lines by coupling established CRISPR/Cas9 methods with two options for downstream selection/screening. The NHEJ approach uses a single sgRNA cut site and selection-independent screening, where protein production is assessed by dot immunoblot in a high-throughput manner. The HDR approach uses two sgRNA cut sites that span the gene of interest. Together with a provided HDR template, this method can achieve deletion of tens of kb, aided by the inserted selectable resistance marker. The appropriate applications and advantages of each method are discussed.

  7. NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    NASA Astrophysics Data System (ADS)

    Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.

    2004-12-01

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.

  8. In vivo gene correction with targeted sequence substitution through microhomology-mediated end joining.

    PubMed

    Shin, Jeong Hong; Jung, Soobin; Ramakrishna, Suresh; Kim, Hyongbum Henry; Lee, Junwon

    2018-07-07

    Genome editing technology using programmable nucleases has rapidly evolved in recent years. The primary mechanism to achieve precise integration of a transgene is mainly based on homology-directed repair (HDR). However, an HDR-based genome-editing approach is less efficient than non-homologous end-joining (NHEJ). Recently, a microhomology-mediated end-joining (MMEJ)-based transgene integration approach was developed, showing feasibility both in vitro and in vivo. We expanded this method to achieve targeted sequence substitution (TSS) of mutated sequences with normal sequences using double-guide RNAs (gRNAs), and a donor template flanking the microhomologies and target sequence of the gRNAs in vitro and in vivo. Our method could realize more efficient sequence substitution than the HDR-based method in vitro using a reporter cell line, and led to the survival of a hereditary tyrosinemia mouse model in vivo. The proposed MMEJ-based TSS approach could provide a novel therapeutic strategy, in addition to HDR, to achieve gene correction from a mutated sequence to a normal sequence. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Lois C., E-mail: Lois.Friedman@UHhospitals.org; Abdallah, Rita; Schluchter, Mark

    Purpose: We report demographic, clinical, and psychosocial factors associated with adherence to vaginal dilation and describe the sexual and marital or nonmarital dyadic functioning of women following high dose rate (HDR) brachytherapy for endometrial cancer. Methods and Materials: We retrospectively evaluated women aged 18 years or older in whom early-stage endometrial (IAgr3-IIB) cancers were treated by HDR intravaginal brachytherapy within the past 3.5 years. Women with or without a sexual partner were eligible. Patients completed questionnaires by mail or by telephone assessing demographic and clinical variables, adherence to vaginal dilation, dyadic satisfaction, sexual functioning, and health beliefs. Results: Seventy-eight ofmore » 89 (88%) eligible women with early-stage endometrial cancer treated with HDR brachytherapy completed questionnaires. Only 33% of patients were adherers, based on reporting having used a dilator more than two times per week in the first month following radiation. Nonadherers who reported a perceived change in vaginal dimension following radiation reported that their vaginas were subjectively smaller after brachytherapy (p = 0.013). Adherers reported more worry about their sex lives or lack thereof than nonadherers (p = 0.047). Patients reported considerable sexual dysfunction following completion of HDR brachytherapy. Conclusions: Adherence to recommendations for vaginal dilator use following HDR brachytherapy for endometrial cancer is poor. Interventions designed to educate women about dilator use benefit may increase adherence. Although sexual functioning was compromised, it is likely that this existed before having cancer for many women in our study.« less

  10. Chroma sampling and modulation techniques in high dynamic range video coding

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Krishnan, Madhu; Topiwala, Pankaj

    2015-09-01

    High Dynamic Range and Wide Color Gamut (HDR/WCG) Video Coding is an area of intense research interest in the engineering community, for potential near-term deployment in the marketplace. HDR greatly enhances the dynamic range of video content (up to 10,000 nits), as well as broadens the chroma representation (BT.2020). The resulting content offers new challenges in its coding and transmission. The Moving Picture Experts Group (MPEG) of the International Standards Organization (ISO) is currently exploring coding efficiency and/or the functionality enhancements of the recently developed HEVC video standard for HDR and WCG content. FastVDO has developed an advanced approach to coding HDR video, based on splitting the HDR signal into a smoothed luminance (SL) signal, and an associated base signal (B). Both signals are then chroma downsampled to YFbFr 4:2:0 signals, using advanced resampling filters, and coded using the Main10 High Efficiency Video Coding (HEVC) standard, which has been developed jointly by ISO/IEC MPEG and ITU-T WP3/16 (VCEG). Our proposal offers both efficient coding, and backwards compatibility with the existing HEVC Main10 Profile. That is, an existing Main10 decoder can produce a viewable standard dynamic range video, suitable for existing screens. Subjective tests show visible improvement over the anchors. Objective tests show a sizable gain of over 25% in PSNR (RGB domain) on average, for a key set of test clips selected by the ISO/MPEG committee.

  11. Comparison between in vivo dosimetry and barium contrast technique for prediction of rectal complications in high-dose-rate intracavitary radiotherapy in cervix cancer patients.

    PubMed

    Huh, Seung Jae; Lim, Do Hoon; Ahn, Yong Chan; Lee, Jeong Eun; Kang, Min Kyu; Shin, Seong Soo; Shin, Kyung Hwan; Kim, Bokyung; Park, Won; Han, Youngyih

    2003-03-01

    To investigate the correlation between late rectal complications and rectal dose in cervix cancer patients treated with high-dose-rate intracavitary radiotherapy (HDR ICR) and to analyze factors reducing rectal complications. A total of 136 patients with cervix cancer who were treated with external beam radiotherapy (EBRT) and HDR ICR from 1995 to 1999 were retrospectively analyzed. Radiotherapy (RT) consisted of EBRT plus HDR ICR. The median EBRT dose was 50.4 Gy, and midline block was done after 30-50 Gy of EBRT. A total of six fractions of HDR ICR with 4 Gy fraction size each were applied twice per week to the A point. The rectal dose was calculated at the rectal reference point using the barium contrast criteria. In vivo measurement of the rectal dose was performed with thermoluminescent dosimeter (TLD) during HDR ICR. The median follow-up period was 26 months (range 6-60 months). A total of 16 patients (12%) experienced rectal bleeding, which occurred 4-33 months (median 11 months) after the completion of RT. The calculated rectal doses did not differ in patients with rectal bleeding and those without, but the measured rectal doses were higher in affected patients. The differences of the measured ICR fractional rectal dose, ICR total rectal dose, and total rectal biologically equivalent dose (BED) were statistically significant. When the measured ICR total rectal dose exceeded 16 Gy, the ratio of the measured rectal dose to A point dose was > 70%; when the measured rectal BED exceeded 110 Gy(3), a high possibility of late rectal complications could be found. In vivo dosimetry using TLD during HDR ICR was a good predictor of late rectal complications. Hence, if data from in vivo dosimetry shows any possibility of rectal bleeding, efforts should be made to reduce the rectal dose.

  12. Rectal bleeding after high-dose-rate brachytherapy combined with hypofractionated external-beam radiotherapy for localized prostate cancer: Impact of rectal dose in high-dose-rate brachytherapy on occurrence of grade 2 or worse rectal bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimoto, Tetsuo; Katoh, Hiroyuki; Kitamoto, Yoshizumi

    2006-06-01

    Purpose: To evaluate the incidence of Grade 2 or worse rectal bleeding after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiotherapy (EBRT), with special emphasis on the relationship between the incidence of rectal bleeding and the rectal dose from HDR brachytherapy. Methods and Materials: The records of 100 patients who were treated by HDR brachytherapy combined with EBRT for {>=}12 months were analyzed. The fractionation schema for HDR brachytherapy was prospectively changed, and the total radiation dose for EBRT was fixed at 51 Gy. The distribution of the fractionation schema used in the patients was as follows: 5 Gy xmore » 5 in 13 patients; 7 Gy x 3 in 19 patients; and 9 Gy x 2 in 68 patients. Results: Ten patients (10%) developed Grade 2 or worse rectal bleeding. Regarding the correlation with dosimetric factors, no significant differences were found in the average percentage of the entire rectal volume receiving 30%, 50%, 80%, and 90% of the prescribed radiation dose from EBRT between those with bleeding and those without. The average percentage of the entire rectal volume receiving 10%, 30%, 50%, 80%, and 90% of the prescribed radiation dose from HDR brachytherapy in those who developed rectal bleeding was 77.9%, 28.6%, 9.0%, 1.5%, and 0.3%, respectively, and was 69.2%, 22.2%, 6.6%, 0.9%, and 0.4%, respectively, in those without bleeding. The differences in the percentages of the entire rectal volume receiving 10%, 30%, and 50% between those with and without bleeding were statistically significant. Conclusions: The rectal dose from HDR brachytherapy for patients with prostate cancer may have a significant impact on the incidence of Grade 2 or worse rectal bleeding.« less

  13. SU-E-T-574: Fessiblity of Using the Calypso System for HDR Interstitial Catheter Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J S; Ma, C

    2014-06-01

    Purpose: It is always a challenge to reconstruct the interstitial catheter for high dose rate (HDR) brachytherapy on patient CT or MR images. This work aims to investigate the feasibility of using the Calypso system (Varian Medical, CA) for HDR catheter reconstruction utilizing its accuracy on tracking the electromagnetic transponder location. Methods: Experiment was done with a phantom that has a HDR interstitial catheter embedded inside. CT scan with a slice thickness of 1.25 mm was taken for this phantom with two Calypso beacon transponders in the catheter. The two transponders were connected with a wire. The Calypso system wasmore » used to record the beacon transponders’ location in real time when they were gently pulled out with the wire. The initial locations of the beacon transponders were used for registration with the CT image and the detected transponder locations were used for the catheter path reconstruction. The reconstructed catheter path was validated on the CT image. Results: The HDR interstitial catheter was successfully reconstructed based on the transponders’ coordinates recorded by the Calypso system in real time when the transponders were pulled in the catheter. After registration with the CT image, the shape and location of the reconstructed catheter are evaluated against the CT image and the result shows an accuracy of 2 mm anywhere in the Calypso detectable region which is within a 10 cm X 10 cm X 10 cm cubic box for the current system. Conclusion: It is feasible to use the Calypso system for HDR interstitial catheter reconstruction. The obstacle for its clinical usage is the size of the beacon transponder whose diameter is bigger than most of the interstitial catheters used in clinic. Developing smaller transponders and supporting software and hardware for this application is necessary before it can be adopted for clinical use.« less

  14. Hot Dry Rock; Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depthmore » originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005]« less

  15. A multicentre audit of HDR/PDR brachytherapy absolute dosimetry in association with the INTERLACE trial (NCT015662405).

    PubMed

    Díez, P; Aird, E G A; Sander, T; Gouldstone, C A; Sharpe, P H G; Lee, C D; Lowe, G; Thomas, R A S; Simnor, T; Bownes, P; Bidmead, M; Gandon, L; Eaton, D; Palmer, A L

    2017-11-09

    A UK multicentre audit to evaluate HDR and PDR brachytherapy has been performed using alanine absolute dosimetry. This is the first national UK audit performing an absolute dose measurement at a clinically relevant distance (20 mm) from the source. It was performed in both INTERLACE (a phase III multicentre trial in cervical cancer) and non-INTERLACE brachytherapy centres treating gynaecological tumours. Forty-seven UK centres (including the National Physical Laboratory) were visited. A simulated line source was generated within each centre's treatment planning system and dwell times calculated to deliver 10 Gy at 20 mm from the midpoint of the central dwell (representative of Point A of the Manchester system). The line source was delivered in a water-equivalent plastic phantom (Barts Solid Water) encased in blocks of PMMA (polymethyl methacrylate) and charge measured with an ion chamber at 3 positions (120° apart, 20 mm from the source). Absorbed dose was then measured with alanine at the same positions and averaged to reduce source positional uncertainties. Charge was also measured at 50 mm from the source (representative of Point B of the Manchester system). Source types included 46 HDR and PDR 192 Ir sources, (7 Flexisource, 24 mHDR-v2, 12 GammaMed HDR Plus, 2 GammaMed PDR Plus, 1 VS2000) and 1 HDR 60 Co source, (Co0.A86). Alanine measurements when compared to the centres' calculated dose showed a mean difference (±SD) of  +1.1% (±1.4%) at 20 mm. Differences were also observed between source types and dose calculation algorithm. Ion chamber measurements demonstrated significant discrepancies between the three holes mainly due to positional variation of the source within the catheter (0.4%-4.9% maximum difference between two holes). This comprehensive audit of absolute dose to water from a simulated line source showed all centres could deliver the prescribed dose to within 5% maximum difference between measurement and calculation.

  16. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents.

    PubMed

    Zaboikin, Michail; Zaboikina, Tatiana; Freter, Carl; Srinivasakumar, Narasimhachar

    2017-01-01

    Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.

  17. Image-based multichannel vaginal cylinder brachytherapy for the definitive treatment of gynecologic malignancies in the vagina.

    PubMed

    Gebhardt, Brian J; Vargo, John A; Kim, Hayeon; Houser, Christopher J; Glaser, Scott M; Sukumvanich, Paniti; Olawaiye, Alexander B; Kelley, Joseph L; Edwards, Robert P; Comerci, John T; Courtney-Brooks, Madeleine; Beriwal, Sushil

    2018-06-18

    Brachytherapy is integral to vaginal cancer treatment and is typically delivered using an intracavitary single-channel vaginal cylinder (SCVC) or an interstitial brachytherapy (ISBT) applicator. Multi-channel vaginal cylinder (MCVC) applicators allow for improved organ-at-risk (OAR) sparing compared to SCVC while maintaining target coverage. We present clinical outcomes of patients treated with image-based high dose-rate (HDR) brachytherapy using a MCVC. Sixty patients with vaginal cancer (27% primary vaginal and 73% recurrence from other primaries) were treated with combination external beam radiotherapy (EBRT) and image-based HDR brachytherapy utilizing a MCVC if residual disease thickness was 7 mm or less after EBRT. All pts received 3D image-based BT to a total equivalent dose of 70-80 Gy. The median high-risk clinical target volume was 24.4 cm 3 (interquartile range [IQR], 14.1), with a median dose to 90% of 77.2 Gy (IQR, 2.8). After a median follow-up of 45 months (range, 11-78), the 4-year local-regional control, distant control, DFS, and OS rates were 92.6%, 76.1%, 64.0%, and 67.2%, respectively. The 4-year LRC rates were similar between the primary vaginal (92%) and recurrent (93%) groups (p = 0.290). Pts with lymph node positive disease had a lower rate of distant control at 4 years (22.7% vs. 89.0%, p < 0.001). There were no Grade 3 or higher acute complications. The 4-year rate of late Grade 3 or higher toxicity was 2.7%. Clinical outcomes of pts with primary and recurrent vaginal cancer treated definitively in a systematic manner with combination EBRT with image-guided HDR BT utilizing a MCVC applicator demonstrate high rates of local control and low rates of severe morbidity. The MCVC technique allows interstitial implantation to be avoided in select pts with ≤7 mm residual disease thickness following EBRT while maintaining excellent clinical outcomes with extended 4-year follow-up in this rare malignancy. Copyright © 2018. Published by Elsevier Inc.

  18. SU-E-T-362: Automatic Catheter Reconstruction of Flap Applicators in HDR Surface Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzurovic, I; Devlin, P; Hansen, J

    2014-06-01

    Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curvedmore » surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high level of positioning accuracy. Implementation of this technique has potential to decrease the planning time and may improve overall quality in superficial brachytherapy.« less

  19. Enhancement of Higher Degree Candidates' Research Literacy: A Pilot Study of International Students

    ERIC Educational Resources Information Center

    Han, Jinghe; Schuurmans-Stekhoven, James

    2017-01-01

    Research literacy (RL) training for higher degree research (HDR) students has been reduced to information technology focus by librarians and as writing practice in research supervision which is an 'underdress' for the issue. This paper argues that holistic research literacy training support should be provided to HDR students, especially those from…

  20. The Role of Argumentation in Hypothetico-Deductive Reasoning during Problem-Based Learning in Medical Education: A Conceptual Framework

    ERIC Educational Resources Information Center

    Ju, Hyunjung; Choi, Ikseon

    2018-01-01

    One of the important goals of problem-based learning (PBL) in medical education is to enhance medical students' clinical reasoning--hypothetico-deductive reasoning (HDR) in particular--through small group discussions. However, few studies have focused on explicit strategies for promoting students' HDR during group discussions in PBL. This paper…

  1. High Dose Rate Brachytherapy in Two 9 Gy Fractions in the Treatment of Locally Advanced Cervical Cancer - a South Indian Institutional Experience.

    PubMed

    Ghosh, Saptarshi; Rao, Pamidimukkala Bramhananda; Kotne, Sivasankar

    2015-01-01

    Although 3D image based brachytherapy is currently the standard of treatment in cervical cancer, most of the centres in developing countries still practice orthogonal intracavitary brachytherapy due to financial constraints. The quest for optimum dose and fractionation schedule in high dose rate (HDR) intracavitary brachytherapy (ICBT) is still ongoing. While the American Brachytherapy Society recommends four to eight fractions of each less than 7.5 Gy, there are some studies demonstrating similar efficacy and comparable toxicity with higher doses per fraction. To assess the treatment efficacy and late complications of HDR ICBT with 9 Gy per fraction in two fractions. This is a prospective institutional study in Southern India carried on from 1st June 2012 to 31st July 2014. In this period, 76 patients of cervical cancer satisfying our inclusion criteria were treated with concurrent chemo-radiation following ICBT with 9 Gy per fraction in two fractions, five to seven days apart. The median follow-up period in the study was 24 months (range 10.6 - 31.2 months). The 2 year actuarial local control rate, disease-free survival and overall survival were 88.1%, 84.2% and 81.8% respectively. Although 38.2% patients suffered from late toxicity, only 3 patients had grade III late toxicity. In our experience, HDR brachytherapy with 9 Gy per fraction in two fractions is an effective dose fractionation for the treatment of cervical cancer with acceptable toxicity.

  2. Source position verification and dosimetry in HDR brachytherapy using an EPID.

    PubMed

    Smith, R L; Taylor, M L; McDermott, L N; Haworth, A; Millar, J L; Franich, R D

    2013-11-01

    Accurate treatment delivery in high dose rate (HDR) brachytherapy requires correct source dwell positions and dwell times to be administered relative to each other and to the surrounding anatomy. Treatment delivery inaccuracies predominantly occur for two reasons: (i) anatomical movement or (ii) as a result of human errors that are usually related to incorrect implementation of the planned treatment. Electronic portal imaging devices (EPIDs) were originally developed for patient position verification in external beam radiotherapy and their application has been extended to provide dosimetric information. The authors have characterized the response of an EPID for use with an (192)Ir brachytherapy source to demonstrate its use as a verification device, providing both source position and dosimetric information. Characterization of the EPID response using an (192)Ir brachytherapy source included investigations of reproducibility, linearity with dose rate, photon energy dependence, and charge build-up effects associated with exposure time and image acquisition time. Source position resolution in three dimensions was determined. To illustrate treatment verification, a simple treatment plan was delivered to a phantom and the measured EPID dose distribution compared with the planned dose. The mean absolute source position error in the plane parallel to the EPID, for dwells measured at 50, 100, and 150 mm source to detector distances (SDD), was determined to be 0.26 mm. The resolution of the z coordinate (perpendicular distance from detector plane) is SDD dependent with 95% confidence intervals of ± 0.1, ± 0.5, and ± 2.0 mm at SDDs of 50, 100, and 150 mm, respectively. The response of the EPID is highly linear to dose rate. The EPID exhibits an over-response to low energy incident photons and this nonlinearity is incorporated into the dose calibration procedure. A distance (spectral) dependent dose rate calibration procedure has been developed. The difference between measured and planned dose is less than 2% for 98.0% of pixels in a two-dimensional plane at an SDD of 100 mm. Our application of EPID dosimetry to HDR brachytherapy provides a quality assurance measure of the geometrical distribution of the delivered dose as well as the source positions, which is not possible with any current HDR brachytherapy verification system.

  3. Relative dosimetrical verification in high dose rate brachytherapy using two-dimensional detector array IMatriXX

    PubMed Central

    Manikandan, A.; Biplab, Sarkar; David, Perianayagam A.; Holla, R.; Vivek, T. R.; Sujatha, N.

    2011-01-01

    For high dose rate (HDR) brachytherapy, independent treatment verification is needed to ensure that the treatment is performed as per prescription. This study demonstrates dosimetric quality assurance of the HDR brachytherapy using a commercially available two-dimensional ion chamber array called IMatriXX, which has a detector separation of 0.7619 cm. The reference isodose length, step size, and source dwell positional accuracy were verified. A total of 24 dwell positions, which were verified for positional accuracy gave a total error (systematic and random) of –0.45 mm, with a standard deviation of 1.01 mm and maximum error of 1.8 mm. Using a step size of 5 mm, reference isodose length (the length of 100% isodose line) was verified for single and multiple catheters of same and different source loadings. An error ≤1 mm was measured in 57% of tests analyzed. Step size verification for 2, 3, 4, and 5 cm was performed and 70% of the step size errors were below 1 mm, with maximum of 1.2 mm. The step size ≤1 cm could not be verified by the IMatriXX as it could not resolve the peaks in dose profile. PMID:21897562

  4. Rectal Bleeding After High-Dose-Rate Brachytherapy Combined With Hypofractionated External-Beam Radiotherapy for Localized Prostate Cancer: The Relationship Between Dose-Volume Histogram Parameters and the Occurrence Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Masahiko, E-mail: masaoka@showa.gunma-u.ac.jp; Ishikawa, Hitoshi; Ebara, Takeshi

    2012-02-01

    Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose-volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy Multiplication-Sign five times in 3 days or 7 Gy Multiplication-Sign three, 10.5 Gy Multiplication-Sign two, or 9 Gy Multiplication-Sign two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2more » or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED{sub 3} at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED{sub 3-5%} and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED{sub 3-5%} was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.« less

  5. Food Intake Recording Software System, version 4 (FIRSSt4): A self-completed 24-h dietary recall for children

    USDA-ARS?s Scientific Manuscript database

    The Food Intake Recording Software System, version 4 (FIRSSt4), is a web-based 24-h dietary recall (24 hdr) self-administered by children based on the Automated Self-Administered 24-h recall (ASA24) (a self-administered 24 hdr for adults). The food choices in FIRSSt4 are abbreviated to include only ...

  6. Using a hot dry rock geothermal reservoir for load following

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.W.; Duteau, R.J.

    1995-01-01

    Field measurements and modeling have shown the potential for using a Hot Dry Rock (HDR) geothermal reservoir for electric load following: either with Power-Peaking from a base-load operating condition, or for Pumped Storage of off-peak electric energy with a very significant thermal augmentation of the stored mechanical energy during periods of power production. For the base-load with power- peaking mode of operation, and HDR reservoir appears capable of producing over twice its nominal power output for short -- 2 to 4 hour -- periods of time. In this mode of operation, the reservoir normally would be produced under a high-backpressuremore » condition with the HDR reservoir region near the production well highly inflated. Upon demand, the production backpressure would be sharply reduced, surging the production flow. The analytical tool used in these investigations has been the transient finite element model of the an HDR reservoir called GEOCRACK, which is being developed by Professor Dan Swenson and his students at Kansas State University. This discrete-element representation of a jointed rock mass has recently been validated for transient operations using the set of cyclic reservoir operating data obtained at the end of the LTFT.« less

  7. Support services for higher degree research students: a survey of three Australian universities

    NASA Astrophysics Data System (ADS)

    Silva, Pujitha; Woodman, Karen; Taji, Acram; Travelyan, James; Samani, Shamim; Sharda, Hema; Narayanaswamy, Ramesh; Lucey, Anthony; Sahama, Tony; KDV Yarlagadda, Prasad

    2016-09-01

    A survey was conducted across three Australian universities to identify the types and format of support services available for higher degree research (HDR, or MA and Ph.D.) students. The services were classified with regards to availability, location and accessibility. A comparative tool was developed to help institutions categorise their services in terms of academic, administrative, social and settlement, language and miscellaneous (other) supports. All three universities showed similarities in the type of academic support services offered, while differing in social and settlement and language support services in terms of the location and the level of accessibility of these services. The study also examined the specific support services available for culturally and linguistically diverse (CALD) students. The three universities differed in their emphases in catering to CALD needs, with their allocation of resources reflecting these differences. The organisation of these services within the universities was further assessed to determine possible factors that may influence the effective delivery of these services, by considering HDR and CALD student specific issues. The findings and tools developed by this study may be useful to HDR supervisors and university administrators in identifying key support services to better improve outcomes for the HDR students and universities.

  8. Clinical comparison of two linear-quadratic model-based isoeffect fractionation schemes of high-dose-rate intracavitary brachytherapy for cervical cancer.

    PubMed

    Wang, Chong-Jong; Huang, Eng-Yen; Sun, Li-Min; Chen, Hui-Chun; Fang, Fu-Min; Hsu, Hsuan-Chih; Changchien, Chan-Chao; Leung, Stephen Wan

    2004-05-01

    Two linear-quadratic model-based isoeffect fractionation schemes of high-dose-rate intracavitary brachytherapy (HDR-IC) were used to treat cervical cancer in two consecutive periods. Patient outcomes and complications were analyzed and compared. Between November 1987 and December 1996, a total of 541 women diagnosed with cervical cancer were treated with curative-intent radiotherapy. Patients were categorized into two groups according to the two isoeffect schemes used. Group 1 consisted of 254 patients treated with external beam radiotherapy (EBRT) plus 7.2 Gy HDR-IC to Point A for three fractions in the first period. Group 2 consisted of 284 patients treated with EBRT plus 4.8 Gy HDR-IC for five fractions in the second period. The goal of the new scheme for the latter group was to deliver an isoeffect dose that maintained similar tumor control but reduced normal tissue complications. The calculated biologically effective dose (BED(10), assuming an alpha/beta ratio = 10) of EBRT plus HDR-IC for tumor and acute responding tissue in Groups 1 and 2 was 90 Gy(10) (52.8 + 37.2 Gy) and 88.6 Gy(10) (53.1 + 35.5 Gy), respectively. The corresponding BED(3) for late responding tissue (assuming an alpha/beta ratio = 3) in Groups 1 and 2 was 146.7 Gy(3) (73.3 + 73.4 Gy) and 134.4 Gy(3) (72 + 62.4 Gy), respectively. Patients were followed for 6.1-15.2 years (median, 9.8 years). Overall, 66 patients (12.2%) developed pelvic recurrence. Of these, 53 patients had central recurrence. Of the 53 patients with central recurrence, 24 (9.4%) were in Group 1 and 29 (10.1%) in Group 2 (p = 0.722). The actuarial pelvic control rate for Groups 1 and 2 was 88.2% and 86.3% at 5 years and 87.3% and 85.5% at 10 years, respectively (p = 0.504). The actuarial overall survival rate for Groups 1 and 2 was 63.5% and 56.1% at 5 years and 47.8% and 49.3% at 10 years, respectively (p = 0.734). The actuarial proctitis rate for Groups 1 and 2 was 49.7% and 32.7% at 5 years and 50.5% and 32.7% at 10 years, respectively (p <0.001). Most of the decrease in the rate of proctitis was a result of a decrease in the incidence of low-grade proctitis (38% vs. 22%). The incidence of high-grade complications remained unchanged, 8% vs. 7%. The actuarial cystitis rate for Groups 1 and 2 was 14.3% vs. 11.4% at 5 years and 24.1% vs. 15% at 10 years, respectively (p = 0.134). Multivariate analysis revealed that the fractionation scheme (three fractions vs. five fractions) was a significant factor influencing the proctitis rate (p = 0.004, hazard ratio = 0.807; 95% confidence interval, 0.697-0.934), but not the local pelvic control rate, overall survival rate, or cystitis rate. The treatment results of the two groups maintained similar outcomes, while the complications decreased. The linear-quadratic model correctly predicted this outcome. Biologically, the manipulation of the fraction size in our study suggested that the sensitivity of the late responding tissue to the fractional change from 7.2 Gy to 4.8 Gy in HDR-IC is high and detectable clinically. The success, however, had its limitations, and the improvement was confined to low-grade complications.

  9. GATA3 mutation in a family with hypoparathyroidism, deafness and renal dysplasia syndrome.

    PubMed

    Zhu, Zi-Yang; Zhou, Qiao-Li; Ni, Shi-Ning; Gu, Wei

    2014-08-01

    The hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by GATA3 gene mutation. We report here a case that both of a Chinese boy and his father had HDR syndrome which caused by a novel mutation of GATA3. Polymerase chain reaction and DNA sequencing was performed to detect the exons of the GATA3 gene for mutation analysis. Sequence analysis of GATA3 revealed a heterozygous nonsense mutation in this family: a mutation of GATA3 at exon 2 (c.515C >A) that resulted in a premature stop at codon 172 (p.S172X) with a loss of two zinc finger domains. We identified a novel nonsense mutation which will expand the spectrum of HDR-associated GATA3 mutations.

  10. In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.

    PubMed

    Adlienė, Diana; Jakštas, Karolis; Urbonavičius, Benas Gabrielis

    2015-07-01

    Routine in vivo dosimetry is well established in external beam radiotherapy; however, it is restricted mainly to detection of gross errors in high-dose-rate (HDR) brachytherapy due to complicated measurements in the field of steep dose gradients in the vicinity of radioactive source and high uncertainties. The results of in vivo dose measurements using TLD 100 mini rods and TLD 'pin worms' in catheter-based HDR brachytherapy are provided in this paper alongside with their comparison with corresponding dose values obtained using calculation algorithm of the treatment planning system. Possibility to perform independent verification of treatment delivery in HDR brachytherapy using TLDs is discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR 192Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom1

    PubMed Central

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J.

    2010-01-01

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) 192Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, “A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,” Brachytherapy 6, 164–168 (2007)] showed that the target dose is similar for HDR 192Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR 192Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR 192Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of ∼1.4 smaller than for HDR 192Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were ∼28 and ∼11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with eBx. However, the maximum dose to the closest rib with the eBx source was 5.4 times greater than that of the HDR 192Ir source. The ratio of tissue-to-water maximum rib dose for the eBx source was ∼5. Conclusions: The results of this study indicate that eBx may offer lower toxicity to most healthy tissues, except nearby bone. TG-43 methods have a tendency to underestimate dose to bone, especially the ribs. Clinical studies evaluating the negative health effects caused by irradiating healthy organs are needed so that physicians can better understand when HDR 192Ir or eBx might best benefit a patient. PMID:20229875

  12. Presumed atypical HDR syndrome associated with Band Keratopathy and pigmentary retinopathy.

    PubMed

    Kim, Cinoo; Cheong, Hae Il; Kim, Jeong Hun; Yu, Young Suk; Kwon, Ji Won

    2011-01-01

    This report describes presumed atypical hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome associated with unexpected ocular findings. The patient had exotropia, bilateral band keratopathy, and pigmentary retinopathy, including attenuated retinal vessels and atrophy of the retinal pigment epithelium. Even though the calcific plaques were successfully removed, visual acuity in both eyes gradually decreased and electroretinography was extinguished. Copyright 2009, SLACK Incorporated.

  13. A multicentre audit of HDR/PDR brachytherapy absolute dosimetry in association with the INTERLACE trial (NCT015662405)

    NASA Astrophysics Data System (ADS)

    Díez, P.; Aird, E. G. A.; Sander, T.; Gouldstone, C. A.; Sharpe, P. H. G.; Lee, C. D.; Lowe, G.; Thomas, R. A. S.; Simnor, T.; Bownes, P.; Bidmead, M.; Gandon, L.; Eaton, D.; Palmer, A. L.

    2017-12-01

    A UK multicentre audit to evaluate HDR and PDR brachytherapy has been performed using alanine absolute dosimetry. This is the first national UK audit performing an absolute dose measurement at a clinically relevant distance (20 mm) from the source. It was performed in both INTERLACE (a phase III multicentre trial in cervical cancer) and non-INTERLACE brachytherapy centres treating gynaecological tumours. Forty-seven UK centres (including the National Physical Laboratory) were visited. A simulated line source was generated within each centre’s treatment planning system and dwell times calculated to deliver 10 Gy at 20 mm from the midpoint of the central dwell (representative of Point A of the Manchester system). The line source was delivered in a water-equivalent plastic phantom (Barts Solid Water) encased in blocks of PMMA (polymethyl methacrylate) and charge measured with an ion chamber at 3 positions (120° apart, 20 mm from the source). Absorbed dose was then measured with alanine at the same positions and averaged to reduce source positional uncertainties. Charge was also measured at 50 mm from the source (representative of Point B of the Manchester system). Source types included 46 HDR and PDR 192Ir sources, (7 Flexisource, 24 mHDR-v2, 12 GammaMed HDR Plus, 2 GammaMed PDR Plus, 1 VS2000) and 1 HDR 60Co source, (Co0.A86). Alanine measurements when compared to the centres’ calculated dose showed a mean difference (±SD) of  +1.1% (±1.4%) at 20 mm. Differences were also observed between source types and dose calculation algorithm. Ion chamber measurements demonstrated significant discrepancies between the three holes mainly due to positional variation of the source within the catheter (0.4%-4.9% maximum difference between two holes). This comprehensive audit of absolute dose to water from a simulated line source showed all centres could deliver the prescribed dose to within 5% maximum difference between measurement and calculation.

  14. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-12-01

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.

  15. Clinical and mutational spectrum of hypoparathyroidism, deafness and renal dysplasia syndrome.

    PubMed

    Belge, Hendrica; Dahan, Karin; Cambier, Jean-François; Benoit, Valérie; Morelle, Johann; Bloch, Julie; Vanhille, Philippe; Pirson, Yves; Demoulin, Nathalie

    2017-05-01

    Hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is a rare autosomal dominant disorder, secondary to mutations in the GATA-3 gene. Due to its wide range of penetrance and expressivity, the disease may not always be recognized. We herein describe clinical and genetic features of patients with HDR syndrome, highlighting diagnostic clues. Medical records of eight patients from five unrelated families exhibiting GATA-3 mutations were reviewed retrospectively, in conjunction with all previously reported cases. HDR syndrome was diagnosed in eight patients between the ages of 18 and 60 years. Sensorineural deafness was consistently diagnosed, ranging from clinical hearing loss since infancy in seven patients to deafness detected only by audiometry in adulthood in one single patient. Hypoparathyroidism was present in six patients (with hypocalcaemia and inaugural seizures in two out of six). Renal abnormalities observed in six patients were diverse and of dysplastic nature. Three patients displayed nephrotic-range proteinuria and reached end-stage renal disease (ESRD) between the ages of 19 and 61 years, whilst lesions of focal and segmental glomerulosclerosis were histologically demonstrated in one of them. Interestingly, phenotype severity differed significantly between a mother and son within one family. Five new mutations of GATA-3 were identified, including three missense mutations affecting zinc finger motifs [NM_001002295.1: c.856A>G (p.N286D) and c.1017C>G (p.C339W)] or the conserved linker region [c.896G>A (p.R299G)], and two splicing mutations (c.924+4_924+19del and c.1051-2A>G). Review of 115 previously reported cases of GATA-3 mutations showed hypoparathyroidism and deafness in 95% of patients, and renal abnormalities in only 60%. Overall, 10% of patients had reached ESRD. We herein expand the clinical and mutational spectrum of HDR syndrome, illustrating considerable inter- and intrafamilial phenotypic variability. Diagnosis of HDR should be considered in any patient with hypoparathyroidism and deafness, whether associated with renal abnormalities or not. HDR diagnosis is established through identification of a mutation in the GATA-3 gene. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  16. TU-F-BRF-02: MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rossi, P; Ogunleye, T

    2014-06-15

    Purpose: High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy could benefit significantly from MR-targeted, TRUS-guided procedure where the tumor locations, acquired from the multiparametric MRI, are incorporated into the treatment planning. In order to enable this integration, we have developed a MR-TRUS registration with a patient-specific biomechanical elasticity prior. Methods: The proposed method used a biomechanical elasticity prior to guide the prostate volumetric B-spline deformation in the MRI and TRUS registration. The patient-specific biomechanical elasticity prior was generated using ultrasound elastography, where two 3D TRUS prostate images were acquiredmore » under different probe-induced pressures during the HDR procedure, which takes 2-4 minutes. These two 3D TRUS images were used to calculate the local displacement (elasticity map) of two prostate volumes. The B-spline transformation was calculated by minimizing the Euclidean distance between the normalized attribute vectors of the prostate surface landmarks on the MR and TRUS. This technique was evaluated through two studies: a prostate-phantom study and a pilot study with 5 patients undergoing prostate HDR treatment. The accuracy of our approach was assessed through the locations of several landmarks in the post-registration and TRUS images; our registration results were compared with the surface-based method. Results: For the phantom study, the mean landmark displacement of the proposed method was 1.29±0.11 mm. For the 5 patients, the mean landmark displacement of the surface-based method was 3.25±0.51 mm; our method, 1.71±0.25 mm. Therefore, our proposed method of prostate registration outperformed the surfaced-based registration significantly. Conclusion: We have developed a novel MR-TRUS prostate registration approach based on patient-specific biomechanical elasticity prior. Successful integration of multi-parametric MR and TRUS prostate images provides a prostate-cancer map for treatment planning, enables accurate dose planning and delivery, and potentially enhances prostate HDR treatment outcome.« less

  17. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry.

    PubMed

    Schoenfeld, Andreas A; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-11-21

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w , have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR ( 60 Co), Eckert und Ziegler BEBIG GmbH CSM-11 ( 137 Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 ( 169 Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 ( 131 Cs), IsoAid Advantage I-125 IAI-125A ( 125 I), and IsoAid Advantage Pd-103 IAPd-103A ( 103 Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192 Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192 Ir, 137 Cs and 60 Co most phantom materials can be regarded as water equivalent, for 169 Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106 Pd, 131 Cs and 125 I, only Plastic Water LR can be classified as water equivalent.

