Sample records for head average specific

  1. Sex-specific differences of craniofacial traits in Croatia: the impact of environment in a small geographic area.

    PubMed

    Buretic-Tomljanovic, Alena; Giacometti, Jasminka; Ostojic, Sasa; Kapovic, Miljenko

    2007-01-01

    Craniometric variation in humans reflects different genetic and environmental influences. Long-term climatic adaptation is less likely to show an impact on size and shape variation in a small local area than at the global level. The aim of this work was to assess the contribution of the particular environmental factors to body height and craniofacial variability in a small geographic area of Croatia. A total of 632 subjects, aged 18-21, participated in the survey. Body height, head length, head breadth, head height, head circumference, cephalic index, morphological face height, face breadth, and facial index were analysed regarding geographic, climatic and dietary conditions in different regions of the country, and correlated with the specific climatic variables (cumulative multiyear sunshine duration, cumulative multiyear average precipitation, multiyear average air temperatures) and calcium concentrations in drinking water. Significant differences between groups classified according to geographic, climatic or dietary affiliation, and the impact of the environmental predictors on the variation in the investigated traits were assessed using multiple forward stepwise regression analyses. Higher body height measures in both sexes were significantly correlated with Mediterranean diet type. Mediterranean diet type also contributed to higher head length and head circumference measures in females. Cephalic index values correlated to geographic regions in both sexes, showing an increase from southern to eastern Croatia. In the same direction, head length significantly decreased in males and head breadth increased in females. Mediterranean climate was associated with higher and narrower faces in females. The analysis of the particular climatic variables did not reveal a significant influence on body height in either sex. Concurrently, climatic features influenced all craniofacial traits in females and only head length and facial index in males. Mediterranean climate, characterized by higher average sunshine duration, higher average precipitation and higher average air temperatures, was associated with longer, higher and narrower skulls, higher head circumference, lower cephalic index, and higher and narrower faces (lower facial index). Calcium concentrations in drinking water did not correlate significantly with any dependent variable. A significant effect of environmental factors on body height and craniofacial variability was found in Croatian young adult population. This effect was more pronounced in females, revealing sex-specific craniofacial differentiation. However, the impact of environment was low and may explain only 1.0-7.32% variation of the investigated traits.

  2. Averaged head phantoms from magnetic resonance images of Korean children and young adults

    NASA Astrophysics Data System (ADS)

    Han, Miran; Lee, Ae-Kyoung; Choi, Hyung-Do; Jung, Yong Wook; Park, Jin Seo

    2018-02-01

    Increased use of mobile phones raises concerns about the health risks of electromagnetic radiation. Phantom heads are routinely used for radiofrequency dosimetry simulations, and the purpose of this study was to construct averaged phantom heads for children and young adults. Using magnetic resonance images (MRI), sectioned cadaver images, and a hybrid approach, we initially built template phantoms representing 6-, 9-, 12-, 15-year-old children and young adults. Our subsequent approach revised the template phantoms using 29 averaged items that were identified by averaging the MRI data from 500 children and young adults. In females, the brain size and cranium thickness peaked in the early teens and then decreased. This is contrary to what was observed in males, where brain size and cranium thicknesses either plateaued or grew continuously. The overall shape of brains was spherical in children and became ellipsoidal by adulthood. In this study, we devised a method to build averaged phantom heads by constructing surface and voxel models. The surface model could be used for phantom manipulation, whereas the voxel model could be used for compliance test of specific absorption rate (SAR) for users of mobile phones or other electronic devices.

  3. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head.

    PubMed

    Beard, Brian B; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2006-06-05

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.

  4. A dictionary learning approach for human sperm heads classification.

    PubMed

    Shaker, Fariba; Monadjemi, S Amirhassan; Alirezaie, Javad; Naghsh-Nilchi, Ahmad Reza

    2017-12-01

    To diagnose infertility in men, semen analysis is conducted in which sperm morphology is one of the factors that are evaluated. Since manual assessment of sperm morphology is time-consuming and subjective, automatic classification methods are being developed. Automatic classification of sperm heads is a complicated task due to the intra-class differences and inter-class similarities of class objects. In this research, a Dictionary Learning (DL) technique is utilized to construct a dictionary of sperm head shapes. This dictionary is used to classify the sperm heads into four different classes. Square patches are extracted from the sperm head images. Columnized patches from each class of sperm are used to learn class-specific dictionaries. The patches from a test image are reconstructed using each class-specific dictionary and the overall reconstruction error for each class is used to select the best matching class. Average accuracy, precision, recall, and F-score are used to evaluate the classification method. The method is evaluated using two publicly available datasets of human sperm head shapes. The proposed DL based method achieved an average accuracy of 92.2% on the HuSHeM dataset, and an average recall of 62% on the SCIAN-MorphoSpermGS dataset. The results show a significant improvement compared to a previously published shape-feature-based method. We have achieved high-performance results. In addition, our proposed approach offers a more balanced classifier in which all four classes are recognized with high precision and recall. In this paper, we use a Dictionary Learning approach in classifying human sperm heads. It is shown that the Dictionary Learning method is far more effective in classifying human sperm heads than classifiers using shape-based features. Also, a dataset of human sperm head shapes is introduced to facilitate future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.

    PubMed

    Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

    2015-01-01

    Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. © 2014 Wiley Periodicals, Inc.

  6. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head

    PubMed Central

    Beard, Brian B.; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2018-01-01

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position. PMID:29515260

  7. Determination of head conductivity frequency response in vivo with optimized EIT-EEG.

    PubMed

    Dabek, Juhani; Kalogianni, Konstantina; Rotgans, Edwin; van der Helm, Frans C T; Kwakkel, Gert; van Wegen, Erwin E H; Daffertshofer, Andreas; de Munck, Jan C

    2016-02-15

    Electroencephalography (EEG) benefits from accurate head models. Dipole source modelling errors can be reduced from over 1cm to a few millimetres by replacing generic head geometry and conductivity with tailored ones. When adequate head geometry is available, electrical impedance tomography (EIT) can be used to infer the conductivities of head tissues. In this study, the boundary element method (BEM) is applied with three-compartment (scalp, skull and brain) subject-specific head models. The optimal injection of small currents to the head with a modular EIT current injector, and voltage measurement by an EEG amplifier is first sought by simulations. The measurement with a 64-electrode EEG layout is studied with respect to three noise sources affecting EIT: background EEG, deviations from the fitting assumption of equal scalp and brain conductivities, and smooth model geometry deviations from the true head geometry. The noise source effects were investigated depending on the positioning of the injection and extraction electrode and the number of their combinations used sequentially. The deviation from equal scalp and brain conductivities produces rather deterministic errors in the three conductivities irrespective of the current injection locations. With a realistic measurement of around 2 min and around 8 distant distinct current injection pairs, the error from the other noise sources is reduced to around 10% or less in the skull conductivity. The analysis of subsequent real measurements, however, suggests that there could be subject-specific local thinnings in the skull, which could amplify the conductivity fitting errors. With proper analysis of multiplexed sinusoidal EIT current injections, the measurements on average yielded conductivities of 340 mS/m (scalp and brain) and 6.6 mS/m (skull) at 2 Hz. From 11 to 127 Hz, the conductivities increased by 1.6% (scalp and brain) and 6.7% (skull) on the average. The proper analysis was ensured by using recombination of the current injections into virtual ones, avoiding problems in location-specific skull morphology variations. The observed large intersubject variations support the need for in vivo measurement of skull conductivity, resulting in calibrated subject-specific head models. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Gaze pursuit responses in nucleus reticularis tegmenti pontis of head-unrestrained macaques.

    PubMed

    Suzuki, David A; Betelak, Kathleen F; Yee, Robert D

    2009-01-01

    Eye-head gaze pursuit-related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit-related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position-related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit-related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged approximately 1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII.

  9. Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports.

    PubMed

    Zech, John; Pain, Margaret; Titano, Joseph; Badgeley, Marcus; Schefflein, Javin; Su, Andres; Costa, Anthony; Bederson, Joshua; Lehar, Joseph; Oermann, Eric Karl

    2018-05-01

    Purpose To compare different methods for generating features from radiology reports and to develop a method to automatically identify findings in these reports. Materials and Methods In this study, 96 303 head computed tomography (CT) reports were obtained. The linguistic complexity of these reports was compared with that of alternative corpora. Head CT reports were preprocessed, and machine-analyzable features were constructed by using bag-of-words (BOW), word embedding, and Latent Dirichlet allocation-based approaches. Ultimately, 1004 head CT reports were manually labeled for findings of interest by physicians, and a subset of these were deemed critical findings. Lasso logistic regression was used to train models for physician-assigned labels on 602 of 1004 head CT reports (60%) using the constructed features, and the performance of these models was validated on a held-out 402 of 1004 reports (40%). Models were scored by area under the receiver operating characteristic curve (AUC), and aggregate AUC statistics were reported for (a) all labels, (b) critical labels, and (c) the presence of any critical finding in a report. Sensitivity, specificity, accuracy, and F1 score were reported for the best performing model's (a) predictions of all labels and (b) identification of reports containing critical findings. Results The best-performing model (BOW with unigrams, bigrams, and trigrams plus average word embeddings vector) had a held-out AUC of 0.966 for identifying the presence of any critical head CT finding and an average 0.957 AUC across all head CT findings. Sensitivity and specificity for identifying the presence of any critical finding were 92.59% (175 of 189) and 89.67% (191 of 213), respectively. Average sensitivity and specificity across all findings were 90.25% (1898 of 2103) and 91.72% (18 351 of 20 007), respectively. Simpler BOW methods achieved results competitive with those of more sophisticated approaches, with an average AUC for presence of any critical finding of 0.951 for unigram BOW versus 0.966 for the best-performing model. The Yule I of the head CT corpus was 34, markedly lower than that of the Reuters corpus (at 103) or I2B2 discharge summaries (at 271), indicating lower linguistic complexity. Conclusion Automated methods can be used to identify findings in radiology reports. The success of this approach benefits from the standardized language of these reports. With this method, a large labeled corpus can be generated for applications such as deep learning. © RSNA, 2018 Online supplemental material is available for this article.

  10. Gaze Pursuit Responses in Nucleus Reticularis Tegmenti Pontis of Head-Unrestrained Macaques

    PubMed Central

    Suzuki, David A.; Betelak, Kathleen F.; Yee, Robert D.

    2009-01-01

    Eye-head gaze pursuit–related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit–related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position–related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit–related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged ∼1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII. PMID:18987125

  11. Are patient specific meshes required for EIT head imaging?

    PubMed

    Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David

    2016-06-01

    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.

  12. Comparison of FDTD-calculated specific absorption rate in adults and children when using a mobile phone at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Martínez-Búrdalo, M.; Martín, A.; Anguiano, M.; Villar, R.

    2004-01-01

    In this paper, the specific absorption rate (SAR) in scaled human head models is analysed to study possible differences between SAR in the heads of adults and children and for assessment of compliance with the international safety guidelines, while using a mobile phone. The finite-difference time-domain method (FDTD) has been used for calculating SAR values for models of both children and adults, at 900 and 1800 MHz. Maximum 1 g averaged SAR (SAR1 g) and maximum 10 g averaged SAR (SAR10 g) have been calculated in adults and scaled head models for comparison and assessment of compliance with ANSI/IEEE and European guidelines. Results show that peak SAR1 g and peak SAR10 g all trend downwards with decreasing head size but as head size decreases, the percentage of energy absorbed in the brain increases. So, higher SAR in children's brains can be expected depending on whether the thickness of their skulls and surrounding tissues actually depends on age. The SAR in eyes of different sizes, as a critical organ, has also been studied and very similar distributions for the full size and the scaled models have been obtained. Standard limits can only be exceeded in the unpractical situation where the antenna is located at a very short distance in front of the eye.

  13. Head restraint backset during routine automobile driving: drivers usually exceed the recommended guidelines.

    PubMed

    Shugg, Jarrod A J; Vernest, Kyle; Dickey, James P

    2011-04-01

    Although several previous studies have evaluated horizontal head restraint backset distances, few studies have evaluated them during driving. The purpose of this study was to measure this backset during routine automobile driving and to specifically evaluate the backset during individual driving tasks such as turning, stopping, starting, and lane changes. Fourteen subjects drove around a specified route through the city of Guelph, Ontario, Canada, that included residential, thruway, and highway driving; additional minor driving tasks, such as lane changes, were evaluated. The distance of head restraint to posterior aspect of the head was measured continuously throughout the drive using an ultrasonic measurement system. The timing of specific tasks was documented using a video camera. The average head-to-restraint distance throughout the driving route was 78.1 mm (standard deviation [SD] 24.8 mm); this distance did not vary significantly between the global measures during various driving areas (residential, thruway, and highway). We observed that the head restraint backsets during right turns (93.6 mm; SD 34.8 mm) were significantly larger compared to the other driving tasks (p < .001). The 7 males and 7 females showed similar backset distances: 84.52 mm (SD 12.08) and 71.68 mm (SD 5.53), respectively (p = .0785). We observed that most subjects maintain a relatively consistent head-to-restraint distance throughout their driving route; 2 subjects adopted very large head restraint backset distances throughout their drive and 2 others adopted very small head restraint backset distances-this appears to reflect driver posture. Twelve of 14 subjects had average backset distances that exceed the National Highway Traffic Safety Administration and the Federal Motor Vehicle Safety Standard guidelines, indicating that most drivers may be at risk for whiplash-like disorders if exposed to a rear impact while driving. Of the monitored driving tasks, turning, especially right turns, caused drivers to increase their head-to-restraint backset distance.

  14. Comparative analyses of bicyclists and motorcyclists in vehicle collisions focusing on head impact responses.

    PubMed

    Wang, Xinghua; Peng, Yong; Yi, Shengen

    2017-11-01

    To investigate the differences of the head impact responses between bicyclists and motorcyclists in vehicle collisions. A series of vehicle-bicycle and vehicle-motorcycle lateral impact simulations on four vehicle types at seven vehicle speeds (30, 35, 40, 45, 50, 55 and 60 km/h) and three two-wheeler moving speeds (5, 7.5 and 10 km/h for bicycle, 10, 12.5 and 15 km/h for motorcycle) were established based on PC-Crash software. To further comprehensively explore the differences, additional impact scenes with other initial conditions, such as impact angle (0, π/3, 2π/3 and π) and impact position (left, middle and right part of vehicle front-end), also were supplemented. And then, extensive comparisons were accomplished with regard to average head peak linear acceleration, average head impact speed, average head peak angular acceleration, average head peak angular speed and head injury severity. The results showed there were prominent differences of kinematics and body postures for bicyclists and motorcyclists even under same impact conditions. The variations of bicyclist head impact responses with the changing of impact conditions were a far cry from that of motorcyclists. The average head peak linear acceleration, average head impact speed and average head peak angular acceleration values were higher for motorcyclists than for bicyclists in most cases, while the bicyclists received greater average head peak angular speed values. And the head injuries of motorcyclists worsened faster with increased vehicle speed. The results may provide even deeper understanding of two-wheeler safety and contribute to improve the public health affected by road traffic accidents.

  15. Analysis of the influence of handset phone position on RF exposure of brain tissue.

    PubMed

    Ghanmi, Amal; Varsier, Nadège; Hadjem, Abdelhamid; Conil, Emmanuelle; Picon, Odile; Wiart, Joe

    2014-12-01

    Exposure to mobile phone radio frequency (RF) electromagnetic fields depends on many different parameters. For epidemiological studies investigating the risk of brain cancer linked to RF exposure from mobile phones, it is of great interest to characterize brain tissue exposure and to know which parameters this exposure is sensitive to. One such parameter is the position of the phone during communication. In this article, we analyze the influence of the phone position on the brain exposure by comparing the specific absorption rate (SAR) induced in the head by two different mobile phone models operating in Global System for Mobile Communications (GSM) frequency bands. To achieve this objective, 80 different phone positions were chosen using an experiment based on the Latin hypercube sampling (LHS) to select a representative set of positions. The averaged SAR over 10 g (SAR10 g) in the head, the averaged SAR over 1 g (SAR1 g ) in the brain, and the averaged SAR in different anatomical brain structures were estimated at 900 and 1800 MHz for the 80 positions. The results illustrate that SAR distributions inside the brain area are sensitive to the position of the mobile phone relative to the head. The results also show that for 5-10% of the studied positions the SAR10 g in the head and the SAR1 g in the brain can be 20% higher than the SAR estimated for the standard cheek position and that the Specific Anthropomorphic Mannequin (SAM) model is conservative for 95% of all the studied positions. © 2014 Wiley Periodicals, Inc.

  16. Age-specific MRI brain and head templates for healthy adults from 20 through 89 years of age

    PubMed Central

    Fillmore, Paul T.; Phillips-Meek, Michelle C.; Richards, John E.

    2015-01-01

    This study created and tested a database of adult, age-specific MRI brain and head templates. The participants included healthy adults from 20 through 89 years of age. The templates were done in five-year, 10-year, and multi-year intervals from 20 through 89 years, and consist of average T1W for the head and brain, and segmenting priors for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). It was found that age-appropriate templates provided less biased tissue classification estimates than age-inappropriate reference data and reference data based on young adult templates. This database is available for use by other investigators and clinicians for their MRI studies, as well as other types of neuroimaging and electrophysiological research.1 PMID:25904864

  17. A numerical and experimental comparison of human head phantoms for compliance testing of mobile telephone equipment.

    PubMed

    Christ, Andreas; Chavannes, Nicolas; Nikoloski, Neviana; Gerber, Hans-Ulrich; Poković, Katja; Kuster, Niels

    2005-02-01

    A new human head phantom has been proposed by CENELEC/IEEE, based on a large scale anthropometric survey. This phantom is compared to a homogeneous Generic Head Phantom and three high resolution anatomical head models with respect to specific absorption rate (SAR) assessment. The head phantoms are exposed to the radiation of a generic mobile phone (GMP) with different antenna types and a commercial mobile phone. The phones are placed in the standardized testing positions and operate at 900 and 1800 MHz. The average peak SAR is evaluated using both experimental (DASY3 near field scanner) and numerical (FDTD simulations) techniques. The numerical and experimental results compare well and confirm that the applied SAR assessment methods constitute a conservative approach.

  18. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure

    NASA Astrophysics Data System (ADS)

    Keshvari, Jafar; Keshvari, Rahim; Lang, Sakari

    2006-03-01

    Numerous studies have attempted to address the question of the RF energy absorption difference between children and adults using computational methods. They have assumed the same dielectric parameters for child and adult head models in SAR calculations. This has been criticized by many researchers who have stated that child organs are not fully developed, their anatomy is different and also their tissue composition is slightly different with higher water content. Higher water content would affect dielectric values, which in turn would have an effect on RF energy absorption. The objective of this study was to investigate possible variation in specific absorption rate (SAR) in the head region of children and adults by applying the finite-difference time-domain (FDTD) method and using anatomically correct child and adult head models. In the calculations, the conductivity and permittivity of all tissues were increased from 5 to 20% but using otherwise the same exposure conditions. A half-wave dipole antenna was used as an exposure source to minimize the uncertainties of the positioning of a real mobile device and making the simulations easily replicable. Common mobile telephony frequencies of 900, 1800 and 2450 MHz were used in this study. The exposures of ear and eye regions were investigated. The SARs of models with increased dielectric values were compared to the SARs of the models where dielectric values were unchanged. The analyses suggest that increasing the value of dielectric parameters does not necessarily mean that volume-averaged SAR would increase. Under many exposure conditions, specifically at higher frequencies in eye exposure, volume-averaged SAR decreases. An increase of up to 20% in dielectric conductivity or both conductivity and permittivity always caused a SAR variation of less than 20%, usually about 5%, when it was averaged over 1, 5 or 10 g of cubic mass for all models. The thickness and composition of different tissue layers in the exposed regions within the human head play a more significant role in SAR variation compared to the variations (5-20%) of the tissue dielectric parameters.

  19. Estimation of head tissue-specific exposure from mobile phones based on measurements in the homogeneous SAM head.

    PubMed

    Gosselin, Marie-Christine; Kühn, Sven; Crespo-Valero, Pedro; Cherubini, Emilio; Zefferer, Marcel; Christ, Andreas; Kuster, Niels

    2011-09-01

    The maximum spatial peak exposure of each commercial mobile phone determined in compliance with the relevant safety and product standards is publicly available. However, this information is not sufficient for epidemiological studies aiming to correlate the use of mobile phones with specific cancers or to behavioral alterations, as the dominant location of the exposure may be anywhere in the head between the chin to above the ear, depending on the phone design. The objective of this study was to develop a methodology to determine tissue-specific exposure by expanding the post-processing of the measured surface or volume scans using standardized compliance testing equipment, that is, specific absorption rate (SAR) scanners. The transformation matrix was developed using the results from generic dipoles to evaluate the relation between the SAR in many brain regions of the Virtual Family anatomical phantoms and in virtual brain regions mapped onto the homogeneous SAM head. A set of transformation factors was derived to correlate the SAR induced in the SAM head to the SAR in the anatomical heads. The evaluation included the uncertainty associated with each factor, arising from the anatomical differences between the phantoms (typically less than 6 dB (4×)). The applicability of these factors was validated by performing simulations of four head models exposed to four realistic mobile phone models. The new methodology enables the reliable determination of the maximum and averaged exposure of specific tissues and functional brain regions to mobile phones when combined with mobile phone power control data, and therefore greatly strengthens epidemiological evaluations and improves information for the consumer. Copyright © 2011 Wiley-Liss, Inc.

  20. Three-dimensional adult male head and skull contours.

    PubMed

    Lee, Calvin; Loyd, Andre M; Nightingale, Roger; Myers, Barry S; Damon, Andrew; Bass, Cameron R

    2014-01-01

    Traumatic brain injury (TBI) is a major public health issue, affecting millions of people annually. Anthropomorphic test devices (ATDs) and finite element models (FEMs) provide a means of understanding factors leading to TBI, potentially reducing the occurrence. Thus, there is a need to ensure that these tools accurately model humans. For example, the Hybrid III was not based on 3-dimensional human head shape data. The objective of this study is to produce average head and skull contours for an average U.S. male that can be used for ATDs and FEMs. Computed tomography (CT) scans of adult male heads were obtained from a database provided by the University of Virginia Center for Applied Biomechanics. An orthographic viewer was used to extract head and skull contours from the CT scans. Landmarks were measured graphically using HyperMesh (Altair, HyperWorks). To determine the head occipital condyle (OC) centroid, surface meshes of the OCs were made and the centroid of the surfaces was calculated. The Hybrid III contour was obtained using a MicroScribe Digitizer (Solution Technologies, Inc., Oella, MD). Comparisons of the average male and ATD contours were performed using 2 methods: (1) the midsagittal and midcoronal ATD contours relative to the OC centroid were compared to the corresponding 1 SD range of the average male contours; (2) the ATD sagittal contour was translated relative to the average male sagittal contour to minimize the area between the 2 contours. Average male head and skull contours were created. Landmark measurements were made for the dorsum sellae, nasion skin, nasion bone, infraorbital foramen, and external auditory meatus, all relative to the OC centroid. The Hybrid III midsagittal contour was outside the 1 SD range for 15.2 percent of the average male head contour but only by a maximum distance of 1.5 mm, whereas the Hybrid III midcoronal head contour was outside the 1 SD range for 12.2 percent of the average male head contour by a maximum distance of 2 mm. Minimization of the area between the midsagittal contours resulted in only 2.3 mm of translation, corroborating the good correlation between the contours established by initial comparison. Three-dimensional average male head and skull contours were created and measurements of landmark locations were made. It was found that the 50th percentile male Hybrid III corresponds well to the average male head contour and validated its 3D shape. Average adult head and skull contours and landmark data are available for public research use at http://biomechanics.pratt.duke.edu/data .

  1. Electromagnetic field generated in model of human head by simplified telephone transceiver

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.

  2. Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance.

    PubMed

    Gong, Feixiang; Wei, Zhiqiang; Cong, Yanping; Chi, Haokun; Yin, Bo; Sun, Mingui

    2017-07-20

    In this paper, a novel wireless power transfer antenna system was designed for human head implantable devices. The antenna system used the structure of three plates and four coils and operated at low frequencies to transfer power via near field. In order to verify the electromagnetic radiation safety on the human head, the electromagnetic intensity and specific absorption rate (SAR) were studied by finite-difference-time-domain (FDTD) method. A three-layer model of human head including skin, bone and brain tissues was constructed. The transmitting and receiving antenna were set outside and inside the model. The local and average SAR were simulated at the resonance frequency of 18.67 MHz in two situations, in one scenario both transmitting and receiving coil worked, while in the other scenario only the transmitting coil worked. The results showed that the maximum of 10 g SAR average value of human thoracic were 0.142 W/kg and 0.148 W/kg, respectively, both were lower than the international safety standards for human body of the ICNIRP and FCC, which verified the safety of the human body in wireless power transmission based on magnetic coupling resonance.

  3. The application of multilobed flap designs for anatomic and functional oropharyngeal reconstructions.

    PubMed

    Choi, Jong Woo; Lee, Min Young; Oh, Tae Suk

    2013-11-01

    The oropharynx has a variety of functions, such as mastication, deglutition, articulation, taste, and airway protection. Because of its many roles, recent goals in head and neck reconstruction have focused on anatomic and functional reconstructions to minimize functional deficits. Since chemoradiation has earned a good reputation in the management of head and neck cancer, the manifestation of oropharyngeal defects has changed. Although we could not control the anatomic defects that were known to be related to the oropharyngeal functions, we hypothesized that optimizing the flap designs would be helpful for minimizing the functional deficits.Two hundred fifty cases of the head and neck reconstruction using free flaps were carried out between March 2006 and December 2010, where modified flap designs were applied. Among these, 37 tongue and 15 tonsillar reconstructions were analyzed for functional outcomes. The patients were of Asian ethnic background, and the average age was 52 years, including 38 males and 17 females. The average follow-up period was 20.5 months. Based on previous studies, the flap designs were categorized into type I, unilobe; type II, bilobe; type III, trilobe; type IV, quadrilobe; type V, additional lobe for lateral and posterior pharyngeal wall; and type VI, additional lobe for tongue base. The functional outcomes of both tongue and tonsillar reconstructions were investigated.To quantify the outcome in terms of swallowing and pronunciation, we analyzed the patients' function based on the 7-scale parameter. In terms of swallowing, the tongue reconstruction group scored 5.70 on average, whereas the tonsillar reconstruction group showed an average score of 4.53. With regard to speech intelligibility, the tongue reconstruction group revealed an average score of 5.67, whereas the tonsillar reconstruction group scored 5.46 on average.Our findings indicate that specification of the flap designs is helpful for minimizing the functional deficits in head and neck reconstructions.

  4. Exposure limits: the underestimation of absorbed cell phone radiation, especially in children.

    PubMed

    Gandhi, Om P; Morgan, L Lloyd; de Salles, Alvaro Augusto; Han, Yueh-Ying; Herberman, Ronald B; Davis, Devra Lee

    2012-03-01

    The existing cell phone certification process uses a plastic model of the head called the Specific Anthropomorphic Mannequin (SAM), representing the top 10% of U.S. military recruits in 1989 and greatly underestimating the Specific Absorption Rate (SAR) for typical mobile phone users, especially children. A superior computer simulation certification process has been approved by the Federal Communications Commission (FCC) but is not employed to certify cell phones. In the United States, the FCC determines maximum allowed exposures. Many countries, especially European Union members, use the "guidelines" of International Commission on Non-Ionizing Radiation Protection (ICNIRP), a non governmental agency. Radiofrequency (RF) exposure to a head smaller than SAM will absorb a relatively higher SAR. Also, SAM uses a fluid having the average electrical properties of the head that cannot indicate differential absorption of specific brain tissue, nor absorption in children or smaller adults. The SAR for a 10-year old is up to 153% higher than the SAR for the SAM model. When electrical properties are considered, a child's head's absorption can be over two times greater, and absorption of the skull's bone marrow can be ten times greater than adults. Therefore, a new certification process is needed that incorporates different modes of use, head sizes, and tissue properties. Anatomically based models should be employed in revising safety standards for these ubiquitous modern devices and standards should be set by accountable, independent groups.

  5. Head impact exposure in youth football: middle school ages 12-14 years.

    PubMed

    Daniel, Ray W; Rowson, Steven; Duma, Stefan M

    2014-09-01

    The head impact exposure experienced by football players at the college and high school levels has been well documented; however, there are limited data regarding youth football despite its dramatically larger population. The objective of this study was to investigate head impact exposure in middle school football. Impacts were monitored using a commercially available accelerometer array installed inside the helmets of 17 players aged 12-14 years. A total of 4678 impacts were measured, with an average (±standard deviation) of 275 ± 190 impacts per player. The average of impact distributions for each player had a median impact of 22 ± 2 g and 954 ± 122 rad/s², and a 95th percentile impact of 54 ± 9 g and 2525 ± 450 rad/s². Similar to the head impact exposure experienced by high school and collegiate players, these data show that middle school football players experience a greater number of head impacts during games than practices. There were no significant differences between median and 95th percentile head acceleration magnitudes experienced during games and practices; however, a larger number of impacts greater than 80 g occurred during games than during practices. Impacts to the front and back of the helmet were most common. Overall, these data are similar to high school and college data that have been collected using similar methods. These data have applications toward youth football helmet design, the development of strategies designed to limit head impact exposure, and child-specific brain injury criteria.

  6. Variability of medial and posterior offset in patients with fourth-generation stemmed shoulder arthroplasty.

    PubMed

    Irlenbusch, Ulrich; Berth, Alexander; Blatter, Georges; Zenz, Peter

    2012-03-01

    Most anthropometric data on the proximal humerus has been obtained from deceased healthy individuals with no deformities. Endoprostheses are implanted for primary and secondary osteoarthritis, rheumatoid arthritis,humeral-head necrosis, fracture sequelae and other humeral-head deformities. This indicates that pathologicoanatomical variability may be greater than previously assumed. We therefore investigated a group of patients with typical shoulder replacement diagnoses, including posttraumatic and rheumatic deformities. One hundred and twenty-two patients with a double eccentrically adjustable shaft endoprosthesis served as a specific dimension gauge to determine in vivo the individual humeral-head rotation centres from the position of the adjustable prosthesis taper and the eccentric head. All prosthesis heads were positioned eccentrically.The entire adjustment range of the prosthesis of 12 mm medial/lateral and 6 mm dorsal/ventral was required. Mean values for effective offset were 5.84 mm mediolaterally[standard deviation (SD) 1.95, minimum +2, maximum +11]and 1.71 mm anteroposteriorly (SD 1.71, minimum −3,maximum 3 mm), averaging 5.16 mm (SD 1.76, minimum +2,maximum + 10). The posterior offset averaged 1.85 mm(SD 1.85, minimum −1, maximum + 6 mm). In summary, variability of the combined medial and dorsal offset of the humeral-head rotational centre determined in patients with typical underlying diagnoses in shoulder replacement was not greater than that recorded in the literature for healthy deceased patients.The range of deviation is substantial and shows the need for an adjustable prosthetic system.

  7. Mobile phone types and SAR characteristics of the human brain.

    PubMed

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-04-07

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  8. Mobile phone types and SAR characteristics of the human brain

    NASA Astrophysics Data System (ADS)

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-04-01

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  9. Predicting the need for CT imaging in children with minor head injury using an ensemble of Naive Bayes classifiers.

    PubMed

    Klement, William; Wilk, Szymon; Michalowski, Wojtek; Farion, Ken J; Osmond, Martin H; Verter, Vedat

    2012-03-01

    Using an automatic data-driven approach, this paper develops a prediction model that achieves more balanced performance (in terms of sensitivity and specificity) than the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) rule, when predicting the need for computed tomography (CT) imaging of children after a minor head injury. CT is widely considered an effective tool for evaluating patients with minor head trauma who have potentially suffered serious intracranial injury. However, its use poses possible harmful effects, particularly for children, due to exposure to radiation. Safety concerns, along with issues of cost and practice variability, have led to calls for the development of effective methods to decide when CT imaging is needed. Clinical decision rules represent such methods and are normally derived from the analysis of large prospectively collected patient data sets. The CATCH rule was created by a group of Canadian pediatric emergency physicians to support the decision of referring children with minor head injury to CT imaging. The goal of the CATCH rule was to maximize the sensitivity of predictions of potential intracranial lesion while keeping specificity at a reasonable level. After extensive analysis of the CATCH data set, characterized by severe class imbalance, and after a thorough evaluation of several data mining methods, we derived an ensemble of multiple Naive Bayes classifiers as the prediction model for CT imaging decisions. In the first phase of the experiment we compared the proposed ensemble model to other ensemble models employing rule-, tree- and instance-based member classifiers. Our prediction model demonstrated the best performance in terms of AUC, G-mean and sensitivity measures. In the second phase, using a bootstrapping experiment similar to that reported by the CATCH investigators, we showed that the proposed ensemble model achieved a more balanced predictive performance than the CATCH rule with an average sensitivity of 82.8% and an average specificity of 74.4% (vs. 98.1% and 50.0% for the CATCH rule respectively). Automatically derived prediction models cannot replace a physician's acumen. However, they help establish reference performance indicators for the purpose of developing clinical decision rules so the trade-off between prediction sensitivity and specificity is better understood. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The predictive value of single-photon emission computed tomography/computed tomography for sentinel lymph node localization in head and neck cutaneous malignancy.

    PubMed

    Remenschneider, Aaron K; Dilger, Amanda E; Wang, Yingbing; Palmer, Edwin L; Scott, James A; Emerick, Kevin S

    2015-04-01

    Preoperative localization of sentinel lymph nodes in head and neck cutaneous malignancies can be aided by single-photon emission computed tomography/computed tomography (SPECT/CT); however, its true predictive value for identifying lymph nodes intraoperatively remains unquantified. This study aims to understand the sensitivity, specificity, and positive and negative predictive values of SPECT/CT in sentinel lymph node biopsy for cutaneous malignancies of the head and neck. Blinded retrospective imaging review with comparison to intraoperative gamma probe confirmed sentinel lymph nodes. A consecutive series of patients with a head and neck cutaneous malignancy underwent preoperative SPECT/CT followed by sentinel lymph node biopsy with a gamma probe. Two nuclear medicine physicians, blinded to clinical data, independently reviewed each SPECT/CT. Activity within radiographically defined nodal basins was recorded and compared to intraoperative gamma probe findings. Sensitivity, specificity, and negative and positive predictive values were calculated with subgroup stratification by primary tumor site. Ninety-two imaging reads were performed on 47 patients with cutaneous malignancy who underwent SPECT/CT followed by sentinel lymph node biopsy. Overall sensitivity was 73%, specificity 92%, positive predictive value 54%, and negative predictive value 96%. The predictive ability of SPECT/CT to identify the basin or an adjacent basin containing the single hottest node was 92%. SPECT/CT overestimated uptake by an average of one nodal basin. In the head and neck, SPECT/CT has higher reliability for primary lesions of the eyelid, scalp, and cheek. SPECT/CT has high sensitivity, specificity, and negative predictive value, but may overestimate relevant nodal basins in sentinel lymph node biopsy. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  11. New head equivalent phantom for task and image performance evaluation representative for neurovascular procedures occurring in the Circle of Willis

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Loughran, Brendan; Jain, Amit; Swetadri Vasan, S. N.; Bednarek, Daniel R.; Levy, Elad; Siddiqui, Adnan H.; Snyder, Kenneth V.; Hopkins, L. N.; Rudin, Stephen

    2012-03-01

    Phantom equivalents of different human anatomical parts are routinely used for imaging system evaluation or dose calculations. The various recommendations on the generic phantom structure given by organizations such as the AAPM, are not always accurate when evaluating a very specific task. When we compared the AAPM head phantom containing 3 mm of aluminum to actual neuro-endovascular image guided interventions (neuro-EIGI) occurring in the Circle of Willis, we found that the system automatic exposure rate control (AERC) significantly underestimated the x-ray parameter selection. To build a more accurate phantom for neuro-EIGI, we reevaluated the amount of aluminum which must be included in the phantom. Human skulls were imaged at different angles, using various angiographic exposures, at kV's relevant to neuro-angiography. An aluminum step wedge was also imaged under identical conditions, and a correlation between the gray values of the imaged skulls and those of the aluminum step thicknesses was established. The average equivalent aluminum thickness for the skull samples for frontal projections in the Circle of Willis region was found to be about 13 mm. The results showed no significant changes in the average equivalent aluminum thickness with kV or mAs variation. When a uniform phantom using 13 mm aluminum and 15 cm acrylic was compared with an anthropomorphic head phantom the x-ray parameters selected by the AERC system were practically identical. These new findings indicate that for this specific task, the amount of aluminum included in the head equivalent must be increased substantially from 3 mm to a value of 13 mm.

  12. Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.

    1996-01-01

    Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the bony canal structure to produce a resultant sensitivity vector that was positioned between the canal planes. Calculated angles between the average canal afferent sensitivity vectors revealed that direction orthogonality is preserved at the afferent signal level, even though deviations from canal plane orthogonality exist.

  13. Age-dependent tissue-specific exposure of cell phone users.

    PubMed

    Christ, Andreas; Gosselin, Marie-Christine; Christopoulou, Maria; Kühn, Sven; Kuster, Niels

    2010-04-07

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  14. Age-dependent tissue-specific exposure of cell phone users

    NASA Astrophysics Data System (ADS)

    Christ, Andreas; Gosselin, Marie-Christine; Christopoulou, Maria; Kühn, Sven; Kuster, Niels

    2010-04-01

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  15. Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Conil, E.; Hadjem, A.; Lacroux, F.; Wong, M. F.; Wiart, J.

    2008-03-01

    This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. For more information on this article, see medicalphysicsweb.org

  16. Head impact exposure in youth football: elementary school ages 7-8 years and the effect of returning players.

    PubMed

    Young, Tyler J; Daniel, Ray W; Rowson, Steven; Duma, Stefan M

    2014-09-01

    To provide data describing the head impact exposure of 7- to 8-year-old football players. Head impact data were collected from 19 players over the course of 2 seasons using helmet-mounted accelerometer arrays. Data were collected from 2 youth football teams in Blacksburg, VA, spanning 2 seasons. A total of 19 youth football players aged 7-8 years. Type of session (practice or game) and the player's experience. Head impact frequency, acceleration magnitude, and impact location for games, practices, and the season as a whole were measured. The average instrumented player sustained 9 ± 6 impacts per practice, 11 ± 11 impacts per game, and 161 ± 111 impacts per season. The average instrumented player had a median impact of 16 ± 2 g and 686 ± 169 rad/s and a 95th percentile impact of 38 ± 13 g and 2052 ± 664 rad/s throughout a season. Impacts of 40 g or greater tended to occur more frequently in practices than in games, and practices had a significantly higher 95th percentile impact magnitude than games (P = 0.023). Returning players had significantly more impacts than first time players (P = 0.007). These data are a further step toward developing effective strategies to reduce the incidence of concussion in youth football and have applications toward youth-specific football helmet designs.

  17. The financial value of fellowship training in otolaryngology.

    PubMed

    Hull, Benjamin P; Darrow, David H; Derkay, Craig S

    2013-06-01

    To evaluate the financial impact of pursuing a fellowship in otolaryngology. Retrospective financial analysis using American Academy of Otolaryngology-Head and Neck Surgery survey data. The American Academy of Otolaryngology-Head and Neck Surgery report, entitled Socioeconomic Study among Members April 2011, gives a financial profile of respondents who reported their primary area of specialization as either general otolaryngology or a specific area of subspecialization. Weighted averages were calculated from the reported data. The weighted averages were used to calculate a net present value (NPV) over a 30-year contiguous career. The NPV for general otolaryngology was $4.73 million. The NPV for the following subspecialties in relation to general otolaryngology were (in hundred thousands) as follows: otolaryngologic allergy (-$1153), sleep medicine (-$677), otology/neurotology (-$339), laryngology (-$288), head and neck (-$191), pediatric otolaryngology (-$176), facial plastic surgery (-$139), skull base surgery ($122), rhinology ($285), and allergy and immunology ($350). Ninety-four percent of general otolaryngology respondents were in private practice. Most subspecialists worked in an academic setting. Fellowship training in otolaryngology will affect career earnings of prospective fellows. The overall financial impact of fellowship training, calculating in the delay in receiving a full clinical salary, should be factored into the decision to pursue fellowship training.

  18. Three-dimensional templating arthroplasty of the humeral head.

    PubMed

    Cho, Sung Won; Jharia, Trambak K; Moon, Young Lae; Sim, Sung Woo; Shin, Dong Sun; Bigliani, Louis U

    2013-10-01

    No anatomical study has been conducted over Asian population to design humeral head prosthesis for the population concerned. This study was done to evaluate the accuracy of commercially available humeral head prosthetic designs, in replicating the humeral head anatomy. CT scan data of 48 patients were taken and their 3D CAD models were generated. Then, humeral head prosthetic design of a BF shoulder system produced by a standardized, commercially available company (Zimmer) was used for templating shoulder arthroplasty and the humeral head size having the perfect fit was assessed. These data were compared with the available data in the literature. All the humeral heads were perfectly matched by one of the sizes available. The average head size was 48.5 mm and the average head thickness was 23.5 mm. The results matched reasonably well with the available data in the literature. The humeral head anatomy can be recreated reasonably well by the commercially available humeral head prosthetic designs and sizes. Their dimensions are similar to that of the published literature.

  19. Differences in head impulse test results due to analysis techniques.

    PubMed

    Cleworth, Taylor W; Carpenter, Mark G; Honegger, Flurin; Allum, John H J

    2017-01-01

    Different analysis techniques are used to define vestibulo-ocular reflex (VOR) gain between eye and head angular velocity during the video head impulse test (vHIT). Comparisons would aid selection of gain techniques best related to head impulse characteristics and promote standardisation. Compare and contrast known methods of calculating vHIT VOR gain. We examined lateral canal vHIT responses recorded from 20 patients twice within 13 weeks of acute unilateral peripheral vestibular deficit onset. Ten patients were tested with an ICS Impulse system (GN Otometrics) and 10 with an EyeSeeCam (ESC) system (Interacoustics). Mean gain and variance were computed with area, average sample gain, and regression techniques over specific head angular velocity (HV) and acceleration (HA) intervals. Results for the same gain technique were not different between measurement systems. Area and average sample gain yielded equally lower variances than regression techniques. Gains computed over the whole impulse duration were larger than those computed for increasing HV. Gain over decreasing HV was associated with larger variances. Gains computed around peak HV were smaller than those computed around peak HA. The median gain over 50-70 ms was not different from gain around peak HV. However, depending on technique used, the gain over increasing HV was different from gain around peak HA. Conversion equations between gains obtained with standard ICS and ESC methods were computed. For low gains, the conversion was dominated by a constant that needed to be added to ESC gains to equal ICS gains. We recommend manufacturers standardize vHIT gain calculations using 2 techniques: area gain around peak HA and peak HV.

  20. Motion of the head and neck of female and male volunteers in rear impact car-to-car impacts.

    PubMed

    Carlsson, Anna; Siegmund, Gunter P; Linder, Astrid; Svensson, Mats Y

    2012-01-01

    The objectives of this study were to quantify and compare dynamic motion responses between 50th percentile female and male volunteers in rear impact tests. These data are fundamental for developing future occupant models for crash safety development and assessment. High-speed video data from a rear impact test series with 21 male and 21 female volunteers at 4 and 8 km/h, originally presented in Siegmund et al. (1997), were used for further analysis. Data from a subset of female volunteers, 12 at 4 km/h and 9 at 8 km/h, were extracted from the original data set to represent the 50th percentile female. Their average height was 163 cm and their average weight was 62 kg. Among the male volunteers, 11 were selected, with an average height of 175 cm and an average weight of 73 kg, to represent the 50th percentile male. Response corridors were generated for the horizontal and angular displacements of the head, T1 (first thoracic vertebra), and the head relative to T1. T-tests were performed with the statistical significance level of .05 to quantify the significance of the differences in parameter values for the males and females. Several differences were found in the average motion response of the male and female volunteers at 4 and 8 km/h. Generally, females had smaller rearward horizontal and angular motions of the head and T1 compared to the males. This was mainly due to shorter initial head-to-head restraint distance and earlier head-to-head restraint contact for the females. At 8 km/h, the female volunteers showed 12 percent lower horizontal peak rearward head displacement (P = .018); 22 percent lower horizontal peak rearward head relative to T1 displacement (P = .018); and 30 percent lower peak head extension angle (P = .001). The females also had more pronounced rebound motion. This study indicates that there may be characteristic differences in the head-neck motion response between 50th percentile males and females in rear impacts. The exclusive use of 50th percentile male rear impact dummies may thus limit the assessment and development of whiplash prevention systems that adequately protect both male and female occupants. The results of this study could be used in the development and evaluation of a mechanical and/or computational average-sized female dummy model for rear impact safety assessment. These models are used in the development and evaluation of protective systems. It would be of interest to make further studies into seat configurations featuring a greater head-to-head restraint distance.

  1. Time of elevation of head of bed for patients receiving mechanical ventilation and its related factors.

    PubMed

    Martí-Hereu, L; Arreciado Marañón, A

    The semirecumbent position is a widespread recommendation for the prevention of pneumonia associated with mechanical ventilation. To identify the time of elevation of head of bed for patients under mechanical ventilation and the factors related to such elevation in an intensive care unit. An observational, descriptive cross-sectional study. Conducted in an intensive care unit of a tertiary hospital from April to June 2015. The studied population were mechanically ventilated patients. Daily hours in which patients remained with the head of the bed elevated (≥30°), socio-demographic data and clinical variables were recorded. 261 head elevation measurements were collected. The average daily hours that patients remained at ≥30° was 16h28' (SD ±5h38'), equivalent to 68.6% (SD ±23.5%) of the day. Factors related to elevations ≥30° for longer were: enteral nutrition, levels of deep sedation, cardiac and neurocritical diagnostics. Factors that hindered the position were: sedation levels for agitation and abdominal pathologies. Sex, age and ventilation mode did not show a significant relationship with bed head elevation. Although raising the head of the bed is an easy to perform, economical and measurable preventive measure, its compliance is low due to specific factors specific related o the patient's clinical condition. Using innovations such as continuous measurement of the head position helps to evaluate clinical practice and allows to carry out improvement actions whose impact is beneficial to the patient. Copyright © 2017 Sociedad Española de Enfermería Intensiva y Unidades Coronarias (SEEIUC). Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Estimation of average annual streamflows and power potentials for Alaska and Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdin, Kristine L.

    2004-05-01

    This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from themore » EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.« less

  3. Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications.

    PubMed

    Sugi, Haruo; Chaen, Shigeru; Akimoto, Tsuyoshi

    2018-05-04

    The most straightforward way to get information on the performance of individual myosin heads producing muscle contraction may be to record their movement, coupled with ATP hydrolysis, electron-microscopically using the gas environmental chamber (EC). The EC enables us to visualize and record ATP-induced myosin head movement in hydrated skeletal muscle myosin filaments. When actin filaments are absent, myosin heads fluctuate around a definite neutral position, so that their time-averaged mean position remains unchanged. On application of ATP, myosin heads are found to move away from, but not towards, the bare region, indicating that myosin heads perform a recovery stroke (average amplitude, 6 nm). After exhaustion of ATP, myosin heads return to their neutral position. In the actin⁻myosin filament mixture, myosin heads form rigor actin myosin linkages, and on application of ATP, they perform a power stroke by stretching adjacent elastic structures because of a limited amount of applied ATP ≤ 10 µM. The average amplitude of the power stroke is 3.3 nm and 2.5 nm at the distal and the proximal regions of the myosin head catalytic domain (CAD), respectively. The power stroke amplitude increases appreciably at low ionic strength, which is known to enhance Ca 2+ -activated force in muscle. In both the power and recovery strokes, myosin heads return to their neutral position after exhaustion of ATP.

  4. Influence of dentures on SAR in the visible Chinese human head voxel phantom exposed to a mobile phone at 900 and 1800 MHz.

    PubMed

    Yu, Dong; Zhang, Ruoyu; Liu, Qian

    2012-09-01

    To investigate the influence of dentures on electromagnetic energy absorption during the daily use of a mobile phone, a high-resolution head phantom based on the Visible Chinese Human dataset was reconstructed. Simulations on phantoms with various dentures were performed by using the finite-difference time-domain method with a 0.47 wavelength dipole antenna and a mobile phone model as radiation sources at 900 and 1800 MHz. The Specific energy Absorption Rate (SAR) values including 1 and 10 g average SAR values were assessed. When the metallic dental crowns with resonance lengths of approximately one-third to one-half wavelength in the tissue nearby are parallel to the radiation source, up to 121.6% relative enhancement for 1 g average SAR and 17.1% relative enhancement for 10 g average SAR are observed due to the resonance effect in energy absorption. When the radiation sources operate in the normal configuration, the 10 g average SAR values are still in compliance with the basic restrictions established by the Institute of Electrical and Electronic Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP), indicating that the safety limits will not be challenged by the usage of dentures. Copyright © 2012 Wiley Periodicals, Inc.

  5. Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar.

    PubMed

    Huang, Min; Chen, Jiana; Cao, Fangbo; Jiang, Ligeng; Zou, Yingbin

    2015-01-01

    This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7-9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60-64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7-11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17-25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system.