  18. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental palladium, Pd(0), will be discussed in detail. Directional HDR has the potential to improve upon current treatments, providing better dose conformality to the target volume, while maintaining the benefits of HDR applications.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabbari, Siavash; Weinberg, Vivian K.; Kaprealian, Tania

    Purpose: High dose rate (HDR) brachytherapy has been established as an excellent monotherapy or after external-beam radiotherapy (EBRT) boost treatment for prostate cancer (PCa). Recently, dosimetric studies have demonstrated the potential for achieving similar dosimetry with stereotactic body radiotherapy (SBRT) compared with HDR brachytherapy. Here, we report our technique, PSA nadir, and acute and late toxicity with SBRT as monotherapy and post-EBRT boost for PCa using HDR brachytherapy fractionation. Patients and Methods: To date, 38 patients have been treated with SBRT at University of California-San Francisco with a minimum follow-up of 12 months. Twenty of 38 patients were treated withmore » SBRT monotherapy (9.5 Gy Multiplication-Sign 4 fractions), and 18 were treated with SBRT boost (9.5 Gy Multiplication-Sign 2 fractions) post-EBRT and androgen deprivation therapy. PSA nadir to date for 44 HDR brachytherapy boost patients with disease characteristics similar to the SBRT boost cohort was also analyzed as a descriptive comparison. Results: SBRT was well tolerated. With a median follow-up of 18.3 months (range, 12.6-43.5), 42% and 11% of patients had acute Grade 2 gastrourinary and gastrointestinal toxicity, respectively, with no Grade 3 or higher acute toxicity to date. Two patients experienced late Grade 3 GU toxicity. All patients are without evidence of biochemical or clinical progression to date, and favorably low PSA nadirs have been observed with a current median PSA nadir of 0.35 ng/mL (range, <0.01-2.1) for all patients (0.47 ng/mL, range, 0.2-2.1 for the monotherapy cohort; 0.10 ng/mL, range, 0.01-0.5 for the boost cohort). With a median follow-up of 48.6 months (range, 16.4-87.8), the comparable HDR brachytherapy boost cohort has achieved a median PSA nadir of 0.09 ng/mL (range, 0.0-3.3). Conclusions: Early results with SBRT monotherapy and post-EBRT boost for PCa demonstrate acceptable PSA response and minimal toxicity. PSA nadir with SBRT boost appears comparable to those achieved with HDR brachytherapy boost.« less

  20. Dosimetric intercomparison of permanent Ho-166 seed's implants and HDR Ir-192 brachytherapy in breast cancer.

    PubMed

    de Campos, Tarcisio Passos Ribeiro; Nogueira, Luciana Batista; Trindade, Bruno; Cuperschmid, Ethel Mizrahy

    2016-01-01

    To provide a comparative dosimetric analysis of permanent implants of Ho(166)-seeds and temporary HDR Ir(192)-brachytherapy through computational simulation. Brachytherapy with Ir(192)-HDR or LDR based on temporary wires or permanent radioactive seed implants can be used as dose reinforcement for breast radiation therapy. Permanent breast implants have not been a practical clinical routine; although, I(125) and Pd(103)-seeds have already been reported. Biodegradable Ho(166)-ceramic-seeds have been addressed recently. Simulations of implants of nine Ho(166)-seeds and equivalent with HDR Ir(192)-brachytherapy were elaborated in MCNP5, shaped in a computational multivoxel simulator which reproduced a female thorax phantom. Spatial dose rate distributions and dose-volume histograms were generated. Protocol's analysis involving exposure time, seed's activities and dose were performed. Permanent Ho(166)-seed implants presented a maximum dose rate per unit of contained activity (MDR) of 1.1601 μGy h(-1) Bq(-1); and, a normalized MDR in standard points (8 mm, equidistant to 03-seeds - SP1, 10 mm - SP2) of 1.0% (SP1) and 0.5% (SP2), respectively. Ir(192)-brachytherapy presented MDR of 4.3945 × 10(-3) μGy h(-1) Bq(-1); and, 30% (SP1), and 20% (SP2). Therefore, seed's implant activities of 333 MBq (Ho(166)) and 259 GBq (Ir(192)) produced prescribed doses of 58 Gy (SP1; 5d) and 56 Gy (SP1, 5 fractions, 6 min), respectively. Breast Ho(166)-implants of 37-111 MBq are attractive due to the high dose rate near 6-10 mm from seeds, equivalent to Ir(192)-brachytherapy of 259 GBq (3 fractions, 6 min) providing similar dose in standard points at a week; however, with spatial dose distribution better confined. The seed positioning can be adjusted for controlling the breast tumor, in stages I and II, in flat and deep tumors, without any breast volumetric limitation.

  1. Significance of manipulating tumour hypoxia and radiation dose rate in terms of local tumour response and lung metastatic potential, referring to the response of quiescent cell populations

    PubMed Central

    Masunaga, S; Matsumoto, Y; Kashino, G; Hirayama, R; Liu, Y; Tanaka, H; Sakurai, Y; Suzuki, M; Kinashi, Y; Maruhashi, A; Ono, K

    2010-01-01

    The purpose of this study was to evaluate the influence of manipulating intratumour oxygenation status and radiation dose rate on local tumour response and lung metastases following radiotherapy, referring to the response of quiescent cell populations within irradiated tumours. B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. They received γ-ray irradiation at high dose rate (HDR) or reduced dose rate (RDR) following treatment with the acute hypoxia-releasing agent nicotinamide or local hyperthermia at mild temperatures (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the quiescent (Q) and total (proliferating + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Following HDR irradiation, nicotinamide and MTH enhanced the sensitivity of the total and Q-cell populations, respectively. The decrease in sensitivity at RDR irradiation compared with HDR irradiation was slightly inhibited by MTH, especially in Q cells. Without γ-ray irradiation, nicotinamide treatment tended to reduce the number of lung metastases. With γ-rays, in combination with nicotinamide or MTH, especially the former, HDR irradiation decreased the number of metastases more remarkably than RDR irradiation. Manipulating both tumour hypoxia and irradiation dose rate have the potential to influence lung metastasis. The combination with the acute hypoxia-releasing agent nicotinamide may be more promising in HDR than RDR irradiation in terms of reducing the number of lung metastases. PMID:20739345

  2. Cosmetic changes following surgery and accelerated partial breast irradiation using HDR interstitial brachytherapy : Evaluation by a multidisciplinary/multigender committee.

    PubMed

    Soror, Tamer; Kovács, György; Seibold, Nina; Melchert, Corinna; Baumann, Kristin; Wenzel, Eike; Stojanovic-Rundic, Suzana

    2017-05-01

    Patients with early-stage breast cancer can benefit from adjuvant accelerated partial breast irradiation (APBI) following breast-conserving surgery (BCS). This work reports on cosmetic results following APBI using multicatheter high-dose-rate interstitial brachytherapy (HDR-IBT). Between 2006 and 2014, 114 patients received adjuvant APBI using multicatheter HDR-IBT. For each patient, two photographs were analyzed: the first was taken after surgery (baseline image) and the second at the last follow-up visit. Cosmesis was assessed by a multigender multidisciplinary team using the Harvard Breast Cosmesis Scale. Dose-volume histogram (DVH) parameters and the observed cosmetic results were investigated for potential correlations. The median follow-up period was 3.5 years (range 0.6-8.5 years). The final cosmetic scores were 30% excellent, 52% good, 14.5% fair, and 3.5% poor. Comparing the baseline and follow-up photographs, 59.6% of patients had the same score, 36% had a better final score, and 4.4% had a worse final score. Only lower target dose nonuniformity ratio (DNR) values (0.3 vs. 0.26; p = 0.009) were significantly associated with improved cosmetic outcome vs. same/worse cosmesis. APBI using multicatheter HDR-IBT adjuvant to BCS results in favorable final cosmesis. Deterioration in breast cosmesis occurs in less than 5% of patients. The final breast cosmetic outcome in patients treated with BCS and APBI using multicatheter HDR-IBT is influenced primarily by the cosmetic result of the surgery. A lower DNR value is significantly associated with a better cosmetic outcome.

  3. Australian patterns of prostate cancer care: Are they evolving?

    PubMed Central

    Lo, Jonathon; Papa, Nathan; Bolton, Damien M.; Murphy, Declan; Lawrentschuk, Nathan

    2015-01-01

    Background Approaches to prostate cancer (PCa) care have changed in recent years out of concern for overdiagnosis and overtreatment. Despite these changes, many patients continue to undergo some form of curative treatment and with a growing perception among multidisciplinary clinicians that more aggressive treatments are being favored. This study examines patterns of PCa care in Australia, focusing on current rates of screening and aggressive interventions that consist of high-dose-rate (HDR) brachytherapy and pelvic lymph node dissection (PLND). Methods Health services data were used to assess Australian men undergoing PCa screening and treatment from 2001 to 2014. Age-specific rates of prostate-specific antigen (PSA) screening were calculated. Ratios of radical prostatectomy (RP) with PLND to RP without PLND, and HDR brachytherapy to low-dose-rate (LDR) brachytherapy were determined by state jurisdictions. Results From 2008, the rate of PSA screening trended downward significantly with year for all age ranges (P < 0.02) except men aged ≥ 85 (P = 0.56). PLND rates for 2008–2014 were lower than rates for 2001–2007 across all states and territories. From 2008 to 2014, PLND was performed ≥ 2.7 times more frequently in New South Wales and the Australian Capital Territory than in other jurisdictions. Since 2007, brachytherapy practice across Australia has evolved towards a relatively low use of HDR brachytherapy (ratio of HDR to LDR brachytherapy < 0.5 for all jurisdictions except the Australian Capital Territory). Conclusion Rates of PLND and HDR brachytherapy for PCa have declined in Australia, providing evidence for the effect of stage migration due to widespread PSA screening. Currently, PSA screening rates remain high among older men, which may expose them to unnecessary investigations and treatment-related morbidity. PMID:27014660

  4. High-dose-rate Intracavitary Radiotherapy in the Management of Cervical Intraepithelial Neoplasia 3 and Carcinoma In Situ Presenting With Poor Histologic Factors After Undergoing Excisional Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Bae, E-mail: ybkim3@yuhs.ac; Kim, Young Tae; Cho, Nam Hoon

    2012-09-01

    Purpose: To assess the effectiveness of high-dose-rate intracavitary radiotherapy (HDR-ICR) in patients with cervical intraepithelial neoplasia 3 (CIN 3) and carcinoma in situ (CIS) presenting with poor histologic factors for predicting residual disease after undergoing diagnostic excisional procedures. Methods and Materials: This study was a retrospective analysis of 166 patients with CIN 3 (n=15) and CIS (n=151) between October 1986 and December 2005. They were diagnosed by conization (n=158) and punch biopsy (n=8). Pathologic analysis showed 135 cases of endocervical gland involvement (81.4%), 74 cases of positive resection margins (44.5%), and 52 cases of malignant cells on endocervical curettage (31.3%).more » All patients were treated with HDR-ICR using Co{sup 60} or Ir{sup 192} at a cancer center. The dose was prescribed at point A located 2 cm superior to the external os and 2 cm lateral to the axis of the tandem for intact uterus. Results: Median age was 61 years (range, 29-77). The median total dose of HDR-ICR was 30 Gy/6 fractions (range, 30-52). At follow-up (median, 152 months), 2 patients developed recurrent diseases: 1 CIN 2 and 1 invasive carcinoma. One hundred and forty patients survived and 26 patients died, owing to nonmalignant intercurrent disease. Rectal bleeding occurred in one patient; however, this symptom subsided with conservative management. Conclusions: Our data showed HDR-ICR is an effective modality for CIN 3 and CIS patients presenting with poor histologic factors after excisional procedures. HDR-ICR should be considered as a definitive treatment in CIN 3 and CIS patients with possible residual disease after undergoing excisional procedures.« less

  5. A national survey of HDR source knowledge among practicing radiation oncologists and residents: Establishing a willingness-to-pay threshold for cobalt-60 usage.

    PubMed

    Mailhot Vega, Raymond; Talcott, Wesley; Ishaq, Omar; Cohen, Patrice; Small, Christina J; Duckworth, Tamara; Sarria Bardales, Gustavo; Perez, Carmen A; Schiff, Peter B; Small, William; Harkenrider, Matthew M

    Ir-192 is the predominant source for high-dose-rate (HDR) brachytherapy in United States markets. Co-60, with longer half-life and fewer source exchanges, has piloted abroad with comparable clinical dosimetry but increased shielding requirements. We sought to identify practitioner knowledge of Co-60 and establish acceptable willingness-to-pay (WTP) thresholds for additional shielding requirements for use in future cost-benefit analysis. A nationwide survey of U.S. radiation oncologists was conducted from June to July 2015, assessing knowledge of HDR sources, brachytherapy unit shielding, and factors that may influence source-selection decision-making. Self-identified decision makers in radiotherapy equipment purchase and acquisition were asked their WTP on shielding should a more cost-effective source become available. Four hundred forty surveys were completed and included. Forty-four percent were ABS members. Twenty percent of respondents identified Co-60 as an HDR source. Respondents who identified Co-60 were significantly more likely to be ABS members, have attended a national brachytherapy conference, and be involved in brachytherapy selection. Sixty-six percent of self-identified decision makers stated that their facility would switch to a more cost-effective source than Ir-192, if available. Cost and experience were the most common reasons provided for not switching. The most common WTP value selected by respondents was <$25,000. A majority of respondents were unaware of Co-60 as a commercially available HDR source. This investigation was novel in directly assessing decision makers to establish WTP for shielding costs that source change to Co-60 may require. These results will be used to establish WTP threshold for future cost-benefit analysis. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. A comparison of needle tip localization accuracy using 2D and 3D trans-rectal ultrasound for high-dose-rate prostate cancer brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene

    2016-03-01

    Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.

  7. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    PubMed

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose <93 Gy (58 patients) and high-dose biologically effective dose >93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p <0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p = 0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.

  8. High-Dose-Rate Monotherapy for Localized Prostate Cancer: 10-Year Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauswald, Henrik; Kamrava, Mitchell R.; Fallon, Julia M.

    2016-03-15

    Purpose: High-dose-rate (HDR) brachytherapy was originally used with external beam radiation therapy (EBRT) to increase the dose to the prostate without injuring the bladder or rectum. Numerous studies have reported HDR brachytherapy is safe and effective. We adapted it for use without EBRT for cases not requiring lymph node treatment. Patients and Methods: We entered the patient demographics, disease characteristics, and treatment parameters into a prospective registry and serially added follow-up data for 448 men with low-risk (n=288) and intermediate-risk (n=160) prostate cancer treated from 1996 to 2009. Their median age was 64 years (range 42-90). The median prostate-specific antigen (PSA)more » level was 6.0 ng/mL (range 0.2-18.2). The Gleason score was ≤6 in 76% and 7 in 24%. The median dose was 43.5 Gy in 6 fractions. The clinical and biochemical disease control and survival rates were calculated. Adverse events were graded according to the Common Toxicity Criteria of Adverse Events. Results: The median follow-up period was 6.5 years (range 0.3-15.3). The actuarial 6- and 10-year PSA progression-free survival was 98.6% (95% confidence interval [CI] 96.9%-99.4%) and 97.8% (95% CI 95.5%-98.9%). Overall survival at 10 years was 76.7% (95% CI 69.9%-82.2%). The local control, distant metastasis-free survival, and cause-specific survival were 99.7% (95% CI 97.9%-99.9%), 98.9% (95% CI 96.3%-99.7%), and 99.1% (95% CI 95.8%-99.8%). T stage, initial PSA level, Gleason score, National Comprehensive Cancer Network risk group, patient age, and androgen deprivation therapy did not significantly correlate with disease control or survival. No late grade 3 to 4 rectal toxicities developed. Late grade 3 to 4 genitourinary toxicity occurred in 4.9% (grade 3 in 4.7%). Conclusions: HDR monotherapy is a safe and highly effective treatment of low- and intermediate-risk prostate cancer.« less

  9. High-dynamic-range imaging for cloud segmentation

    NASA Astrophysics Data System (ADS)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  10. Poster — Thur Eve — 40: Automated Quality Assurance for Remote-Afterloading High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Anthony; Ravi, Ananth

    2014-08-15

    High dose rate (HDR) remote afterloading brachytherapy involves sending a small, high-activity radioactive source attached to a cable to different positions within a hollow applicator implanted in the patient. It is critical that the source position within the applicator and the dwell time of the source are accurate. Daily quality assurance (QA) tests of the positional and dwell time accuracy are essential to ensure that the accuracy of the remote afterloader is not compromised prior to patient treatment. Our centre has developed an automated, video-based QA system for HDR brachytherapy that is dramatically superior to existing diode or film QAmore » solutions in terms of cost, objectivity, positional accuracy, with additional functionalities such as being able to determine source dwell time and transit time of the source. In our system, a video is taken of the brachytherapy source as it is sent out through a position check ruler, with the source visible through a clear window. Using a proprietary image analysis algorithm, the source position is determined with respect to time as it moves to different positions along the check ruler. The total material cost of the video-based system was under $20, consisting of a commercial webcam and adjustable stand. The accuracy of the position measurement is ±0.2 mm, and the time resolution is 30 msec. Additionally, our system is capable of robustly verifying the source transit time and velocity (a test required by the AAPM and CPQR recommendations), which is currently difficult to perform accurately.« less

  11. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum.

    PubMed

    Yasuma, Fumihito; Mitsunaga, Tomoo; Iso, Daisuke; Nayar, Shree K

    2010-09-01

    We propose the concept of a generalized assorted pixel (GAP) camera, which enables the user to capture a single image of a scene and, after the fact, control the tradeoff between spatial resolution, dynamic range and spectral detail. The GAP camera uses a complex array (or mosaic) of color filters. A major problem with using such an array is that the captured image is severely under-sampled for at least some of the filter types. This leads to reconstructed images with strong aliasing. We make four contributions in this paper: 1) we present a comprehensive optimization method to arrive at the spatial and spectral layout of the color filter array of a GAP camera. 2) We develop a novel algorithm for reconstructing the under-sampled channels of the image while minimizing aliasing artifacts. 3) We demonstrate how the user can capture a single image and then control the tradeoff of spatial resolution to generate a variety of images, including monochrome, high dynamic range (HDR) monochrome, RGB, HDR RGB, and multispectral images. 4) Finally, the performance of our GAP camera has been verified using extensive simulations that use multispectral images of real world scenes. A large database of these multispectral images has been made available at http://www1.cs.columbia.edu/CAVE/projects/gap_camera/ for use by the research community.

  12. MRI-guided brachytherapy

    PubMed Central

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  13. Targeting MRS-Defined Dominant Intraprostatic Lesions with Inverse-Planned High Dose Rate Brachytherapy. Addendum

    DTIC Science & Technology

    2009-06-01

    imagining) into the HDR brachytherapy treatment planning has been demonstrated. Using the inverse planning program IPSA , dose escalation of target...Principles and Clinical Applications of IPSA ; Nucletron International Physics Seminar, Vaals, Netherlands, Sept 13-16, 2006. 7 IPSA ...experience with IPSA for prostate cancer treatment in HDR Brachytherapy, 4ième séminaire francophone de curiethérapie, Arcachon, France, June 15, 2006

  14. Precision genome editing in the CRISPR era.

    PubMed

    Salsman, Jayme; Dellaire, Graham

    2017-04-01

    With the introduction of precision genome editing using CRISPR-Cas9 technology, we have entered a new era of genetic engineering and gene therapy. With RNA-guided endonucleases, such as Cas9, it is possible to engineer DNA double strand breaks (DSB) at specific genomic loci. DSB repair by the error-prone non-homologous end-joining (NHEJ) pathway can disrupt a target gene by generating insertions and deletions. Alternatively, Cas9-mediated DSBs can be repaired by homology-directed repair (HDR) using an homologous DNA repair template, thus allowing precise gene editing by incorporating genetic changes into the repair template. HDR can introduce gene sequences for protein epitope tags, delete genes, make point mutations, or alter enhancer and promoter activities. In anticipation of adapting this technology for gene therapy in human somatic cells, much focus has been placed on increasing the fidelity of CRISPR-Cas9 and increasing HDR efficiency to improve precision genome editing. In this review, we will discuss applications of CRISPR technology for gene inactivation and genome editing with a focus on approaches to enhancing CRISPR-Cas9-mediated HDR for the generation of cell and animal models, and conclude with a discussion of recent advances and challenges towards the application of this technology for gene therapy in humans.

  15. Vestibulosympathetic reflex during mental stress

    NASA Technical Reports Server (NTRS)

    Carter, Jason R.; Ray, Chester A.; Cooke, William H.

    2002-01-01

    Increases in sympathetic neural activity occur independently with either vestibular or mental stimulation, but it is unknown whether sympathetic activation is additive or inhibitive when both stressors are combined. The purpose of the present study was to investigate the combined effects of vestibular and mental stimulation on sympathetic neural activation and arterial pressure in humans. Muscle sympathetic nerve activity (MSNA), arterial pressure, and heart rate were recorded in 10 healthy volunteers in the prone position during 1) head-down rotation (HDR), 2) mental stress (MS; using arithmetic), and 3) combined HDR and MS. HDR significantly (P < 0.05) increased MSNA (9 +/- 2 to 13 +/- 2 bursts/min). MS significantly increased MSNA (8 +/- 2 to 13 +/- 2 bursts/min) and mean arterial pressure (87 +/- 2 to 101 +/- 2 mmHg). Combined HDR and MS significantly increased MSNA (9 +/- 1 to 16 +/- 2 bursts/min) and mean arterial pressure (89 +/- 2 to 100 +/- 3 mmHg). Increases in MSNA (7 +/- 1 bursts/min) during the combination trial were not different from the algebraic sum of each trial performed alone (8 +/- 2 bursts/min). We conclude that the interaction for MSNA and arterial pressure is additive during combined vestibular and mental stimulation. Therefore, vestibular- and stress-mediated increases of MSNA appear to occur independently in humans.

  16. The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.

  17. The effect of split pixel HDR image sensor technology on MTF measurements

    NASA Astrophysics Data System (ADS)

    Deegan, Brian M.

    2014-03-01

    Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.

  18. Comparison of two laboratory-based systems for evaluation of halos in intraocular lenses

    PubMed Central

    Alexander, Elsinore; Wei, Xin; Lee, Shinwook

    2018-01-01

    Purpose Multifocal intraocular lenses (IOLs) can be associated with unwanted visual phenomena, including halos. Predicting potential for halos is desirable when designing new multifocal IOLs. Halo images from 6 IOL models were compared using the Optikos modulation transfer function bench system and a new high dynamic range (HDR) system. Materials and methods One monofocal, 1 extended depth of focus, and 4 multifocal IOLs were evaluated. An off-the-shelf optical bench was used to simulate a distant (>50 m) car headlight and record images. A custom HDR system was constructed using an imaging photometer to simulate headlight images and to measure quantitative halo luminance data. A metric was developed to characterize halo luminance properties. Clinical relevance was investigated by correlating halo measurements to visual outcomes questionnaire data. Results The Optikos system produced halo images useful for visual comparisons; however, measurements were relative and not quantitative. The HDR halo system provided objective and quantitative measurements used to create a metric from the area under the curve (AUC) of the logarithmic normalized halo profile. This proposed metric differentiated between IOL models, and linear regression analysis found strong correlations between AUC and subjective clinical ratings of halos. Conclusion The HDR system produced quantitative, preclinical metrics that correlated to patients’ subjective perception of halos. PMID:29503526

  19. 4D analysis of influence of patient movement and anatomy alteration on the quality of 3D U/S-based prostate HDR brachytherapy treatment delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milickovic, Natasa; Mavroidis, Panayiotis; Tselis, Nikolaos

    2011-09-15

    Purpose: Modern HDR brachytherapy treatment for prostate cancer based on the 3D ultrasound (U/S) plays increasingly important role. The purpose of this study is to investigate possible patient movement and anatomy alteration between the clinical image set acquisition, made after the needle implantation, and the patient irradiation and their influence on the quality of treatment. Methods: The authors used 3D U/S image sets and the corresponding treatment plans based on a 4D-treatment planning procedure: plans of 25 patients are obtained right after the needle implantation (clinical plan is based on this 3D image set) and just before and after themore » treatment delivery. The authors notice the slight decrease of treatment quality with increase of time gap between the clinical image set acquisition and the patient irradiation. 4D analysis of dose-volume-histograms (DVHs) for prostate: CTV1 = PTV, and urethra, rectum, and bladder as organs at risk (OARs) and conformity index (COIN) is presented, demonstrating the effect of prostate, OARs, and needles displacement. Results: The authors show that in the case that the patient body movement/anatomy alteration takes place, this results in modification of DVHs and radiobiological parameters, hence the plan quality. The observed average displacement of needles (1 mm) and of prostate (0.57 mm) is quite small as compared with the average displacement noted in several other reports [A. A. Martinez et al., Int. J. Radiat. Oncol., Biol., Phys. 49(1), 61-69 (2001); S. J. Damore et al., Int. J. Radiat. Oncol., Biol., Phys. 46(5), 1205-1211 (2000); P. J. Hoskin et al., Radiotherm. Oncol. 68(3), 285-288 (2003); E. Mullokandov et al., Int. J. Radiat. Oncol., Biol., Phys. 58(4), 1063-1071 (2004)] in the literature. Conclusions: Although the decrease of quality of dosimetric and radiobiological parameters occurs, this does not cause clinically unacceptable changes to the 3D dose distribution, according to our clinical protocol.« less

  20. A novel system for commissioning brachytherapy applicators: example of a ring applicator

    NASA Astrophysics Data System (ADS)

    Fonseca, Gabriel P.; Van den Bosch, Michiel R.; Voncken, Robert; Podesta, Mark; Verhaegen, Frank

    2017-11-01

    A novel system was developed to improve commissioning and quality assurance of brachytherapy applicators used in high dose rate (HDR). It employs an imaging panel to create reference images and to measure dwell times and dwell positions. As an example: two ring applicators of the same model were evaluated. An applicator was placed on the surface of an imaging panel and a HDR 192Ir source was positioned in an imaging channel above the panel to generate an image of the applicator, using the gamma photons of the brachytherapy source. The applicator projection image was overlaid with the images acquired by capturing the gamma photons emitted by the source dwelling inside the applicator. We verified 0.1, 0.2, 0.5 and 1.0 cm interdwell distances for different offsets, applicator inclinations and transfer tube curvatures. The data analysis was performed using in-house developed software capable of processing the data in real time, defining catheters and creating movies recording the irradiation procedure. One applicator showed up to 0.3 cm difference from the expected position for a specific dwell position. The problem appeared intermittently. The standard deviations of the remaining dwell positions (40 measurements) were less than 0.05 cm. The second ring applicator had a similar reproducibility with absolute coordinate differences from expected values ranging from  -0.10 up to 0.18 cm. The curvature of the transfer tube can lead to differences larger than 0.1 cm whilst the inclination of the applicator showed a negligible effect. The proposed method allows the verification of all steps of the irradiation, providing accurate information about dwell positions and dwell times. It allows the verification of small interdwell positions (⩽0.1 cm) and reduces measurement time. In addition, no additional radiation source is necessary since the HDR 192Ir source is used to generate an image of the applicator.

  1. MO-AB-BRA-03: Development of Novel Real Time in Vivo EPID Treatment Verification for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, G; Podesta, M; Reniers, B

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy treatments are employed worldwide to treat a wide variety of cancers. However, in vivo dose verification remains a challenge with no commercial dosimetry system available to verify the treatment dose delivered to the patient. We propose a novel dosimetry system that couples an independent Monte Carlo (MC) simulation platform and an amorphous silicon Electronic Portal Imaging Device (EPID) to provide real time treatment verification. Methods: MC calculations predict the EPID response to the photon fluence emitted by the HDR source by simulating the patient, the source dwell positions and times, and treatment complexities suchmore » as tissue compositions/densities and different applicators. Simulated results are then compared against EPID measurements acquired with ∼0.14s time resolution which allows dose measurements for each dwell position. The EPID has been calibrated using an Ir-192 HDR source and experiments were performed using different phantoms, including tissue equivalent materials (PMMA, lung and bone). A source positioning accuracy of 0.2 mm, without including the afterloader uncertainty, was ensured using a robotic arm moving the source. Results: An EPID can acquire 3D Cartesian source positions and its response varies significantly due to differences in the material composition/density of the irradiated object, allowing detection of changes in patient geometry. The panel time resolution allows dose rate and dwell time measurements. Moreover, predicted EPID images obtained from clinical treatment plans provide anatomical information that can be related to the patient anatomy, mostly bone and air cavities, localizing the source inside of the patient using its anatomy as reference. Conclusion: Results obtained show the feasibility of the proposed dose verification system that is capable to verify all the brachytherapy treatment steps in real time providing data about treatment delivery quality and also applicator/structure motion during or between treatments.« less

  2. The radiation response of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Mitchell, Stephen Andrew

    A clinically reliable predictive assay based on normal-tissue radiosensitivity may lead to improved tumour control through individualised dose prescriptions. In-vitro fibroblast radiosensitivity has been shown, in several studies, to correlate with late radiation morbidity. The aim of this study was to investigate some of the cellular mechanisms underlying the normal-tissue response. In this study, seventeen primary fibroblast strains were established by enzymatic disaggregation of skin biopsies obtained from patients. These comprised seven who experienced acute tissue reactions to radiotherapy, four patients with a normal response and six non-cancer volunteers. An AT cell line was included as a positive control for radiosensitivity. In-vitro radiosensitivity was measured using a clonogenic assay at both high (HDR: 1.6 Gymin-1) and low dose rate (LDR: 0.01 Gymin-1). The radiation parameter HDR SF2 was the most sensitive in discriminating the seven sensitive patients from the remaining ten normal patients (range 0.11-0.19 sensitive patients compared with 0.17-0.34 control patients: p<0.0001). Neither the use of an internal control or LDR radiation protocol increased this discrimination. Pulsed-field gel electrophoresis (PFGE) was used to measure the level of initial and residual double-strand breaks following irradiation. No correlation was found between HDR SF2 and initial DNA damage. However, a strong correlation was found between clonogenic survival and both residual DNA damage (measured over 10-70 Gy, allowing 4 h repair, correlation coefficient: 0.90, <0.0001) and the ratio of residual/initial DNA damage, with the sensitive cell lines generally showing a higher level of residual DNA damage. Cell-cycle delays were found in all 18 cell strains in response to 2 Gy irradiation, but were not found to discriminate between sensitive and normal patients. Associated studies found no mutations of the ATM gene in the five radiosensitive patients studied. However, a coding sequence alteration was found in the XRCC1 gene in one of the radiosensitive patients. These findings indicate that a DNA repair defect may be partly responsible for the extreme reactions to radiotherapy observed in a small percentage of patients and that with further modifications, an assay based on measurement of residual DNA damage may form the basis of a predictive test for radiosensitivity.

  3. [A novel serial port auto trigger system for MOSFET dose acquisition].

    PubMed

    Luo, Guangwen; Qi, Zhenyu

    2013-01-01

    To synchronize the radiation of microSelectron-HDR (Nucletron afterloading machine) and measurement of MOSFET dose system, a trigger system based on interface circuit was designed and corresponding monitor and trigger program were developed on Qt platform. This interface and control system was tested and showed stable operate and reliable work. This adopted serial port detect technique may expand to trigger application of other medical devices.

  4. Evaluation of 2 × 24-h dietary recalls combined with a food-recording booklet, against a 7-day food-record method among schoolchildren.

    PubMed

    Trolle, E; Amiano, P; Ege, M; Bower, E; Lioret, S; Brants, H; Kaic-Rak, A; de Boer, E J; Andersen, L F

    2011-07-01

    The aim of this study was to evaluate the estimated energy, nutrient and food intake from the suggested trans-European methodology for undertaking representative dietary surveys among schoolchildren: 2 × 24-h dietary recalls (24-HDRs) combined with a food-recording booklet (FRB), using EPIC-Soft pc-program (the software developed to conduct 24-HDRs in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study), against a 7-day food-record (7-dFR) method among Danish schoolchildren. A total of 74 children aged 7-8 years and 70 children aged 12-13 years were recruited through the Civil Registration System in Denmark. Each child and one of their parents completed two face-to-face 24-HDRs, combined with optional use of a FRB, followed by a 7-day-estimated FR. Energy intake was significantly higher with the 24-HDR method than with the 7-dFR method for both age groups. Mean energy intake was 6% higher for the youngest (P = 0.02) and 11% for the oldest children (P = 0.01); underreporting of energy occurs among the oldest children, being less present with the 24-HDR method. The intakes of carbohydrate and dietary fiber (absolute and related to energy) were significantly higher with the 24-HDR than with the 7-dFR for both age groups (P < 0.001). No significant differences between the two methods were observed for absolute intake of fat and added sugar between both age groups, and for intake of protein among the 7- to 8-year olds. The percentage of energy intake from fat from the 24-HDR, however, was significantly lower for both age groups and for energy intake from added sugar for the 12- to 13-year olds. The 2 × 24-HDR method compared with the 7-dFR yields relatively good values on the group level for many macronutrients and foods. However, some differences in estimated intakes of macronutrients suggest the need to carefully adapt the tools to be age and country specific. There is a tendency for parents and schoolchildren to report a healthier diet with the 24-HDR than with the FRs; this results in some concern about the method and has to be studied further.

  5. In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Renu; Jursinic, Paul A.

    2013-07-15

    Purpose: To show the feasibility of clinical implementation of OSLDs for high dose-rate (HDR) in vivo dosimetry for gynecological and breast patients. To discuss how the OSLDs were characterized for an Ir-192 source, taking into account low gamma energy and high dose gradients. To describe differences caused by the dose calculation formalism of treatment planning systems.Methods: OSLD irradiations were made using the GammaMedplus iX Ir-192 HDR, Varian Medical Systems, Milpitas, CA. BrachyVision versions 8.9 and 10.0, Varian Medical Systems, Milpitas, CA, were used for calculations. Version 8.9 used the TG-43 algorithm and version 10.0 used the Acuros algorithm. The OSLDsmore » (InLight Nanodots) were characterized for Ir-192. Various phantoms were created to assess calculated and measured doses and the angular dependence and self-absorption of the Nanodots. Following successful phantom measurements, patient measurements for gynecological patients and breast cancer patients were made and compared to calculated doses.Results: The OSLD sensitivity to Ir-192 compared to 6 MV is between 1.10 and 1.25, is unique to each detector, and changes with accumulated dose. The measured doses were compared to those predicted by the treatment planning system and found to be in agreement for the gynecological patients to within measurement uncertainty. The range of differences between the measured and Acuros calculated doses was -10%-14%. For the breast patients, there was a discrepancy of -4.4% to +6.5% between the measured and calculated doses at the skin surface when the Acuros algorithm was used. These differences were within experimental uncertainty due to (random) error in the location of the detector with respect to the treatment catheter.Conclusions: OSLDs can be successfully used for HDR in vivo dosimetry. However, for the measurements to be meaningful one must account for the angular dependence, volume-averaging, and the greater sensitivity to Ir-192 gamma rays than to 6 MV x-rays if 6 MV x-rays were used for OSLD calibration. The limitations of the treatment planning algorithm must be understood, especially for surface dose measurements. Use of in vivo dosimetry for HDR brachytherapy treatments is feasible and has the potential to detect and prevent gross errors. In vivo HDR brachytherapy should be included as part of the QA for a HDR brachytherapy program.« less

  6. The use of photostimulable phosphor systems for periodic quality assurance in radiotherapy.

    PubMed

    Conte, L; Bianchi, C; Cassani, E; Monciardini, M; Mordacchini, C; Novario, R; Strocchi, S; Stucchi, P; Tanzi, F

    2008-03-01

    The fusion of radiological and optical images can be achieved through charging a photostimulable phosphor plate (PSP) with an exposure to a field of X- or gamma-rays, followed by exposure to an optical image which discharges the plate in relation to the amount of incident light. According to this PSP characteristic, we developed a simple method for periodic quality assurance (QA) of light/radiation field coincidence, distance indicator, field size indicators, crosshair centering, coincidence of radiation and mechanical isocenter for linear accelerators. The geometrical accuracy of radiological units can be subjected to the same QA method. Further, the source position accuracy for an HDR remote afterloader can be checked by taking an autoradiography of the radioactive source and simultaneously an optical image of a reference geometrical system.

  7. Endocervical ultrasound applicator for integrated hyperthermia and HDR brachytherapy in the treatment of locally advanced cervical carcinoma.

    PubMed

    Wootton, Jeffery H; Hsu, I-Chow Joe; Diederich, Chris J

    2011-02-01

    The clinical success of hyperthermia adjunct to radiotherapy depends on adequate temperature elevation in the tumor with minimal temperature rise in organs at risk. Existing technologies for thermal treatment of the cervix have limited spatial control or rapid energy falloff. The objective of this work is to develop an endocervical applicator using a linear array of multisectored tubular ultrasound transducers to provide 3-D conformal, locally targeted hyperthermia concomitant to radiotherapy in the uterine cervix. The catheter-based device is integrated within a HDR brachytherapy applicator to facilitate sequential and potentially simultaneous heat and radiation delivery. Treatment planning images from 35 patients who underwent HDR brachytherapy for locally advanced cervical cancer were inspected to assess the dimensions of radiation clinical target volumes (CTVs) and gross tumor volumes (GTVs) surrounding the cervix and the proximity of organs at risk. Biothermal simulation was used to identify applicator and catheter material parameters to adequately heat the cervix with minimal thermal dose accumulation in nontargeted structures. A family of ultrasound applicators was fabricated with two to three tubular transducers operating at 6.6-7.4 MHz that are unsectored (360 degrees), bisectored (2 x 180 degrees), or trisectored (3 x 120 degrees) for control of energy deposition in angle and along the device length in order to satisfy anatomical constraints. The device is housed in a 6 mm diameter PET catheter with cooling water flow for endocervical implantation. Devices were characterized by measuring acoustic efficiencies, rotational acoustic intensity distributions, and rotational temperature distributions in phantom. The CTV in HDR brachytherapy plans extends 20.5 +/- 5.0 mm from the endocervical tandem with the rectum and bladder typically <8 mm from the target boundary. The GTV extends 19.4 +/- 7.3 mm from the tandem. Simulations indicate that for 60 min treatments the applicator can heat to 41 degrees C and deliver > 5EM(43 degrees C) over 4-5 cm diameter with Tmax < 45 degrees C and 1 kg m(-3) s(-1) blood perfusion. The 41 degrees C contour diameter is reduced to 3-4 cm at 3 kg m(-3) s(-1) perfusion. Differential power control to transducer elements and sectors demonstrates tailoring of heating along the device length and in angle. Sector cuts are associated with a 14-47 degrees acoustic dead zone, depending on cut width, resulting in a approximately 2-4 degrees C temperature reduction within the dead zone below Tmax. Dead zones can be oriented for thermal protection of the rectum and bladder. Fabricated devices have acoustic efficiencies of 33.4%-51.8% with acoustic output that is well collimated in length, reflects the sectoring strategy, and is strongly correlated with temperature distributions. A catheter-based ultrasound applicator was developed for endocervical implantation with locally targeted, 3-D conformal thermal delivery to the uterine cervix. Feasibility of heating clinically relevant target volumes was demonstrated with power control along the device length and in angle to treat the cervix with minimal thermal dose delivery to the rectum and bladder.

  8. Trans-Pacific HDR Satellite Communications Experiment Phase-2: Experimental Network and Demonstration Plan

    NASA Technical Reports Server (NTRS)

    Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Hsu, Eddie; Bergman, Larry; Bhasin, Kul; Gary, Pat

    1998-01-01

    The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. Following the first phase, the second phase experiment is currently prepared. This paper describes the experimental network configuration, application demonstration, and performance evaluation plan of the second phase experiment.

  9. Vestibulosympathetic reflex during orthostatic challenge in aging humans

    NASA Technical Reports Server (NTRS)

    Monahan, Kevin D.; Ray, Chester A.

    2002-01-01

    Aging attenuates the increase in muscle sympathetic nerve activity (MSNA) and elicits hypotension during otolith organ engagement in humans. The purpose of the present study was to determine the neural and cardiovascular responses to otolithic engagement during orthostatic stress in older adults. We hypothesized that age-related impairments in the vestibulosympathetic reflex would persist during orthostatic challenge in older subjects and might compromise arterial blood pressure regulation. MSNA, arterial blood pressure, and heart rate responses to head-down rotation (HDR) performed with and without lower body negative pressure (LBNP) in prone subjects were measured. Ten young (27 +/- 1 yr) and 11 older subjects (64 +/- 1 yr) were studied prospectively. HDR performed alone elicited an attenuated increase in MSNA in older subjects (Delta106 +/- 28 vs. Delta20 +/- 7% for young and older subjects). HDR performed during simultaneous orthostatic stress increased total MSNA further in young (Delta53 +/- 15%; P < 0.05) but not older subjects (Delta-5 +/- 4%). Older subjects demonstrated consistent significant hypotension during HDR performed both alone (Delta-6 +/- 2 mmHg) and during LBNP (Delta-7 +/- 2 mmHg). These data provide experimental support for the concept that age-related impairments in the vestibulosympathetic reflex persist during orthostatic challenge in older adults. Furthermore, these findings are consistent with the concept that age-related alterations in vestibular function might contribute to altered orthostatic blood pressure regulation with age in humans.

  10. In vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD, and scintillation detector.

    PubMed

    Lambert, Jamil; Nakano, Tatsuya; Law, Sue; Elsey, Justin; McKenzie, David R; Suchowerska, Natalka

    2007-05-01

    The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An 192Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the 192Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR 192Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.

  11. An experimental MOSFET approach to characterize (192)Ir HDR source anisotropy.

    PubMed

    Toye, W C; Das, K R; Todd, S P; Kenny, M B; Franich, R D; Johnston, P N

    2007-09-07

    The dose anisotropy around a (192)Ir HDR source in a water phantom has been measured using MOSFETs as relative dosimeters. In addition, modeling using the EGSnrc code has been performed to provide a complete dose distribution consistent with the MOSFET measurements. Doses around the Nucletron 'classic' (192)Ir HDR source were measured for a range of radial distances from 5 to 30 mm within a 40 x 30 x 30 cm(3) water phantom, using a TN-RD-50 MOSFET dosimetry system with an active area of 0.2 mm by 0.2 mm. For each successive measurement a linear stepper capable of movement in intervals of 0.0125 mm re-positioned the MOSFET at the required radial distance, while a rotational stepper enabled angular displacement of the source at intervals of 0.9 degrees . The source-dosimeter arrangement within the water phantom was modeled using the standardized cylindrical geometry of the DOSRZnrc user code. In general, the measured relative anisotropy at each radial distance from 5 mm to 30 mm is in good agreement with the EGSnrc simulations, benchmark Monte Carlo simulation and TLD measurements where they exist. The experimental approach employing a MOSFET detection system of small size, high spatial resolution and fast read out capability allowed a practical approach to the determination of dose anisotropy around a HDR source.

  12. SU-E-J-49: Design and Fabrication of Custom 3D Printed Phantoms for Radiation Therapy Research and Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, C; Xing, L

    2015-06-15

    Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securingmore » them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.« less

  13. High-Dose-Rate Interstitial Brachytherapy as Monotherapy for Clinically Localized Prostate Cancer: Treatment Evolution and Mature Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamboglou, Nikolaos; Tselis, Nikolaos, E-mail: ntselis@hotmail.com; Baltas, Dimos

    2013-03-01

    Purpose: To report the clinical outcome of high-dose-rate (HDR) interstitial (IRT) brachytherapy (BRT) as sole treatment (monotherapy) for clinically localized prostate cancer. Methods and Materials: Between January 2002 and December 2009, 718 consecutive patients with clinically localized prostate cancer were treated with transrectal ultrasound (TRUS)-guided HDR monotherapy. Three treatment protocols were applied; 141 patients received 38.0 Gy using one implant in 4 fractions of 9.5 Gy with computed tomography-based treatment planning; 351 patients received 38.0 Gy in 4 fractions of 9.5 Gy, using 2 implants (2 weeks apart) and intraoperative TRUS real-time treatment planning; and 226 patients received 34.5 Gy,more » using 3 single-fraction implants of 11.5 Gy (3 weeks apart) and intraoperative TRUS real-time treatment planning. Biochemical failure was defined according to the Phoenix consensus, and toxicity was evaluated using Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 52.8 months. The 36-, 60-, and 96-month biochemical control and metastasis-free survival rates for the entire cohort were 97%, 94%, and 90% and 99%, 98%, and 97%, respectively. Toxicity was scored per event, with 5.4% acute grade 3 genitourinary and 0.2% acute grade 3 gastrointestinal toxicity. Late grade 3 genitourinary and gastrointestinal toxicities were 3.5% and 1.6%, respectively. Two patients developed grade 4 incontinence. No other instance of grade 4 or greater acute or late toxicity was reported. Conclusion: Our results confirm IRT-HDR-BRT is safe and effective as monotherapy for clinically localized prostate cancer.« less

  14. High-Dose-Rate Intraoperative Radiation Therapy for Recurrent Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, David J.; Chan, Kelvin; Wolden, Suzanne

    2010-03-15

    Purpose: To report the use of high-dose-rate intraoperative radiation therapy (HDR-IORT) for recurrent head-and-neck cancer (HNC) at a single institution. Methods and Materials: Between July 1998 and February 2007, 34 patients with recurrent HNC received 38 HDR-IORT treatments using a Harrison-Anderson-Mick applicator with Iridium-192. A single fraction (median, 15 Gy; range, 10-20 Gy) was delivered intraoperatively after surgical resection to the region considered at risk for close or positive margins. In all patients, the target region was previously treated with external beam radiation therapy (median dose, 63 Gy; range, 24-74 Gy). The 1- and 2-year estimates for in-field local progression-freemore » survival (LPFS), locoregional progression-free survival (LRPFS), distant metastases-free survival (DMFS), and overall survival (OS) were calculated. Results: With a median follow-up for surviving patients of 23 months (range, 6-54 months), 8 patients (24%) are alive and without evidence of disease. The 1- and 2-year LPFS rates are 66% and 56%, respectively, with 13 (34%) in-field recurrences. The 1- and 2-year DMFS rates are 81% and 62%, respectively, with 10 patients (29%) developing distant failure. The 1- and 2-year OS rates are 73% and 55%, respectively, with a median time to OS of 24 months. Severe complications included cellulitis (5 patients), fistula or wound complications (3 patients), osteoradionecrosis (1 patient), and radiation-induced trigeminal neuralgia (1 patient). Conclusions: HDR-IORT has shown encouraging local control outcomes in patients with recurrent HNC with acceptable rates of treatment-related morbidity. Longer follow-up with a larger cohort of patients is needed to fully assess the benefit of this procedure.« less

  15. SU-E-T-785: Using Systems Engineering to Design HDR Skin Treatment Operation for Small Lesions to Enhance Patient Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, C; Baikadi, M; Peters, C

    2015-06-15

    Purpose: Using systems engineering to design HDR skin treatment operation for small lesions using shielded applicators to enhance patient safety. Methods: Systems engineering is an interdisciplinary field that offers formal methodologies to study, design, implement, and manage complex engineering systems as a whole over their life-cycles. The methodologies deal with human work-processes, coordination of different team, optimization, and risk management. The V-model of systems engineering emphasize two streams, the specification and the testing streams. The specification stream consists of user requirements, functional requirements, and design specifications while the testing on installation, operational, and performance specifications. In implementing system engineering tomore » this project, the user and functional requirements are (a) HDR unit parameters be downloaded from the treatment planning system, (b) dwell times and positions be generated by treatment planning system, (c) source decay be computer calculated, (d) a double-check system of treatment parameters to comply with the NRC regulation. These requirements are intended to reduce human intervention to improve patient safety. Results: A formal investigation indicated that the user requirements can be satisfied. The treatment operation consists of using the treatment planning system to generate a pseudo plan that is adjusted for different shielded applicators to compute the dwell times. The dwell positions, channel numbers, and the dwell times are verified by the medical physicist and downloaded into the HDR unit. The decayed source strength is transferred to a spreadsheet that computes the dwell times based on the type of applicators and prescribed dose used. Prior to treatment, the source strength, dwell times, dwell positions, and channel numbers are double-checked by the radiation oncologist. No dosimetric parameters are manually calculated. Conclusion: Systems engineering provides methodologies to effectively design the HDR treatment operation that minimize human intervention and improve patient safety.« less

  16. Dosimetric characteristics of a new unit for electronic skin brachytherapy

    PubMed Central

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose

    2014-01-01

    Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622

  17. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Sitha

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on themore » 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.« less

  18. SU-E-T-795: Validations of Dose Calculation Accuracy of Acuros BV in High-Dose-Rate (HDR) Brachytherapy with a Shielded Cylinder Applicator Using Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Department of Engineering Physics, Tsinghua University, Beijing; Tian, Z

    Purpose: Acuros BV has become available to perform accurate dose calculations in high-dose-rate (HDR) brachytherapy with phantom heterogeneity considered by solving the Boltzmann transport equation. In this work, we performed validation studies regarding the dose calculation accuracy of Acuros BV in cases with a shielded cylinder applicator using Monte Carlo (MC) simulations. Methods: Fifteen cases were considered in our studies, covering five different diameters of the applicator and three different shielding degrees. For each case, a digital phantom was created in Varian BrachyVision with the cylinder applicator inserted in the middle of a large water phantom. A treatment plan withmore » eight dwell positions was generated for these fifteen cases. Dose calculations were performed with Acuros BV. We then generated a voxelized phantom of the same geometry, and the materials were modeled according to the vendor’s specifications. MC dose calculations were then performed using our in-house developed fast MC dose engine for HDR brachytherapy (gBMC) on a GPU platform, which is able to simulate both photon transport and electron transport in a voxelized geometry. A phase-space file for the Ir-192 HDR source was used as a source model for MC simulations. Results: Satisfactory agreements between the dose distributions calculated by Acuros BV and those calculated by gBMC were observed in all cases. Quantitatively, we computed point-wise dose difference within the region that receives a dose higher than 10% of the reference dose, defined to be the dose at 5mm outward away from the applicator surface. The mean dose difference was ∼0.45%–0.51% and the 95-percentile maximum difference was ∼1.24%–1.47%. Conclusion: Acuros BV is able to accurately perform dose calculations in HDR brachytherapy with a shielded cylinder applicator.« less

  19. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    PubMed

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  20. Genotoxic effects of high dose rate X‐ray and low dose rate gamma radiation in ApcMin/+ mice

    PubMed Central

    Eide, Dag M.; Brede, Dag A.; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H.; Bouffler, Simon D.; Brunborg, Gunnar; Olsen, Ann Karin

    2017-01-01

    Risk estimates for radiation‐induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc+/+ (wild type) and ApcMin/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60Co‐γ‐rays at a LDR (2.2 mGy h−1) or acutely exposed to 2.6 Gy HDR X‐rays (1.3 Gy min−1). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig‐a gene mutation assay), and levels of DNA lesions (Comet assay, single‐strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3‐ and 10‐fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The ApcMin/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560–569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society PMID:28856770

  1. External beam boost versus interstitial high-dose-rate brachytherapy boost in the adjuvant radiotherapy following breast-conserving therapy in early-stage breast cancer: a dosimetric comparison

    PubMed Central

    Melchert, Corinna; Kovács, György

    2016-01-01

    Purpose This study aims to compare the dosimetric data of local tumor's bed dose escalation (boost) with photon beams (external beam radiation therapy – EBRT) versus high-dose-rate interstitial brachytherapy (HDR-BT) after breast-conserving treatment in women with early-stage breast cancer. Material and methods We analyzed the treatment planning data of 136 irradiated patients, treated between 2006 and 2013, who underwent breast-conserving surgery and adjuvant whole breast irradiation (WBI; 50.4 Gy) and boost (HDR-BT: 10 Gy in one fraction [n = 36]; EBRT: 10 Gy in five fractions [n = 100]). Organs at risk (OAR; heart, ipsilateral lung, skin, most exposed rib segment) were delineated. Dosimetric parameters were calculated with the aid of dose-volume histograms (DVH). A non-parametric test was performed to compare the two different boost forms. Results There was no difference for left-sided cancers regarding the maximum dose to the heart (HDR-BT 29.8% vs. EBRT 29.95%, p = 0.34). The maximum doses to the other OAR were significantly lower for HDR-BT (Dmax lung 47.12% vs. 87.7%, p < 0.01; rib 61.17% vs. 98.5%, p < 0.01; skin 57.1% vs. 94.75%, p < 0.01; in the case of right-sided breast irradiation, dose of the heart 6.00% vs. 16.75%, p < 0.01). Conclusions Compared to EBRT, local dose escalation with HDR-BT presented a significant dose reduction to the investigated OAR. Only left-sided irradiation showed no difference regarding the maximum dose to the heart. Reducing irradiation exposure to OAR could result in a reduction of long-term side effects. Therefore, from a dosimetric point of view, an interstitial boost complementary to WBI via EBRT seems to be more advantageous in the adjuvant radiotherapy of breast cancer. PMID:27648082

  2. A Prospective Longitudinal Clinical Trial Evaluating Quality of Life After Breast-Conserving Surgery and High-Dose-Rate Interstitial Brachytherapy for Early-Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garsa, Adam A.; Ferraro, Daniel J.; DeWees, Todd A.

    2013-12-01

    Purpose: To prospectively examine quality of life (QOL) of patients with early stage breast cancer treated with accelerated partial breast irradiation (APBI) using high-dose-rate (HDR) interstitial brachytherapy. Methods and Materials: Between March 2004 and December 2008, 151 patients with early stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients included those with Tis-T2 tumors measuring ≤3 cm excised with negative surgical margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. QOL was measured using European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, versionmore » 3.0, and QLQ-BR23 questionnaires. The QLQ-C30 and QLQ-BR23 questionnaires were evaluated during pretreatment and then at 6 to 8 weeks, 3 to 4 months, 6 to 8 months, and 1 and 2 years after treatment. Results: The median follow-up was 55 months. Breast symptom scores remained stable in the months after treatment, and they significantly improved 6 to 8 months after treatment. Scores for emotional functioning, social functioning, and future perspective showed significant improvement 2 years after treatment. Symptomatic fat necrosis was associated with several changes in QOL, including increased pain, breast symptoms, systemic treatment side effects, dyspnea, and fatigue, as well as decreased role functioning, emotional functioning, and social functioning. Conclusions: HDR multicatheter interstitial brachytherapy was well tolerated, with no significant detrimental effect on measured QOL scales/items through 2 years of follow-up. Compared to pretreatment scores, there was improvement in breast symptoms, emotional functioning, social functioning, and future perspective 2 years after treatment.« less

  3. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635

  4. WE-G-BRA-07: Analyzing the Safety Implications of a Brachytherapy Process Improvement Project Utilizing a Novel System-Theory-Based Hazard-Analysis Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, A; Samost, A; Viswanathan, A

    Purpose: To investigate the hazards in cervical-cancer HDR brachytherapy using a novel hazard-analysis technique, System Theoretic Process Analysis (STPA). The applicability and benefit of STPA to the field of radiation oncology is demonstrated. Methods: We analyzed the tandem and ring HDR procedure through observations, discussions with physicists and physicians, and the use of a previously developed process map. Controllers and their respective control actions were identified and arranged into a hierarchical control model of the system, modeling the workflow from applicator insertion through initiating treatment delivery. We then used the STPA process to identify potentially unsafe control actions. Scenarios weremore » then generated from the identified unsafe control actions and used to develop recommendations for system safety constraints. Results: 10 controllers were identified and included in the final model. From these controllers 32 potentially unsafe control actions were identified, leading to more than 120 potential accident scenarios, including both clinical errors (e.g., using outdated imaging studies for planning), and managerial-based incidents (e.g., unsafe equipment, budget, or staffing decisions). Constraints identified from those scenarios include common themes, such as the need for appropriate feedback to give the controllers an adequate mental model to maintain safe boundaries of operations. As an example, one finding was that the likelihood of the potential accident scenario of the applicator breaking during insertion might be reduced by establishing a feedback loop of equipment-usage metrics and equipment-failure reports to the management controller. Conclusion: The utility of STPA in analyzing system hazards in a clinical brachytherapy system was demonstrated. This technique, rooted in system theory, identified scenarios both technical/clinical and managerial in nature. These results suggest that STPA can be successfully used to analyze safety in brachytherapy and may prove to be an alternative to other hazard analysis techniques.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves themore » development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.« less

  6. [Developments in brachytherapy].

    PubMed

    Ikeda, H

    1995-09-01

    Brachytherapy is one of the ideal methods of radiotherapy because of the concentration of a high dose on the target. Recent developments, including induction of afterloading method, utilization of small-sized high-activity sources such as Iridium-192, and induction of high technology and computerization, have made for shortening of irradiation time and source handling, which has led to easier management of the patient during treatment. Dose distribution at high dose rate (HDR) is at least as good as that of low dose rate (LDR), and selection of fractionation and treatment time assures even greater biological effects on hypoxic tumor cells than LDR. Experience with HDR brachytherapy in uterine cervix cancer using Cobalt-60 during the past 20 years in this country has gradually been evaluated in U.S. and Europe. The indications for HDR treatment have extended to esophagus, bronchus, bile duct, brain, intraoperative placement of source guide, and perineal region using templates, as well as the conventional use for uterus, tongue and so on.

  7. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    PubMed

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle.

    PubMed

    Graf, Marco; Bonetti, Diego; Lockhart, Arianna; Serhal, Kamar; Kellner, Vanessa; Maicher, André; Jolivet, Pascale; Teixeira, Maria Teresa; Luke, Brian

    2017-06-29

    Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, R; Le, Y; Armour, E

    Purpose: Dose-response studies in radiation therapy are typically using single response values for tumors across ensembles of tumors. Using the high dose rate (HDR) treatment plan dose grid and pre- and post-therapy FDG-PET images, we look for correlations between voxelized dose and FDG uptake response in individual tumors. Methods: Fifteen patients were treated for localized rectal cancer using 192Ir HDR brachytherapy in conjunction with surgery. FDG-PET images were acquired before HDR therapy and 6–8 weeks after treatment (prior to surgery). Treatment planning was done on a commercial workstation and the dose grid was calculated. The two PETs and the treatmentmore » dose grid were registered to each other using non-rigid registration. The difference in PET SUV values before and after HDR was plotted versus absorbed radiation dose for each voxel. The voxels were then separated into bins for every 400 cGy of absorbed dose and the bin average values plotted similarly. Results: Individual voxel doses did not correlate with PET response; however, when group into tumor subregions corresponding to dose bins, eighty percent of the patients showed a significant positive correlation (R2 > 0) between PET uptake difference in the targeted region and the absorbed dose. Conclusion: By considering larger ensembles of voxels, such as organ average absorbed dose or the dose bins considered here, valuable information may be obtained. The dose-response correlations as measured by FDG-PET difference potentially underlines the importance of FDG-PET as a measure of response, as well as the value of voxelized information.« less

  10. Response of a rice paddy soil methanogen to syntrophic growth as revealed by transcriptional analyses.

    PubMed

    Liu, Pengfei; Yang, Yanxiang; Lü, Zhe; Lu, Yahai

    2014-08-01

    Members of Methanocellales are widespread in paddy field soils and play the key role in methane production. These methanogens feature largely in these organisms’ adaptation to low H2 and syntrophic growth with anaerobic fatty acid oxidizers. The adaptive mechanisms, however, remain unknown. In the present study, we determined the transcripts of 21 genes involved in the key steps of methanogenesis and acetate assimilation of Methanocella conradii HZ254, a strain recently isolated from paddy field soil. M. conradii was grown in monoculture and syntrophically with Pelotomaculum thermopropionicum (a propionate syntroph) or Syntrophothermus lipocalidus (a butyrate syntroph). Comparison of the relative transcript abundances showed that three hydrogenase-encoding genes and all methanogenesis-related genes tested were upregulated in cocultures relative to monoculture. The genes encoding formylmethanofuran dehydrogenase (Fwd), heterodisulfide reductase (Hdr), and the membrane-bound energy-converting hydrogenase (Ech) were the most upregulated among the evaluated genes. The expression of the formate dehydrogenase (Fdh)-encoding gene also was significantly upregulated. In contrast, an acetate assimilation gene was downregulated in cocultures. The genes coding for Fwd, Hdr, and the D subunit of F420-nonreducing hydrogenase (Mvh) form a large predicted transcription unit; therefore, the Mvh/Hdr/Fwd complex, capable of mediating the electron bifurcation and connecting the first and last steps of methanogenesis, was predicted to be formed in M. conradii. We propose that Methanocella methanogens cope with low H2 and syntrophic growth by (i) stabilizing the Mvh/Hdr/Fwd complex and (ii) activating formatedependent methanogenesis.

  11. Efficient Knock-in of a Point Mutation in Porcine Fibroblasts Using the CRISPR/Cas9-GMNN Fusion Gene.

    PubMed

    Gerlach, Max; Kraft, Theresia; Brenner, Bernhard; Petersen, Björn; Niemann, Heiner; Montag, Judith

    2018-06-13

    During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7 -gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SCR7 (5,6-bis((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol), during genome editing and screened cell cultures for the point mutation. However, this approach did not yield increased knock-in rates. In an alternative approach, we fused humanized Cas9 (hCas9) to the N-terminal peptide of the Geminin gene ( GMNN ). The fusion protein is degraded in NHEJ-dominated cell cycle phases, which should increase HDR-rates. Using hCas9- GMNN and point mutation-specific real time PCR screening, we found a two-fold increase in genome edited cell cultures. This increase of HDR by hCas9- GMNN provides a promising way to enrich specific knock-in in porcine fibroblast cultures for somatic cloning approaches.

  12. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells.

    PubMed

    Lin, Jianfei; Chen, He; Luo, Ling; Lai, Yongrong; Xie, Wei; Kee, Kehkooi

    2015-01-01

    To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The Ansel Adams zone system: HDR capture and range compression by chemical processing

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2010-02-01

    We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.

  14. High dynamic range subjective testing

    NASA Astrophysics Data System (ADS)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  15. Advanced Shipboard Control Systems

    DTIC Science & Technology

    2001-05-07

    Nov 1989: 41-47. Carnivale, J. A. DD-21 Presentation. Jan 1999. Deitel H.M. and P. J. Deitel . C++ How To Program . Upper Saddle River...One distinct advantage to an OSI model is that each level of the network is clearly defined, allowing different users to understand how a specific...Pri) field that tells the layer how this message is to be sent. The L2Hdr is an 8 bit section of the Link Protocol Data Unit/MAC Protocol Data

  16. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    PubMed Central

    Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David

    2013-01-01

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011). Conclusions: The authors have created an OSLD-based 192Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date. PMID:24320455

  17. Implementation of High-Dose-Rate Brachytherapy and Androgen Deprivation in Patients With Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilleby, Wolfgang, E-mail: wolfgang.lilleby@ous-hf.no; Tafjord, Gunnar; Raabe, Nils K.

    2012-07-01

    Purpose: To evaluate outcome (overall survival [OS], the actuarial 5-year cancer-specific survival [CSS], disease-free survival [DFS], biochemical failure-free survival [BFS]), complications and morbidity in patients treated with high-dose-rate brachytherapy (HDR-BT) boost and hormonal treatment with curative aims. Methods: Between 2004 and 2009, 275 prospectively followed pN0/N0M0 patients were included: 19 patients (7%) with T2, Gleason score 7 and prostate-specific antigen (PSA) <10 and 256 patients (93%) with T3 or Gleason score 8-10 or PSA >20 received multimodal treatment with conformal four-field radiotherapy (prostate/vesiculae 2 Gy Multiplication-Sign 25) combined with HDR-BT (iridium 192; prostate 10 Gy Multiplication-Sign 2) with long-term androgenmore » deprivation therapy (ADT). Results: After a median observation time of 44.2 months (range, 10.4-90.5 months) 12 patients had relapsed clinically and/or biochemically and 10 patients were dead, of which 2 patients died from prostate cancer. Five-year estimates of BFS, CSS, DFS, and OS rates were 98.5%, 99.3%, 95.6%, and 96.3%, respectively. None of the patients with either Gleason score <8 or with intermediate risk profile had relapsed. The number of HDR-BT treatments was not related to outcome. Despite of age (median, 65.7 years; range, 45.7-77 years) and considerable pretreatment comorbidity in 39 of 275 patients, Genitourinary treatment-related morbidity was moderate with long-lasting Radiation Therapy Oncology Group Grade 2 voiding problems in 26 patients (9.5%) and occasionally mucous discharge in 20 patients (7%), none with Grade >2 for gastrointestinal at follow-up. Complications during implantations were related to pubic arch interference (4 patients) and lithotomy time, causing 2 patients to develop compartment syndrome. Conclusion: Despite still preliminary observations, our 5-year outcome estimates favor the implementation of high-dose-rate brachytherapy in high-risk patients combined with conformal external radiotherapy and long-term ADT. High-quality implants can be achieved by a trained specialized team at a high-turnover center using transrectal ultrasound-based treatment plans with acceptable morbidity and complication rates.« less

  18. Performance assessment of the BEBIG MultiSource® high dose rate brachytherapy treatment unit

    NASA Astrophysics Data System (ADS)

    Palmer, Antony; Mzenda, Bongile

    2009-12-01

    A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource® High Dose Rate (HDR) brachytherapy treatment unit with an 192Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high quality brachytherapy treatment delivery, taking the above factors into account.

  19. Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy

    PubMed Central

    Kertzscher, Gustavo; Beddar, Sam

    2017-01-01

    The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16 to 134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25-nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of this technology could lead to an improved understanding of error types and frequencies during BT and to improved patient safety during treatment. PMID:28475494

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Ellis, R; Traughber, B

    Purpose: Treating gynecological cancers with interstitial high-dose-rate (HDR) brachytherapy requires precise reconstruction of catheter positions to obtain accurate dosimetric plans. In this study, we investigated the degree of reproducibility of dosimetric plans for Syed HDR brachytherapy. Methods: We randomly selected five patients having cervix-vaginal cancer who were recently treated in our clinic with interstitial HDR brachytherapy with a prescription dose of 25–30 Gy in five fractions. Interstitial needles/catheters were placed under fluoroscopic guidance and intra-operative 3T MRI scan was performed to confirm the desired catheter placement for adequate target volume coverage. A CT scan was performed and fused with themore » MRI for delineating high-risk CTV (HR-CTV), intermediate-risk CTV (IR-CTV) and OARs. HDR treatment plans were generated using Oncentra planning software. A single plan was used for all five fractions of treatment for each patient. For this study, we took the original clinical plan and removed all the reconstructed catheters from the plan keeping the original contours unchanged. Then, we manually reconstructed all the catheters and entered the same dwell time from the first original clinical plan. The dosimetric parameters studied were: D90 for HR-CTV and IR-CV, and D2cc for bladder, rectum, sigmoid and bowel. Results: The mean of absolute differences in dosimetric coverage (D90) were (range): 1.3% (1.0–2.0%) and 2.0% (0.9–3.6%) for HR-CTV and IR-CTV, respectively. In case of OARs, the mean of absolute variations in D2cc were (range): 4.7% (0.7–8.9%) for bladder, 1.60% (0.3–3.2%) for rectum, 1.6% (0–3.9%) for sigmoid, and 1.8% (0–5.1%) for bowel. Conclusion: Overall, the reproducibility of interstitial HDR plans was within clinically acceptable limit. Observed maximum variation in D2cc for bladder. If number of catchers and dwell points were relatively low or any one catheter was heavily loaded, then reproducibility of the plan was more sensitive to the accuracy of catheter reconstruction.« less

  1. SU-E-T-237: Deformable Image Registration and Deformed Dose Composite for Volumetric Evaluation of Multimodal Gynecological Cancer Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albani, D; Sherertz, T; Ellis, R

    2015-06-15

    Purpose: Radiotherapy plans for patients with cervical cancer treated with EBRT followed by HDR brachytherapy are optimized by constraining dose to organs at risk (OARs). Risk of treatment related toxicities is estimated based on the dose received to the hottest 2cc (D2cc) of the bladder, bowel, rectum, and sigmoid. To account for intrafractional variation in OAR volume and positioning, a dose deformation method is proposed for more accurate evaluation of dose distribution for these patients. Methods: Radiotherapy plans from five patients who received 50.4Gy pelvic EBRT followed by 30Gy in five fractions of HDR brachytherapy, using split-ring and tandem applicators,more » were retrospectively evaluated using MIM Software version 6.0. Dose accumulation workflows were used for initial deformation of EBRT and HDR planning CTs onto a common HDR planning CT. The Reg Refine tool was applied with user-specified local alignments to refine the deformation. Doses from the deformed images were transferred to the common planning CT. Deformed doses were scaled to the EQD2, following the linear-quadratic BED model (considered α/β ratio for tumor as 10, and 3 for rest of the tissues), and then combined to create the dose composite. MIM composite doses were compared to the clinically-reported plan assessments based upon the American Brachytherapy Society (ABS) guidelines for cervical HDR brachytherapy treatment. Results: Bladder D2cc exhibited significant reduction (−11.4%±3.85%, p< 0.02) when evaluated using MIM deformable dose composition. Differences observed for bowel, rectum, and sigmoid D2cc were not significant (−0.58±7.37%, −4.13%±13.7%, and 8.58%±4.71%, respectively and p>0.05 for all) relative to the calculated values used clinically. Conclusion: Application of deformable dose composite techniques may lead to more accurate total dose reporting and can allow for elevated dose to target structures with the assurance of not exceeding dose to OARs. Further study into deformable dose composition and correlation with clinical outcomes is warranted.« less

  2. Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Kertzscher, Gustavo; Beddar, Sam

    2017-06-01

    The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16-134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25 nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of this technology could lead to an improved understanding of error types and frequencies during BT and to improved patient safety during treatment.

  3. Increased γ-H2A.X intensity in response to chronic medium-dose-rate γ-ray irradiation.

    PubMed

    Sugihara, Takashi; Murano, Hayato; Tanaka, Kimio

    2012-01-01

    The molecular mechanisms of DNA repair following chronic medium-dose-rate (MDR) γ-ray-induced damage remain largely unknown. We used a cell function imager to quantitatively measure the fluorescence intensity of γ-H2A.X foci in MDR (0.015 Gy/h and 0.06 Gy/h) or high-dose-rate (HDR) (54 Gy/h) γ-ray irradiated embryonic fibroblasts derived from DNA-dependent protein kinase mutated mice (scid/scid mouse embryonic fibroblasts (scid/scid MEFs)). The obtained results are as follows: (1) Automatic measurement of the intensity of radiation-induced γ-H2A.X foci by the cell function imager provides more accurate results compared to manual counting of γ-H2A.X foci. (2) In high-dose-rate (HDR) irradiation, γ-H2A.X foci with high fluorescence intensity were observed at 1 h after irradiation in both scid/scid and wild-type MEFs. These foci were gradually reduced through de-phosphorylation at 24 h or 72 h after irradiation. Furthermore, the fluorescence intensity at 24 h increased to a significantly greater extent in scid/scid MEFs than in wild-type MEFs in the G(1) phase, although no significant difference was observed in G(2)/M-phase MEFs, suggesting that DNA-PKcs might be associated with non-homologous-end-joining-dependent DNA repair in the G(1) phase following HDR γ-ray irradiation. (3) The intensity of γ-H2A.X foci for continuous MDR (0.06 Gy/h and 0.015 Gy/h) irradiation increased significantly and in a dose-dependent fashion. Furthermore, unlike HDR-irradiated scid/scid MEFs, the intensity of γ-H2A.X foci in MDR-irradiated scid/scid MEFs showed no significant increase in the G(1) phase at 24 h, indicating that DNA repair systems using proteins other than DNA-PKcs might induce cell functioning that are subjected to MDR γ-ray irradiation. Our results indicate that the mechanism of phosphorylation or de-phosphorylation of γ-H2A.X foci induced by chronic MDR γ-ray irradiation might be different from those induced by HDR γ-ray irradiation.

  4. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studiesmore » indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.« less

  5. A novel process for introducing a new intraoperative program: a multidisciplinary paradigm for mitigating hazards and improving patient safety.

    PubMed

    Rodriguez-Paz, Jose M; Mark, Lynette J; Herzer, Kurt R; Michelson, James D; Grogan, Kelly L; Herman, Joseph; Hunt, David; Wardlow, Linda; Armour, Elwood P; Pronovost, Peter J

    2009-01-01

    Since the Institute of Medicine's report, To Err is Human, was published, numerous interventions have been designed and implemented to correct the defects that lead to medical errors and adverse events; however, most efforts were largely reactive. Safety, communication, team performance, and efficiency are areas of care that attract a great deal of attention, especially regarding the introduction of new technologies, techniques, and procedures. We describe a multidisciplinary process that was implemented at our hospital to identify and mitigate hazards before the introduction of a new technique: high-dose-rate intraoperative radiation therapy, (HDR-IORT). A multidisciplinary team of surgeons, anesthesiologists, radiation oncologists, physicists, nurses, hospital risk managers, and equipment specialists used a structured process that included in situ clinical simulation to uncover concerns among care providers and to prospectively identify and mitigate defects for patients who would undergo surgery using the HDR-IORT technique. We identified and corrected 20 defects in the simulated patient care process before application to actual patients. Subsequently, eight patients underwent surgery using the HDR-IORT technique with no recurrence of simulation-identified or unanticipated defects. Multiple benefits were derived from the use of this systematic process to introduce the HDR-IORT technique; namely, the safety and efficiency of care for this select patient population was optimized, and this process mitigated harmful or adverse events before the inclusion of actual patients. Further work is needed, but the process outlined in this paper can be universally applied to the introduction of any new technologies, treatments, or procedures.

  6. Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing

    NASA Astrophysics Data System (ADS)

    Baumann, Sean M.; Keenan, Cameron; Marciniak, Michael A.; Perram, Glen P.

    2014-10-01

    A database of spectral and temperature-dependent emissivities was created for painted Al-alloy laser-damage-testing targets for the purpose of improving the uncertainty to which temperature on the front and back target surfaces may be estimated during laser-damage testing. Previous temperature estimates had been made by fitting an assumed gray-body radiance curve to the calibrated spectral radiance data collected from the back surface using a Telops Imaging Fourier Transform Spectrometer (IFTS). In this work, temperature-dependent spectral emissivity measurements of the samples were made from room temperature to 500 °C using a Surface Optics Corp. SOC-100 Hemispherical Directional Reflectometer (HDR) with Nicolet FTS. Of particular interest was a high-temperature matte-black enamel paint used to coat the rear surfaces of the Al-alloy samples. The paint had been assumed to have a spectrally flat and temperatureinvariant emissivity. However, the data collected using the HDR showed both spectral variation and temperature dependence. The uncertainty in back-surface temperature estimation during laser-damage testing made using the measured emissivities was improved from greater than +10 °C to less than +5 °C for IFTS pixels away from the laser burn-through hole, where temperatures never exceeded those used in the SOC-100 HDR measurements. At beam center, where temperatures exceeded those used in the SOC-100 HDR, uncertainty in temperature estimates grew beyond those made assuming gray-body emissivity. Accurate temperature estimations during laser-damage testing are useful in informing a predictive model for future high-energy-laser weapon applications.

  7. Do High Dynamic Range threatments improve the results of Structure from Motion approaches in Geomorphology?

    NASA Astrophysics Data System (ADS)

    Gómez-Gutiérrez, Álvaro; Juan de Sanjosé-Blasco, José; Schnabel, Susanne; de Matías-Bejarano, Javier; Pulido-Fernández, Manuel; Berenguer-Sempere, Fernando

    2015-04-01

    In this work, the hypothesis of improving 3D models obtained with Structure from Motion (SfM) approaches using images pre-processed by High Dynamic Range (HDR) techniques is tested. Photographs of the Veleta Rock Glacier in Spain were captured with different exposure values (EV0, EV+1 and EV-1), two focal lengths (35 and 100 mm) and under different weather conditions for the years 2008, 2009, 2011, 2012 and 2014. HDR images were produced using the different EV steps within Fusion F.1 software. Point clouds were generated using commercial and free available SfM software: Agisoft Photoscan and 123D Catch. Models Obtained using pre-processed images and non-preprocessed images were compared in a 3D environment with a benchmark 3D model obtained by means of a Terrestrial Laser Scanner (TLS). A total of 40 point clouds were produced, georeferenced and compared. Results indicated that for Agisoft Photoscan software differences in the accuracy between models obtained with pre-processed and non-preprocessed images were not significant from a statistical viewpoint. However, in the case of the free available software 123D Catch, models obtained using images pre-processed by HDR techniques presented a higher point density and were more accurate. This tendency was observed along the 5 studied years and under different capture conditions. More work should be done in the near future to corroborate whether the results of similar software packages can be improved by HDR techniques (e.g. ARC3D, Bundler and PMVS2, CMP SfM, Photosynth and VisualSFM).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis-Richards, J.; Watanable, K.; Yamaguchi, T.

    A set of models of HDR systems is presented which attempts to explain the formation and operation of HDR systems using only the in-situ properties of the fractured rock mass, the earth stress field, the engineering intervention applied by way of stimulation and the relative positions and pressures of the well(s). A statistical and rock mechanics description of fractures in low permeability rocks provides the basis for modeling of stimulation, circulation and water loss in HDR systems. The model uses a large number of parameters, chiefly simple directly measurable quantities, describing the rock mass and fracture system. The effect ofmore » stimulation (raised fluid pressure allowing slip) on fracture apertures is calculated, and the volume of rock affected per volume of fluid pumped estimated. The total rock volume affected by stimulation is equated with the rock volume containing the associated AE (microseismicity). The aperture and compliance properties of the stimulated fractures are used to estimate impedance and flow within the reservoir. Fluid loss from the boundary of the stimulated volume is treated using radial leak-off with pressure-dependent permeability.« less

  9. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil*

    PubMed Central

    da Silva, Rogério Matias Vidal; Pinezi, Juliana Castro Dourado; Macedo, Luiz Eduardo Andrade; Souza, Divanízia do Nascimento

    2014-01-01

    Objective To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and Methods In the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results Sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion The authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. PMID:25741073

  10. Is there any place for LDR brachytherapy for head and neck carcinomas in HDR era?

    PubMed

    Fijuth, Jacek

    2009-03-01

    In Poland, the classical LDR brachytherapy for head and neck carcinomas with Ir-192 wires or hairpins has completely disappeared some time ago after 30 years of successful clinical use. Can this technique be fully and safely replaced by HDR or PDR application? This option seems attractive because of new possibilities of 3D reconstruction and computer real-time treatment planning and optimization. However, in my opinion, long time is needed to get a clinical and scientific experience that has been accumulated for decades with the use of LDR technique.