  6. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Tiedeman, Claire; O'Reilly, Andrew M.; Davis, Jeffrey B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The East-Central Florida Transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration (ET), runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into ET, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams per liter in the Floridan aquifer system. Potential flow across the interface represented by this chloride concentration is simulated by the General Head Boundary Package. During 1995 through 2006, there were no major groundwater withdrawals near the freshwater and saline-water interface, making the general head boundary a suitable feature to estimate flow through the interface. The east-central Florida transient model was calibrated using the inverse parameter estimation code, PEST. Steady-state models for 1999 and 2003 were developed to estimate hydraulic conductivity (K) using average annual heads and spring flows as observations. The spatial variation of K was represented using zones of constant values in some layers, and pilot points in other layers. Estimated K values were within one order of magnitude of aquifer performance test data. A simulation of the final two years (2005-2006) of the 12-year model, with the K estimates from the steady-state calibration, was used to guide the estimation of specific yield and specific storage values. The final model yielded head and spring-flow residuals that met the calibration criteria for the 12-year transient simulation. The overall mean residual for heads, defining residual as simulated minus measured value, was -0.04 foot. The overall root-mean square residual for heads was less than 3.6 feet for each year in the 1995 to 2006 simulation period. The overall mean residual for spring flows was -0.3 cubic foot per second. The spatial distribution of head residuals was generally random, with some minor indications of bias. Simulated average ET over the 1995 to 2006 period was 34.47 inches per year, compared to the calculated average ET rate of 36.39 inches per year from the model-independent water-budget analysis. Simulated average net recharge to the surficial aquifer system was 3.58 inches per year, compared with the calculated average of 3.39 inches per year from the model-independent water-budget analysis. Groundwater withdrawals from the Floridan aquifer system averaged about 920 million gallons per day, which is equivalent to about 2 inches per year over the model area and slightly more than half of the simulated average net recharge to the surficial aquifer system over the same period. Annual net simulated recharge rates to the surficial aquifer system were less than the total groundwater withdrawals from the Floridan aquifer system only during the below-average rainfall years of 2000 and 2006.

  7. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Tiedeman, Claire; O'Reilly, Andrew M.; Davis, Jeffery B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The east-central Florida transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration, runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into evapotranspiration, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams per liter in the Floridan aquifer system. Potential flow across the interface represented by this chloride concentration is simulated by the General Head Boundary Package. During 1995 through 2006, there were no major groundwater withdrawals near the freshwater and saline-water interface, making the general head boundary a suitable feature to estimate flow through the interface. The east-central Florida transient model was calibrated using the inverse parameter estimation code, PEST. Steady-state models for 1999 and 2003 were developed to estimate hydraulic conductivity (K) using average annual heads and spring flows as observations. The spatial variation of K was represented using zones of constant values in some layers, and pilot points in other layers. Estimated K values were within one order of magnitude of aquifer performance test data. A simulation of the final two years (2005-2006) of the 12-year model, with the K estimates from the steady-state calibration, was used to guide the estimation of specific yield and specific storage values. The final model yielded head and spring-flow residuals that met the calibration criteria for the 12-year transient simulation. The overall mean residual for heads, defining residual as simulated minus measured value, was -0.04 foot. The overall root-mean square residual for heads was less than 3.6 feet for each year in the 1995 to 2006 simulation period. The overall mean residual for spring flows was -0.3 cubic foot per second. The spatial distribution of head residuals was generally random, with some minor indications of bias. Simulated average evapotranspiration (ET) over the 1995 to 2006 period was 34.5 inches per year, compared to the calculated average ET rate of 36.6 inches per year from the model-independent water-budget analysis. Simulated average net recharge to the surficial aquifer system was 3.6 inches per year, compared with the calculated average of 3.2 inches per year from the model-independent waterbudget analysis. Groundwater withdrawals from the Floridan aquifer system averaged about 800 million gallons per day, which is equivalent to about 2 inches per year over the model area and slightly more than half of the simulated average net recharge to the surficial aquifer system over the same period. Annual net simulated recharge rates to the surficial aquifer system were less than the total groundwater withdrawals from the Floridan aquifer system only during the below-average rainfall years of 2000 and 2006.

  8. Intimacy processes and psychological distress among couples coping with head and neck or lung cancers.

    PubMed

    Manne, Sharon; Badr, Hoda

    2010-09-01

    Couples coping with head and neck and lung cancers are at increased risk for psychological and relationship distress given patients' poor prognosis and aggressive and sometimes disfiguring treatments. The relationship intimacy model of couples' psychosocial adaptation proposes that relationship intimacy mediates associations between couples' cancer-related support communication and psychological distress. Because the components of this model have not yet been evaluated in the same study, we examined associations between three types of cancer-related support communication (self-disclosure, perceived partner disclosure, and protective buffering), intimacy (global and cancer-specific), and global distress among patients coping with either head and neck or lung cancer and their partners. One hundred and nine patients undergoing active treatment and their partners whose average time since diagnosis was 15 months completed cross-sectional surveys. For both patients and their partners, multilevel analyses using the actor-partner interdependence model showed that global and cancer-specific intimacy fully mediated associations between self- and perceived partner disclosure and distress; global intimacy partially mediated the association between protective buffering and distress. Evidence for moderated mediation was found; specifically, lower levels of distress were reported as a function of global and cancer-specific intimacy, but these associations were stronger for partners than for patients. Enhancing relationship intimacy by disclosing cancer-related concerns may facilitate both partners' adjustment to these illnesses. (c) 2010 John Wiley & Sons, Ltd.

  9. Intimacy Processes and Psychological Distress among Couples Coping with Head and Neck or Lung Cancers

    PubMed Central

    Manne, Sharon; Badr, Hoda

    2009-01-01

    Objective Couples coping with head and neck and lung cancers are at increased risk for psychological and relationship distress given patients’ poor prognosis and aggressive and sometimes disfiguring treatments. The relationship intimacy model of couples’ psychosocial adaptation proposes that relationship intimacy mediates associations between couples’ cancer-related support communication and psychological distress. Because the components of this model have not yet been evaluated in the same study, we examined associations between three types of cancer-related support communication (self-disclosure, perceived partner disclosure, and protective buffering), intimacy (global and cancer-specific), and global distress among patients coping with either head and neck or lung cancer and their partners. Method One hundred and nine patients undergoing active treatment and their partners whose average time since diagnosis was 15 months completed cross-sectional surveys. Results For both patients and their partners, multilevel analyses using the Actor-Partner Interdependence Model showed that global and cancer-specific intimacy fully mediated associations between self- and perceived partner disclosure and distress; global intimacy partially mediated the association between protective buffering and distress. Evidence for moderated mediation was found; specifically, lower levels of distress were reported as a function of global and cancer-specific intimacy, but these associations were stronger for partners than for patients. Conclusions Enhancing relationship intimacy by disclosing cancer-related concerns may facilitate both partners’ adjustment to these illnesses. PMID:19885852

  10. Performance of Pallet Nails and Staples in 22 Southern Hardwoods

    Treesearch

    E.G. Stern

    1976-01-01

    The effectiveness of pointless, helically threaded, hardened-steel, 3 by O.120-inch, pallet nails with umbrella heads and 21/2-inch, 15-gauge, 7/16-inch crown, plastic-coated, pallet staples in 22 hardwoods grown on southern pine sites was determined on the basis of tests on 522 joints. Specific average performance values were derived from the test data for the tested...

  11. SU-E-J-152: Evaluation of TrueBeam OBI V. 1.5 CBCT Performance in An Adaptive RT Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S; Studenski, M; Giaddui, T

    2014-06-01

    Purpose: To evaluate the image quality and imaging dose of the Varian TrueBeam OBIv.1.5 CBCT system in a clinical adaptive radiation therapy environment, simulated by changing phantom thickness. Methods: Various OBI CBCT protocols(Head, Pelvis, Thorax, Spotlight) were used to acquire images of Catphan504 phantom(nominal phantom thickness and 10 cm additional phantom thickness). The images were analyzed for low contrast detectability(CNR), uniformity(UI), and HU sensitivity. These results were compared to the same image sets for planning CT(pCT)(GE LightSpeed 16- slice). Imaging dose measurements were performed with Gafchromic XRQA2 film for various OBI protocols (Pelvis, Thorax, Spotlight) in a pelvic-sized phantom(nominal thicknessmore » and 4cm additional thickness). Dose measurements were acquired in the interior and at the surface of the phantom. Results: The nominal CNR[additional thickness CNR] for OBI was—Pelvis:1.45[0.81],Thorax:0.86[0.48], Spotlight:0.67[0.39],Head:0.28 [0.10]. The nominal CNR[additional thickness CNR] for pCT was— Pelvis:0.87[0.41],Head:0.60[0.22]. The nominal UI[additional thickness UI] for OBI was—Pelvis:11.5[24.1],Thorax:17.0[20.6], Spotlight:23.2[23.2], Head:15.6[59.9]. The nominal UI[additional thickness UI] for pCT was— Pelvis:9.2[8.6],Head:2.1[2.9]. The HU difference(averaged over all material inserts) between nominal and additional thickness scans for OBI: 8.26HU(Pelvis), 33.39HU(Thorax), 178.98HU(Head), 108.20HU (Spotlight); for pCT: 16.00HU(Pelvis), 19.85HU(Head). Uncertainties in electron density were calculated based on HU values with varying phantom thickness. Average electron-density deviations (ρ(water)=1)for GE-Pelvis, GE-Head, OBI-Pelvis, OBI-Thorax, OBI-Spotlight, and OBI-Head were: 0.0182, 0.0180, 0.0058, 0.0478, 0.2750, and 0.3115, respectively.The average phantom interior dose was(OBI-nominal):2.35cGy(Pelvis), 0.60cGy(Thorax), 1.87cGy(Spotlight); OBI-increased thickness: 1.77cGy(Pelvis), 0.43cGy(Thorax), 1.53cGy (Spotlight). Average surface dose(OBI-nominal): 2.29cGy(Pelvis), 0.56cGy(Thorax), 1.79cGy (Spotlight); OBI-increased thickness: 1.94cGy(Pelvis), 0.48cGy(Thorax), 1.47cGy (Spotlight). Conclusion: The OBI-Pelvis protocol offered comparable CNR and HU constancy to pCT for each geometry; other protocols, particularly Spotlight and Head, exhibited lower HU constancy and CNR. The uniformity of pCT was superior to OBI for all protocols. CNR and UI were degraded for both systems/scan types with increased thickness. The OBI interior dose decreased by approximately 30% with additional thickness. This work was funded, in part, under a grant with the Pennsylvania Department of Health. The Department of Health specifically declaims responsibility for any analyses, interpretations, or conclusions.« less

  12. SAR and temperature distribution in the rat head model exposed to electromagnetic field radiation by 900 MHz dipole antenna.

    PubMed

    Yang, Lei; Hao, Dongmei; Wu, Shuicai; Zhong, Rugang; Zeng, Yanjun

    2013-06-01

    Rats are often used in the electromagnetic field (EMF) exposure experiments. In the study for the effect of 900 MHz EMF exposure on learning and memory in SD rats, the specific absorption rate (SAR) and the temperature rise in the rat head are numerically evaluated. The digital anatomical model of a SD rat is reconstructed with the MRI images. Numerical method as finite difference time domain has been applied to assess the SAR and the temperature rise during the exposure. Measurements and simulations are conducted to characterize the net radiated power of the dipole to provide a precise dosimetric result. The whole-body average SAR and the localized SAR averaging over 1, 0.5 and 0.05 g mass for different organs/tissues are given. It reveals that during the given exposure experiment setup, no significant temperature rise occurs. The reconstructed anatomical rat model could be used in the EMF simulation and the dosimetric result provides useful information for the biological effect studies.

  13. Can imaginary head tilt shorten postrotatory nystagmus?

    PubMed

    Gianna-Poulin, C C; Voelker, C C; Erickson, B; Black, F O

    2001-08-01

    In healthy subjects, head tilt upon cessation of a constant-velocity yaw head rotation shortens the duration of postrotatory nystagmus. The presumed mechanism for this effect is that the velocity storage of horizontal semicircular canal inputs is being discharged by otolith organ inputs which signal a constant yaw head position when the head longitudinal axis is no longer earth-vertical. In the present study, normal subjects were rotated head upright in the dark on a vertical-axis rotational chair at 60 degrees/s for 75 s and were required to perform a specific task as soon as the chair stopped. Horizontal position of the right eye was recorded with an infra-red video camera. The average eye velocity (AEV) was measured over a 30-s interval following chair acceleration/deceleration. The ratios (postrotatory AEV/perrotatory AEV) were 1.1 (SD 0.112) when subjects (N=10) kept their head erect, 0.414 (SD 0.083) when subjects tilted their head forward, 1.003 (SD 0.108) when subjects imagined watching a TV show, 1.012 (SD 0.074) when subjects imagined looking at a painting on a wall, and 0.995 (SD 0.074) when subjects imagined floating in a prone position on a lake. Thus, while actual head tilt reduced postrotatory nystagmus, the imagination tasks did not have a statistically significant effect on postrotatory nystagmus. Therefore, velocity storage does not appear to be under the influence of cortical neural signals when subjects imagine that they are floating in a prone orientation.

  14. Comprehensive Population-Averaged Arterial Input Function for Dynamic Contrast–Enhanced vMagnetic Resonance Imaging of Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onxley, Jennifer D.; Yoo, David S.; Muradyan, Naira

    2014-07-01

    Purpose: To generate a population-averaged arterial input function (PA-AIF) for quantitative analysis of dynamic contrast-enhanced MRI data in head and neck cancer patients. Methods and Materials: Twenty patients underwent dynamic contrast-enhanced MRI during concurrent chemoradiation therapy. Imaging consisted of 2 baseline scans 1 week apart (B1/B2) and 1 scan after 1 week of chemoradiation therapy (Wk1). Regions of interest (ROIs) in the right and left carotid arteries were drawn on coronal images. Plasma concentration curves of all ROIs were averaged and fit to a biexponential decay function to obtain the final PA-AIF (AvgAll). Right-sided and left-sided ROI plasma concentration curves were averagedmore » separately to obtain side-specific AIFs (AvgRight/AvgLeft). Regions of interest were divided by time point to obtain time-point-specific AIFs (AvgB1/AvgB2/AvgWk1). The vascular transfer constant (K{sub trans}) and the fractional extravascular, extracellular space volume (V{sub e}) for primaries and nodes were calculated using the AvgAll AIF, the appropriate side-specific AIF, and the appropriate time-point-specific AIF. Median K{sub trans} and V{sub e} values derived from AvgAll were compared with those obtained from the side-specific and time-point-specific AIFs. The effect of using individual AIFs was also investigated. Results: The plasma parameters for AvgAll were a{sub 1,2} = 27.11/17.65 kg/L, m{sub 1,2} = 11.75/0.21 min{sup −1}. The coefficients of repeatability (CRs) for AvgAll versus AvgLeft were 0.04 min{sup −1} for K{sub trans} and 0.02 for V{sub e}. For AvgAll versus AvgRight, the CRs were 0.08 min{sup −1} for K{sub trans} and 0.02 for V{sub e}. When AvgAll was compared with AvgB1/AvgB2/AvgWk1, the CRs were slightly higher: 0.32/0.19/0.78 min{sup −1}, respectively, for K{sub trans}; and 0.07/0.08/0.09 for V{sub e}. Use of a PA-AIF was not significantly different from use of individual AIFs. Conclusion: A PA-AIF for head and neck cancer was generated that accounts for differences in right carotid artery versus left carotid artery, day-to-day fluctuations, and early treatment-induced changes. The small CRs obtained for K{sub trans} and V{sub e} indicate that side-specific AIFs are not necessary. However, a time-point-specific AIF may improve pharmacokinetic accuracy.« less

  15. Validation and calibration of HeadCount, a self-report measure for quantifying heading exposure in soccer players.

    PubMed

    Catenaccio, E; Caccese, J; Wakschlag, N; Fleysher, R; Kim, N; Kim, M; Buckley, T A; Stewart, W F; Lipton, R B; Kaminski, T; Lipton, M L

    2016-01-01

    The long-term effects of repetitive head impacts due to heading are an area of increasing concern, and exposure must be accurately measured; however, the validity of self-report of cumulative soccer heading is not known. In order to validate HeadCount, a 2-week recall questionnaire, the number of player-reported headers was compared to the number of headers observed by trained raters for a men's and a women's collegiate soccer teams during an entire season of competitive play using Spearman's correlations and intraclass correlation coefficients (ICCs), and calibrated using a generalized estimating equation. The average Spearman's rho was 0.85 for men and 0.79 for women. The average ICC was 0.75 in men and 0.38 in women. The calibration analysis demonstrated that men tend to report heading accurately while women tend to overestimate. HeadCount is a valid instrument for tracking heading behaviour, but may have to be calibrated in women.

  16. Spectral-spatial classification using tensor modeling for cancer detection with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2014-03-01

    As an emerging technology, hyperspectral imaging (HSI) combines both the chemical specificity of spectroscopy and the spatial resolution of imaging, which may provide a non-invasive tool for cancer detection and diagnosis. Early detection of malignant lesions could improve both survival and quality of life of cancer patients. In this paper, we introduce a tensor-based computation and modeling framework for the analysis of hyperspectral images to detect head and neck cancer. The proposed classification method can distinguish between malignant tissue and healthy tissue with an average sensitivity of 96.97% and an average specificity of 91.42% in tumor-bearing mice. The hyperspectral imaging and classification technology has been demonstrated in animal models and can have many potential applications in cancer research and management.

  17. Necrosis of the femoral head after kidney transplantation.

    PubMed

    Lausten, G S; Lemser, T; Jensen, P K; Egfjord, M

    1998-12-01

    We reviewed the medical records of 750 patients (445 men, 305 women), who had received a kidney transplant during the period 1968-1995, for any sign of necrosis of the femoral head. For post-operative immunosuppression, 374 patients had received high-dose corticosteroids (average 12.5 g during the first year post-operatively), while 376 patients had received low-dose corticosteroids (average 6.5 g during the first year post-operatively) and cyclosporin A. Survival curves according to Kaplan and Meier (J Am Stat Ass 1958: 53: 457-481) were constructed. In the high-dose steroid group, 42/374 patients (11.2%) developed femoral head necrosis, at an average of 26.2 months post-transplantation. In the low-dose steroid group, only 19/376 (5.1%) patients developed this complication, at an average of 20.5 months post-transplantation. This difference in numbers of femoral head necroses was highly significant (p < 0.005). We conclude that steroid doses should be minimized whenever feasible in post-transplant immunosuppression therapy.

  18. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Wainwright, P. R.

    2007-07-01

    This paper reports calculations of the temperature rises induced in the eye and lens by near-field exposure to radiation from communication handsets, using the finite difference time domain method and classical bioheat equation. Various models are compared, including the analytic solution for a sphere, a finite element model of an isolated eye and a modern model of the whole head. The role of the blood supply to the choroid in moderating temperature is discussed. Three different frequencies are considered, namely 380 MHz (used by TETRA), and 900 and 1800 MHz (used by GSM mobile phones). At 380 MHz, monopole and helical antennas are compared. An 'equivalent blood flow' is derived for the choroid in order to facilitate comparison of the whole head and isolated eye models. In the whole head model, the heating of the lens receives a significant contribution from energy absorbed outside the eye. The temperature rise in the lens is compared to the ICNIRP-recommended average specific energy absorption rate (SAR) and the SAR averaged over the eye alone. The temperature rise may reach 1.4 °C at the ICNIRP occupational exposure limit if an antenna is placed less than 24 mm from the eye and the exposure is sufficiently prolonged.

  19. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz.

    PubMed

    Wainwright, P R

    2007-06-21

    This paper reports calculations of the temperature rises induced in the eye and lens by near-field exposure to radiation from communication handsets, using the finite difference time domain method and classical bioheat equation. Various models are compared, including the analytic solution for a sphere, a finite element model of an isolated eye and a modern model of the whole head. The role of the blood supply to the choroid in moderating temperature is discussed. Three different frequencies are considered, namely 380 MHz (used by TETRA), and 900 and 1800 MHz (used by GSM mobile phones). At 380 MHz, monopole and helical antennas are compared. An 'equivalent blood flow' is derived for the choroid in order to facilitate comparison of the whole head and isolated eye models. In the whole head model, the heating of the lens receives a significant contribution from energy absorbed outside the eye. The temperature rise in the lens is compared to the ICNIRP-recommended average specific energy absorption rate (SAR) and the SAR averaged over the eye alone. The temperature rise may reach 1.4 degrees C at the ICNIRP occupational exposure limit if an antenna is placed less than 24 mm from the eye and the exposure is sufficiently prolonged.

  20. Comparisons of peak SAR levels in concentric sphere head models of children and adults for irradiation by a dipole at 900 MHz

    NASA Astrophysics Data System (ADS)

    Anderson, Vitas

    2003-10-01

    The aim of this study is to examine the scale and significance of differences in peak specific energy absorption rate (SAR) in the brains of children and adults exposed to radiofrequency emissions from mobile phones. Estimates were obtained by method of multipole analysis of a three layered (scalp/cranium/brain) spherical head exposed to a nearby 0.4lgr dipole at 900 MHz. A literature review of head parameters that influence SAR induction revealed strong indirect evidence based on total body water content that there are no substantive age-related changes in tissue conductivity after the first year of life. However, it was also found that the thickness of the ear, scalp and cranium do decrease on average with decreasing age, though individual variability within any age group is very high. The model analyses revealed that compared to an average adult, the peak brain 10 g averaged SAR in mean 4, 8, 12 and 16 year olds (yo) is increased by a factor of 1.31, 1.23, 1.15 and 1.07, respectively. However, contrary to the expectations of a recent prominent expert review, the UK Stewart Report, the relatively small scale of these increases does not warrant any special precautionary measures for child mobile phone users since: (a) SAR testing protocols as contained in the CENELEC (2001) standard provide an additional safety margin which ensures that allowable localized SAR limits are not exceeded in the brain; (b) the maximum worst case brain temperature rise (~0.13 to 0.14 °C for an average 4 yo) in child users of mobile phones is well within safe levels and normal physiological parameters; and (c) the range of age average increases in children is less than the expected range of variation seen within the adult population.

  1. Comparison of surface characteristics of retrieved cobalt-chromium femoral heads with and without ion implantation.

    PubMed

    McGrory, Brian J; Ruterbories, James M; Pawar, Vivek D; Thomas, Reginald K; Salehi, Abraham B

    2012-01-01

    Nitrogen ion implantation of CoCr is reported to produce increased surface hardness and a lower friction surface. Femoral heads with and without ion implantation retrieved from 1997 to 2003 were evaluated for surface roughness (average surface roughness [Ra], mean peak height [Rpm], and maximum distance from peak to valley [Rmax]), nanohardness, and the ion-treated layer thickness. The difference in average Rmax (P = .033) and average Rpm (P = .008) was statistically significant, but there was no correlation between the average or maximum roughness parameters (average surface roughness, Rmax, and Rpm) and time in vivo (P > .05). Overall, nanohardness was greater for the low-friction ion-treated heads (P < .001); and it decreased with increasing time in vivo (P = .01). Ion treatment produces an increased surface hardness, but the advantage of this increased hardness appears to dissipate over time in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Modulation of head movement control in humans during treadmill walking

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Verstraete, Mary C.; Bloomberg, Jacob J.

    2002-01-01

    The purpose of this study was to investigate the coordination of the head relative to the trunk within a gait cycle during gaze fixation. Nine normal subjects walked on a motorized treadmill driven at 1.79 m/s (20 s trials) while fixing their gaze on a centrally located earth-fixed target positioned at a distance of 2 m from their eyes. The net and relative angular motions of the head about the three axes of rotations, as well as the corresponding values for the moments acting on it relative to the trunk during the gait cycle were quantified and used as measures of coordination. The average net moment, as well as the average moments about the different axes were significantly different (P<0.01) between the high impact and low/no impact phases of the gait cycle. However, the average net angular displacement as well as the average angular displacement about the axial rotation axis of the head relative to the trunk was maintained uniform (P>0.01) throughout the gait cycle. The average angular displacement about the lateral bending axis was significantly increased (P<0.01) during the high impact phase while that about the flexion-extension axis was significantly decreased (P<0.01) throughout the gait cycle. Thus, the coordination of the motion of the head relative to the trunk during walking is dynamically modulated depending on the behavioral events occurring in the gait cycle. This modulation may serve to aid stabilization of the head by counteracting the force variations acting on the upper body that may aid in the visual fixation of targets during walking.

  3. Analysis of the variation in OCT measurements of a structural bottle neck for eye-brain transfer of visual information from 3D-volumes of the optic nerve head, PIMD-Average [02π

    NASA Astrophysics Data System (ADS)

    Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla

    2016-03-01

    The present study aimed to analyze the clinical usefulness of the thinnest cross section of the nerve fibers in the optic nerve head averaged over the circumference of the optic nerve head. 3D volumes of the optic nerve head of the same eye was captured at two different visits spaced in time by 1-4 weeks, in 13 subjects diagnosed with early to moderate glaucoma. At each visit 3 volumes containing the optic nerve head were captured independently with a Topcon OCT- 2000 system. In each volume, the average shortest distance between the inner surface of the retina and the central limit of the pigment epithelium around the optic nerve head circumference, PIMD-Average [02π], was determined semiautomatically. The measurements were analyzed with an analysis of variance for estimation of the variance components for subjects, visits, volumes and semi-automatic measurements of PIMD-Average [0;2π]. It was found that the variance for subjects was on the order of five times the variance for visits, and the variance for visits was on the order of 5 times higher than the variance for volumes. The variance for semi-automatic measurements of PIMD-Average [02π] was 3 orders of magnitude lower than the variance for volumes. A 95 % confidence interval for mean PIMD-Average [02π] was estimated to 1.00 +/-0.13 mm (D.f. = 12). The variance estimates indicate that PIMD-Average [02π] is not suitable for comparison between a onetime estimate in a subject and a population reference interval. Cross-sectional independent group comparisons of PIMD-Average [02π] averaged over subjects will require inconveniently large sample sizes. However, cross-sectional independent group comparison of averages of within subject difference between baseline and follow-up can be made with reasonable sample sizes. Assuming a loss rate of 0.1 PIMD-Average [02π] per year and 4 visits per year it was found that approximately 18 months follow up is required before a significant change of PIMDAverage [02π] can be observed with a power of 0.8. This is shorter than what has been observed both for HRT measurements and automated perimetry measurements with a similar observation rate. It is concluded that PIMDAverage [02π] has the potential to detect deterioration of glaucoma quicker than currently available primary diagnostic instruments. To increase the efficiency of PIMD-Average [02π] further, the variation among visits within subject has to be reduced.

  4. Design and dosimetric analysis of a 385 MHz TETRA head exposure system for use in human provocation studies.

    PubMed

    Schmid, Gernot; Bolz, Thomas; Uberbacher, Richard; Escorihuela-Navarro, Ana; Bahr, Achim; Dorn, Hans; Sauter, Cornelia; Eggert, Torsten; Danker-Hopfe, Heidi

    2012-10-01

    A new head exposure system for double-blind provocation studies investigating possible effects of terrestrial trunked radio (TETRA)-like exposure (385 MHz) on central nervous processes was developed and dosimetrically analyzed. The exposure system allows localized exposure in the temporal brain, similar to the case of operating a TETRA handset at the ear. The system and antenna concept enables exposure during wake and sleep states while an electroencephalogram (EEG) is recorded. The dosimetric assessment and uncertainty analysis yield high efficiency of 14 W/kg per Watt of accepted antenna input power due to an optimized antenna directly worn on the subject's head. Beside sham exposure, high and low exposure at 6 and 1.5 W/kg (in terms of maxSAR10g in the head) were implemented. Double-blind control and monitoring of exposure is enabled by easy-to-use control software. Exposure uncertainty was rigorously evaluated using finite-difference time-domain (FDTD)-based computations, taking into account anatomical differences of the head, the physiological range of the dielectric tissue properties including effects of sweating on the antenna, possible influences of the EEG electrodes and cables, variations in antenna input reflection coefficients, and effects on the specific absorption rate (SAR) distribution due to unavoidable small variations in the antenna position. This analysis yielded a reasonable uncertainty of <±45% (max to min ratio of 4.2 dB) in terms of maxSAR10g in the head and a variability of <±60% (max to min ratio of 6 dB) in terms of mass-averaged SAR in different brain regions, as demonstrated by a brain region-specific absorption analysis. Copyright © 2012 Wiley Periodicals, Inc.

  5. Deliberately Light Interpersonal Contact Affects the Control of Head Stability During Walking in Children and Adolescents With Cerebral Palsy.

    PubMed

    Schulleri, Katrin Hanna; Burfeind, Frauke; Höß-Zenker, Beate; Feketené Szabó, Éva; Herzig, Nadine; Ledebt, Annick; Johannsen, Leif

    2017-09-01

    To evaluate the potential of deliberately light interpersonal touch (IPT) for reducing excessive head and trunk sway during self-paced walking in children and adolescents with cerebral palsy (CP). Quasi-experimental, proof-of-concept study with between-groups comparison. Ambulant care facility, community center. Children and adolescents (N=65), consisting of those with CP (spastic and ataxic, n=26; Gross Motor Function Classification System I-III; mean age, 9.8y; 11 girls, 15 boys) and those who were typically developed (TD, n=39; mean age, 10.0y; 23 girls, 16 boys). IPT applied by a therapist to locations at the back and the head. As primary outcomes, head and trunk sway during self-paced walking were assessed by inertial measurement units. Secondary outcomes were average step length and gait speed. CP group: apex and occiput IPT reduced head velocity sway compared with thoracic IPT (both P=.04) irrespective of individuals' specific clinical symptoms. TD group: all testing conditions reduced head velocity sway compared with walking alone (all P≤.03), as well as in apex and occiput IPT compared with paired walking (both P≤.02). Deliberately light IPT at the apex of the head alters control of head sway in children and adolescents with CP. The effect of IPT varies as a function of contact location and acts differently in TD individuals. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. An automatic markerless registration method for neurosurgical robotics based on an optical camera.

    PubMed

    Meng, Fanle; Zhai, Fangwen; Zeng, Bowei; Ding, Hui; Wang, Guangzhi

    2018-02-01

    Current markerless registration methods for neurosurgical robotics use the facial surface to match the robot space with the image space, and acquisition of the facial surface usually requires manual interaction and constrains the patient to a supine position. To overcome these drawbacks, we propose a registration method that is automatic and does not constrain patient position. An optical camera attached to the robot end effector captures images around the patient's head from multiple views. Then, high coverage of the head surface is reconstructed from the images through multi-view stereo vision. Since the acquired head surface point cloud contains color information, a specific mark that is manually drawn on the patient's head prior to the capture procedure can be extracted to automatically accomplish coarse registration rather than using facial anatomic landmarks. Then, fine registration is achieved by registering the high coverage of the head surface without relying solely on the facial region, thus eliminating patient position constraints. The head surface was acquired by the camera with a good repeatability accuracy. The average target registration error of 8 different patient positions measured with targets inside a head phantom was [Formula: see text], while the mean surface registration error was [Formula: see text]. The method proposed in this paper achieves automatic markerless registration in multiple patient positions and guarantees registration accuracy inside the head. This method provides a new approach for establishing the spatial relationship between the image space and the robot space.

  7. The cam impinging femur has multiple morphologic abnormalities.

    PubMed

    Ellis, Andrew R; Noble, Philip C; Schroder, Steven J; Thompson, Matthew T; Stocks, Gregory W

    2011-09-01

    This study was performed to establish whether the "cam" impinging femur has a single deformity of the head-neck junction or multiple abnormalities. Average dimensions (anteversion angle, α angle of Notzli, β angle of Beaulé, normalized anterior head offset) were compared between normal and impinging femora. The results demonstrated that impinging femora had wider necks, larger heads, and decreased head-neck ratios. There was no difference in neck-shaft angle or anteversion angle. Forty-six percent of impinging femora had significant posterior head displacement (>2mm), which averaged 1.93 mm for the cam impinging group, and 0.78 mm for the normal group. In conclusion, surgical treatment limited to localized recontouring of the head-neck profile may fail to address significant components of the underlying abnormality. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Evaluation of Head Orientation and Neck Muscle EMG Signals as Command Inputs to a Human-Computer Interface for Individuals with High Tetraplegia

    PubMed Central

    Williams, Matthew R.; Kirsch, Robert F.

    2013-01-01

    We investigated the performance of three user interfaces for restoration of cursor control in individuals with tetraplegia: head orientation, EMG from face and neck muscles, and a standard computer mouse (for comparison). Subjects engaged in a 2D, center-out, Fitts’ Law style task and performance was evaluated using several measures. Overall, head orientation commanded motion resembled mouse commanded cursor motion (smooth, accurate movements to all targets), although with somewhat lower performance. EMG commanded movements exhibited a higher average speed, but other performance measures were lower, particularly for diagonal targets. Compared to head orientation, EMG as a cursor command source was less accurate, was more affected by target direction and was more prone to overshoot the target. In particular, EMG commands for diagonal targets were more sequential, moving first in one direction and then the other rather than moving simultaneous in the two directions. While the relative performance of each user interface differs, each has specific advantages depending on the application. PMID:18990652

  9. 9 CFR 54.6 - Amount of indemnity payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... weighted average Choice/Prime slaughter lamb price per pound at Greeley, CO; (2) The weekly weighted... commercial western ewe lamb replacement price per head; (4) The monthly weighted average commercial western... ewe lambs under 1 year of age, the indemnity shall equal the per-head price from paragraph (a)(3) of...

  10. Superpixel-based spectral classification for the detection of head and neck cancer with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chung, Hyunkoo; Lu, Guolan; Tian, Zhiqiang; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2016-03-01

    Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications. HSI acquires two dimensional images at various wavelengths. The combination of both spectral and spatial information provides quantitative information for cancer detection and diagnosis. This paper proposes using superpixels, principal component analysis (PCA), and support vector machine (SVM) to distinguish regions of tumor from healthy tissue. The classification method uses 2 principal components decomposed from hyperspectral images and obtains an average sensitivity of 93% and an average specificity of 85% for 11 mice. The hyperspectral imaging technology and classification method can have various applications in cancer research and management.

  11. Evaluation of an attenuation correction method for PET/MR imaging of the head based on substitute CT images.

    PubMed

    Larsson, Anne; Johansson, Adam; Axelsson, Jan; Nyholm, Tufve; Asklund, Thomas; Riklund, Katrine; Karlsson, Mikael

    2013-02-01

    The aim of this study was to evaluate MR-based attenuation correction of PET emission data of the head, based on a previously described technique that calculates substitute CT (sCT) images from a set of MR images. Images from eight patients, examined with (18)F-FLT PET/CT and MRI, were included. sCT images were calculated and co-registered to the corresponding CT images, and transferred to the PET/CT scanner for reconstruction. The new reconstructions were then compared with the originals. The effect of replacing bone with soft tissue in the sCT-images was also evaluated. The average relative difference between the sCT-corrected PET images and the CT-corrected PET images was 1.6% for the head and 1.9% for the brain. The average standard deviations of the relative differences within the head were relatively high, at 13.2%, primarily because of large differences in the nasal septa region. For the brain, the average standard deviation was lower, 4.1%. The global average difference in the head when replacing bone with soft tissue was 11%. The method presented here has a high rate of accuracy, but high-precision quantitative imaging of the nasal septa region is not possible at the moment.

  12. [Seasonal distribution of clinical case codes (DOC study)].

    PubMed

    von Dercks, N; Melz, R; Hepp, P; Theopold, J; Marquass, B; Josten, C

    2017-02-01

    The German diagnosis-related groups remuneration system (G-DRG) was implemented in 2004 and patient-related diagnoses and procedures lead to allocation to specific DRGs. This system includes several codes, such as case mix (CM), case mix index (CMI) and number of cases. Seasonal distribution of these codes as well as distribution of diagnoses and DRGs may lead to logistical consequences for clinical management. From 2004 to 2013 all the main diagnoses and DRGs for inpatients were recorded. Monthly and seasonal distributions were analyzed using ANOVA. The average monthly number of cases was 265 ± 25 cases, the average CM was 388.50 ± 51.75 and the average CMI was 1.46 ± 0.15 with no significant seasonal differences (p > 0.1). Concussion was the most frequently occurring main diagnosis (3739 cases) followed by fractures of the humeral head (699). Significant distribution differences could be shown for humeral head fractures in monthly (p = 0.018) and seasonal comparisons (p = 0.006) with a maximum in winter. Radius (p = 0.01) and ankle fractures (p ≤ 0.001) also occurred most frequently in winter. Non-bony lesions of the shoulder were significantly less in spring (p = 0.04). The DRGs showed no evidence of a monthly or seasonal clustering (p > 0.1). The significant clustering of injuries in specific months and seasons should lead to logistic consequences (e.g. operating room slots, availability of nursing and anesthesia staff). For a needs assessment the analysis of main diagnoses is more appropriate than DRGs.

  13. On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets.

    PubMed

    Jadischke, Ron; Viano, David C; Dau, Nathan; King, Albert I; McCarthy, Joe

    2013-09-03

    On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effect of neck flexor muscle activation on impact velocity of the head during backward falls in young adults.

    PubMed

    Choi, W J; Robinovitch, S N; Ross, S A; Phan, J; Cipriani, D

    2017-11-01

    Falls are a common cause of traumatic brain injuries (TBI) across the lifespan. A proposed but untested hypothesis is that neck muscle activation influences impact severity and risk for TBI during a fall. We conducted backward falling experiments to test whether activation of the neck flexor muscles facilitates the avoidance of head impact, and reduces impact velocity if the head contacts the ground. Young adults (n=8) fell from standing onto a 30cm thick gymnastics mat while wearing a helmet. Participants were instructed to fall backward and (a) prevent their head from impacting the mat ("no head impact" trials); (b) allow their head to impact the mat, but with minimal impact severity ("soft impact" trials); and (c) allow their head to impact the mat, while inhibiting efforts to reduce impact severity ("hard impact" trials). Trial type associated with peak magnitude of electromyographic activity of the sternocleidomastoid (SCM) muscles (p<0.017), and with the vertical and horizontal velocity of the head at impact (p<0.001). Peak SCM activations, expressed as percent maximal voluntary isometric contraction (%MVIC), averaged 75.3, 67.5, and 44.5%MVIC in "no head impact", "soft impact", and "hard impact" trials, respectively. When compared to "soft impact" trials, vertical impact velocities in "hard impact" trials averaged 87% greater (3.23 versus 1.73m/s) and horizontal velocities averaged 83% greater (2.74 versus 1.50m/s). For every 10% increase in SCM %MVIC, vertical impact velocity decreased 0.24m/s and horizontal velocity decreased 0.22m/s. We conclude that SCM activation contributes to the prevention and modulation of head impact severity during backward falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Site-specific range uncertainties caused by dose calculation algorithms for proton therapy

    NASA Astrophysics Data System (ADS)

    Schuemann, J.; Dowdell, S.; Grassberger, C.; Min, C. H.; Paganetti, H.

    2014-08-01

    The purpose of this study was to assess the possibility of introducing site-specific range margins to replace current generic margins in proton therapy. Further, the goal was to study the potential of reducing margins with current analytical dose calculations methods. For this purpose we investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict the range of proton fields. Dose distributions predicted by an analytical pencil-beam algorithm were compared with those obtained using Monte Carlo (MC) simulations (TOPAS). A total of 508 passively scattered treatment fields were analyzed for seven disease sites (liver, prostate, breast, medulloblastoma-spine, medulloblastoma-whole brain, lung and head and neck). Voxel-by-voxel comparisons were performed on two-dimensional distal dose surfaces calculated by pencil-beam and MC algorithms to obtain the average range differences and root mean square deviation for each field for the distal position of the 90% dose level (R90) and the 50% dose level (R50). The average dose degradation of the distal falloff region, defined as the distance between the distal position of the 80% and 20% dose levels (R80-R20), was also analyzed. All ranges were calculated in water-equivalent distances. Considering total range uncertainties and uncertainties from dose calculation alone, we were able to deduce site-specific estimations. For liver, prostate and whole brain fields our results demonstrate that a reduction of currently used uncertainty margins is feasible even without introducing MC dose calculations. We recommend range margins of 2.8% + 1.2 mm for liver and prostate treatments and 3.1% + 1.2 mm for whole brain treatments, respectively. On the other hand, current margins seem to be insufficient for some breast, lung and head and neck patients, at least if used generically. If no case specific adjustments are applied, a generic margin of 6.3% + 1.2 mm would be needed for breast, lung and head and neck treatments. We conclude that the currently used generic range uncertainty margins in proton therapy should be redefined site specific and that complex geometries may require a field specific adjustment. Routine verifications of treatment plans using MC simulations are recommended for patients with heterogeneous geometries.

  16. Temporal scaling of hydraulic head and river base flow and its implication for groundwater recharge

    USGS Publications Warehouse

    Zhang, You‐Kuan; Schilling, Keith

    2004-01-01

    Spectral analyses were conducted for hourly hydraulic head (h) data observed over a 4‐year period at seven monitoring wells in the Walnut Creek watershed, Iowa. The log power spectral density of the hydraulic head fluctuations versus log frequency (f) at all seven wells is shown to have a distinct slope or fractal dimension (D), indicating temporal scaling in the time series of water level fluctuations. The fractal dimension of the time series varies from well to well, and the spectrum for the average h over all seven wells has a fractal dimension of 1.46 and Hurst coefficient of 0.54. The log power spectral density of estimated base flow in the Walnut Creek and four other watersheds versus log f is shown to have two distinct slopes with a break in scaling at about 30 days. It is shown that the groundwater recharge process in a basin can be estimated from a head spectrum based on existing theoretical results. Hydraulic head in an aquifer may fluctuate as a fractal in time in response to either a white noise or fractal recharge process, depending on physical parameters (i.e., transmissivity and specific yield) of the aquifer. The recharge process at the Walnut Creek watershed is shown to have a white noise spectrum based on the observed head spectrum.

  17. Multi-atlas-based segmentation of the parotid glands of MR images in patients following head-and-neck cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Cheng, Guanghui; Yang, Xiaofeng; Wu, Ning; Xu, Zhijian; Zhao, Hongfu; Wang, Yuefeng; Liu, Tian

    2013-02-01

    Xerostomia (dry mouth), resulting from radiation damage to the parotid glands, is one of the most common and distressing side effects of head-and-neck cancer radiotherapy. Recent MRI studies have demonstrated that the volume reduction of parotid glands is an important indicator for radiation damage and xerostomia. In the clinic, parotid-volume evaluation is exclusively based on physicians' manual contours. However, manual contouring is time-consuming and prone to inter-observer and intra-observer variability. Here, we report a fully automated multi-atlas-based registration method for parotid-gland delineation in 3D head-and-neck MR images. The multi-atlas segmentation utilizes a hybrid deformable image registration to map the target subject to multiple patients' images, applies the transformation to the corresponding segmented parotid glands, and subsequently uses the multiple patient-specific pairs (head-and-neck MR image and transformed parotid-gland mask) to train support vector machine (SVM) to reach consensus to segment the parotid gland of the target subject. This segmentation algorithm was tested with head-and-neck MRIs of 5 patients following radiotherapy for the nasopharyngeal cancer. The average parotid-gland volume overlapped 85% between the automatic segmentations and the physicians' manual contours. In conclusion, we have demonstrated the feasibility of an automatic multi-atlas based segmentation algorithm to segment parotid glands in head-and-neck MR images.

  18. EEG electrode caps can reduce SAR induced in the head by GSM900 mobile phones.

    PubMed

    Hamblin, Denise L; Anderson, Vitas; McIntosh, Robert L; McKenzie, Ray J; Wood, Andrew W; Iskra, Steve; Croft, Rodney J

    2007-05-01

    This paper investigates the influence of EEG electrode caps on specific absorption rate (SAR) in the head from a GSM900 mobile phone (217-Hz modulation, peak power output 2 W). SAR measurements were recorded in an anthropomorphic phantom using a precision robotic system. Peak 10 g average SAR in the whole head and in just the temporal region was compared for three phantom arrangements; no cap, 64-electrode "Electro-Cap," and 64-electrode "Quick-Cap". Relative to the "no cap" arrangement, the Electro-Cap and Quick-Cap caused a peak SAR (10 g) reduction of 14% and 18% respectively in both the whole head and in the temporal region. Additional computational modeling confirmed that SAR (10 g) is reduced by the presence of electrode leads and that the extent of the effect varies according to the orientation of the leads with respect to the radiofrequency (RF) source. The modeling also indicated that the nonconductive shell between the electrodes and simulated head material does not significantly alter the electrode lead shielding effect. The observed SAR reductions are not likely to be sufficiently large to have accounted for null EEG findings in the past but should nonetheless be noted in studies aiming to measure and report human brain activity under similar exposure conditions.

  19. Large scale study on the variation of RF energy absorption in the head & brain regions of adults and children and evaluation of the SAM phantom conservativeness.

    PubMed

    Keshvari, J; Kivento, M; Christ, A; Bit-Babik, G

    2016-04-21

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.

  20. Large scale study on the variation of RF energy absorption in the head & brain regions of adults and children and evaluation of the SAM phantom conservativeness

    NASA Astrophysics Data System (ADS)

    Keshvari, J.; Kivento, M.; Christ, A.; Bit-Babik, G.

    2016-04-01

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.

  1. Treatment of osteonecrosis of the femoral head by free vascularized fibular grafting: an analysis of surgical outcome and patient health status

    PubMed Central

    Louie, Brian E.; McKee, Michael D.; Richards, Robin R.; Mahoney, James L.; Waddell, James P.; Beaton, Dorcas E.; Schemitsch, Emil H.; Yoo, Daniel J.

    1999-01-01

    Objective To evaluate the limb-specific outcome and general health status of patients with osteonecrosis of the femoral head treated with vascularized fibular grafting. Design A retrospective review. Setting A single tertiary care centre. Patients Fifty-five consecutive patients with osteonecrosis of the femoral head who underwent fibular grafting (8 bilaterally). Intervention Vascularized fibular grafting. Outcome measures Limb-specific scores (Harris Hip Score, St. Michael’s Hospital Hip Score), general health status (Nottingham Health Profile, SF-36 health status survey) and radiographic outcome measures (Steinberg stage). Results Patients were young (mean age 34 years, range from 18 to 52 years) and 80% had advanced osteonecrosis (Steinberg stages IV and V). Fifty-nine hips were followed up for an average of 50 months (range from 24 to 117 months) after vascularized fibular grafting. Sixteen hips (27%) were converted to total hip arthroplasty (THA). To date, 73% of hips treated with vascularized fibular grafting have required no further surgery. Preoperative and postoperative Harris Hip Scores were 57.3 and 83.6 respectively (p < 0.001). As measured by patient-oriented health status questionnaires (SF-36, Nottingham Health Profile) and compared with population controls, patients had normal mental health scores and only slight decreases in physical component scores. Conclusions Free vascularized fibular grafting for osteonecrosis of the femoral head provides satisfactory pain relief, functional improvement and general health status and halts the progression of symptomatic disease. PMID:10459327

  2. Development and numerical analysis of low specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  3. An 8/15-channel Tx/Rx head neck RF coil combination with region-specific B1 + shimming for whole-brain MRI focused on the cerebellum at 7T.

    PubMed

    Pfaffenrot, Viktor; Brunheim, Sascha; Rietsch, Stefan H G; Koopmans, Peter J; Ernst, Thomas M; Kraff, Oliver; Orzada, Stephan; Quick, Harald H

    2018-02-09

    To design and evaluate an 8/15-channel transmit/receive (Tx/Rx) head-neck RF coil combination with region-specific B1+ shimming for whole-brain MRI with focus on improved functional MRI of the cerebellum at 7 T. An 8-channel transceiver RF head coil was combined with a 7-channel receive-only array. The noise parameters and acceleration capabilities of this 8Tx/15Rx coil setup were compared with a commercially available 1Tx/32Rx RF head coil. Region-specific 8-channel B1+ shimming was applied when using the 8Tx/15Rx RF coil. To evaluate the capability for functional MRI of the cerebellum, temporal SNR and statistical nonparametric maps for finger-tapping experiments with 14 healthy subjects were derived by applying a variable slice thickness gradient-echo echo-planar functional MRI sequence. The 8Tx/15Rx setup had a lower maximum noise correlation between channels, but higher average correlations compared with the 1Tx/32Rx coil. Both RF coils exhibited identical g-factors in the cerebellum with R = 3 acceleration. The enlarged FOV of the 8Tx/15Rx coil in combination with region-specific B1+ shimming increased homogeneity of the transmission field and temporal SNR in caudal cerebellar regions. Temporal SNR losses in cranial parts were reduced, resulting in more highly significant voxels in the caudally activated areas and identical patterns in the cranial cerebellar parts during a finger-tapping task. Compared with the 1Tx/32Rx RF coil, the presented 8Tx/15Rx RF coil combination successfully improves functional MRI of the human cerebellum at 7 T while maintaining whole-brain coverage. A clear temporal SNR gain in caudal cerebellar regions is shown. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.

    PubMed

    Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P

    2014-01-15

    Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available. Copyright © 2013. Published by Elsevier Inc.