  11. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinicalmore » use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011).Conclusions: The authors have created an OSLD-based {sup 192}Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date.« less

  12. High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras.

    PubMed

    Lapray, Pierre-Jean; Thomas, Jean-Baptiste; Gouton, Pierre

    2017-06-03

    Spectral filter arrays imaging exhibits a strong similarity with color filter arrays. This permits us to embed this technology in practical vision systems with little adaptation of the existing solutions. In this communication, we define an imaging pipeline that permits high dynamic range (HDR)-spectral imaging, which is extended from color filter arrays. We propose an implementation of this pipeline on a prototype sensor and evaluate the quality of our implementation results on real data with objective metrics and visual examples. We demonstrate that we reduce noise, and, in particular we solve the problem of noise generated by the lack of energy balance. Data are provided to the community in an image database for further research.

  13. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

    PubMed

    Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc

    2016-05-05

    The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.

  14. Detecting the subtle shape differences in hemodynamic responses at the group level

    PubMed Central

    Chen, Gang; Saad, Ziad S.; Adleman, Nancy E.; Leibenluft, Ellen; Cox, Robert W.

    2015-01-01

    The nature of the hemodynamic response (HDR) is still not fully understood due to the multifaceted processes involved. Aside from the overall amplitude, the response may vary across cognitive states, tasks, brain regions, and subjects with respect to characteristics such as rise and fall speed, peak duration, undershoot shape, and overall duration. Here we demonstrate that the fixed-shape (FSM) or adjusted-shape (ASM) methods may fail to detect some shape subtleties (e.g., speed of rise or recovery, or undershoot). In contrast, the estimated-shape method (ESM) through multiple basis functions can provide the opportunity to identify some subtle shape differences and achieve higher statistical power at both individual and group levels. Previously, some dimension reduction approaches focused on the peak magnitude, or made inferences based on the area under the curve (AUC) or interaction, which can lead to potential misidentifications. By adopting a generic framework of multivariate modeling (MVM), we showcase a hybrid approach that is validated by simulations and real data. With the whole HDR shape integrity maintained as input at the group level, the approach allows the investigator to substantiate these more nuanced effects through the unique HDR shape features. Unlike the few analyses that were limited to main effect, two- or three-way interactions, we extend the modeling approach to an inclusive platform that is more adaptable than the conventional GLM. With multiple effect estimates from ESM for each condition, linear mixed-effects (LME) modeling should be used at the group level when there is only one group of subjects without any other explanatory variables. Under other situations, an approximate approach through dimension reduction within the MVM framework can be adopted to achieve a practical equipoise among representation, false positive control, statistical power, and modeling flexibility. The associated program 3dMVM is publicly available as part of the AFNI suite. PMID:26578853

  15. Endocavity Ultrasound Hyperthermia for Locally Advanced Cervical Cancer: Patient-specific Modeling, Experimental Verification, and Combination with HDR Brachytherapy

    NASA Astrophysics Data System (ADS)

    Wootton, Jeffery; Chen, Xin; Prakash, Punit; Juang, Titania; Diederich, Chris

    2010-03-01

    The feasibility of targeted hyperthermia delivery by an intrauterine ultrasound applicator to patient-specific treatment volumes in conjunction with HDR brachytherapy was investigated using theory and experiment. 30 HDR brachytherapy treatment plans were inspected to define hyperthermia treatment volumes (HTVs) based on tumor and radiation target volumes. Several typical cases were imported into a patient-specific treatment planning platform that optimized acoustic output power from an endocavity multisectored tubular array to conform temperature and thermal dose to HTVs. Perfusion was within a clinical range of 0.5-3 kg m-3 s-1. Applicators were constructed with 1-3 elements at 6.5-8 MHz with 90°-360° sectoring and 25-35 mm heating length housed in a water-cooled PET catheter. Acoustic output was compared to heating in ex vivo tissue assessed with implanted thermometry. Radiation attenuation through the device was measured in an ionization chamber. The HTV extends 2-4 cm in diameter and 2-4 cm in length. The bladder and rectum can be within 10-12 mm. HTV targets can be covered with temperature clouds >41° and thermal dose t43>5 min with 45° C maximum temperature and rectal temperature <41.5° C. Sectored applicators preferentially direct energy laterally into the parametrium to limit heating of rectum and bladder. Interstitial brachytherapy catheters within the HTV could be used for thermal feedback during HT treatment. Temperature distributions in phantom show preferential heating within sectors and align well with acoustic output. Heating control along the device length and in angle is evident. A 4-6% reduction in radiation transmission through the transducers was observed, which could likely be compensated for in planning. Patient-specific modeling and experimental heating demonstrated 3-D conformal heating capabilities of endocavity ultrasound applicators.

  16. [The application of non-annealing thermoluminescent dosimetry (TLD)].

    PubMed

    Wu, J M; Chen, C S; Lan, R H

    1993-06-01

    Conventional use of Thermoluminescence (TL) in radiation dosimetry is very time-consuming. It requires repeating the procedures of preheating and annealing. In an attempt to simplify these procedures, we conducted an experiment of non-annealing TL dosimetry. This article reports the experiment's results. We adopted Lithium Fluoride (LiF) chip (TLD-100) in polystyrene under the exposure of Co-60, and the result was taken by HAR-SHAW-4000 TL reading system. The TL response was analyzed, including linearity, reproducibility and fading test. Because non-annealing TL response was greatly influenced by residual electron, TLD calibration curves were separated into two parts: (1) high dose region (HDR, 50-1500 cGy); (2) low dose region (LDR, 0-50 cGy). When TL dosimeters were exposed to a single high does (about 500 cGy), the HDR could be reproduced within 3% and fit a good linearity. For LDR, we had to give up the tail of glow curve in the high temperature region. We could then get good linearity and reproducibility. Furthermore, fading of non-annealing was apparently larger than annealing. We could control the fading of non-annealing was apparently larger than annealing. We could control the fading influence within 1% by taking the TL reading one hour after exposure. On the other hand, a combination of photon and electron exposure was also performed by non-annealing TL dosimetry. The results were compatible with Co-60 exposure in the same system.

  17. High-dose-rate intraluminal brachytherapy prior to external radiochemotherapy in locally advanced esophageal cancer: preliminary results

    PubMed Central

    Safaei, Afsaneh Maddah; Ghalehtaki, Reza; Khanjani, Nezhat; Farazmand, Borna; Babaei, Mohammad

    2017-01-01

    Purpose Dysphagia is a common initial presentation in locally advanced esophageal cancer and negatively impacts patient quality of life and treatment compliance. To induce fast relief of dysphagia in patients with potentially operable esophageal cancer high-dose-rate (HDR) brachytherapy was applied prior to definitive radiochemotherapy. Material and methods In this single arm phase II clinical trial between 2013 to 2014 twenty patients with locally advanced esophageal cancer (17 squamous cell and 3 adenocarcinoma) were treated with upfront 10 Gy HDR brachytherapy, followed by 50.4 Gy external beam radiotherapy (EBRT) and concurrent chemotherapy with cisplatin/5-fluorouracil. Results Tumor response, as measured by endoscopy and/or computed tomography scan, revealed complete remission in 16 and partial response in 4 patients (overall response rate 100%). Improvement of dysphagia was induced by brachytherapy within a few days and maintained up to the end of treatment in 80% of patients. No differences in either response rate or dysphagia resolution were found between squamous cell and adenocarcinoma histology. The grade 2 and 3 acute pancytopenia or bicytopenia reported in 4 patients, while sub-acute adverse effects with painful ulceration was seen in five patients, occurring after a median of 2 months. A perforation developed in one patient during the procedure of brachytherapy that resolved successfully with immediate surgery. Conclusions Brachytherapy before EBRT was a safe and effective procedure to induce rapid and durable relief from dysphagia, especially when combined with EBRT. PMID:28344601

  18. Evaluation of urinary resveratrol as a biomarker of dietary resveratrol intake in the European Prospective Investigation into Cancer and Nutrition (EPIC) study.

    PubMed

    Zamora-Ros, Raul; Rothwell, Joseph A; Achaintre, David; Ferrari, Pietro; Boutron-Ruault, Marie-Christine; Mancini, Francesca R; Affret, Aurelie; Kühn, Tilman; Katzke, Verena; Boeing, Heiner; Küppel, Sven; Trichopoulou, Antonia; Lagiou, Pagona; La Vecchia, Carlo; Palli, Domenico; Contiero, Paolo; Panico, Salvatore; Tumino, Rosario; Ricceri, Fulvio; Noh, Hwayoung; Freisling, Heinz; Romieu, Isabelle; Scalbert, Augustin

    2017-06-01

    In vitro studies have shown several beneficial properties of resveratrol. Epidemiological evidence is still scarce, probably because of the difficulty in estimating resveratrol exposure accurately. The current study aimed to assess the relationships between acute and habitual dietary resveratrol and wine intake and urinary resveratrol excretion in a European population. A stratified random subsample of 475 men and women from four countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) cross-sectional study, who had provided 24-h urine samples and completed a 24-h dietary recall (24-HDR) on the same day, were included. Acute and habitual dietary data were collected using standardised 24-HDR software and a validated country-specific dietary questionnaire, respectively. Phenol-Explorer was used to estimate the intake of resveratrol and other stilbenes. Urinary resveratrol was analysed using tandem MS. Spearman's correlation coefficients between estimated dietary intakes of resveratrol and other stilbenes and consumption of wine, their main food source, were very high (r>0·9) when measured using dietary questionnaires and were slightly lower with 24-HDR (r>0·8). Partial Spearman's correlations between urinary resveratrol excretion and intake of resveratrol, total stilbenes or wine were found to be higher when using the 24-HDR (R 2 partial approximately 0·6) than when using the dietary questionnaires (R 2 partial approximately 0·5). Moderate to high correlations between dietary resveratrol, total stilbenes and wine, and urinary resveratrol concentrations were observed. These support the earlier findings that 24-h urinary resveratrol is an effective biomarker of both resveratrol and wine intakes. These correlations also support the validity of the estimation of resveratrol intake using the dietary questionnaire and Phenol-Explorer.

  19. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy

    PubMed Central

    Bai, Penggang; Du, Min; Ni, Xiaolei; Ke, Dongzhong; Tong, Tong

    2017-01-01

    The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg), which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency. PMID:28388623

  20. Phase I/II trial of single-fraction high-dose-rate brachytherapy-boosted hypofractionated intensity-modulated radiation therapy for localized adenocarcinoma of the prostate.

    PubMed

    Myers, Michael A; Hagan, Michael P; Todor, Dorin; Gilbert, Lynn; Mukhopadhyay, Nitai; Randolf, Jessica; Heimiller, Jeffrey; Anscher, Mitchell S

    2012-01-01

    A Phase I/II protocol was conducted to examine the toxicity and efficacy of the combination of intensity-modulated radiation therapy (IMRT) with a single-fraction high-dose-rate (HDR) brachytherapy implant. From 2001 through 2006, 26 consecutive patients were treated on the trial. The primary objective was to demonstrate a high rate of completion without experiencing a treatment-limiting toxicity. Eligibility was limited to patients with T stage ≤2b, prostate-specific antigen (PSA) ≤20, and Gleason score ≤7. Treatment began with a single HDR fraction of 6Gy to the entire prostate and 9Gy to the peripheral zone, followed by IMRT optimized to deliver in 28 fractions with a normalized total dose of 70Gy. Patients received 50.4Gy to the pelvic lymph node. The prostate dose (IMRT and HDR) resulted in an average biologic equivalent dose >128Gy (α/β=3). Patients whose pretreatment PSA was ≥10ng/mL, Gleason score 7, or stage ≥T2b received short-term androgen ablation. Median followup was 53 months (9-68 months). There were no biochemical failures by either the American Society of Therapeutic Radiology and Oncology or the Phoenix definitions. The median nadir PSA was 0.32ng/mL. All the 26 patients completed the treatment as prescribed. The rate of Grade 3 late genitourinary toxicity was 3.8% consisting of a urethral stricture. There was no other Grade 3 or 4 genitourinary or gastrointestinal toxicities. Single-fraction HDR-boosted IMRT is a safe effective method of dose escalation for localized prostate cancer. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. [Motor vehicle crash fatalities at 30 days in Spain].

    PubMed

    Pérez, Katherine; Pérez, Catherine; Cirera, Eva; Borrell, Carme; Plasencia, Antoni

    2006-01-01

    To assess level of fulfillment and utility of the hospital discharge register (HDR) as a complementary source of information for estimating the number of deaths at 30 days due to motor vehicle crashes in Spain. It is a cross-sectional study were we compared the number of people injured due to motor vehicle crashes hospitalised in a public hospital (HDR), in Spain during 2001, with the number of people severely injured or killed due to motor vehicle crashes reported by the police database (Dirección General de Tráfico, DGT) for the same year. A descriptive analysis was carried out by age, sex and region (Autonomous Community), as well as an estimation of the percentage of under-reporting of deaths by the DGT based on two assumptions. Police reported 27,272 severe injuries and 4,811 deaths during first 24 hours after the crash and after applying a fatality adjustment factor estimated 706 more deaths up to 30 days after the crash. The HDR reported 40,174 urgent hospitalisations. Of these, 1,099 died during the day of hospitalisation or within the following 30 days. The police only notified 68% of all cases that required hospitalisation. According to the number of deaths reported by police and contrasted with hospital register, estimations of the number of deaths at 30 days made by police could represent a level of under-reporting of between 3% and 6.6%, depending on the assumption considered. This study showed that the HDR is an information source that complements police statistics and is useful to estimate the number of deaths and non-fatal injuries due to motor vehicle crashes in Spain.

  2. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice.

    PubMed

    Zhou, Lei; Zhang, Xiaoying; Li, Hui; Niu, Chao; Yu, Dehai; Yang, Guozi; Liang, Xinyue; Wen, Xue; Li, Min; Cui, Jiuwei

    2018-04-01

    Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. The effect of low dose rate on metabolomic response to radiation in mice

    PubMed Central

    Goudarzi, Maryam; Mak, Tytus D.; Chen, Congju; Smilenov, Lubomir B.; Brenner, David J.

    2014-01-01

    Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual's exposure in a radiobiological event and thus would have utility for both triage and injury assessment. PMID:25047638

  4. SU-F-T-63: Dosimetric Relevance of the Valencia and Leipzig HDR Applicators Plastic Cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granero, D; Candela-Juan, C; Vijande, J

    Purpose: Utilization of HDR brachytherapy treatment of skin lesions using collimated applicators, such as the Valencia or Leipzig is increasing. These applicators are made of cup-shaped tungsten material in order to focalize the radiation into the lesion and to protect nearby tissues. These applicators have an attachable plastic cap that removes secondary electrons generated in the applicator and flattens the treatment surface. The purpose of this study is to examine the dosimetric impact of this cap, and the effect if the cap is not placed during the HDR fraction delivery. Methods: Monte Carlo simulations have been done using the codemore » Geant4 for the Valencia and Leipzig applicators. Dose rate distributions have been obtained for the applicators with and without the plastic cap. An experimental study using EBT3 radiochromic film has been realized in order to verify the Monte Carlo results. Results: The Monte Carlo simulations show that absorbed dose in the first millimeter of skin can increase up to 180% for the Valencia applicator if the plastic cap is absent and up to 1500% for the Leipzig applicators. At deeper distances the increase of dose is smaller being about 10–15%. Conclusion: Important differences have been found if the plastic cap of the applicators is absent in the treatment producing an overdosage in the skin. The user should have a checklist to remind him check always before HDR fraction delivery to insure the plastic cap is placed on the applicator. This work was supported in part by Generalitat Valenciana under Project PROMETEOII/2013/010, by the Spanish Government under Project No. FIS2013-42156, and by a research agreement with Elekta Brachytherapy, Veenendaal, The Netherlands.« less

  5. Dose distribution verification for GYN brachytherapy using EBT Gafchromic film and TG-43 calculation.

    PubMed

    Gholami, Somayeh; Mirzaei, Hamid Reza; Jabbary Arfaee, Ali; Jaberi, Ramin; Nedaie, Hassan Ali; Rabi Mahdavi, Seied; Rajab Bolookat, Eftekhar; Meigooni, Ali S

    2016-01-01

    Verification of dose distributions for gynecological (GYN) brachytherapy implants using EBT Gafchromic film. One major challenge in brachytherapy is to verify the accuracy of dose distributions calculated by a treatment planning system. A new phantom was designed and fabricated using 90 slabs of 18 cm × 16 cm × 0.2 cm Perspex to accommodate a tandem and Ovoid assembly, which is normally used for GYN brachytherapy treatment. This phantom design allows the use of EBT Gafchromic films for dosimetric verification of GYN implants with a cobalt-60 HDR system or a LDR Cs-137 system. Gafchromic films were exposed using a plan that was designed to deliver 1.5 Gy of dose to 0.5 cm distance from the lateral surface of ovoids from a pair of ovoid assembly that was used for treatment vaginal cuff. For a quantitative analysis of the results for both LDR and HDR systems, the measured dose values at several points of interests were compared with the calculated data from a commercially available treatment planning system. This planning system was utilizing the TG-43 formalism and parameters for calculation of dose distributions around a brachytherapy implant. The results of these investigations indicated that the differences between the calculated and measured data at different points were ranging from 2.4% to 3.8% for the LDR Cs-137 and HDR Co-60 systems, respectively. The EBT Gafchromic films combined with the newly designed phantom could be utilized for verification of the dose distributions around different GYN implants treated with either LDR or HDR brachytherapy procedures.

  6. MO-FG-210-02: Implementation of Image-Guided Prostate HDR Brachytherapy Using MR-Ultrasound Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, B.

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  7. Interfraction patient motion and implant displacement in prostate high dose rate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, C. D.; Kron, T.; Leahy, M.

    Purpose: To quantify movement of prostate cancer patients undergoing treatment, using an in-house developed motion sensor in order to determine a relationship between patient movement and high dose rate (HDR) brachytherapy implant displacement. Methods: An electronic motion sensor was developed based on a three axis accelerometer. HDR brachytherapy treatment for prostate is delivered at this institution in two fractions 24 h apart and 22 patients were monitored for movement over the interval between fractions. The motion sensors functioned as inclinometers, monitoring inclination of both thighs, and the inclination and roll of the abdomen. The implanted HDR brachytherapy catheter set wasmore » assessed for displacement relative to fiducial markers in the prostate. Angle measurements and angle differences over a 2 s time base were binned, and the standard deviations of the resulting frequency distributions used as a metric for patient motion in each monitored axis. These parameters were correlated to measured catheter displacement using regression modeling. Results: The mean implant displacement was 12.6 mm in the caudal direction. A mean of 19.95 h data was recorded for the patient cohort. Patients generally moved through a limited range of angles with a mean of the exception of two patients who spent in excess of 2 h lying on their side. When tested for a relationship between movement in any of the four monitored axes and the implant displacement, none was significant. Conclusions: It is not likely that patient movement influences HDR prostate implant displacement. There may be benefits to patient comfort if nursing protocols were relaxed to allow patients greater freedom to move while the implant is in situ.« less

  8. High-dose-rate (HDR) brachytherapy for the treatment of benign obstructive endobronchial granulation tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madu, Chika N.; Machuzak, Michael S.; Sterman, Daniel H.

    Background: Severe airway obstruction can occur in the setting of benign granulation tissue forming at bronchial anastomotic sites after lung transplantation in up to 20% of patients. Many of these benign lesions respond to stent placement, laser ablation, or balloon bronchoplasty. However, in certain cases, proliferation of granulation tissue may persist despite all therapeutic attempts. This study describes a series of refractory patients treated with high-dose-rate (HDR) brachytherapy for benign proliferation of granulation tissue, causing airway compromise. Methods and Materials: Between April 2002 and June 2005, 5 patients with significant airway compromise from recurrent granulation tissue were treated with HDRmore » brachytherapy. All patients had previously failed to maintain a patent airway despite multiple bronchoscopic interventions. Treatment was delivered using an HDR brachytherapy afterloader with {sup 192}Ir. Dose prescription was to a depth of 1 cm. All patients were treated weekly, with total doses ranging from 10 Gy to 21 Gy in two to three fractions. Results: The median follow-up was 12 months. All patients experienced a reduction in therapeutic bronchoscopic procedures after HDR brachytherapy compared with the pretreatment period. With the exception of possible radiation-induced bronchitis in 1 patient, there were no other treatment related complications. At the time of this report, 2 patients have died and the other 3 are alive with marked symptomatic improvement and reduced bronchoscopic procedures. Conclusion: High-dose-rate brachytherapy is an effective treatment for benign proliferation of granulation tissue causing airway obstruction. The early response to therapy is encouraging and further follow-up is necessary to determine long-term durability and late effects.« less

  9. SU-E-T-413: Examining Acquisition Rate for Using MatriXX Ion Chamber Array to Measure HDR Brachytherapy Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagar, M; Bhagwat, M; O’Farrell, D

    2015-06-15

    Purpose: There are unique obstacles to implementing the MatriXX ionchamber array as a QA tool in Brachytherapy given that the device is designed for use in the MV energy range. One of the challenges we investigate is the affect of acquisition rates on dose measurement accuracy for HDR treatment plans. Methods: A treatment plan was optimized in Oncentra Brachy TPS to deliver a planar dose to a 5×5cm region at 10mm depth. The applicator was affixed to the surface of the MatriXX array. The plan was delivered multiple times using a Nucleatron HDR afterloader with a 2.9Ci Ir192 source. Formore » each measurement the sampling rate of the MatriXX movie mode was varied (30ms and 500ms). This experiment was repeated with identical parameters, following a source exchange, with an 11.2Ci Ir192 source. Finally, a single snap measurement was acquired. Analysis was preformed to evaluate the fidelity of the dose delivery for each iteration of the experiment. Evaluation was based on the comparison between the measured and TPS predicted dose. Results: Higher sample rates induce a greater discrepancy between the predicted and measured dose. Delivering the plan using a lower activity source also produced greater discrepancy in the measurement due to the increased delivery time. Analyzing the single snap measurement showed little difference from the 500ms integral dose measurement. Conclusion: The advantage of using movie mode for HDR treatment delivery QA is the ability for real time source tracking in addition to dose measurement. Our analysis indicates that 500ms is an optimal frame rate.« less

  10. TU-AB-201-02: An Automated Treatment Plan Quality Assurance Program for Tandem and Ovoid High Dose-Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, J; Shi, F; Hrycushko, B

    2015-06-15

    Purpose: For tandem and ovoid (T&O) HDR brachytherapy in our clinic, it is required that the planning physicist manually capture ∼10 images during planning, perform a secondary dose calculation and generate a report, combine them into a single PDF document, and upload it to a record- and-verify system to prove to an independent plan checker that the case was planned correctly. Not only does this slow down the already time-consuming clinical workflow, the PDF document also limits the number of parameters that can be checked. To solve these problems, we have developed a web-based automatic quality assurance (QA) program. Methods:more » We set up a QA server accessible through a web- interface. A T&O plan and CT images are exported as DICOMRT files and uploaded to the server. The software checks 13 geometric features, e.g. if the dwell positions are reasonable, and 10 dosimetric features, e.g. secondary dose calculations via TG43 formalism and D2cc to critical structures. A PDF report is automatically generated with errors and potential issues highlighted. It also contains images showing important geometric and dosimetric aspects to prove the plan was created following standard guidelines. Results: The program has been clinically implemented in our clinic. In each of the 58 T&O plans we tested, a 14- page QA report was automatically generated. It took ∼45 sec to export the plan and CT images and ∼30 sec to perform the QA tests and generate the report. In contrast, our manual QA document preparation tooks on average ∼7 minutes under optimal conditions and up to 20 minutes when mistakes were made during the document assembly. Conclusion: We have tested the efficiency and effectiveness of an automated process for treatment plan QA of HDR T&O cases. This software was shown to improve the workflow compared to our conventional manual approach.« less

  11. Neoadjuvant radiotherapy with or without chemotherapy followed by extrafascial hysterectomy for locally advanced endometrial cancer clinically extending to the cervix or parametria.

    PubMed

    Vargo, John A; Boisen, Michelle M; Comerci, John T; Kim, Hayeon; Houser, Christopher J; Sukumvanich, Paniti; Olawaiye, Alexander B; Kelley, Joseph L; Edwards, Robert P; Huang, Marilyn; Courtney-Brooks, Madeleine; Beriwal, Sushil

    2014-11-01

    For locally-advanced uterine cancer clinically extending to the cervix, two treatment paradigms exist: surgical staging radical hysterectomy with tailored adjuvant therapy or neoadjuvant therapy followed by a less extensive simple hysterectomy. Currently, insufficient data exists to guide consensus guidelines and practical application of preoperative radiotherapy. Retrospective IRB approved cohort study from 1999 to 2014 of 36 endometrial cancer patients with clinical involvement of cervix±parametria treated with neoadjuvant external beam radiotherapy (45-50.4Gy in 25-28 fractions) and image-based HDR brachytherapy (5-5.5Gy times 3-4 fractions)±chemotherapy followed by extrafascial hysterectomy performed at a median of 6weeks after radiotherapy. All patients had clinical cervical extension, 50% also had parametria extension, and 31% had nodal involvement. At the time of surgery 91% had no clinical cervical involvement, 58% had no pathologic cervical involvement, and all had margin negative resection. The pathologic complete response rate was 24%. Median follow-up from the time of surgery was 20months (range: 0-153). The 3-year local control, regional control, distant control, disease free survival and overall survival rates were 96%, 89%, 84%, 73%, and 100%. The 3-year rate of grade 3 complications was 11%, with no grade 4+ toxicity. Neoadjuvant radiation therapy±chemotherapy followed by extrafascial hysterectomy appears to be a viable option for patients with endometrial cancer clinically extending to the cervix and parametria. The HDR brachytherapy schema of 5-5.5Gy times 3-4 fractions, for a cumulative EQD2 of 60-70Gy, is well tolerated with high rates of clinical and pathological response. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. DNA lesion identity drives choice of damage tolerance pathway in murine cell chromosomes.

    PubMed

    Cohen, Isadora S; Bar, Carmit; Paz-Elizur, Tamar; Ainbinder, Elena; Leopold, Karoline; de Wind, Niels; Geacintov, Nicholas; Livneh, Zvi

    2015-02-18

    DNA-damage tolerance (DDT) via translesion DNA synthesis (TLS) or homology-dependent repair (HDR) functions to bypass DNA lesions encountered during replication, and is critical for maintaining genome stability. Here, we present piggyBlock, a new chromosomal assay that, using piggyBac transposition of DNA containing a known lesion, measures the division of labor between the two DDT pathways. We show that in the absence of DNA damage response, tolerance of the most common sunlight-induced DNA lesion, TT-CPD, is achieved by TLS in mouse embryo fibroblasts. Meanwhile, BP-G, a major smoke-induced DNA lesion, is bypassed primarily by HDR, providing the first evidence for this mechanism being the main tolerance pathway for a biologically important lesion in a mammalian genome. We also show that, far from being a last-resort strategy as it is sometimes portrayed, TLS operates alongside nucleotide excision repair, handling 40% of TT-CPDs in repair-proficient cells. Finally, DDT acts in mouse embryonic stem cells, exhibiting the same pattern—mutagenic TLS included—despite the risk of propagating mutations along all cell lineages. The new method highlights the importance of HDR, and provides an effective tool for studying DDT in mammalian cells.

  13. DNA lesion identity drives choice of damage tolerance pathway in murine cell chromosomes

    PubMed Central

    Cohen, Isadora S.; Bar, Carmit; Paz-Elizur, Tamar; Ainbinder, Elena; Leopold, Karoline; de Wind, Niels; Geacintov, Nicholas; Livneh, Zvi

    2015-01-01

    DNA-damage tolerance (DDT) via translesion DNA synthesis (TLS) or homology-dependent repair (HDR) functions to bypass DNA lesions encountered during replication, and is critical for maintaining genome stability. Here, we present piggyBlock, a new chromosomal assay that, using piggyBac transposition of DNA containing a known lesion, measures the division of labor between the two DDT pathways. We show that in the absence of DNA damage response, tolerance of the most common sunlight-induced DNA lesion, TT-CPD, is achieved by TLS in mouse embryo fibroblasts. Meanwhile, BP-G, a major smoke-induced DNA lesion, is bypassed primarily by HDR, providing the first evidence for this mechanism being the main tolerance pathway for a biologically important lesion in a mammalian genome. We also show that, far from being a last-resort strategy as it is sometimes portrayed, TLS operates alongside nucleotide excision repair, handling 40% of TT-CPDs in repair-proficient cells. Finally, DDT acts in mouse embryonic stem cells, exhibiting the same pattern—mutagenic TLS included—despite the risk of propagating mutations along all cell lineages. The new method highlights the importance of HDR, and provides an effective tool for studying DDT in mammalian cells. PMID:25589543

  14. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    PubMed

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  15. Biological effective dose evaluation in gynaecological brachytherapy: LDR and HDR treatments, dependence on radiobiological parameters, and treatment optimisation.

    PubMed

    Bianchi, C; Botta, F; Conte, L; Vanoli, P; Cerizza, L

    2008-10-01

    This study was undertaken to compare the biological efficacy of different high-dose-rate (HDR) and low-dose-rate (LDR) treatments of gynaecological lesions, to identify the causes of possible nonuniformity and to optimise treatment through customised calculation. The study considered 110 patients treated between 2001 and 2006 with external beam radiation therapy and/or brachytherapy with either LDR (afterloader Selectron, (137)Cs) or HDR (afterloader microSelectron Classic, (192)Ir). The treatments were compared in terms of biologically effective dose (BED) to the tumour and to the rectum (linear-quadratic model) by using statistical tests for comparisons between independent samples. The difference between the two treatments was statistically significant in one case only. However, within each technique, we identified considerable nonuniformity in therapeutic efficacy due to differences in fractionation schemes and overall treatment time. To solve this problem, we created a Microsoft Excel spreadsheet allowing calculation of the optimal treatment for each patient: best efficacy (BED(tumour)) without exceeding toxicity threshold (BED(rectum)). The efficacy of a treatment may vary as a result of several factors. Customised radiobiological evaluation is a useful adjunct to clinical evaluation in planning equivalent treatments that satisfy all dosimetric constraints.

  16. Evaluation of color encodings for high dynamic range pixels

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  17. Prediction-guided quantization for video tone mapping

    NASA Astrophysics Data System (ADS)

    Le Dauphin, Agnès.; Boitard, Ronan; Thoreau, Dominique; Olivier, Yannick; Francois, Edouard; LeLéannec, Fabrice

    2014-09-01

    Tone Mapping Operators (TMOs) compress High Dynamic Range (HDR) content to address Low Dynamic Range (LDR) displays. However, before reaching the end-user, this tone mapped content is usually compressed for broadcasting or storage purposes. Any TMO includes a quantization step to convert floating point values to integer ones. In this work, we propose to adapt this quantization, in the loop of an encoder, to reduce the entropy of the tone mapped video content. Our technique provides an appropriate quantization for each mode of both the Intra and Inter-prediction that is performed in the loop of a block-based encoder. The mode that minimizes a rate-distortion criterion uses its associated quantization to provide integer values for the rest of the encoding process. The method has been implemented in HEVC and was tested over two different scenarios: the compression of tone mapped LDR video content (using the HM10.0) and the compression of perceptually encoded HDR content (HM14.0). Results show an average bit-rate reduction under the same PSNR for all the sequences and TMO considered of 20.3% and 27.3% for tone mapped content and 2.4% and 2.7% for HDR content.

  18. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair

    PubMed Central

    He, Xiangjun; Tan, Chunlai; Wang, Feng; Wang, Yaofeng; Zhou, Rui; Cui, Dexuan; You, Wenxing; Zhao, Hui; Ren, Jianwei; Feng, Bo

    2016-01-01

    CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells. PMID:26850641

  19. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.

    PubMed

    He, Xiangjun; Tan, Chunlai; Wang, Feng; Wang, Yaofeng; Zhou, Rui; Cui, Dexuan; You, Wenxing; Zhao, Hui; Ren, Jianwei; Feng, Bo

    2016-05-19

    CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Technology Insight: Combined external-beam radiation therapy and brachytherapy in the management of prostate cancer.

    PubMed

    Hurwitz, Mark D

    2008-11-01

    External-beam radiation therapy (EBRT) combined with brachytherapy is an attractive treatment option for selected patients with clinically localized prostate cancer. This therapeutic strategy offers dosimetric coverage if local-regional microscopic disease is present and provides a highly conformal boost of radiation to the prostate and immediate surrounding tissues. Either low-dose-rate (LDR) permanent brachytherapy or high-dose-rate (HDR) temporary brachytherapy can be combined with EBRT; such combined-modality therapy (CMT) is typically used to treat patients with intermediate-risk to high-risk, clinically localized disease. Controversy persists with regard to indications for CMT, choice of LDR or HDR boost, isotope selection for LDR, and integration of EBRT and brachytherapy. Initial findings from prospective, multicenter trials of CMT support the feasibility of this strategy. Updated results from these trials as well as those of ongoing and new phase III trials should help to define the role of CMT in the management of prostate cancer. In the meantime, long-term expectations for outcomes of CMT are based largely on the experience of single institutions, which demonstrate that CMT with EBRT and either LDR or HDR brachytherapy can provide freedom from disease recurrence with acceptable toxicity.

  1. Scalable and Versatile Genome Editing Using Linear DNAs with Microhomology to Cas9 Sites in Caenorhabditis elegans

    PubMed Central

    Paix, Alexandre; Wang, Yuemeng; Smith, Harold E.; Lee, Chih-Yung S.; Calidas, Deepika; Lu, Tu; Smith, Jarrett; Schmidt, Helen; Krause, Michael W.; Seydoux, Geraldine

    2014-01-01

    Homology-directed repair (HDR) of double-strand DNA breaks is a promising method for genome editing, but is thought to be less efficient than error-prone nonhomologous end joining in most cell types. We have investigated HDR of double-strand breaks induced by CRISPR-associated protein 9 (Cas9) in Caenorhabditis elegans. We find that HDR is very robust in the C. elegans germline. Linear repair templates with short (∼30–60 bases) homology arms support the integration of base and gene-sized edits with high efficiency, bypassing the need for selection. Based on these findings, we developed a systematic method to mutate, tag, or delete any gene in the C. elegans genome without the use of co-integrated markers or long homology arms. We generated 23 unique edits at 11 genes, including premature stops, whole-gene deletions, and protein fusions to antigenic peptides and GFP. Whole-genome sequencing of five edited strains revealed the presence of passenger variants, but no mutations at predicted off-target sites. The method is scalable for multi-gene editing projects and could be applied to other animals with an accessible germline. PMID:25249454

  2. WE-AB-207B-04: A Preliminary Investigation of Indicators for Treatment Outcomes of CT Guided Cervical Cancer Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meerschaert, R; Paul, A; Chen, W

    Purpose: To identify indicators for recurrence in cervical cancer patients treated with high-dose-rate brachytherapy (HDR-BT). Methods: A total of 37 biopsy proven uterine cervical cancer patients of stage IB-IVA treated between 2011 and 2015 were included in this study. All patients were treated with 37.8–52.2Gy of external beam radiotherapy (EBRT) plus 5 × 5.0–6.5Gy of HDR-BT. Patient age, standard deviation of high-risk clinical tumor volume (HR-CTVSD) collected throughout HDR-BT, and D90 (EQD2, α/β=10Gy) of the HR-CTV were investigated as potential indicators for local/distant recurrence using ROC analysis. The optimal cutoff value was identified through the Youden index and was subsequentlymore » used to obtain a group assignment for all patients. Another two comparing groups were defined per evidence of post-EBRT tumor shrinkage based on the pre-HDR MR scan. Kaplan-Meier curves were generated for recurrence-free proportions for comparing groups where time was measured from the final HDR treatment date to the date of the final follow-up exam and compared through Cox regression. Results: Patients had a median follow-up of 12 months, where 16% had local pelvic recurrence and 16% had distant recurrence. HR-CTVSD was identified as a statistically significant indicator for recurrence (AUC=0.802, p=0.007) compared to D90 (AUC=0.655, p=0.167) and patient age (AUC=0.683, p=0.103). HR-CTVSD of 6.26cc was chosen as the optimal cutoff value, which was used as the basis for patient group assignment. Patients with HR-CTVSD>6.26cc had a hazard ratio of 3.92 (95% CI-1.37, 11.24; p=0.011) for recurrence compared to HRCTVSD≤ 6.26cc. Patients without evidence of post-EBRT tumor shrinkage compared to those with had a hazard ratio of 4.28 (95% CI-1.14, 16.15; p=0.032) for recurrence. Conclusion: HR-CTVSD was identified as an indicator for recurrence and an optimal value of 6.26cc was established in our study. In addition, patients without evidence of post-EBRT tumor shrinkage demonstrated an increased recurrence rate.« less

  3. Brachytherapy improves biochemical failure-free survival in low- and intermediate-risk prostate cancer compared with conventionally fractionated external beam radiation therapy: a propensity score matched analysis.