  5. Head impact exposure measured in a single youth football team during practice drills.

    PubMed

    Kelley, Mireille E; Kane, Joeline M; Espeland, Mark A; Miller, Logan E; Powers, Alexander K; Stitzel, Joel D; Urban, Jillian E

    2017-11-01

    OBJECTIVE This study evaluated the frequency, magnitude, and location of head impacts in practice drills within a youth football team to determine how head impact exposure varies among different types of drills. METHODS On-field head impact data were collected from athletes participating in a youth football team for a single season. Each athlete wore a helmet instrumented with a Head Impact Telemetry (HIT) System head acceleration measurement device during all preseason, regular season, and playoff practices. Video was recorded for all practices, and video analysis was performed to verify head impacts and assign each head impact to a specific drill. Eleven drills were identified: dummy/sled tackling, install, special teams, Oklahoma, one-on-one, open-field tackling, passing, position skill work, multiplayer tackle, scrimmage, and tackling drill stations. Generalized linear models were fitted to log-transformed data, and Wald tests were used to assess differences in head accelerations and impact rates. RESULTS A total of 2125 impacts were measured during 30 contact practices in 9 athletes (mean age 11.1 ± 0.6 years, mean mass 44.9 ± 4.1 kg). Open-field tackling had the highest median and 95th percentile linear accelerations (24.7 g and 97.8 g, respectively) and resulted in significantly higher mean head accelerations than several other drills. The multiplayer tackle drill resulted in the highest head impact frequency, with an average of 0.59 impacts per minute per athlete, but the lowest 95th percentile linear accelerations of all drills. The front of the head was the most common impact location for all drills except dummy/sled tackling. CONCLUSIONS Head impact exposure varies significantly in youth football practice drills, with several drills exposing athletes to high-magnitude and/or high-frequency head impacts. These data suggest that further study of practice drills is an important step in developing evidence-based recommendations for modifying or eliminating certain high-intensity drills to reduce head impact exposure and injury risk for all levels of play.

  6. Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla.

    PubMed

    Rezai, Ali R; Finelli, Daniel; Nyenhuis, John A; Hrdlicka, Greg; Tkach, Jean; Sharan, Ashwini; Rugieri, Paul; Stypulkowski, Paul H; Shellock, Frank G

    2002-03-01

    To assess magnetic resonance imaging (MRI)-related heating for a neurostimulation system (Activa Tremor Control System, Medtronic, Minneapolis, MN) used for chronic deep brain stimulation (DBS). Different configurations were evaluated for bilateral neurostimulators (Soletra Model 7426), extensions, and leads to assess worst-case and clinically relevant positioning scenarios. In vitro testing was performed using a 1.5-T/64-MHz MR system and a gel-filled phantom designed to approximate the head and upper torso of a human subject. MRI was conducted using the transmit/receive body and transmit/receive head radio frequency (RF) coils. Various levels of RF energy were applied with the transmit/receive body (whole-body averaged specific absorption rate (SAR); range, 0.98-3.90 W/kg) and transmit/receive head (whole-body averaged SAR; range, 0.07-0.24 W/kg) coils. A fluoroptic thermometry system was used to record temperatures at multiple locations before (1 minute) and during (15 minutes) MRI. Using the body RF coil, the highest temperature changes ranged from 2.5 degrees-25.3 degrees C. Using the head RF coil, the highest temperature changes ranged from 2.3 degrees-7.1 degrees C.Thus, these findings indicated that substantial heating occurs under certain conditions, while others produce relatively minor, physiologically inconsequential temperature increases. The temperature increases were dependent on the type of RF coil, level of SAR used, and how the lead wires were positioned. Notably, the use of clinically relevant positioning techniques for the neurostimulation system and low SARs commonly used for imaging the brain generated little heating. Based on this information, MR safety guidelines are provided. These observations are restricted to the tested neurostimulation system.

  7. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach.

    PubMed

    Qazi, Arish A; Pekar, Vladimir; Kim, John; Xie, Jason; Breen, Stephen L; Jaffray, David A

    2011-11-01

    Intensity modulated radiation therapy (IMRT) allows greater control over dose distribution, which leads to a decrease in radiation related toxicity. IMRT, however, requires precise and accurate delineation of the organs at risk and target volumes. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. State of the art auto-segmentation methods are either atlas-based, model-based or hybrid however, robust fully automated segmentation is often difficult due to the insufficient discriminative information provided by standard medical imaging modalities for certain tissue types. In this paper, the authors present a fully automated hybrid approach which combines deformable registration with the model-based approach to accurately segment normal and target tissues from head and neck CT images. The segmentation process starts by using an average atlas to reliably identify salient landmarks in the patient image. The relationship between these landmarks and the reference dataset serves to guide a deformable registration algorithm, which allows for a close initialization of a set of organ-specific deformable models in the patient image, ensuring their robust adaptation to the boundaries of the structures. Finally, the models are automatically fine adjusted by our boundary refinement approach which attempts to model the uncertainty in model adaptation using a probabilistic mask. This uncertainty is subsequently resolved by voxel classification based on local low-level organ-specific features. To quantitatively evaluate the method, they auto-segment several organs at risk and target tissues from 10 head and neck CT images. They compare the segmentations to the manual delineations outlined by the expert. The evaluation is carried out by estimating two common quantitative measures on 10 datasets: volume overlap fraction or the Dice similarity coefficient (DSC), and a geometrical metric, the median symmetric Hausdorff distance (HD), which is evaluated slice-wise. They achieve an average overlap of 93% for the mandible, 91% for the brainstem, 83% for the parotids, 83% for the submandibular glands, and 74% for the lymph node levels. Our automated segmentation framework is able to segment anatomy in the head and neck region with high accuracy within a clinically-acceptable segmentation time.

  8. Peak firing rates of rat anterodorsal thalamic head direction cells are higher during faster passive rotations.

    PubMed

    Zugaro, Michaël B; Berthoz, Alain; Wiener, Sidney I

    2002-01-01

    Head direction cells discharge selectively when the head of the animal is oriented in a specific direction. The goal of this study was to determine how sensory signals arising from passive rotations (e.g., triggered by vestibular stimulation and dynamic visual inputs) influence the responses of anterodorsal thalamic head direction cells in the absence of voluntary movement cues (e.g., motor command, efference copy, and associated kinesthetic signals). Three unrestrained rats consumed water from a reservoir at the center of a circular platform while passively subjected to sinusoidal rotatory oscillations at fast (153 +/- 27 degrees/s, sd) and slow (38 +/- 15 degrees/s) peak velocities. In 14 anterodorsal thalamic head direction cells, the preferred directions, angular response ranges and baseline firing rates remained stable, but the peak firing rates were, on average, 36% higher during the fast rotations (Wilcoxon matched-pairs test, p < 0.001; variation range: +11% to approximately +100%). No cell changed its peak firing rate by less than 10%, while three cells (21%) increased their peak firing rates by more than 50%. The velocity-dependent increase in peak firing rates was similar for left and right rotations, and the skewness of the directional response curves were not significantly different between left and right turns (Wilcoxon matched-pairs tests, n = 14, ns). These results show that sensory signals concerning self-movements modulate the responses of the head direction cells in the absence of active locomotion.

  9. Simplified realistic human head model for simulating Tumor Treating Fields (TTFields).

    PubMed

    Wenger, Cornelia; Bomzon, Ze'ev; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C

    2016-08-01

    Tumor Treating Fields (TTFields) are alternating electric fields in the intermediate frequency range (100-300 kHz) of low-intensity (1-3 V/cm). TTFields are an anti-mitotic treatment against solid tumors, which are approved for Glioblastoma Multiforme (GBM) patients. These electric fields are induced non-invasively by transducer arrays placed directly on the patient's scalp. Cell culture experiments showed that treatment efficacy is dependent on the induced field intensity. In clinical practice, a software called NovoTalTM uses head measurements to estimate the optimal array placement to maximize the electric field delivery to the tumor. Computational studies predict an increase in the tumor's electric field strength when adapting transducer arrays to its location. Ideally, a personalized head model could be created for each patient, to calculate the electric field distribution for the specific situation. Thus, the optimal transducer layout could be inferred from field calculation rather than distance measurements. Nonetheless, creating realistic head models of patients is time-consuming and often needs user interaction, because automated image segmentation is prone to failure. This study presents a first approach to creating simplified head models consisting of convex hulls of the tissue layers. The model is able to account for anisotropic conductivity in the cortical tissues by using a tensor representation estimated from Diffusion Tensor Imaging. The induced electric field distribution is compared in the simplified and realistic head models. The average field intensities in the brain and tumor are generally slightly higher in the realistic head model, with a maximal ratio of 114% for a simplified model with reasonable layer thicknesses. Thus, the present pipeline is a fast and efficient means towards personalized head models with less complexity involved in characterizing tissue interfaces, while enabling accurate predictions of electric field distribution.

  10. Outcomes and radiographic findings of anatomic press-fit radial head arthroplasty.

    PubMed

    Levy, Jonathan C; Formaini, Nathan T; Kurowicki, Jennifer

    2016-05-01

    Radial head arthroplasty (RHA) is a popular method of treatment for complex fractures of the radial head. The purpose of this study was to investigate patient outcomes and radiographic findings associated with a single anatomic monopolar press-fit radial head system commonly used for the treatment of radial head fractures. A retrospective review of prospectively collected data was performed for a consecutive series of patients treated with a press-fit anatomically designed RHA between November 2007 and April 2014. The most recent radiographs were evaluated for loosening, stress shielding, and instability. Postoperative motion and outcomes were reported at most recent follow-up. At an average follow-up of 30 months, 6 of the 15 patients (40%) demonstrated radiographic loosening. Six of the 9 patients (67%) without loosening demonstrated stress shielding (average, 6 mm). Functional outcome scores included a mean American Shoulder and Elbow Surgeons score of 70, Mayo Elbow Performance Score of 85, visual analog scale score for pain of 2, visual analog scale score for function of 7, and Single Assessment Numeric Evaluation score of 75. Average flexion-extension arc was 14° to 138°, and average pronation-supination was 75° to 74°. All 6 of the patients with radiographic loosening had undergone RHA with an associated ligamentous injury repair. Satisfaction among patients was high as no patient reported an unsatisfactory outcome. The use of an anatomic, press-fit monopolar RHA in the management of acute complex radial head fractures has yielded excellent clinical outcomes despite high rates of radiographic loosening and stress shielding. Press-fit RHA in the setting of ligamentous injury warrants further investigation because of a high rate of implant loosening observed. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. STUDIES ON THE ANTIGENIC STRUCTURE OF SOME MAMMALIAN SPERMATOZOA

    PubMed Central

    Henle, Werner; Henle, Gertrude; Chambers, Leslie A.

    1938-01-01

    1. A method has been described for separation of heads and tails of mammalian spermatozoa. 2. By means of absorption technique applied to homologous spermatozoal sera, head-specific and tail-specific antigens could be demonstrated. Both are heat-labile. 3. A heat-stable antigen was found to be common to both heads and tails. This substance is species-specific. 4. Antibodies against the head- and tail-specific antigens led to two different types of agglutination as shown by the slide method. 5. Using heterologous antisera against spermatozoa three different cross-reacting antigens could be observed, two in the heads, one in the tails. 6. One of the head-antigens is not active in the native cell; it comes to action only after breaking the cell. Antibodies against this substance were not found in antisera against native bull spermatozoa but were formed when vibrated spermatozoa or heads were injected into rabbits. 7. The cross-reactions can be removed from an antiserum leaving the head- as well as the tail-specific reaction intact. PMID:19870792

  12. The use of head/eye-centered, hand-centered and allocentric representations for visually guided hand movements and perceptual judgments.

    PubMed

    Thaler, Lore; Todd, James T

    2009-04-01

    Two experiments are reported that were designed to measure the accuracy and reliability of both visually guided hand movements (Exp. 1) and perceptual matching judgments (Exp. 2). The specific procedure for informing subjects of the required response on each trial was manipulated so that some tasks could only be performed using an allocentric representation of the visual target; others could be performed using either an allocentric or hand-centered representation; still others could be performed based on an allocentric, hand-centered or head/eye-centered representation. Both head/eye and hand centered representations are egocentric because they specify visual coordinates with respect to the subject. The results reveal that accuracy and reliability of both motor and perceptual responses are highest when subjects direct their response towards a visible target location, which allows them to rely on a representation of the target in head/eye-centered coordinates. Systematic changes in averages and standard deviations of responses are observed when subjects cannot direct their response towards a visible target location, but have to represent target distance and direction in either hand-centered or allocentric visual coordinates instead. Subjects' motor and perceptual performance agree quantitatively well. These results strongly suggest that subjects process head/eye-centered representations differently from hand-centered or allocentric representations, but that they process visual information for motor actions and perceptual judgments together.

  13. Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification.

    PubMed

    Yasuoka, Yuuri; Suzuki, Yutaka; Takahashi, Shuji; Someya, Haruka; Sudou, Norihiro; Haramoto, Yoshikazu; Cho, Ken W; Asashima, Makoto; Sugano, Sumio; Taira, Masanori

    2014-07-09

    Head specification by the head-selector gene, orthodenticle (otx), is highly conserved among bilaterian lineages. However, the molecular mechanisms by which Otx and other transcription factors (TFs) interact with the genome to direct head formation are largely unknown. Here we employ ChIP-seq and RNA-seq approaches in Xenopus tropicalis gastrulae and find that occupancy of the corepressor, TLE/Groucho, is a better indicator of tissue-specific cis-regulatory modules (CRMs) than the coactivator p300, during early embryonic stages. On the basis of TLE binding and comprehensive CRM profiling, we define two distinct types of Otx2- and TLE-occupied CRMs. Using these devices, Otx2 and other head organizer TFs (for example, Lim1/Lhx1 (activator) or Goosecoid (repressor)) are able to upregulate or downregulate a large battery of target genes in the head organizer. An underlying principle is that Otx marks target genes for head specification to be regulated positively or negatively by partner TFs through specific types of CRMs.

  14. 50 CFR 216.172 - Permissible methods of taking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...). (L) Risso's dolphin (Grampus griseus)—2485 (an average of 497 annually). (M) Melon-headed whale... (Tursiops truncatus), Pygmy and Dwarf sperm whales (Kogia breviceps and sima), Melon-headed whale...

  15. 50 CFR 216.172 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...). (L) Risso's dolphin (Grampus griseus)—2485 (an average of 497 annually). (M) Melon-headed whale... (Tursiops truncatus), Pygmy and Dwarf sperm whales (Kogia breviceps and sima), Melon-headed whale...

  16. Effect of complete dentures on dynamic measurement of changing head position: A pilot study.

    PubMed

    Usumez, Aslihan; Usumez, Serdar; Orhan, Metin

    2003-10-01

    Complete dentures contribute significantly to the facial esthetics of edentulous patients. However, information as to the effect of complete dentures on the natural position of the head is limited. The purpose of this pilot study was to evaluate the immediate and 30-day effect of wearing complete dentures on the dynamic natural head position measured during walking. The sample consisted of a volunteer group of 16 patients, 8 women and 8 men, who received new complete dentures. The ages of the subjects ranged from 45 to 64 years (mean=52 years). Dynamic measurement of head posture was carried out by a specially constructed inclinometer device. Each subject in turn was fitted with the inclinometer system and instructed to walk in a relaxed manner for 5 minutes. The data, measured as degrees, were stored in a pocket data logger. This procedure was repeated before insertion of dentures (T1), immediately after insertion of dentures (T2), and 30 days after insertion of dentures (T3). Stored dynamic head posture data were transferred to computer for analysis. The means of the measurements were statistically compared with Friedman and following Wilcoxon tests (alpha =.05). Twelve of 16 (75%) subjects showed an average of 4.6 degrees of cranial extension immediately after insertion of dentures. Six (37.5%) subjects showed an average of 6.4 degrees of cranial flexion, and 8 (50%) subjects showed an average of 5.2 degrees of cranial extension at T3 relative to the T1 measurement. Dynamic head posture measurements of the other 2 subjects remained unchanged. There were significant differences between different measurements of dynamic head posture positions (P<.025). However, only the T1 and T2 measurements were significantly different (P<.015). The findings indicate that the statistically significant average extension 4.6 degrees in subjects immediately after insertion of complete dentures was not stable after a 30-day evaluation period and did not produce any statistically significant change. The overall effect of wearing dentures was an irregular flexion or extension pattern on dynamic head posture.

  17. Head stabilisation in fast running lizards.

    PubMed

    Goyens, Jana; Aerts, Peter

    2018-04-01

    The cyclic patterns of terrestrial animal locomotion are frequently perturbed in natural environments. The terrain can be complex or inclined, the substrate can move unexpectedly and animals can misjudge situations. Loosing stability due to perturbations increases the probability of capture by predators and decreases the chance of successful prey capture and winning intraspecific battles. When controlled corrective actions are necessary to negotiate perturbations, animals rely on their exteroceptive and proprioceptive senses to monitor the environment and their own body movements. The vestibular system in the inner ear perceives linear and angular accelerations. This information enables gaze stabilisation and the creation of a stable, world-bound reference frame for the integration of the information of other senses. During locomotion, both functions are known to be facilitated by head stabilisation in several animals with an erect posture. Animals with a sprawled body posture, however, undergo very large body undulations while running. Using high speed video recordings, we tested whether they nevertheless stabilise their head during running, and how this is influenced by perturbations. We found that running Acanthodactylus boskianus lizards strongly stabilise their head yaw rotations when running on a flat, straight runway: the head rotation amplitude is only 4.76±0.99°, while the adjacent trunk part rotates over 27.0±3.8°. Lateral head translations are not stabilised (average amplitude of 7.4±2.0mm). When the lizards are experimentally perturbed by a large and unexpected lateral substrate movement, lateral translations of both the head and the body decrease (on average by 1.52±0.81mm). At the same time, the rotations of the head and trunk also decrease (on average by 1.62°±7.21°). These results show that head stabilisation intensifies because of the perturbation, which emphasises the importance of vestibular perception and balance in these fast and manoeuvrable animals. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. A study of emergency American football helmet removal techniques.

    PubMed

    Swartz, Erik E; Mihalik, Jason P; Decoster, Laura C; Hernandez, Adam E

    2012-09-01

    The purpose was to compare head kinematics between the Eject Helmet Removal System and manual football helmet removal. This quasi-experimental study was conducted in a controlled laboratory setting. Thirty-two certified athletic trainers (sex, 19 male and 13 female; age, 33 ± 10 years; height, 175 ± 12 cm; mass, 86 ± 20 kg) removed a football helmet from a healthy model under 2 conditions: manual helmet removal and Eject system helmet removal. A 6-camera motion capture system recorded 3-dimensional head position. Our outcome measures consisted of the average angular velocity and acceleration of the head in each movement plane (sagittal, frontal, and transverse), the resultant angular velocity and acceleration, and total motion. Paired-samples t tests compared each variable across the 2 techniques. Manual helmet removal elicited greater average angular velocity in the sagittal and transverse planes and greater resultant angular velocity compared with the Eject system. No differences were observed in average angular acceleration in any single plane of movement; however, the resultant angular acceleration was greater during manual helmet removal. The Eject Helmet Removal System induced greater total head motion. Although the Eject system created more motion at the head, removing a helmet manually resulted in more sudden perturbations as identified by resultant velocity and acceleration of the head. The implications of these findings relate to the care of all cervical spine-injured patients in emergency medical settings, particularly in scenarios where helmet removal is necessary. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat.

    PubMed

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-10-18

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.

  20. International Intercomparison of Specific Absorption Rates in a Flat Absorbing Phantom in the Near-Field of Dipole Antennas

    PubMed Central

    Davis, Christopher C.; Beard, Brian B.; Tillman, Ahlia; Rzasa, John; Merideth, Eric; Balzano, Quirino

    2018-01-01

    This paper reports the results of an international intercomparison of the specific absorption rates (SARs) measured in a flat-bottomed container (flat phantom), filled with human head tissue simulant fluid, placed in the near-field of custom-built dipole antennas operating at 900 and 1800 MHz, respectively. These tests of the reliability of experimental SAR measurements have been conducted as part of a verification of the ways in which wireless phones are tested and certified for compliance with safety standards. The measurements are made using small electric-field probes scanned in the simulant fluid in the phantom to record the spatial SAR distribution. The intercomparison involved a standard flat phantom, antennas, power meters, and RF components being circulated among 15 different governmental and industrial laboratories. At the conclusion of each laboratory’s measurements, the following results were communicated to the coordinators: Spatial SAR scans at 900 and 1800 MHz and 1 and 10 g maximum spatial SAR averages for cubic volumes at 900 and 1800 MHz. The overall results, given as meanstandard deviation, are the following: at 900 MHz, 1 g average 7.850.76; 10 g average 5.160.45; at 1800 MHz, 1 g average 18.44 ± 1.65; 10 g average 10.14 ± 0.85, all measured in units of watt per kilogram, per watt of radiated power. PMID:29520117

  1. Numerical calculation of listener-specific head-related transfer functions and sound localization: Microphone model and mesh discretization

    PubMed Central

    Ziegelwanger, Harald; Majdak, Piotr; Kreuzer, Wolfgang

    2015-01-01

    Head-related transfer functions (HRTFs) can be numerically calculated by applying the boundary element method on the geometry of a listener’s head and pinnae. The calculation results are defined by geometrical, numerical, and acoustical parameters like the microphone used in acoustic measurements. The scope of this study was to estimate requirements on the size and position of the microphone model and on the discretization of the boundary geometry as triangular polygon mesh for accurate sound localization. The evaluation involved the analysis of localization errors predicted by a sagittal-plane localization model, the comparison of equivalent head radii estimated by a time-of-arrival model, and the analysis of actual localization errors obtained in a sound-localization experiment. While the average edge length (AEL) of the mesh had a negligible effect on localization performance in the lateral dimension, the localization performance in sagittal planes, however, degraded for larger AELs with the geometrical error as dominant factor. A microphone position at an arbitrary position at the entrance of the ear canal, a microphone size of 1 mm radius, and a mesh with 1 mm AEL yielded a localization performance similar to or better than observed with acoustically measured HRTFs. PMID:26233020

  2. Understanding the Effects of Spaceflight on Head-trunk Coordination during Walking and Obstacle Avoidance

    NASA Technical Reports Server (NTRS)

    Madansingh, S.; Bloomberg, J.

    2013-01-01

    Prolonged exposure to spaceflight conditions results in a battery of physiological changes, some of which contribute to sensorimotor and neurovestibular deficits. Upon return to Earth, functional performance changes are tested using the Functional Task Test (FTT), which includes an obstacle course to observe post-flight balance and postural stability, specifically during turning. Aims: To quantify changes in movement strategies during turning events by observing the latency between head-andtrunk coordinated movement. Hypothesis: It is hypothesized that subjects experiencing neurovestibular adaptations will exhibit head-to-trunk locking ('en bloc' movement) during turning, exhibited by a decrease in latency between head and trunk movement. Sample: FTT data samples were collected from Shuttle and ISS missions. Samples were analyzed three times pre exposure, immediately post-exposure (0 or 1 day post) and 2-to-3 times during recovery from the microgravity environment. Methods: Two 3D inertial measurements units (XSens MTx) were attached to subjects, one on the head and one on the upper back. This study focused primarily on the yaw movements about the subject's center of rotation. Time differences (latency) between head and trunk movement were calculated at two points: the first turn (Fturn) to enter the obstacle course (approximately 90° turn) and averaged across a slalom obstacle portion, consisting of three turns (approximately three 90° turns). Results: Preliminary analysis of the data shows a trend toward decreasing head-to-trunk movement latency during post-flight ambulation, after reintroduction to Earth gravity in Shuttle and ISS astronauts. Conclusion: It is clear that changes in movement strategies are adopted during exposure to the microgravity environment and upon reintroduction to a gravity environment. Some subjects exhibit symptoms of neurovestibular neuropathy ('en bloc movement') that may impact their ability to perform post-flight functional tasks.

  3. The construction of MRI brain/head templates for Chinese children from 7 to 16 years of age

    PubMed Central

    Xie, Wanze; Richards, John E.; Lei, Du; Zhu, Hongyan; Lee, Kang; Gong, Qiyong

    2015-01-01

    Population-specific brain templates that provide detailed brain information are beneficial to both structural and functional neuroimaging research. However, age-specific MRI templates have not been constructed for Chinese or any Asian developmental populations. This study developed novel T1-weighted average brain and head templates for Chinese children from 7 to 16 years of age in two-year increments using high quality magnetic resonance imaging (MRI) and well-validated image analysis techniques. A total of 138 Chinese children (51 F/87 M) were included in this study. The internally and externally validated registrations show that these Chinese age-specific templates fit Chinese children’s MR images significantly better than age-specific templates created from U.S. children, or adult templates based on either Chinese or North American adults. It implies that age-inappropriate (e.g., the Chinese56 template, the US20–24 template) and nationality-inappropriate brain templates (e.g., U.S. children’s templates, the US20–24 template) do not provide optimal reference MRIs for processing MR brain images of Chinese pediatric populations. Thus, our age-specific MRI templates are the first of the kind and should be useful in neuroimaging studies with children from Chinese or other Asian populations. These templates can also serve as the foundations for the construction of more comprehensive sets of nationality-specific templates for Asian developmental populations. These templates are available for use in our database. PMID:26343862

  4. Future Scenarios of Livestock and Land Use in Brazil

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Abrahão, G. M.

    2016-12-01

    Brazil currently has about 213 M cattle heads in 151 M ha of pastures. In the last 40 years, both the top 5% and the average stocking rate are increasing exponentially in Brazil, while the relative yield gap has been constant. Using these historical relationships, we estimate future scenarios of livestock and land use in Brazil. We assume a reference scenario for the top 5%, in which pasturelands are adequately fertilized, soil is not compacted and well drained, grasses are never burned, pastures are divided in 8 subdivisions of regular area, are cattle is rotated through the subdivisions. The reference scenario does not consider irrigation or feed supplementation. We calibrate a computer model and run it for the pasturelands throughout the entire country. We conclude that current pastures have about 20% efficiency to raise cattle compared to the reference scenario. Considering the reference scenario, we predict an equilibrium will be reached in about 100 years, with top 5% with about 9.3 heads per ha and the average 4.3 heads per ha, or 600 M heads of livestock. Considering a more pessimistic scenario, which considers an inflection of the curve in present times, we predict an equilibrium will be reached in about 60 years, with the top 5% stocking rate equal to 4.3 heads per ha and the average equal to 2.2 heads per ha, or 300 M heads of livestock. Both cases represent a considerable expansion of the livestock, maybe even higher than the growth of the global demands for beef. These scenarios indicate that not all existing pasturelands need to be used in the future - a significant part of them may be converted to croplands, which will also contribute to the reduction of deforestation.

  5. Study of the influence of the laterality of mobile phone use on the SAR induced in two head models

    NASA Astrophysics Data System (ADS)

    Ghanmi, Amal; Varsier, Nadège; Hadjem, Abdelhamid; Conil, Emmanuelle; Picon, Odile; Wiart, Joe

    2013-05-01

    The objective of this paper is to investigate and to analyse the influence of the laterality of mobile phone use on the exposure of the brain to radio-frequencies (RF) and electromagnetic fields (EMF) from different mobile phone models using the finite-difference time-domain (FDTD) method. The study focuses on the comparison of the specific absorption rate (SAR) induced on the right and left sides of two numerical adult and child head models. The heads are exposed by both phone models operating in GSM frequency bands for both ipsilateral and contralateral configurations. A slight SAR difference between the two sides of the heads is noted. The results show that the variation between the left and the right sides is more important at 1800 MHz for an ipsilateral use. Indeed, at this frequency, the variation can even reach 20% for the SAR10g and the SAR1g induced in the head and in the brain, respectively. Moreover, the average SAR induced by the mobile phone in the half hemisphere of the brain in ipsilateral exposure is higher than in contralateral exposure. Owing to the superficial character of energy deposition at 1800 MHz, this difference in the SAR induced for the ipsilateral and contralateral usages is more significant at 1800 MHz than at 900 MHz. The results have shown that depending on the phantom head models, the SAR distribution in the brain can vary because of differences in anatomical proportions and in the geometry of the head models. The induced SAR in child head and in sub-regions of the brain is significantly higher (up to 30%) compared to the adult head. This paper confirms also that the shape/design of the mobile and the location of the antenna can have a large influence at high frequency on the exposure of the brain, particularly on the SAR distribution and on the distinguished brain regions.

  6. Quantifying Head Impacts in Collegiate Lacrosse.

    PubMed

    Reynolds, Bryson B; Patrie, James; Henry, Erich J; Goodkin, Howard P; Broshek, Donna K; Wintermark, Max; Druzgal, T Jason

    2016-11-01

    Concussion and repetitive head impact in sports has increased interest and concern for clinicians, scientists, and athletes. Lacrosse is the fastest growing sport in the United States, but the burden of head impact in lacrosse is unknown. The goal of this pilot study was to quantify head impact associated with practicing and playing collegiate lacrosse while subjects were fitted with wearable accelerometers. Descriptive epidemiology study. In a single year, a collegiate cohort of 14 women's and 15 men's lacrosse players wore mastoid-patch accelerometers to measure the frequency and severity of head impacts during official practices and games. Average impact severity, mean number of impacts, and cumulative acceleration were evaluated, stratified by sport and event type. Men's and women's collegiate lacrosse players did not significantly differ in the number of head impacts received during games (11.5 for men vs 9.2 for women) or practices (3.1 vs 3.1). Men's lacrosse players had significantly higher average head acceleration per impact during games compared with women (21.1g vs 14.7g) but not during practices (21.3g vs 18.1g). For both men and women, more impacts occurred during games than during practices (men, 11.5 vs 3.1; women, 9.2 vs 3.1), but impact severity did not significantly differ between events for either sport (men, 21.1g vs 21.3g; women, 14.7g vs 18.1g). The study data suggest a higher impact burden during games compared with practices, but this effect is driven by the quantity rather than severity of impacts. In contrast, sex-based effects in impact burden are driven by average impact severity rather than quantity. Data collected from larger multisite trials and/or different age groups could be used to inform ongoing debates, including headgear and practice regulations, that might appreciably affect the burden of head impacts in lacrosse. While most head impacts do not result in a clinical diagnosis of concussion, evidence indicates that subconcussive head impacts may increase susceptibility to concussion and contribute to long-term neurodegeneration. © 2016 The Author(s).

  7. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses.

    PubMed

    Huda, Walter; Lieberman, Kristin A; Chang, Jack; Roskopf, Marsha L

    2004-03-01

    We investigated how patient age, size and composition, together with the choice of x-ray technique factors, affect radiation doses in head computed tomography (CT) examinations. Head size dimensions, cross-sectional areas, and mean Hounsfield unit (HU) values were obtained from head CT images of 127 patients. For radiation dosimetry purposes patients were modeled as uniform cylinders of water. Dose computations were performed for 18 x 7 mm sections, scanned at a constant 340 mAs, for x-ray tube voltages ranging from 80 to 140 kV. Values of mean section dose, energy imparted, and effective dose were computed for patients ranging from the newborn to adults. There was a rapid growth of head size over the first two years, followed by a more modest increase of head size until the age of 18 or so. Newborns have a mean HU value of about 50 that monotonically increases with age over the first two decades of life. Average adult A-P and lateral dimensions were 186+/-8 mm and 147+/-8 mm, respectively, with an average HU value of 209+/-40. An infant head was found to be equivalent to a water cylinder with a radius of approximately 60 mm, whereas an adult head had an equivalent radius 50% greater. Adult males head dimensions are about 5% larger than for females, and their average x-ray attenuation is approximately 20 HU greater. For adult examinations performed at 120 kV, typical values were 32 mGy for the mean section dose, 105 mJ for the total energy imparted, and 0.64 mSv for the effective dose. Increasing the x-ray tube voltage from 80 to 140 kV increases patient doses by about a factor of 5. For the same technique factors, mean section doses in infants are 35% higher than in adults. Energy imparted for adults is 50% higher than for infants, but infant effective doses are four times higher than for adults. CT doses need to take into account patient age, head size, and composition as well as the selected x-ray technique factors.

  8. Identifying Head-Trunk and Lower Limb Contributions to Gaze Stabilization During Locomotion

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2003-01-01

    The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as - compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the shank and the transmissibility of the shock wave at heel strike (measured by the peak acceleration ratio of the head/shank) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.

  9. Dynamic effective properties of heterogeneous geological formations with spherical inclusions under periodic time variations

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Dagan, G.; Miloh, T.

    2013-04-01

    In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.

  10. Estimation of effective dose and lifetime attributable risk from multiple head CT scans in ventriculoperitoneal shunted children.

    PubMed

    Aw-Zoretic, J; Seth, D; Katzman, G; Sammet, S

    2014-10-01

    The purpose of this review is to determine the averaged effective dose and lifetime attributable risk factor from multiple head computed tomography (CT) dose data on children with ventriculoperitoneal shunts (VPS). A total of 422 paediatric head CT exams were found between October 2008 and January 2011 and retrospectively reviewed. The CT dose data was weighted with the latest IRCP 103 conversion factor to obtain the effective dose per study and the averaged effective dose was calculated. Estimates of the lifetime attributable risk were also calculated from the averaged effective dose using a conversion factor from the latest BEIR VII report. Our study found the highest effective doses in neonates and the lowest effective doses were observed in the 10-18 years age group. We estimated a 0.007% potential increase risk in neonates and 0.001% potential increased risk in teenagers over the base risk. Multiple head CTs in children equates to a slight potential increase risk in lifetime attributable risk over the baseline risk for cancer, slightly higher in neonates relative to teenagers. The potential risks versus clinical benefit must be assessed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Educational Impact of Trainee-Facilitated Head and Neck Radiology-Pathology Correlation Conferences.

    PubMed

    Ginat, Daniel Thomas; Cipriani, Nicole A; Christoforidis, Gregory

    2018-05-17

    The goal of this study was to evaluate the benefits of resident and fellow-facilitated radiology-pathology head and neck conferences. A total of seven resident-facilitated and six fellow-facilitated head and neck radiology-pathology cases were presented as part of the radiology department conference series. The radiology residents were surveyed regarding the perceived quality and effectiveness of the fellow-facilitated sessions. The number of publications yielded from all the cases presented was tracked. Overall, the residents assessed the quality of the fellow-facilitated conferences with an average score of 3.9 out of 5 and the overall helpfulness with an average of 3.5 out of 5. The overall average level of resident understanding among the residents for the topics presented to them by the fellows at baseline was 2.5 out of 5 and 3.4 out of 5 after the presentations, which was a significant increase (p-value < 0.01). There were three peer-reviewed publications generated from the resident presentations and four peer-reviewed publications generated from the fellow presentations, which represents a 54% publication rate collectively. Therefore, trainee-facilitated head and neck radiology-pathology conferences at our institution provide added learning and scholarly activity opportunities.

  12. Employment In Perspective; Unemployment Among Household Heads.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    The jobless rate among all household heads reached 6 percent in April 1975, double the average rate over the 1963-74 period (2.8 percent), and half again as high as the previous peak (4 percent) recorded during the first half of 1963. The number of unemployed household heads increased from 1.4 to 3.2 million from October 1973 to April 1975, from…

  13. Head Injury Secondary to Suspected Child Maltreatment: Results of a Prospective Canadian National Surveillance Program

    ERIC Educational Resources Information Center

    Bennett, Susan; Ward, Michelle; Moreau, Katherine; Fortin, Gilles; King, Jim; MacKay, Morag; Plint, Amy

    2011-01-01

    Objective: We sought to determine the incidence, clinical features, and demographic profile of head injury secondary to suspected child maltreatment (abuse or neglect) in Canada to help inform the development and evaluation of prevention programs for abusive head injuries. Methods: From March 1, 2005 to February 28, 2008, an average of 2,545…

  14. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    PubMed Central

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen curves for lung injury. PMID:23935591

  15. Impact of pinna compression on the RF absorption in the heads of adult and juvenile cell phone users.

    PubMed

    Christ, Andreas; Gosselin, Marie-Christine; Kühn, Sven; Kuster, Niels

    2010-07-01

    The electromagnetic exposure of cell phone users depends on several parameters. One of the most dominant of these is the distance between the cell phone and the head tissue. The pinna can be regarded as a spacer between the top of the phone and the head tissue. The size of this spacer has not yet been systematically studied. The objective of this article is to investigate the variations of distance as a function of age of the exposed person, and the mechanical force on the pinna and how it affects the peak spatial specific absorption rate (psSAR). The distances were measured for adults and children (6-8 years of age) while applying a well-defined force on the pinna using a custom-developed measurement device. The average distances of the pinnae to the heads and their standard deviations showed no major differences between the two age groups: 10.5 +/- 2.0 mm for children (6-8 years) and 9.5 +/- 2.0 mm for adults. The pinnae of our anatomical high-resolution head models of one adult and two children were transformed according to the measurement results. The numerical exposure analysis showed that the reduced distance due to the pinna compression can increase the maximum 10 g psSAR by approximately 2 dB for adults and children, if the exposure maximum is associated with the upper part of the phone. 2010 Wiley-Liss, Inc.

  16. [The influence of space flight factors on the growth and development of super dwarf wheat cultivated in greenhouse Svet

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Sychev, V. N.; Derendiaeva, T. A.; Signalova, O. B.; Salisbury, F. B.; Campbell, W. F.; Babenheim, D.

    1999-01-01

    In 1996-1997 an experiment with super dwarf wheat (Greenhouse-2) was made aboard the orbital complex MIR as a part of the MIR-NASA space science program. The article deals with the main production and morphometric characteristics of plants that completed their vegetation cycle in the space flight. Lengths of the whole cycle of vegetation and its individual stages were essentially same as in ground control experiments. Dry mass of one plants equal, the number of headed shoots was in 2.7 times less in the flight harvest as compared with the control. The height of shoots was reduced by one half. No seeds were found in the heads formed in space. The architecture of heads was substantially different from what had been observed in the preceeding ground control experiments: mass of the heads was halved and lengths of inflorescence and palea awn shortened. The number of spikelets in a head reduced up to 8-10 vs. 13-14 in the controls, whereas the number of florets per a spikelet averaged 5 vs. 3 in the controls. The experiments showed that mainly the most profound changes in the productive and morphometric parameters of the super dwarf wheat plants were largely caused by the phytotoxic effects of ethylene rather than spaceflight specific factors as its concentrations in the MIR air amount to 0.3-1.8 mg/m3.

  17. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat †

    PubMed Central

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-01-01

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547

  18. The use of dendrograms to describe the electrical activity of motoneurons underlying behaviors in leeches

    PubMed Central

    Juárez-Hernández, León J.; Bisson, Giacomo; Torre, Vincent

    2013-01-01

    The present manuscript aims at identifying patterns of electrical activity recorded from neurons of the leech nervous system, characterizing specific behaviors. When leeches are at rest, the electrical activity of neurons and motoneurons is poorly correlated. When leeches move their head and/or tail, in contrast, action potential (AP) firing becomes highly correlated. When the head or tail suckers detach, specific patterns of electrical activity are detected. During elongation and contraction the electrical activity of motoneurons in the Medial Anterior and Dorsal Posterior nerves increase, respectively, and several motoneurons are activated both during elongation and contraction. During crawling, swimming, and pseudo-swimming patterns of electrical activity are better described by the dendrograms of cross-correlations of motoneurons pairs. Dendrograms obtained from different animals exhibiting the same behavior are similar and by averaging these dendrograms we obtained a template underlying a given behavior. By using this template, the corresponding behavior is reliably identified from the recorded electrical activity. The analysis of dendrograms during different leech behavior reveals the fine orchestration of motoneurons firing specific to each stereotyped behavior. Therefore, dendrograms capture the subtle changes in the correlation pattern of neuronal networks when they become involved in different tasks or functions. PMID:24098274

  19. Clinical and ocular motor analysis of the infantile nystagmus syndrome in the first 6 months of life.

    PubMed

    Hertle, R W; Maldanado, V K; Maybodi, M; Yang, D

    2002-06-01

    The infantile nystagmus syndrome (INS) usually begins in infancy and may or may not be associated with visual sensory system abnormalities. Little is known about its specific waveforms in the first 6 months of life or their relation to the developing visual system. This study identifies the clinical and ocular motility characteristics of the INS and establishes the range of waveforms present in the first 6 months of life. 27 infants with involuntary ocular oscillations typical of INS are included in this analysis. They were evaluated both clinically and with motility recordings. Eye movement analysis was performed off line from computer analysis of digitised data. Variables analysed included age, sex, vision, ocular abnormalities, head position, and null zone, neutral zone characteristics, symmetry, conjugacy, waveforms, frequencies, and foveation times. Ages ranged from 3 to 6.5 months (average 4.9 months). 15 patients (56%) had abnormal vision for age, nine (33%) had strabismus, five (19%) had an anomalous head posture, 13 (48%) had oculographic null and neutral positions, nine (33%) had binocular asymmetry, and only two showed consistent dysconjugacy. Average binocular frequency was 3.3 Hz, monocular frequency 6.6 Hz. Average foveation periods were longer and more "jerk" wave forms were observed in those patients with normal vision. Common clinical characteristics and eye movement waveforms of INS begin in the first few months of infancy and waveform analysis at this time may help with both diagnosis and visual status.

  20. Use of hydraulic head to estimate volumetric gas content and ebullition flux in northern peatlands

    USGS Publications Warehouse

    Rosenberry, Donald O.; Glaser, Paul H.; Siegel, Donald I.; Weeks, Edwin P.

    2003-01-01

    Hydraulic head was overpressured at middepth in a 4.2‐m thick raised bog in the Glacial Lake Agassiz peatlands of northern Minnesota, and fluctuated in response to atmospheric pressure. Barometric efficiency (BE), determined by calculating ratios of change in hydraulic head to change in atmospheric pressure, ranged from 0.05 to 0.15 during July through November of both 1997 and 1998. The overpressuring and a BE response were caused by free‐phase gas contained primarily in the center of the peat column between two or more semielastic, semiconfining layers of more competent peat. Two methods were used to determine the volume of gas bubbles contained in the peat, one using the degree of overpressuring in the middepth of the peat, and the other relating BE to specific yield of the shallow peat. The volume of gas calculated from the overpressuring method averaged 9%, assuming that the gas was distributed over a 2‐m thick overpressured interval. The volume of gas using the BE method averaged 13%. Temporal changes in overpressuring and in BE indicate that the volume of gaseous‐phase gas also changed with time, most likely because of rapid degassing (ebullition) that allowed sudden loss of gas to the atmosphere. Estimates of gas released during the largest ebullition events ranged from 0.3 to 0.7 mol m−2 d−1. These ebullition events may contribute a significant source of methane and carbon dioxide to the atmosphere that has so far largely gone unmeasured by gas‐flux chambers or tower‐mounted sensors.

  1. The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years.

    PubMed

    Gale, Catharine R; O'Callaghan, Finbar J; Bredow, Maria; Martyn, Christopher N

    2006-10-01

    We investigated the effects of head growth prenatally, during infancy, and during later periods of development on cognitive function at the ages of 4 and 8 years. We studied 633 term-born children from the Avon Longitudinal Study of Parents and Children cohort whose head circumference was measured at birth and at regular intervals thereafter. Their cognitive function was assessed with the Wechsler Preschool and Primary Scale of Intelligence at the age of 4 years and with the Wechsler Intelligence Scale for Children at the age of 8 years. Linear regression analysis was used to calculate postnatal head growth between successive time points, conditional on previous size, and to examine the relationship between head growth during different periods of development and later IQ. When the influence of head growth was distinguished for different periods, only prenatal growth and growth during infancy were associated with subsequent IQ. At 4 years, after adjustment for parental characteristics, full-scale IQ increased an average of 2.41 points for each 1-SD increase in head circumference at birth and 1.97 points for each 1-SD increase in head growth during infancy, conditional on head size at birth. At 8 years, head circumference at birth was no longer associated with IQ, but head growth during infancy remained a significant predictor, with full-scale IQ increasing an average of 1.56 points for each 1-SD increase in growth. The brain volume a child achieves by the age of 1 year helps determine later intelligence. Growth in brain volume after infancy may not compensate for poorer earlier growth.

  2. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT.

    PubMed

    Knight, O'Rese J; Girkin, Christopher A; Budenz, Donald L; Durbin, Mary K; Feuer, William J

    2012-03-01

    To determine the effect of race, demographic, and ocular variables on optic nerve head and retinal nerve fiber layer (RNFL) thickness measurements using spectral-domain optical coherence tomography. In a cross-sectional observational study, 284 normal subjects aged 18 to 84 years were evaluated at 7 sites using Cirrus HD-OCT. Disc area, rim area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and average, temporal, superior, nasal, and inferior RNFL thicknesses were calculated. The main outcome measures were associations between Cirrus HD-OCT optic nerve head and RNFL measurements and age, sex, and race. The 284 subjects self-identified as being of European (122), Chinese (63), African (51), or Hispanic (35) descent. After adjusting for the effect of age, there was a statistically significant difference among racial groups for all optic nerve head and RNFL parameters (all P ≤ .005) except rim area (P = .22). Rim area, average cup-disc ratio, vertical cup-disc ratio, and cup volume were moderately associated with disc area (r(2) = 0.15, 0.33, 0.33, and 0.37, respectively). After a linear adjustment for disc area, there was no statistically significant difference among racial groups for any optic nerve head parameter. Individuals of European descent had thinner RNFL measurements except in the temporal quadrant. There are racial differences in optic disc area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and RNFL thickness as measured by Cirrus HD-OCT. These differences should be considered when using Cirrus HD-OCT to assess for glaucomatous damage in differing population groups.

  3. Effect of Race, Age, and Axial Length on Optic Nerve Head Parameters and Retinal Nerve Fiber Layer Thickness Measured by Cirrus HD-OCT

    PubMed Central

    Knight, O’Rese J.; Girkin, Christopher A.; Budenz, Donald L.; Durbin, Mary K.; Feuer, William J.

    2017-01-01

    Objective To determine the effect of race, demographic, and ocular variables on optic nerve head and retinal nerve fiber layer (RNFL) thickness measurements using spectral-domain optical coherence tomography. Methods In a cross-sectional observational study, 284 normal subjects aged 18 to 84 years were evaluated at 7 sites using Cirrus HD-OCT. Disc area, rim area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and average, temporal, superior, nasal, and inferior RNFL thicknesses were calculated. The main outcome measures were associations between Cirrus HD-OCT optic nerve head and RNFL measurements and age, sex, and race. Results The 284 subjects self-identified as being of European (122), Chinese (63), African (51), or Hispanic (35) descent. After adjusting for the effect of age, there was a statistically significant difference among racial groups for all optic nerve head and RNFL parameters (all P≤.005) except rim area (P=.22). Rim area, average cup-disc ratio, vertical cup-disc ratio, and cup volume were moderately associated with disc area (r2=0.15, 0.33, 0.33, and 0.37, respectively). After a linear adjustment for disc area, there was no statistically significant difference among racial groups for any optic nerve head parameter. Individuals of European descent had thinner RNFL measurements except in the temporal quadrant. Conclusions There are racial differences in optic disc area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and RNFL thickness as measured by Cirrus HD-OCT. These differences should be considered when using Cirrus HD-OCT to assess for glaucomatous damage in differing population groups. PMID:22411660

  4. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Simmons, C. S.; Cary, J. W.

    1992-10-01

    The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ≪ 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ≫0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.

  5. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2002-01-01

    The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2 m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, tibia and foot, accelerations along the vertical axis at the head and the tibia, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the tibia and the transmission of the shock wave at heel strike (measured by the peak acceleration ratio of the head/tibia and the time lag between the tibial and head peak accelerations) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.

  6. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.200-8 Section 179.200-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  7. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.100-8 Section 179.100-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a) The tank head shape...

  8. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank heads. 179.200-8 Section 179.200-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  9. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  10. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  11. 15 CFR 241.4 - Application of tolerance for “diameter of head.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the mean of the average diameters from inside to inside of staves at the inner edges of the heads. (2..., one taken from inside to inside of staves at the inner edge of the head, the other from inside to inside of staves at the inner edge of the croze ring, or from inside to inside of staves at a point where...

  12. 50 CFR 216.242 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-headed whale (Peponocephala electra)—8270 (an average of 1654 annually). (Q) Pygmy killer whale (Feresa attenuata)—1400 (an average of 280 annually). (R) False killer whale (Pseudorca crassidens)—2690 (an average of 538 annually). (S) Killer whale (Orcinus orca)—2515 (an average of 503 annually). (T) Pilot whales...

  13. 50 CFR 216.242 - Permissible methods of taking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-headed whale (Peponocephala electra)—8270 (an average of 1654 annually). (Q) Pygmy killer whale (Feresa attenuata)—1400 (an average of 280 annually). (R) False killer whale (Pseudorca crassidens)—2690 (an average of 538 annually). (S) Killer whale (Orcinus orca)—2515 (an average of 503 annually). (T) Pilot whales...

  14. Radiological image presentation requires consideration of human adaptation characteristics

    NASA Astrophysics Data System (ADS)

    O'Connell, N. M.; Toomey, R. J.; McEntee, M.; Ryan, J.; Stowe, J.; Adams, A.; Brennan, P. C.

    2008-03-01

    Visualisation of anatomical or pathological image data is highly dependent on the eye's ability to discriminate between image brightnesses and this is best achieved when these data are presented to the viewer at luminance levels to which the eye is adapted. Current ambient light recommendations are often linked to overall monitor luminance but this relies on specific regions of interest matching overall monitor brightness. The current work investigates the luminances of specific regions of interest within three image-types: postero-anterior (PA) chest; PA wrist; computerised tomography (CT) of the head. Luminance levels were measured within the hilar region and peripheral lung distal radius and supra-ventricular grey matter. For each image type average monitor luminances were calculated with a calibrated photometer at ambient light levels of 0, 100 and 400 lux. Thirty samples of each image-type were employed, resulting in a total of over 6,000 measurements. Results demonstrate that average monitor luminances varied from clinically-significant values by up to a factor of 4, 2 and 6 for chest, wrist and CT head images respectively. Values for the thoracic hilum and wrist were higher and for the peripheral lung and CT brain lower than overall monitor levels. The ambient light level had no impact on the results. The results demonstrate that clinically important radiological information for common radiological examinations is not being presented to the viewer in a way that facilitates optimised visual adaptation and subsequent interpretation. The importance of image-processing algorithms focussing on clinically-significant anatomical regions instead of radiographic projections is highlighted.

  15. Comparative Analysis of Head Impact in Contact and Collision Sports

    PubMed Central

    Reynolds, Bryson B.; Patrie, James; Henry, Erich J.; Goodkin, Howard P.; Broshek, Donna K.; Wintermark, Max

    2017-01-01

    Abstract As concerns about head impact in American football have grown, similar concerns have started to extend to other sports thought to experience less head impact, such as soccer and lacrosse. However, the amount of head impact experienced in soccer and lacrosse is relatively unknown, particularly compared with the substantial amount of data from football. This pilot study quantifies and compares head impact from four different types of sports teams: college football, high school football, college soccer, and college lacrosse. During the 2013 and 2014 seasons, 61 players wore mastoid patch accelerometers to quantify head impact during official athletic events (i.e., practices and games). In both practices and games, college football players experienced the most or second-most impacts per athletic event, highest average peak resultant linear and rotational acceleration per impact, and highest cumulative linear and rotational acceleration per athletic event. For average peak resultant linear and rotational acceleration per individual impact, college football was followed by high school football, then college lacrosse, and then college soccer, with similar trends in both practices and games. In the four teams under study, college football players experienced a categorically higher burden of head impact. However, for cumulative impact burden, the high school football cohort was not significantly different from the college soccer cohort. The results suggest that head impact in sport substantially varies by both the type of sport (football vs. soccer vs. lacrosse) and level of play (college vs. high school). PMID:27541183

  16. Multi-sector thermo-physiological head simulator for headgear research

    NASA Astrophysics Data System (ADS)

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M.; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  17. Conceptualization and calibration of anisotropic, dynamic alluvial systems: Pitfalls and biases in current modelling practices

    NASA Astrophysics Data System (ADS)

    Gianni, Guillaume; Doherty, John; Perrochet, Pierre; Brunner, Philip

    2017-04-01

    Physical properties of alluvial environments are typically featuring a high degree of anisotropy and are characterized by dynamic interactions between the surface and the subsurface. A literature review on current modelling practice shows that hydrogeological models are often calibrated using isotropic hydraulic conductivity fields and steady state conditions. We aim at understanding how these simplifications affect the predictions of hydraulic heads and exchange fluxes using fully coupled, physically based synthetic models and advanced calibration approaches. Specifically, we present an analysis of the information content provided by averaged, steady state hydraulic data compared to transient data with respect to the determination of aquifer hydraulic properties. We show that the information content in average hydraulic heads is insufficient to inform anisotropic properties of alluvial aquifers and can lead to important biases on the calibrated parameters. We further explore the consequences of these biases on predictions of fluxes and water table dynamics. The results of this synthetic analysis are considered in the calibration of a highly dynamic and anisotropic alluvial aquifer system in Switzerland (the Rhône River). The results of the synthetic and real-world modelling and calibration exercises provide insight on future data acquisition, modelling and calibration strategies for these environments.

  18. Press-fit bipolar radial head arthroplasty, midterm results.

    PubMed

    Kodde, Izaäk F; Heijink, Andras; Kaas, Laurens; Mulder, Paul G H; van Dijk, C Niek; Eygendaal, Denise

    2016-08-01

    Theoretical advantages of bipolar compared with monopolar radial head arthroplasty include better accommodation of radiocapitellar malalignment, reduction of capitellar abrasion, and reduction of stress at the bone-implant interfaces. Our purpose was to report the midterm results of press-fit bipolar radial head arthroplasty. Thirty patients were treated by press-fit bipolar radial head arthroplasty for acute fracture of the radial head, failed earlier treatment, or post-traumatic sequelae. Three patients were lost to follow-up. Results are presented for the remaining 27 patients. At mean follow-up of 48 months (range, 28-73), there had been 3 (11%) revisions. Two involved conversion to prosthetic radiocapitellar hemiarthroplasty for symptomatic capitellar abrasion; a third involved exchange of the articular component (ie, head) for instability. In all, the stems appeared well fixed. A prosthesis in a subluxed position accounted for the 1 (4%) additional radiologic failure. The average flexion-extension arc was 136° (range, 120°-145°), and the average pronation-supination arc was 138° (range, 70°-180°). According to the Mayo Elbow Performance Score, the combined excellent and good results accounted for 70%. The overall midterm outcome of this series of 30 press-fit bipolar radial head arthroplasties can be considered favorable. Although the revision rate was 11%, the stems were well fixed in all. There was 1 (4%) additional radiologic failure. We suggest considering a press-fit bipolar radial head prosthesis for acute comminuted radial head fractures with limited bone loss of the proximal radius. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Safety and Tumor-specificity of Cetuximab-IRDye800 for Surgical Navigation in Head and Neck Cancer

    PubMed Central

    Rosenthal, Eben L; Warram, Jason M; de Boer, Esther; Chung, Thomas K; Korb, Melissa L; Brandwein-Gensler, Margie; Strong, Theresa V; Schmalbach, Cecelia E; Morlandt, Anthony B; Agarwal, Garima; Hartman, Yolanda E; Carroll, William R; Richman, Joshua S; Clemons, Lisa K; Nabell, Lisle M; Zinn, Kurt R

    2016-01-01

    Purpose Positive margins dominate clinical outcomes after surgical resections in most solid cancer types including head and neck squamous cell carcinoma. Unfortunately, surgeons remove cancer in the same manner they have for a century with complete dependence on subjective tissue changes to identify cancer in the operating room. To effect change, we hypothesize that epidermal growth factor receptor (EGFR) can be targeted for safe and specific real-time localization of cancer. Experimental design A dose escalation study of cetuximab conjugated to IRDye800 was performed in patients (n=12) undergoing surgical resection of squamous cell carcinoma arising in the head and neck. Safety and pharmacokinetic data were obtained out to 30 days post-infusion. Multi-instrument fluorescence imaging was performed in the operating room and in surgical pathology. Results There were no grade 2 or higher adverse events attributable to cetuximab-IRDye800. Fluorescence imaging with an intraoperative, wide-field device successfully differentiated tumor from normal tissue during resection with an average tumor-to-background ratio of 5.2 in the highest dose range. Optical imaging identified opportunity for more precise identification of tumor during the surgical procedure and during the pathological analysis of tissues ex-vivo. Fluorescence levels positively correlated with EGFR levels. Conclusion We demonstrate for the first time that commercially available antibodies can be fluorescently labeled and safely administered to humans to identify cancer with sub-millimeter resolution, which has the potential to improve outcomes in clinical oncology. PMID:25904751

  20. Will New Metal Heads Restore Mechanical Integrity of Corroded Trunnions?

    PubMed

    Derasari, Aditya; Gold, Jonathan E; Ismaily, Sabir; Noble, Philip C; Incavo, Stephen J

    2017-04-01

    Metal wear and corrosion from modular junctions in total hip arthroplasty can lead to further unwanted surgery. Trunnion tribocorrosion is recognized as an important contributor to failure. This study was performed to determine if new metal heads restore mechanical integrity of the original modular junction after impaction on corroded trunnions, and assess which variables affect stability of the new interface created at revision total hip arthroplasty. Twenty-two trunnions, cobalt-chromium (CoCr) and titanium alloy (TiAIV), (CoCr, n = 12; TiAIV, n = 10) and new metal heads were used, 10 trunnions in pristine condition and 12 with corrosion damage. Test states were performed using an MTS Machine and included the following: 1, Assembly; 2, Disassembly; 3, Assembly; 4, Toggling; and 5, Disassembly. During loading, three-dimensional motion of the head-trunnion junction was measured using a custom jig. There were no statistical differences in the tested mechanical properties between corroded and pristine trunnions implanted with a new metal femoral head. Average micromotion of the head versus trunnion interface was greatest at the start of loading, stabilizing after approximately 50 loading cycles at an average of 30.6 ± 3.2 μm. Corrosion at the trunnion does not disrupt mechanical integrity of the junction when a CoCr head is replaced with a CoCr trunnion. However, increased interface motion of a new metal head on a corroded titanium trunnion requires additional study. The evaluation of ball head size on mechanical integrity of trunnions would also be a potential subject of future investigation, as increasing the ball head size at the time of revision is not uncommon in revisions today. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Arrestant Effect of Human Scalp Components on Head Louse (Phthiraptera: Pediculidae) Behavior.

    PubMed

    Ortega-Insaurralde, Isabel; Ceferino Toloza, Ariel; Gonzalez-Audino, Paola; Inés Picollo, María

    2017-03-01

    Relevant evidence has shown that parasites process host-related information using chemical, visual, tactile, or auditory cues. However, the cues that are involved in the host-parasite interaction between Pediculus humanus capitis (De Geer 1767) and humans have not been identified yet. In this work, we studied the effect of human scalp components on the behavior of adult head lice. Filter paper segments were rubbed on volunteers' scalps and then placed in the experimental arena, where adult head lice were individually tested. The movement of the insects was recorded for each arena using the software EthoVision. Average movement parameters were calculated for the treatments in the bioassays such as total distance, velocity, number of times a head louse crossed between zones of the arena, and time in each zone of the arena. We found that scalp components induced head lice to decrease average locomotor activity and to remain arrested on the treated paper. The effect of the ageing of human scalp samples in the response of head lice was not statistically significant (i.e., human scalp samples of 4, 18, 40, and 60 h of ageing did not elicit a significant change in head louse behavior). When we analyzed the effect of the sex in the response of head lice to human scalp samples, males demonstrated significant differences. Our results showed for the first time the effect of host components conditioning head lice behavior. We discuss the role of these components in the dynamic of head lice infestation. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The effect of radial head implant shape on radiocapitellar kinematics during in vitro forearm rotation.

    PubMed

    Shannon, Hannah L; Deluce, Simon R; Giles, Joshua W; Johnson, James A; King, Graham J W

    2015-02-01

    A number of radial head implants are in clinical use for the management of radial head fractures and their sequelae. However, the optimal shape of a radial head implant to ensure proper tracking relative to the capitellum has not been established. This in vitro biomechanical study compared radiocapitellar joint kinematics for 3 radial head implant designs as well as the native head. Eight cadaveric upper extremities were tested using a forearm rotation simulator with the elbow at 90° of flexion. Motion of the radius relative to the capitellum was optically tracked. A stem was navigated into a predetermined location and cemented in place. Three unipolar implant shapes were tested: axisymmetric, reverse-engineered patient-specific, and population-based quasi-anatomic. The patient-specific and quasi-anatomic implants were derived from measurements performed on computed tomography models. Medial-lateral and anterior-posterior translation of the radial head with respect to the capitellum varied with forearm rotation and radial head condition. A significant difference in medial-lateral (P = .03) and anterior-posterior (P = .03) translation was found between the native radial head and the 3 implants. No differences were observed among the radial head conditions except for a difference in medial-lateral translation between the axisymmetric and patient-specific implants (P = .04). Radiocapitellar kinematics of the tested radial head implants were similar in all but one comparison, and all had different kinematics from the native radial head. Patient-specific radial head implants did not prove advantageous relative to conventional implant designs. The shape of the fixed stem unipolar radial head implants had little influence on radiocapitellar kinematics when optimally positioned in this testing model. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head

    PubMed Central

    Wang, Wei; Hu, Wei; Yang, Pei; Dang, Xiao Qian; Li, Xiao Hui; Wang, Kun Zheng

    2017-01-01

    Introduction Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. Methods Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. Results The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. Conclusions Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis. PMID:28464029

  4. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head.

    PubMed

    Wang, Wei; Hu, Wei; Yang, Pei; Dang, Xiao Qian; Li, Xiao Hui; Wang, Kun Zheng

    2017-01-01

    Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis.

  5. A New Method for Carbon Isotopic Analysis of Nanogram Quantities of Carbon from Dissolved Chitin Using A Spooling-wire Microcombustion Interface

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Nelson, D. M.; Clegg, B. F.; Berry, J.; Hu, F.

    2016-12-01

    δ13C analysis of specific taxa or compounds is commonly used for investigating past environmental change, including methane dynamics in lakes. However, most analytical methods require large sample sizes, prohibiting routine analysis of fossils of individual taxa found in sediment deposits. For example, 10-100 individual head capsules of fossil midges are required for δ13C analysis using an elemental analyzer (EA) interfaced with an isotope-ratio mass spectrometer (IRMS). Here we present a new method that uses a spooling-wire microcombustion (SWiM) device interfaced with an IRMS for measuring δ13C values of carbon dissolved from individual head capsules of chitinous aquatic zooplankton. We extracted chitin (a major biochemical component of insect exoskeleton) from modern midge material obtained from four commercial suppliers. We first assessed the effects of sample treatments on carbon yields and δ13C values of dissolved chitin by varying the concentration of HCl used for dissolution, the duration of reaction in HCl, and the temperature of dissolution. We then investigated potential fractionation of carbon isotopes associated with chitin dissolution, by comparing δ13C values of dissolved chitin obtained via SWiM-IRMS with those from untreated head capsules obtained via a EA-IRMS. The average δ13C values of untreated head capsules varied between -25.1 and -30.1‰. Higher acid concentrations and temperatures, as well as longer reaction times, increased dissolution of carbon from the head capsules and the precision of δ13C values. For example, carbon yields from reaction of head capsules with 6N HCl at 25°C increased from 1 to 3 Vs as reaction times increased from 1 to 24 hours. Acid concentration and reaction time had the greatest influence on carbon yields and isotopic precision. The δ13C values of dissolved chitin mirrored the δ13C values of untreated head capsules with minimal offset of absolute values, which suggests no systematic fractionation associated with dissolution. Overall, these results indicate that carbon isotopic analysis of dissolved chitin using the SWiM-IRMS system offers a reliable new method to determine taxa-specific δ13C values for chitinous aquatic zooplankton. In ongoing work, we are applying this tool to reconstruct past methane dynamics in Arctic lakes during the Holocene.

  6. Exploding head syndrome: six new cases and review of the literature.

    PubMed

    Frese, Achim; Summ, Oliver; Evers, Stefan

    2014-09-01

    Exploding head syndrome (EHS) is characterized by attacks of a sudden noise or explosive feeling experienced in the head occurring during the transition from wake to sleep or from sleep to wake. We present six new cases extending the clinical experience with the syndrome. We also reviewed all available cases from the scientific literature and evaluated the typical features of EHS. The female to male ratio is 1.5 to 1. The median age at onset is 54. In average, one attack per day to one attack per week occurs. Some patients suffer from several attacks per night. In about half of all patients, a chronic time course can be observed but episodic or sporadic occurrence is also common. The most frequent accompanying symptoms beside the noise are fear and flashes of light. Polysomnographic studies do not reveal any specific sleep pattern associated with EHS. Tricyclic antidepressants are helpful in some patients. However, most patients do not need treatment because of the benign nature of the syndrome. EHS is a well-defined disease entity with a benign nature. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Frequency, magnitude, and distribution of head impacts in Pop Warner football: the cumulative burden.

    PubMed

    Wong, Ricky H; Wong, Andrew K; Bailes, Julian E

    2014-03-01

    A growing body of research suggests that subconcussive head impacts or repetitive mild Traumatic Brain Injury (mTBI) can have cumulative and deleterious effects. Several studies have investigated head impacts in football at the professional, collegiate, and high school levels, in an attempt to elucidate the biomechanics of head impacts among football players. Youth football players, generally from 7 to 14 years of age, constitute 70% of all football players, yet burden of, and susceptibility to, head injury in this population is not well known. A novel impact sensor utilizing binary force switches (Shockbox(®)) was used to follow an entire Pop Warner football team consisting of twenty-two players for six games and five practices. The impact sensor was designed to record impacts with linear accelerations over 30g. In addition, video recording of games and practices were used to further characterize the head impacts by type of position (skilled versus unskilled), field location of impact (open field versus line of scrimmage), type of hit (tackling, tackled, or hold/push), and whether the impact was a head-to-head impact or not. We recorded a total of 480 head impacts. An average of 21.8 head impacts occurred per practice, while 61.8 occurred per game. Players had an average of 3.7 head impacts per game and 1.5 impacts per practice (p<0.001). The number of high magnitude head impacts (>80g) was 11. Two concussions were diagnosed over the course of the season. However, due to technical reasons the biomechanics of those hits resulting in concussions were not captured. Despite smaller players and slower play when compared to high school, collegiate or professional players, those involved in youth football sustain a moderate number of head impacts per season with several high magnitude impacts. Our results suggest that players involved in open-field, tackling plays that have head-to-head contact sustain impacts with the highest linear accelerations. Our data supports previously published data that suggests changes to the rules of play during practice can reduce the burden of hits. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Positron emission tomography in Warthin's tumor mimicking malignancy impacts the evaluation of head and neck patients.

    PubMed

    Rassekh, Christopher H; Cost, Jamey L; Hogg, Jeffery P; Hurst, Mike K; Marano, Gary D; Ducatman, Barbara S

    2015-01-01

    1) To determine SUVs and PET/CT characteristics of Warthin's tumors in patients presenting to a head and neck cancer clinic. 2) To analyze the impact of PET/CT on the clinical course of these patients. This is a single-institution retrospective analysis of patients with proven Warthin's tumors who underwent PET/CT done at or near the time of diagnosis and presented to a head and neck cancer practice. Data were obtained from the electronic medical records of these patients and the imaging and pathology databases. Six patients with Warthin's tumor met the criteria for and form the study cohort. Three patients had bilateral tumors. The SUVs for Warthin's varied from 3.4 to 16.1 in these patients, with an average of 7.8 and these SUVs were higher for Warthin's than for the cancers. These findings on PET/CT in this group required additional workup of all patients and required FNA, surgery or SPECT-CT to confirm the diagnosis. Although it is known that Warthin's tumor may be hypermetabolic on PET, this finding in the parotid or neck on PET/CT alters the evaluation and treatment of head and neck cancer patients and patients with cancers outside the head and neck by raising the concern about metastatic disease or multiple primary cancers. In other patients, PET/CT obtained for other reasons may prompt concern about incidental malignancy. This series specifically characterizes clinical features, SPECT-CT and FNA findings that can help reinforce the diagnosis of Warthin's and facilitate management. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  10. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a) The tank head shape...

  11. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a) The tank head shape...

  12. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a) The tank head shape...

  13. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  14. Difference in dummy responses in matched side impact tests of vehicles with and without side airbags.

    PubMed

    Viano, David C; Parenteau, Chantal S

    2016-07-03

    Insurance Institute for Highway Safety (IIHS) high-hooded side impacts were analyzed for matched vehicle tests with and without side airbags. The comparison provides a measure of the effectiveness of side airbags in reducing biomechanical responses for near-side occupants struck by trucks, SUVs, and vans at 50 km/h. The IIHS moving deformable barrier (MDB) uses a high-hooded barrier face. It weighs 1,500 kg and impacts the driver side perpendicular to the vehicle at 50 km/h. SID IIs dummies are placed in the driver and left second-row seats. They represent fifth percentile female occupants. IIHS tests were reviewed for matches with one test with a side airbag and another without it in 2003-2007 model year (MY) vehicles. Four side airbag systems were evaluated: (1) curtain and torso side airbags, (2) head and torso side airbag, (3) curtain side airbag, and (4) torso side airbag. There were 24 matched IIHS vehicle tests: 13 with and without a curtain and torso side airbags, 4 with and without a head and torso side airbag, 5 with and without a side curtain airbag, and 2 with and without a torso airbag. The head, chest, and pelvis responses were compared for each match and the average difference was determined across all matches for a type of side airbag. The average reduction in head injury criterion (HIC) was 68 ± 16% (P < .001) with curtain and torso side airbags compared to the HIC without side airbags. The average HIC was 296 with curtain and torso side airbags and 1,199 without them. The viscous response (VC) was reduced 54 ± 19% (P < .005) with curtain and torso side airbags. The combined acetabulum and ilium force (7 ± 15%) and pelvic acceleration (-2 ± 17%) were essentially similar in the matched tests. The head and torso side airbag reduced HIC by 42 ± 30% (P < .1) and VC by 32 ± 26% compared to vehicles without a side airbag. The average HIC was 397 with the side head and torso airbag compared to 729 without it. The curtain airbag and torso airbag only showed lower head responses but essentially no difference in the chest and pelvis responses. The curtain and torso side airbags effectively reduced biomechanical responses for the head and chest in 50 km/h side impacts with a high-hooded deformable barrier. The reductions in the IIHS tests are directionally the same as estimated fatality reductions in field crashes reported by NHTSA for side airbags.

  15. Head Impact Exposure in Youth Football: High School Ages 14 to 18 Years and Cumulative Impact Analysis

    PubMed Central

    Urban, Jillian E.; Davenport, Elizabeth M.; Golman, Adam J.; Maldjian, Joseph A.; Whitlow, Christopher T.; Powers, Alexander K.; Stitzel, Joel D.

    2015-01-01

    Sports-related concussion is the most common athletic head injury with football having the highest rate among high school athletes. Traditionally, research on the biomechanics of football-related head impact has been focused at the collegiate level. Less research has been performed at the high school level, despite the incidence of concussion among high school football players. The objective of this study is to twofold: to quantify the head impact exposure in high school football, and to develop a cumulative impact analysis method. Head impact exposure was measured by instrumenting the helmets of 40 high school football players with helmet mounted accelerometer arrays to measure linear and rotational acceleration. A total of 16,502 head impacts were collected over the course of the season. Biomechanical data were analyzed by team and by player. The median impact for each player ranged from 15.2 to 27.0 g with an average value of 21.7 (±2.4) g. The 95th percentile impact for each player ranged from 38.8 to 72.9 g with an average value of 56.4 (±10.5) g. Next, an impact exposure metric utilizing concussion injury risk curves was created to quantify cumulative exposure for each participating player over the course of the season. Impacts were weighted according to the associated risk due to linear acceleration and rotational acceleration alone, as well as the combined probability (CP) of injury associated with both. These risks were summed over the course of a season to generate risk weighted cumulative exposure. The impact frequency was found to be greater during games compared to practices with an average number of impacts per session of 15.5 and 9.4, respectively. However, the median cumulative risk weighted exposure based on combined probability was found to be greater for practices vs. games. These data will provide a metric that may be used to better understand the cumulative effects of repetitive head impacts, injury mechanisms, and head impact exposure of athletes in football. PMID:23864337

  16. Understanding the Effects of Spaceflight on Head-trunk Coordination During Walking and Obstacle Avoidance

    NASA Technical Reports Server (NTRS)

    Madansingh, S.; Bloomberg, J. J.

    2014-01-01

    Prolonged exposure to spaceflight conditions results in a battery of physiological changes, some of which contribute to sensorimotor and neurovestibular deficits. Upon return to Earth, functional performance changes are tested using the Functional Task Test (FTT), which includes an obstacle course to observe post-flight balance and postural stability, specifically during turning. The goal of this study was to quantify changes in movement strategies during turning events by observing the latency between head-and-trunk coordinated movements. It was hypothesized that subjects experiencing neurovestibular adaptations would exhibit head-to-trunk locking ('en bloc' movement) during turning, exhibited by a decrease in latency between head and trunk movement. FTT data samples were collected from 13 ISS astronauts and 26 male 70-day head down tilt bed rest subjects, including bed rest controls (10 BRC) and bed rest exercisers (16 BRE). Samples were analyzed three times pre-exposure, immediately post-exposure (0 or 1 day post) and 2-to-3 times during recovery from the unloading environment. Two 3D inertial measurements units (XSens MTx) were attached to subjects, one on the head and one on the upper back. This study focused primarily on the yaw movements about the subject's center of rotation. Time differences (latency) between head and trunk movement were averaged across a slalom obstacle portion, consisting of three turns (approximately three 60° turns). All participants were grouped as 'decreaser' or 'increaser,' relating to their change in head-to-trunk movement latency between pre- and post- environmental adaptation measures. Space flight unloading (ISS) showed a bimodal response between the 'increaser' and 'decreaser' group, while both bed rest control (BRC) and bed rest exercise (BRE) populations showed increased preference towards a 'decreaser' categorization, displaying greater head-trunk locking. It is clear that changes in movement strategies are adopted during exposure to an unloading environment. These results further the understanding of vestibular-somatosensory convergence and support the use of bed rest as an exclusionary model to better understand sensorimotor changes in space flight.

  17. SU-E-P-49: Evaluation of Image Quality and Radiation Dose of Various Unenhanced Head CT Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Khan, M; Alapati, K

    2015-06-15

    Purpose: To evaluate the diagnostic value of various unenhanced head CT protocols and predicate acceptable radiation dose level for head CT exam. Methods: Our retrospective analysis included 3 groups, 20 patients per group, who underwent clinical routine unenhanced adult head CT examination. All exams were performed axially with 120 kVp. Three protocols, 380 mAs without iterative reconstruction and automAs, 340 mAs with iterative reconstruction without automAs, 340 mAs with iterative reconstruction and automAs, were applied on each group patients respectively. The images were reconstructed with H30, J30 for brain window and H60, J70 for bone window. Images acquired with threemore » protocols were randomized and blindly reviewed by three radiologists. A 5 point scale was used to rate each exam The percentage of exam score above 3 and average scores of each protocol were calculated for each reviewer and tissue types. Results: For protocols without automAs, the average scores of bone window with iterative reconstruction were higher than those without iterative reconstruction for each reviewer although the radiation dose was 10 percentage lower. 100 percentage exams were scored 3 or higher and the average scores were above 4 for both brain and bone reconstructions. The CTDIvols are 64.4 and 57.8 mGy of 380 and 340 mAs, respectively. With automAs, the radiation dose varied with head size, resulting in 47.5 mGy average CTDIvol between 39.5 and 56.5 mGy. 93 and 98 percentage exams were scored great than 3 for brain and bone windows, respectively. The diagnostic confidence level and image quality of exams with AutomAs were less than those without AutomAs for each reviewer. Conclusion: According to these results, the mAs was reduced to 300 with automAs OFF for head CT exam. The radiation dose was 20 percentage lower than the original protocol and the CTDIvol was reduced to 51.2 mGy.« less

  18. Interactions between gaze-evoked blinks and gaze shifts in monkeys.

    PubMed

    Gandhi, Neeraj J

    2012-02-01

    Rapid eyelid closure, or a blink, often accompanies head-restrained and head-unrestrained gaze shifts. This study examines the interactions between such gaze-evoked blinks and gaze shifts in monkeys. Blink probability increases with gaze amplitude and at a faster rate for head-unrestrained movements. Across animals, blink likelihood is inversely correlated with the average gaze velocity of large-amplitude control movements. Gaze-evoked blinks induce robust perturbations in eye velocity. Peak and average velocities are reduced, duration is increased, but accuracy is preserved. The temporal features of the perturbation depend on factors such as the time of blink relative to gaze onset, inherent velocity kinematics of control movements, and perhaps initial eye-in-head position. Although variable across animals, the initial effect is a reduction in eye velocity, followed by a reacceleration that yields two or more peaks in its waveform. Interestingly, head velocity is not attenuated; instead, it peaks slightly later and with a larger magnitude. Gaze latency is slightly reduced on trials with gaze-evoked blinks, although the effect was more variable during head-unrestrained movements; no reduction in head latency is observed. Preliminary data also demonstrate a similar perturbation of gaze-evoked blinks during vertical saccades. The results are compared with previously reported effects of reflexive blinks (evoked by air-puff delivered to one eye or supraorbital nerve stimulation) and discussed in terms of effects of blinks on saccadic suppression, neural correlates of the altered eye velocity signals, and implications on the hypothesis that the attenuation in eye velocity is produced by a head movement command.

  19. Multi-sector thermo-physiological head simulator for headgear research.

    PubMed

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  20. A Method to Recognize Anatomical Site and Image Acquisition View in X-ray Images.

    PubMed

    Chang, Xiao; Mazur, Thomas; Li, H Harold; Yang, Deshan

    2017-12-01

    A method was developed to recognize anatomical site and image acquisition view automatically in 2D X-ray images that are used in image-guided radiation therapy. The purpose is to enable site and view dependent automation and optimization in the image processing tasks including 2D-2D image registration, 2D image contrast enhancement, and independent treatment site confirmation. The X-ray images for 180 patients of six disease sites (the brain, head-neck, breast, lung, abdomen, and pelvis) were included in this study with 30 patients each site and two images of orthogonal views each patient. A hierarchical multiclass recognition model was developed to recognize general site first and then specific site. Each node of the hierarchical model recognized the images using a feature extraction step based on principal component analysis followed by a binary classification step based on support vector machine. Given two images in known orthogonal views, the site recognition model achieved a 99% average F1 score across the six sites. If the views were unknown in the images, the average F1 score was 97%. If only one image was taken either with or without view information, the average F1 score was 94%. The accuracy of the site-specific view recognition models was 100%.

  1. Influence of Tennis Racquet Kinematics on Ball Topspin Angular Velocity and Accuracy during the Forehand Groundstroke.

    PubMed

    Kwon, Sunku; Pfister, Robin; Hager, Ronald L; Hunter, Iain; Seeley, Matthew K

    2017-12-01

    Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s -1 , 6.6 ± 2.2 m·s -1 , and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact.

  2. Digital live-tracking 3-dimensional minisensors for recording head orientation during image acquisition.

    PubMed

    de Paula, Leonardo Koerich; Ackerman, James L; Carvalho, Felipe de Assis Ribeiro; Eidson, Lindsey; Cevidanes, Lucia Helena Soares

    2012-01-01

    Our objective was to test the value of minisensors for recording unrestrained head position with 6 degrees of freedom during 3-dimensional stereophotogrammetry. Four 3-dimensional pictures (3dMD, Atlanta, Ga) were taken of 20 volunteers as follows: (1) in unrestrained head position, (2) a repeat of picture 1, (3) in unrestrained head position wearing a headset with 3-dimensional live tracking sensors (3-D Guidance trackSTAR; Ascension Technology, Burlington, Vt), and (4) a repeat of picture 3. The sensors were used to track the x, y, and z coordinates (pitch, roll, and yaw) of the head in space. The patients were seated in front of a mirror and asked to stand and take a walk between each acquisition. Eight landmarks were identified in each 3-dimensional picture (nasion, tip of nose, subnasale, right and left lip commissures, midpoints of upper and lower lip vermilions, soft-tissue B-point). The distances between correspondent landmarks were measured between pictures 1 and 2 and 3 and 4 with software. The Student t test was used to test differences between unrestrained head position with and without sensors. Interlandmark distances for pictures 1 and 2 (head position without the sensors) and pictures 3 and 4 (head position with sensors) were consistent for all landmarks, indicating that roll, pitch, and yaw of the head are controlled independently of the sensors. However, interlandmark distances were on average 17.34 ± 0.32 mm between pictures 1 and 2. Between pictures 3 and 4, the distances averaged 6.17 ± 0.15 mm. All interlandmark distances were significantly different between the 2 methods (P <0.001). The use of 3-dimensional live-tracking sensors aids the reproducibility of patient head positioning during repeated or follow-up acquisitions of 3-dimensional stereophotogrammetry. Even with sensors, differences in spatial head position between acquisitions still require additional registration procedures. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  4. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  5. Analysis of impact noise induced by hitting of titanium head golf driver.

    PubMed

    Kim, Young Ho; Kim, Young Chul; Lee, Jun Hee; An, Yong-Hwi; Park, Kyung Tae; Kang, Kyung Min; Kang, Yeon June

    2014-11-01

    The hitting of titanium head golf driver against golf ball creates a short duration, high frequency impact noise. We analyzed the spectra of these impact noises and evaluated the auditory hazards from exposure to the noises. Noises made by 10 titanium head golf drivers with five maximum hits were collected, and the spectra of the pure impact sounds were studied using a noise analysis program. The noise was measured at 1.7 m (position A) and 3.4 m (position B) from the hitting point in front of the hitter and at 3.4 m (position C) behind the hitting point. Average time duration was measured and auditory risk units (ARUs) at position A were calculated using the Auditory Hazard Assessment Algorithm for Humans. The average peak levels at position A were 119.9 dBA at the sound pressure level (SPL) peak and 100.0 dBA at the overall octave level. The average peak levels (SPL and overall octave level) at position B were 111.6 and 96.5 dBA, respectively, and at position C were 111.5 and 96.7 dBA, respectively. The average time duration and ARUs measured at position A were 120.6 ms and 194.9 units, respectively. Although impact noises made by titanium head golf drivers showed relatively low ARUs, individuals enjoying golf frequently may be susceptible to hearing loss due to the repeated exposure of this intense impact noise with short duration and high frequency. Unprotected exposure to impact noises should be limited to prevent cochleovestibular disorders.

  6. Endovascular Management of Patients with Head and Neck Cancers Presenting with Acute Hemorrhage: A Single-Center Retrospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilas Boas, P. P.; Castro-Afonso, L. H. de; Monsignore, L. M.

    PurposeAcute hemorrhage associated with cancers of the head and neck is a life-threatening condition that requires immediate action. The aim of this study was to assess the safety and efficacy of endovascular embolization for acute hemorrhage in patients with head and neck cancers.Materials and MethodsData were retrospectively collected from patients with head and neck cancers who underwent endovascular embolization to treat acute hemorrhage. The primary endpoint was the rate of immediate control of hemorrhage during the first 24 h after embolization. The secondary endpoints were technical or clinical complications, rate of re-hemorrhage 24 h after the procedure, time from embolization to re-hemorrhage,more » hospitalization time, mortality rate, and time from embolization to death.ResultsFifty-one patients underwent endovascular embolization. The primary endpoint was achieved in 94% of patients. The rate of technical complications was 5.8%, and no clinical complication was observed. Twelve patients (23.5%) had hemorrhage recurrence after an average time of 127.5 days. The average hospitalization time was 7.4 days, the mortality rate during the follow-up period was 66.6%, and the average time from embolization to death was 132.5 days.ConclusionEndovascular embolization to treat acute hemorrhage in patients with head and neck cancers is a safe and effective method for the immediate control of hemorrhage and results in a high rate of hemorrhage control. Larger studies are necessary to determine which treatment strategy is best for improving patient outcomes.« less

  7. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    PubMed

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  8. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  9. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  10. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  11. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank...

  12. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  13. Correlation of Cooling Data from an Air-Cooled Cylinder and Several Multicylinder Engines

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1940-01-01

    The theory of engine-cylinder cooling developed in a previous report was further substantiated by data obtained on a cylinder from a Wright r-1820-g engine. Equations are presented for the average head and barrel temperatures of this cylinder as functions of the engine and the cooling conditions. These equations are utilized to calculate the variation in cylinder temperature with altitude for level flight and climb. A method is presented for correlating average head and barrel temperatures and temperatures at individual points on the head and the barrel obtained on the test stand and in flight. The method is applied to the correlation and the comparison of data obtained on a number of service engines. Data are presented showing the variation of cylinder temperature with time when the power and the cooling pressure drop are suddenly changed.

  14. Prognostic value of lymph node ratio in head and neck squamous cell carcinoma.

    PubMed

    Talmi, Yoav P; Takes, Robert P; Alon, Eran E; Nixon, Iain J; López, Fernando; de Bree, Remco; Rodrigo, Juan P; Shaha, Ashok R; Halmos, Gyorgy B; Rinaldo, Alessandra; Ferlito, Alfio

    2018-05-01

    Lymph node ratio (LNR) is increasingly reported as a potential prognostic tool. The purpose of this review was to analyze the available literature on the prognostic significance of LNR in head and neck squamous cell carcinoma (HNSCC). A PubMed internet search was performed and articles meeting selection criteria were reviewed. Twenty-eight studies were identified in the literature dealing with the prognostic value of LNR. The published results are variable with a range of cutoff values of LNR associated with prognosis (overall survival [OS] and/or disease-specific survival [DSS]) between 0.02 and 0.20, with an average of 0.09. The LNR is reported to be of value in assessing prognosis in the patients with HNSCC. Although it is easy to calculate and could be considered in the staging of these patients, the currently available evidence in the literature does not yet provide a solid base for implementation. © 2018 Wiley Periodicals, Inc.

  15. Stochastic Spectral Analysis for Characterizing Hydraulic Diffusivity in an Alluvial Fan Aquifer with River Stimulus

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Zha, Y.; Yeh, T. C. J.; Wen, J. C.

    2015-12-01

    Estimation of subsurface hydraulic diffusivity was carried out to understand the characteristics of Zhuoshui River alluvial fan, Taiwan. The fan, an important agricultural and industrial region with high water demand, is located at middle Taiwan with an area of 1800 km2. The prior geo-investigations suggest that the main recharge region of the fan is at an apex along the river. The distribution of soil hydraulic diffusivity was estimated by fusing naturally recurring stimulus provided by river and groundwater head. Specifically, the variance and power spectrum provided by temporal and spatial change of groundwater head in response to river stage variations are analyzed to estimate hydraulic diffusivity distribution. It is found that the hydraulic diffusivity of the fan is at the range from 0.08 to 16 m2/s. The average hydraulic diffusivity at the apex, middle, and tail of the fan along the river is about 0.4, 0.6, and 1.0 m2/s, respectively.

  16. 50 CFR 218.102 - Permissible methods of taking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...

  17. 50 CFR 218.102 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...

  18. 50 CFR 218.102 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...

  19. 50 CFR 218.102 - Permissible methods of taking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Odontocetes: (A) Sperm whales (Physeter macrocephalus)—4,120 (an average of 824 annually); (B) Killer whale...) Melon-headed whale (Peponocephala electra)—14,315 (an average of 2,863 annually); (J) Pygmy killer whale (Feresa attenuata)—800 (an average of 160 annually); (K) False killer whale (Pseudorca crassidens)—6,445...

  20. Musculotendon and fascicle strains in anterior and posterior neck muscles during whiplash injury.

    PubMed

    Vasavada, Anita N; Brault, John R; Siegmund, Gunter P

    2007-04-01

    A biomechanical neck model combined with subject-specific kinematic and electromyographic data were used to calculate neck muscle strains during whiplash. To calculate the musculotendon and fascicle strains during whiplash and to compare these strains to published muscle injury thresholds. Previous work has shown potentially injurious musculotendon strains in sternocleidomastoid (SCM) during whiplash, but neither the musculotendon strains in posterior cervical muscles nor the fascicle strains in either muscle group have been examined. Experimental human subject data from rear-end automobile impacts were integrated with a biomechanical model of the neck musculoskeletal system. Subject-specific head kinematic data were imposed on the model, and neck musculotendon and fascicle strains and strain rates were computed. Electromyographic data from the sternocleidomastoid and the posterior cervical muscles were compared with strain data to determine which muscles were being eccentrically contracted. SCM experienced lengthening during the retraction phase of head/neck kinematics, whereas the posterior muscles (splenius capitis [SPL], semispinalis capitis [SEMI], and trapezius [TRAP]) lengthened during the rebound phase. Peak SCM fascicle lengthening strains averaged (+/-SD) 4% (+/-3%) for the subvolumes attached to the mastoid process and 7% (+/-5%) for the subvolume attached to the occiput. Posteriorly, peak fascicle strains were 21% (+/-14%) for SPL, 18% (+/-16%) for SEMI, and 5% (+/-4%) for TRAP, with SPL strains significantly greater than calculated in SCM or TRAP. Fascicle strains were, on average, 1.2 to 2.3 times greater than musculotendon strains. SCM and posterior muscle activity occurred during intervals of muscle fascicle lengthening. The cervical muscle strains induced during a rear-end impact exceed the previously-reported injury threshold for a single stretch of active muscle. Further, the larger strains experienced by extensor muscles are consistent with clinical reports of pain primarily in the posterior cervical region following rear-end impacts.

  1. Oxygen saturation in optic nerve head structures by hyperspectral image analysis.

    PubMed

    Beach, James; Ning, Jinfeng; Khoobehi, Bahram

    2007-02-01

    A method is presented for the calculation and visualization of percent blood oxygen saturation from specific tissue structures in hyperspectral images of the optic nerve head (ONH). Trans-pupillary images of the primate optic nerve head and overlying retinal blood vessels were obtained with a hyperspectral imaging (HSI) system attached to a fundus camera. Images were recorded during normal blood flow and after partially interrupting flow to the ONH and retinal circulation by elevation of the intraocular pressure (IOP) from 10 mmHg to 55 mmHg in steps. Percent oxygen saturation was calculated from groups of pixels associated with separate tissue structures, using a linear least-squares curve fit of the recorded hemoglobin spectrum to reference spectra obtained from fully oxygenated and deoxygenated red cell suspensions. Color maps of saturation were obtained from a new algorithm that enables comparison of oxygen saturation from large vessels and tissue areas in hyperspectral images. Percent saturation in retinal vessels and from the average over ONH structures (IOP = 10 mmHg) was (mean +/- SE): artery 81.8 +/- 0.4%, vein 42.6 +/- 0.9%, average ONH 68.3 +/- 0.4%. Raising IOP from 10 mmHg to 55 mmHg for 5 min caused blood oxygen saturation to decrease (mean +/- SE): artery 46.1 +/- 6.2%, vein 36.1 +/- 1.6%, average ONH 41.9 +/- 1.6%. The temporal cup showed the highest saturation at low and high IOP (77.3 +/- 1.0% and 60.1 +/- 4.0%) and the least reduction in saturation at high IOP (22.3%) compared with that of the average ONH (38.6%). A linear relationship was found between saturation indices obtained from the algorithm and percent saturation values obtained by spectral curve fits to calibrated red cell samples. Percent oxygen saturation was determined from hyperspectral images of the ONH tissue and retinal vessels overlying the ONH at normal and elevated IOP. Pressure elevation was shown to reduce blood oxygen saturation in vessels and ONH structures, with the smallest reduction in the ONH observed in the temporal cup. IOP-induced saturation changes were visualized in color maps using an algorithm that follows saturation-dependent changes in the blood spectrum and blood volume differences across tissue. Reduced arterial saturation at high IOP may have resulted from a flow-dependent mechanism.

  2. [Macrocephalic spermatozoa. What would be the impact on reproduction?].

    PubMed

    Guichaoua, M-R; Mercier, G; Geoffroy-Siraudin, C; Paulmyer-Lacroix, O; Lanteaume, A; Metzler-Guillemin, C; Perrin, J; Achard, V

    2009-09-01

    We want to highlight the risk of infertility and failure of Assisted Reproductive Technologies due to the presence of macrocephalic spermatozoa (MS) in the sperm at rate equalling or superior to 20% in at least one semen analysis. We did a retrospective analysis of 19 infertile patients presenting MS at average rate between 14.3 and 49.7%. For each patient, at least one semen analysis showed a MS rate equal or superior to 20%. We did an automated analysis of the spermatozoa surface for 13 patients and a detailed analysis of the MS morphology in 18 patients. Thirteen couples benefited of one or more IVF with or without ICSI. The semen analysis shows an impairment of one or more parameter of the sperm in all patients. Three morphological aspects for MS were highlighted: MS with irregular head, MS with regular head, and MS with multiple heads, with a dominance of irregular heads. The spermatozoa surface analysis shows a significant increase of the average surface and of the standard deviation (p<0.0001). The average rate of pregnancies by transfer is decreased compared to usual rates in our laboratories (13% versus 28%). We want to sensitize biologist and clinical doctors to the existence of partial forms of this syndrome, which could be related to infertility with impaired sperm parameters and low pregnancy rates after FIV or ICSI.

  3. Computational estimation of magnetically induced electric fields in a rotating head

    NASA Astrophysics Data System (ADS)

    Ilvonen, Sami; Laakso, Ilkka

    2009-01-01

    Change in a magnetic field, or similarly, movement in a strong static magnetic field induces electric fields in human tissues, which could potentially cause harmful effects. In this paper, the fields induced by different rotational movements of a head in a strong homogeneous magnetic field are computed numerically. Average field magnitudes near the retinas and inner ears are studied in order to gain insight into the causes of phosphenes and vertigo-like effects, which are associated with extremely low-frequency (ELF) magnetic fields. The induced electric fields are calculated in four different anatomically realistic head models using an efficient finite-element method (FEM) solver. The results are compared with basic restriction limits by IEEE and ICNIRP. Under rotational movement of the head, with a magnetic flux rate of change of 1 T s-1, the maximum IEEE-averaged electric field and maximum ICNIRP-averaged current density were 337 mV m-1 and 8.84 mA m-2, respectively. The limits by IEEE seem significantly stricter than those by ICNIRP. The results show that a magnetic flux rate of change of 1 T s-1 may induce electric field in the range of 50 mV m-1 near retinas, and possibly even larger values near the inner ears. These results provide information for approximating the threshold electric field values of phosphenes and vertigo-like effects.

  4. Boxing-related injuries in the US Army, 1980 through 1985.

    PubMed

    Enzenauer, R W; Montrey, J S; Enzenauer, R J; Mauldin, W M

    1989-03-10

    Boxing-related injuries, serious enough to involve hospitalization in US Army hospitals, were studied from 1980 through 1985. On average, there were 67 hospitalizations annually, with the injured spending an average of 5.1 days in bed and 8.9 days disabled, unfit for duty. There was one death from serious head injury and one instance of unilateral blindness from ocular trauma requiring enucleation. Head injuries accounted for 68% of all the injuries and were more common in the younger and presumably less experienced boxers. The advisability of continued promotion of boxing in the military needs to be addressed.

  5. Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology.

    PubMed

    Kouazounde, J B; Gbenou, J D; Babatounde, S; Srivastava, N; Eggleston, S H; Antwi, C; Baah, J; McAllister, T A

    2015-03-01

    The objective of this study was to develop emission factors (EF) for methane (CH4) emissions from enteric fermentation in cattle native to Benin. Information on livestock characteristics and diet practices specific to the Benin cattle population were gathered from a variety of sources and used to estimate EF according to Tier 2 methodology of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Most cattle from Benin are Bos taurus represented by Borgou, Somba and Lagune breeds. They are mainly multi-purpose, being used for production of meat, milk, hides and draft power and grazed in open pastures and crop lands comprising tropical forages and crops. Estimated enteric CH4 EFs varied among cattle breeds and subcategory owing to differences in proportions of gross energy intake expended to meet maintenance, production and activity. EFs ranged from 15.0 to 43.6, 16.9 to 46.3 and 24.7 to 64.9 kg CH4/head per year for subcategories of Lagune, Somba and Borgou cattle, respectively. Average EFs for cattle breeds were 24.8, 29.5 and 40.2 kg CH4/head per year for Lagune, Somba and Borgou cattle, respectively. The national EF for cattle from Benin was 39.5 kg CH4/head per year. This estimated EF was 27.4% higher than the default EF suggested by IPCC for African cattle with the exception of dairy cattle. The outcome of the study underscores the importance of obtaining country-specific EF to estimate global enteric CH4 emissions.

  6. Characterization of skin reactions and pain reported by patients receiving radiation therapy for cancer at different sites.

    PubMed

    Gewandter, Jennifer S; Walker, Joanna; Heckler, Charles E; Morrow, Gary R; Ryan, Julie L

    2013-12-01

    Skin reactions and pain are commonly reported side effects of radiation therapy (RT). To characterize RT-induced symptoms according to treatment site subgroups and identify skin symptoms that correlate with pain. A self-report survey-adapted from the MD Anderson Symptom Inventory and the McGill Pain Questionnaire--assessed RT-induced skin problems, pain, and specific skin symptoms. Wilcoxon Sign Ranked tests compared mean severity or pre- and post-RT pain and skin problems within each RT-site subgroup. Multiple linear regression (MLR) investigated associations between skin symptoms and pain. Survey respondents (N = 106) were 58% female and on average 64 years old. RT sites included lung, breast, lower abdomen, head/neck/brain, and upper abdomen. Only patients receiving breast RT reported significant increases in treatment site pain and skin problems (P < or = .007). Patients receiving head/neck/brain RT reported increased skin problems (P < .0009). MLR showed that post-RT skin tenderness and tightness were most strongly associated with post-RT pain (P = .066 and P = .122, respectively). Small sample size, exploratory analyses, and nonvalidated measure. Only patients receiving breast RT reported significant increases in pain and skin problems at the RT site while patients receiving head/neck/brain RT had increased skin problems but not pain. These findings suggest that the severity of skin problems is not the only factor that contributes to pain and that interventions should be tailored to specifically target pain at the RT site, possibly by targeting tenderness and tightness. These findings should be confirmed in a larger sampling of RT patients.