    PubMed

    Smith, Graham D; Pickles, Tom; Crook, Juanita; Martin, Andre-Guy; Vigneault, Eric; Cury, Fabio L; Morris, Jim; Catton, Charles; Lukka, Himu; Warner, Andrew; Yang, Ying; Rodrigues, George

    2015-03-01

    To compare, in a retrospective study, biochemical failure-free survival (bFFS) and overall survival (OS) in low-risk and intermediate-risk prostate cancer patients who received brachytherapy (BT) (either low-dose-rate brachytherapy [LDR-BT] or high-dose-rate brachytherapy with external beam radiation therapy [HDR-BT+EBRT]) versus external beam radiation therapy (EBRT) alone. Patient data were obtained from the ProCaRS database, which contains 7974 prostate cancer patients treated with primary radiation therapy at four Canadian cancer institutions from 1994 to 2010. Propensity score matching was used to obtain the following 3 matched cohorts with balanced baseline prognostic factors: (1) low-risk LDR-BT versus EBRT; (2) intermediate-risk LDR-BT versus EBRT; and (3) intermediate-risk HDR-BT+EBRT versus EBRT. Kaplan-Meier survival analysis was performed to compare differences in bFFS (primary endpoint) and OS in the 3 matched groups. Propensity score matching created acceptable balance in the baseline prognostic factors in all matches. Final matches included 2 1:1 matches in the intermediate-risk cohorts, LDR-BT versus EBRT (total n=254) and HDR-BT+EBRT versus EBRT (total n=388), and one 4:1 match in the low-risk cohort (LDR-BT:EBRT, total n=400). Median follow-up ranged from 2.7 to 7.3 years for the 3 matched cohorts. Kaplan-Meier survival analysis showed that all BT treatment options were associated with statistically significant improvements in bFFS when compared with EBRT in all cohorts (intermediate-risk EBRT vs LDR-BT hazard ratio [HR] 4.58, P=.001; intermediate-risk EBRT vs HDR-BT+EBRT HR 2.08, P=.007; low-risk EBRT vs LDR-BT HR 2.90, P=.004). No significant difference in OS was found in all comparisons (intermediate-risk EBRT vs LDR-BT HR 1.27, P=.687; intermediate-risk EBRT vs HDR-BT+EBRT HR 1.55, P=.470; low-risk LDR-BT vs EBRT HR 1.41, P=.500). Propensity score matched analysis showed that BT options led to statistically significant improvements in bFFS in low- and intermediate-risk prostate cancer patient populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Brachytherapy Improves Biochemical Failure–Free Survival in Low- and Intermediate-Risk Prostate Cancer Compared With Conventionally Fractionated External Beam Radiation Therapy: A Propensity Score Matched Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Graham D.; Pickles, Tom; Crook, Juanita

    2015-03-01

    Purpose: To compare, in a retrospective study, biochemical failure-free survival (bFFS) and overall survival (OS) in low-risk and intermediate-risk prostate cancer patients who received brachytherapy (BT) (either low-dose-rate brachytherapy [LDR-BT] or high-dose-rate brachytherapy with external beam radiation therapy [HDR-BT+EBRT]) versus external beam radiation therapy (EBRT) alone. Methods and Materials: Patient data were obtained from the ProCaRS database, which contains 7974 prostate cancer patients treated with primary radiation therapy at four Canadian cancer institutions from 1994 to 2010. Propensity score matching was used to obtain the following 3 matched cohorts with balanced baseline prognostic factors: (1) low-risk LDR-BT versus EBRT; (2)more » intermediate-risk LDR-BT versus EBRT; and (3) intermediate-risk HDR-BT+EBRT versus EBRT. Kaplan-Meier survival analysis was performed to compare differences in bFFS (primary endpoint) and OS in the 3 matched groups. Results: Propensity score matching created acceptable balance in the baseline prognostic factors in all matches. Final matches included 2 1:1 matches in the intermediate-risk cohorts, LDR-BT versus EBRT (total n=254) and HDR-BT+EBRT versus EBRT (total n=388), and one 4:1 match in the low-risk cohort (LDR-BT:EBRT, total n=400). Median follow-up ranged from 2.7 to 7.3 years for the 3 matched cohorts. Kaplan-Meier survival analysis showed that all BT treatment options were associated with statistically significant improvements in bFFS when compared with EBRT in all cohorts (intermediate-risk EBRT vs LDR-BT hazard ratio [HR] 4.58, P=.001; intermediate-risk EBRT vs HDR-BT+EBRT HR 2.08, P=.007; low-risk EBRT vs LDR-BT HR 2.90, P=.004). No significant difference in OS was found in all comparisons (intermediate-risk EBRT vs LDR-BT HR 1.27, P=.687; intermediate-risk EBRT vs HDR-BT+EBRT HR 1.55, P=.470; low-risk LDR-BT vs EBRT HR 1.41, P=.500). Conclusions: Propensity score matched analysis showed that BT options led to statistically significant improvements in bFFS in low- and intermediate-risk prostate cancer patient populations.« less

  5. Increased γ-H2A.X Intensity in Response to Chronic Medium-Dose-Rate γ-Ray Irradiation

    PubMed Central

    Sugihara, Takashi; Murano, Hayato; Tanaka, Kimio

    2012-01-01

    Background The molecular mechanisms of DNA repair following chronic medium-dose-rate (MDR) γ-ray-induced damage remain largely unknown. Methodology/Principal Findings We used a cell function imager to quantitatively measure the fluorescence intensity of γ-H2A.X foci in MDR (0.015 Gy/h and 0.06 Gy/h) or high-dose-rate (HDR) (54 Gy/h) γ-ray irradiated embryonic fibroblasts derived from DNA-dependent protein kinase mutated mice (scid/scid mouse embryonic fibroblasts (scid/scid MEFs)). The obtained results are as follows: (1) Automatic measurement of the intensity of radiation-induced γ-H2A.X foci by the cell function imager provides more accurate results compared to manual counting of γ-H2A.X foci. (2) In high-dose-rate (HDR) irradiation, γ-H2A.X foci with high fluorescence intensity were observed at 1 h after irradiation in both scid/scid and wild-type MEFs. These foci were gradually reduced through de-phosphorylation at 24 h or 72 h after irradiation. Furthermore, the fluorescence intensity at 24 h increased to a significantly greater extent in scid/scid MEFs than in wild-type MEFs in the G1 phase, although no significant difference was observed in G2/M-phase MEFs, suggesting that DNA-PKcs might be associated with non-homologous-end-joining-dependent DNA repair in the G1 phase following HDR γ-ray irradiation. (3) The intensity of γ-H2A.X foci for continuous MDR (0.06 Gy/h and 0.015 Gy/h) irradiation increased significantly and in a dose-dependent fashion. Furthermore, unlike HDR-irradiated scid/scid MEFs, the intensity of γ-H2A.X foci in MDR-irradiated scid/scid MEFs showed no significant increase in the G1 phase at 24 h, indicating that DNA repair systems using proteins other than DNA-PKcs might induce cell functioning that are subjected to MDR γ-ray irradiation. Conclusions Our results indicate that the mechanism of phosphorylation or de-phosphorylation of γ-H2A.X foci induced by chronic MDR γ-ray irradiation might be different from those induced by HDR γ-ray irradiation. PMID:23028931

  6. TU-H-CAMPUS-JeP3-05: Adaptive Determination of Needle Sequence HDR Prostate Brachytherapy with Divergent Needle-By-Needle Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borot de Battisti, M; Maenhout, M; Lagendijk, J J W

    Purpose: To develop a new method which adaptively determines the optimal needle insertion sequence for HDR prostate brachytherapy involving divergent needle-by-needle dose delivery by e.g. a robotic device. A needle insertion sequence is calculated at the beginning of the intervention and updated after each needle insertion with feedback on needle positioning errors. Methods: Needle positioning errors and anatomy changes may occur during HDR brachytherapy which can lead to errors in the delivered dose. A novel strategy was developed to calculate and update the needle sequence and the dose plan after each needle insertion with feedback on needle positioning errors. Themore » dose plan optimization was performed by numerical simulations. The proposed needle sequence determination optimizes the final dose distribution based on the dose coverage impact of each needle. This impact is predicted stochastically by needle insertion simulations. HDR procedures were simulated with varying number of needle insertions (4 to 12) using 11 patient MR data-sets with PTV, prostate, urethra, bladder and rectum delineated. Needle positioning errors were modeled by random normally distributed angulation errors (standard deviation of 3 mm at the needle’s tip). The final dose parameters were compared in the situations where the needle with the largest vs. the smallest dose coverage impact was selected at each insertion. Results: Over all scenarios, the percentage of clinically acceptable final dose distribution improved when the needle selected had the largest dose coverage impact (91%) compared to the smallest (88%). The differences were larger for few (4 to 6) needle insertions (maximum difference scenario: 79% vs. 60%). The computation time of the needle sequence optimization was below 60s. Conclusion: A new adaptive needle sequence determination for HDR prostate brachytherapy was developed. Coupled to adaptive planning, the selection of the needle with the largest dose coverage impact increases chances of reaching the clinical constraints. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less

  7. [Current status and potential perspectives in classical radiotherapy technology].

    PubMed

    Dabić-Stanković, Kata M; Stanković, Jovan B; Radosević-Jelić, Ljiljana M

    2004-01-01

    After purchase of radiotherapy equipment in 2003, classic radiation therapy in Serbia will reach the highest world level. In order to define the highest standards in radiation technology, we analyzed the current status and potential perspectives of radiation therapy. An analysis of present situation in the USA, assumed as the most developed in the world, was done. Available data, collected in the last 3 years (equipment assortment, therapy modalities, workload and manpower) for 284 radiotherapy centers, out of potential 2050, were analyzed. Results were presented as crude percentage and matched to point current status. The analysis showed that CLINAC accelerators are the most popular (82.7%), as well as, ADAC (43.7%) and Focus (CMS) (27.4%) systems for therapy planning. Movement towards virtual simulation is evident (59.3%), although classic "simulation" is not fully eliminated from the radiotherapy chain. The most popular brachytherapy afterloader is Microselectron HDR (71%). About 64.4% centers use IMPAC communication/verification/record system that seems more open than Varis. All centers practice modern radiotherapy modalities and techniques (CPRT, IMRT, SRS/SRT, TBI, IORT, IVBHRT, HDR BHRT, etc.). CT and MRI availability is out of question, but PET is available in 3% of centers, however this percentage is rapidly growing. Up to 350 new patients per year are treated by one accelerator (about 35 pts. a day). Centers are relatively small and utilize 2-3 accelerators on average. Average FTE staffing norm is 4 radiation oncologists, 2-3 medical radiotherapy physicists, about 3 certified medical dosimetrists and about 6 radiotherapy technologists. In the past 5 years relative stagnation in classic radiotherapy has been observed. In spite of substantial investments in technology and consequent improvements, as well as wide introduction of computers in radiotherapy, radiotherapy results have not changed significantly. Vendor developement strategies do not point that this trend will change in the next 5 years. On the other hand, wide introduction of the PET in each radiotherapy chain ring (diagnostics, planning, follow-up), could improve results (local and regional control, as well as quality of patients' life).

  8. Treatment of Locally Advanced Adenoid Cystic Carcinoma of the Trachea With Neutron Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittner, Nathan; Koh, W.-J.; Laramore, George E.

    2008-10-01

    Purpose: To examine the efficacy of fast neutron radiotherapy in the treatment of locally advanced adenoid cystic carcinoma (ACC) of the trachea and to compare outcomes with and without high-dose-rate (HDR) endobronchial brachytherapy boost. Methods and Materials: Between 1989 and 2005, a total of 20 patients with ACC of the trachea were treated with fast neutron radiotherapy at University of Washington. Of these 20 patients, 19 were treated with curative intent. Neutron doses ranged from 10.7 to 19.95 Gy (median, 19.2 Gy). Six of these patients received an endobronchial brachytherapy boost using an HDR {sup 192}Ir source (3.5 Gy xmore » 2 fractions). Median duration of follow-up was 46 months (range, 10-121 months). Results: The 5-year actuarial overall survival rate and median overall survival for the entire cohort were 89.4%, and 97 months, respectively. Overall survival was not statistically different among those patients receiving an endobronchial boost compared with those receiving neutron radiotherapy alone (100% vs. 68%, p = 0.36). The 5-year actuarial locoregional control rate for the entire cohort was 54.1%. The locoregional control rate was not statistically different among patients who received an endobronchial boost compared with those who received neutron radiotherapy alone (40% vs. 58%, p 0.94). There were no cases of Grade {>=}3 acute toxicity. There were 2 cases of Grade 3/4 chronic toxicity. Conclusions: Fast neutron radiotherapy is an effective treatment for locally advanced adenoid cystic carcinoma of the trachea, with acceptable treatment-related toxicity.« less

  9. 18 years' experience with high dose rate strontium-90 brachytherapy of small to medium sized posterior uveal melanoma.

    PubMed

    van Ginderdeuren, R; van Limbergen, E; Spileers, W

    2005-10-01

    To analyse local tumour control, radiation related complications, visual acuity, enucleation rate, and survival after brachytherapy of small to medium sized choroidal melanoma (CM) with a high dose rate (HDR) strontium-90 (Sr-90) applicator. From 1983 until 2000, 98 eyes with CM were treated with Sr-90 brachytherapy. The main outcome measures were actuarial rates of the patients' survival, ocular conservation rate, tumour regression, complication rates, and preservation of visual acuity. End point rates were estimated using Kaplan-Meier analysis. The median follow up time was 6.7 years (0.5-18.8 years). Actuarial melanoma free patient survival rate was 85% (SE 4.8%) after 18 years. Actuarial rate of ocular conservation and complete tumour regression was 90% (SE 3.8%) after 15 years. In 93% local tumour control was achieved, 88% showed a stable scar. Recurrence of the tumour on the border caused enucleation of six eyes (7%). In three cases (4%) retinal detachment was the end point. No cases of optic atrophy or of sight impairing retinopathy outside the treated area were found. Actuarial rate of preservation of visual acuity of 1/10 was 65% at 5 years and 45% at 15 years of follow up (SE 5.9% and 8.8%). Sr-90 brachytherapy is as effective as iodine or ruthenium brachytherapy for small to medium sized CM but causes fewer complications. The preservation of vision is better than with all other described radioisotopes. HDR Sr-90 brachytherapy can therefore safely be recommended for small to medium sized CM.

  10. 18 Years’ experience with high dose rate strontium-90 brachytherapy of small to medium sized posterior uveal melanoma

    PubMed Central

    van Ginderdeuren, R; van Limbergen, E; Spileers, W

    2005-01-01

    Aim: To analyse local tumour control, radiation related complications, visual acuity, enucleation rate, and survival after brachytherapy of small to medium sized choroidal melanoma (CM) with a high dose rate (HDR) strontium-90 (Sr-90) applicator. Methods: From 1983 until 2000, 98 eyes with CM were treated with Sr-90 brachytherapy. The main outcome measures were actuarial rates of the patients’ survival, ocular conservation rate, tumour regression, complication rates, and preservation of visual acuity. End point rates were estimated using Kaplan-Meier analysis. Results: The median follow up time was 6.7 years (0.5–18.8 years). Actuarial melanoma free patient survival rate was 85% (SE 4.8%) after 18 years. Actuarial rate of ocular conservation and complete tumour regression was 90% (SE 3.8%) after 15 years. In 93% local tumour control was achieved, 88% showed a stable scar. Recurrence of the tumour on the border caused enucleation of six eyes (7%). In three cases (4%) retinal detachment was the end point. No cases of optic atrophy or of sight impairing retinopathy outside the treated area were found. Actuarial rate of preservation of visual acuity of 1/10 was 65% at 5 years and 45% at 15 years of follow up (SE 5.9% and 8.8%). Conclusions: Sr-90 brachytherapy is as effective as iodine or ruthenium brachytherapy for small to medium sized CM but causes fewer complications. The preservation of vision is better than with all other described radioisotopes. HDR Sr-90 brachytherapy can therefore safely be recommended for small to medium sized CM. PMID:16170122

  11. Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study

    PubMed Central

    Luh, Wen-Ming; Talavage, Thomas M.

    2010-01-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477

  12. Modest validity and fair reproducibility of dietary patterns derived by cluster analysis.

    PubMed

    Funtikova, Anna N; Benítez-Arciniega, Alejandra A; Fitó, Montserrat; Schröder, Helmut

    2015-03-01

    Cluster analysis is widely used to analyze dietary patterns. We aimed to analyze the validity and reproducibility of the dietary patterns defined by cluster analysis derived from a food frequency questionnaire (FFQ). We hypothesized that the dietary patterns derived by cluster analysis have fair to modest reproducibility and validity. Dietary data were collected from 107 individuals from population-based survey, by an FFQ at baseline (FFQ1) and after 1 year (FFQ2), and by twelve 24-hour dietary recalls (24-HDR). Repeatability and validity were measured by comparing clusters obtained by the FFQ1 and FFQ2 and by the FFQ2 and 24-HDR (reference method), respectively. Cluster analysis identified a "fruits & vegetables" and a "meat" pattern in each dietary data source. Cluster membership was concordant for 66.7% of participants in FFQ1 and FFQ2 (reproducibility), and for 67.0% in FFQ2 and 24-HDR (validity). Spearman correlation analysis showed reasonable reproducibility, especially in the "fruits & vegetables" pattern, and lower validity also especially in the "fruits & vegetables" pattern. κ statistic revealed a fair validity and reproducibility of clusters. Our findings indicate a reasonable reproducibility and fair to modest validity of dietary patterns derived by cluster analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A detail enhancement and dynamic range adjustment algorithm for high dynamic range images

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Wang, Huachuang; Liang, Mingtao; Yu, Cong; Hu, Jinlong; Cheng, Hua

    2014-08-01

    Although high dynamic range (HDR) images contain large amounts of information, they have weak texture and low contrast. What's more, these images are difficult to be reproduced on low dynamic range displaying mediums. If much more information is to be acquired when these images are displayed on PCs, some specific transforms, such as compressing the dynamic range, enhancing the portions of little difference in original contrast and highlighting the texture details on the premise of keeping the parts of large contrast, are needed. To this ends, a multi-scale guided filter enhancement algorithm which derives from the single-scale guided filter based on the analysis of non-physical model is proposed in this paper. Firstly, this algorithm decomposes the original HDR images into base image and detail images of different scales, and then it adaptively selects a transform function which acts on the enhanced detail images and original images. By comparing the treatment effects of HDR images and low dynamic range (LDR) images of different scene features, it proves that this algorithm, on the basis of maintaining the hierarchy and texture details of images, not only improves the contrast and enhances the details of images, but also adjusts the dynamic range well. Thus, it is much suitable for human observation or analytical processing of machines.

  14. Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granero, D., E-mail: dgranero@eresa.com; Candela-Juan, C.; Vijande, J.

    2016-05-15

    Purpose: High dose rate (HDR) brachytherapy for treatment of small skin lesions using the Leipzig and Valencia applicators is a widely used technique. These applicators are equipped with an attachable plastic cap to be placed during fraction delivery to ensure electronic equilibrium and to prevent secondary electrons from reaching the skin surface. The purpose of this study is to report on the dosimetric impact of the cap being absent during HDR fraction delivery, which has not been explored previously in the literature. Methods: GEANT4 Monte Carlo simulations (version 10.0) have been performed for the Leipzig and Valencia applicators with andmore » without the plastic cap. In order to validate the Monte Carlo simulations, experimental measurements using radiochromic films have been done. Results: Dose absorbed within 1 mm of the skin surface increases by a factor of 1500% for the Leipzig applicators and of 180% for the Valencia applicators. Deeper than 1 mm, the overdosage flattens up to a 10% increase. Conclusions: Differences of treating with or without the plastic cap are significant. Users must check always that the plastic cap is in place before any treatment in order to avoid overdosage of the skin. Prior to skin HDR fraction delivery, the timeout checklist should include verification of the cap placement.« less

  15. Resistance evolution to Bt crops: predispersal mating of European corn borers.

    PubMed

    Dalecky, Ambroise; Ponsard, Sergine; Bailey, Richard I; Pélissier, Céline; Bourguet, Denis

    2006-06-01

    Over the past decade, the high-dose refuge (HDR) strategy, aimed at delaying the evolution of pest resistance to Bacillus thuringiensis (Bt) toxins produced by transgenic crops, became mandatory in the United States and is being discussed for Europe. However, precopulatory dispersal and the mating rate between resident and immigrant individuals, two features influencing the efficiency of this strategy, have seldom been quantified in pests targeted by these toxins. We combined mark-recapture and biogeochemical marking over three breeding seasons to quantify these features directly in natural populations of Ostrinia nubilalis, a major lepidopteran corn pest. At the local scale, resident females mated regardless of males having dispersed beforehand or not, as assumed in the HDR strategy. Accordingly, 0-67% of resident females mating before dispersal did so with resident males, this percentage depending on the local proportion of resident males (0% to 67.2%). However, resident males rarely mated with immigrant females (which mostly arrived mated), the fraction of females mating before dispersal was variable and sometimes substantial (4.8% to 56.8%), and there was no evidence for male premating dispersal being higher. Hence, O. nubilalis probably mates at a more restricted spatial scale than previously assumed, a feature that may decrease the efficiency of the HDR strategy under certain circumstances, depending for example on crop rotation practices.

  16. Validating Fricke dosimetry for the measurement of absorbed dose to water for HDR 192Ir brachytherapy: a comparison between primary standards of the LCR, Brazil, and the NRC, Canada.

    PubMed

    Salata, Camila; David, Mariano Gazineu; de Almeida, Carlos Eduardo; El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcom

    2018-04-05

    Two Fricke-based absorbed dose to water standards for HDR Ir-192 dosimetry, developed independently by the LCR in Brazil and the NRC in Canada have been compared. The agreement in the determination of the dose rate from a HDR Ir-192 source at 1 cm in a water phantom was found to be within the k  =  1 combined measurement uncertainties of the two standards: D NRC /D LCR   =  1.011, standard uncertainty  =  2.2%. The dose-based standards also agreed within the uncertainties with the manufacturer's stated dose rate value, which is traceable to a national standard of air kerma. A number of possible influence quantities were investigated, including the specific method for producing the ferrous-sulphate Fricke solution, the geometry of the holder, and the Monte Carlo code used to determine correction factors. The comparison highlighted the lack of data on the determination of G(Fe 3+ ) in this energy range and the possibilities for further development of the holders used to contain the Fricke solution. The comparison also confirmed the suitability of Fricke dosimetry for Ir-192 primary standard dose rate determinations at therapy dose levels.

  17. HEVC for high dynamic range services

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew

    2015-09-01

    Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.

  18. Validating Fricke dosimetry for the measurement of absorbed dose to water for HDR 192Ir brachytherapy: a comparison between primary standards of the LCR, Brazil, and the NRC, Canada

    NASA Astrophysics Data System (ADS)

    Salata, Camila; Gazineu David, Mariano; de Almeida, Carlos Eduardo; El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcom

    2018-04-01

    Two Fricke-based absorbed dose to water standards for HDR Ir-192 dosimetry, developed independently by the LCR in Brazil and the NRC in Canada have been compared. The agreement in the determination of the dose rate from a HDR Ir-192 source at 1 cm in a water phantom was found to be within the k  =  1 combined measurement uncertainties of the two standards: D NRC/D LCR  =  1.011, standard uncertainty  =  2.2%. The dose-based standards also agreed within the uncertainties with the manufacturer’s stated dose rate value, which is traceable to a national standard of air kerma. A number of possible influence quantities were investigated, including the specific method for producing the ferrous-sulphate Fricke solution, the geometry of the holder, and the Monte Carlo code used to determine correction factors. The comparison highlighted the lack of data on the determination of G(Fe3+) in this energy range and the possibilities for further development of the holders used to contain the Fricke solution. The comparison also confirmed the suitability of Fricke dosimetry for Ir-192 primary standard dose rate determinations at therapy dose levels.

  19. Relative validity of the Children's Eating Habits Questionnaire-food frequency section among young European children: the IDEFICS Study.

    PubMed

    Bel-Serrat, Silvia; Mouratidou, Theodora; Pala, Valeria; Huybrechts, Inge; Börnhorst, Claudia; Fernández-Alvira, Juan Miguel; Hadjigeorgiou, Charalampos; Eiben, Gabriele; Hebestreit, Antje; Lissner, Lauren; Molnár, Dénes; Siani, Alfonso; Veidebaum, Toomas; Krogh, Vittorio; Moreno, Luis A

    2014-02-01

    To compare, specifically by age group, proxy-reported food group estimates obtained from the food frequency section of the Children's Eating Habits questionnaire (CEHQ-FFQ) against the estimates of two non-consecutive 24 h dietary recalls (24-HDR). Estimates of food group intakes assessed via the forty-three-food-group CEHQ-FFQ were compared with those obtained by a computerized 24-HDR. Agreement on frequencies of intakes (equal to the number of portions per recall period) between the two instruments was examined using crude and de-attenuated Pearson's correlation coefficients, cross-classification analyses, weighted kappa statistics (κ w) and Bland-Altman analysis. Kindergartens/schools from eight European countries participating in the IDEFICS (Identification and prevention of Dietary- and lifestyle-induced health EFfects In Children and infantS) Study cross-sectional survey (2007-2008). Children aged 2-9 years (n 2508, 50·4% boys). The CEHQ-FFQ provided higher intake estimates for most of the food groups than the 24-HDR. De-attenuated Pearson correlation coefficients ranged from 0·01 (sweetened fruit) to 0·48 (sweetened milk) in children aged 2-<6 years (mean = 0·25) and from 0·01 (milled cereal) to 0·44 (water) in children aged 6-9 years (mean = 0·23). An average of 32% and 31% of food group intakes were assigned to the same quartile in younger and older children, respectively, and classification into extreme opposite quartiles was ≤12% for all food groups in both age groups. Mean κ w was 0·20 for 2-<6-year-olds and 0·17 for 6-9-year-olds. The strength of association estimates assessed by the CEHQ-FFQ and the 24-HDR varied by food group and by age group. Observed level of agreement and CEHQ-FFQ ability to rank children according to intakes of food groups were considered to be low.

  20. Comparison of air-kerma strength determinations for HDR (192)Ir sources.

    PubMed

    Rasmussen, Brian E; Davis, Stephen D; Schmidt, Cal R; Micka, John A; Dewerd, Larry A

    2011-12-01

    To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) (192)Ir brachytherapy sources maintained by the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. The improved, laser-aligned seven-distance apparatus of the University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR (192)Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the (192)Ir air-kerma calibration coefficient from the NIST air-kerma standards at (137)Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A(wall) for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. The average measurements when using the inverse N(K) interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well chambers was 0.01%, confirming that it is not necessary to update the current standard maintained at the UWADCL.

  1. SU-C-202-02: A Comprehensive Evaluation of Adaptive Daily Planning for Cervical Cancer HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meerschaert, R; Paul, A; Zhuang, L

    Purpose: To evaluate adaptive daily planning for cervical cancer patients who underwent high-dose-rate intra-cavitary brachytherapy (HDR-ICBT). Methods: This study included 22 cervical cancer patients who underwent 5 fractions of HDR ICBT. Regions of interest (ROIs) including high-risk clinical tumor volume (HR-CTV) and organs-at-risk (OARs) were manually contoured on daily CT images. All patients were treated with adaptive daily plans, which involved ROI delineation and dose optimization at each treatment fraction. Single treatment plans were retrospectively generated by applying the first treatment fraction’s dwell times adjusted for decay and dwell positions of the applicator to subsequent treatment fractions. Various existing similaritymore » metrics were calculated for the ROIs to quantify interfractional organ variations. A novel similarity score (JRARM) was established, which combined both volumetric overlap metrics (DSC, JSC, and RVD) and distance metrics (ASD, MSD, and RMSD). Linear regression was performed to determine a relationship between inter-fractional organ variations of various similarity metrics and D2cc variations from both plans. Wilcoxon Signed Rank Tests were used to assess adaptive daily plans and single plans by comparing EQD2 D2cc (α/β=3) for OARs. Results: For inter-fractional organ variations, the sigmoid demonstrated the greatest variations based on the JRARM and DSC similarity metrics. Comparisons between paired ROIs showed differences in JRARM scores and DSCs at each treatment fraction. RVD, MSD, and RMSD were found to be significantly correlated to D2cc variations for bladder and sigmoid. The comparison between plans found that adaptive daily planning provided lower EQD2 D2cc of OARs than single planning, specifically for the sigmoid (p=0.015). Conclusion: Substantial inter-fractional organ motion can occur during HDR-BT, which may significantly affect D2cc of OARs. Adaptive daily planning provides improved dose sparing for OARs compared to single planning.« less

  2. Phase II Trial of Combined High-Dose-Rate Brachytherapy and External Beam Radiotherapy for Adenocarcinoma of the Prostate: Preliminary Results of RTOG 0321

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, I-Chow, E-mail: ihsu@radonc.ucsf.ed; Bae, Kyounghwa; Shinohara, Katsuto

    2010-11-01

    Purpose: To estimate the rate of late Grade 3 or greater genitourinary (GU) and gastrointestinal (GI) adverse events (AEs) after treatment with external beam radiotherapy and prostate high-dose-rate (HDR) brachytherapy. Methods and Materials: Each participating institution submitted computed tomography-based HDR brachytherapy dosimetry data electronically for credentialing and for each study patient. Patients with locally confined Stage T1c-T3b prostate cancer were eligible for the present study. All patients were treated with 45 Gy in 25 fractions using external beam radiotherapy and one HDR implant delivering 19 Gy in two fractions. All AEs were graded according to the Common Terminology Criteria formore » Adverse Events, version 3.0. Late GU/GI AEs were defined as those occurring >9 months from the start of the protocol treatment, in patients with {>=}18 months of potential follow-up. Results: A total of 129 patients from 14 institutions were enrolled in the present study. Of the 129 patients, 125 were eligible, and AE data were available for 112 patients at analysis. The pretreatment characteristics of the patients were as follows: Stage T1c-T2c, 91%; Stage T3a-T3b, 9%; prostate-specific antigen level {<=}10 ng/mL, 70%; prostate-specific antigen level >10 but {<=}20 ng/mL, 30%; and Gleason score 2-6, 10%; Gleason score 7, 72%; and Gleason score 8-10, 18%. At a median follow-up of 29.6 months, three acute and four late Grade 3 GU/GI AEs were reported. The estimated rate of late Grade 3-5 GU and GI AEs at 18 months was 2.56%. Conclusion: This is the first prospective, multi-institutional trial of computed tomography-based HDR brachytherapy and external beam radiotherapy. The technique and doses used in the present study resulted in acceptable levels of AEs.« less

  3. SU-E-T-783: Using Matrixx to Determine Transit Dose Contribution Over Clinically Useful Limits of HDR Source Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhagwat, M; O’Farrell, D; Wagar, M

    2015-06-15

    Purpose: Most HDR brachytherapy treatment planning systems (TPS) use TG-43 formalism to calculate dose without including transit dose corrections. Historically, measurement of this contribution has required sophisticated apparatus unavailable in most hospitals. We use Matrixx to investigate several scenarios where transit dose contribution may effect a clinical treatment. Methods: Treatment plans were generated using Oncentra Brachy TPS (Version 4.3.0.410, Nucletron ) on a CT scan of a 24-catheter Freiburg applicator (Nucletron ) laid flat on the MatriXX (IBA) detector. This detector is an array of 1020 parallel plate ion chambers. All 24 catheters were digitized and dwells within a centralmore » square region of 5×5cm of the applicator were activated. Each of the active catheters had 6 dwells in increments of 1.0cm. The plans were normalized to 10mm. This places the 100% isodose line at the correct effective point of measurement, which lies half-way between the parallel plates of the ion chambers. It is also within the clinically relevant treatment depth for superficial applications. A total of 6 plans were delivered for 3 prescription doses, 1Gy, 2Gy and 4Gy using source activities of 2.9Ci and 11.2Ci. The MatriXX array was operated to capture dosimetric snaps every 500ms and yielded an integral dose at the end of treatment. Results: A comparison of integral dose from 2 different source activities shows that the transit dose contribution is larger when the source activity is higher. It is also observed that the relative transit dose contribution decreases as prescription dose increases. This is quantified by the Gamma analysis. Conclusion: We have demonstrated that the Matrixx detector can be used to evaluate the contribution for a HDR source during transit from the HDR afterloader to a dwell location, and between adjacent dwell locations.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindel, Joshua; Muruganandham, Manickam; Pigge, F. Christopher

    Purpose: To present a novel marker-flange, addressing source-reconstruction uncertainties due to the artifacts of a titanium intracavitary applicator used for magnetic resonance imaging (MRI)-guided high-dose-rate (HDR) brachytherapy (BT); and to evaluate 7 different MRI marker agents used for interstitial prostate BT and intracavitary gynecologic HDR BT when treatment plans are guided by MRI. Methods and Materials: Seven MRI marker agents were analyzed: saline solution, Conray-60, copper sulfate (CuSO{sub 4}) (1.5 g/L), liquid vitamin E, fish oil, 1% agarose gel (1 g agarose powder per 100 mL distilled water), and a cobalt–chloride complex contrast (C4) (CoCl{sub 2}/glycine = 4:1). A plastic,more » ring-shaped marker-flange was designed and tested on both titanium and plastic applicators. Three separate phantoms were designed to test the marker-flange, interstitial catheters for prostate BT, and intracavitary catheters for gynecologic HDR BT. T1- and T2-weighted MRI were analyzed for all markers in each phantom and quantified as percentages compared with a 3% agarose gel background. The geometric accuracy of the MR signal for the marker-flange was measured using an MRI-CT fusion. Results: The CuSO{sub 4} and C4 markers on T1-weighted MRI and saline on T2-weighted MRI showed the highest signals. The marker-flange showed hyper-signals of >500% with CuSO{sub 4} and C4 on T1-weighted MRI and of >400% with saline on T2-weighted MRI on titanium applicators. On T1-weighted MRI, the MRI signal inaccuracies of marker-flanges were measured <2 mm, regardless of marker agents, and that of CuSO{sub 4} was 0.42 ± 0.14 mm. Conclusion: The use of interstitial/intracavitary markers for MRI-guided prostate/gynecologic BT was observed to be feasible, providing accurate source pathway reconstruction. The novel marker-flange can produce extremely intense, accurate signals, demonstrating its feasibility for gynecologic HDR BT.« less

  5. SU-E-T-169: Characterization of Pacemaker/ICD Dose in SAVI HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalavagunta, C; Lasio, G; Yi, B

    2015-06-15

    Purpose: It is important to estimate dose to pacemaker (PM)/Implantable Cardioverter Defibrillator (ICD) before undertaking Accelerated Partial Breast Treatment using High Dose Rate (HDR) brachytherapy. Kim et al. have reported HDR PM/ICD dose using a single-source balloon applicator. To the authors knowledge, there have so far not been any published PM/ICD dosimetry literature for the Strut Adjusted Volume Implant (SAVI, Cianna Medical, Aliso Viejo, CA). This study aims to fill this gap by generating a dose look up table (LUT) to predict maximum dose to the PM/ICD in SAVI HDR brachytherapy. Methods: CT scans for 3D dosimetric planning were acquiredmore » for four SAVI applicators (6−1-mini, 6−1, 8−1 and 10−1) expanded to their maximum diameter in air. The CT datasets were imported into the Elekta Oncentra TPS for planning and each applicator was digitized in a multiplanar reconstruction window. A dose of 340 cGy was prescribed to the surface of a 1 cm expansion of the SAVI applicator cavity. Cartesian coordinates of the digitized applicator were determined in the treatment leading to the generation of a dose distribution and corresponding distance-dose prediction look up table (LUT) for distances from 2 to 15 cm (6-mini) and 2 to 20 cm (10–1).The deviation between the LUT doses and the dose to the cardiac device in a clinical case was evaluated. Results: Distance-dose look up table were compared to clinical SAVI plan and the discrepancy between the max dose predicted by the LUT and the clinical plan was found to be in the range (−0.44%, 0.74%) of the prescription dose. Conclusion: The distance-dose look up tables for SAVI applicators can be used to estimate the maximum dose to the ICD/PM, with a potential usefulness for quick assessment of dose to the cardiac device prior to applicator placement.« less

  6. WE-DE-201-11: Sensitivity and Specificity of Verification Methods Based On Total Reference Air Kerma (TRAK) Or On User Provided Dose Points for Graphically Planned Skin HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damato, A; Devlin, P; Bhagwat, M

    Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of themore » clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.« less

  7. Regulated Cell Death of Lymphoma Cells after Graded Mitochondrial Damage is Differentially Affected by Drugs Targeting Cell Stress Responses.

    PubMed

    Lombardo, Tomás; Folgar, Martín Gil; Salaverry, Luciana; Rey-Roldán, Estela; Alvarez, Elida M; Carreras, María C; Kornblihtt, Laura; Blanco, Guillermo A

    2018-05-01

    Collapse of the mitochondrial membrane potential (MMP) is often considered the initiation of regulated cell death (RCD). Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) is an uncoupler of the electron transport chain (ETC) that facilitates the translocation of protons into the mitochondrial matrix leading to the collapse of the MMP. Several cell stress responses such as mitophagy, mitochondrial biogenesis and the ubiquitin proteasome system may differentially contribute to restrain the initiation of RCD depending on the extent of mitochondrial damage. We induced graded mitochondrial damage after collapse of MMP with the mitochondrial uncoupler CCCP in Burkitt's lymphoma cells, and we evaluated the effect of several drugs targeting cell stress responses over RCD at 72 hr, using a multiparametric flow cytometry approach. CCCP caused collapse of MMP after 30 min., massive mitochondrial fission, oxidative stress and increased mitophagy within the 5-15 μM low-dose range (LDR) of CCCP. Within the 20-50 μM high-dose range (HDR), CCCP caused lysosomal destabilization and rupture, thus precluding mitophagy and autophagy. Cell death after 72 hr was below 20%, with increased mitochondrial mass (MM). The inhibitors of mitophagy 3-(2,4-dichloro-5-methoxyphenyl)-2,3-dihydro-2-thioxo-4(1H)-quinazolinone (Mdivi-1) and vincristine (VCR) increased cell death from CCCP within the LDR, while valproic acid (an inducer of mitochondrial biogenesis) also increased MM and cell death within the LDR. The proteasome inhibitor, MG132, increased cell death only in the HDR. Doxycycline, an antibiotic that disrupts mitochondrial biogenesis, had no effect on cell survival, while iodoacetamide, an inhibitor of glycolysis, increased cell death at the HDR. We conclude that mitophagy influenced RCD of lymphoma cells after MMP collapse by CCCP only within the LDR, while proteasome activity and glycolysis contributed to survival in the HDR under extensive mitochondria and lysosome damage. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. Harmony search optimization for HDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Panchal, Aditya

    In high dose-rate (HDR) prostate brachytherapy, multiple catheters are inserted interstitially into the target volume. The process of treating the prostate involves calculating and determining the best dose distribution to the target and organs-at-risk by means of optimizing the time that the radioactive source dwells at specified positions within the catheters. It is the goal of this work to investigate the use of a new optimization algorithm, known as Harmony Search, in order to optimize dwell times for HDR prostate brachytherapy. The new algorithm was tested on 9 different patients and also compared with the genetic algorithm. Simulations were performed to determine the optimal value of the Harmony Search parameters. Finally, multithreading of the simulation was examined to determine potential benefits. First, a simulation environment was created using the Python programming language and the wxPython graphical interface toolkit, which was necessary to run repeated optimizations. DICOM RT data from Varian BrachyVision was parsed and used to obtain patient anatomy and HDR catheter information. Once the structures were indexed, the volume of each structure was determined and compared to the original volume calculated in BrachyVision for validation. Dose was calculated using the AAPM TG-43 point source model of the GammaMed 192Ir HDR source and was validated against Varian BrachyVision. A DVH-based objective function was created and used for the optimization simulation. Harmony Search and the genetic algorithm were implemented as optimization algorithms for the simulation and were compared against each other. The optimal values for Harmony Search parameters (Harmony Memory Size [HMS], Harmony Memory Considering Rate [HMCR], and Pitch Adjusting Rate [PAR]) were also determined. Lastly, the simulation was modified to use multiple threads of execution in order to achieve faster computational times. Experimental results show that the volume calculation that was implemented in this thesis was within 2% of the values computed by Varian BrachyVision for the prostate, within 3% for the rectum and bladder and 6% for the urethra. The calculation of dose compared to BrachyVision was determined to be different by only 0.38%. Isodose curves were also generated and were found to be similar to BrachyVision. The comparison between Harmony Search and genetic algorithm showed that Harmony Search was over 4 times faster when compared over multiple data sets. The optimal Harmony Memory Size was found to be 5 or lower; the Harmony Memory Considering Rate was determined to be 0.95, and the Pitch Adjusting Rate was found to be 0.9. Ultimately, the effect of multithreading showed that as intensive computations such as optimization and dose calculation are involved, the threads of execution scale with the number of processors, achieving a speed increase proportional to the number of processor cores. In conclusion, this work showed that Harmony Search is a viable alternative to existing algorithms for use in HDR prostate brachytherapy optimization. Coupled with the optimal parameters for the algorithm and a multithreaded simulation, this combination has the capability to significantly decrease the time spent on minimizing optimization problems in the clinic that are time intensive, such as brachytherapy, IMRT and beam angle optimization.