  7. Countermanding eye-head gaze shifts in humans: marching orders are delivered to the head first.

    PubMed

    Corneil, Brian D; Elsley, James K

    2005-07-01

    The countermanding task requires subjects to cancel a planned movement on appearance of a stop signal, providing insights into response generation and suppression. Here, we studied human eye-head gaze shifts in a countermanding task with targets located beyond the horizontal oculomotor range. Consistent with head-restrained saccadic countermanding studies, the proportion of gaze shifts on stop trials increased the longer the stop signal was delayed after target presentation, and gaze shift stop-signal reaction times (SSRTs: a derived statistic measuring how long it takes to cancel a movement) averaged approximately 120 ms across seven subjects. We also observed a marked proportion of trials (13% of all stop trials) during which gaze remained stable but the head moved toward the target. Such head movements were more common at intermediate stop signal delays. We never observed the converse sequence wherein gaze moved while the head remained stable. SSRTs for head movements averaged approximately 190 ms or approximately 70-75 ms longer than gaze SSRTs. Although our findings are inconsistent with a single race to threshold as proposed for controlling saccadic eye movements, movement parameters on stop trials attested to interactions consistent with a race model architecture. To explain our data, we tested two extensions to the saccadic race model. The first assumed that gaze shifts and head movements are controlled by parallel but independent races. The second model assumed that gaze shifts and head movements are controlled by a single race, preceded by terminal ballistic intervals not under inhibitory control, and that the head-movement branch is activated at a lower threshold. Although simulations of both models produced acceptable fits to the empirical data, we favor the second alternative as it is more parsimonious with recent findings in the oculomotor system. Using the second model, estimates for gaze and head ballistic intervals were approximately 25 and 90 ms, respectively, consistent with the known physiology of the final motor paths. Further, the threshold of the head movement branch was estimated to be 85% of that required to activate gaze shifts. From these results, we conclude that a commitment to a head movement is made in advance of gaze shifts and that the comparative SSRT differences result primarily from biomechanical differences inherent to eye and head motion.

  8. Ground-water/surface-water relations along Honey Creek, Washtenaw County, Michigan, 2003

    USGS Publications Warehouse

    Healy, Denis F.

    2005-01-01

    The U.S. Geological Survey (USGS), in cooperation with the city of Ann Arbor, Mich., investigated the ground-water/ surface-water relations along the lower reaches of Honey Creek, Washtenaw County, Mich., and an unnamed tributary to Honey Creek (the discharge tributary) from June through October 2003. Streamflow in these reaches was artificially high during a naturally low-flow period due to an anthropogenic discharge. Ground-water/surface-water relations were examined by seepage runs (series of streamflow measurements for the computation of streams gains or losses) and measurements of the difference in head between the stream surface and shallow aquifer. Specific conductance and water-temperature measurements were used as ancillary data to help identify gaining and losing reaches. Three seepage runs and four runs in which hydraulic-head differences between the stream and shallow aquifer were measured (piezometer runs) were made during periods of base flow. Streamflow measurements were made at 18 sites for the seepage runs. Instream piezometers were installed at 16 sites and bank piezometers were installed at 2 sites. Two deeper instream piezometers were installed at site 13 on September 4, 2003 to collect additional data on the ground-water/surface-water relations at that site. The seepage runs indicate that the main stem of Honey Creek and the discharge tributary in the study area are overall gaining reaches. The seepage runs also indicate that smaller reaches of Honey Creek and the discharge tributary may be losing reaches and that this relation may change over time with changing hydraulic conditions. The piezometer-run measurements support the seepage-run results on the main stem, whereas piezometer-run measurements both support and conflict with seepage-run measurements on the discharge tributary. Seepage runs give an average for the reach, whereas piezometer head-difference measurements are for a specific area around the piezometer. Data that may appear to be conflicting actually may be showing that within a gaining reach there are localized areas that lose streamflow. The overall gain in streamflow along with specific measurements of head differences, specific conductance, and water temperature indicate that ground water is discharging to Honey Creek and the discharge tributary. Although reaches and areas that lose streamflow have been identified, data collected during this study cannot confirm or disprove that the loss is to the regional ground-water system.

  9. Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations.

    PubMed

    Pasquesi, Stephanie A; Margulies, Susan S

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n  = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.

  10. Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations

    PubMed Central

    Pasquesi, Stephanie A.; Margulies, Susan S.

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995

  11. Thermal Index Evaluation of Local SAR in MRI-Based Head Models of Adult and Children for Portable Telephones

    NASA Astrophysics Data System (ADS)

    Fujiwara, Osamu; Miyamoto, Kayoko; Wang, Jianqing

    Biological hazards due to radio-frequency (RF) waves result mainly from the temperature rise in tissue. It should be, therefore, clarified to what extent the RF waves of portable telephones increase the temperature-rise in human brain that includes the central part governing the body-temperature regulation function. In this paper, we calculated both the specific absorption rate (SAR) and the resultant temperature-rise for 900 MHz and 2 GHz portable telephones using the finite-difference time-domain (FDTD) method for three typical use positions, i.e., the vertical position, cheek position and tilt position. As a result, we found that there was an increase for median and 1% value of the cumulative distribution of temperature-rise in children’s brains for any use positions of the portable telephones compared to that in the adult’s brain, and also that the increasing trend in children’s brains for temperature-rise is identical to the temperature-rise trend in children’s hypothalamus. In addition, we found that the ten-gram averaged peak SAR among the adult and children heads had the same trend as that of the 0.1% value of the relatively cumulative distribution of temperature-rise, which shows that the ten-gram averaged peak SAR reflects only the localized temperature-rise in the brain surface.

  12. Salaries of Head Coaches Are Rising, Survey Shows.

    ERIC Educational Resources Information Center

    Naughton, Jim

    1998-01-01

    Salaries of head coaches in college sports are rising, but a large salary gap remains between coaches of men's and women's teams. In a national ranking of institutions by salary averages, men's coaches at the median institution made 43% more than women's coaches. Some institutions provide more salary equity than others. The Justice Department is…

  13. Alternative metrics for real-ear-to-coupler difference average values in children.

    PubMed

    Blumsack, Judith T; Clark-Lewis, Sandra; Watts, Kelli M; Wilson, Martha W; Ross, Margaret E; Soles, Lindsey; Ennis, Cydney

    2014-10-01

    Ideally, individual real-ear-to-coupler difference (RECD) measurements are obtained for pediatric hearing instrument-fitting purposes. When RECD measurements cannot be obtained, age-related average RECDs based on typically developing North American children are used. Evidence suggests that these values may not be appropriate for populations of children with retarded growth patterns. The purpose of this study was to determine if another metric, such as head circumference, height, or weight, can be used for prediction of RECDs in children. Design was a correlational study. For all participants, RECD values in both ears, head circumference, height, and weight were measured. The sample consisted of 68 North American children (ages 3-11 yr). Height, weight, head circumference, and RECDs were measured and were analyzed for both ears at 500, 750, 1000, 1500, 2000, 3000, 4000, and 6000 Hz. A backward elimination multiple-regression analysis was used to determine if age, height, weight, and/or head circumference are significant predictors of RECDs. For the left ear, head circumference was retained as the only statistically significant variable in the final model. For the right ear, head circumference was retained as the only statistically significant independent variable at all frequencies except at 2000 and 4000 Hz. At these latter frequencies, weight was retained as the only statistically significant independent variable after all other variables were eliminated. Head circumference can be considered as a metric for RECD prediction in children when individual measurements cannot be obtained. In developing countries where equipment is often unavailable and stunted growth can reduce the value of using age as a metric, head circumference can be considered as an alternative metric in the prediction of RECDs. American Academy of Audiology.

  14. Pathways to Academic Leadership in Plastic Surgery: A Nationwide Survey of Program Directors, Division Chiefs, and Department Chairs of Plastic Surgery.

    PubMed

    Fishman, Jordan E; Pang, John Henry Y; Losee, Joseph E; Rubin, J Peter; Nguyen, Vu T

    2018-06-01

    Many aspire to leadership in academic plastic surgery yet there is no well-documented pathway. Information regarding plastic surgery residencies and program directors was obtained from the American Medical Association's FREIDA database. The division chief or department chair (academic head) of every academic plastic surgery program was identified. One Internet-based survey was distributed to academic heads; another, to program directors. Ninety academic heads were identified, 35 of whom also serve as program director. Sixty-seven unique program directors were identified. There was a 51 percent academic head response rate and a 65 percent program director response rate. Academic plastic surgery is overwhelmingly administered by midcareer men. The average program director was appointed at age 45 and has served for 7 years. She or he was trained through the independent track, completed additional training in hand surgery, and is a full professor. She or he publishes two or three peer-reviewed manuscripts per year and spends 9 hours per week in administration. The average academic head was appointed at age 45 and has held the position for 12 years. She or he was trained in the independent model, completed fellowship training, and is a full professor. She or he publishes five peer-reviewed manuscripts per year and spends 12 hours per week involved in administration. Program directors and academic heads serve nonoverlapping roles. Few program directors will advance to the role of academic head. Successful applicants to the program director position often serve as an associate program director and are seen as motivated resident educators. In contrast, those faculty members selected for the academic head role are academically accomplished administrators with business acumen.

  15. Subluxation of the femoral head in coxa plana.

    PubMed

    Richards, B S; Coleman, S S

    1987-12-01

    Twenty-two patients who had severe coxa plana had closed reduction for lateral subluxation of the femoral head, as determined radiographically. All had painful limitation of motion of the hip that prevented proper positioning of the femoral head using a brace. The average age when the patients were first seen was eight years and six months. General anesthesia was required in order to obtain the reduction, and percutaneous tenotomy of the adductor longus was done whenever necessary. After the reduction, a Petrie cast was worn for several months. The length of follow-up averaged three years and eight months (range, two years to six years and eight months). Radiographic evaluation at the time of the last follow-up showed nine hips to be spherically congruent, twelve to be spherically congruent, and one to be incongruent. Thus, in 95 per cent of the hips, a congruent joint was obtained using this method of treatment. These results strongly support the concept that all treatment should be directed at containing the femoral head within the acetabulum during the clinically active phase of coxa plana.

  16. Interleaved 3D-CNNs for joint segmentation of small-volume structures in head and neck CT images.

    PubMed

    Ren, Xuhua; Xiang, Lei; Nie, Dong; Shao, Yeqin; Zhang, Huan; Shen, Dinggang; Wang, Qian

    2018-05-01

    Accurate 3D image segmentation is a crucial step in radiation therapy planning of head and neck tumors. These segmentation results are currently obtained by manual outlining of tissues, which is a tedious and time-consuming procedure. Automatic segmentation provides an alternative solution, which, however, is often difficult for small tissues (i.e., chiasm and optic nerves in head and neck CT images) because of their small volumes and highly diverse appearance/shape information. In this work, we propose to interleave multiple 3D Convolutional Neural Networks (3D-CNNs) to attain automatic segmentation of small tissues in head and neck CT images. A 3D-CNN was designed to segment each structure of interest. To make full use of the image appearance information, multiscale patches are extracted to describe the center voxel under consideration and then input to the CNN architecture. Next, as neighboring tissues are often highly related in the physiological and anatomical perspectives, we interleave the CNNs designated for the individual tissues. In this way, the tentative segmentation result of a specific tissue can contribute to refine the segmentations of other neighboring tissues. Finally, as more CNNs are interleaved and cascaded, a complex network of CNNs can be derived, such that all tissues can be jointly segmented and iteratively refined. Our method was validated on a set of 48 CT images, obtained from the Medical Image Computing and Computer Assisted Intervention (MICCAI) Challenge 2015. The Dice coefficient (DC) and the 95% Hausdorff Distance (95HD) are computed to measure the accuracy of the segmentation results. The proposed method achieves higher segmentation accuracy (with the average DC: 0.58 ± 0.17 for optic chiasm, and 0.71 ± 0.08 for optic nerve; 95HD: 2.81 ± 1.56 mm for optic chiasm, and 2.23 ± 0.90 mm for optic nerve) than the MICCAI challenge winner (with the average DC: 0.38 for optic chiasm, and 0.68 for optic nerve; 95HD: 3.48 for optic chiasm, and 2.48 for optic nerve). An accurate and automatic segmentation method has been proposed for small tissues in head and neck CT images, which is important for the planning of radiotherapy. © 2018 American Association of Physicists in Medicine.

  17. Head pain referral during examination of the neck in migraine and tension-type headache.

    PubMed

    Watson, Dean H; Drummond, Peter D

    2012-09-01

    To investigate if and to what extent typical head pain can be reproduced in tension-type headache (TTH), migraine without aura sufferers, and controls when sustained pressure was applied to the lateral posterior arch of C1 and the articular pillar of C2, stressing the atlantooccipital and C2-3 segments respectively. Occipital and neck symptoms often accompany primary headache, suggesting involvement of cervical afferents in central pain processing mechanisms in these disorders. Referral of head pain from upper cervical structures is made possible by convergence of cervical and trigeminal nociceptive afferent information in the trigemino-cervical nucleus. Upper cervical segmental and C2-3 zygapophysial joint dysfunction is recognized as a potential source of noxious afferent information and is present in primary headache sufferers. Furthermore, referral of head pain has been demonstrated from symptomatic upper cervical segments and the C2-3 zygapophysial joints, suggesting that head pain referral may be a characteristic of cervical afferent involvement in headache. Thirty-four headache sufferers and 14 controls were examined interictally. Headache patients were diagnosed according the criteria of the International Headache Society and comprised 20 migraine without aura (females n = 18; males n = 2; average age 35.3 years) and 14 TTH sufferers (females n = 11; males n = 3; average age 30.7 years). Two techniques were used specifically to stress the atlantooccipital segments (Technique 1 - C1) and C2-3 zygapophysial joints (Technique 2 - C2). Two techniques were also applied to the arm--the common extensor origin and the mid belly of the biceps brachii. Participants reported reproduction of head pain with "yes" or "no" and rated the intensity of head pain and local pressure of application on a scale of 0 -10, where 0 = no pain and 10 = intolerable pain. None of the subjects reported head pain during application of techniques on the arm. Head pain referral during the cervical examination was reported by 8 of 14 (57%) control participants, all TTH patients and all but 1 migraineur (P < .002). In each case, participants reported that the referred head pain was similar to the pain they usually experienced during TTH or migraine. The frequency of head pain referral was identical for Techniques 1 and 2. The intensity of referral did not differ between Technique 1 and Technique 2 or between groups. Tenderness ratings to thumb pressure were comparable between the Techniques 1 and 2 when pressure was applied to C1 and C2 respectively and across groups. Similarly, there were no significant differences for tenderness ratings to thumb pressure between Technique 1 and Technique 2 on the arm or between groups. While tenderness ratings to thumb pressure for Technique 2 were similar for both referral (n = 41) and non-referral (n = 7) groups, tenderness ratings for Technique 1 in the referral group were significantly greater when compared with the non-referral group (P = .01). Our data support the continuum concept of headache, one in which noxious cervical afferent information may well be significantly underestimated. The high incidence of reproduction of headache supports the evaluation of musculoskeletal features in patients presenting with migrainous and TTH symptoms. This, in turn, may have important implications for understanding the pathophysiology of headache and developing alternative treatment options. © 2012 American Headache Society.

  18. SU-F-SPS-03: Direct Measurement of Organ Doses Resulting From Head and Cervical Spine Trauma CT Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, C; Lipnharski, I; Quails, N

    Purpose: This retrospective study analyzes the exposure history of emergency department (ED) patients undergoing head and cervical spine trauma computed tomography (CT) studies. This study investigated dose levels received by trauma patients and addressed any potential concerns regarding radiation dose issues. Methods: Under proper IRB approval, a cohort of 300 trauma cases of head and cervical spine trauma CT scans received in the ED was studied. The radiological image viewing software of the hospital was used to view patient images and image data. The following parameters were extracted: the imaging history of patients, the reported dose metrics from the scannermore » including the volumetric CT Dose Index (CTDIvol) and Dose Length Product (DLP). A postmortem subject was scanned using the same scan techniques utilized in a standard clinical head and cervical spine trauma CT protocol with 120 kVp and 280 mAs. The CTDIvol was recorded for the subject and the organ doses were measured using optically stimulated luminescent (OSL) dosimeters. Typical organ doses to the brain, thyroid, lens, salivary glands, and skin, based on the cadaver studies, were then calculated and reported for the cohort. Results: The CTDIvol reported by the CT scanner was 25.5 mGy for the postmortem subject. The average CTDIvol from the patient cohort was 34.1 mGy. From these metrics, typical average organ doses in mGy were found to be: Brain (44.57), Thyroid (33.40), Lens (82.45), Salivary Glands (61.29), Skin (47.50). The imaging history of the cohort showed that on average trauma patients received 26.1 scans over a lifetime. Conclusion: The average number of scans received on average by trauma ED patients shows that radiation doses in trauma patients may be a concern. Available dose tracking software would be helpful to track doses in trauma ED patients, highlighting the importance of minimizing unnecessary scans and keeping doses ALARA.« less

  19. Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies

    NASA Astrophysics Data System (ADS)

    Ramanujam, Nirmala; Vishnoi, Gargi; Hielscher, Andreas H.; Rode, Martha; Forouzan, Iraj; Chance, Britton

    2000-04-01

    Near infrared (NIR) measurements were made from the maternal abdomen (clinical studies) and laboratory tissue phantoms (experimental studies) to gain insight into photon migration through the fetal head in utero. Specifically, a continuous wave spectrometer was modified and employed to make NIR measurements at 760 and 850 nm, at a large (10 cm) and small (2.5/4 cm) source-detector separation, simultaneously, on the maternal abdomen, directly above the fetal head. A total of 19 patients were evaluated, whose average gestational age and fetal head depth, were 37 weeks +/- 3 and 2.25 cm +/- 0.7, respectively. At the large source-detector separation, the photons are expected to migrate through both the underlying maternal and fetal tissues before being detected at the surface, while at the short source-detector separation, the photons are expected to migrate primarily through the superficial maternal tissues before being detected. Second, similar NIR measurements were made on laboratory tissue phantoms, with variable optical properties and physical geometries. The variable optical properties were obtained using different concentrations of India ink and Intralipid in water, while the variable physical geometries were realized by employing glass containers of different shapes and sizes. Third, the NIR measurements, which were made on the laboratory tissue phantoms, were compared to the NIR measurements made on the maternal abdomen to determine which tissue phantom best simulates the photon migration path through the fetal head in utero. The results of the comparison were used to provide insight into the optical properties and physical geometry of the maternal and fetal tissues in the photon migration path.

  20. [Analysis of compliance of 2 prevention measures for ventilator-associated pneumonia (raised head of bed and cuff pressure control)].

    PubMed

    del Cotillo Fuente, M; Valls Matarín, J

    2014-01-01

    To quantify the hours of mechanical ventilation in patients with head of bed elevation≥30°. Determining compliance of cuff measurement every 6h. Descriptive longitudinal study. Measured: time head of bed elevation≥30°, <30° and reasons for non compliance, as well as cuff control every 6h. One hundred and seventy-two records of head of bed elevation and 584 of cuff pressure. Daily average head<30° for care or procedures: 2h (1h19'). The theoretical average number of hours that patients should remain at≥30° was 21h15' (3h) and actual 14h (5h) (P<.001). Registration of cuff was 76,7%. Cuffs between 20-30cmH2O were 75.9%. The 20% of cuff pressure were measured every 6h<20cmH2O and 33.7% when the interval was higher (P=.04). A third of the day patients are<30° without justification. Cuff pressure registration and percentage of therapeutic range are high. Control every 6h decreases the cuff with pressure<20cmH2O. Copyright © 2013 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  1. Midline Dose Verification with Diode In Vivo Dosimetry for External Photon Therapy of Head and Neck and Pelvis Cancers During Initial Large-Field Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, Chuan-Jong; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Yu, Pei-Chieh

    2010-01-01

    During radiotherapy treatments, quality assurance/control is essential, particularly dose delivery to patients. This study was designed to verify midline doses with diode in vivo dosimetry. Dosimetry was studied for 6-MV bilateral fields in head and neck cancer treatments and 10-MV bilateral and anteroposterior/posteroanterior (AP/PA) fields in pelvic cancer treatments. Calibrations with corrections of diodes were performed using plastic water phantoms; 190 and 100 portals were studied for head and neck and pelvis treatments, respectively. Calculations of midline doses were made using the midline transmission, arithmetic mean, and geometric mean algorithms. These midline doses were compared with the treatment planning systemmore » target doses for lateral or AP (PA) portals and paired opposed portals. For head and neck treatments, all 3 algorithms were satisfactory, although the geometric mean algorithm was less accurate and more uncertain. For pelvis treatments, the arithmetic mean algorithm seemed unacceptable, whereas the other algorithms were satisfactory. The random error was reduced by using averaged midline doses of paired opposed portals because the asymmetric effect was averaged out. Considering the simplicity of in vivo dosimetry, the arithmetic mean and geometric mean algorithm should be adopted for head/neck and pelvis treatments, respectively.« less

  2. Patient-specific calibration of cone-beam computed tomography data sets for radiotherapy dose calculations and treatment plan assessment.

    PubMed

    MacFarlane, Michael; Wong, Daniel; Hoover, Douglas A; Wong, Eugene; Johnson, Carol; Battista, Jerry J; Chen, Jeff Z

    2018-03-01

    In this work, we propose a new method of calibrating cone beam computed tomography (CBCT) data sets for radiotherapy dose calculation and plan assessment. The motivation for this patient-specific calibration (PSC) method is to develop an efficient, robust, and accurate CBCT calibration process that is less susceptible to deformable image registration (DIR) errors. Instead of mapping the CT numbers voxel-by-voxel with traditional DIR calibration methods, the PSC methods generates correlation plots between deformably registered planning CT and CBCT voxel values, for each image slice. A linear calibration curve specific to each slice is then obtained by least-squares fitting, and applied to the CBCT slice's voxel values. This allows each CBCT slice to be corrected using DIR without altering the patient geometry through regional DIR errors. A retrospective study was performed on 15 head-and-neck cancer patients, each having routine CBCTs and a middle-of-treatment re-planning CT (reCT). The original treatment plan was re-calculated on the patient's reCT image set (serving as the gold standard) as well as the image sets produced by voxel-to-voxel DIR, density-overriding, and the new PSC calibration methods. Dose accuracy of each calibration method was compared to the reference reCT data set using common dose-volume metrics and 3D gamma analysis. A phantom study was also performed to assess the accuracy of the DIR and PSC CBCT calibration methods compared with planning CT. Compared with the gold standard using reCT, the average dose metric differences were ≤ 1.1% for all three methods (PSC: -0.3%; DIR: -0.7%; density-override: -1.1%). The average gamma pass rates with thresholds 3%, 3 mm were also similar among the three techniques (PSC: 95.0%; DIR: 96.1%; density-override: 94.4%). An automated patient-specific calibration method was developed which yielded strong dosimetric agreement with the results obtained using a re-planning CT for head-and-neck patients. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. A cost-effective method for femoral head allograft procurement for spinal arthrodesis: an alternative to commercially available allograft.

    PubMed

    Brown, Desmond A; Mallory, Grant W; Higgins, Dominique M; Abdulaziz, Mohammed; Huddleston, Paul M; Nassr, Ahmad; Fogelson, Jeremy L; Clarke, Michelle J

    2014-07-01

    A cost-effective procurement process for harvesting, storing, and using femoral head allografts is described. A brief review of the literature on the use of these allografts and a discussion of costs are provided. To describe a cost-effective method for the harvesting, storage, and use of femoral heads from patients undergoing total hip arthroplasty at our institution as a source of allograft bone. Spine fusion surgery uses a large proportion of commercially available bone grafts and bone substitutes. As the number of such surgical procedures performed in the United States continues to rise, these materials are at a historically high level of demand, which is projected to continue. Iliac crest bone autograft has historically been the standard of care, although this may be losing favor due to potential donor site morbidity. Although many substitutes are effective in promoting arthrodesis, their use is limited because of cost. Femoral heads are harvested under sterile conditions during total hip arthroplasty. The patient is tested per Food and Drug Administration regulations, and the tissue sample is cultured. The tissue is frozen and quarantined for a 6-month minimum pending repeat testing of donors and subsequently released for use. The relative cost-effectiveness of this tissue as a source of allograft bone is discussed. The average femoral head allograft is 54 to 56 mm in diameter and yields 50 cm of bone graft, with an average cost of US $435 for processing of the tissue resulting in a cost of US $8.70 per cm of allograft produced. Average production costs are significantly lower than those for other commonly available commercial bone grafts and substitutes. Femoral head allograft is a cost-effective alternative to commercially available allografts and bone substitutes. The method of procurement, storage, and use described could be adopted by other institutions in an effort to mitigate cost and increase supply. N/A.

  4. Compression of head-related transfer function using autoregressive-moving-average models and Legendre polynomials.

    PubMed

    Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob

    2013-11-01

    Head-related transfer functions (HRTFs) are generally large datasets, which can be an important constraint for embedded real-time applications. A method is proposed here to reduce redundancy and compress the datasets. In this method, HRTFs are first compressed by conversion into autoregressive-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere and form an orthonormal basis set for spherical functions. Higher-order LPs capture increasingly fine spatial details. The number of LPs needed to represent an HRTF, therefore, is indicative of its spatial complexity. The results indicate that compression ratios can exceed 98% while maintaining a spectral error of less than 4 dB in the recovered HRTFs.

  5. Nonlinear-regression flow model of the Gulf Coast aquifer systems in the south-central United States

    USGS Publications Warehouse

    Kuiper, L.K.

    1994-01-01

    A multiple-regression methodology was used to help answer questions concerning model reliability, and to calibrate a time-dependent variable-density ground-water flow model of the gulf coast aquifer systems in the south-central United States. More than 40 regression models with 2 to 31 regressions parameters are used and detailed results are presented for 12 of the models. More than 3,000 values for grid-element volume-averaged head and hydraulic conductivity are used for the regression model observations. Calculated prediction interval half widths, though perhaps inaccurate due to a lack of normality of the residuals, are the smallest for models with only four regression parameters. In addition, the root-mean weighted residual decreases very little with an increase in the number of regression parameters. The various models showed considerable overlap between the prediction inter- vals for shallow head and hydraulic conductivity. Approximate 95-percent prediction interval half widths for volume-averaged freshwater head exceed 108 feet; for volume-averaged base 10 logarithm hydraulic conductivity, they exceed 0.89. All of the models are unreliable for the prediction of head and ground-water flow in the deeper parts of the aquifer systems, including the amount of flow coming from the underlying geopressured zone. Truncating the domain of solution of one model to exclude that part of the system having a ground-water density greater than 1.005 grams per cubic centimeter or to exclude that part of the systems below a depth of 3,000 feet, and setting the density to that of freshwater does not appreciably change the results for head and ground-water flow, except for locations close to the truncation surface.

  6. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy

    PubMed Central

    Beccari, Giovanni; Prodi, Antonio; Tini, Francesco; Bonciarelli, Umberto; Onofri, Andrea; Oueslati, Souheib; Limayma, Marwa; Covarelli, Lorenzo

    2017-01-01

    In this study, conducted for three years on eleven malting barley varieties cultivated in central Italy, the incidence of different mycotoxigenic fungal genera, the identification of the Fusarium species associated with the Fusarium Head Blight (FHB) complex, and kernels contamination with deoxynivalenol (DON) and T-2 mycotoxins were determined. The influence of climatic conditions on Fusarium infections and FHB complex composition was also investigated. Fusarium species were always present in the three years and the high average and maximum temperatures during anthesis mainly favored their occurrence. The FHB complex was subject to changes during the three years and the main causal agents were F. poae, F. avenaceum, F. tricinctum and F. graminearum, which, even if constantly present, never represented the principal FHB agent. The relative incidence of Fusarium species changed because of climatic conditions occurring during the seasons. The FHB complex was composed of many different Fusarium species and some of them were associated with a specific variety and/or with specific weather parameters, indicating that the interaction between a certain plant genotype and climatic conditions may influence the presence of Fusarium spp. causing infections. With regard to mycotoxin contamination, T-2 toxin, in some cases, was found in kernels at levels that exceeded EU recommended values. PMID:28353653

  7. Do cervical collars and cervicothoracic orthoses effectively stabilize the injured cervical spine? A biomechanical investigation.

    PubMed

    Ivancic, Paul C

    2013-06-01

    In vitro biomechanical study. Our objective was to determine the effectiveness of cervical collars and cervicothoracic orthoses for stabilizing clinically relevant, experimentally produced cervical spine injuries. Most previous in vitro studies of cervical orthoses used a simplified injury model with all ligaments transected at a single spinal level, which differs from real-life neck injuries. Human volunteer studies are limited to measuring only sagittal motions or 3-dimensional motions only of the head or 1 or 2 spinal levels. Three-plane flexibility tests were performed to evaluate 2 cervical collars (Vista Collar and Vista Multipost Collar) and 2 cervicothoracic orthoses (Vista TS and Vista TS4) using a skull-neck-thorax model with 8 injured cervical spine specimens (manufacturer of orthoses: Aspen Medical Products Inc, Irvine, CA). The injuries consisted of flexion-compression at the lower cervical spine and extension-compression at superior spinal levels. Pair-wise repeated measures analysis of variance (P < 0.05) and Bonferroni post hoc tests determined significant differences in average range of motions of the head relative to the base, C7 or T1, among experimental conditions. RESULTS.: All orthoses significantly reduced unrestricted head/base flexion and extension. The orthoses allowed between 8.4% and 25.8% of unrestricted head/base motion in flexion/extension, 57.8% to 75.5% in axial rotation, and 53.8% to 73.7% in lateral bending. The average percentages of unrestricted motion allowed by the Vista Collar, Vista Multipost Collar, Vista TS, and Vista TS4 were: 14.0, 9.7, 6.1, and 4.7, respectively, for middle cervical spine extension and 13.2, 11.8, 3.3, and 0.4, respectively, for lower cervical spine flexion. Successive increases in immobilization were observed from Vista Collar to Vista Multipost Collar, Vista TS, and Vista TS4 in extension at the injured middle cervical spine and in flexion at the injured lower cervical spine. Our results may assist clinicians in selecting the most appropriate orthosis based upon patient-specific cervical spine injuries.

  8. Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy.

    PubMed

    Yang, Xiaofeng; Wu, Ning; Cheng, Guanghui; Zhou, Zhengyang; Yu, David S; Beitler, Jonathan J; Curran, Walter J; Liu, Tian

    2014-12-01

    To develop an automated magnetic resonance imaging (MRI) parotid segmentation method to monitor radiation-induced parotid gland changes in patients after head and neck radiation therapy (RT). The proposed method combines the atlas registration method, which captures the global variation of anatomy, with a machine learning technology, which captures the local statistical features, to automatically segment the parotid glands from the MRIs. The segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is used to map the pre-RT MRI to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month follow-up examinations. The resulting segmentations were compared with the physicians' manual contours. Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). The average percentage of volume differences between the automated segmentations and those of the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months. We have validated our automated parotid segmentation algorithm in a longitudinal study. This segmentation method may be useful in future studies to address radiation-induced xerostomia in head and neck radiation therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. SU-C-207A-01: A Novel Maximum Likelihood Method for High-Resolution Proton Radiography/proton CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins-Fekete, C; Centre Hospitalier University de Quebec, Quebec, QC; Mass General Hospital

    2016-06-15

    Purpose: Multiple Coulomb scattering is the largest contributor to blurring in proton imaging. Here we tested a maximum likelihood least squares estimator (MLLSE) to improve the spatial resolution of proton radiography (pRad) and proton computed tomography (pCT). Methods: The object is discretized into voxels and the average relative stopping power through voxel columns defined from the source to the detector pixels is optimized such that it maximizes the likelihood of the proton energy loss. The length spent by individual protons in each column is calculated through an optimized cubic spline estimate. pRad images were first produced using Geant4 simulations. Anmore » anthropomorphic head phantom and the Catphan line-pair module for 3-D spatial resolution were studied and resulting images were analyzed. Both parallel and conical beam have been investigated for simulated pRad acquisition. Then, experimental data of a pediatric head phantom (CIRS) were acquired using a recently completed experimental pCT scanner. Specific filters were applied on proton angle and energy loss data to remove proton histories that underwent nuclear interactions. The MTF10% (lp/mm) was used to evaluate and compare spatial resolution. Results: Numerical simulations showed improvement in the pRad spatial resolution for the parallel (2.75 to 6.71 lp/cm) and conical beam (3.08 to 5.83 lp/cm) reconstructed with the MLLSE compared to averaging detector pixel signals. For full tomographic reconstruction, the improved pRad were used as input into a simultaneous algebraic reconstruction algorithm. The Catphan pCT reconstruction based on the MLLSE-enhanced projection showed spatial resolution improvement for the parallel (2.83 to 5.86 lp/cm) and conical beam (3.03 to 5.15 lp/cm). The anthropomorphic head pCT displayed important contrast gains in high-gradient regions. Experimental results also demonstrated significant improvement in spatial resolution of the pediatric head radiography. Conclusion: The proposed MLLSE shows promising potential to increase the spatial resolution (up to 244%) in proton imaging.« less

  10. Diagnostic accuracy of referral criteria for head circumference to detect hydrocephalus in the first year of life.

    PubMed

    van Dommelen, Paula; Deurloo, Jacqueline A; Gooskens, Rob H; Verkerk, Paul H

    2015-04-01

    Increased head circumference is often the first and main sign leading to the diagnosis of hydrocephalus. Our aim is to investigate the diagnostic accuracy of referral criteria for head circumference to detect hydrocephalus in the first year of life. A reference group with longitudinal head circumference data (n = 1938) was obtained from the Social Medical Survey of Children Attending Child Health Clinics study. The case group comprised infants with hydrocephalus treated in a tertiary pediatric hospital who had not already been detected during pregnancy (n = 125). Head circumference data were available for 43 patients. Head circumference data were standardized according to gestational age-specific references. Sensitivity and specificity of a very large head circumference (>2.5 standard deviations on the growth chart) were, respectively, 72.1% (95% confidence interval [CI]: 56.3-84.7) and 97.1% (95% CI:96.2-97.8). These figures were, respectively, 74.4% (95% CI: 58.8-86.5) and 93.0% (95% CI:91.8-94.1) for a large head circumference (>2.0 standard deviation), and 76.7% (95% CI:61.4-88.2) and 96.5% (95% CI:95.6-97.3) for a very large head circumference and/or a very large (>2.5 standard deviation) progressive growth of head circumference. A very large head circumference and/or a very large progressive growth of head circumference shows the best diagnostic accuracy to detect hydrocephalus at an early stage. Gestational age-specific growth charts are recommended. Further improvements may be possible by taking into account parental head circumference. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Distal chevron osteotomy with distal soft tissue procedure for moderate to severe hallux valgus deformity.

    PubMed

    Bai, Long Bin; Lee, Keun Bae; Seo, Chang Young; Song, Eun Kyoo; Yoon, Taek Rim

    2010-08-01

    Distal chevron osteotomy has been widely employed to treat mild to moderate hallux valgus deformity. The purpose of the present study was to evaluate the outcomes of distal chevron osteotomy with a distal soft tissue procedure for the correction of moderate to severe hallux valgus. We reviewed 76 patients (86 feet) that underwent distal chevron osteotomy with a distal soft tissue procedure for symptomatic moderate to severe hallux valgus deformity. At a mean followup of 31 months, all patients were evaluated using subjective, objective and radiographic measurements. Ninety-four percent of the patients were very satisfied or satisfied. Average AOFAS score improved from 54.7 points preoperatively to 92.9 at final followup. Average hallux valgus angle changed from 36.2 degrees preoperatively to 12.4 degrees at final followup, and average first-second intermetatarsal angle changed from 17.1 to 7.3 degrees. Average tibial sesamoid position changed from 2.4 preoperatively to 1.2 at final followup. Dorsal angulation of the head was observed in two feet, and plantaflexion of the head in four feet. There were no cases of avascular necrosis of the metatarsal head. Our results indicate that distal chevron osteotomy with a distal soft tissue procedure provides an effective and reliable means of correcting moderate to severe hallux valgus deformity, and that it does so with high levels of patient satisfaction and low incidence of complications.

  12. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  13. SU-E-T-454: Impact of Calculation Grid Size On Dosimetry and Radiobiological Parameters for Head and Neck IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S; Das, I; Indiana University Health Methodist Hospital, Indianapolis, IN

    2014-06-01

    Purpose: IMRT has become standard of care for complex treatments to optimize dose to target and spare normal tissues. However, the impact of calculation grid size is not widely known especially dose distribution, tumor control probability (TCP) and normal tissue complication probability (NTCP) which is investigated in this study. Methods: Ten head and neck IMRT patients treated with 6 MV photons were chosen for this study. Using Eclipse TPS, treatment plans were generated for different grid sizes in the range 1–5 mm for the same optimization criterion with specific dose-volume constraints. The dose volume histogram (DVH) was calculated for allmore » IMRT plans and dosimetric data were compared. ICRU-83 dose points such as D2%, D50%, D98%, as well as the homogeneity and conformity indices (HI, CI) were calculated. In addition, TCP and NTCP were calculated from DVH data. Results: The PTV mean dose and TCP decreases with increasing grid size with an average decrease in mean dose by 2% and TCP by 3% respectively. Increasing grid size from 1–5 mm grid size, the average mean dose and NTCP for left parotid was increased by 6.0% and 8.0% respectively. Similar patterns were observed for other OARs such as cochlea, parotids and spinal cord. The HI increases up to 60% and CI decreases on average by 3.5% between 1 and 5 mm grid that resulted in decreased TCP and increased NTCP values. The number of points meeting the gamma criteria of ±3% dose difference and ±3mm DTA was higher with a 1 mm on average (97.2%) than with a 5 mm grid (91.3%). Conclusion: A smaller calculation grid provides superior dosimetry with improved TCP and reduced NTCP values. The effect is more pronounced for smaller OARs. Thus, the smallest possible grid size should be used for accurate dose calculation especially in H and N planning.« less

  14. Alternative Splice in Alternative Lice

    PubMed Central

    Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P.; Clark, John M.; Reynolds, Stuart E.; Pittendrigh, Barry R.; Feil, Edward J.; Urrutia, Araxi O.

    2015-01-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  15. Comparison of adult and child radiation equivalent doses from 2 dental cone-beam computed tomography units.

    PubMed

    Al Najjar, Anas; Colosi, Dan; Dauer, Lawrence T; Prins, Robert; Patchell, Gayle; Branets, Iryna; Goren, Arthur D; Faber, Richard D

    2013-06-01

    With the advent of cone-beam computed tomography (CBCT) scans, there has been a transition toward these scans' replacing traditional radiographs for orthodontic diagnosis and treatment planning. Children represent a significant proportion of orthodontic patients. Similar CBCT exposure settings are predicted to result in higher equivalent doses to the head and neck organs in children than in adults. The purpose of this study was to measure the difference in equivalent organ doses from different scanners under similar settings in children compared with adults. Two phantom heads were used, representing a 33-year-old woman and a 5-year-old boy. Optically stimulated dosimeters were placed at 8 key head and neck organs, and equivalent doses to these organs were calculated after scanning. The manufacturers' predefined exposure settings were used. One scanner had a pediatric preset option; the other did not. Scanning the child's phantom head with the adult settings resulted in significantly higher equivalent radiation doses to children compared with adults, ranging from a 117% average ratio of equivalent dose to 341%. Readings at the cervical spine level were decreased significantly, down to 30% of the adult equivalent dose. When the pediatric preset was used for the scans, there was a decrease in the ratio of equivalent dose to the child mandible and thyroid. CBCT scans with adult settings on both phantom heads resulted in higher radiation doses to the head and neck organs in the child compared with the adult. In practice, this might result in excessive radiation to children scanned with default adult settings. Collimation should be used when possible to reduce the radiation dose to the patient. While CBCT scans offer a valuable tool, use of CBCT scans should be justified on a specific case-by-case basis. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Health-related quality of life in prisoners with attention-deficit hyperactivity disorder and head injury.

    PubMed

    Young, Susan; González, Rafael A; Fridman, Moshe; Hodgkins, Paul; Kim, Keira; Gudjonsson, Gisli H

    2018-06-22

    Attention-deficit hyperactivity disorder (ADHD) and head injury (including traumatic brain injury (TBI)) manifest in high levels across prison samples and guidance from the National Institute for Health and Care Excellence notes that people with acquired brain injury may have increased prevalence of ADHD. We aimed to examine the association of ADHD with TBI and the impact of the association upon health-related quality of life (HRQoL) and service use among imprisoned adults. An observational study was performed in 2011-2013, at Porterfield Prison, Inverness, United Kingdom (UK). The all male sample included 390 adult prison inmates with capacity to consent and no history of moderate or severe intellectual disability. Head injury was measured with a series of self-reported questions, addressing history of hits to the head: frequency, severity, loss of consciousness (LOC), and sequelae. Participants were interviewed using the Diagnostic Interview for ADHD in Adults 2.0. The Health Utilities Index Mark 3 was used to measure health status, and to calculate attribute specific HRQoL and Quality-Adjusted Life Year (QALY) scores. 72% of prisoners sampled reported at least one head injury in their lifetime. Among those, 70% of head injuries occurred before age 16 and 70% experienced LOC. Prisoners with ADHD were nearly twice more likely to have TBI. Prisoners with ADHD-only and ADHD with co-morbid TBI had significantly lower scores in several HRQoL attributes, compared with TBI only or the absence of either condition. Adjusted logistic regression models indicated an average reduction of 0.20 QALYs in inmates with ADHD-only and 0.30 QALY loss in those with ADHD with co-morbid TBI compared with inmates with neither condition. There is a robust association between ADHD and TBI, and ADHD with co-morbid TBI confers significantly greater impairment in terms of HRQoL. Managing the short and long-term consequences of TBI is essential to improving care for prisoners and to addressing the criminogenic factors related to them.

  17. Radiation Dose to the Lens of the Eye from Computed Tomography Scans of the Head

    NASA Astrophysics Data System (ADS)

    Januzis, Natalie Ann

    While it is well known that exposure to radiation can result in cataract formation, questions still remain about the presence of a dose threshold in radiation cataractogenesis. Since the exposure history from diagnostic CT exams is well documented in a patient's medical record, the population of patients chronically exposed to radiation from head CT exams may be an interesting area to explore for further research in this area. However, there are some challenges in estimating lens dose from head CT exams. An accurate lens dosimetry model would have to account for differences in imaging protocols, differences in head size, and the use of any dose reduction methods. The overall objective of this dissertation was to develop a comprehensive method to estimate radiation dose to the lens of the eye for patients receiving CT scans of the head. This research is comprised of a physics component, in which a lens dosimetry model was derived for head CT, and a clinical component, which involved the application of that dosimetry model to patient data. The physics component includes experiments related to the physical measurement of the radiation dose to the lens by various types of dosimeters placed within anthropomorphic phantoms. These dosimeters include high-sensitivity MOSFETs, TLDs, and radiochromic film. The six anthropomorphic phantoms used in these experiments range in age from newborn to adult. First, the lens dose from five clinically relevant head CT protocols was measured in the anthropomorphic phantoms with MOSFET dosimeters on two state-of-the-art CT scanners. The volume CT dose index (CTDIvol), which is a standard CT output index, was compared to the measured lens doses. Phantom age-specific CTDIvol-to-lens dose conversion factors were derived using linear regression analysis. Since head size can vary among individuals of the same age, a method was derived to estimate the CTDIvol-to-lens dose conversion factor using the effective head diameter. These conversion factors were derived for each scanner individually, but also were derived with the combined data from the two scanners as a means to investigate the feasibility of a scanner-independent method. Using the scanner-independent method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter, most of the fitted lens dose values fell within 10-15% of the measured values from the phantom study, suggesting that this is a fairly accurate method of estimating lens dose from the CTDIvol with knowledge of the patient's head size. Second, the dose reduction potential of organ-based tube current modulation (OB-TCM) and its effect on the CTDIvol-to-lens dose estimation method was investigated. The lens dose was measured with MOSFET dosimeters placed within the same six anthropomorphic phantoms. The phantoms were scanned with the five clinical head CT protocols with OB-TCM enabled on the one scanner model at our institution equipped with this software. The average decrease in lens dose with OB-TCM ranged from 13.5 to 26.0%. Using the size-specific method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter for protocols with OB-TCM, the majority of the fitted lens dose values fell within 15-18% of the measured values from the phantom study. Third, the effect of gantry angulation on lens dose was investigated by measuring the lens dose with TLDs placed within the six anthropomorphic phantoms. The 2-dimensional spatial distribution of dose within the areas of the phantoms containing the orbit was measured with radiochromic film. A method was derived to determine the CTDIvol-to-lens dose conversion factor based upon distance from the primary beam scan range to the lens. The average dose to the lens region decreased substantially for almost all the phantoms (ranging from 67 to 92%) when the orbit was exposed to scattered radiation compared to the primary beam. The effectiveness of this method to reduce lens dose is highly dependent upon the shape and size of the head, which influences whether or not the angled scan range coverage can include the entire brain volume and still avoid the orbit. The clinical component of this dissertation involved performing retrospective patient studies in the pediatric and adult populations, and reconstructing the lens doses from head CT examinations with the methods derived in the physics component. The cumulative lens doses in the patients selected for the retrospective study ranged from 40 to 1020 mGy in the pediatric group, and 53 to 2900 mGy in the adult group. This dissertation represents a comprehensive approach to lens of the eye dosimetry in CT imaging of the head. The collected data and derived formulas can be used in future studies on radiation-induced cataracts from repeated CT imaging of the head. Additionally, it can be used in the areas of personalized patient dose management, and protocol optimization and clinician training.

  18. Methods to determine pumped irrigation-water withdrawals from the Snake River between Upper Salmon Falls and Swan Falls Dams, Idaho, using electrical power data, 1990-95

    USGS Publications Warehouse

    Maupin, Molly A.

    1999-01-01

    Pumped withdrawals compose most of the irrigation-water diversions from the Snake River between Upper Salmon Falls and Swan Falls Dams in southwestern Idaho. Pumps at 32 sites along the reach lift water as high as 745 feet to irrigate croplands on plateaus north and south of the river. The number of pump sites at which withdrawals are being continuously measured has been steadily decreasing, from 32 in 1990 to 7 in 1998. A cost-effective and accurate means of estimating annual irrigation-water withdrawals at pump sites that are no longer continuously measured was needed. Therefore, the U.S. Geological Survey began a study in 1998, as part of its Water-Use Program, to determine power-consumption coeffi- cients (PCCs) for each pump site so that withdrawals could be estimated by using electrical powerconsumption and total head data. PCC values for each pump site were determined by using withdrawal data that were measured by the U.S. Geological Survey during 1990–92 and 1994–95, energy data reported by Idaho Power Company during the same period, and total head data collected at each site during a field inventory in 1998. Individual average annual withdrawals for the 32 pump sites ranged from 1,120 to 44,480 acre-feet; average PCC values ranged from 103 to 1,248 kilowatthours per acre-foot. During the 1998 field season, power demand, total head, and withdrawal at 18 sites were measured to determine 1998 PCC values. Most of the 1998 PCC values were within 10 percent of the 5-year average, which demonstrates that withdrawals for a site that is no longer continuously measured can be calculated with reasonable accuracy by using the PCC value determined from this study and annual power-consumption data. K-factors, coefficients that describe the amount of energy necessary to lift water, were determined for each pump site by using values of PCC and total head and ranged from 1.11 to 1.89 kilowatthours per acre-foot per foot. Statistical methods were used to define the relations among PCC values and selected pumpsite characteristics. Multiple correlation analysis between average PCC values and total head, total horsepower, and total number of pumps revealed the strongest correlation was between average PCC and total head. Linear regression of these two variables resulted in a strong coefficient of determination R2=0 .9 86) and a representative K-factor of 1.463. Pump sites were subdivided into two groups on the basis of total head—0 to 300 feet and greater than 300 feet. Regression of average PCC values for eight pump sites with total head less than 300 feet produced a good correlation of determination (R2=0.870) and a representative K-factor of 1.682. The second group consisted of 10 pump sites with total head greater than 300 feet; regression produced a correlation of R2=0.939 and a representative K-factor of 1.405. Data on pump-site characteristics were successfully used to determine individual PCC and K-factor values. Statistical relations between pumpsite characteristics and PCC values were defined and used to determine regression equations that resulted in good coefficients of determination and representative K-factors. The individual PCC values will be used in the future to calculate irrigation- water withdrawals at sites that are no longer continuously measured. The representative K-factors and regression equations will be used to calculate irrigation-water withdrawals at sites that have not been previously measured and where total head and power consumption are known.

  19. Artificial neural networks: Predicting head CT findings in elderly patients presenting with minor head injury after a fall.

    PubMed

    Dusenberry, Michael W; Brown, Charles K; Brewer, Kori L

    2017-02-01

    To construct an artificial neural network (ANN) model that can predict the presence of acute CT findings with both high sensitivity and high specificity when applied to the population of patients≥age 65years who have incurred minor head injury after a fall. An ANN was created in the Python programming language using a population of 514 patients ≥ age 65 years presenting to the ED with minor head injury after a fall. The patient dataset was divided into three parts: 60% for "training", 20% for "cross validation", and 20% for "testing". Sensitivity, specificity, positive and negative predictive values, and accuracy were determined by comparing the model's predictions to the actual correct answers for each patient. On the "cross validation" data, the model attained a sensitivity ("recall") of 100.00%, specificity of 78.95%, PPV ("precision") of 78.95%, NPV of 100.00%, and accuracy of 88.24% in detecting the presence of positive head CTs. On the "test" data, the model attained a sensitivity of 97.78%, specificity of 89.47%, PPV of 88.00%, NPV of 98.08%, and accuracy of 93.14% in detecting the presence of positive head CTs. ANNs show great potential for predicting CT findings in the population of patients ≥ 65 years of age presenting with minor head injury after a fall. As a good first step, the ANN showed comparable sensitivity, predictive values, and accuracy, with a much higher specificity than the existing decision rules in clinical usage for predicting head CTs with acute intracranial findings. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A 10(9) neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit.