  9. Long-Term Cancer Outcomes From Study NRG Oncology/RTOG 9517: A Phase 2 Study of Accelerated Partial Breast Irradiation With Multicatheter Brachytherapy After Lumpectomy for Early-Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Julia, E-mail: Julia.White@osumc.edu; Winter, Kathryn; Kuske, Robert R.

    Purpose: To examine 10-year rates of local, regional, and distant recurrences, patterns of recurrence, and survival rates for breast cancer patients enrolled on Study NRG Oncology/Radiation Therapy Oncology Group 9517, a multi-institutional prospective trial that studied one of the earliest methods of accelerated partial breast irradiation (APBI), multicatheter brachytherapy (MCT). Methods and Materials: Eligibility included stage I/II unifocal breast cancer <3 cm in size after lumpectomy with negative surgical margins and 0 to 3 positive axillary nodes without extracapsular extension. The APBI dose delivered was 34 Gy in 10 twice-daily fractions over 5 days for high-dose-rate (HDR); and 45 Gy in 3.5 to 5 days formore » low-dose-rate (LDR) brachytherapy. The primary endpoint was HDR and LDR MCT reproducibility. This analysis focuses on long-term ipsilateral breast recurrence (IBR), contralateral breast cancer events (CBE), regional recurrence (RR), and distant metastases (DM), disease-free, and overall survival. Results: The median follow-up was 12.1 years. One hundred patients were accrued from 1997 to 2000; 98 were evaluable; 65 underwent HDR and 33 LDR MCT. Median age was 62 years; 88% had T1 tumors; 81% were pN0. Seventy-seven percent were estrogen receptor and/or progesterone receptor positive; 33% received adjuvant chemotherapy and 64% antiendocrine therapy. There have been 4 isolated IBRs and 1 IBR with RR, for 5.2% 10-year IBR without DM. There was 1 isolated RR, 1 with IBR, and 1 with a CBE, for 3.1% 10-year RR without DM. The 10-year CBE rate was 4.2%, with 5 total events. Eleven patients have developed DM, 8 have died of breast cancer, and 22 have died from other causes. The 10-year DFS and OS rates are 69.8% and 78.0%, respectively. Conclusion: This multi-institutional, phase 2 trial studying MCT-APBI continues to report durable in-breast cancer control rates with long-term follow-up.« less

  10. Oncentra brachytherapy planning system.

    PubMed

    Yang, Jack

    2018-03-27

    In modern cancer management, treatment planning has progressed as a contemporary tool with all the advances in computing power in recent years. One of the advanced planning tools uses 3-dimensional (3D) data sets for accurate dose distributions in patient prescription. Among these planning processes, brachytherapy has been a very important part of a successful cancer management program, offering clinical benefits with specific or combined treatments with external beam therapy. In this chapter, we mainly discussed the Elekta Oncentra planning system, which is the main treatment planning tool for high-dose rate (HDR) modality in our facility and in many other facilities in the United States. HDR is a technically advanced form of brachytherapy; a high-intensity radiation source (3.6 mm in length) is delivered with step motor in submillimeter precision under computer guidance directly into the tumor areas while minimizing injury to surrounding normal healthy tissue. Oncentra planning is the key component to generate a deliverable brachytherapy procedure, which is executed on the microSelectron V3 remote afterloader treatment system. Creating a highly conformal plan can be a time-consuming task. The development of Oncentra software (version 4.5.3) offers a variety of useful tools that facilitate many of the clinical challenging tasks for planning, such as contouring and image reconstruction, as well as rapid planning calculations with dose and dose volume histogram analysis. Oncentra Brachy module creates workflow and optimizes the planning accuracy for wide varieties of clinical HDR treatments, such as skin, gynecologic (GYN), breast, prostate, and many other applications. The treatment file can also be transferred to the afterloader control station for speedy delivery. The design concept, calculation algorithms, and optimization modules presented some key characteristics to plan and treat the patients effectively and accurately. The dose distribution and accuracy of several clinical sample cases were discussed to illustrate the effectiveness and clinical efficacy. The American Association of Physicists in Medicine brachytherapy reports of TG-43 and TG-186 were also described and compared in evaluations of fundamental calculation methodologies. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. Long-Term Cancer Outcomes From Study NRG Oncology/RTOG 9517: A Phase 2 Study of Accelerated Partial Breast Irradiation With Multicatheter Brachytherapy After Lumpectomy for Early-Stage Breast Cancer.

    PubMed

    White, Julia; Winter, Kathryn; Kuske, Robert R; Bolton, John S; Arthur, Douglas W; Scroggins, Troy; Rabinovitch, Rachel A; Kelly, Tracy; Toonkel, Leonard M; Vicini, Frank A; McCormick, Beryl

    2016-08-01

    To examine 10-year rates of local, regional, and distant recurrences, patterns of recurrence, and survival rates for breast cancer patients enrolled on Study NRG Oncology/Radiation Therapy Oncology Group 9517, a multi-institutional prospective trial that studied one of the earliest methods of accelerated partial breast irradiation (APBI), multicatheter brachytherapy (MCT). Eligibility included stage I/II unifocal breast cancer <3 cm in size after lumpectomy with negative surgical margins and 0 to 3 positive axillary nodes without extracapsular extension. The APBI dose delivered was 34 Gy in 10 twice-daily fractions over 5 days for high-dose-rate (HDR); and 45 Gy in 3.5 to 5 days for low-dose-rate (LDR) brachytherapy. The primary endpoint was HDR and LDR MCT reproducibility. This analysis focuses on long-term ipsilateral breast recurrence (IBR), contralateral breast cancer events (CBE), regional recurrence (RR), and distant metastases (DM), disease-free, and overall survival. The median follow-up was 12.1 years. One hundred patients were accrued from 1997 to 2000; 98 were evaluable; 65 underwent HDR and 33 LDR MCT. Median age was 62 years; 88% had T1 tumors; 81% were pN0. Seventy-seven percent were estrogen receptor and/or progesterone receptor positive; 33% received adjuvant chemotherapy and 64% antiendocrine therapy. There have been 4 isolated IBRs and 1 IBR with RR, for 5.2% 10-year IBR without DM. There was 1 isolated RR, 1 with IBR, and 1 with a CBE, for 3.1% 10-year RR without DM. The 10-year CBE rate was 4.2%, with 5 total events. Eleven patients have developed DM, 8 have died of breast cancer, and 22 have died from other causes. The 10-year DFS and OS rates are 69.8% and 78.0%, respectively. This multi-institutional, phase 2 trial studying MCT-APBI continues to report durable in-breast cancer control rates with long-term follow-up. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Long-term prognostic significance of rising PSA levels following radiotherapy for localized prostate cancer - focus on overall survival.

    PubMed

    Freiberger, Carla; Berneking, Vanessa; Vögeli, Thomas-Alexander; Kirschner-Hermanns, Ruth; Eble, Michael J; Pinkawa, Michael

    2017-06-14

    The aim of this study was to evaluate the long-term prognostic significance of rising PSA levels, particularly focussing on overall survival. Two hundred ninety-five patients with localized prostate cancer were either treated with low-dose-rate (LDR) brachytherapy with I-125 seeds as monotherapy (n = 94; 145Gy), high-dose-rate (HDR) brachytherapy with Ir-192 as a boost to external beam RT (n = 66; 50.4Gy in 1.8Gy fractions EBRT + 18Gy in 9Gy fractions HDR) or EBRT alone (70.2Gy in 1.8Gy fractions; n = 135). "PSA bounce" was defined as an increase of at least 0.2 ng/ml followed by spontaneous return to pre-bounce level or lower, biochemical failure was defined according to the Phoenix definition. Median follow-up after the end of radiotherapy was 108 months. A PSA bounce showed to be a significant factor for biochemical control (BC) and overall survival (OS) after ten years (BC10 of 83% with bounce vs. 34% without, p < 0.01; OS10 of 82% with bounce vs. 59% without bounce, p < 0.01). The occurrence of a bounce, a high nadir and the therapy modality (LDR-BT vs. EBRT and HDR-BT + EBRT vs. EBRT) proved to be independent factors for PSA recurrence in multivariate Cox regression analysis. A bounce was detected significantly earlier than a PSA recurrence (median 20 months vs. 32 months after RT; p < 0.01; median PSA doubling time 5.5 vs. 5.0 months, not significant). PSA doubling time was prognostically significant in case of PSA recurrence (OS10 of 72% vs. 36% with PSA doubling time ˃ 5 months vs. ≤ 5 months; p < 0.01). Rising PSA levels within the first two years can usually be classified as a benign PSA bounce, with favourable recurrence-free and overall survival rates. PSA doubling time is an important predictor for overall survival following the diagnosis of a recurrence.

  13. Thermal dosimetry analysis combined with patient-specific thermal modeling of clinical interstitial ultrasound hyperthermia integrated within HDR brachytherapy for treatment of locally advanced prostate cancer

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Vasant A.; Wootton, Jeff; Prakash, Punit; Scott, Serena; Hsu, I. C.; Diederich, Chris J.

    2017-03-01

    This study presents thermal dosimetry analysis from clinical treatments where ultrasound hyperthermia (HT) was administered following high-dose rate (HDR) brachytherapy treatment for locally advanced prostate cancer as part of a clinical pilot study. HT was administered using ultrasound applicators from within multiple 13-g brachytherapy catheters implanted along the posterior periphery of the prostate. The heating applicators were linear arrays of sectored tubular transducers (˜7 MHz), with independently powered array elements enabling energy deposition with 3D spatial control. Typical heat treatments employed time-averaged peak acoustic intensities of 1 - 3 W/cm2 and lasted for 60 - 70 minutes. Throughout the treatments, temperatures at multiple points were monitored using multi-junction thermocouples, placed within available brachytherapy catheters throughout mid-gland prostate and identified as the hyperthermia target volume (HTV). Clinical constraints allowed placement of 8 - 12 thermocouple sensors in the HTV and patient-specific 3D thermal modeling based on finite element methods (FEM) was used to supplement limited thermometry. Patient anatomy, heating device positions, orientations, and thermometry junction locations were obtained from patient CT scans and HDR and hyperthermia planning software. The numerical models utilized the applied power levels recorded during the treatments. Tissue properties such as perfusion and acoustic absorption were varied within physiological ranges such that squared-errors between measured and simulated temperatures were minimized. This data-fitting was utilized for 6 HT treatments to estimate volumetric temperature distributions achieved in the HTV and surrounding anatomy devoid of thermocouples. For these treatments, the measured and simulated T50 values in the hyperthermia target volume (HTV) were between 40.1 - 43.9 °C and 40.3 - 44.9 °C, respectively. Maximum temperatures between 46.8 - 49.8 °C were measured during these treatments and the corresponding range obtained from simulation was 47.3 - 51.1 °C. Based on the simulations, the maximum temperatures in the bladder and the rectum were below 41.7 °C and 41.1 °C, respectively.

  14. Quality indicators for prostate radiotherapy: are patients disadvantaged by receiving treatment in a 'generalist' centre?

    PubMed

    Freeman, Amanda R; Roos, Daniel E; Kim, Laurence

    2015-04-01

    The purpose of this retrospective review was to evaluate concordance with evidence-based quality indicator guidelines for prostate cancer patients treated radically in a 'generalist' (as distinct from 'sub-specialist') centre. We were concerned that the quality of treatment may be lower in a generalist centre. If so, the findings could have relevance for many radiotherapy departments that treat prostate cancer. Two hundred fifteen consecutive patients received external beam radiotherapy (EBRT) and/or brachytherapy between 1.10.11 and 30.9.12. Treatment was deemed to be in line with evidence-based guidelines if the dose was: (i) 73.8-81 Gy at 1.8-2.0 Gy/fraction for EBRT alone (eviQ guidelines); (ii) 40-50 Gy (EBRT) for EBRT plus high-dose rate (HDR) brachytherapy boost (National Comprehensive Cancer Network (NCCN) guidelines); and (iii) 145 Gy for low dose rate (LDR) I-125 monotherapy (NCCN). Additionally, EBRT beam energy should be ≥6 MV using three-dimensional conformal RT (3D-CRT) or intensity-modulated RT (IMRT), and high-risk patients should receive neo-adjuvant androgen-deprivation therapy (ADT) (eviQ/NCCN). Treatment of pelvic nodes was also assessed. One hundred four high-risk, 84 intermediate-risk and 27 low-risk patients (NCCN criteria) were managed by eight of nine radiation oncologists. Concordance with guideline doses was confirmed in: (i) 125 of 136 patients (92%) treated with EBRT alone; (ii) 32 of 34 patients (94%) treated with EBRT + HDR BRT boost; and (iii) 45 of 45 patients (100%) treated with LDR BRT alone. All EBRT patients were treated with ≥6 MV beams using 3D-CRT (78%) or IMRT (22%). 84%, 21% and 0% of high-risk, intermediate-risk and low-risk patients received ADT, respectively. Overall treatment modality choice (including ADT use and duration where assessable) was concordant with guidelines for 176/207 (85%) of patients. The vast majority of patients were treated concordant with evidence-based guidelines suggesting that, within the limits of the selected criteria, prostate cancer patients are unlikely to be disadvantaged by receiving radiotherapy in this 'generalist' centre. © 2014 The Royal Australian and New Zealand College of Radiologists.

  15. Effects of comb dubbing on the performance of laying stocks.

    PubMed

    Fairfull, R W; Crober, D C; Gowe, R S

    1985-03-01

    Three studies were conducted with birds dubbed at hatch vs. dubbed and dewattled at 118 days or 255 to 260 days of age or with normal hens. In the first, involving 5928 pullets of four strains housed 1 per cage, dubbing and dewattling at 255 to 260 days caused small adverse effects on egg numbers as compared with nondubbed controls. Body size was reduced, and both egg weight (EW) and shell strength were increased slightly. In the second study, involving 8180 pullets of nine strains housed 1 per cage, dubbing and dewattling at 118 days slightly increased survivor egg production (SEP) and laying house mortality, and reduced age at first egg, 240-day EW, and 450-day Haugh units (HU), as compared with dubbing only at hatch. There were significant strain by dubbing treatment interactions for hen-day rate of lay (HDR) and SEP. In the third study, involving 1824 pullets of three strain crosses housed 2 and 3 birds per cage (three different cage sizes), there were no significant differences between birds dubbed at hatch and those not dubbed. Variation in age at 50% production, SEP, and HDR was reduced for the dubbed groups. These studies show that the older the birds are when dubbed, the greater the negative effects of dubbing. Hens dubbed at hatch exhibit no effects with the early dubbing or adverse effects in the laying house.

  16. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  17. Production test IP-376-D, Supplement B Irradiation of MGCR-HDR-3 Test Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, R.E.

    The objective of this supplement to PT-IP-376-D, Irradiation of MGCR-HDR-3 Test Element is to authorize 1000 hours of operation at a maximum test specimen surface temperature of 1700 F. The original production test authorized a test duration of four months at a maximum specimen surface temperature of 1500 F; supplement A authorized extension of the test duration to ten months. The desired increase in surface temperature is requested to demonstrate the general feasibility of operation of the fuel element at 1700 F, and to obtain specific information on the performance of Hastelloy-X cladding and fuel bodies. The increased temperature hasmore » been approved by the Atomic Energy Commission.« less

  18. Prostate brachytherapy

    MedlinePlus

    Implant therapy - prostate cancer; Radioactive seed placement; Internal radiation therapy - prostate; High dose radiation (HDR) ... CT scan to plan and then place the seeds that deliver radiation into your prostate. The seeds ...

  19. New method for obtaining position and time structure of source in HDR remote afterloading brachytherapy unit utilizing light emission from scintillator

    PubMed Central

    Hanada, Takashi; Katsuta, Shoichi; Yorozu, Atsunori; Maruyama, Koichi

    2009-01-01

    When using a HDR remote afterloading brachytherapy unit, results of treatment can be greatly influenced by both source position and treatment time. The purpose of this study is to obtain information on the source of the HDR remote afterloading unit, such as its position and time structure, with the use of a simple system consisting of a plastic scintillator block and a charge‐coupled device (CCD) camera. The CCD camera was used for recording images of scintillation luminescence at a fixed rate of 30 frames per second in real time. The source position and time structure were obtained by analyzing the recorded images. For a preset source‐step‐interval of 5 mm, the measured value of the source position was 5.0±1.0mm, with a pixel resolution of 0.07 mm in the recorded images. For a preset transit time of 30 s, the measured value was 30.0±0.6 s, when the time resolution of the CCD camera was 1/30 s. This system enabled us to obtain the source dwell time and movement time. Therefore, parameters such as I192r source position, transit time, dwell time, and movement time at each dwell position can be determined quantitatively using this plastic scintillator‐CCD camera system. PACS number: 87.53.Jw

  20. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  1. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.

    PubMed

    Albadri, Shahad; Del Bene, Filippo; Revenu, Céline

    2017-05-15

    With its variety of applications, the CRISPR/Cas9 genome editing technology has been rapidly evolving in the last few years. In the zebrafish community, knock-out reports are constantly increasing but insertion studies have been so far more challenging. With this review, we aim at giving an overview of the homologous directed repair (HDR)-based knock-in generation in zebrafish. We address the critical points and limitations of the procedure such as cutting efficiency of the chosen single guide RNA, use of cas9 mRNA or Cas9 protein, homology arm size etc. but also ways to circumvent encountered issues with HDR insertions by the development of non-homologous dependent strategies. While imprecise, these homology-independent mechanisms based on non-homologous-end-joining (NHEJ) repair have been employed in zebrafish to generate reporter lines or to accurately edit an open reading frame by the use of intron-targeting modifications. Therefore, with higher efficiency and insertion rate, NHEJ-based knock-in seems to be a promising approach to target endogenous loci and to circumvent the limitations of HDR whenever it is possible and appropriate. In this perspective, we propose new strategies to generate cDNA edited or tagged insertions, which once established will constitute a new and versatile toolbox for CRISPR/Cas9-based knock-ins in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The effects of proton radiation on the prothrombin and partial thromboplastin times of irradiated ferrets

    PubMed Central

    Krigsfeld, Gabriel S.; Sanzari, Jenine K.; Kennedy, Ann R.

    2013-01-01

    Purpose To determine whether proton radiation affects coagulation. Material and methods Ferrets were exposed to solar particle event-like proton radiation at doses of 0, 25, 100, or 200 centigray (cGy), and dose rates of 50 cGy/minute (high dose rate or HDR) or 50 cGy/hour (low dose rate or LDR). Plasma was isolated from blood collected prior to radiation exposure and at 3–7 h post-radiation. Prothrombin time (PT) assays and activated partial thromboplastin time (aPTT) assays were performed as were mixing studies to determine the coagulation factors involved. Results HDR and LDR exposure led to statistically significant increases in PT values. It was determined that the HDR-induced increase in PT was due to Factor VII, while Factors II, V, and VII contributed to the LDR-induced increase in PT values. Only acute LDR exposure caused an increase in aPTT values, which remained elevated for 48 h post-irradiation (which was the latest time assayed in these studies). Mixing studies revealed that Factor IX contributed to the increased aPTT values. A majority of the animals exposed at the LDR had an International Normalized Ratio approaching or surpassing 2.0. Conclusions PT/aPTT assays resulted in increased clotting times due to different coagulation factors, indicating potential radiation-induced coagulopathy. PMID:22221163

  3. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy.

    PubMed

    Palmer, Antony L; Lee, Chris; Ratcliffe, Ailsa J; Bradley, David; Nisbet, Andrew

    2013-10-07

    A novel phantom is presented for 'full system' dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  4. The influence of smoking on radiation-induced bystander signal production in esophageal cancer patients.

    PubMed

    Hanu, C; Timotin, E; Wong, R; Sur, R K; Hayward, J E; Seymour, C B; Mothersill, C E

    2016-05-01

    The relevance of radiation-induced bystander effects in humans is unclear. Much of the existing data relate to cell lines but the effect of bystander signals in complex human tissues is unclear. A phase II clinical study was untaken, where blood sera from 60 patients along with 15 cancer-free volunteers were used to detect whether measurable bystander factor(s) could be found in the blood following high dose rate (HDR) brachytherapy. Overall, there was no significant change in bystander signal production (measured in a human keratinocyte reporter system) before and after one treatment fraction of HDR brachytherapy (p>0.05). Further assessment of patient characteristics and environmental modifiable factors including smoking were also analyzed. Similar to previously published data, samples taken from smokers produced weaker signals compared to non-smokers (p<0.05). Although the number of non-smoking subjects was low, there was a clear decrease in cloning efficiency observed in keratinocyte cultures for these patients that requires further study. This study found that samples taken from smokers do not produce bystander signals, whereas samples taken from non-smokers can produce such signals following HDR brachytherapy. These findings highlight the importance of studying the interactions of multiple stressors including environmental modifiers with radiation, since some factors such as smoking may elicit protection in tumor cells which could counteract the effectiveness of radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. SU-E-T-68: A Quality Assurance System with a Web Camera for High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Y; Hirose, A; Oohira, S

    Purpose: The purpose of this work was to develop a quality assurance (QA) system for high dose rate (HDR) brachytherapy to verify the absolute position of an 192Ir source in real time and to measure dwell time and position of the source simultaneously with a movie recorded by a web camera. Methods: A web camera was fixed 15 cm above a source position check ruler to monitor and record 30 samples of the source position per second over a range of 8.0 cm, from 1425 mm to 1505 mm. Each frame had a matrix size of 480×640 in the movie.more » The source position was automatically quantified from the movie using in-house software (built with LabVIEW) that applied a template-matching technique. The source edge detected by the software on each frame was corrected to reduce position errors induced by incident light from an oblique direction. The dwell time was calculated by differential processing to displacement of the source. The performance of this QA system was illustrated by recording simple plans and comparing the measured dwell positions and time with the planned parameters. Results: This QA system allowed verification of the absolute position of the source in real time. The mean difference between automatic and manual detection of the source edge was 0.04 ± 0.04 mm. Absolute position error can be determined within an accuracy of 1.0 mm at dwell points of 1430, 1440, 1450, 1460, 1470, 1480, 1490, and 1500 mm, in three step sizes and dwell time errors, with an accuracy of 0.1% in more than 10.0 sec of planned time. The mean step size error was 0.1 ± 0.1 mm for a step size of 10.0 mm. Conclusion: This QA system provides quick verifications of the dwell position and time, with high accuracy, for HDR brachytherapy. This work was supported by the Japan Society for the Promotion of Science Core-to-Core program (No. 23003)« less

  6. WE-G-BRC-02: Risk Assessment for HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayadev, J.

    2016-06-15

    Failure Mode and Effects Analysis (FMEA) originated as an industrial engineering technique used for risk management and safety improvement of complex processes. In the context of radiotherapy, the AAPM Task Group 100 advocates FMEA as the framework of choice for establishing clinical quality management protocols. However, there is concern that widespread adoption of FMEA in radiation oncology will be hampered by the perception that implementation of the tool will have a steep learning curve, be extremely time consuming and labor intensive, and require additional resources. To overcome these preconceptions and facilitate the introduction of the tool into clinical practice, themore » medical physics community must be educated in the use of this tool and the ease in which it can be implemented. Organizations with experience in FMEA should share their knowledge with others in order to increase the implementation, effectiveness and productivity of the tool. This session will include a brief, general introduction to FMEA followed by a focus on practical aspects of implementing FMEA for specific clinical procedures including HDR brachytherapy, physics plan review and radiosurgery. A description of common equipment and devices used in these procedures and how to characterize new devices for safe use in patient treatments will be presented. This will be followed by a discussion of how to customize FMEA techniques and templates to one’s own clinic. Finally, cases of common failure modes for specific procedures (described previously) will be shown and recommended intervention methodologies and outcomes reviewed. Learning Objectives: Understand the general concept of failure mode and effect analysis Learn how to characterize new equipment for safety Be able to identify potential failure modes for specific procedures and learn mitigation techniques Be able to customize FMEA examples and templates for use in any clinic.« less

  7. Artifacts in slab average-intensity-projection images reformatted from JPEG 2000 compressed thin-section abdominal CT data sets.

    PubMed

    Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Mantiuk, Rafal; Kim, Hye-ri; Kim, Young Hoon

    2008-06-01

    The objective of our study was to assess the effects of compressing source thin-section abdominal CT images on final transverse average-intensity-projection (AIP) images. At reversible, 4:1, 6:1, 8:1, 10:1, and 15:1 Joint Photographic Experts Group (JPEG) 2000 compressions, we compared the artifacts in 20 matching compressed thin sections (0.67 mm), compressed thick sections (5 mm), and AIP images (5 mm) reformatted from the compressed thin sections. The artifacts were quantitatively measured with peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High Dynamic Range Visual Difference Predictor [HDR-VDP]). By comparing the compressed and original images, three radiologists independently graded the artifacts as 0 (none, indistinguishable), 1 (barely perceptible), 2 (subtle), or 3 (significant). Friedman tests and exact tests for paired proportions were used. At irreversible compressions, the artifacts tended to increase in the order of AIP, thick-section, and thin-section images in terms of PSNR (p < 0.0001), HDR-VDP (p < 0.0001), and the readers' grading (p < 0.01 at 6:1 or higher compressions). At 6:1 and 8:1, distinguishable pairs (grades 1-3) tended to increase in the order of AIP, thick-section, and thin-section images. Visually lossless threshold for the compression varied between images but decreased in the order of AIP, thick-section, and thin-section images (p < 0.0001). Compression artifacts in thin sections are significantly attenuated in AIP images. On the premise that thin sections are typically reviewed using an AIP technique, it is justifiable to compress them to a compression level currently accepted for thick sections.

  8. Status of ionization chambers calibration for radiation therapy in Brazil

    NASA Astrophysics Data System (ADS)

    Gonçalves, M.; Joana, G.; Leal, P.; Vasconcelos, R.; do Couto, N.; Teixeira, F. C.; Soares, A. D.; Santini, E. S.; Salata, C.

    2018-03-01

    CNEN makes a constant effort to keep updated with international standards and national needs to strengthen the radiological protection status of the country. The guidelines related to radiation treatment facilities have been revised in the last five years in order to take in consideration the most relevant aspects of the growing technology as well as to mitigate the accidents or incidents observed in practice. Hence, clinical dosimeters have gained special importance as significant items in Brazilian regulation. In the present work we discuss the importance of inspections from the point of view of equipment dosimetry and instruments quality control. The dosimeter sets based on thimble and well ionization chambers need periodic calibration, and this calibration becomes a fundamental task in order to guarantee the dose prescribed-delivered to patients. Thus Brazilian guidelines enforce the need of at least two sets of clinical dosimeters with thimble chambers calibrated and one set of electrometer with well ionization chamber for hdr equipment. We call attention to the fact that inspections are a very valuable tool in order to enforce the application of guidelines around the country both by enlightening the weaker aspects of facilities concerning radiological protection and by stating in loco that reasons which lead the regulatory body to enforce such guidelines items.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borot de Battisti, M; Maenhout, M; Lagendijk, J J W

    Purpose: To develop adaptive planning with feedback for MRI-guided focal HDR prostate brachytherapy with a single divergent needle robotic implant device. After each needle insertion, the dwell positions for that needle are calculated and the positioning of remaining needles and dosimetry are both updated based on MR imaging. Methods: Errors in needle positioning may occur due to inaccurate needle insertion (caused by e.g. the needle’s bending) and unpredictable changes in patient anatomy. Consequently, the dose plan quality might dramatically decrease compared to the preplan. In this study, a procedure was developed to re-optimize, after each needle insertion, the remaining needlemore » angulations, source positions and dwell times in order to obtain an optimal coverage (D95% PTV>19 Gy) without exceeding the constraints of the organs at risk (OAR) (D10% urethra<21 Gy, D1cc bladder<12 Gy and D1cc rectum<12 Gy). Complete HDR procedures with 6 needle insertions were simulated for a patient MR-image set with PTV, prostate, urethra, bladder and rectum delineated. Random angulation errors, modeled by a Gaussian distribution (standard deviation of 3 mm at the needle’s tip), were generated for each needle insertion. We compared the final dose parameters for the situations (I) without re-optimization and (II) with the automatic feedback. Results: The computation time of replanning was below 100 seconds on a current desk computer. For the patient tested, a clinically acceptable dose plan was achieved while applying the automatic feedback (median(range) in Gy, D95% PTV: 19.9(19.3–20.3), D10% urethra: 13.4(11.9–18.0), D1cc rectum: 11.0(10.7–11.6), D1cc bladder: 4.9(3.6–6.8)). This was not the case without re-optimization (median(range) in Gy, D95% PTV: 19.4(14.9–21.3), D10% urethra: 12.6(11.0–15.7), D1cc rectum: 10.9(8.9–14.1), D1cc bladder: 4.8(4.4–5.2)). Conclusion: An automatic guidance strategy for HDR prostate brachytherapy was developed to compensate errors in needle positioning and improve the dose distribution. Without re-optimization, target coverage and OAR constraints may not be achieved. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are full-time employees of Philips Medical Systems Nederland B.V.« less

  10. Clinical analysis of speculum-based vaginal packing for high-dose-rate intracavitary tandem and ovoid brachytherapy in cervical cancer

    PubMed Central

    Sud, Shivani; Roth, Toni

    2018-01-01

    Purpose Intra-vaginal packing is used to fix the applicator and displace organs at risk (OAR) during high-dose-rate intracavitary tandem and ovoid brachytherapy (HDR-ICB). We retain the speculum from applicator placement as a dual-function bladder and rectum retractor during treatment. Our objective is to review salient techniques for OAR displacement, share our packing technique, and determine the reduction in dose to OAR and inter-fraction variability of dose to OAR, associated with speculum-based vaginal packing (SBVP) in comparison to conventional gauze packing during HDR-ICB. Material and methods We reviewed HDR-ICB treatment plans for 45 patients, including 10 who underwent both conventional gauze packing and SBVP. Due to institutional inter-provider practice differences, patients non-selectively received either packing procedure. Packing was performed under conscious sedation, followed by cone beam computed tomography used for dosimetric planning. Maximum absolute and percent-of-prescription dose to the International Commission of Radiation Units bladder and rectal points in addition to D0.1cc, D1.0cc, and D2.0cc volumes of the bladder and rectum were analyzed and compared for each packing method using an independent sample t-test. Results Of the 179 fractions included, 73% and 27% used SBVP and gauze packing, respectively. For patients prescribed 6 Gy to point A, SBVP was associated with reduced mean D0.1cc bladder dose, inter-fraction variability in D0.1cc bladder dose by 9.3% (p = 0.026) and 9.0%, respectively, and statistically equivalent rectal D0.1cc, D1.0cc, and D2.0cc. Patients prescribed 5.5 Gy or 5 Gy to point A after dose optimization, were less likely to benefit from SBVP. In the intra-patient comparison, 80% of patients had reduction in at least one rectum or bladder parameter. Conclusions In patients with conducive anatomy, SBVP is a cost-efficient packing method that is associated with improved bladder sparing and comparable rectal sparing relative to gauze packing during HDR-ICB without general anesthesia. PMID:29619054

  11. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulin, E; Racine, E; Beaulieu, L

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantomsmore » were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.« less

  12. SU-F-T-13: Transit Dose Comparisons for Co-60 and Ir-192 HDR Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gimenez-Alventosa, V; Ballester, F; Vijande, J

    Purpose: The purpose of this study is to compare the transit dose due to the movement of high dose rate (HDR) Ir-192 and Co-60 sources along the transfer tube. This is performed by evaluating air-kerma differences in the vicinity of the transfer tube when both sources are moved with the same velocity from a HDR brachytherapy afterloader into a patient. Methods: Monte Carlo simulations have been performed using PENELOPE2014. mHDR-v2 and Flexisource sources have been considered. Collisional kerma has been scored. The sources were simulated within a plastic catheter located in an infinite air phantom. The movement of the seedmore » was included by displacing their positions along the connecting catheter from z=−75 cm to z=+75 cm and combining them. Backscatter from the afterloader and the patient was not considered. Since modern afterloaders like Flexitron (Elekta) or Saginova (Bebig) are able to use equally Ir-192 and Co-60 sources it was assumed that both sources are displaced with equal speed. Typical content activity values were provided by the manufacturer (460 GBq for Ir-192 and 75 GBq for Co-60). Results: 2D distributions were obtained with type-A uncertainties (k=2) less than 0.01%. From those, the air kerma ratio Co-60/Ir-192 was evaluated weighted by their corresponding activities. It was found that it varies slowly with distance (less than 10% variation) but strongly in time due to the shorter half-life of the Ir-192 (73.83 days). The maximum ratio is located close to the catheter with a value of 0.57 when both sources are installed by the manufacturer, while increasing up to 1.25 at the end of the recommended working life (90 days) of the Ir-192 source. Conclusion: Air-kerma ratios are almost constant (0.51–0.57) in the vicinity of the source. Nevertheless, air-kerma ratios increase rapidly whenever the Ir-192 is approaching the end of its life.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, M; Shobhit University, Meerut, Uttar Pradesh; Manjhi, J

    Purpose: This study evaluated dosimetric parameters for actual treatment plans versus decay corrected treatment plans for cervical HDR brachytherapy. Methods: 125 plans of 25 patients, who received 5 fractions of HDR brachytherapy, were evaluated in this study. Dose was prescribed to point A (ICRU-38) and High risk clinical tumor volume (HR-CTV) and organs at risk (OAR) were, retrospectively, delineated on original CT images by treating physician. First HDR plan was considered as reference plan and decay correction was applied to calculate treatment time for subsequent fractions, and was applied, retrospectively, to determine point A, HR-CTV D90, and rectum and bladdermore » doses. Results: The differences between mean point A reference doses and the point A doses of the plans computed using decay times were found to be 1.05%±0.74% (−2.26% to 3.26%) for second fraction; −0.25%±0.84% (−3.03% to 3.29%) for third fraction; 0.04%±0.70% (−2.68% to 2.56%) for fourth fraction and 0.30%±0.81% (−3.93% to 2.67%) for fifth fraction. Overall mean point A dose difference, for all fractions, was 0.29%±0.38% (within ± 5%). Mean rectum and bladder dose differences were calculated to be −3.46%±0.12% and −2.47%±0.09%, for points, respectively, and −1.72%±0.09% and −0.96%±0.06%, for D2cc, respectively. HR-CTV D90 mean dose difference was found to be −1.67% ± 0.11%. There was no statistically significant difference between the reference planned point A doses and that calculated using decay time to the subsequent fractions (p<0.05). Conclusion: This study reveals that a decay corrected treatment will provide comparable dosimetric results and can be utilized for subsequent fractions of cervical HDR brachytherapy instead of actual treatment planning. This approach will increase efficiency, decrease workload, reduce patient observation time between applicator insertion and treatment delivery. This would be particularly useful for institutions with limited resources or large patient populations with limited access to care.« less

  14. SU-G-201-15: Nomogram as an Efficient Dosimetric Verification Tool in HDR Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, J; Todor, D

    Purpose: Nomogram as a simple QA tool for HDR prostate brachytherapy treatment planning has been developed and validated clinically. Reproducibility including patient-to-patient and physician-to-physician variability was assessed. Methods: The study was performed on HDR prostate implants from physician A (n=34) and B (n=15) using different implant techniques and planning methodologies. A nomogram was implemented as an independent QA of computer-based treatment planning before plan execution. Normalized implant strength (total air kerma strength Sk*t in cGy cm{sup 2} divided by prescribed dose in cGy) was plotted as a function of PTV volume and total V100. A quadratic equation was used tomore » fit the data with R{sup 2} denoting the model predictive power. Results: All plans showed good target coverage while OARs met the dose constraint guidelines. Vastly different implant and planning styles were reflected on conformity index (entire dose matrix V100/PTV volume, physician A implants: 1.27±0.14, physician B: 1.47±0.17) and PTV V150/PTV volume ratio (physician A: 0.34±0.09, physician B: 0.24±0.07). The quadratic model provided a better fit for the curved relationship between normalized implant strength and total V100 (or PTV volume) than a simple linear function. Unlike the normalized implant strength versus PTV volume nomogram which differed between physicians, a unique quadratic model based nomogram (Sk*t)/D=−0.0008V2+0.0542V+1.1185 (R{sup 2}=0.9977) described the dependence of normalized implant strength on total V100 over all the patients from both physicians despite two different implant and planning philosophies. Normalized implant strength - total V100 model also generated less deviant points distorting the smoothed ones with a significantly higher correlation. Conclusion: A simple and universal, excel-based nomogram was created as an independent calculation tool for HDR prostate brachytherapy. Unlike similar attempts, our nomogram is insensitive to implant style and does not rely on reproducing dose calculations using TG-43 formalism, thus making it a truly independent check.« less

  15. The IPEM code of practice for determination of the reference air kerma rate for HDR 192Ir brachytherapy sources based on the NPL air kerma standard

    NASA Astrophysics Data System (ADS)

    Bidmead, A. M.; Sander, T.; Locks, S. M.; Lee, C. D.; Aird, E. G. A.; Nutbrown, R. F.; Flynn, A.

    2010-06-01

    This paper contains the recommendations of the high dose rate (HDR) brachytherapy working party of the UK Institute of Physics and Engineering in Medicine (IPEM). The recommendations consist of a Code of Practice (COP) for the UK for measuring the reference air kerma rate (RAKR) of HDR 192Ir brachytherapy sources. In 2004, the National Physical Laboratory (NPL) commissioned a primary standard for the realization of RAKR of HDR 192Ir brachytherapy sources. This has meant that it is now possible to calibrate ionization chambers directly traceable to an air kerma standard using an 192Ir source (Sander and Nutbrown 2006 NPL Report DQL-RD 004 (Teddington: NPL) http://publications.npl.co.uk). In order to use the source specification in terms of either RAKR, \\dot K_R (ICRU 1985 ICRU Report No 38 (Washington, DC: ICRU); ICRU 1997 ICRU Report No 58 (Bethesda, MD: ICRU)), or air kerma strength, SK (Nath et al 1995 Med. Phys. 22 209-34), it has been necessary to develop algorithms that can calculate the dose at any point around brachytherapy sources within the patient tissues. The AAPM TG-43 protocol (Nath et al 1995 Med. Phys. 22 209-34) and the 2004 update TG-43U1 (Rivard et al 2004 Med. Phys. 31 633-74) have been developed more fully than any other protocol and are widely used in commercial treatment planning systems. Since the TG-43 formalism uses the quantity air kerma strength, whereas this COP uses RAKR, a unit conversion from RAKR to air kerma strength was included in the appendix to this COP. It is recommended that the measured RAKR determined with a calibrated well chamber traceable to the NPL 192Ir primary standard is used in the treatment planning system. The measurement uncertainty in the source calibration based on the system described in this COP has been reduced considerably compared to other methods based on interpolation techniques.

  16. WE-A-17A-06: Evaluation of An Automatic Interstitial Catheter Digitization Algorithm That Reduces Treatment Planning Time and Provide Means for Adaptive Re-Planning in HDR Brachytherapy of Gynecologic Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dise, J; Liang, X; Lin, L

    Purpose: To evaluate an automatic interstitial catheter digitization algorithm that reduces treatment planning time and provide means for adaptive re-planning in HDR Brachytherapy of Gynecologic Cancers. Methods: The semi-automatic catheter digitization tool utilizes a region growing algorithm in conjunction with a spline model of the catheters. The CT images were first pre-processed to enhance the contrast between the catheters and soft tissue. Several seed locations were selected in each catheter for the region growing algorithm. The spline model of the catheters assisted in the region growing by preventing inter-catheter cross-over caused by air or metal artifacts. Source dwell positions frommore » day one CT scans were applied to subsequent CTs and forward calculated using the automatically digitized catheter positions. This method was applied to 10 patients who had received HDR interstitial brachytherapy on an IRB approved image-guided radiation therapy protocol. The prescribed dose was 18.75 or 20 Gy delivered in 5 fractions, twice daily, over 3 consecutive days. Dosimetric comparisons were made between automatic and manual digitization on day two CTs. Results: The region growing algorithm, assisted by the spline model of the catheters, was able to digitize all catheters. The difference between automatic and manually digitized positions was 0.8±0.3 mm. The digitization time ranged from 34 minutes to 43 minutes with a mean digitization time of 37 minutes. The bulk of the time was spent on manual selection of initial seed positions and spline parameter adjustments. There was no significance difference in dosimetric parameters between the automatic and manually digitized plans. D90% to the CTV was 91.5±4.4% for the manual digitization versus 91.4±4.4% for the automatic digitization (p=0.56). Conclusion: A region growing algorithm was developed to semi-automatically digitize interstitial catheters in HDR brachytherapy using the Syed-Neblett template. This automatic digitization tool was shown to be accurate compared to manual digitization.« less

  17. SU-E-T-459: Impact of Source Position and Traveling Time On HDR Skin Surface Applicator Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, J; Barker, C; Zaider, M

    Purpose: Observed dosimetric discrepancy between measured and treatment planning system (TPS) predicted values, during applicator commissioning, were traced to source position uncertainty in the applicator. We quantify the dosimetric impact of this geometric uncertainty, and of the source traveling time inside the applicator, and propose corrections for clinical use. Methods: We measured the dose profiles from the Varian Leipzig-style (horizontal) HDR skin applicator, using EBT3 film, photon diode, and optically stimulated luminescence dosimeter (OSLD) and three different GammaMed HDR afterloders. The dose profiles and depth dose of each aperture were measured at several depths (up to about 10 mm, dependingmore » on the dosimeter). The measured dose profiles were compared with Acuros calculated profiles in BrachyVision TPS. For the impact of the source position, EBT3 film measurements were performed with applicator, facing-down and facing-up orientations. The dose with and without source traveling was measured with diode detector using HDR timer and electrometer timer, respectively. Results: Depth doses measured using the three dosimeters were in good agreement, but were consistently higher than the Acuros dose calculations. Measurements with the applicator facing-up were significantly lower than those in the facing-down position with maximum difference of about 18% at the surface, due to source sag inside the applicator. Based on the inverse-square law, the effective source sag was evaluated to be about 0.5 mm from the planned position. The additional dose from the source traveling was about 2.8% for 30 seconds with 10 Ci source, decreasing with increased dwelling time and decreased source activity. Conclusion: Due to the short source-to-surface distance of the applicator, the small source sag inside the applicator has significant dosimetric impact, which should be considered before the clinical use of the applicator. Investigation of the effect for other applicators that have relatively large source lumen inner diameter may be warranted. Christopher Barker and Gil’ad Cohen are receiving research support for a study of skin surface brachytherapy from Elekta.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Sprinberg, G; Piriz, G

    Purpose: To optimize the dose in bladder and rectum and show the different shapes of the isodose volumes in Co60-HDR brachytherapy, considering different utero and vaginal sources dwell ratio times (TU:TV). Methods: Besides Ir192-HDR, new Co60-HDR sources are being incorporated. We considered different TU:TV times and computed the dosis in bladder, rectum and at the reference points of the Manchester system. Also, we calculated the isodose volume and shape in each case. We used a EZAG-BEBIG Co0.A86 model with TPS HDRplus3.0.4. and LCT42-7, LCT42-2(R,L) applicators. A reference dose RA= 1.00 Gy was given to the A-right point. We considered themore » TU:TV dwell time ratios 1:0.25, 1:0.33, 1:0.5, 1:1, 1:2, 1:3, and 1:4. Given TU:TV, the stop time at each dwell position is fixed for each applicator. Results: Increasing TU:TV systematically results in a decreasing of the dose in bladder and rectum, e.g. 9% and 27% reduction were found in 1:0.25 with respect to 1:1, while 12% and 34% increase were found in 1:4 with respect to 1:1. Also, the isodose volume parameters height (h), width (w), thickness (t) and volume (hwt) increased from the 1:0.25 case to the 1:4 value: hwt is 25% lower and 31% higher than the 1:1 reference volume in these cases. Also w decreased for higher TU:TV and may compromise the tumoral volume coverage, decreasing 17% in the 1:0.25 case compared to the 1:1 case. The shape of the isodose volume was obtained for the different TU:TV considered. Conclusion: We obtained the shape of isodose volumes for different TU:TV values in gynecological Co60-HDR. We studied the dose reduction in bladder and rectum for different TU:TV ratios. The volume parameters and hwt are strongly dependent on this ratio. This information is useful for a quantitative check of the TPS and as a starting point towards optimization.« less

  19. Image registration for multi-exposed HDRI and motion deblurring

    NASA Astrophysics Data System (ADS)

    Lee, Seok; Wey, Ho-Cheon; Lee, Seong-Deok

    2009-02-01

    In multi-exposure based image fusion task, alignment is an essential prerequisite to prevent ghost artifact after blending. Compared to usual matching problem, registration is more difficult when each image is captured under different photographing conditions. In HDR imaging, we use long and short exposure images, which have different brightness and there exist over/under satuated regions. In motion deblurring problem, we use blurred and noisy image pair and the amount of motion blur varies from one image to another due to the different exposure times. The main difficulty is that luminance levels of the two images are not in linear relationship and we cannot perfectly equalize or normalize the brightness of each image and this leads to unstable and inaccurate alignment results. To solve this problem, we applied probabilistic measure such as mutual information to represent similarity between images after alignment. In this paper, we discribed about the characteristics of multi-exposed input images in the aspect of registration and also analyzed the magnitude of camera hand shake. By exploiting the independence of luminance of mutual information, we proposed a fast and practically useful image registration technique in multiple capturing. Our algorithm can be applied to extreme HDR scenes and motion blurred scenes with over 90% success rate and its simplicity enables to be embedded in digital camera and mobile camera phone. The effectiveness of our registration algorithm is examined by various experiments on real HDR or motion deblurring cases using hand-held camera.

  20. Coherent structure dynamics and identification during the multistage transitions of polymeric turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Zhu, Lu; Xi, Li

    2018-04-01

    Drag reduction induced by polymer additives in wall-bounded turbulence has been studied for decades. A small dosage of polymer additives can drastically reduce the energy dissipation in turbulent flows and alter the flow structures at the same time. As the polymer-induced fluid elasticity increases, drag reduction goes through several stages of transition with drastically different flow statistics. While much attention in the area of polymer-turbulence interactions has been focused on the onset and the asymptotic stage of maximum drag reduction, the transition between the two intermediate stages – low-extent drag reduction (LDR) and high-extent drag reduction (HDR) – likely reflects a qualitative change in the underlying vortex dynamics according to our recent study [1]. In particular, we proposed that polymers start to suppress the lift-up and bursting of vortices at HDR, leading to the localization of turbulent structures. To test our hypothesis, a statistically robust conditional sampling algorithm, based on Jenong and Hussain [2]’s work, was adopted in this study. The comparison of conditional eddies between the Newtonian and the highly elastic turbulence shows that (i) the lifting “strength” of vortices is suppressed by polymers as reflected by the decreasing lifting angle of the conditional eddy and (ii) the curvature of vortices is also eliminated as the orientation of the head of the conditional eddy changes. In summary, the results of conditional sampling support our hypothesis of polymer-turbulence interactions during the LDR-HDR transition.

  1. A new food frequency questionnaire to assess chocolate and cocoa consumption.

    PubMed

    Vicente, Filipa; Saldaña-Ruíz, Sandra; Rabanal, Manel; Rodríguez-Lagunas, María J; Pereira, Paula; Pérez-Cano, Francisco J; Castell, Margarida

    2016-01-01

    Cocoa has been highlighted as a food with potential benefits to human health because of its polyphenol content. However, few studies show the contribution of cocoa and chocolate products in polyphenol intake. The aim of this work was to develop a food frequency questionnaire (FFQ) for evaluating the intake of food products containing cocoa (C-FFQ). A sample of 50 university students was recruited to complete the 90-item questionnaire, a validated questionnaire (called here European Food Safety Authority [EFSA]-Q) as well as a 24-hour dietary recall (24 HDR). Spearman correlation test, Bland-Altman plots, and quintile classification analysis were conducted together with the Wilcoxon test and descriptive statistics. Significant correlations between the C-FFQ and the EFSA-Q for the most common cocoa/chocolate products were observed (P < 0.05), as well as between data from the C-FFQ and 24 HDR (P < 0.05). However, a number of cocoa/chocolate products frequently consumed by the participants were detected by the C-FFQ and 24 HDR which were not included in the EFSA-Q. According to the C-FFQ, chocolate bars were the main source of cocoa in university students, but dairy products also provided an important amount of cocoa. The developed C-FFQ questionnaire can be considered as a valid option for assessing the consumption frequency of cocoa/chocolate-derived products, thereby allowing the evaluation of cocoa polyphenol intake in further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    PubMed Central

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  3. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    PubMed

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  4. Monte Carlo study of the impact of a magnetic field on the dose distribution in MRI-guided HDR brachytherapy using Ir-192

    NASA Astrophysics Data System (ADS)

    Beld, E.; Seevinck, P. R.; Lagendijk, J. J. W.; Viergever, M. A.; Moerland, M. A.

    2016-09-01

    In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner’s magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.

  5. Monte Carlo study of the impact of a magnetic field on the dose distribution in MRI-guided HDR brachytherapy using Ir-192.

    PubMed

    Beld, E; Seevinck, P R; Lagendijk, J J W; Viergever, M A; Moerland, M A

    2016-09-21

    In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner's magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.

  6. Dosimetric impact of applicator displacement during high dose rate (HDR) Cobalt-60 brachytherapy for cervical cancer: A planning study

    NASA Astrophysics Data System (ADS)

    Yong, J. S.; Ung, N. M.; Jamalludin, Z.; Malik, R. A.; Wong, J. H. D.; Liew, Y. M.; Ng, K. H.

    2016-02-01

    We investigated the dosimetric impact of applicator displacement on dose specification during high dose rate (HDR) Cobalt-60 (Co-60) brachytherapy for cervical cancer through a planning study. Eighteen randomly selected HDR full insertion plans were restrospectively studied. The tandem and ovoids were virtually shifted translationally and rotationally in the x-, y- and z-axis directions on the treatment planning system. Doses to reference points and volumes of interest in the plans with shifted applicators were compared with the original plans. The impact of dose displacement on 2D (point-based) and 3D (volume-based) treatment planning techniques was also assessed. A ±2 mm translational y-axis applicator shift and ±4° rotational x-axis applicator shift resulted in dosimetric changes of more than 5% to organs at risk (OAR) reference points. Changes to the maximum doses to 2 cc of the organ (D2cc) in 3D planning were statistically significant and higher than the reference points in 2D planning for both the rectum and bladder (p<0.05). Rectal D2cc was observed to be the most sensitive to applicator displacement among all dose metrics. Applicator displacement that is greater than ±2 mm translational y-axis and ±4° rotational x-axis resulted in significant dose changes to the OAR. Thus, steps must be taken to minimize the possibility of applicator displacement during brachytherapy.

  7. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer

    NASA Astrophysics Data System (ADS)

    Wootton, Jeffery H.; Prakash, Punit; Hsu, I.-Chow Joe; Diederich, Chris J.

    2011-07-01

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue >=41 °C in a hyperthermia treatment volume was maximized with constraints Tmax <= 47 °C, Trectum <= 41.5 °C, and Tbladder <= 42.5 °C. Hyperthermia treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360° or 2 × 180° output; 6 mm OD) and interstitial (180°, 270°, or 360° output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m-3 s-1) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm3) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 °C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T90 in example patient cases was 40.5-42.7 °C (1.9-39.6 EM43 °C) at 1 kg m-3 s-1 with 10/14 patients >=41 °C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T90 >= 41 °C in clinically practical implant configurations. Catheter-based ultrasound devices, when adhering to the guidelines, show potential to generate conformal therapeutic heating ranging from a single endocervical device targeting small volumes local to the cervix (<2 cm radial) to a combination of a 2 × 180° endocervical and directional interstitial applicators in the lateral periphery to target much larger volumes (6 cm radial), while preferentially limiting heating of the bladder and rectum.

  8. Computed Tomography–Planned High-Dose-Rate Brachytherapy for Treating Uterine Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolciak-Siwinska, Agnieszka, E-mail: agnieszka.zolciak@wp.pl; Gruszczynska, Ewelina; Bijok, Michal

    Purpose: To evaluate the long-term results of computed tomography (CT)–planned high-dose-rate (HDR) brachytherapy (BT) for treating cervical cancer patients. Methods and Materials: CT-planned HDR BT was performed according to the adapted Group European de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) recommendations in 216 consecutive patients with locally advanced cervical cancer, International Federation of Gynecology and Obstetrics (FIGO) stage IB to IVA, who were treated with conformal external beam radiation therapy and concomitant chemotherapy. We analyzed outcomes and late side effects evaluated according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer and Subjective, Objective,more » Management, Analysis evaluation scoring system and compared them with the results from a historical group. Results: The median age was 56 years (range, 32-83 years). The median follow-up time for living patients was 52 months (range 37-63 months). The 5-year cumulative incidence function for the local recurrence rate for patients with FIGO II and III was 5.5% and 20%, respectively (P=.001). The 5-year rates of overall survival (OS) and disease-free survival (DFS) were 66.4% and 58.5%, respectively. The relative risk of failure for OS and DFS for FIGO III in relation to FIGO II was 2.24 (P=.003) and 2.6 (P=.000) and for lymph node enlargement was 2.3 (P=.002) and 2 (P=.006), respectively. In 2 patients, rectovaginal fistula occurred, and in 1 patient, vesicovaginal fistula occurred without local progression. Comparison of late adverse effects in patients treated according to the GEC-ESTRO recommendations and in the historical group revealed a reduction in fistula formation of 59% and also a reduction in rectal grade 3 to 4 late toxicity of >59%. Conclusions: This is the largest report with mature data of CT-planned BT HDR for the treatment of cervical cancer with good local control and acceptable toxicity. In comparison with the historical series, there is a substantial benefit in terms of severe late effects. FIGO III and enlarged lymph nodes in positron emission tomography–CT/CT are negative prognostic factors, both with a relative risk of failure of approximately 2.« less

  9. ED15-0187-236

    NASA Image and Video Library

    2015-06-27

    This high-dynamic range (HDR) photo of the Stratospheric Observatory for Infrared Astronomy (SOFIA) was captured just before sunset at the Christchurch International Airport in Christchurch, New Zealand while aircraft crews were preparing for a nighttime observation flight.

  10. Foreign Humanitarian Assistance

    DTIC Science & Technology

    2009-03-17

    based products and is adequate for the widest range of cultural or religious dietary restrictions. HDR will maintain the health of moderately...rehydration, fortified nutritional products, and micronutrient supplements; provide post- rape-care kits, including post-exposure prophylaxis for human

  11. High-dose-rate brachytherapy – a novel treatment approach for primary clear cell adenocarcinoma of male urethra

    PubMed Central

    Lewis, Shirley; Pal, Mahendra; Bakshi, Ganesh; Ghadi, Yogesh G.; Menon, Santosh; Murthy, Vedang

    2015-01-01

    The incidence of male urethral cancer is rare with age preponderance of 50 to 60 years. The standard management approach is surgery. Here, we present a novel treatment approach for male urethral cancer. Thirty-six year old male, case of primary clear cell adenocarcinoma of urethra who refused surgery, underwent cystoscopic assisted intraluminal HDR brachytherapy. Patient received a dose of 36 Gy in 9 fractions (4 Gy per fraction) followed by a boost of 24 Gy in 6 fractions. At 11 months post treatment, disease is well controlled with no post treatment toxicity so far. Intraluminal brachytherapy seems to be an effective novel treatment for male urethral cancer. PMID:26207115

  12. Energy Conservation Designed into HDR's New Building

    ERIC Educational Resources Information Center

    Jenkins, Larry

    1974-01-01

    A new building has been engineered by its engineer-owner tenants with provisions for two gas-oil hot water generators and for an electric boiler, so that operating personnel could switch to whatever fuel is available. (Author/MLF)

  13. An improved artifact removal in exposure fusion with local linear constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Yu, Mali

    2018-04-01

    In exposure fusion, it is challenging to remove artifacts because of camera motion and moving objects in the scene. An improved artifact removal method is proposed in this paper, which performs local linear adjustment in artifact removal progress. After determining a reference image, we first perform high-dynamic-range (HDR) deghosting to generate an intermediate image stack from the input image stack. Then, a linear Intensity Mapping Function (IMF) in each window is extracted based on the intensities of intermediate image and reference image, the intensity mean and variance of reference image. Finally, with the extracted local linear constraints, we reconstruct a target image stack, which can be directly used for fusing a single HDR-like image. Some experiments have been implemented and experimental results demonstrate that the proposed method is robust and effective in removing artifacts especially in the saturated regions of the reference image.

  14. Implication of high dynamic range and wide color gamut content distribution

    NASA Astrophysics Data System (ADS)

    Lu, Taoran; Pu, Fangjun; Yin, Peng; Chen, Tao; Husak, Walt

    2015-09-01

    High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The current video distribution environments deliver Standard Dynamic Range (SDR) signal. Therefore, there might be some significant implication on today's end-to-end ecosystem from content creation to distribution and finally to consumption. For SDR content, the common practice is to apply compression on Y'CbCr 4:2:0 using gamma transfer function and non-constant luminance 4:2:0 chroma subsampling. For HDR and WCG content, it is desirable to examine if such signal format still works well for compression, and it is interesting to know if the overall system performance can be further improved by exploring different signal formats and processing workflows. In this paper, we will provide some of our insight into those problems.

  15. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.

    PubMed

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y Eugene; Zhang, Jifeng

    2016-01-28

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells.

  16. Cycling with BRCA2 from DNA repair to mitosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyunsook, E-mail: HL212@snu.ac.kr

    Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner inmore » the maintenance of genomic integrity. - Highlights: • BRCA2 is a multifaceted tumor suppressor and is crucial in genetic integrity. • BRCA2 exerts distinct functions in cell cycle-specific manner. • Mitotic kinases regulate diverse functions of BRCA2 in mitosis and cytokinesis.« less

  17. Who Should Bear the Cost of Convenience? A Cost-effectiveness Analysis Comparing External Beam and Brachytherapy Radiotherapy Techniques for Early Stage Breast Cancer.

    PubMed

    McGuffin, M; Merino, T; Keller, B; Pignol, J-P

    2017-03-01

    Standard treatment for early breast cancer includes whole breast irradiation (WBI) after breast-conserving surgery. Recently, accelerated partial breast irradiation (APBI) has been proposed for well-selected patients. A cost and cost-effectiveness analysis was carried out comparing WBI with two APBI techniques. An activity-based costing method was used to determine the treatment cost from a societal perspective of WBI, high dose rate brachytherapy (HDR) and permanent breast seed implants (PBSI). A Markov model comparing the three techniques was developed with downstream costs, utilities and probabilities adapted from the literature. Sensitivity analyses were carried out for a wide range of variables, including treatment costs, patient costs, utilities and probability of developing recurrences. Overall, HDR was the most expensive ($14 400), followed by PBSI ($8700), with WBI proving the least expensive ($6200). The least costly method to the health care system was WBI, whereas PBSI and HDR were less costly for the patient. Under cost-effectiveness analyses, downstream costs added about $10 000 to the total societal cost of the treatment. As the outcomes are very similar between techniques, WBI dominated under cost-effectiveness analyses. WBI was found to be the most cost-effective radiotherapy technique for early breast cancer. However, both APBI techniques were less costly to the patient. Although innovation may increase costs for the health care system it can provide cost savings for the patient in addition to convenience. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry

    NASA Astrophysics Data System (ADS)

    Guzmán Calcina, Carmen S.; de Almeida, Adelaide; Oliveira Rocha, José R.; Abrego, Felipe Chen; Baffa, Oswaldo

    2005-03-01

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181 8, Nath et al 1995 Med. Phys. 22 209 34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695 702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434 48, Ballester et al 1997 Med. Phys. 24 1221 8, Ballester et al 2001 Phys. Med. Biol. 46 N79 90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032 40).

  19. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry.

    PubMed

    Calcina, Carmen S Guzmán; de Almeida, Adelaide; Rocha, José R Oliveira; Abrego, Felipe Chen; Baffa, Oswaldo

    2005-03-21

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40).

  20. TU-FG-201-10: Quality Management of Accelerated Partial Breast Irradiation (APBI) Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, H; Lorio, V; Cernica, G

    2016-06-15

    Purpose: Since 2008, over 700 patients received high dose rate (HDR) APBI treatment at Virginia Hospital Center. The complexity involved in the planning process demonstrated a broad variation between patient geometry across all applicators, in relation to anatomical regions of interest. A quality management program instituting various metrics was implemented in March 2013 with the goal of ensuring an optimal plan is achieved for each patient. Methods: For each plan, an in-house complexity index, geometric conformity index, and plan quality index were defined. These indices were obtained for all patients treated. For patients treated after the implementation, the conformity indexmore » and quality index were maximized while other dosimetric limits, such as maximum skin and rib doses, were strictly kept. Subsequently, all evaluation parameters and applicator information were placed in a database for cross-evaluation with similar complexity. Results: Both the conformity and quality indices show good correlation with the complexity index. They decrease as complexity increases for all applicators. Multi lumen type balloon applicators demonstrate a minimal advantage over single lumen applicators in increasingly complex patient geometries, as compared to SAVI applicators which showed considerably greater advantage in these circumstances. After the implementation of the in-house planning protocol, there is a direct improvement of quality for SAVI plans. Conclusion: Due to their interstitial nature, SAVI devices show a better conformity in comparison to balloon-based devices regardless of the number of lumens, especially in complex cases. The quality management program focuses on optimizing indices by utilizing prior planning knowledge based on complexity levels. The database of indices assists in decision making and has subsequently aided in balancing the experience level among planners. This approach has made APBI planning more robust for patient care, with a measurable improvement in the plan quality.« less

  1. Increasing Fractional Doses Increases the Probability of Benign PSA Bounce in Patients Undergoing Definitive HDR Brachytherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauck, Carlin R.; Ye, Hong; Chen, Peter Y.

    Purpose: Prostate-specific antigen (PSA) bounce is a temporary elevation of the PSA level above a prior nadir. The purpose of this study was to determine whether the frequency of a PSA bounce following high-dose-rate (HDR) interstitial brachytherapy for the treatment of prostate cancer is associated with individual treatment fraction size. Methods and Materials: Between 1999 and 2014, 554 patients underwent treatment of low- or intermediate-risk prostate cancer with definitive HDR brachytherapy as monotherapy and had ≥3 subsequent PSA measurements. Four different fraction sizes were used: 950 cGy × 4 fractions, 1200 cGy × 2 fractions, 1350 cGy × 2 fractions, 1900 cGy × 1more » fraction. Four definitions of PSA bounce were applied: ≥0.2, ≥0.5, ≥1.0, and ≥2.0 ng/mL above the prior nadir with a subsequent return to the nadir. Results: The median follow-up period was 3.7 years. The actuarial 3-year rate of PSA bounce for the entire cohort was 41.3%, 28.4%, 17.4%, and 6.8% for nadir +0.2, +0.5, +1.0, and +2.0 ng/mL, respectively. The 3-year rate of PSA bounce >0.2 ng/mL was 42.2%, 32.1%, 41.0%, and 59.1% for the 950-, 1200-, 1350-, and 1900-cGy/fraction levels, respectively (P=.002). The hazard ratio for bounce >0.2 ng/mL for patients receiving a single fraction of 1900 cGy compared with those receiving treatment in multiple fractions was 1.786 (P=.024). For patients treated with a single 1900-cGy fraction, the 1-, 2-, and 3-year rates of PSA bounce exceeding the Phoenix biochemical failure definition (nadir +2 ng/mL) were 4.5%, 18.7%, and 18.7%, respectively, higher than the rates for all other administered dose levels (P=.025). Conclusions: The incidence of PSA bounce increases with single-fraction HDR treatment. Knowledge of posttreatment PSA kinetics may aid in decision making regarding management of potential biochemical failures.« less

  2. Hydrodynamically-driven drug release during interstitial flow through hollow fibers implanted near lymphatics

    PubMed Central

    Dukhin, Stanislav S.; Labib, Mohamed E.

    2016-01-01

    Current drug delivery devices (DDD) are mainly based on the use of diffusion as the main transport process. Diffusion-driven processes can only achieve low release rate because diffusion is a slow process. This represents a serious obstacle in the realization of recent successes in the suppression of lymphatic metastasis and in the prevention of limb and organ transplant rejection. Surprisingly, it was overlooked that there is a more favorable drug release mode which can be achieved when a special DDD is implanted near lymphatics. This opportunity can be realized when the interstitial fluid flow penetrates a drug delivery device of proper design and allows such fluid to flow out of it. This design is based on hollow fibers loaded with drug and whose hydrodynamic permeability is much higher than that of the surrounding tissue. The latter is referred to as hollow fiber of high hydrodynamic permeability (HFHP). The interstitial flow easily penetrates the hollow fiber membrane as well as its lumen with a higher velocity than that in the adjacent tissue. The interstitial liquid stream entering the lumen becomes almost saturated with drug as it flows out of the HFHP. This is due to the drug powder dissolution in the lumens of HFHP which forms a strip of drug solution that crosses the interstitium and finally enters the lymphatics. This hydrodynamically-driven release (HDR) may exceed the concomitant diffusion-driven release (DDR) by one or even two orders of magnitude. The hydrodynamics of the two-compartment media is sufficient for developing the HDR theory which is detailed in this paper. Convective diffusion theory for two compartments (membrane of hollow fiber and adjacent tissue) is required for exact quantification when a small contribution of DDR to predominating HDR is present. Hence, modeling is important for HDR which would lead to establishing a new branch in physico-chemical hydrodynamics. The release rate achieved with the use of HFHP increases proportional to the number of hollow fibers in the fabric employed in drug delivery. Based on this contribution, it is now possible to simultaneously provide high release rates and long release durations, thus overcoming a fundamental limitation in drug delivery. Perhaps this breakthrough in long-term drug delivery has potential applications in targeting lymphatics and in treating cancer and cancer metastasis without causing the serious side effects of systemic drugs. PMID:28579697

  3. Interstitial rotating shield brachytherapy for prostate cancer.

    PubMed

    Adams, Quentin E; Xu, Jinghzu; Breitbach, Elizabeth K; Li, Xing; Enger, Shirin A; Rockey, William R; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T

    2014-05-01

    To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources. For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.

  4. SU-E-T-620: Dosimetric Compliance Study for a New Prostate Protocol of Combined High Dose Rate Brachytherapy and Stereotactic Body Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C; Giaddui, T; Den, R

    2014-06-15

    Purpose: To investigate the adherence of treatment plans of prostate cancer patients with the dosimetric compliance criteria of the new in house phase I trial of high dose rate (HDR) brachytherapy combined with stereotactic body radiotherapy (SBRT) for intermediate risk prostate cancer patients. Methods: Ten prostate cancer patients were treated using this trial. They received one fraction of HDR to 15Gy, followed by external beam(EB) boost of 3.2Gy(Level 1, five patients) or 3.94Gy(level 2, five patients) per fraction for 10 or 7 fractions, respectively, both equivalent to EB treatments of 113.5Gy in 2Gy fractions. The EB plans were either IMRTmore » or VMAT plans. DVH analysis was performed to verify the adherence of treatment plans to the dosimetric criteria of the trial. Results: For Level 1 patients, target coverage were adequate, with CTV V32Gy(%) of 99.0±1.0 (mean ± 1 standard deviation), and PTV V31Gy(%) of 99.6±0.3. PTV V32.9Gy(%) is 1.4±3.1 and PTVmax is 32.9±0.2Gy. Rectum, bladder and femoral heads sparing were well within protocol criteria. For Level 2 patients, CTV V27.6Gy(%) is 98.7±1.8; PTV V26.7Gy(%) is 99.0±1.4. PTV V28.4Gy(%) is 1.3±1.4, with three patients having minor deviation from protocol. Again critical structures were spared compliant to the protocol. The analysis of HDR plans show similar results, with adequate dose coverage to the prostate and sparing of critical structures including urethra and rectum. V100(%) and V90(%) of prostate are 96.0±1.1 and 98.9±0.5. Urethra D10(%) is 113.1±2.9. Rectum V80(cc) is 1.4±0.5. Hotspot in prostate is substantially higher than what the protocol specifies. But the criteria for hotspot are only guidelines, serving to lower the dose to urethra . Conclusion: This new high biological equivalent dose prostate trial has been carried out successfully for ten patients. Based on dosimetric analysis, all HDR and external plans were compliant to the protocol criteria, with only minor deviations.« less

  5. Increasing Fractional Doses Increases the Probability of Benign PSA Bounce in Patients Undergoing Definitive HDR Brachytherapy for Prostate Cancer.

    PubMed

    Hauck, Carlin R; Ye, Hong; Chen, Peter Y; Gustafson, Gary S; Limbacher, Amy; Krauss, Daniel J

    2017-05-01

    Prostate-specific antigen (PSA) bounce is a temporary elevation of the PSA level above a prior nadir. The purpose of this study was to determine whether the frequency of a PSA bounce following high-dose-rate (HDR) interstitial brachytherapy for the treatment of prostate cancer is associated with individual treatment fraction size. Between 1999 and 2014, 554 patients underwent treatment of low- or intermediate-risk prostate cancer with definitive HDR brachytherapy as monotherapy and had ≥3 subsequent PSA measurements. Four different fraction sizes were used: 950 cGy × 4 fractions, 1200 cGy × 2 fractions, 1350 cGy × 2 fractions, 1900 cGy × 1 fraction. Four definitions of PSA bounce were applied: ≥0.2, ≥0.5, ≥1.0, and ≥2.0 ng/mL above the prior nadir with a subsequent return to the nadir. The median follow-up period was 3.7 years. The actuarial 3-year rate of PSA bounce for the entire cohort was 41.3%, 28.4%, 17.4%, and 6.8% for nadir +0.2, +0.5, +1.0, and +2.0 ng/mL, respectively. The 3-year rate of PSA bounce >0.2 ng/mL was 42.2%, 32.1%, 41.0%, and 59.1% for the 950-, 1200-, 1350-, and 1900-cGy/fraction levels, respectively (P=.002). The hazard ratio for bounce >0.2 ng/mL for patients receiving a single fraction of 1900 cGy compared with those receiving treatment in multiple fractions was 1.786 (P=.024). For patients treated with a single 1900-cGy fraction, the 1-, 2-, and 3-year rates of PSA bounce exceeding the Phoenix biochemical failure definition (nadir +2 ng/mL) were 4.5%, 18.7%, and 18.7%, respectively, higher than the rates for all other administered dose levels (P=.025). The incidence of PSA bounce increases with single-fraction HDR treatment. Knowledge of posttreatment PSA kinetics may aid in decision making regarding management of potential biochemical failures. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries.

    PubMed

    Noh, Hwayoung; Freisling, Heinz; Assi, Nada; Zamora-Ros, Raul; Achaintre, David; Affret, Aurélie; Mancini, Francesca; Boutron-Ruault, Marie-Christine; Flögel, Anna; Boeing, Heiner; Kühn, Tilman; Schübel, Ruth; Trichopoulou, Antonia; Naska, Androniki; Kritikou, Maria; Palli, Domenico; Pala, Valeria; Tumino, Rosario; Ricceri, Fulvio; Santucci de Magistris, Maria; Cross, Amanda; Slimani, Nadia; Scalbert, Augustin; Ferrari, Pietro

    2017-07-25

    We identified urinary polyphenol metabolite patterns by a novel algorithm that combines dimension reduction and variable selection methods to explain polyphenol-rich food intake, and compared their respective performance with that of single biomarkers in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. The study included 475 adults from four European countries (Germany, France, Italy, and Greece). Dietary intakes were assessed with 24-h dietary recalls (24-HDR) and dietary questionnaires (DQ). Thirty-four polyphenols were measured by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS-MS) in 24-h urine. Reduced rank regression-based variable importance in projection (RRR-VIP) and least absolute shrinkage and selection operator (LASSO) methods were used to select polyphenol metabolites. Reduced rank regression (RRR) was then used to identify patterns in these metabolites, maximizing the explained variability in intake of pre-selected polyphenol-rich foods. The performance of RRR models was evaluated using internal cross-validation to control for over-optimistic findings from over-fitting. High performance was observed for explaining recent intake (24-HDR) of red wine ( r = 0.65; AUC = 89.1%), coffee ( r = 0.51; AUC = 89.1%), and olives ( r = 0.35; AUC = 82.2%). These metabolite patterns performed better or equally well compared to single polyphenol biomarkers. Neither metabolite patterns nor single biomarkers performed well in explaining habitual intake (as reported in the DQ) of polyphenol-rich foods. This proposed strategy of biomarker pattern identification has the potential of expanding the currently still limited list of available dietary intake biomarkers.

  7. Comparison of outcomes for MR-guided versus CT-guided high-dose-rate interstitial brachytherapy in women with locally advanced carcinoma of the cervix.

    PubMed

    Kamran, Sophia C; Manuel, Matthias M; Cho, Linda P; Damato, Antonio L; Schmidt, Ehud J; Tempany, Clare; Cormack, Robert A; Viswanathan, Akila N

    2017-05-01

    The purpose was to compare local control (LC), overall survival (OS) and dose to the organs at risk (OAR) in women with locally advanced cervical cancer treated with MR-guided versus CT-guided interstitial brachytherapy (BT). 56 patients (29 MR, 27 CT) were treated with high-dose-rate (HDR) interstitial BT between 2005-2015. The MR patients had been prospectively enrolled on a Phase II clinical trial. Data were analyzed using Kaplan-Meier (K-M) and Cox proportional hazards statistical modeling in JMP® & R®. Median follow-up time was 19.7months (MR group) and 18.4months (CT group). There were no statistically significant differences in patient age at diagnosis, histology, percent with tumor size >4cm, grade, FIGO stage or lymph node involvement between the groups. Patients in the MR group had more lymphovascular involvement compared to patients in the CT group (p<0.01). When evaluating plans generated, there were no statistically significant differences in median cumulative dose to the high-risk clinical target volume or the OAR. 2-year K-M LC rates for MR-based and CT-based treatments were 96% and 87%, respectively (log-rank p=0.65). At 2years, OS was significantly better in the MR-guided cohort (84% vs. 56%, p=0.036). On multivariate analysis, squamous histology was associated with longer OS (HR 0.23, 95% CI 0.07-0.72) in a model with MR BT (HR 0.35, 95% CI 0.08-1.18). There was no difference in toxicities between CT and MR BT. In this population of locally advanced cervical-cancer patients, MR-guided HDR BT resulted in estimated 96% 2-year local control and excellent survival and toxicity rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Comparison of outcomes for MR-guided versus CT-guided high-dose-rate interstitial brachytherapy in women with locally advanced carcinoma of the cervix

    PubMed Central

    Kamran, Sophia C.; Manuel, Matthias M.; Cho, Linda P.; Damato, Antonio L.; Schmidt, Ehud J.; Tempany, Clare; Cormack, Robert A.; Viswanathan, Akila N.