    PubMed

    Niranjan, Ram; Rout, R K; Srivastava, R; Kaushik, T C; Gupta, Satish C

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 10(8) neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.

  1. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Halicek, Martin; Little, James V.; Wang, Xu; Patel, Mihir; Griffith, Christopher C.; El-Deiry, Mark W.; Chen, Amy Y.; Fei, Baowei

    2018-02-01

    Successful outcomes of surgical cancer resection necessitate negative, cancer-free surgical margins. Currently, tissue samples are sent to pathology for diagnostic confirmation. Hyperspectral imaging (HSI) is an emerging, non-contact optical imaging technique. A reliable optical method could serve to diagnose and biopsy specimens in real-time. Using convolutional neural networks (CNNs) as a tissue classifier, we developed a method to use HSI to perform an optical biopsy of ex-vivo surgical specimens, collected from 21 patients undergoing surgical cancer resection. Training and testing on samples from different patients, the CNN can distinguish squamous cell carcinoma (SCCa) from normal aerodigestive tract tissues with an area under the curve (AUC) of 0.82, 81% accuracy, 81% sensitivity, and 80% specificity. Additionally, normal oral tissues can be sub-classified into epithelium, muscle, and glandular mucosa using a decision tree method, with an average AUC of 0.94, 90% accuracy, 93% sensitivity, and 89% specificity. After separately training on thyroid tissue, the CNN differentiates between thyroid carcinoma and normal thyroid with an AUC of 0.95, 92% accuracy, 92% sensitivity, and 92% specificity. Moreover, the CNN can discriminate medullary thyroid carcinoma from benign multi-nodular goiter (MNG) with an AUC of 0.93, 87% accuracy, 88% sensitivity, and 85% specificity. Classical-type papillary thyroid carcinoma is differentiated from benign MNG with an AUC of 0.91, 86% accuracy, 86% sensitivity, and 86% specificity. Our preliminary results demonstrate that an HSI-based optical biopsy method using CNNs can provide multi-category diagnostic information for normal head-and-neck tissue, SCCa, and thyroid carcinomas. More patient data are needed in order to fully investigate the proposed technique to establish reliability and generalizability of the work.

  2. Head Trauma in Mixed Martial Arts.

    PubMed

    Hutchison, Michael G; Lawrence, David W; Cusimano, Michael D; Schweizer, Tom A

    2014-06-01

    Mixed martial arts (MMA) is a full combative sport with a recent global increase in popularity despite significant scrutiny from medical associations. To date, the empirical research of the risk of head injuries associated with this sport is limited. Youth and amateur participation is growing, warranting investigation into the burden and mechanism of injuries associated with this sport. (1) To determine the incidence, risk factors, and characteristics of knockouts (KOs) and technical knockouts (TKOs) from repetitive strikes in professional MMA; and (2) to identify the mechanisms of head trauma and the situational factors that lead to KOs and TKOs secondary to repetitive strikes through video analysis. Descriptive epidemiology study. Competition data and video records for all KOs and TKOs from numbered Ultimate Fighting Championship MMA events (n = 844) between 2006 to 2012. Analyses included (1) multivariate logistic regression to investigate factors associated with an increased risk of sustaining a KO or TKO secondary to repetitive strikes and (2) video analysis of all KOs and TKOs secondary to repetitive strikes with descriptive statistics. During the study period, the KO rate was 6.4 per 100 athlete-exposures (AEs) (12.7% of matches), and the rate of TKOs secondary to repetitive strikes was 9.5 per 100 AEs (19.1% of matches), for a combined incidence of match-ending head trauma of 15.9 per 100 AEs (31.9% of matches). Logistic regression identified that weight class, earlier time in a round, earlier round in a match, and older age were risk factors for both KOs and TKOs secondary to repetitive strikes. Match significance and previously sustained KOs or TKOs were also risk factors for KOs. Video analysis identified that all KOs were the result of direct impact to the head, most frequently a strike to the mandibular region (53.9%). The average time between the KO-strike and match stoppage was 3.5 seconds (range, 0-20 seconds), with losers sustaining an average of 2.6 additional strikes (range, 0-20 strikes) to the head. For TKOs secondary to strikes, in the 30-second interval immediately preceding match stoppage, losers sustained, on average, 18.5 strikes (range, 5-46 strikes), with 92.3% of these being strikes to the head. Rates of KOs and TKOs in MMA are higher than previously reported rates in other combative and contact sports. Public health authorities and physicians should be cognizant of the rates and mechanisms of head trauma. Preventive measures to lessen the risks of head trauma for those who elect to participate in MMA are described. © 2014 The Author(s).

  3. 40 CFR Table Jj-1 to Subpart Jj of... - Animal Population Threshold Level Below Which Facilities Are Not Required To Report Emissions...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions Under Subpart JJ 1 2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...

  4. 40 CFR Table Jj-1 to Subpart Jj of... - Animal Population Threshold Level Below Which Facilities Are Not Required To Report Emissions...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions Under Subpart JJ 1,2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...

  5. Diagnostic performance of optical coherence tomography ganglion cell--inner plexiform layer thickness measurements in early glaucoma.

    PubMed

    Mwanza, Jean-Claude; Budenz, Donald L; Godfrey, David G; Neelakantan, Arvind; Sayyad, Fouad E; Chang, Robert T; Lee, Richard K

    2014-04-01

    To evaluate the glaucoma diagnostic performance of ganglion cell inner-plexiform layer (GCIPL) parameters used individually and in combination with retinal nerve fiber layer (RNFL) or optic nerve head (ONH) parameters measured with Cirrus HD-OCT (Carl Zeiss Meditec, Inc, Dublin, CA). Prospective cross-sectional study. Fifty patients with early perimetric glaucoma and 49 age-matched healthy subjects. Three peripapillary RNFL and 3 macular GCIPL scans were obtained in 1 eye of each participant. A patient was considered glaucomatous if at least 2 of the 3 RNFL or GCIPL scans had the average or at least 1 sector measurement flagged at 1% to 5% or less than 1%. The diagnostic performance was determined for each GCIPL, RNFL, and ONH parameter as well as for binary or-logic and and-logic combinations of GCIPL with RNFL or ONH parameters. Sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR). Among GCIPL parameters, the minimum had the best diagnostic performance (sensitivity, 82.0%; specificity, 87.8%; PLR, 6.69; and NLR, 0.21). Inferior quadrant was the best RNFL parameter (sensitivity, 74%; specificity, 95.9%; PLR, 18.13; and NLR, 0.27), as was rim area (sensitivity, 68%; specificity, 98%; PLR, 33.3; and NLR, 0.33) among ONH parameters. The or-logic combination of minimum GCIPL and average RNFL provided the overall best diagnostic performance (sensitivity, 94%; specificity, 85.7%; PRL, 6.58; and NLR, 0.07) as compared with the best RNFL, best ONH, and best and-logic combination (minimum GCIPL and inferior quadrant RNFL; sensitivity, 64%; specificity, 100%; PLR, infinity; and NPR, 0.36). The binary or-logic combination of minimum GCIPL and average RNFL or rim area provides better diagnostic performances than those of and-logic combinations or best single GCIPL, RNFL, or ONH parameters. This finding may be clinically valuable for the diagnosis of early glaucoma. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  6. Accuracy of birth certificate head circumference measurements: Massachusetts, 2012-2013.

    PubMed

    Somerville, Nicholas J; Chen, Xiaoli; Heinke, Dominique; Stone, Sarah L; Higgins, Cathleen; Manning, Susan E; Pagnano, Sharon; Yazdy, Mahsa M; Anderka, Marlene

    2018-03-15

    Zika virus has recently emerged as a novel cause of microcephaly. CDC has asked states to rapidly ascertain and report cases of Zika-linked birth defects, including microcephaly. Massachusetts added head circumference to its birth certificate (BC) in 2011. The accuracy of head circumference measurements from state vital records data has not been reported. We sought to assess the accuracy of Massachusetts BC head circumference measurements by comparing them to measurements for 2,217 infants born during 2012-2013 captured in the Massachusetts Birth Defects Monitoring Program (BDMP) data system. BDMP contains information abstracted directly from infant medical records and served as the true head circumference value (i.e., gold standard) for analysis. We calculated the proportion of head circumference measurements in agreement between the BC and BDMP data. We assigned growth chart head circumference percentile categories to each BC and BDMP measurement, and calculated the sensitivity and specificity of BC-based categories to predict BDMP-based categories. No difference was found in head circumference measurements between the two sources in 77.9% (n = 1,727) of study infants. The sensitivity of BC-based head circumference percentile categories ranged from 85.6% (<3rd percentile) to 92.7% (≥90th percentile) and the specificity ranged from 97.6% (≥90th percentile) to 99.3% (<3rd percentile). BC head circumference measurements agreed with those abstracted from the medical chart the majority of the time. Head circumference measurements on the BC were more specific than sensitive across all standardized growth chart percentile categories. © 2017 Wiley Periodicals, Inc.

  7. Whole-body kinematic and dynamic response of restrained PMHS in frontal sled tests.

    PubMed

    Forman, Jason; Lessley, David; Kent, Richard; Bostrom, Ola; Pipkorn, Bengt

    2006-11-01

    The literature contains a wide range of response data describing the biomechanics of isolated body regions. Current data for the validation of frontal anthropomorphic test devices and human body computational models lack, however, a detailed description of the whole-body response to loading with contemporary restraints in automobile crashes. This study presents data from 14 frontal sled tests describing the physical response of postmortem human surrogates (PMHS) in the following frontal crash environments: A) (5 tests) driver position, force-limited 3-point belt plus airbag restraint (FLB+AB), 48 km/h deltaV. B) (3 tests) passenger position, FLB+AB restraint, 48 km/h deltaV. C) (3 tests) passenger position, standard (not force-limited) 3-point belt plus air bag restraint (SB+AB), 48 km/h deltaV. D) (3 tests) passenger position, standard 3-point belt restraint (SB), 29 km/h deltaV. Reported data include x-axis and z-axis (SAE occupant reference frame) accelerations of the head, spine (upper, middle, and lower), and pelvis; rate of angular rotation of the head about y-axis; displacements of the head, upper spine, pelvis and knee relative to the vehicle buck; and deformation contours of the upper and lower chest. A variety of kinematic trends are identified across the different test conditions, including a decrease in head and thorax excursion and a change in the nature of the excursion in the driver position compared to the passenger position. Despite this increase in forward excursion when compared to the driver's side FLB+AB tests, the passenger's side FLB+AB tests resulted in greater peak thoracic (T8) x-axis accelerations (passenger's side -29 g; driver's side -22 g;) and comparable maximum chest deflection (passenger's side - 23+/-3.1% of the undeformed chest depth; driver's side - 23+/-5.6%; ). In the 48 km/h passenger's side tests, the head excursion associated with the force-limiting belt system was approximately 15% greater than that for a standard belt system in tests that were otherwise identical. This was accompanied by a decrease in chest deflection of approximately 20% with the force-limiting system. Despite the decrease in test speed, the 29 km/h passenger's side tests with standard (not force-limiting) 3-point belt restraints resulted in maximum chest deflection (16+/-5.6% average) comparable to that observed in the 48 km/h, FLB+AB, driver's side tests (21+/-3.1% average). Finally, forward head excursion was slightly higher in the 29 km/h passenger's side tests (33+/-1.1 cm average) than in the 48 km/h driver's side tests (27+/-3.7 cm average), and was lower than that in the 48 km/h FLB+AB (58+/-4.4 cm average) and SB+AB (46+/-2.1 cm average) passenger's side tests.

  8. Review of the role of sentinel node biopsy in cutaneous head and neck melanoma.

    PubMed

    Roy, Jennifer M; Whitfield, Robert J; Gill, P Grantley

    2016-05-01

    Sentinel node biopsy (SNB) is recommended for selected melanoma patients in many parts of the world. This review examines the evidence surrounding the accuracy and prognostic value of SNB and completion neck dissection in head and neck melanoma. Sentinel nodes were identified in an average of 94.7% of head and neck cases compared with 95.3-100% in all melanoma cases. More false-negative sentinel nodes were found in head and neck cases. A positive sentinel node was associated with both lower disease-free survival (53.4 versus 83.2%) and overall survival (40 versus 84%). We conclude that SNB should be offered to all patients with intermediate and high-risk melanomas in the head and neck area. To date, evidence does not exist to demonstrate the safety of avoiding completion lymph node dissection in sentinel node-positive patients with head and neck melanoma. © 2015 Royal Australasian College of Surgeons.

  9. School-Based Training for Deputy Heads and Its Relationship to the Task of Primary School Management.

    ERIC Educational Resources Information Center

    Clerkin, Ciaran

    1985-01-01

    A survey of 40 newly appointed head teachers in Great Britain, supplemented by interviews with four head teachers, provided data establishing the extent to which head teachers were prepared for eight specific administrative roles by the experiences as deputy heads. Widely diverse, unsystematized approaches to administrator preparation were…

  10. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  11. Covariance analysis for evaluating head trackers

    NASA Astrophysics Data System (ADS)

    Kang, Donghoon

    2017-10-01

    Existing methods for evaluating the performance of head trackers usually rely on publicly available face databases, which contain facial images and the ground truths of their corresponding head orientations. However, most of the existing publicly available face databases are constructed by assuming that a frontal head orientation can be determined by compelling the person under examination to look straight ahead at the camera on the first video frame. Since nobody can accurately direct one's head toward the camera, this assumption may be unrealistic. Rather than obtaining estimation errors, we present a method for computing the covariance of estimation error rotations to evaluate the reliability of head trackers. As an uncertainty measure of estimators, the Schatten 2-norm of a square root of error covariance (or the algebraic average of relative error angles) can be used. The merit of the proposed method is that it does not disturb the person under examination by asking him to direct his head toward certain directions. Experimental results using real data validate the usefulness of our method.

  12. Characterization of skin reactions and pain reported by patients receiving radiation therapy for cancer at different sites

    PubMed Central

    Gewandter, Jennifer S.; Walker, Joanna; Heckler, Charles E.; Morrow, Gary R.; Ryan, Julie L.

    2015-01-01

    Background Skin reactions and pain are commonly reported side effects of radiation therapy (RT). Objective To characterize RT-induced symptoms according to treatment site subgroups and identify skin symptoms that correlate with pain. Methods A self-report survey, adapted from the MD Anderson Symptom Inventory and the McGill Pain Questionnaire, assessed RT-induced skin problems, pain, and specific skin symptoms. Wilcoxon Sign Ranked tests compared mean severity of pre- and post-RT pain and skin problems within each RT-site subgroup. Multiple linear regression (MLR) investigated associations between skin symptoms and pain. Results Survey respondents (n=106) were 58% female and on average 64 years old. RT sites included lung, breast, lower abdomen, head/neck/brain, and upper abdomen. Only patients receiving breast RT reported significant increases in treatment site pain and skin problems (p≤0.007). Patients receiving head/neck/brain RT reported increased skin problems (p<0.0009). MLR showed that post-RT skin tenderness and tightness were most strongly associated with post-RT pain (p=0.066 and p=0.122, respectively). Limitations Small sample size, exploratory analyses, and non-validated measure. Conclusions Only patients receiving breast RT reported significant increases in pain and skin problems at the RT site, while patients receiving head/neck/brain RT had increased skin problems, but not pain. These findings suggest that the severity of skin problems is not the only factor that contributes to pain, and interventions should be tailored to specifically target pain at the RT site, possibly by targeting tenderness and tightness. These findings should be confirmed in a larger sampling of RT patients. PMID:24645338

  13. Earnings Profiles of Department Heads: Comparing Cross-Sectional and Panel Models.

    ERIC Educational Resources Information Center

    Ragan, James F., Jr.; Rehman, Qazi Najeeb

    1996-01-01

    A cross-sectional study of 842 faculty who served as department heads between 1965-92 was compared with 170 in a panel study for whom earnings were estimated using a personal effects model. The average chair received a 12% wage premium for administrative service. Skill depreciation was most severe and wage growth most adversely affected in the…

  14. 46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exceeding 525 °F. Refer to § 56.30-30(b)(1) of this subchapter for applicable requirements. (e) Stresses. (Modifies PG-22.) The stresses due to hydrostatic head shall be taken into account in determining the... stresses, imposed by effects other than internal pressure or static head, which increase the average stress...

  15. 46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... exceeding 525 °F. Refer to § 56.30-30(b)(1) of this subchapter for applicable requirements. (e) Stresses. (Modifies PG-22.) The stresses due to hydrostatic head shall be taken into account in determining the... stresses, imposed by effects other than internal pressure or static head, which increase the average stress...

  16. Extent of Implementing the Total Quality Management Principles by Academic Departments Heads at Najran University from Faculty Members' Perspectives

    ERIC Educational Resources Information Center

    Al-Din, Hesham Moustafa Kamal; Abouzid, Mohamed Mahmoud

    2016-01-01

    This study aimed to identify the implementing degree of Total Quality Management (TQM) principals by Academic Departmental Heads (ADH) at the Najran University from faculty members' perspectives. It also aimed to determine significant differences between the average estimate of sample section of faculty members about the implementing degree of TQM…

  17. 46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exceeding 525 °F. Refer to § 56.30-30(b)(1) of this subchapter for applicable requirements. (e) Stresses. (Modifies PG-22.) The stresses due to hydrostatic head shall be taken into account in determining the... stresses, imposed by effects other than internal pressure or static head, which increase the average stress...

  18. Influence of pregnancy stage and fetus position on the whole-body and local exposure of the fetus to RF-EMF

    NASA Astrophysics Data System (ADS)

    Varsier, N.; Dahdouh, S.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Bloch, I.; Wiart, J.

    2014-09-01

    This paper analyzes the influence of pregnancy stage and fetus position on the whole-body and brain exposure of the fetus to radiofrequency electromagnetic fields. Our analysis is performed using semi-homogeneous pregnant woman models between 8 and 32 weeks of amenorrhea. By analyzing the influence of the pregnancy stage on the environmental whole-body and local exposure of a fetus in vertical position, head down or head up, in the 2100 MHz frequency band, we concluded that both whole-body and average brain exposures of the fetus decrease during the first pregnancy trimester, while they advance during the pregnancy due to the rapid weight gain of the fetus in these first stages. From the beginning of the second trimester, the whole-body and the average brain exposures are quite stable because the weight gains are quasi proportional to the absorbed power increases. The behavior of the fetus whole-body and local exposures during pregnancy for a fetus in the vertical position with the head up were found to be of a similar level, when compared to the position with the head down they were slightly higher, especially in the brain.

  19. Magnetocardiogram measured by fundamental mode orthogonal fluxgate array

    NASA Astrophysics Data System (ADS)

    Karo, Hikaru; Sasada, Ichiro

    2015-05-01

    Magnetocardiography (MCG) of healthy volunteers has been measured by using a fundamental mode orthogonal fluxgate magnetometer array of 32 channels in a magnetic shielded room (MSR). Sensor heads, which are employed, consist of a 45 mm long U-shaped amorphous wire core and a 1000-turn solenoid pick-up coil of 30 mm in length and 3 mm in outer diameter. The excitation current of 100 kHz with large dc bias current is fed directly into wire cores, which are connected in series, whereas the signal detection circuit is provided to each of the sensor heads. A special technique to avoid mutual interaction between sensor heads is implemented, where all the sensor heads are excited synchronously by using a single ac source. A 2-D array having 32 sensors with 4 cm grid spacing was used to measure MCG signals inside an MSR. Measured data from each channel were first filtered (0.16-100 Hz pass band), then averaged for 2 min synchronously with electrocardiogram's peaks taken from both hands. Noise remaining after the average is about 1.8 pTrms for the band-width of 0.16-100 Hz. The QRS complex and the T-wave are clearly detected.

  20. Self-diagnosis of active head lice infestation by individuals from an impoverished community: high sensitivity and specificity.

    PubMed

    Pilger, Daniel; Khakban, Adak; Heukelbach, Jorg; Feldmeier, Hermann

    2008-01-01

    To compare sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of self-diagnosis for head lice infestation with visual inspection, we conducted a study in an urban slum in Brazil. Individuals were asked about active head lice infestation (self-diagnosis); we performed visual inspection and thereafter wet combing (gold standard). Of the 175 individuals included, 77 (44%) had an active head lice infestation. For self-diagnosis, sensitivity (80.5%), specificity (91.8%), PPV (88.6%) and NPV (85.7%) were high. Sensitivity of visual inspection was 35.1%. Public health professionals can use self-diagnosis as a diagnostic tool, to estimate accurately prevalence of pediculosis in a community, and to monitor ongoing intervention strategies.

  1. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains

    PubMed Central

    Brown-Guedira, Gina; Haley, Scott D.; McMaster, Gregory S.; Reid, Scott D.; Smith, Jared; Byrne, Patrick F.

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011–2012 and 2012–2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  2. Lethal effects of treatment with a special dimeticone formula on head lice and house crickets (Orthoptera, Ensifera: Acheta domestica and Anoplura, phthiraptera: Pediculus humanus). Insights into physical mechanisms.

    PubMed

    Richling, Ira; Böckeler, Wolfgang

    2008-01-01

    The present study provides the first convincing explanation of the mode of action of the medical device NYDA, a special dimeticone (CAS 9006-65-9) formula containing 92% of two dimeticones with different viscosities specifically designed for the physical treatment of head lice infestations (pediculosis capitis) by suffocation. Both, lice (Pediculus humanus) and house crickets (Acheta domestica) treated with this anti-head lice product are knocked out to the status "of no major vital signs" within less than 1 min that in consequence is accompanied irreversibly with the death of the respective insects. Scanning electron microscopical investigations have revealed that the cuticle is coated by a thin closed layer of the dimeticone formula that also enters the stigmata. In vivo observations and dissections of Acheta domestica have shown that application of the medical device to the thoracic stigmata invariably leads to rapid death; this is strongly correlated with the influx of the special dimeticone formula into the head trachea, whereby the solution effectively blocks the oxygen supply of the central nervous system. Dissections after application of the stained product show that it also enters the finest tracheal branches. Analogous in vivo observations in Pediculus humanus have confirmed the correlation between the disappearance of major vital signs and the displacement of air by the dimeticone formula in the tracheal system of the head. For both insect species, statistical data are provided for the chronological sequence of the filling of the tracheal system in relation to the respective vitality conditions of the Insects. On average, the special dimeticone formula reaches the insect's head tracheae within 0.5 min in house crickets and in less than 1 min in lice with a complete filling of the entire head tracheal system of lice within 3.5 min. In addition, a timed sequence of images illustrates this process for lice. The experiments clearly reveal the exclusive and pure physical mode of action of the tested dimeticone formula.

  3. Alternative Splice in Alternative Lice.

    PubMed

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... applicable authorized tank car specification and must be equipped with a head shield as prescribed in § 179... jacket and head shield. When the jacket and head shield are made from any authorized steel with a minimum... jacket and head shield must be increased by a factor of 1.157. Forming allowances for heads are not...

  5. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... applicable authorized tank car specification and must be equipped with a head shield as prescribed in § 179... jacket and head shield. When the jacket and head shield are made from any authorized steel with a minimum... jacket and head shield must be increased by a factor of 1.157. Forming allowances for heads are not...

  6. 45 CFR 98.71 - Content of reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Matching and Maintenance-of-Effort (MOE) Funds: (1) The total monthly family income for determining... of children; (5) Whether the head of the family is a single parent; (6) The sources of family income...) Average number of hours of care provided per week; (6) Average hourly amount paid for care; (7) Children...

  7. 50 CFR 218.31 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...); (x) Melon-headed whales (Peponocephala electra)—100 (an average of 20 annually); (xi) False killer... annually); (xiv) Pygmy killer whale (Ferresa attenuatta)—50 (an average of 10 annually); (xv) Rough-toothed... method of take and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter...

  8. 50 CFR 218.31 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...); (x) Melon-headed whales (Peponocephala electra)—100 (an average of 20 annually); (xi) False killer... annually); (xiv) Pygmy killer whale (Ferresa attenuatta)—50 (an average of 10 annually); (xv) Rough-toothed... method of take and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter...

  9. 50 CFR 218.181 - Permissible methods of taking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter macrocephalus)—10...); (vii) Spinner dolphin (S. longirostris)—115 (an average of 23 annually); (viii) Melon-headed whale (Peponocephala electra)—10 (an average of 2 annually); (ix) Short-finned pilot whale (Globicephala macrorhynchus...

  10. 50 CFR 218.181 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter macrocephalus)—10...); (vii) Spinner dolphin (S. longirostris)—115 (an average of 23 annually); (viii) Melon-headed whale (Peponocephala electra)—10 (an average of 2 annually); (ix) Short-finned pilot whale (Globicephala macrorhynchus...

  11. 50 CFR 218.181 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and the indicated number of times: (1) Level B Harassment: (i) Sperm whale (Physeter macrocephalus)—10...); (vii) Spinner dolphin (S. longirostris)—115 (an average of 23 annually); (viii) Melon-headed whale (Peponocephala electra)—10 (an average of 2 annually); (ix) Short-finned pilot whale (Globicephala macrorhynchus...

  12. Discrepancy in fetal head biometry between ultrasound and MRI in suspected microcephalic fetuses.

    PubMed

    Yaniv, Gal; Katorza, Eldad; Tsehmaister Abitbol, Vered; Eisenkraft, Arik; Bercovitz, Ronen; Bader, Salim; Hoffmann, Chen

    2017-12-01

    Background Microcephaly is one of the most common fetal structural abnormalities, and prenatal microcephaly is considered a group I malformation of cortical development diagnosed according to ultrasound (US) skull measurements. Purpose To evaluate the agreement between fetal head US and magnetic resonance imaging (MRI) biometric measurements of suspected microcephalic fetuses. Material and Methods This institutional review board-approved retrospective study with waived informed consent included 180 pregnant women and was conducted at our medical center from March 2011 to April 2013. Biparietal diameter (BPD) and occipitofrontal diameter (OFD) results of fetal head US normograms were compared to normograms for MRI. We used Pearson and Spearman rho non-parametric correlation coefficients to assess the association between two quantitative variables, paired t-test for paired quantitative variables, and McNemar test for paired qualitative variables. Results The average BPD but not the average OFD percentiles in fetal head US differed significantly from the MRI results ( P < 0.0001). When looking at the accepted microcephaly threshold, both BPD and OFD percentiles differed significantly from MRI ( P < 0.0001 and P < 0.004, respectively). There was no correlation between US-measured skull biometry and MRI-measured brain biometry. Estimated cerebrospinal fluid volumes were significantly lower in the study group compared to 120 fetuses with normal findings in prenatal head US and MRI. Also, we have created a MRI-based normogram of fetal head circumference and gestational age. Conclusion The diagnosis of microcephaly by US alone may be insufficient and ideally should be validated by MRI before a final diagnosis is established.

  13. Low-head sea lamprey barrier effects on stream habitat and fish communities in the Great Lakes basin

    USGS Publications Warehouse

    Dodd, H.R.; Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.; Jones, M.L.

    2003-01-01

    Low-head barriers are used to block adult sea lamprey (Petromyzon marinus) from upstream spawning habitat. However, these barriers may impact stream fish communities through restriction of fish movement and habitat alteration. During the summer of 1996, the fish community and habitat conditions in twenty-four stream pairs were sampled across the Great Lakes basin. Seven of these stream pairs were re-sampled in 1997. Each pair consisted of a barrier stream with a low-head barrier and a reference stream without a low-head barrier. On average, barrier streams were significantly deeper (df = 179, P = 0.0018) and wider (df = 179, P = 0.0236) than reference streams, but temperature and substrate were similar (df = 183, P = 0.9027; df = 179, P = 0.999). Barrier streams contained approximately four more fish species on average than reference streams. However, streams with low-head barriers showed a greater upstream decline in species richness compared to reference streams with a net loss of 2.4 species. Barrier streams also showed a peak in richness directly downstream of the barriers, indicating that these barriers block fish movement upstream. Using S??renson's similarity index (based on presence/absence), a comparison of fish community assemblages above and below low-head barriers was not significantly different than upstream and downstream sites on reference streams (n = 96, P > 0.05), implying they have relatively little effect on overall fish assemblage composition. Differences in the frequency of occurrence and abundance between barrier and reference streams was apparent for some species, suggesting their sensitivity to barriers.

  14. Effect of component design in retrieved bipolar hip hemiarthroplasty systems.

    PubMed

    Hess, Matthew D; Baker, Erin A; Salisbury, Meagan R; Kaplan, Lige M; Greene, Ryan T; Greene, Perry W

    2013-09-01

    Primary articulation of bipolar hemiarthroplasty systems is at the femoral head-liner interface. The purpose of this study was to compare observed damage modes on 36 retrieved bipolar systems with implant, demographic, intraoperative, and radiographic data to elucidate the effects of component design, specifically locking mechanism, on clinical performance. Retrieved bipolar hip hemiarthroplasty systems of 3 different design types were obtained, disassembled, and evaluated macro- and microscopically for varying modes of wear, including abrasion, burnishing, embedding, scratching, and pitting. Clinical record review and radiographic analysis were performed by a senior orthopedic surgery resident. Average bipolar hip hemiarthroplasty system term of service was 46 months (range, 0.27-187 months). All devices contained wear debris captured within the articulating space between the femoral head and liner. In 31% of patients without infection, lucency was observed on immediate prerevision radiographs. The system with a leaf locking mechanism showed significantly increased radiographically observed osteolysis (P=.03) compared with a system with a stopper ring locking mechanism. In addition, implant design and observed damage modes, including pitting and third-body particle embedding, were significantly associated with radiographically observed osteolysis. Copyright 2013, SLACK Incorporated.

  15. Treatment refusal and premature termination in psychotherapy, pharmacotherapy, and their combination: A meta-analysis of head-to-head comparisons.

    PubMed

    Swift, Joshua K; Greenberg, Roger P; Tompkins, Kelley A; Parkin, Susannah R

    2017-03-01

    The purpose of this meta-analysis was to examine rates of treatment refusal and premature termination for pharmacotherapy alone, psychotherapy alone, pharmacotherapy plus psychotherapy, and psychotherapy plus pill placebo treatments. A systematic review of the literature resulted in 186 comparative trials that included a report of treatment refusal and/or premature termination for at least 2 of the 4 treatment conditions. The data from these studies were pooled using a random-effects analysis. Odds Ratio effect sizes were then calculated to compare the rates between treatment conditions, once across all studies and then again for specific client disorder categories. An average treatment refusal rate of 8.2% was found across studies. Clients who were assigned to pharmacotherapy were 1.76 times more likely to refuse treatment compared with clients who were assigned psychotherapy. Differences in refusal rates for pharmacotherapy and psychotherapy were particularly evident for depressive disorders, panic disorder, and social anxiety disorder. On average, 21.9% of clients prematurely terminated their treatment. Across studies, clients who were assigned to pharmacotherapy were 1.20 times more likely to drop out compared with clients who were assigned to psychotherapy. Pharmacotherapy clients with anorexia/bulimia and depressive disorders dropped out at higher rates compared with psychotherapy clients with these disorders. Treatment refusal and dropout are significant problems in both psychotherapy and pharmacotherapy and providers of these treatments should seek to employ strategies to reduce their occurrence. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Heads Up to High School Sports

    MedlinePlus

    ... submit" value="Submit" /> HEADS UP to School Sports Recommend on Facebook Tweet Share Compartir To help ... organizations, developed the HEADS UP: Concussion in School Sports initiative and materials. Specific Concussion Information for... Coaches ...

  17. Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque.

    PubMed

    Rudolfsson, Thomas; Björklund, Martin; Svedmark, Åsa; Srinivasan, Divya; Djupsjöbacka, Mats

    2017-01-01

    Cervical range of motion (ROM) is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension) or a movement strategy to avoid large gravitationally induced torques on the cervical spine. Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition) and maximal protraction (low torque condition) in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM), from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure. Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour. The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments.

  18. Readability Trends of Online Information by the American Academy of Otolaryngology-Head and Neck Surgery Foundation.

    PubMed

    Wong, Kevin; Levi, Jessica R

    2017-01-01

    Objective Previous studies have shown that patient education materials published by the American Academy of Otolaryngology-Head and Neck Surgery Foundation may be too difficult for the average reader to understand. The purpose of this study was to determine if current educational materials show improvements in readability. Study Design Cross-sectional analysis. Setting The Patient Health Information section of the American Academy of Otolaryngology-Head and Neck Surgery Foundation website. Subjects and Methods All patient education articles were extracted in plain text. Webpage navigation, references, author information, appointment information, acknowledgments, and disclaimers were removed. Follow-up editing was also performed to remove paragraph breaks, colons, semicolons, numbers, percentages, and bullets. Readability grade was calculated with the Flesch-Kincaid Grade Level, Flesch Reading Ease, Gunning-Fog Index, Coleman-Liau Index, Automated Readability Index, and Simple Measure of Gobbledygook. Intra- and interobserver reliability were assessed. Results A total of 126 articles from 7 topics were analyzed. Readability levels across all 6 tools showed that the difficulty of patient education materials exceeded the abilities of an average American. As compared with previous studies, current educational materials by the American Academy of Otolaryngology-Head and Neck Surgery Foundation have shown a decrease in difficulty. Intra- and interobserver reliability were both excellent, with intraclass coefficients of 0.99 and 0.96, respectively. Conclusion Improvements in readability is an encouraging finding and one that is consistent with recent trends toward improved health literacy. Nevertheless, online patient educational material is still too difficult for the average reader. Revisions may be necessary for current materials to benefit a larger readership.

  19. A 10{sup 9} neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niranjan, Ram, E-mail: niranjan@barc.gov.in; Rout, R. K.; Srivastava, R.

    2016-03-15

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silvermore » activation detector in the radial direction is (7.1 ± 1.4) × 10{sup 8} neutrons/shot over 4π sr at 5 mbar optimum D{sub 2} pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giaddui, T; Hardin, M; Keller, J

    Purpose: To evaluate patient specific quality assurance (PSQA) for the delivery of volumetric modulated arc therapy (VMAT) by disease site. To compare planning-delivery system (PDS) PSQA pass rates in a dual vendor institution. Methods: PSQA is performed for VMAT plans using a ScandiDos Delta4 phantom. Verification plans are calculated using Varian Eclipse and Elekta Monaco treatment planning systems (TPS) for patients treated using Varian Truebeam and Elekta linear accelerators respectively. Individual arcs are delivered to the Delta4 phantoms and assessed using the gamma index pass criterion(3% Dose Deviation(DD%), 3mm Distance to Agreement(DTA),10% dose threshold and 90% gamma index). Results: Amore » total of 287 VMAT plans and 680 arcs were analyzed. The passing rates for VMAT QA plans were 95% and 98% for head/neck and pelvis/prostate plans respectively, and 100% for chest/abdomen, spine, lung Stereotactic Body Radiotherapy (SBRT) and Stereotactic Radiosurgery(SRS) plans. Average gamma indices were: (99 ± 2) % for pelvis/prostate, chest/abdomen and lung SBRT plans, (97 ± 4) % for head and neck plans and (98 ± 3) % for spine plans. The average DD% and DTA pass rates ranged from 82% to 90% and 98% to 99% respectively for plans in different disease sites. Paired t-test analysis (two tails) indicated no significant differences in the gamma indices between plans delivered using different PDS; the P values were: 0.08, 0.45, and 0.94 for lung SBRT, head/neck and pelvis/prostate plans respectively. The statistical power for comparing PDS in different disease sites with an alpha of 0.05 is 1. Conclusion: The Gamma indices based on 3% DD%, 3 mm DTA and 10% dose threshold for the VMAT QA plans in all disease sites were well above 90%, suggesting the possibility of using a more stringent PSQA criterion. No significant differences were observed in the QA of VMAT plans delivered using different PDS.« less

  1. Image guidance during head-and-neck cancer radiation therapy: analysis of alignment trends with in-room cone-beam computed tomography scans.

    PubMed

    Zumsteg, Zachary; DeMarco, John; Lee, Steve P; Steinberg, Michael L; Lin, Chun Shu; McBride, William; Lin, Kevin; Wang, Pin-Chieh; Kupelian, Patrick; Lee, Percy

    2012-06-01

    On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial-lateral, superior-inferior, and anterior-posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from alternative imaging strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. [Dynamics of ECG voltage in changing gravity].

    PubMed

    Saltykova, M M; At'kov, O Iu; Capderou, A; Morgun, V V; Gusakov, V A; Kheĭmets, G I; Konovalov, G A; Kondratiuk, L L; Kataev, Iu V; Voronin, L I; Kaspranskiĭ, R R; Vaida, P

    2006-01-01

    Comparative analysis of the QRS voltage response to gravity variations was made using the data about 26 normal human subjects collected in parabolic flights (CNERS-AIRBUS A300 Zero-G, n=23; IL-76MD, n=3) and during the tilt test (head-up tilt at 70 degrees for a min and head-down tilt at-15 degrees for 5 min, n=14). Both the parabolic flights and provocative tilt tests affected R-amplitude in the Z lead. During the hypergravity episodes it was observed in 95% of cases with the mean gain of 16% and maximal--56%. On transition to the horizontal position, the Rz-amplitude showed a rise in each subject (16% on the average). In microgravity, the Rz-amplitude reduced in 95% of the observations. The voltage decline averaged 18% and reached 49% at the maximum. The head-down tilt was conducive to Rz reduction in 78% of observations averaging 2%. Analysis of the ECG records under changing gravity when blood redistribution developed within few seconds not enough for serious metabolic shifts still revealed QRS deviations associated exclusively with the physical factors, i.e., alteration in tissue conduction and distance to electrodes. Our findings can stand in good stead in evaluation of the dynamics of predictive ECG parameters during long-term experiments leading to changes as in tissue conduction, so metabolism.

  3. The Submental Island Flap Is a Viable Reconstructive Option for a Variety of Head and Neck Ablative Defects.

    PubMed

    Barton, Blair M; Riley, Charles A; Pou, Jason D; Hasney, Christian P; Moore, Brian A

    2018-01-01

    The submental island flap (SIF) is a pedicled flap based upon the submental artery and vein. Its utility in reconstruction following ablative head and neck procedures has been applied to various subsites including skin, lip, buccal mucosa, retromolar trigone, parotidectomy defects, and tongue. We review our experience using the SIF for reconstruction following tumor ablation. This prospective case series with medical record review includes consecutive patients undergoing SIF reconstruction following ablative surgery for malignancy at a single tertiary care facility between November 2014 and November 2016. We examined preoperative variables, surgical procedures, and postoperative outcomes. Thirty-seven patients met inclusion criteria. Twenty-nine were male; the average age was 64.3 (±12.4) years. Seventeen cancers involved the oral cavity, 11 involved the skin, 8 were in the oropharynx, and 1 was in the paranasal sinus. The average size of the SIF was 38.8 cm 2 (±17.6 cm 2 ). Four partial flap losses occurred; none required revision surgery. The average length of stay for these patients was 7.2 (±6.1) days. The SIF is a robust flap that can be reliably used for a variety of head and neck defects following tumor ablation with an acceptable rate of donor- and flap-related complications.

  4. Physical therapy clinic therapeutic ultrasound equipment as a source for bacterial contamination.

    PubMed

    Spratt, Henry G; Levine, David; Tillman, Larry

    2014-10-01

    A procedure commonly used in physical therapy (PT) clinics is therapeutic ultrasound (US). This equipment and associated gel comes in contact with patient skin, potentially serving as a reservoir for bacteria. In this study, we sampled US heads, gel bottle tips and gel from nine outpatient PT clinics in Southeastern Tennessee. Samples were collected using sterile swabs. At the microbiology laboratory, these swabs were used to inoculate mannitol salt agar and CHROM-MRSA agar (for Staphylococcal species) and tryptic soy broth to determine non-specific bacterial contamination. US heads, gel bottle tips and gel had variable levels of contamination. Tips of gel bottles had the highest contamination, with 52.7% positive for non-specific bacterial contamination and 3.6% positive for methicillin-resistant Staphylococcus aureus (MRSA). Contamination of gel by non-specific bacteria was found in 14.5% of bottles sampled. US heads (35.5% of those sampled) had non-specific bacterial contamination, with no MRSA detected. Disinfecting US heads after initial swabbing resulted in removal of 90.9% of non-specific contamination. Gel storage at temperatures below 40 °C was found to encourage the growth of mesophilic bacteria. This study demonstrates the need for better cleaning and storage protocols for US heads and gel bottles in PT clinics.

  5. Generation of a head phantom according to the 95th percentile Chinese population data for evaluating the specific absorption rate by wireless communication devices.

    PubMed

    Ma, Yu; Wang, Yuduo; Shao, Qing; Li, Congsheng; Wu, Tongning

    2014-03-01

    A Chinese head phantom (CHP) is constructed for evaluating the specific absorption rate (SAR) by the wireless transceivers. The dimensions of the head phantom are within 4 % difference compared with the 95th percentile data from the China's standard. The shell's thickness and the configuration of the pinna are the same as those of the specific anthropomorphic mannequin (SAM). Three computable models for the mobile phones are generated and used in the SAR simulations with the SAM and the CHP. The results show that the simulated SAR from the SAM head is similar. Its morphological reason has been analysed. The authors discuss the conservativeness of the two head phantoms as well. The CHP can be used in the inter-laboratory evaluation for the SAR uncertainty. It can also provide the information for the SAR variability due to physical difference, which will benefit the maintenance and the harmonisation of the standards.

  6. Disproportionately severe memory deficit in relation to normal intellectual functioning after closed head injury.

    PubMed Central

    Levin, H S; Goldstein, F C; High, W M; Eisenberg, H M

    1988-01-01

    The presence of disproportionate memory impairment with relatively preserved intellectual functioning was examined in 87 survivors of moderate or severe closed head injury. Approximately one-fourth of the patients tested at 5 to 15 and/or 16 to 42 months after injury manifested defective memory on both auditory and pictorial measures despite obtaining Wechsler Verbal and Performance Intelligence Quotients within the average range. The findings indicate that disproportionately severe memory deficit persists in a subgroup of closed head injured survivors which is reminiscent in some cases of the amnesic disturbance arising from other causes. Evaluation of long term memory in relation to cognitive ability could potentially identify important distinctions for prognosis and rehabilitation in head injured patients. PMID:3225586

  7. Head and cervical spine postures in complete denture wearers.

    PubMed

    Salonen, M A; Raustia, A M; Huggare, J

    1993-01-01

    Signs and symptoms in the stomatognathic system and head and cervical spine postures were evaluated in 10 edentulous patients prior to renewal of their dentures, as well as immediately and six months after insertion of new dentures. Natural head posture was recorded using the fluid-level method and measured from the roentgen cephalograms. It was shown that the variables duration of edentulousness and free-way space displayed positive correlations with the dysfunction symptoms. In addition, the patients who needed oral rehabilitation the most, who received the greatest reduction in their free-way space, were seen to have raised their heads more than average. There was also an inverse correlation between the reduction of clinical dysfunction index score and cervical spine postures.

  8. Hip resurfacing in patients under thirty years old: an attractive option for young and active patients.

    PubMed

    Krantz, Nicolas; Miletic, Bruno; Migaud, Henri; Girard, Julien

    2012-09-01

    Metal-on-metal hip resurfacing is offered as an alternative to traditional hip arthroplasty for young, active adults with advanced osteoarthritis. The concept of hip resurfacing is considered very attractive for this specific population (hard-on-hard bearing component with a large femoral head limiting the risk of dislocation, and allowing femoral bone stock preservation). A prospective clinical trial was designed to investigate the outcome of hip resurfacing in young patients (under 30 years old). We studied 24 hips in 22 patients. Mean age at operation was 24.9 years (range 17.1-29.9). No patient was lost to follow-up. There was no revision at average follow-up of 50.6 months (44-59). Mean UCLA activity score improved from 5.5 (1-9) pre-operatively to 7.6 (1-10) postoperatively (p < 0.001). Mean Harris hip score increased from 43.9 (19-67) to 89.3 (55-100) (p < 0.001). Radiological analysis discerned no osteolysis and no implant migration. The absence of short-term complications, such as mechanical failure or dislocation, is encouraging and leads us to think that mid-term results will be satisfactory. Moreover, the specific advantages of hip resurfacing (bone stock preservation, excellent stability, low risk of dislocation, large-diameter head) make the procedure a very attractive option for young subjects.

  9. TU-FG-BRB-04: A New Optimization Method for Pre-Treatment Patient-Specific Stopping-Power by Combining Proton Radiography and X-Ray CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins-Fekete, C; Centre Hospitalier University de Quebec, Quebec, QC; Mass General Hospital

    Purpose: The relative stopping power (RSP) uncertainty is the largest contributor to the range uncertainty in proton therapy. The purpose of this work is to develop a robust and systematic method that yields accurate patient specific RSPs by combining pre-treatment X-ray CT and daily proton radiography. Methods: The method is formulated as a penalized least squares optimization (PLSO) problem min(|Ax-B|). The matrix A represents the cumulative path-length crossed in each material computed by calculating proton trajectories through the X-ray CT. The material RSPs are denoted by x and B is the pRad, expressed as water equivalent thickness. The equation ismore » solved using a convex-conic optimizer. Geant4 simulations were made to assess the feasibility of the method. RSP extracted from the Geant4 materials were used as a reference and the clinical HU-RSP curve as a comparison. The PLSO was first tested on a Gammex RMI-467 phantom. Then, anthropomorphic phantoms of the head, pelvis and lung were studied and resulting RSPs were evaluated. A pencil beam was generated in each phantom to evaluate the proton range accuracy achievable by using the optimized RSPs. Finally, experimental data of a pediatric head phantom (CIRS) were acquired using a recently completed experimental pCT scanner. Results: Numerical simulations showed precise RSP (<0.75%) for Gammex materials except low-density lung (LN-300) (1.2%). Accurate RSP have been obtained for the head (µ=−0.10%, 1.5σ=1.12%), lung (µ=−0.33, 1.5σ=1.02%) and pelvis anthropomorphic phantoms (µ=0.12, 1.5σ=0,99%). The range precision has been improved with an average R80 difference to the reference (µ±1.5σ) of −0.20±0.35%, −0.47±0.92% and −0.06±0.17% in the head, lung and pelvis phantoms respectively, compared to the 3.5% clinical margin. Experimental HU-RSP curve have been produced on the CIRS pediatric head. Conclusion: The proposed PLSO with prior knowledge X-ray CT shows promising potential (R80 σ<1.0% over all sites) to decrease the range uncertainty.« less

  10. Merkel cell carcinoma of the head and neck: poorer prognosis than non-head and neck sites.

    PubMed

    Morand, G B; Madana, J; Da Silva, S D; Hier, M P; Mlynarek, A M; Black, M J

    2016-04-01

    Merkel cell carcinoma is a rare, aggressive neurocutaneous malignancy. This study investigated whether patients with Merkel cell carcinoma in the head and neck had poorer outcomes than patients with Merkel cell carcinoma located elsewhere. A retrospective study was performed of patients with Merkel cell carcinoma treated at the Jewish General Hospital in Montréal, Canada, from 1993 to 2013. Associations between clinicopathological characteristics and disease-free and disease-specific survival rates were examined according to the Kaplan-Meier method. Twenty-seven patients were identified. Although basic clinicopathological characteristics and treatments were similar between head and neck and non-head and neck Merkel cell carcinoma groups, disease-free and disease-specific survival rates were significantly lower in the head and neck Merkel cell carcinoma group (log-rank test; p = 0.043 and p = 0.001, respectively). Mortality was mainly due to distant metastasis. Patients with head and neck Merkel cell carcinoma had poorer survival rates than patients with non-head and neck Merkel cell carcinoma in our study. The tendency to obtain close margins, a less predictable metastatic pattern, and/or intrinsic tumour factors related to the head and neck may explain this discrepancy.

  11. [Comparison of core decompression with stem cell transplantation and tantalum rod implanting in treating stage II non-traumatic osteonecrosis of femoral head].

    PubMed

    He, Bang-Jian; Li, Ju; Lyu, Yi; Tong, Pei-Jian

    2016-12-25

    To compare clinical effects of core decompression with stem cell transplantation and tantalum rod implanting in treating stage II non-traumatic osteonecrosis of femoral head. From March 2012 to September 2012, 45 patients(55 hips)with stage ARCO II non-traumatic osteonecrosis of femoral head were treated and divided into core decompression with stem cell transplantation group(group A) and tantalum rod implanting group(group B) according to number table. In group A, there were 23 cases(28 hips) , including 12 males and 11 females aged from 23 to 51 years old with an average of (36.87±9.52) years, the courses of disease ranged from 2 to 28 months with an average of (17.13±7.74) months, preoperative Harris score was for 35 to 70 with an average of(54.74±11.81), treated with core decompression with stem cell transplantation. In group B, there were 22 cases(27 hips), including 11 males and 11 females aged from 26 to 46 years old with an average of (35.59±7.39) years, the courses of disease ranged from 3 to 26 months with an average of(16.00±7.46) months, preoperative Harris score was for 35 to 76 with an average of (57.18±12.95), treated with core tantalum rod implanting. Operative time, blood loss, hospital stays, hospitalization expenses were observed and compared after treatment between two groups, the clinical effects were evaluated according to Harris criteria. All patients were followed up from 6 to 12 months with an average of 10.8 months. There were significant difference in hospitalization expenses between two groups( P <0.05), while there was no significant statistical difference in blood loss and hospital stay ( P >0.05). At the final following-up, Harris score in group A was(83.04±8.97), 6 cases obtained excellent results, 14 good, 2 good and 1 poor;while Harris score in group A was(84.41±9.94), and 9 cases obtained excellent results, 9 good, 3 good and 1 poor; there was no statistical meaning differences between two groups( P >0.05). Core decompression with stem cell transplantation and tantalum rod implanting could both improve function of hip joint, while core decompression with stem cell transplantation had advantages of shorter operation time, less cost, and higher potency ratio. It is suitable for stage ARCO II non-traumatic femoral head necrosis.