    2017-01-01

    Objective The purpose was to compare local control (LC), overall survival (OS) and dose to the organs at risk (OAR) in women with locally advanced cervical cancer treated with MR-guided versus CT-guided interstitial brachytherapy (BT). Methods 56 patients (29 MR, 27 CT) were treated with high-dose-rate (HDR) interstitial BT between 2005–2015. The MR patients had been prospectively enrolled on a Phase II clinical trial. Data were analyzed using Kaplan-Meier (K-M) and Cox proportional hazards statistical modeling in JMP® & R®. Results Median follow-up time was 19.7 months (MR group) and 18.4 months (CT group). There were no statistically significant differences in patient age at diagnosis, histology, percent with tumor size >4 cm, grade, FIGO stage or lymph node involvement between the groups. Patients in the MR group had more lymphovascular involvement compared to patients in the CT group (p<0.01). When evaluating plans generated, there were no statistically significant differences in median cumulative dose to the high-risk clinical target volume or the OAR. 2-year K-M LC rates for MR-based and CT-based treatments were 96% and 87%, respectively (log-rank p=0.65). At 2 years, OS was significantly better in the MR-guided cohort (84% vs. 56%, p=0.036). On multivariate analysis, squamous histology was associated with longer OS (HR 0.23, 95% CI 0.07–0.72) in a model with MR BT (HR 0.35, 95% CI 0.08–1.18). Conclusion In this population of locally advanced cervical-cancer patients, MR-guided HDR BT resulted in estimated 96% 2-year local control and excellent early survival rates. Squamous cell histology was the most significant predictor for survival. PMID:28318644

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safigholi, H; Soliman, A; Song, W

    Purpose: To evaluate various shielding materials such as Gold (Au), Osmium (Os), Tantalum (Ta), and Tungsten (W) based alloys for use with a novel intensity modulation capable direction modulated brachytherapy (DMBT) tandem applicator for image guided cervical cancer HDR brachytherapy. Methods: The novel MRI-compatible DMBT tandem, made from nonmagnetic tungsten-alloy rod with diameter of 5.4 mm, has 6 symmetric peripheral holes of 1.3 mm diameter with 2.05 mm distance from the center for a high degree intensity modulation capacity. The 0.3 mm thickness of bio-compatible plastic tubing wraps the tandem. MCNPX was used for Monte Carlo simulations of the shieldsmore » and the mHDR Ir-192 V2 source. MC-generated 3D dose matrices of different shielding materials of Au, Os, Ta, and W with 1 mm3 resolution were imported into an in-house-coded inverse optimization planning system to evaluate 19 clinical patient plans. Prescription dose was 15Gy. All plans were normalized to receive the same HRCTV D90. Results: In general, the plan qualities for various shielding materials were similar. The OAR D2cc for bladder was very similar for Au, Os, and Ta with 11.64±2.30Gy. For W, it was very close 11.65±2.30Gy. The sigmoid D2cc was 9.82±2.46Gy for Au and Os while it was 9.84±2.48Gy for Ta and W. The rectum D2cc was 7.44±3.06Gy for Au, 7.43±3.07Gy for Os, 7.48±3.05Gy for Ta, and 7.47±3.05Gy for W. The HRCTV D98 and V100 were very close with 16.37±1.87 Gy and 97.37±1.93 Gy, on average, respectively. Conclusion: Various MRI-compatible shielding alloys were investigated for the DMBT tandem applicator. The clinical plan qualities were not significantly different among these various alloys, however. Therefore, the candidate metals (or in combination) can be used to select best alloys for MRI image guided cervical cancer brachytherapy using the novel DMBT applicator that is capable of unprecedented level of intensity modulation.« less

  10. The effects of folic acid and pyridoxine supplementation on characteristics of migraine attacks in migraine patients with aura: A double-blind, randomized placebo-controlled, clinical trial.

    PubMed

    Askari, Gholamreza; Nasiri, Morteza; Mozaffari-Khosravi, Hassan; Rezaie, Masod; Bagheri-Bidakhavidi, Mahdieh; Sadeghi, Omid

    2017-06-01

    The aim of this study was to assess the effects of folic acid alone and in combination with pyridoxine on characteristics of migraine attacks in adult migraine patients with aura. This double-blind, randomized placebo-controlled, clinical trial was conducted on 95 migraine patients with aura (age range 18-65 y) in Isfahan, Islamic Republic of Iran, in 2014. Patients were randomly allocated to receive folic acid (5 mg/d) plus pyridoxine (80 mg/d) or folic acid alone (5 mg/d) or placebo (lactose) for 3 mo. Characteristics of migraine attacks including headache severity, attacks frequency, duration, and headache diary results (HDRs) were obtained for each patient at baseline and at the end of the study. Folic acid plus pyridoxine intake resulted in a significant decrease compared with placebo in headache severity (-2.71 ± 0.08 versus -2.19 ± 0.05; P < 0.001), attack frequency (-3.35 ± 0.09 versus -2.73 ± 0.05; P < 0.001), duration (-7.25 ± 0.17 versus -6.5 ± 0.07; P < 0.001), and HDR (-74.15 ± 0.2 versus -72.73 ± 0.1; P < 0.001). Additionally, the reduction in these characteristics of migraine attacks in the folic acid plus pyridoxine group was significant compared with the group given folic acid alone (P < 0.001). However, these beneficial effects of the combined supplement became nonsignificant for attack duration compared with the folic acid-only and placebo groups after controlling for confounders. Folic acid intake without pyridoxine did not lead to a significant decrease in characteristics of migraine attacks compared with placebo group. Supplementation of folic acid with pyridoxine could decrease the characteristics of migraine attacks including headache severity, attack frequency, and HDR; however, further studies are needed to shed light on the findings of the present study. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then bemore » generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the computation time decrease with the number of points and that no effects were observed on the dosimetric indices when varying the number of sampling points and the number of iterations, they were respectively fixed to 2500 and to 100. The computation time to obtain ten complete treatments plans ranging from 9 to 18 catheters, with the corresponding dosimetric indices, was 90 s. However, 93% of the computation time is used by a research version of IPSA. For the breast, on average, the Radiation Therapy Oncology Group recommendations would be satisfied down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of V100, dose homogeneity index, and D90.Conclusions: The authors have devised a simple, fast and efficient method to optimize the number and position of catheters in interstitial HDR brachytherapy. The method was shown to be robust for both prostate and breast HDR brachytherapy. More importantly, the computation time of the algorithm is acceptable for clinical use. Ultimately, this catheter optimization algorithm could be coupled with a 3D ultrasound system to allow real-time guidance and planning in HDR brachytherapy.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, JP; Deufel, CL

    Purpose: Bile duct cancer affects 2–3 thousand people annually in the United States. Radiation therapy has been shown to double median survival, with combined external beam and intraluminal high dose-rate (HDR) brachytherapy being most effective. Endoscopic retrograde cholangiopancreatography (ERCP) biliary HDR, a less-invasive alternative to trans-hepatic brachytherapy, is delivered through a catheter that travels a tortuous path from nose to bile duct, requiring wire drive force and dexterity beyond typical afterloader performance specifications. Thus, specific afterloader quality assurance(QA) is recommended for this procedure. Our aim was to create a device and process for Varisource afterloader clearance QA with objectives thatmore » it be quantitative and can monitor afterloader performance over time, compare performance between two distinct afterloaders and potentially Result in a predictive nomogram for patient-specific clearance. Methods: Based on retrospective reconstruction of 20 ERCP patient anatomies, we designed a phantom to test afterloader ability to drive the source wire along an intended treatment path. The ability of the afterloader to fully extend the intended treatment path is a function of number and diameters of turns. We have determined experimentally that relative position of the turns does not impact performance. Results: Both patient and QA paths involve three common turns/loops: a large turn representing the stomach(10.8cm±2.0cm), an elliptical loop representing the duodenum(7.3cm±1.5cmx4.8cm±0.7cm), and a final turn at the end of the bile duct that may be tight for some patient-specific anatomies and absent in others(3.7cm±0.7cm, where present). Our phantom design uses anatomical average turn diameters for the stomach and duodenum then terminates in a turn of quantitatively selectable diameter. The smallest final turn diameter that an afterloader can pass is recorded as the QA parameter. Conclusion: With this device and QA process, we have the ability to quantitatively evaluate and track our afterloader performance for a technically challenging ERCP brachytherapy procedure.« less

  13. Wide-area technologies and services in the Trans-Pacific High Data Rate (HDR) satellite communications experiments

    NASA Technical Reports Server (NTRS)

    Hsu, E.; Hung, C.; Kadowaki, N.; Yoshimura, N.; Takahashi, T.; Shopbell, P.; Walker, G.; Wellnitz, D.; Gary, P.; Clark, G.; hide

    2000-01-01

    This paper describes the technologies and services used in the experiments and demonstrations using the Trans-Pacific high data rate satellite communications infrastructure, and how the environment tasked protocol adaptability, scalability, efficiency, interoperability, and robustness.

  14. CLINICAL FINDINGS OF IRRITATION AMONG CHROMIUM CHEMICAL PRODUCTION WORKERS

    EPA Science Inventory

    Background
    Several reports of workers in chromate production and chromeplating have indicated that exposure to hexavalent chromium is assoc...

  15. Monte Carlo dosimetric characterization of the Flexisource Co-60 high-dose-rate brachytherapy source using PENELOPE.

    PubMed

    Almansa, Julio F; Guerrero, Rafael; Torres, Javier; Lallena, Antonio M

    60 Co sources have been commercialized as an alternative to 192 Ir sources for high-dose-rate (HDR) brachytherapy. One of them is the Flexisource Co-60 HDR source manufactured by Elekta. The only available dosimetric characterization of this source is that of Vijande et al. [J Contemp Brachytherapy 2012; 4:34-44], whose results were not included in the AAPM/ESTRO consensus document. In that work, the dosimetric quantities were calculated as averages of the results obtained with the Geant4 and PENELOPE Monte Carlo (MC) codes, though for other sources, significant differences have been quoted between the values obtained with these two codes. The aim of this work is to perform the dosimetric characterization of the Flexisource Co-60 HDR source using PENELOPE. The MC simulation code PENELOPE (v. 2014) has been used. Following the recommendations of the AAPM/ESTRO report, the radial dose function, the anisotropy function, the air-kerma strength, the dose rate constant, and the absorbed dose rate in water have been calculated. The results we have obtained exceed those of Vijande et al. In particular, the absorbed dose rate constant is ∼0.85% larger. A similar difference is also found in the other dosimetric quantities. The effect of the electrons emitted in the decay of 60 Co, usually neglected in this kind of simulations, is significant up to the distances of 0.25 cm from the source. The systematic and significant differences we have found between PENELOPE results and the average values found by Vijande et al. point out that the dosimetric characterizations carried out with the various MC codes should be provided independently. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. Use of cone-beam imaging to correct for catheter displacement in high dose-rate prostate brachytherapy.

    PubMed

    Holly, Rick; Morton, Gerard C; Sankreacha, Raxa; Law, Niki; Cisecki, Thomas; Loblaw, D Andrew; Chung, Hans T

    2011-01-01

    To determine the magnitude of catheter displacement between time of planning and time of treatment delivery for patients undergoing high dose-rate (HDR) brachytherapy, the dosimetric impact of catheter displacement, and the ability to improve dosimetry by catheter readjustment. Twenty consecutive patients receiving single fraction HDR brachytherapy underwent kilovoltage cone-beam CT in the treatment room before treatment. If catheter displacement was apparent, catheters were adjusted and imaging repeated. Both sets of kilovoltage cone-beam CT image sets were coregistered off-line with the CT data set used for planning with rigid fusion of anatomy based on implanted fiducials. Catheter displacement was measured on both sets of images and dosimetry calculated. Mean internal displacement of catheters was 11mm. This would have resulted in a decrease in mean volume receiving 100% of prescription dose (V(100)) from the planned 97.6% to 77.3% (p<0.001), a decrease of the mean dose to 90% of the prostate (D(90)) from 110.5% to 72.9% (p<0.001), and increase in dose to 10% of urethra (urethra D(10)) from 118% to 125% (p=0.0094). Each 1cm of catheter displacement resulted in a 20% decrease in V(100) and 36% decrease in D(90). Catheter readjustment resulted in a final treated mean V(100) of 90.2% and D(90) of 97.4%, both less than planned. Mean urethra D(10) remained higher at126% (p=0.0324). Significantly, internal displacement of HDR catheters commonly occurs between time of CT planning and treatment delivery, even when only a single fraction is used. The adverse effects on dosimetry can be partly corrected by readjustment of catheter position. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. Computed Tomography–Guided Interstitial High-Dose-Rate Brachytherapy in Combination With Regional Positive Lymph Node Intensity-Modulated Radiation Therapy in Locally Advanced Peripheral Non–Small Cell Lung Cancer: A Phase 1 Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Li; Zhang, Jian-wen; Lin, Sheng

    2015-08-01

    Purpose: To assess the technical safety, adverse events, and efficacy of computed tomography (CT)-guided interstitial high-dose-rate (HDR) brachytherapy in combination with regional positive lymph node intensity modulated radiation therapy in patients with locally advanced peripheral non–small cell lung cancer (NSCLC). Methods and Materials: Twenty-six patients with histologically confirmed NSCLC were enrolled in a prospective, officially approved phase 1 trial. Primary tumors were treated with HDR brachytherapy. A single 30-Gy dose was delivered to the 90% isodose line of the gross lung tumor volume. A total dose of at least 70 Gy was administered to the 95% isodose line of the planningmore » target volume of malignant lymph nodes using 6-MV X-rays. The patients received concurrent or sequential chemotherapy. We assessed treatment efficacy, adverse events, and radiation toxicity. Results: The median follow-up time was 28 months (range, 7-44 months). There were 3 cases of mild pneumothorax but no cases of hemothorax, dyspnea, or pyothorax after the procedure. Grade 3 or 4 acute hematologic toxicity was observed in 5 patients. During follow-up, mild fibrosis around the puncture point was observed on the CT scans of 2 patients, but both patients were asymptomatic. The overall response rates (complete and partial) for the primary mass and positive lymph nodes were 100% and 92.3%, respectively. The 1-year and 2-year overall survival (OS) rates were 90.9% and 67%, respectively, with a median OS of 22.5 months. Conclusion: Our findings suggest that HDR brachytherapy is safe and feasible for peripheral locally advanced NSCLC, justifying a phase 2 clinical trial.« less

  18. Dosimetric perturbations due to an implanted cardiac pacemaker in MammoSite{sup Registered-Sign} treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Wonmo; Kim, Siyong; Kim, Jung-in

    2012-10-15

    Purpose: To investigate dose perturbations for pacemaker-implanted patients in partial breast irradiation using high dose rate (HDR) balloon brachytherapy. Methods: Monte Carlo (MC) simulations were performed to calculate dose distributions involving a pacemaker in Ir-192 HDR balloon brachytherapy. Dose perturbations by varying balloon-to-pacemaker distances (BPD = 50 or 100 mm) and concentrations of iodine contrast medium (2.5%, 5.0%, 7.5%, and 10.0% by volume) in the balloon were investigated for separate parts of the pacemaker (i.e., battery and substrate). Relative measurements using an ion-chamber were also performed to confirm MC results. Results: The MC and measured results in homogeneous media withoutmore » a pacemaker agreed with published data within 2% from the balloon surface to 100 mm BPD. Further their dose distributions with a pacemaker were in a comparable agreement. The MC results showed that doses over the battery were increased by a factor of 3, compared to doses without a pacemaker. However, there was no significant dose perturbation in the middle of substrate but up to 70% dose increase in the substrate interface with the titanium capsule. The attenuation by iodine contrast medium lessened doses delivered to the pacemaker by up to 9%. Conclusions: Due to inhomogeneity of pacemaker and contrast medium as well as low-energy photons in Ir-192 HDR balloon brachytherapy, the actual dose received in a pacemaker is different from the homogeneous medium-based dose and the external beam-based dose. Therefore, the dose perturbations should be considered for pacemaker-implanted patients when evaluating a safe clinical distance between the balloon and pacemaker.« less

  19. Reference air kerma rate calibration system for high dose rate Ir-192 brachytherapy sources in Taiwan

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Han; Yuan, Ming-Chen; Lee, Jeng-Hung; Lin, Yi-Chun

    2017-11-01

    Ir-192 sources are widely used in brachytherapy and the number of treatments is around seven thousand for the use of the high dose rate (HDR) Ir-192 brachytherapy source per year in Taiwan. Due to its physical half-life of 73.8 days, the source should be replaced four times per year to maintain the HDR treatment mode (DDEP, 2005; Coursey et al., 1992). When doing this work, it must perform the source dose trace to assure the dose accuracy. To establish the primary measurement standard of reference air kerma rate(RAKR) for the HDR Ir-192 brachytherapy sources in Taiwan, the Institute of Nuclear Energy Research (INER) fabricated a dual spherical graphite-walled cavity ionization chambers system to directly measure the RAKR of the Ir-192 brachytherapy source. In this system, the ion-charge was accumulated by the two ionization chambers and after correction for the ion recombination, temperature, atmosphere pressure, room scattering, graphite-wall attenuation, air attenuation, source decay, stem effect, and so on. The RAKR of the Ir-192 source was obtained in the ambient conditions of 22 °C and one atmosphere. The measurement uncertainty of the system was around 0.92% in 96% confidence level (k=2.0). To verify the accuracy of the result, the source calibration comparison has been made at the National Radiation Standard Laboratory (NRSL) of INER and Physikalisch-Technische Bundesanstalt (PTB, Germany) in 2015. The ratio of the measurement results between INER and PTB, INER/PTB, was 0.998±0.027 (k=2) which showed good consistency and the performance of the system was verified.

  20. Radiobiologic significance of response of intratumor quiescent cells in vivo to accelerated carbon ion beams compared with gamma-rays and reactor neutron beams.

    PubMed

    Masunaga, Shin-Ichiro; Ando, Koichi; Uzawa, Akiko; Hirayama, Ryoichi; Furusawa, Yoshiya; Koike, Sachiko; Sakurai, Yoshinori; Nagata, Kenji; Suzuki, Minoru; Kashino, Genro; Kinashi, Yuko; Tanaka, Hiroki; Maruhashi, Akira; Ono, Koji

    2008-01-01

    To clarify the radiosensitivity of intratumor quiescent cells in vivo to accelerated carbon ion beams and reactor neutron beams. Squamous cell carcinoma VII tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine to label all intratumor proliferating cells. Next, they received accelerated carbon ion or gamma-ray high-dose-rate (HDR) or reduced-dose-rate (RDR) irradiation. Other tumor-bearing mice received reactor thermal or epithermal neutrons with RDR irradiation. Immediately after HDR and RDR irradiation or 12 h after HDR irradiation, the response of quiescent cells was assessed in terms of the micronucleus frequency using immunofluorescence staining for 5-bromo-2'-deoxyuridine. The response of the total (proliferating plus quiescent) tumor cells was determined from the 5-bromo-2'-deoxyuridine nontreated tumors. The difference in radiosensitivity between the total and quiescent cell populations after gamma-ray irradiation was markedly reduced with reactor neutron beams or accelerated carbon ion beams, especially with a greater linear energy transfer (LET) value. Clearer repair in quiescent cells than in total cells through delayed assay or a decrease in the dose rate with gamma-ray irradiation was efficiently inhibited with carbon ion beams, especially with a greater LET. With RDR irradiation, the radiosensitivity to accelerated carbon ion beams with a greater LET was almost similar to that to reactor thermal and epithermal neutron beams. In terms of tumor cell-killing effect as a whole, including quiescent cells, accelerated carbon ion beams, especially with greater LET values, are very useful for suppressing the dependency on the heterogeneity within solid tumors, as well as depositing the radiation dose precisely.

  1. MO-FG-210-00: US Guided Systems for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  2. MO-FG-210-01: Commissioning An US System for Brachytherapy: An Overview of Physics, Instrumentation, and Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z.

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  3. MO-FG-210-03: Intraoperative Ultrasonography-Guided Positioning of Plaque Brachytherapy in the Treatment of Choroidal Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J.

    2015-06-15

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  4. SU-F-T-29: The Important of Each Fraction Image-Guided Planning for Postoperative HDR-Brachytherapy in Endometrial Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriyasang, D; Pattaranutaporn, P; Manokhoon, K

    2016-06-15

    Purpose: Cylindrical applicators are often used for postoperative HDRbrachytherapy in endometrial carcinoma. It has been considered that dosimetric variation between fractions for this treatment is minimal and might not be necessary to perform treatment planning for every fractions. At our institute, it is traditional to perform treatment planning with CT simulation on the first fraction and uses this plan for the rest of treatment. This study was aim to evaluate the errors of critical structure doses between the fractions when simulation and planning were done for first fraction only. Methods: Treatment plans of 10 endometrial carcinoma patients who received postoperativemore » HDR-brachytherapy and underwent CT-simulation for every HDR-fractions at our department were retrospectively reviewed. All of these patients were treated with cylindrical applicator and prescribed dose 15Gy in 3 fractions to 0.5cm from vaginal surface. The treatment plan from the first fraction was used to simulate in second and third CT-simulation. Radiation dose for critical structures in term of Dose-to-2cc (D2cc) were evaluated and compared between planning CT. Results: The D2cc for bladder and rectum were evaluated. For bladder, the mean error of D2cc estimation for second and third fractions was 7.6% (0.1–20.1%, SD=5.7). And the mean error for D2cc of rectum was 8.5% (0.1–29.4%, SD=8.5). Conclusion: The critical structure doses could be significant difference between fractions which may affects treatment outcomes or toxicities. From our data, image-guided brachytherapy at least with CT-Simulation should be done for every treatment fractions.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, A

    Purpose: Accuboost treatment planning uses dwell times from a nomogram designed with Monte Carlo calculations for round and D-shaped applicators. A quick dose calculation method has been developed for verification of the HDR Brachytherapy dose as a second check. Methods: Accuboost breast treatment uses several round and D-shaped applicators to be used non-invasively with an Ir-192 source from a HDR Brachytherapy afterloader after the breast is compressed in a mammographic unit for localization. The breast thickness, source activity, the prescription dose and the applicator size are entered into a nomogram spreadsheet which gives the dwell times to be manually enteredmore » into the delivery computer. Approximating the HDR Ir-192 as a point source, and knowing the geometry of the round and D-applicators, the distances from the source positions to the midpoint of the central plane are calculated. Using the exposure constant of Ir-192 and medium as human tissue, the dose at a point is calculated as: D(cGy) = 1.254 × A × t/R2, where A is the activity in Ci, t is the dwell time in sec and R is the distance in cm. The dose from each dwell position is added to get the total dose. Results: Each fraction is delivered in two compressions: cranio-caudally and medial-laterally. A typical APBI treatment in 10 fractions requires 20 compressions. For a patient treated with D45 applicators and an average of 5.22 cm thickness, this calculation was 1.63 % higher than the prescription. For another patient using D53 applicators in the CC direction and 7 cm SDO applicators in the ML direction, this calculation was 1.31 % lower than the prescription. Conclusion: This is a simple and quick method to double check the dose on the central plane for Accuboost treatment.« less

  6. The evaluation of a 2D diode array in "magic phantom" for use in high dose rate brachytherapy pretreatment quality assurance.

    PubMed

    Espinoza, A; Petasecca, M; Fuduli, I; Howie, A; Bucci, J; Corde, S; Jackson, M; Lerch, M L F; Rosenfeld, A B

    2015-02-01

    High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named "magic phantom" (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the "position-time gamma index," was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position-time gamma index showed that all modifications made could be readily detected. The MPh was able to measure dwell times down to 0.067 ± 0.001 s and planned dwell positions separated by 1 mm. The dose calculation carried out by the MPh software was found to be in agreement with values calculated by the treatment planning system within 0.75%. Using the 2D gamma index, the dose map of the MPh plane and measured EBT3 were found to have a pass rate of over 95% when compared to the original plan. The application of this magic phantom quality assurance system to HDR brachytherapy has demonstrated promising ability to perform the verification of treatment plans, based upon the measured dwell positions and times. The introduction of the quantitative position-time gamma index allows for direct comparison of measured parameters against the plan and could be used prior to patient treatment to ensure accurate delivery. © 2015 American Association of Physicists in Medicine.

  7. Regional differences of maternal health care utilization in China.

    PubMed

    Tang, Mengsha; Wang, Debin; Hu, Hong; Wang, Guoping; Li, Rongjie

    2015-03-01

    To describe regional differences in maternal health care (MHC) utilization in China. Cross-sectional comparisons of 4 MHC utilization indicators, namely, early (13 weeks within pregnancy) examinations rate (EER), prenatal examination (>4 times) rate (PER), hospital delivery rate (HDR), and postnatal visit (>1 time) rate (PVR), using index of dissimilarity (ID), linear correlation analysis, and geographical mapping. Significant differences existed across regions in all the indicators (P < .01). All the IDs for rural areas were higher than that for urban areas. The IDs for major regions ranged from 0.01 to 0.27. Linear correlation coefficients between MHC utilization indicators by regions varied from 0.007 to 0.889 (in absolute value, P < .05). Characteristic formats of geographical distribution were found with PER, EER, HDR, and PVR being in "high-plateau," "low-plateau," and "shifting" patterns, respectively. There exist substantial regional discrepancies in MHC utilization in China and future MHC-related policies should take account regional context. © 2013 APJPH.

  8. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  9. Detecting Single-Nucleotide Substitutions Induced by Genome Editing.

    PubMed

    Miyaoka, Yuichiro; Chan, Amanda H; Conklin, Bruce R

    2016-08-01

    The detection of genome editing is critical in evaluating genome-editing tools or conditions, but it is not an easy task to detect genome-editing events-especially single-nucleotide substitutions-without a surrogate marker. Here we introduce a procedure that significantly contributes to the advancement of genome-editing technologies. It uses droplet digital polymerase chain reaction (ddPCR) and allele-specific hydrolysis probes to detect single-nucleotide substitutions generated by genome editing (via homology-directed repair, or HDR). HDR events that introduce substitutions using donor DNA are generally infrequent, even with genome-editing tools, and the outcome is only one base pair difference in 3 billion base pairs of the human genome. This task is particularly difficult in induced pluripotent stem (iPS) cells, in which editing events can be very rare. Therefore, the technological advances described here have implications for therapeutic genome editing and experimental approaches to disease modeling with iPS cells. © 2016 Cold Spring Harbor Laboratory Press.

  10. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency

    PubMed Central

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y. Eugene; Zhang, Jifeng

    2016-01-01

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells. PMID:26817820

  11. Characterization of commercial MOSFET detectors and their feasibility for in-vivo HDR brachytherapy.

    PubMed

    Phurailatpam, Reena; Upreti, Rituraj; Nojin Paul, Siji; Jamema, Swamidas V; Deshpande, Deepak D

    2016-01-01

    The present study was to investigate the use of MOSFET as an vivo dosimeter for the application of Ir-192 HDR brachytherapy treatments. MOSFET was characterized for dose linearity in the range of 50-1000 cGy, depth dose dependence from 2 to 7 cm, angular dependence. Signal fading was checked for two weeks. Dose linearity was found to be within 2% in the dose range (50-1000 cGy). The response varied within 8.07% for detector-source distance of 2-7 cm. The response of MOSFET with the epoxy side facing the source (0 degree) is the highest and the lowest response was observed at 90 and 270 degrees. Signal was stable during the study period. The detector showed high dose linearity and insignificant fading. But due to angular and depth dependence, care should be taken and corrections must be applied for clinical dosimetry. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Intravaginal brachytherapy alone for intermediate-risk endometrial cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alektiar, Kaled M.; Venkatraman, Ennapadam; Chi, Dennis S.

    2005-05-01

    Purpose: Despite the results of the Gynecologic Oncology Group trial No. 99 (GOG no. 99), some unanswered questions still remain about the role of adjuvant radiotherapy (RT) for intermediate-risk endometrial cancer. First, can intravaginal brachytherapy (IVRT) alone substitute for external beam RT but without added morbidity? Second, is the high-risk (HR) definition from GOG no. 99 a useful tool to predict pelvic recurrence specifically? The purpose of this study was to try to answer these questions in a group of patients with Stage IB-IIB endometrial carcinoma treated with high-dose-rate (HDR) IVRT alone. Methods and Materials: Between November 1987 and Decembermore » 2002, 382 patients with Stage IB-IIB endometrial carcinoma were treated with simple hysterectomy followed by HDR-IVRT alone at our institution. Comprehensive surgical staging (CSS), defined as pelvic washings and pelvic/paraaortic lymph node sampling, was performed in 20% of patients. The mean age was 60 years (range, 29-92 years). Lymphovascular invasion (LVI) was present in 14% of patients. The median HDR-IVRT dose was 21 Gy (range, 6-21 Gy), given in three fractions. Complications were assessed in terms of late Radiation Therapy Oncology Group (Grade 3 or worse) toxicity of the GI tract, genitourinary GU tract, and vagina. Results: With a median follow-up of 48 months, the 5-year vaginal/pelvic control rate was 95% (95% confidence interval [CI], 93-98%). On multivariate analysis, a poor vaginal/pelvic control rate correlated with age {>=}60 years old (relative risk [RR], 3, 95% CI, 1-12; p = 0.01), International Federation of Gynecology and Obstetrics (FIGO) Grade 3 (RR, 9, 95% CI, 2-35; p = 0.03), and LVI (RR, 4, 95% CI, 1-13; p = 0.051). The depth of myometrial invasion and CSS, however, were not significant. With regard to pelvic control specifically, the presence of GOG no. 99 HR features did not affect the pelvic control rate. The 5-year rate for HR patients was 96% (95% CI, 90-100%) vs. 96% (95% CI, 94-99%) for those without HR disease (p = 0.48). Even when the CSS effect was taken into account, the influence of HR features on pelvic control was still not significant (p = 0.51). In contrast, pelvic control was significantly influenced when patients were grouped according to CSS and stage/grade substages. For those with Stage IB Grade 3-IIB and no CSS, the 5-year pelvic control rate was 86% compared with 97% for those with Stage IB Grade 3-IIB and CSS, 97% for Stage IB, Grade 1-2 without CSS, and 100% for those with Stage IB, Grade 1-2 and CSS (p = 0.027). The 5-year disease-free survival rate was 93% (95% CI, 90-96%). On multivariate analysis, poor disease-free survival correlated with age {>=}60 years (RR, 5; 95% CI, 1-18; p = 0.002), FIGO Grade 3 (RR 5, 95% CI 2-17; p = 0.013), and LVI (RR 3, 95% CI 1-8; p 0.054). Unlike pelvic control, disease-free survival was significantly affected by GOG no. 99 HR features, with a 5-year rate of 87% (95% CI, 76-99%) vs. 94% (95% CI, 91-97%) for those without HR features (p = 0.027). The 5-year overall and disease-specific survival rate was 93% and 97%, respectively. The overall 5-year actuarial rate of Grade 3 or worse complications was 1% (95% CI, 0-2%). Conclusion: Tumor grade, depth of invasion, and the use of CSS were better predictors of pelvic control than the GOG no. 99 HR factors. IVRT alone seemed to provide adequate tumor control with very low morbidity. Therefore, it seems prudent to consider it for intermediate-risk patients because of its superior therapeutic ratio compared with that for surgery alone or pelvic RT. Additional follow-up, however, with a larger number of patients is needed, especially for those with LVI.« less

  13. Interstitial rotating shield brachytherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Quentin E., E-mail: quentin-adams@uiowa.edu; Xu, Jinghzu; Breitbach, Elizabeth K.

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535more » μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%–44% if the clinician allows a urethral dose gradient volume of 0–5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed {sup 153}Gd-based I-RSBT technique in reasonable treatment times.« less

  14. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Perlin, Marc; Dowling, David R.; Ceccio, Steven L.

    2013-08-01

    The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer (TBL) and its dependence on Reynolds number. Recent moderate Reynolds number direct numerical simulation and experimental studies presented in White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862 have challenged the classical representation of the logarithmic dependence of the velocity profile for drag-reduced flows, especially at drag reduction levels above 40%. In the present study, high Reynolds number data from a drag reduced TBL is presented and compared to the observations of White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862. Data presented here were acquired in the TBL flow on a 12.9-m-long flat plate at speeds to 20.3 m s-1, achieving momentum thickness based Reynolds number to 1.5 × 105, which is an order of magnitude greater than that available in the literature. Polyethylene oxide solutions with an average molecular weight of 3.9 × 106 g mol-1 were injected into the flow at various concentrations and volumetric fluxes to achieve a particular level of drag reduction. The resulting mean near-wall velocity profiles show distinctly different behavior depending on whether they fall in the low drag reduction (LDR) or the high drag reduction (HDR) regimes, which are nominally divided at 40% drag reduction. In the LDR regime, the classical view that the logarithmic slope remains constant at the Newtonian value and the intercept constant increases with increasing drag reduction appears to be valid. However, in the HDR regime the behavior is no longer universal. The intercept constant continues to increase linearly in proportion to the drag reduction level until a Reynolds-number-dependent threshold is achieved, at which point the intercept constant rapidly decreases to that predicted by the ultimate profile. The rapid decrease in the intercept constant is due to the corresponding increase in the profile slope in the HDR regime. There was significant scatter in the observed slope in the HDR regime, but the scatter did not appear to be Reynolds number dependent. Finally, the ultimate profiles for flows at maximum drag reduction were examined and did not exhibit a logarithmic functional relationship, which is the classical empirical relationship suggested by Virk [J. Am. Inst. Chem. Eng. 21, 625-656 (1975)], 10.1002/aic.690210402.

  15. U.S. EPA, Pesticide Product Label, , 01/04/1972

    EPA Pesticide Factsheets

    2011-04-14

    ... If brea~:lin;: has ~.t()~r-'PrJl start al sees \\.'ic1,m, If ~,\\,'l!lc .. ... p!T 11 DO h, shun;: dil'llf\\l.· ... tt·,,,~l- l'II;.hdr.:;r atf£ cfu<..in· (,'[li.· r riP I 't ,,~,.t "Y rll ...

  16. Latvia: Human Development Report, 1996.

    ERIC Educational Resources Information Center

    United Nations Development Programme, Riga (Latvia).

    This report, the second annual Human Development Report (HDR) for Latvia, investigates the accuracy of Latvia's 1995 ranking of 48th out of 174 countries in terms of human development in the most recent United Nations Development Programme (UNDP) global Human Development Report. The report also suggests measures that could significantly improve…

  17. Therapeutic analysis of high-dose-rate {sup 192}Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu; Donnelly, Eric D.; Strauss, Jonathan B.

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model wasmore » used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0){sup 4} to (13.4){sup 4} for the radiosensitive normal tissue depending on the cylinder size, treatment lengths, prescription depth, and dose as well. However, for a uniform cancer cell distribution, the EUDs were between 6.3 Gy × 4 and 7.1 Gy × 4, and the TRs were found to be between (1.4){sup 4} and (1.7){sup 4}. For the uniformly interspersed cancer and radio-resistant normal cells, the TRs were less than 1. The two VCBT prescription regimens were found to be equivalent in terms of EUDs and TRs. Conclusions: HDR VCBT strongly favors cylindrical target volume with the cancer cell distribution following its dosimetric trend. Assuming a half-Gaussian distribution of cancer cells, the HDR VCBT provides a considerable radiobiological advantage over the external beam radiotherapy (EBRT) in terms of sparing more normal tissues while maintaining the same level of cancer cell killing. But for the uniform cancer cell distribution and radio-resistant normal tissue, the radiobiology outcome of the HDR VCBT does not show an advantage over the EBRT. This study strongly suggests that radiation therapy design should consider the cancer cell distribution inside the target volume in addition to the shape of target.« less

  18. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear properties directly on a single strand of fiber, the technique was automated to allow hysteresis, creep and fatigue studies. Zinc oxide (ZnO) semiconducting nanostructures are well known for their piezoelectric properties and are being integrated into several nanoelectro-mechanical (NEMS) devices. In spite of numerous studies on the mechanical response of ZnO nanostructures, there is not a consensus in its measured bending modulus (E). In this dissertation, by employing an all-electrical Harmonic Detection of Resonance (HDR) technique on ZnO nanowhisker (NW) resonators, the underlying origin for electrically-induced mechanical oscillations in a ZnO NW was elucidated. Based on visual detection and electrical measurement of mechanical resonances under a scanning electron microscope (SEM), it was shown that the use of an electron beam as a resonance detection tool alters the intrinsic electrical character of the ZnO NW, and makes it difficult to identify the source of the charge necessary for the electrostatic actuation. A systematic study of the amplitude of electrically actuated as-grown and gold-coated ZnO NWs in the presence (absence) of an electron beam using an SEM (dark-field optical microscope) suggests that the oscillations seen in our ZnO NWs are due to intrinsic static charges. In experiments involving mechanical resonances of micro and nanostructured resonators, HDR is a tool for detecting transverse resonances and E of the cantilever material. To add to this HDR capability, a novel method of measuring the G using HDR is presented. We used a helically coiled carbon nanowire (HCNW) in singly-clamped cantilever configuration, and analyzed the complex (transverse and longitudinal) resonance behavior of the nonlinear geometry. Accordingly, a synergistic protocol was developed which (i) integrated analytical, numerical (i.e., finite element using COMSOL RTM) and experimental (HDR) methods to obtain an empirically validated closed form expression for the G and resonance frequency of a singly-clamped HCNW, and (ii) provided an alternative for solving 12th order differential equations. A visual detection of resonances (using in situ SEM) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior, the ratio of the first two transverse modes f2 /f1 was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guinot, Jose-Luis, E-mail: jguinot@fivo.org; Baixauli-Perez, Cristobal; Soler, Pablo

    Purpose: To evaluate the local control rate and complications of a single fraction of high-dose-rate brachytherapy (HDR BT) boost in women aged 45 yeas and younger after breast-conserving therapy. Methods and Materials: Between 1999 and 2007, 167 patients between the ages of 26 and 45 years old (72 were 40 years old or younger), with stages T1 to T2 invasive breast cancer with disease-free margin status of at least 5 mm after breast-conserving surgery received 46 to 50 Gy whole-breast irradiation plus a 7-Gy HDR-BT boost (“fast boost”). An axillary dissection was performed in 72.5% of the patients and sentinel lymph node biopsy inmore » 27.5%. A supraclavicular area was irradiated in 19% of the patients. Chemotherapy was used in 86% of the patients and hormone treatment in 77%. Clinical nodes were present in 18% and pathological nodes in 29%. The pathological stage was pT0: 5%, pTis: 3%, pT1: 69% and pT2: 23%. Intraductal component was present in 40% and 28% were G3. Results: At a median follow-up of 92 months, 9 patients relapsed on the margin of the implant, and 1 patient in another quadrant, resulting in a 10-year local relapse rate of 4.3% and a breast relapse rate of 4.9%, with breast preservation in 93.4%; no case of mastectomy due to poor cosmesis arose. Actuarial 5- and 10-year disease-free, cause-specific, and overall survival rates were 87.9% and 85.8%, and 92.1% and 88.4%, and 92.1% and 87.3%, respectively. In a univariate analysis, triple-negative cases and negative hormone receptors did worse, but in a multivariate analysis, only the last factor was significant for local and breast control. Asymptomatic fibrosis G2 was recorded in 3 cases, and there were no other late complications. Cosmetic results were good to excellent in 97% of cases. Conclusions: A single dose of 7 Gy using the fast-boost technique is well tolerated, with a low rate of late complications and improved local tumor control in women aged 45 and younger, compared to published data. This approach is recommended in breast-preserving treatment.« less

  20. Targeting Homology-Directed Recombinational Repair (HDR) of Chromosomal Breaks to Sensitize Prostate Cancer Cells to Poly (ADP-Ribose) Polymerase (PARP) Inhibition

    DTIC Science & Technology

    2012-08-01

    Investigator 15 UAB X1219: Molecular determinants of cellular susceptibility to PARP inhibition in an ex- vivo model of human cholangiocarcinoma Role...cellular susceptibility to PARP inhibition in an ex-vivo model of human cholangiocarcinoma Role: Co-Prinicipal Investigator Career Development

Top