  12. Biomechanics of Sports-Induced Axial-Compression Injuries of the Neck

    PubMed Central

    Ivancic, Paul C.

    2012-01-01

    Context Head-first sports-induced impacts cause cervical fractures and dislocations and spinal cord lesions. In previous biomechanical studies, researchers have vertically dropped human cadavers, head-neck specimens, or surrogate models in inverted postures. Objective To develop a cadaveric neck model to simulate horizontally aligned, head-first impacts with a straightened neck and to use the model to investigate biomechanical responses and failure mechanisms. Design Descriptive laboratory study. Setting Biomechanics research laboratory. Patients or Other Participants Five human cadaveric cervical spine specimens. Intervention(s) The model consisted of the neck specimen mounted horizontally to a torso-equivalent mass on a sled and carrying a surrogate head. Head-first impacts were simulated at 4.1 m/s into a padded, deformable barrier. Main Outcome Measure(s) Time-history responses were determined for head and neck loads, accelerations, and motions. Average occurrence times of the compression force peaks at the impact barrier, occipital condyles, and neck were compared. Results The first local compression force peaks at the impact barrier (3070.0 ± 168.0 N at 18.8 milliseconds), occipital condyles (2868.1 ± 732.4 N at 19.6 milliseconds), and neck (2884.6 ± 910.7 N at 25.0 milliseconds) occurred earlier than all global compression peaks, which reached 7531.6 N in the neck at 46.6 milliseconds (P < .001). Average peak head motions relative to the torso were 6.0 cm in compression, 2.4 cm in posterior shear, and 6.4° in flexion. Neck compression fractures included occipital condyle, atlas, odontoid, and subaxial comminuted burst and facet fractures. Conclusions Neck injuries due to excessive axial compression occurred within 20 milliseconds of impact and were caused by abrupt deceleration of the head and continued forward torso momentum before simultaneous rebound of the head and torso. Improved understanding of neck injury mechanisms during sports-induced impacts will increase clinical awareness and immediate care and ultimately lead to improved protective equipment, reducing the frequency and severity of neck injuries and their associated societal costs. PMID:23068585

  13. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penoncello, Gregory P.; Ding, George X., E-mail: george.ding@vanderbilt.edu

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, andmore » 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm{sup 3} for head and neck plans and brain plans and a contiguous volume of 5 cm{sup 3} for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.« less

  14. Going Comprehensive: Experience of a British Social Studies Department Head. Occasional Paper 8.

    ERIC Educational Resources Information Center

    Weir, R.

    Secondary education in the United Kingdom is gradually being reorganized along "comprehensive" lines, although there is still resistance to it. Stemming from the Butler Education Act of 1944, a tripartite secondary system emerged, comprised of the grammar (for superior students), the technical (for average and above average students),…

  15. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All...

  16. Head Start Program Performance Standards on Services for Children with Disabilities (45-CFR 1308) [and] Normas de Ejecucion del Programa Head Start Sobre Servicios para Ninos con Discapacidades (45-CFR 1308).

    ERIC Educational Resources Information Center

    Administration for Children, Youth, and Families (DHHS), Washington, DC. Head Start Bureau.

    This document consolidates, clarifies, and updates federal regulations on Head Start services for children with disabilities. The regulations are designed to complement the Head Start Program Performance Standards governing services to all enrolled children. Specifically, these regulations require Head Start programs to: (1) design comprehensive…

  17. Cancer of the head and neck region in solid organ transplant recipients.

    PubMed

    Rabinovics, Naomi; Mizrachi, Aviram; Hadar, Tuvia; Ad-El, Dean; Feinmesser, Raphael; Guttman, Dan; Shpitzer, Thomas; Bachar, Gideon

    2014-02-01

    Solid organ recipients are at an increased risk of developing various malignancies. We investigated the incidence, clinical features, and outcome of patients diagnosed with head and neck cancer after organ transplantation. A retrospective analysis was undertaken of patients who underwent solid organ transplantation (kidney, liver, lung, heart) treated at our institution from 1992 to 2010. Of 2817 organ recipients, 175 patients (6.1%) developed 391 head and neck malignancies. Cutaneous malignancies were the most common (93%): squamous cell carcinoma (SCC; 51%) and basal cell carcinoma (BCC; 42%). The average interval from transplantation to diagnosis of head and neck malignancy was 7.3 years, with liver recipients diagnosed earlier. Eighteen percent of patients presented with an aggressive pattern of head and neck cancer, including 24% of patients with cutaneous SCC. Organ transplantation recipients are at a higher risk to develop head and neck cancer with an aggressive behavior characterized by multiple recurrences and decreased survival. Copyright © 2013 Wiley Periodicals, Inc.

  18. Evidence from mitochondrial DNA that head lice and body lice of humans (Phthiraptera: Pediculidae) are conspecific.

    PubMed

    Leo, N P; Campbell, N J H; Yang, X; Mumcuoglu, K; Barker, S C

    2002-07-01

    The specific status of the head and body lice of humans has been debated for more than 200 yr. To clarify the specific status of head and body lice, we sequenced 524 base pairs (bp) of the cytochrome oxidase I (COI) gene of 28 head and 28 body lice from nine countries. Ten haplotypes that differed by 1-5 bp at 11 nucleotide positions were identified. A phylogeny of these sequences indicates that these head and body lice are not from reciprocally monophyletic lineages. Indeed, head and body lice share three of the 10 haplotypes we found. F(ST) values and exact tests of haplotype frequencies showed significant differences between head and body lice. However, the same tests also showed significant differences among lice from different countries. Indeed, more of the variation in haplotype frequencies was explained by differences among lice from different countries than by differences between head and body lice. Our results indicate the following: (1) head and body lice do not represent reciprocally monophyletic lineages and are conspecific; (2) gene flow among populations of lice from different countries is limited; and (3) frequencies of COI haplotypes can be used to study maternal gene flow among populations of head and body lice and thus transmission of lice among their human hosts.

  19. Examining kinesin processivity within a general gating framework

    PubMed Central

    Andreasson, Johan OL; Milic, Bojan; Chen, Geng-Yuan; Guydosh, Nicholas R; Hancock, William O; Block, Steven M

    2015-01-01

    Kinesin-1 is a dimeric motor that transports cargo along microtubules, taking 8.2-nm steps in a hand-over-hand fashion. The ATP hydrolysis cycles of its two heads are maintained out of phase by a series of gating mechanisms, which lead to processive runs averaging ∼1 μm. A key structural element for inter-head coordination is the neck linker (NL), which connects the heads to the stalk. To examine the role of the NL in regulating stepping, we investigated NL mutants of various lengths using single-molecule optical trapping and bulk fluorescence approaches in the context of a general framework for gating. Our results show that, although inter-head tension enhances motor velocity, it is crucial neither for inter-head coordination nor for rapid rear-head release. Furthermore, cysteine-light mutants do not produce wild-type motility under load. We conclude that kinesin-1 is primarily front-head gated, and that NL length is tuned to enhance unidirectional processivity and velocity. DOI: http://dx.doi.org/10.7554/eLife.07403.001 PMID:25902401

  20. Quality of pharmacy-specific Medical Subject Headings (MeSH) assignment in pharmacy journals indexed in MEDLINE.

    PubMed

    Minguet, Fernando; Salgado, Teresa M; van den Boogerd, Lucienne; Fernandez-Llimos, Fernando

    2015-01-01

    The Medical Subject Headings (MeSH) is the National Library of Medicine (NLM) controlled vocabulary for indexing articles. Inaccuracies in the MeSH thesaurus have been reported for several areas including pharmacy. To assess the quality of pharmacy-specific MeSH assignment to articles indexed in pharmacy journals. The 10 journals containing the highest number of articles published in 2012 indexed under the MeSH 'Pharmacists' were identified. All articles published over a 5-year period (2008-2012) in the 10 previously selected journals were retrieved from PubMed. MeSH terms used to index these articles were extracted and pharmacy-specific MeSH terms were identified. The frequency of use of pharmacy-specific MeSH terms was calculated across journals. A total of 6989 articles were retrieved from the 10 pharmacy journals, of which 328 (4.7%) were articles not fully indexed and therefore did not contain any MeSH terms assigned. Among the 6661 articles fully indexed, the mean number of MeSH terms was 10.1 (SD = 4.0), being 1.0 (SD = 1.3) considered as Major MeSH. Both values significantly varied across journals. The mean number of pharmacy-specific MeSH terms per article was 0.9 (SD = 1.2). A total of 3490 (52.4%) of the 6661 articles were indexed in pharmacy journals without a single pharmacy-specific MeSH. Of the total 67193 MeSH terms assigned to articles, on average 10.5% (SD = 13.9) were pharmacy-specific MeSH. A statistically significant different pattern of pharmacy-specific MeSH assignment was identified across journals (Kruskal-Wallis P < 0.001). The quality of assignment of the existing pharmacy-specific MeSH terms to articles indexed in pharmacy journals can be improved to further enhance evidence gathering in pharmacy. Over half of the articles published in the top-10 journals publishing pharmacy literature were indexed without a single pharmacy-specific MeSH. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Playing with Others: Head Start Children's Peer Play and Relations with Kindergarten School Competence

    PubMed Central

    Eggum-Wilkens, Natalie D.; Fabes, Richard A.; Castle, Sherri; Zhang, Linlin; Hanish, Laura D.; Martin, Carol Lynn

    2014-01-01

    Time-sampled observations of Head Start preschoolers' (N = 264; 51.5% boys; 76% Mexican American; M = 53.11 and SD = 6.15 months of age) peer play in the classroom were gathered during fall and spring semesters. One year later, kindergarten teachers rated these children's school competence. Latent growth models indicated that, on average, children's peer play was moderately frequent and increased over time during preschool. Children with higher initial levels or with higher slopes of peer play in Head Start had higher levels of kindergarten school competence. Results suggest that Head Start children's engagement with peers may foster development of skills that help their transition into formal schooling. These findings highlight the importance of peer play, and suggest that peer play in Head Start classrooms contributes to children's adaptation to the demands of formal schooling. PMID:24882941

  2. Direction-Specific Impairments in Cervical Range of Motion in Women with Chronic Neck Pain: Influence of Head Posture and Gravitationally Induced Torque

    PubMed Central

    Björklund, Martin; Svedmark, Åsa; Srinivasan, Divya; Djupsjöbacka, Mats

    2017-01-01

    Background Cervical range of motion (ROM) is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension) or a movement strategy to avoid large gravitationally induced torques on the cervical spine. Methods Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition) and maximal protraction (low torque condition) in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM), from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure. Findings Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour. Interpretation The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments. PMID:28099504

  3. Assessment of image quality of a radiotherapy-specific hardware solution for PET/MRI in head and neck cancer patients.

    PubMed

    Winter, René M; Leibfarth, Sara; Schmidt, Holger; Zwirner, Kerstin; Mönnich, David; Welz, Stefan; Schwenzer, Nina F; la Fougère, Christian; Nikolaou, Konstantin; Gatidis, Sergios; Zips, Daniel; Thorwarth, Daniela

    2018-05-07

    Functional PET/MRI has great potential to improve radiotherapy planning (RTP). However, data integration requires imaging with radiotherapy-specific patient positioning. Here, we investigated the feasibility and image quality of radiotherapy-customized PET/MRI in head-and-neck cancer (HNC) patients using a dedicated hardware setup. Ten HNC patients were examined with simultaneous PET/MRI before treatment, with radiotherapy and diagnostic scan setup, respectively. We tested feasibility of radiotherapy-specific patient positioning and compared the image quality between both setups by pairwise image analysis of 18 F-FDG-PET, T1/T2-weighted and diffusion-weighted MRI. For image quality assessment, similarity measures including average symmetric surface distance (ASSD) of PET and MR-based tumor contours, MR signal-to-noise ratio (SNR) and mean apparent diffusion coefficient (ADC) value were used. PET/MRI in radiotherapy position was feasible - all patients were successfully examined. ASSD (median/range) of PET and MR contours was 0.6 (0.4-1.2) and 0.9 (0.5-1.3) mm, respectively. For T2-weighted MRI, a reduced SNR of -26.2% (-39.0--11.7) was observed with radiotherapy setup. No significant difference in mean ADC was found. Simultaneous PET/MRI in HNC patients using radiotherapy positioning aids is clinically feasible. Though SNR was reduced, the image quality obtained with a radiotherapy setup meets RTP requirements and the data can thus be used for personalized RTP. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. A Study of the Response of the Human Cadaver Head to Impact

    PubMed Central

    Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott

    2008-01-01

    High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591

  5. Plasminogen activator inhibitor-1 as regulator of tumor-initiating cell properties in head and neck cancers.

    PubMed

    Lee, Yueh-Chun; Yu, Cheng-Chia; Lan, Chih; Lee, Che-Hsin; Lee, Hsueh-Te; Kuo, Yu-Liang; Wang, Po-Hui; Chang, Wen-Wei

    2016-04-01

    The existence of tumor-initiating cells (TICs) has been described in head and neck cancers. Plasminogen activator inhibitor-1 (PAI-1) has been demonstrated to act as a prognostic factor in head and neck cancers. Tiplaxtinin (PAI-039), a specific inhibitor of PAI-1, and PAI-1-specific siRNA were used to examine the role of PAI-1 in the self-renewal property of head and neck cancer-TICs by tumorsphere formation. Western blot, real-time polymerase chain reaction, and luciferase-based reporter assay were used to study the effect of PAI-039 in the sex-determining region Y-box 2 (Sox2) expression. PAI-039 suppressed the self-renewal capability of head and neck cancer-TICs derived from head and neck cancer cell lines through the inhibition of Sox2 expression. PAI-039 decreased the activity of the core promoter and the enhancer of the Sox2 gene in head and neck cancer-TICs. Knockdown of PAI-1 expression also inhibited self-renewal and radioresistance properties of head and neck cancer-TICs. The inhibition of PAI-1 by PAI-039 or siRNA could suppress head and neck cancer-TICs within head and neck cancer cell lines through the downregulation of Sox2. © 2015 Wiley Periodicals, Inc. Head Neck 38: E895-E904, 2016. © 2015 Wiley Periodicals, Inc.

  6. Effect of Brain Stem and Dorsal Vagus Complex Dosimetry on Nausea and Vomiting in Head and Neck Intensity-Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciura, Katherine; McBurney, Michelle; Nguyen, Baongoc

    Intensity-modulated radiation therapy (IMRT) is becoming the treatment of choice for many head and neck cancer patients. IMRT reduces some toxicities by reducing radiation dose to uninvolved normal tissue near tumor targets; however, other tissues not irradiated using previous 3D techniques may receive clinically significant doses, causing undesirable side effects including nausea and vomiting (NV). Irradiation of the brainstem, and more specifically, the area postrema and dorsal vagal complex (DVC), has been linked to NV. We previously reported preliminary hypothesis-generating dose effects associated with NV in IMRT patients. The goal of this study is to relate brainstem dose to NVmore » symptoms. We retrospectively studied 100 consecutive patients that were treated for oropharyngeal cancer with IMRT. We contoured the brainstem, area postrema, and DVC with the assistance of an expert diagnostic neuroradiologist. We correlated dosimetry for the 3 areas contoured with weekly NV rates during IMRT. NV rates were significantly higher for patients who received concurrent chemotherapy. Post hoc analysis demonstrated that chemoradiation cases exhibited a trend towards the same dose-response relationship with both brainstem mean dose (p = 0.0025) and area postrema mean dose (p = 0.004); however, both failed to meet statistical significance at the p {<=} 0.002 level. Duration of toxicity was also greater for chemoradiation patients, who averaged 3.3 weeks with reported Common Terminology Criteria for Adverse Events (CTC-AE), compared with an average of 2 weeks for definitive RT patients (p = 0.002). For definitive RT cases, no dose-response trend could be ascertained. The mean brainstem dose emerged as a key parameter of interest; however, no one dose parameter (mean/median/EUD) best correlated with NV. This study does not address extraneous factors that would affect NV incidence, including the use of antiemetics, nor chemotherapy dose schedule specifics before and during RT. A prospective study will be required to depict exactly how IMRT dose affects NV.« less

  7. The Effects of Head Start Health Services: Executive Summary of the Head Start Health Evaluation.

    ERIC Educational Resources Information Center

    Fosburg, Linda B.; And Others

    This report summarizes findings of an evaluation of Head Start health services. Chapter one presents an overview of the background of the evaluation project. Chapter two highlights findings for the major evaluation questions. These questions focus specifically on children's health status prior to entry into Head Start, health services subsequently…

  8. Evaluation of Millstone-2 steam generator chemical decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, D.T.; Blok, J.

    The steam generator channel heads at Millstone-2 were decontaminated prior to carrying out extensive maintenance work in 1983. Isotopic gamma ray measurements were made of the inner channel head surfaces before and after the decontamination to evaluate the effectiveness of the process. The Combustion Engineering/Kraftwerk Union chemical decontamination, by itself, provided a decontamination factor ranging from 2.7 to 6.6 for the various steam generator surfaces. The corresponding average dose rate reduction factor, based on gross-gamma radiation surveys, was approximately 1.5 to 2.5. Following the chemical treatment, high pressure water flushing reduced the radiation levels still further, to an average overallmore » dose reduction factor of 5.3 to 7.2.« less

  9. Outcome of bone marrow instillation at fracture site in intracapsular fracture of femoral neck treated by head preserving surgery.

    PubMed

    Verma, Nikhil; Singh, M P; Ul-Haq, Rehan; Rajnish, Rajesh K; Anshuman, Rahul

    2017-08-01

    The aim of present study is to evaluate the outcome of bone marrow instillation at the fracture site in fracture of intracapsular neck femur treated by head preserving surgery. This study included 32 patients of age group 18-50 years with closed fracture of intracapsular neck femur. Patients were randomized into two groups as per the plan generated via www.randomization.com. The two groups were Group A (control), in which the fracture of intracapsular neck femur was treated by closed reduction and cannulated cancellous screw fixation, and Group B (intervention), in which additional percutaneous autologous bone marrow aspirate instillation at fracture site was done along with cannulated cancellous screw fixation. Postoperatively the union at fracture site and avascular necrosis of the femoral head were assessed on serial plain radiographs at final follow-up. Functional outcome was evaluated by Harris hip score. The average follow-up was 19.6 months. Twelve patients in each group had union and 4 patients had signs of nonunion. One patient from each group had avascular necrosis of the femoral head. The average Harris hip score at final follow-up in Group A was 80.50 and in Group B was 75.73, which was found to be not significant. There is no significant role of adding on bone marrow aspirate instillation at the fracture site in cases of fresh fracture of intracapsular neck femur treated by head preserving surgery in terms of accelerating the bone healing and reducing the incidence of femoral head necrosis. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  10. [New biodegradable polylactide implants (Polypin-C) in therapy for radial head fractures].

    PubMed

    Prokop, A; Jubel, A; Helling, H J; Udomkaewkanjana, C; Brochhagen, H G; Rehm, K E

    2002-10-01

    Dislocated radial head fractures of the type Mason II are usually treated with screws and buttress plates. The implants are generally removed at a later date. Biodegradable implants can be applied successfully for the reduction of small radial head fractures subject to shearing forces and slight loads. The implants are completely absorbed once the fracture has healed, making a second operation for the removal of the implant unnecessary. The Polypin C-Pin is made of poly(L, DL-lactide) mixed with 10% beta-tricalcium phosphate to ensure controlled, slow degradation with no significant side effects. This new Polypin C fixation pin was clinically tested on 35 patients with radial head fractures (CCF 21B2.1 and 21B2.2) from 31.10.1996 until 1.4.2002. A total of 34 of the patients (97.1%) underwent a clinical and conventional radiological follow-up examination after an average of 38.2 months. In 29 cases a CT was also carried out. Between 18 and 24 months, two cases of grade 1 osteolysis were observed around the pin head. No trace of osteolysis was observed at the final examination in either case. According to the Broberg score, an average of 96 out of a possible 100 points were attained at the final examination (31 excellent, 2 good, 1 unsatisfactory). After a period of 24 months, the pins were no longer visible on a conventional x-ray. A CT evaluation showed a density similar to that of spongioid bone in the original pin cavities after 3 years. These excellent clinical results prove that the Polypin C is a good method to treat dislocated radial head fractures.

  11. Head and neck cancer-specific quality of life: instrument validation.

    PubMed

    Terrell, J E; Nanavati, K A; Esclamado, R M; Bishop, J K; Bradford, C R; Wolf, G T

    1997-10-01

    The disfigurement and dysfunction associated with head and neck cancer affect emotional well-being and some of the most basic functions of life. Most cancer-specific quality-of-life assessments give a single composite score for head and neck cancer-related quality of life. To develop and evaluate an improved multidimensional instrument to assess head and neck cancer-related functional status and well-being. The item selection process included literature review, interviews with health care workers, and patient surveys. A survey with 37 disease-specific questions and the SF-12 survey were administered to 253 patients in 3 large medical centers. Factor analysis was performed to identify disease-specific domains. Domain scores were calculated as the standardized score of the component items. These domains were assessed for construct validity based on clinical hypotheses and test-retest reliability. Four relevant domains were identified: Eating (6 items), Communication (4 items), Pain (4 items), and Emotion (6 items). Each had an internal consistency (Cronbach alpha value) of greater than 0.80. Construct validity was demonstrated by moderate correlations with the SF-12 Physical and Mental component scores (r=0.43-0.60). Test-retest reliability for each domain demonstrated strong reliability between the 2 time points. Correlations were strong for each individual question, ranging from 0.53 to 0.93. Construct validity testing demonstrated that the direction of differences for each domain were as hypothesized. The Head and Neck Quality of Life questionnaire is a promising multidimensional tool with which to assess head and neck cancer-specific quality of life.

  12. A stochastic convolution/superposition method with isocenter sampling to evaluate intrafraction motion effects in IMRT.

    PubMed

    Naqvi, Shahid A; D'Souza, Warren D

    2005-04-01

    Current methods to calculate dose distributions with organ motion can be broadly classified as "dose convolution" and "fluence convolution" methods. In the former, a static dose distribution is convolved with the probability distribution function (PDF) that characterizes the motion. However, artifacts are produced near the surface and around inhomogeneities because the method assumes shift invariance. Fluence convolution avoids these artifacts by convolving the PDF with the incident fluence instead of the patient dose. In this paper we present an alternative method that improves the accuracy, generality as well as the speed of dose calculation with organ motion. The algorithm starts by sampling an isocenter point from a parametrically defined space curve corresponding to the patient-specific motion trajectory. Then a photon is sampled in the linac head and propagated through the three-dimensional (3-D) collimator structure corresponding to a particular MLC segment chosen randomly from the planned IMRT leaf sequence. The photon is then made to interact at a point in the CT-based simulation phantom. Randomly sampled monoenergetic kernel rays issued from this point are then made to deposit energy in the voxels. Our method explicitly accounts for MLC-specific effects (spectral hardening, tongue-and-groove, head scatter) as well as changes in SSD with isocentric displacement, assuming that the body moves rigidly with the isocenter. Since the positions are randomly sampled from a continuum, there is no motion discretization, and the computation takes no more time than a static calculation. To validate our method, we obtained ten separate film measurements of an IMRT plan delivered on a phantom moving sinusoidally, with each fraction starting with a random phase. For 2 cm motion amplitude, we found that a ten-fraction average of the film measurements gave an agreement with the calculated infinite fraction average to within 2 mm in the isodose curves. The results also corroborate the existing notion that the interfraction dose variability due to the interplay between the MLC motion and breathing motion averages out over typical multifraction treatments. Simulation with motion waveforms more representative of real breathing indicate that the motion can produce penumbral spreading asymmetric about the static dose distributions. Such calculations can help a clinician decide to use, for example, a larger margin in the superior direction than in the inferior direction. In the paper we demonstrate that a 15 min run on a single CPU can readily illustrate the effect of a patient-specific breathing waveform, and can guide the physician in making informed decisions about margin expansion and dose escalation.

  13. MO-E-17A-08: Attenuation-Based Size Adjusted, Scanner-Independent Organ Dose Estimates for Head CT Exams: TG 204 for Head CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, K; Bostani, M; Cagnon, C

    Purpose: AAPM Task Group 204 described size specific dose estimates (SSDE) for body scans. The purpose of this work is to use a similar approach to develop patient-specific, scanner-independent organ dose estimates for head CT exams using an attenuation-based size metric. Methods: For eight patient models from the GSF family of voxelized phantoms, dose to brain and lens of the eye was estimated using Monte Carlo simulations of contiguous axial scans for 64-slice MDCT scanners from four major manufacturers. Organ doses were normalized by scannerspecific 16 cm CTDIvol values and averaged across all scanners to obtain scanner-independent CTDIvol-to-organ-dose conversion coefficientsmore » for each patient model. Head size was measured at the first slice superior to the eyes; patient perimeter and effective diameter (ED) were measured directly from the GSF data. Because the GSF models use organ identification codes instead of Hounsfield units, water equivalent diameter (WED) was estimated indirectly. Using the image data from 42 patients ranging from 2 weeks old to adult, the perimeter, ED and WED size metrics were obtained and correlations between each metric were established. Applying these correlations to the GSF perimeter and ED measurements, WED was calculated for each model. The relationship between the various patient size metrics and CTDIvol-to-organ-dose conversion coefficients was then described. Results: The analysis of patient images demonstrated the correlation between WED and ED across a wide range of patient sizes. When applied to the GSF patient models, an exponential relationship between CTDIvol-to-organ-dose conversion coefficients and the WED size metric was observed with correlation coefficients of 0.93 and 0.77 for the brain and lens of the eye, respectively. Conclusion: Strong correlation exists between CTDIvol normalized brain dose and WED. For the lens of the eye, a lower correlation is observed, primarily due to surface dose variations. Funding Support: Siemens-UCLA Radiology Master Research Agreement; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski.« less

  14. Parameter study for child injury mitigation in near-side impacts through FE simulations.

    PubMed

    Andersson, Marianne; Pipkorn, Bengt; Lövsund, Per

    2012-01-01

    The objective of this study is to investigate the effects of crash-related car parameters on head and chest injury measures for 3- and 12-year-old children in near-side impacts. The evaluation was made using a model of a complete passenger car that was impacted laterally by a barrier. The car model was validated in 2 crash conditions: the Insurance Institute for Highway Safety (IIHS) and the US New Car Assessment Program (NCAP) side impact tests. The Small Side Impact Dummy (SID-IIs) and the human body model 3 (HBM3) (Total HUman Model for Safety [THUMS] 3-year-old) finite element models were used for the parametric investigation (HBM3 on a booster). The car parameters were as follows: vehicle mass, side impact structure stiffness, a head air bag, a thorax-pelvis air bag, and a seat belt with pretensioner. The studied dependent variables were as follows: resultant head linear acceleration, resultant head rotational acceleration, chest viscous criterion, rib deflection, and relative velocity at head impact. The chest measurements were only considered for the SID-IIs. The head air bag had the greatest effect on the head measurements for both of the occupant models. On average, it reduced the peak head linear acceleration by 54 g for the HBM3 and 78 g for the SID-IIs. The seat belt had the second greatest effect on the head measurements; the peak head linear accelerations were reduced on average by 39 g (HBM3) and 44 g (SID-IIs). The high stiffness side structure increased the SID-IIs' head acceleration, whereas it had marginal effect on the HBM3. The vehicle mass had a marginal effect on SID-IIs' head accelerations, whereas the lower vehicle mass caused 18 g higher head acceleration for HBM3 and the greatest rotational acceleration. The thorax-pelvis air bag, vehicle mass, and seat belt pretensioner affected the chest measurements the most. The presence of a thorax-pelvis air bag, high vehicle mass, and a seat belt pretensioner all reduced the chest viscous criterion (VC) and peak rib deflection in the SID-IIs. The head and thorax-pelvis air bags have the potential to reduce injury measurements for both the SID-IIs and the HBM3, provided that the air bag properties are designed to consider these occupant sizes also. The seat belt pretensioner is also effective, provided that the lateral translation of the torso is managed by other features. The importance of lateral movement management is greater the smaller the occupant is. Light vehicles require interior restraint systems of higher performance than heavy vehicles do to achieve the same level of injury measures for a given side structure. Copyright © 2012 Taylor & Francis Group, LLC

  15. Pontomedullary lacerations in unhelmeted motorcyclists and bicyclists: a retrospective autopsy study.

    PubMed

    Živković, Vladimir; Nikolić, Slobodan; Strajina, Veljko; Babić, Dragan; Djonić, Danijela; Djurić, Marija

    2012-12-01

    Pontomedullary lacerations (PMLs) have often been reported in car occupants and pedestrians, are less frequently described in motorcyclists, and are very rarely described in bicyclists. The aim of this study was to determine the frequency of brainstem PMLs among fatally injured motorcyclists and bicyclists as well as the frequency of concomitant cranial, facial, and cervical spine injuries in such cases. A possible underlying mechanism of PML in fatally injured motorcyclists and bicyclists might thus be established. Of 443 cases of fatally injured motorcyclists and bicyclists, a sample of 381 cases of fatally injured motorcyclists and bicyclists with head injury of Abbreviated Injury Scale score of 3 or greater was formed and further analyzed. This group was composed of 345 men and 36 women. The average age was 48.8 ± 20.8 years (range, 15-99 years). In the analyzed sample group, there were 158 motorcyclists and 223 bicyclists. Partial PMLs were present in 44 cases (12%) within the sample of 381 head injuries, which breaks down to 40 men and 4 women. In our study, the impact area on the head and the specific skull base fracture type were good predictors of either PML occurrence or absence (B = -2.036, Wald = 161.312, P < 0.01, for the whole model). Impact to the chin, with or without a skull base fracture, most often led to this fatal injury due to impact force transmission, either through jawbone or vertebral column. Also, lateral head impact, the most frequent in bicyclists, with subsequent hinge fracture, PML, and frontoposterior hyperextension of the head that is associated with upper spine fracture, could be possible mechanisms of brainstem injury in fatally injured motorcyclists or bicyclists. Our study showed that the jawbone, as well as other facial bones, could act as shock absorbers, and their fracture could diminish energy transfer toward the skull and protect the brain and brainstem from injury.

  16. Agronomic performance of new open pollinated experimental lines of broccoli (Brassica oleracea L. var. italica) evaluated under organic farming.

    PubMed

    Sahamishirazi, Samira; Moehring, Jens; Zikeli, Sabine; Fleck, Michael; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2018-01-01

    In order to develop new open pollinating cultivars of broccoli for organic farming, two experiments were conducted during fall 2015 and spring 2016. This study was aimed at comparing the agronomic performance of eleven new open pollinating breeding lines of broccoli to introduce new lines and to test their seasonal suitability for organic farming. Field experiments were carried out at the organic research station Kleinhohenheim of the University of Hohenheim (Stuttgart-Germany). Different agronomic traits total biomass fresh weight, head fresh weight, head diameter, hollow-stem, fresh weight harvest index and marketable yield were assessed together with commercial control cultivars. The data from both experiments were analyzed using a two-stage mixed model approach. In our study, genotype, growing season and their interaction had significant effects on most traits. Plants belonging to the fall growing season had bigger sizes in comparison to spring with significantly (p< 0.0001) higher biomass fresh weight. Some experimental lines had significant lower head fresh weight in spring in comparison to the fall season. The high temperature during the harvest period for the spring season affected the yield negatively through decreasing the firmness of broccoli heads. The low average minimum temperatures during the spring growing season lead to low biomass fresh weight but high fresh weight harvest index. Testing the seasonal suitability of all open pollinating lines showed that the considered fall season was better for broccoli production. However, the change in yield between the fall and the spring growing season was not significant for "Line 701" and "CHE-MIC". Considering the expression of different agronomic traits, "CHE-GRE-G", "Calinaro" and "CAN-SPB" performed the best in the fall growing season, and "CHE-GRE-G", "CHE-GRE-A", "CHE-BAL-A" and "CHE-MIC" and "Line 701" were best in the spring growing season, specifically due to the highest marketable yield and proportion of marketable heads.

  17. Nevus density and melanoma risk in women: a pooled analysis to test the divergent pathway hypothesis

    PubMed Central

    Olsen, Catherine M.; Zens, Michael S.; Stukel, Therese A.; Sacerdote, Carlotta; Chang, Yu-mei; Armstrong, Bruce K.; Bataille, Veronique; Berwick, Marianne; Elwood, J. Mark; Holly, Elizabeth A.; Kirkpatrick, Connie; Mack, Thomas; Bishop, Julia Newton; Østerlind, Anne; Swerdlow, Anthony J.; Zanetti, Roberto; Green, Adèle C.; Karagas, Margaret R.; Whiteman, David C

    2009-01-01

    A “divergent pathway” model for the development of cutaneous melanoma has been proposed. The model hypothesizes that melanomas occurring in people with a low tendency to develop nevi will, on average, arise more commonly on habitually sun-exposed body sites such as the head and neck. In contrast, people with an inherent propensity to develop nevi will tend to develop melanomas most often on body sites with large melanocyte populations, such as on the back. We conducted a collaborative analysis to test this hypothesis using the original data from ten case-control studies of melanoma in women (2406 cases and 3119 controls), with assessment of the potential confounding effects of socioeconomic, pigmentary, and sun exposure-related factors. Higher nevus count on the arm was associated specifically with an increased risk of melanoma of the trunk (p for trend=0.0004) and limbs (both upper and lower limb p for trends=0.01), but not of the head and neck (p for trend=0.25). The pooled odds ratios for the highest quartile of non-zero nevus count versus none were 4.6 (95% confidence interval (CI) 2.7–7.6) for melanoma of the trunk, 2.0 (95% CI 0.9–4.5) for the head and neck, 4.2 (95% CI 2.3–7.5) for the upper limbs and 3.4 (95% CI 1.5–7.9) for the lower limbs. Aggregate data from these studies suggest that high nevus counts are strongly associated with melanoma of the trunk but less so if at all of the head and neck. This finding supports different etiologic pathways of melanoma development by anatomic site. PMID:19035450

  18. Conservation of water for washing beef heads at harvest.

    PubMed

    DeOtte, R E; Spivey, K S; Galloway, H O; Lawrence, T E

    2010-03-01

    The objective of this research was to develop methods to conserve water necessary to cleanse beef heads prior to USDA-FSIS inspection. This was to be accomplished by establishing a baseline for the minimum amount of water necessary to adequately wash a head and application of image analysis to provide an objective measure of head cleaning. Twenty-one beef heads were manually washed during the harvest process. An average 18.75 L (2.49 SD) and a maximum of 23.88 L were required to cleanse the heads to USDA-FSIS standards. Digital images were captured before and after manual washing then evaluated for percentage red saturation using commercially available image analysis software. A decaying exponential curve extracted from these data indicated that as wash water increased beyond 20 L the impact on red saturation decreased. At 4 sigma from the mean of 18.75 L, red saturation is 16.0 percent, at which logistic regression analysis indicates 99.994 percent of heads would be accepted for inspection, or less than 1 head in 15,000 would be rejected. Reducing to 3 sigma would increase red saturation to 27.6 percent, for which 99.730 percent of heads likely would be accepted (less than 1 in 370 would be rejected). Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Comparison between whole-body and head and neck neurovascular coils for 3-T magnetic resonance proton resonance frequency shift thermography guidance in the head and neck region.

    PubMed

    Ginat, Daniel Thomas; Anthony, Gregory J; Christoforidis, Gregory; Oto, Aytekin; Dalag, Leonard; Sammet, Steffen

    2018-02-01

    The purpose of this study is to compare the image quality of magnetic resonance (MR) treatment planning images and proton resonance frequency (PRF) shift thermography images and inform coil selection for MR-guided laser ablation of tumors in the head and neck region. Laser ablation was performed on an agar phantom and monitored via MR PRF shift thermography on a 3-T scanner, following acquisition of T1-weighted (T1W) planning images. PRF shift thermography images and T2-weighted (T2W) planning images were also performed in the neck region of five normal human volunteers. Signal-to-noise ratios (SNR) and temperature uncertainty were calculated and compared between scans acquired with the quadrature mode body integrated coil and a head and neck neurovascular coil. T1W planning images of the agar phantom produced SNRs of 4.0 and 12.2 for the quadrature mode body integrated coil and head and neck neurovascular coil, respectively. The SNR of the phantom MR thermography magnitude images obtained using the quadrature mode body integrated coil was 14.4 versus 59.6 using the head and neck coil. The average temperature uncertainty for MR thermography performed on the phantom with the quadrature mode body integrated coil was 1.1 versus 0.3 °C with the head and neck coil. T2W planning images of the neck in five human volunteers produced SNRs of 28.3 and 91.0 for the quadrature mode body integrated coil and head and neck coil, respectively. MR thermography magnitude images of the neck in the volunteers obtained using the quadrature mode body integrated coil had a signal-to-noise ratio of 8.3, while the SNR using the head and neck coil was 16.1. The average temperature uncertainty for MR thermography performed on the volunteers with the body coil was 2.5 versus 1.6 °C with the head and neck neurovascular coil. The quadrature mode body integrated coil provides inferior image quality for both basic treatment planning sequences and MR PRF shift thermography compared with a neurovascular coil, but may nevertheless be adequate for clinical purposes.

  20. 49 CFR 179.300-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-8 Tank heads. (a) Class DOT-110A tanks shall...

  1. 49 CFR 179.300-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-8 Tank heads. (a) Class DOT-110A tanks shall...

  2. Prediction value of the Canadian CT head rule and the New Orleans criteria for positive head CT scan and acute neurosurgical procedures in minor head trauma: a multicenter external validation study.

    PubMed

    Bouida, Wahid; Marghli, Soudani; Souissi, Sami; Ksibi, Hichem; Methammem, Mehdi; Haguiga, Habib; Khedher, Sonia; Boubaker, Hamdi; Beltaief, Kaouthar; Grissa, Mohamed Habib; Trimech, Mohamed Naceur; Kerkeni, Wiem; Chebili, Nawfel; Halila, Imen; Rejeb, Imen; Boukef, Riadh; Rekik, Noureddine; Bouhaja, Bechir; Letaief, Mondher; Nouira, Semir

    2013-05-01

    The New Orleans Criteria and the Canadian CT Head Rule have been developed to decrease the number of normal computed tomography (CT) results in mild head injury. We compare the performance of both decision rules for identifying patients with intracranial traumatic lesions and those who require an urgent neurosurgical intervention after mild head injury. This was an observational cohort study performed between 2008 and 2011 on patients with mild head injury who were aged 10 years or older. We collected prospectively clinical head CT scan findings and outcome. Primary outcome was need for neurosurgical intervention, defined as either death or craniotomy, or the need of intubation within 15 days of the traumatic event. Secondary outcome was the presence of traumatic lesions on head CT scan. New Orleans Criteria and Canadian CT Head Rule decision rules were compared by using sensitivity specifications and positive and negative predictive value. We enrolled 1,582 patients. Neurosurgical intervention was performed in 34 patients (2.1%) and positive CT findings were demonstrated in 218 patients (13.8%). Sensitivity and specificity for need for neurosurgical intervention were 100% (95% confidence interval [CI] 90% to 100%) and 60% (95% CI 44% to 76%) for the Canadian CT Head Rule and 82% (95% CI 69% to 95%) and 26% (95% CI 24% to 28%) for the New Orleans Criteria. Negative predictive values for the above-mentioned clinical decision rules were 100% and 99% and positive values were 5% and 2%, respectively, for the Canadian CT Head Rule and New Orleans Criteria. Sensitivity and specificity for clinical significant head CT findings were 95% (95% CI 92% to 98%) and 65% (95% CI 62% to 68%) for the Canadian CT Head Rule and 86% (95% CI 81% to 91%) and 28% (95% CI 26% to 30%) for the New Orleans Criteria. A similar trend of results was found in the subgroup of patients with a Glasgow Coma Scale score of 15. For patients with mild head injury, the Canadian CT Head Rule had higher sensitivity than the New Orleans Criteria, with higher negative predictive value. The question of whether the use of the Canadian CT Head Rule would have a greater influence on head CT scan reduction requires confirmation in real clinical practice. Copyright © 2012 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  3. Dropped head syndrome after cervical laminoplasty: A case control study.

    PubMed

    Koda, Masao; Furuya, Takeo; Kinoshita, Tomoaki; Miyashita, Tomohiro; Ota, Mitsutoshi; Maki, Satoshi; Ijima, Yasushi; Saito, Junya; Takahashi, Kazuhisa; Yamazaki, Masashi; Aramomi, Masaaki; Mannoji, Chikato

    2016-10-01

    Dropped head syndrome (DHS) is characterized by apparent neck extensor muscle weakness and difficulty extending the neck to raise the head against gravity. The aim of the present study was to elucidate possible risk factors for DHS after cervical laminoplasty. Five patients who developed DHS after cervical laminoplasty (DHS group) and twenty age-matched patients who underwent laminoplasty without DHS after surgery (control group) were compared. The surgical procedure was single-door laminoplasty with strut grafting using resected spinous processes or hydroxyapatite spacers from C3 to C6 or C7. Analyses of preoperative images including the C2-C7 angle, C7-T1 kyphosis, T1 tilt, center of gravity line from the head-C7 sagittal vertical axis (CGH-C7 SVA) were performed on lateral plain cervical spine radiographs. Preoperative T2-weighted MRI at the C5 vertebral level was used to measure the cross-sectional area of the deep extensor muscles. Widths of the lateral gutters were assessed postoperatively using CT scans of the C5 vertebral body. The average preoperative C2-C7 angle was significantly smaller in the DHS group compared with the control group. The average preoperative C7-T1 angle was significantly larger in the DHS group compared with the control group. The average preoperative CGH-C7 SVA was significantly larger in the DHS group compared with the control group. In conclusion, patients with more pronounced preoperative C2-C7 kyphosis, C7-T1 kyphosis, and CGH-C7 SVA are more likely to develop DHS following laminoplasty. Copyright © 2016. Published by Elsevier Ltd.

  4. Amplification in the rehabilitation of unilateral deafness: speech in noise and directional hearing effects with bone-anchored hearing and contralateral routing of signal amplification.

    PubMed

    Lin, Li-Mei; Bowditch, Stephen; Anderson, Michael J; May, Bradford; Cox, Kenneth M; Niparko, John K

    2006-02-01

    Vibromechanical stimulation with a semi-implantable bone conductor (Entific BAHA device) overcomes some of the head-shadow effects in unilateral deafness. What specific rehabilitative benefits are observed when the functional ear exhibits normal hearing versus moderate sensorineural hearing loss (SNHL)? The authors conducted a prospective trial of subjects with unilateral deafness in a tertiary care center. This study comprised adults with unilateral deafness (pure-tone average [PTA] > 90 dB; Sp.D. < 20%) and either normal monaural hearing (n = 18) or moderate SNHL (PTA = 25-50 dB: Sp.D. > 75%) in the contralateral functional ear (n = 5). Subjects were fit with contralateral routing of signal (CROS) devices for 1 month and tested before (mastoid) implantation, fitting, and testing with a bone-anchored hearing aid (BAHA). Outcome measures were: 1) subjective benefit; 2) source localization tests (Source Azimuth Identification in Noise Test [SAINT]); 3) speech discrimination in quiet and in noise assessed with Hearing In Noise Test (HINT) protocols. There was consistent satisfaction with BAHA amplification and poor acceptance of CROS amplification. General directional hearing decreased with CROS use and was unchanged by BAHA and directional microphone aids. Relative to baseline and CROS, BAHA produced significantly better speech recognition in noise. Twenty-two of 23 subjects followed up in this study continue to use their BAHA device over an average follow-up period of 30.24 months (range, 51-12 months). BAHA amplification on the side of a deaf ear yields greater benefit in subjects with monaural hearing than does CROS amplification. Advantages likely related to averting the interference of speech signals delivered to the better ear, as occurs with conventional CROS amplification, while alleviating the negative head-shadow effects of unilateral deafness. The advantages of head-shadow reduction in enhancing speech recognition with noise in the hearing ear outweigh disadvantages inherent in head-shadow reduction that can occur by introducing noise from the deaf side. The level of hearing impairment correlates with incremental benefit provided by the BAHA. Patients with a moderate SNHL in the functioning ear perceived greater increments in benefit, especially in background noise, and demonstrated greater improvements in speech understanding with BAHA amplification.

  5. Automated Segmentation of the Parotid Gland Based on Atlas Registration and Machine Learning: A Longitudinal MRI Study in Head-and-Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofeng; Wu, Ning; Cheng, Guanghui

    Purpose: To develop an automated magnetic resonance imaging (MRI) parotid segmentation method to monitor radiation-induced parotid gland changes in patients after head and neck radiation therapy (RT). Methods and Materials: The proposed method combines the atlas registration method, which captures the global variation of anatomy, with a machine learning technology, which captures the local statistical features, to automatically segment the parotid glands from the MRIs. The segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is used to map the pre-RTmore » MRI to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month follow-up examinations. The resulting segmentations were compared with the physicians' manual contours. Results: Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). The average percentage of volume differences between the automated segmentations and those of the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months. Conclusions: We have validated our automated parotid segmentation algorithm in a longitudinal study. This segmentation method may be useful in future studies to address radiation-induced xerostomia in head and neck radiation therapy.« less

  6. Multidisciplinary management of head and neck cancer: First expert consensus using Delphi methodology from the Spanish Society for Head and Neck Cancer (part 1).

    PubMed

    Mañós, M; Giralt, J; Rueda, A; Cabrera, J; Martinez-Trufero, J; Marruecos, J; Lopez-Pousa, A; Rodrigo, J P; Castelo, B; Martínez-Galán, J; Arias, F; Chaves, M; Herranz, J J; Arrazubi, V; Baste, N; Castro, A; Mesía, R

    2017-07-01

    Head and neck cancer is one of the most frequent malignances worldwide. Despite the site-specific multimodality therapy, up to half of the patients will develop recurrence. Treatment selection based on a multidisciplinary tumor board represents the cornerstone of head and neck cancer, as it is essential for achieving the best results, not only in terms of outcome, but also in terms of organ-function preservation and quality of life. Evidence-based international and national clinical practice guidelines for head and neck cancer not always provide answers in terms of decision-making that specialists must deal with in their daily practice. This is the first Expert Consensus on the Multidisciplinary Approach for Head and Neck Squamous Cell Carcinoma (HNSCC) elaborated by the Spanish Society for Head and Neck Cancer and based on a Delphi methodology. It offers several specific recommendations based on the available evidence and the expertise of our specialists to facilitate decision-making of all health-care specialists involved. Copyright © 2017. Published by Elsevier Ltd.

  7. Estimating the Effects of Head Start on Parenting and Child Maltreatment

    PubMed Central

    Waldfogel, Jane; Brooks-Gunn, Jeanne

    2011-01-01

    We examine the effects of Head Start participation on parenting and child maltreatment in a large and diverse sample of low-income families in large U.S. cities (N = 2,807), using rich data from the Fragile Families and Child Wellbeing Study (FFCWS). To address the issue of selection bias, we employ several analytic approaches, including logistic regressions with a rich set of pretreatment controls as well as propensity score matching models, comparing the effects of Head Start to any other arrangements as well as specific types of other arrangements. We find that compared to children who did not attend Head Start, children who did attend Head Start are less likely to have low access to learning materials and less likely to experience spanking by their parents at age five. Moreover, we find that the effects of Head Start vary depending on the specific type of other child care arrangements to which they are compared, with the most consistently beneficial protective effects seen when Head Start is compared to being home in exclusively parental care. PMID:23788823

  8. Objective measurement of head movement differences in children with and without autism spectrum disorder.

    PubMed

    Martin, Katherine B; Hammal, Zakia; Ren, Gang; Cohn, Jeffrey F; Cassell, Justine; Ogihara, Mitsunori; Britton, Jennifer C; Gutierrez, Anibal; Messinger, Daniel S

    2018-01-01

    Deficits in motor movement in children with autism spectrum disorder (ASD) have typically been characterized qualitatively by human observers. Although clinicians have noted the importance of atypical head positioning (e.g. social peering and repetitive head banging) when diagnosing children with ASD, a quantitative understanding of head movement in ASD is lacking. Here, we conduct a quantitative comparison of head movement dynamics in children with and without ASD using automated, person-independent computer-vision based head tracking (Zface). Because children with ASD often exhibit preferential attention to nonsocial versus social stimuli, we investigated whether children with and without ASD differed in their head movement dynamics depending on stimulus sociality. The current study examined differences in head movement dynamics in children with ( n  = 21) and without ASD ( n  = 21). Children were video-recorded while watching a 16-min video of social and nonsocial stimuli. Three dimensions of rigid head movement-pitch (head nods), yaw (head turns), and roll (lateral head inclinations)-were tracked using Zface. The root mean square of pitch, yaw, and roll was calculated to index the magnitude of head angular displacement (quantity of head movement) and angular velocity (speed). Compared with children without ASD, children with ASD exhibited greater yaw displacement, indicating greater head turning, and greater velocity of yaw and roll, indicating faster head turning and inclination. Follow-up analyses indicated that differences in head movement dynamics were specific to the social rather than the nonsocial stimulus condition. Head movement dynamics (displacement and velocity) were greater in children with ASD than in children without ASD, providing a quantitative foundation for previous clinical reports. Head movement differences were evident in lateral (yaw and roll) but not vertical (pitch) movement and were specific to a social rather than nonsocial condition. When presented with social stimuli, children with ASD had higher levels of head movement and moved their heads more quickly than children without ASD. Children with ASD may use head movement to modulate their perception of social scenes.

  9. Changes of muscle function and size with bedrest

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Gollnick, Philip D.; Convertino, Victor A.; Buchanan, Paul

    1989-01-01

    The impact of a short-term head-down bedrest on the skeletal-muscle function of humans was investigated in healthy males subjected (after five days of control period) to 30-day 6-deg head-down bed rest (BR) followed by a five-day recovery period. It was found that the head-down BR led to a decrease in force developed by the knee extensor muscle group during maximal voluntary efforts, with the average reduction of 21 percent across the speeds of concentric and eccentric muscle action. Significant decreases were also found in the cross-sectional areas of slow-twitch and fast-twitch muscle fibers of the vastus lateralis.

  10. Analysis of real-time head accelerations in collegiate football players.

    PubMed

    Duma, Stefan M; Manoogian, Sarah J; Bussone, William R; Brolinson, P Gunnar; Goforth, Mike W; Donnenwerth, Jesse J; Greenwald, Richard M; Chu, Jeffrey J; Crisco, Joseph J

    2005-01-01

    To measure and analyze head accelerations during American collegiate football practices and games. A newly developed in-helmet 6-accelerometer system that transmits data via radio frequency to a sideline receiver and laptop computer system was implemented. From the data transfer of these accelerometer traces, the sideline staff has real-time data including the head acceleration, the head injury criteria value, the severity index value, and the impact location. Data are presented for instrumented players for the entire 2003 football season, including practices and games. American collegiate football. Thirty-eight players from Virginia Tech's varsity football team. Accelerations and pathomechanics of head impacts. : A total of 3312 impacts were recorded over 35 practices and 10 games for 38 players. The average peak head acceleration, Gadd Severity Index, and Head Injury Criteria were 32 g +/- 25 g, 36 g +/- 91 g, and 26 g +/- 64 g, respectively. One concussive event was observed with a peak acceleration of 81 g, a 267 Gadd Severity Index, and 200 Head Injury Criteria. Because the concussion was not reported until the day after of the event, a retrospective diagnosis based on his history and clinical evaluation suggested a mild concussion. The primary finding of this study is that the helmet-mounted accelerometer system proved effective at collecting thousands of head impact events and providing contemporaneous head impact parameters that can be integrated with existing clinical evaluation techniques.

  11. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400...

  12. A 4-year record of sitka spruce and western hemlock seed fall on the Cascade Head Experimental Forest.

    Treesearch

    Robert H. Ruth; Carl M. Berntsen

    1955-01-01

    Four years' measurement of seed fall in the spruce-hemlock type on the Cascade Head Experimental Forest indicates that an ample supply of seed is distributed over clear-cut areas under staggered-setting cutting. The largest tract sampled was 81 acres; in spite of a seed crop failure in 1950, it received an average of 243,000 viable spruce and hemlock seeds per...

  13. East Europe Report, Economic and Industrial Affairs

    DTIC Science & Technology

    1984-08-30

    an average fertility per 100 head of breeding stock of 86-90 calves, 111-120 lambs and 1,700-1,800 pigs." These high objectively determined targets...river harbors and factories processing imported raw materials, and fights for its survival on the oversalted soft shoulders of highways with heavy...old sooty coal heaters was replaced by traffic " ’ says Bela Donath, department head of the OKTH. ’ "Recently, together with the Ministry of

  14. Performance of a Tracked Feller-Buncher with a Shear Head Operating in Small-Diameter Pine

    Treesearch

    J. Klepac

    2013-01-01

    A Tigercat 845D tracked feller-buncher equipped with a shear head was evaluated while performing a clearcut in a 15-year old Loblolly pine (Pinus taeda) plantation and a 18-year old natural stand. Mean density of the plantation was 573 TPA (Trees per Acre) while the natural stand averaged 328 TPA, with a slightly higher density of 390 TPA in the study area. Total cycle...

  15. INSM1 is a Sensitive and Specific Marker of Neuroendocrine Differentiation in Head and Neck Tumors.

    PubMed

    Rooper, Lisa M; Bishop, Justin A; Westra, William H

    2018-05-01

    The head and neck is the site of a wide and sometimes bewildering array of neuroendocrine (NE) tumors. Although recognition of NE differentiation may be necessary for appropriate tumor classification and treatment, traditional NE markers such as synaptophysin, chromogranin, and CD56 are not always sufficiently sensitive or specific to make this distinction. Insulinoma-associated protein 1 (INSM1) is a novel transcription factor that has recently demonstrated excellent sensitivity and specificity for NE differentiation in various anatomic sites, but has not yet been extensively evaluated in tumors of the head and neck. We performed INSM1 immunohistochemistry on NE tumors (n=97) and non-NE tumors (n=626) across all histologic grades and anatomic subsites of the head and neck. INSM1 was positive in all types of head and neck NE tumors evaluated here (99.0% sensitivity), including middle ear adenoma, pituitary adenoma, paraganglioma, medullary thyroid carcinoma, olfactory neuroblastoma, small cell carcinoma, large cell NE carcinoma, and sinonasal teratocarcinosarcoma. Notably, it was positive in the vast majority of high-grade NE malignancies (95.8% sensitivity). INSM1 also was negative in almost all non-NE tumors (97.6% specificity) with the highest rates of reactivity in alveolar rhabdomyosarcoma and SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily B, member 1 (SMARCB1)-deficient sinonasal carcinoma. These findings confirm that INSM1 may be used as a standalone first-line marker of NE differentiation for tumors of the head and neck.

  16. Quantitative analysis of production traits in saltwater crocodiles (Crocodylus porosus): II. age at slaughter.

    PubMed

    Isberg, S R; Thomson, P C; Nicholas, F W; Barker, S G; Moran, C

    2005-12-01

    Crocodile morphometric (head, snout-vent and total length) measurements were recorded at three stages during the production chain: hatching, inventory [average age (+/-SE) is 265.1 +/- 0.4 days] and slaughter (average age is 1037.8 +/- 0.4 days). Crocodile skins are used for the manufacture of exclusive leather products, with the most common-sized skin sold having 35-45 cm in belly width. One of the breeding objectives for inclusion into a multitrait genetic improvement programme for saltwater crocodiles is the time taken for a juvenile to reach this size or age at slaughter. A multivariate restricted maximum likelihood analysis provided (co)variance components for estimating the first published genetic parameter estimates for these traits. Heritability (+/-SE) estimates for the traits hatchling snout-vent length, inventory head length and age at slaughter were 0.60 (0.15), 0.59 (0.12) and 0.40 (0.10) respectively. There were strong negative genetic (-0.81 +/- 0.08) and phenotypic (-0.82 +/- 0.02) correlations between age at slaughter and inventory head length.

  17. Modulation of WNT signaling activity is key to the formation of the embryonic head.

    PubMed

    Fossat, Nicolas; Jones, Vanessa; Garcia-Garcia, Maria J; Tam, Patrick P L

    2012-01-01

    The formation of the embryonic head begins with the assembly of the progenitor tissues of the brain, the head and face primordia and the foregut that are derived from the primary germ layers during gastrulation. Specification of the anterior-posterior polarity of major body parts and the morphogenesis of the head and brain specifically is driven by inductive signals including those mediated by BMP, Nodal, FGF and WNT. A critical role of β-catenin dependent WNT signalling activity for head morphogenesis has been revealed through the analysis of the phenotypic impact of loss of function mutation of an antagonist: DKK1, a transcriptional repressor: GSC; and the outcome of interaction of Dkk1 with genes coding three components of the canonical signalling pathway: the ligand WNT3, the co-receptor LRP6 and the transcriptional co-factor, β-catenin. The findings highlight the requirement of a stringent control of the timing, domain and level of canonical WNT signalling activity for the formation of the embryonic head.

  18. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... between the nose and upper lip Small head size Shorter-than-average height Low body weight Poor coordination Hyperactive behavior Difficulty with attention and memory Learning disabilities and difficulty in school ...

  19. Influence of Tennis Racquet Kinematics on Ball Topspin Angular Velocity and Accuracy during the Forehand Groundstroke

    PubMed Central

    Kwon, Sunku; Pfister, Robin; Hager, Ronald L.; Hunter, Iain; Seeley, Matthew K.

    2017-01-01

    Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s-1, 6.6 ± 2.2 m·s-1, and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact. Key points The study confirmed previous research that two key racquet kinematic variables, near impact, are significantly correlated to ball topspin angular velocity, during the forehand groundstroke: racquet head impact angle (i.e., open or closed racquet face) and racquet vertical velocity, before impact. The trajectory (direction of resultant velocity) and horizontal velocity of the racquet head before impact, and length of hitting zone were not significantly correlated to ball topspin angular velocity, or shot placement accuracy, during the tennis forehand groundstroke, for skilled male players. Hitting zone length was smaller than expected for skilled tennis players performing the forehand groundstroke. PMID:29238250

  20. Effects of gestational exposure to 1.95-GHz W-CDMA signals for IMT-2000 cellular phones: Lack of embryotoxicity and teratogenicity in rats.

    PubMed

    Ogawa, Kumiko; Nabae, Kyoko; Wang, Jianqing; Wake, Kanako; Watanabe, So-ichi; Kawabe, Mayumi; Fujiwara, Osamu; Takahashi, Satoru; Ichihara, Toshio; Tamano, Seiko; Shirai, Tomoyuki

    2009-04-01

    The present study was designed to evaluate whether gestational exposure to an EMF targeting the head region, similar to that from cellular phones, might affect embryogenesis in rats. A 1.95-GHz wide-band code division multiple access (W-CDMA) signal, which is one applied for the International Mobile Telecommunication 2000 (IMT-2000) system and used for the freedom of mobile multimedia access (FOMA), was employed for exposure to the heads of four groups of pregnant CD(SD) IGS rats (20 per group) for gestational days 7-17. The exposure was performed for 90 min/day in the morning. The spatial average specific absorption rate (SAR) for individual brains was designed to be 0.67 and 2.0 W/kg with peak brain SARs of 3.1 and 7.0 W/kg for low (group 3) and high (group 4) exposures, respectively, and a whole-body average SAR less than 0.4 W/kg so as not to cause thermal effects due to temperature elevation. Control and sham exposure groups were also included. At gestational day 20, all dams were killed and fetuses were taken out by cesarean section. There were no differences in maternal body weight gain. No adverse effects of EMF exposure were observed on any reproductive and embryotoxic parameters such as number of live (243-271 fetuses), dead or resorbed embryos, placental weights, sex ratios, weights or external, visceral or skeletal abnormalities of live fetuses. (c) 2008 Wiley-Liss, Inc.

  1. IMRT head and neck treatment planning with a commercially available Monte Carlo based planning system

    NASA Astrophysics Data System (ADS)

    Boudreau, C.; Heath, E.; Seuntjens, J.; Ballivy, O.; Parker, W.

    2005-03-01

    The PEREGRINE Monte Carlo dose-calculation system (North American Scientific, Cranberry Township, PA) is the first commercially available Monte Carlo dose-calculation code intended specifically for intensity modulated radiotherapy (IMRT) treatment planning and quality assurance. In order to assess the impact of Monte Carlo based dose calculations for IMRT clinical cases, dose distributions for 11 head and neck patients were evaluated using both PEREGRINE and the CORVUS (North American Scientific, Cranberry Township, PA) finite size pencil beam (FSPB) algorithm with equivalent path-length (EPL) inhomogeneity correction. For the target volumes, PEREGRINE calculations predict, on average, a less than 2% difference in the calculated mean and maximum doses to the gross tumour volume (GTV) and clinical target volume (CTV). An average 16% ± 4% and 12% ± 2% reduction in the volume covered by the prescription isodose line was observed for the GTV and CTV, respectively. Overall, no significant differences were noted in the doses to the mandible and spinal cord. For the parotid glands, PEREGRINE predicted a 6% ± 1% increase in the volume of tissue receiving a dose greater than 25 Gy and an increase of 4% ± 1% in the mean dose. Similar results were noted for the brainstem where PEREGRINE predicted a 6% ± 2% increase in the mean dose. The observed differences between the PEREGRINE and CORVUS calculated dose distributions are attributed to secondary electron fluence perturbations, which are not modelled by the EPL correction, issues of organ outlining, particularly in the vicinity of air cavities, and differences in dose reporting (dose to water versus dose to tissue type).

  2. A video analysis of head injuries satisfying the criteria for a head injury assessment in professional Rugby Union: a prospective cohort study.

    PubMed

    Tucker, Ross; Raftery, Martin; Fuller, Gordon Ward; Hester, Ben; Kemp, Simon; Cross, Matthew J

    2017-08-01

    Concussion is the most common match injury in professional Rugby Union, accounting for 25% of match injuries. The primary prevention of head injuries requires that the injury mechanism be known so that interventions can be targeted to specifically overall incidence by focusing on characteristics with the greatest propensity to cause a head injury. 611 head injury assessment (HIA) events in professional Rugby Union over a 3-year period were analysed, with specific reference to match events, position, time and nature of head contact. 464 (76%) of HIA events occur during tackles, with the tackler experiencing a significantly greater propensity for an HIA than the ball carrier (1.40 HIAs/1000 tackles for the tackler vs 0.54 HIAs/1000 tackles for the ball carrier, incidence rate ratio (IRR) 2.59). Propensity was significantly greater for backline players than forwards (IRR 1.54, 95% CI 1.28 to 1.84), but did not increase over the course of the match. Head to head contact accounted for the most tackler HIAs, with the greatest propensity. By virtue of its high propensity and frequency, the tackle should be the focus for interventions that may include law change and technique education. A specific investigation of the characteristics of the tackle is warranted to refine the approach to preventative strategies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Head Circumference and Height in Autism

    PubMed Central

    Lainhart, Janet E.; Bigler, Erin D.; Bocian, Maureen; Coon, Hilary; Dinh, Elena; Dawson, Geraldine; Deutsch, Curtis K.; Dunn, Michelle; Estes, Annette; Tager-Flusberg, Helen; Folstein, Susan; Hepburn, Susan; Hyman, Susan; McMahon, William; Minshew, Nancy; Munson, Jeff; Osann, Kathy; Ozonoff, Sally; Rodier, Patricia; Rogers, Sally; Sigman, Marian; Spence, M. Anne; Stodgell, Christopher J.; Volkmar, Fred

    2016-01-01

    Data from 10 sites of the NICHD/NIDCD Collaborative Programs of Excellence in Autism were combined to study the distribution of head circumference and relationship to demographic and clinical variables. Three hundred thirty-eight probands with autism-spectrum disorder (ASD) including 208 probands with autism were studied along with 147 parents, 149 siblings, and typically developing controls. ASDs were diagnosed, and head circumference and clinical variables measured in a standardized manner across all sites. All subjects with autism met ADI-R, ADOS-G, DSM-IV, and ICD-10 criteria. The results show the distribution of standardized head circumference in autism is normal in shape, and the mean, variance, and rate of macrocephaly but not microcephaly are increased. Head circumference tends to be large relative to height in autism. No site, gender, age, SES, verbal, or non-verbal IQ effects were present in the autism sample. In addition to autism itself, standardized height and average parental head circumference were the most important factors predicting head circumference in individuals with autism. Mean standardized head circumference and rates of macrocephaly were similar in probands with autism and their parents. Increased head circumference was associated with a higher (more severe) ADI-R social algorithm score. Macrocephaly is associated with delayed onset of language. Although mean head circumference and rates of macrocephaly are increased in autism, a high degree of variability is present, underscoring the complex clinical heterogeneity of the disorder. The wide distribution of head circumference in autism has major implications for genetic, neuroimaging, and other neurobiological research. PMID:17022081

  4. Natural history and management of Fanconi anemia patients with head and neck cancer: A 10-year follow-up.

    PubMed

    Kutler, David I; Patel, Krupa R; Auerbach, Arleen D; Kennedy, Jennifer; Lach, Francis P; Sanborn, Erica; Cohen, Marc A; Kuhel, William I; Smogorzewska, Agata

    2016-04-01

    To describe the management and outcomes of Fanconi anemia (FA) patients with head and neck squamous cell carcinoma. Cohort study. Demographic information, prognostic factors, therapeutic management, and survival outcomes for FA patients enrolled in the International Fanconi Anemia Registry who developed head and neck squamous cell carcinoma (HNSCC) were analyzed. Thirty-five FA patients were diagnosed with HNSCC at a mean age of 32 years. The most common site of primary cancer was the oral cavity (26 of 35, 74%). Thirty patients underwent surgical resection of the cancer. Sixteen patients received radiation therapy with an average radiation dose of 5,050 cGy. The most common toxicities were high-grade mucositis (9 of 16, 56%), hematologic abnormalities (8 of 16, 50%), and dysphagia (8 of 16, 50%). Three patients received conventional chemotherapy and had significant complications, whereas three patients who received targeted chemotherapy with cetuximab had fewer toxicities. The 5-year overall survival rate was 39%, with a cause-specific survival rate of 47%. Fanconi anemia patients have a high risk of developing aggressive HNSCC at an early age. Fanconi anemia patients can tolerate complex ablative and reconstructive surgeries, but careful postoperative care is required to reduce morbidity. The treatment of FA-associated HNSCC is difficult secondary to the poor tolerance of radiation and chemotherapy. However, radiation should be used for high-risk cancers due to the poor survival in these patients. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Natural History and Management of Fanconi Anemia Patients with Head and Neck Cancer: A 10-year Follow-up

    PubMed Central

    Kutler, David I.; Patel, Krupa R.; Auerbach, Arleen D.; Kennedy, Jennifer; Lach, Francis P.; Sanborn, Erica; Cohen, Marc A.; Kuhel, William I.; Smogorzewska, Agata

    2015-01-01

    Objective To describe the management and outcomes of Fanconi anemia (FA) patients with head and neck squamous cell carcinoma. Study Design Cohort study. Methods Demographic information, prognostic factors, therapeutic management, and survival outcomes for FA patients enrolled in the International Fanconi Anemia Registry (IFAR) who developed head and neck squamous cell carcinoma (HNSCC) were analyzed. Results 35 FA patients were diagnosed with HNSCC at a mean age of 32 years. The most common site of primary cancer was the oral cavity (26/35, 74%). Thirty patients underwent surgical resection of the cancer. Sixteen patients received radiation therapy with an average radiation dose of 5050 cGy. The most common toxicities were high-grade mucositis (9/16, 56%), hematologic abnormalities (8/16, 50%), and dysphagia (8/16, 50%). Three patients received conventional chemotherapy and had significant complications while three patients who received targeted chemotherapy with cetuximab had fewer toxicities. The 5-year overall survival rate was 39% with a cause-specific survival rate of 47%. Conclusions Fanconi anemia patients have a high risk of developing aggressive HNSCC at an early age. FA patients can tolerate complex ablative and reconstructive surgeries, but careful post-operative care is required to reduce morbidity. The treatment of FA-associated HNSCC is difficult secondary to the poor tolerance of radiation and chemotherapy. However, radiation should be used for high-risk cancers because of the poor survival in these patients. PMID:26484938

  6. A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials.

    PubMed

    Neggers, S F W; Langerak, T R; Schutter, D J L G; Mandl, R C W; Ramsey, N F; Lemmens, P J J; Postma, A

    2004-04-01

    Transcranial Magnetic Stimulation (TMS) delivers short magnetic pulses that penetrate the skull unattenuated, disrupting neural processing in a noninvasive, reversible way. To disrupt specific neural processes, coil placement over the proper site is critical. Therefore, a neural navigator (NeNa) was developed. NeNa is a frameless stereotactic device using structural and functional magnetic resonance imaging (fMRI) data to guide TMS coil placement. To coregister the participant's head to his MRI, 3D cursors are moved to anatomical landmarks on a skin rendering of the participants MRI on a screen, and measured at the head with a position measurement device. A method is proposed to calculate a rigid body transformation that can coregister both sets of coordinates under realistic noise conditions. After coregistration, NeNa visualizes in real time where the device is located with respect to the head, brain structures, and activated areas, enabling precise placement of the TMS coil over a predefined target region. NeNa was validated by stimulating 5 x 5 positions around the 'motor hotspot' (thumb movement area), which was marked on the scalp guided by individual fMRI data, while recording motor-evoked potentials (MEPs) from the abductor pollicis brevis (APB). The distance between the center of gravity (CoG) of MEP responses and the location marked on the scalp overlying maximum fMRI activation was on average less then 5 mm. The present results demonstrate that NeNa is a reliable method for image-guided TMS coil placement.

  7. Global scale groundwater flow model

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  8. Evaluation of spectral domain optical coherence tomography parameters in ocular hypertension, preperimetric, and early glaucoma.

    PubMed

    Aydogan, Tuğba; Akçay, BetÜl İlkay Sezgin; Kardeş, Esra; Ergin, Ahmet

    2017-11-01

    The objective of this study is to evaluate the diagnostic ability of retinal nerve fiber layer (RNFL), macular, optic nerve head (ONH) parameters in healthy subjects, ocular hypertension (OHT), preperimetric glaucoma (PPG), and early glaucoma (EG) patients, to reveal factors affecting the diagnostic ability of spectral domain-optical coherence tomography (SD-OCT) parameters and risk factors for glaucoma. Three hundred and twenty-six eyes (89 healthy, 77 OHT, 94 PPG, and 66 EG eyes) were analyzed. RNFL, macular, and ONH parameters were measured with SD-OCT. The area under the receiver operating characteristic curve (AUC) and sensitivity at 95% specificity was calculated. Logistic regression analysis was used to determine the glaucoma risk factors. Receiver operating characteristic regression analysis was used to evaluate the influence of covariates on the diagnostic ability of parameters. In PPG patients, parameters that had the largest AUC value were average RNFL thickness (0.83) and rim volume (0.83). In EG patients, parameter that had the largest AUC value was average RNFL thickness (0.98). The logistic regression analysis showed average RNFL thickness was a risk factor for both PPG and EG. Diagnostic ability of average RNFL and average ganglion cell complex thickness increased as disease severity increased. Signal strength index did not affect diagnostic abilities. Diagnostic ability of average RNFL and rim area increased as disc area increased. When evaluating patients with glaucoma, patients at risk for glaucoma, and healthy controls RNFL parameters deserve more attention in clinical practice. Further studies are needed to fully understand the influence of covariates on the diagnostic ability of OCT parameters.

  9. Assessing injury severity in bicyclists involved in traffic accidents to more effectively prevent fatal bicycle injuries in Japan.

    PubMed

    Gomei, Sayaka; Hitosugi, Masahito; Ikegami, Keiichi; Tokudome, Shogo

    2013-10-01

    The objective of this study was to clarify the relationship between injury severity in bicyclists involved in traffic accidents and patient outcome or type of vehicle involved in order to propose effective measures to prevent fatal bicycle injuries. Hospital records were reviewed for all patients from 2007 to 2010 who had been involved in a traffic accident while riding a bicycle and were subsequently transferred to the Shock Trauma Center of Dokkyo Medical University Koshigaya Hospital. Patient outcomes and type of vehicle that caused the injury were examined. The mechanism of injury, Abbreviated Injury Scale (AIS) score, and Injury Severity Score (ISS) of the patient were determined. A total of 115 patients' records were reviewed. The mean patient age was 47.1 ± 27.4 years. The average ISS was 23.9, with an average maximum AIS (MAIS) score of 3.7. The ISS, MAIS score, head AIS score, and chest AIS score were well correlated with patient outcome. The head AIS score was significantly higher in patients who had died (mean of 4.4); however, the ISS, MAIS score, and head AIS score did not differ significantly according to the type of vehicle involved in the accident. The mean head AIS scores were as high as 2.4 or more for accidents involving any type of vehicle. This study provides useful information for forensic pathologists who suspect head injuries in bicyclists involved in traffic accidents. To effectively reduce bicyclist fatalities from traffic accidents, helmet use should be required for all bicyclists.

  10. Craniocervical Posture in Patients with Obstructive Sleep Apnea

    PubMed Central

    Piccin, Chaiane Facco; Pozzebon, Daniela; Scapini, Fabricio; Corrêa, Eliane Castilhos Rodrigues

    2016-01-01

    Introduction  Obstructive Sleep Apnea (OSA) is characterized by repeated episodes of upper airway obstruction during sleep. Objective  The objective of this study is to verify the craniofacial characteristics and craniocervical posture of OSA and healthy subjects, determining possible relationships with the apnea/hypopnea index (AHI). Methods  This case-control study evaluated 21 subjects with OSA, who comprised the OSA group (OSAG), and 21 healthy subjects, who constituted the control group (CG). Cephalometry analyzed head posture measurements, craniofacial measurements, and air space. Head posture was also assessed by means of photogrammetry. Results  The groups were homogeneous regarding gender (12 men and 9 women in each group), age (OSAG = 41.86 ± 11.26 years; GC = 41.19 ± 11.20 years), and body mass index (OSAG = 25.65 ± 2.46 kg/m2; CG = 24.72 ± 3.01 kg/m2). We found significant differences between the groups, with lower average pharyngeal space and greater distance between the hyoid bone and the mandibular plane in OSAG, when compared with CG. A positive correlation was found between higher head hyperextension and head anteriorization, with greater severity of OSA as assessed by AHI. Conclusion  OSAG subjects showed changes in craniofacial morphology, with lower average pharyngeal space and greater distance from the hyoid bone to the mandibular plane, as compared with healthy subjects. Moreover, in OSA subjects, the greater the severity of OSA, the greater the head hyperextension and anteriorization. PMID:27413397

  11. Dog bites of the head and neck: an evaluation of a common pediatric trauma and associated treatment

    PubMed Central

    O'Brien, Daniel C.; Andre, Tyler B; Robinson, Aaron D.; Squires, Lane D.

    2014-01-01

    Purpose To identify which patients and canines are involved in dog bites of the head and neck, and how they impact health systems. Materials and Methods This is a single center, retrospective cohort study conducted from January 2012 to June 2013 from an academic, tertiary care center situated between multiple suburban and urban communities. Patients were identified by queried search for all bite-related diagnoses codes. Results 334 unique dog bites were identified, of which 101 involved the head and neck. The mean patient age was 15.1 years ± 18.1. Of the more than 8 different breeds identified, one-third were caused by pit bull terriers and resulted in the highest rate of consultation (94%) and had 5 times the relative rate of surgical intervention. Unlike all other breeds, pit bull terriers were relatively more likely to attack an unknown individual (+31%), and without provocation (+48%). Injuries of the head and neck had an average follow-up of 1.26 ± 2.4 visits, and average specialty follow-up of 3.1 ± 3.5 visits. Conclusions The patients most likely to suffer dog bite injuries of the head and neck are children. Although a number of dog breeds were identified, the largest group were pit bull terriers, whose resultant injuries were more severe and resulted from unprovoked, unknown dogs. More severe injuries required a greater number of interventions, a greater number of inpatient physicians, and more outpatient follow-up encounters. Healthcare utilization and costs associated with dog bites warrant further investigation. PMID:25311183

  12. Full dose reduction potential of statistical iterative reconstruction for head CT protocols in a predominantly pediatric population

    PubMed Central

    Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.

    2016-01-01

    Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425

  13. SU-G-JeP1-12: Head-To-Head Performance Characterization of Two Multileaf Collimator Tracking Algorithms for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillet, V; Colvill, E; Royal North Shore Hospital, St Leonards, Sydney

    2016-06-15

    Purpose: Multi-leaf collimator (MLC) tracking is being clinically pioneered to continuously compensate for thoracic and abdominal motion during radiotherapy. The purpose of this work is to characterize the performance of two MLC tracking algorithms for cancer radiotherapy, based on a direct optimization and a piecewise leaf fitting approach respectively. Methods: To test the algorithms, both physical and in silico experiments were performed. Previously published high and low modulation VMAT plans for lung and prostate cancer cases were used along with eight patient-measured organ-specific trajectories. For both MLC tracking algorithm, the plans were run with their corresponding patient trajectories. The physicalmore » experiments were performed on a Trilogy Varian linac and a programmable phantom (HexaMotion platform). For each MLC tracking algorithm, plan and patient trajectory, the tracking accuracy was quantified as the difference in aperture area between ideal and fitted MLC. To compare algorithms, the average cumulative tracking error area for each experiment was calculated. The two-sample Kolmogorov-Smirnov (KS) test was used to evaluate the cumulative tracking errors between algorithms. Results: Comparison of tracking errors for the physical and in silico experiments showed minor differences between the two algorithms. The KS D-statistics for the physical experiments were below 0.05 denoting no significant differences between the two distributions pattern and the average error area (direct optimization/piecewise leaf-fitting) were comparable (66.64 cm2/65.65 cm2). For the in silico experiments, the KS D-statistics were below 0.05 and the average errors area were also equivalent (49.38 cm2/48.98 cm2). Conclusion: The comparison between the two leaf fittings algorithms demonstrated no significant differences in tracking errors, neither in a clinically realistic environment nor in silico. The similarities in the two independent algorithms give confidence in the use of either algorithm for clinical implementation.« less

  14. Influence of vision on head stabilization strategies in older adults during walking.

    PubMed

    Cromwell, Ronita L; Newton, Roberta A; Forrest, Gail

    2002-07-01

    Maintaining balance during dynamic activities is essential for preventing falls in older adults. Head stabilization contributes to dynamic balance, especially during the functional task of walking. Head stability and the role of vision in this process have not been studied during walking in older adults. Seventeen older adults (76.2 +/- 6.9 years) and 20 young adults (26.0 +/- 3.4 years) walked with their eyes open (EO), with their eyes closed (EC), and with fixed gaze (FG). Participants performed three trials of each condition. Sagittal plane head and trunk angular velocities in space were obtained using an infrared camera system with passive reflective markers. Frequency analyses of head-on-trunk with respect to trunk gains and phases were examined for head-trunk movement strategies used for head stability. Average walking velocity, cadence, and peak head velocity were calculated for each condition. Differences between age groups demonstrated that older adults decreased walking velocity in EO (p =.022). FG (p = .021), and EC (p = .022). and decreased cadence during EC (p = .007). Peak head velocity also decreased across conditions (p < .0001) for older adults. Movement patterns demonstrated increased head stability during EO. diminished head stability with EC, and improved head stability with FG as older adult patterns resembled those of young adults. Increased stability of the lower extremity outcome measures for older adults was indicated by reductions in walking velocity and cadence. Concomitant increases in head stability were related to visual tasks. Increased stability may serve as a protective mechanism to prevent falls. Further, vision facilitates the head stabilization process for older adults to compensate for age-related decrements in other sensory systems subserving dynamic balance.

  15. [Nystagmus].

    PubMed

    Jutila, Topi; Hirvonen, Timo P

    2013-01-01

    Physiological nystagmus stabilizes gaze during head movements and pathological nystagmus reflects a disorder of the vestibulo-ocular reflex (VOR). Pathological nystagmus appears or strengthens usually during change in head position. Therefore, dizziness or nystagmus associated with head movements is not specific to benign paroxysmal positional vertigo unless it is verified in specific positional test. Peripheral nystagmus decelerates during visual fixation, accelerates when gaze is turned towards the fast phase, does not change direction, and is usually composed of several directional components unlike central nystagmus. The velocity and frequency of the slow phase of nystagmus can be measured with electronystagmography or video-oculography.

  16. Development and field performance of indy race car head impact padding.

    PubMed

    Melvin, J W; Bock, H; Anderson, K; Gideon, T

    2001-11-01

    The close-fitting cockpit of the modern Indy car single seat race car has the potential to provide a high level of head and neck impact protection in rear and side impacts. Crash investigation has shown that a wide variety of materials have been used as the padding for these cockpits and, as a result, produced varying outcomes in crashes. Additionally, these pads have not always been positioned for optimal performance. The purpose of this study was to investigate the head impact performance of a variety of energy-absorbing padding materials under impact conditions typical of Indy car rear impacts and to identify superior materials and methods of improving their performance as race car head pads. An extensive series of tests with the helmeted Hybrid III test dummy head and neck on an impact mini-sled was conducted to explore head padding concepts. Following this, a performance specification for a simplified impact test using a rigid headform that simulates the helmeted head was developed and recommendations for performance levels of head padding based on biomechanical data on helmeted head impacts were made. In 1997, during the time that the head pad research was being performed, the Indy Racing League introduced a new chassis specification for their cars. There were a number of rear- and side-impact crashes during that season that resulted in seven severe head injuries. Examples of the head padding in those cars were included in the experimental study. The results of the head pad research were used to specify new padding materials that met the new biomechanical criteria. The placement of the head pads was also changed for better location of the padding. These changes instituted in 1998 have reduced the number of head injuries in crashes similar to or more severe than those of 1997 and have resulted in only occasional moderate head injuries (concussions) in the 1998 and 1999 seasons.

  17. An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks.

    PubMed

    Hosen, A S M Sanwar; Cho, Gi Hwan

    2018-05-11

    Clustering is an effective way to prolong the lifetime of a wireless sensor network (WSN). The common approach is to elect cluster heads to take routing and controlling duty, and to periodically rotate each cluster head's role to distribute energy consumption among nodes. However, a significant amount of energy dissipates due to control messages overhead, which results in a shorter network lifetime. This paper proposes an energy-centric cluster-based routing mechanism in WSNs. To begin with, cluster heads are elected based on the higher ranks of the nodes. The rank is defined by residual energy and average distance from the member nodes. With the role of data aggregation and data forwarding, a cluster head acts as a caretaker for cluster-head election in the next round, where the ranks' information are piggybacked along with the local data sending during intra-cluster communication. This reduces the number of control messages for the cluster-head election as well as the cluster formation in detail. Simulation results show that our proposed protocol saves the energy consumption among nodes and achieves a significant improvement in the network lifetime.

  18. Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma

    PubMed Central

    Fischer, Barbara; Mitteroecker, Philipp

    2015-01-01

    Compared with other primates, childbirth is remarkably difficult in humans because the head of a human neonate is large relative to the birth-relevant dimensions of the maternal pelvis. It seems puzzling that females have not evolved wider pelvises despite the high maternal mortality and morbidity risk connected to childbirth. Despite this seeming lack of change in average pelvic morphology, we show that humans have evolved a complex link between pelvis shape, stature, and head circumference that was not recognized before. The identified covariance patterns contribute to ameliorate the “obstetric dilemma.” Females with a large head, who are likely to give birth to neonates with a large head, possess birth canals that are shaped to better accommodate large-headed neonates. Short females with an increased risk of cephalopelvic mismatch possess a rounder inlet, which is beneficial for obstetrics. We suggest that these covariances have evolved by the strong correlational selection resulting from childbirth. Although males are not subject to obstetric selection, they also show part of these association patterns, indicating a genetic–developmental origin of integration. PMID:25902498

  19. Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma.

    PubMed

    Fischer, Barbara; Mitteroecker, Philipp

    2015-05-05

    Compared with other primates, childbirth is remarkably difficult in humans because the head of a human neonate is large relative to the birth-relevant dimensions of the maternal pelvis. It seems puzzling that females have not evolved wider pelvises despite the high maternal mortality and morbidity risk connected to childbirth. Despite this seeming lack of change in average pelvic morphology, we show that humans have evolved a complex link between pelvis shape, stature, and head circumference that was not recognized before. The identified covariance patterns contribute to ameliorate the "obstetric dilemma." Females with a large head, who are likely to give birth to neonates with a large head, possess birth canals that are shaped to better accommodate large-headed neonates. Short females with an increased risk of cephalopelvic mismatch possess a rounder inlet, which is beneficial for obstetrics. We suggest that these covariances have evolved by the strong correlational selection resulting from childbirth. Although males are not subject to obstetric selection, they also show part of these association patterns, indicating a genetic-developmental origin of integration.

  20. Computer model of catalytic combustion/Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  1. Biodegradable implants for Pipkin fractures.

    PubMed

    Prokop, Axel; Helling, Hanns-Joachim; Hahn, Ulrich; Udomkaewkanjana, Chira; Rehm, Klaus Emil

    2005-03-01

    The current study was designed to clarify whether biodegradable poly-L/DL lactide pins provide an operative alternative for fixation of Pipkin fractures. Nine patients with Pipkin fractures (one with Pipkin Type I, one with Pipkin Type II, and seven with Pipkin Type IV fractures) were treated surgically between 1996 and 2002. In all patients, the femoral head fractures were fixed with biodegradable, 2.7-mm and 2.0-mm polylactide pins. Eight patients were followed up for an average of 54.2 months. One patient died before the final followup. Eight fractures healed uneventfully. In one patient, a persisting femoral head defect led to posttraumatic arthritis requiring insertion of a femoral endoprosthesis at 1 year. The average range of motion of the affected hips of all patients at followup was 109 degrees -0 degrees -0 degrees in flexion and extension. External and internal rotation averaged 37 degrees -0 degrees -29 degrees . One patient had Brooker Grade I heterotopic ossification develop, and another had a Grade II heterotopic develop. Merle d'Aubigne and Postel ratings showed two excellent and five satisfactory results (average score, 13.1). Adverse effects from the polylactide implants were not observed. Pipkin fractures can be fixed successfully with biodegradable polylactide pins.

  2. Coordinates of Human Visual and Inertial Heading Perception.

    PubMed

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results.

  3. Coordinates of Human Visual and Inertial Heading Perception

    PubMed Central

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results. PMID:26267865

  4. In vivo kinematic analysis of the glenohumeral joint during dynamic full axial rotation and scapular plane full abduction in healthy shoulders.

    PubMed

    Kozono, Naoya; Okada, Takamitsu; Takeuchi, Naohide; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Miake, Go; Nakanishi, Yoshitaka; Iwamoto, Yukihide

    2017-07-01

    The purpose of this study was to evaluate the kinematics of healthy shoulders during dynamic full axial rotation and scapular plane full abduction using three-dimensional (3D)-to-two-dimensional (2D) model-to-image registration techniques. Dynamic glenohumeral kinematics during axial rotation and scapular plane abduction were analysed in 10 healthy participants. Continuous radiographic images of axial rotation and scapular plane abduction were taken using a flat panel radiographic detector. The participants received a computed tomography scan to generate virtual digitally reconstructed radiographs. The density-based digitally reconstructed radiographs were then compared with the serial radiographic images acquired using image correlations. These 3D-to-2D model-to-image registration techniques determined the 3D positions and orientations of the humerus and scapula during dynamic full axial rotation and scapular plane full abduction. The humeral head centre translated an average of 2.5 ± 3.1 mm posteriorly, and 1.4 ± 1.0 mm superiorly in the early phase, then an average of 2.0 ± 0.8 mm inferiorly in the late phase during external rotation motion. The glenohumeral external rotation angle had a significant effect on the anterior/posterior (A/P) and superior/inferior (S/I) translation of the humeral head centre (both p < 0.05). 33.6 ± 15.6° of glenohumeral external rotation occurred during scapular plane abduction. The humeral head centre translated an average of 0.6 ± 0.9 mm superiorly in the early phase, then 1.7 ± 2.6 mm inferiorly in the late phase, and translated an average of 0.4 ± 0.5 mm medially in the early phase, then 1.6 ± 1.0 mm laterally in the late phase during scapular plane abduction. The humeral abduction angle had a significant effect on the S/I and lateral/medial (L/M) translation of the humeral head centre (both p < 0.05). This study investigated 3D translations of the humerus relative to the scapula: during scapular plane full abduction, the humerus rotated 33.6° externally relative to the scapula, and during external rotation motion in the adducted position, the humeral head centre translated an average of 2.5 mm posteriorly. Kinematic data will provide important insights into evaluating the kinematics of pathological shoulders. For clinical relevance, quantitative assessment of dynamic healthy shoulder kinematics might be a physiological indicator for the assessment of pathological shoulders.

  5. Astronomical and physical data for meteoroids recorded by the Altair radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P. G.; ReVelle, D. O.

    We present preliminary results of orbital and physical measurements of a small selection of meteoroids observed at UHF frequencies by the ALTAIR radar on Kwajalein Island on November 17, 1998. The head echoes observed by ALTAIR allowed precise determination of velocities and decelerations from which orbits and masses of individual meteoroids derived from numerical modelling have been measured. During these observations, the ALTAIR radar detected average head echo rates of 1665 per hour.

  6. Operational head-on beam-beam compensation with electron lenses in the Relativistic Heavy Ion Collider

    DOE PAGES

    Fischer, W.; Gu, X.; Altinbas, Z.; ...

    2015-12-23

    Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.

  7. The association of lymph node volume with cervical metastatic lesions in head and neck cancer patients.

    PubMed

    Liang, Ming-Tai; Chen, Clayton Chi-Chang; Wang, Ching-Ping; Wang, Chen-Chi; Lin, Whe-Dar; Liu, Shih-An

    2009-06-01

    The aim of this study was to determine if volume of cervical lymph node measured via computed tomography (CT) could differentiate metastatic from benign lesions in head and neck cancer patients. We conducted a retrospective review of chart and images in a tertiary referring center in Taiwan. Patients with head and neck cancers underwent radical, modified radical or functional neck dissection were enrolled. The CT images before operation were reassessed by a radiologist and were compared with the results of pathological examination. A total of 102 patients were included for final analyses. Most patients were male (n = 96, 94%) and average age was 50.1 years. Although the average nodal volume in patients with cervical metastases was higher than those of patients without cervical metastases, it was not an independent factor associated with cervical metastasis after controlling for other variables; however, central nodal necrosis on enhanced CT image [odds ratio (OR) 18.95, P = 0.008) and minimal axial diameter >7.5 mm (OR 6.868, P = 0.001) were independent factors correlated with cervical metastasis. Therefore, the volume of cervical lymph node measured from CT images cannot predict cervical metastases in head and neck cancer patients. Measurement of minimal axial diameter of the largest lymph node is a simple and more accurate way to predict cervical metastasis instead.

  8. Biomechanical characterisation of osteosyntheses for proximal femur fractures: helical blade versus screw.

    PubMed

    Al-Munajjed, Amir A; Hammer, Joachim; Mayr, Edgar; Nerlich, Michael; Lenich, Andreas

    2008-01-01

    Proximal femur fractures are of main concern for elderly and especially osteoporotic patients. Despite advanced implant modifications and surgical techniques, serious mechanical complication rates between 4-18% are found in conventional osteosyntheses of proximal femur fractures. Clinical complications such as the rotation of the femoral head and the cut-out phenomenon of the fracture fixation bolt are often diagnosed during post-operative treatments. Therefore, efforts in new intramedulary techniques focus on the load bearing characteristics of the implant by developing new geometries to improve the implant-tissue interface. The objective of this investigation was to analyse the osteosynthesis/femur head interaction of two commonly used osteosyntheses, one with a helical blade and the other one with a screw design under different loading conditions. For the comparative investigation the helical blade of the Proximal Femur Nail Antirotation was investigated versus the screw system of the Dynamic Hip Screw. After implantation in a femoral head the loads for rotational overwinding of the implants were analysed. Pull-out forces with suppressed rotation were investigated with analysis of the influence of the previous overwinding. All investigations were performed on human femoral heads taken of patients with average age of 70.3+/-11.8. The bone mineral densities of the human specimens were detected by QCT-scans (average BMD: 338.9+/- 61.3$\\frac[\\mathit[mg

  9. Rate of regional nodal metastases of cutaneous squamous cell carcinoma in the immunosuppressed patient.

    PubMed

    McLaughlin, Eamon J; Miller, Lauren; Shin, Thuzar M; Sobanko, Joseph F; Cannady, Steven B; Miller, Christopher J; Newman, Jason G

    Immunosuppressed solid organ transplant recipients (SOTRs) have an increased risk of developing cutaneous squamous cell carcinomas (cSCCs) with metastatic potential. This study sought to determine the rate of regional lymph node involvement in a large cohort of solid organ transplant patients with cutaneous head and neck squamous cell carcinoma. A retrospective chart review was performed on solid organ transplant patients with head and neck cutaneous squamous cell carcinoma treated at a tertiary academic medical center from 2005 to 2015. 130 solid organ transplant patients underwent resection of 383 head and neck cutaneous squamous cell carcinomas. The average age of the patient was 63. Seven patients (5%) developed regional lymph node metastases (3 parotid, 4 cervical lymph nodes). The mean time from primary tumor resection to diagnosis of regional lymphatic disease was 6.7months. Six of these patients underwent definitive surgical resection followed by adjuvant radiation; one patient underwent definitive chemoradiation. 6 of the 7 patients died of disease progression with a mean survival of 15months. The average follow up time was 3years (minimum 6months). Solid organ transplant recipients with cutaneous squamous cell carcinoma of the head and neck develop regional lymph node metastasis at a rate of 5%. Regional lymph node metastasis in this population has a poor prognosis and requires aggressive management and surveillance. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Growth after late-preterm birth and adult cognitive, academic, and mental health outcomes.

    PubMed

    Sammallahti, Sara; Heinonen, Kati; Andersson, Sture; Lahti, Marius; Pirkola, Sami; Lahti, Jari; Pesonen, Anu-Katriina; Lano, Aulikki; Wolke, Dieter; Eriksson, Johan G; Kajantie, Eero; Raikkonen, Katri

    2017-05-01

    Late-preterm birth (at 34 0⁄7 -36 6⁄7 wk gestation) increases the risk of early growth faltering, poorer neurocognitive functioning, and lower socio-economic attainment. Among early-preterm individuals, faster early growth benefits neurodevelopment, but it remains unknown whether these benefits extend to late-preterm individuals. In 108 late-preterm individuals, we examined if weight, head, or length growth between birth, 5 and 20 months' corrected age, and 56 mo, predicted grade point average and special education in comprehensive school, or neurocognitive abilities and psychiatric diagnoses/symptoms at 24-26 y of age. For every 1 SD faster weight and head growth from birth to 5 mo, and head growth from 5 to 20 mo, participants had 0.19-0.41 SD units higher IQ, executive functioning score, and grade point average (95% confidence intervals (CI) 0.002-0.59 SD), and lower odds of special education (odds ratio (OR) = 0.49-0.59, 95% CIs 0.28-0.97), after adjusting for sex, gestational age, follow-up age, and parental education. Faster head growth from 20 to 56 mo was associated with less internalizing problems; otherwise we found no consistent associations with mental health outcomes. Faster growth during the critical early period after late-preterm birth is associated with better adult neurocognitive functioning, but not consistently with mental health outcomes.

  11. How the Relationship between Text and Headings Influences Readers' Memory

    ERIC Educational Resources Information Center

    Ritchey, Kristin; Schuster, Jonathan; Allen, Jaryn

    2008-01-01

    Two questions regarding signals' influence on memory were examined. First, the relationship between headings and text was manipulated to determine whether headings serve as visual cues, directing readers to recall all subsequent information, or content-specific cues, directing readers to recall only to certain information. Second, distance between…

  12. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients.

    PubMed

    Penoncello, Gregory P; Ding, George X

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  13. Influence of prolonged unilateral cervical muscle contraction on head repositioning--decreased overshoot after a 5-min static muscle contraction task.

    PubMed

    Malmström, Eva-Maj; Karlberg, Mikael; Holmström, Eva; Fransson, Per-Anders; Hansson, Gert-Ake; Magnusson, Måns

    2010-06-01

    The ability to reproduce a specified head-on-trunk position can be an indirect test of cervical proprioception. This ability is affected in subjects with neck pain, but it is unclear whether and how much pain or continuous muscle contraction factors contribute to this effect. We studied the influence of a static unilateral neck muscle contraction task (5 min of lateral flexion at 30% of maximal voluntary contraction) on head repositioning ability in 20 subjects (10 women, 10 men; mean age 37 years) with healthy necks. Head repositioning ability was tested in the horizontal plane with 30 degrees target and neutral head position tests; head position was recorded by Zebris((R)), an ultrasound-based motion analyser. Head repositioning ability was analysed for accuracy (mean of signed differences between introduced and reproduced positions) and precision (standard deviation of the differences). Accuracy of head repositioning ability increased significantly after the muscle contraction task, as the normal overshoot was reduced. An average overshoot of 7.1 degrees decreased to 4.6 degrees after the muscle contraction task for the 30 degrees target and from 2.2 degrees to 1.4 degrees for neutral head position. The increased accuracy was most pronounced for movements directed towards the activated side. Hence, prolonged unilateral neck muscle contraction may increase the sensitivity of cervical proprioceptors.

  14. Head-To-Head Comparison Between High- and Standard-b-Value DWI for Detecting Prostate Cancer: A Systematic Review and Meta-Analysis.

    PubMed

    Woo, Sungmin; Suh, Chong Hyun; Kim, Sang Youn; Cho, Jeong Yeon; Kim, Seung Hyup

    2018-01-01

    The purpose of this study was to perform a head-to-head comparison between high-b-value (> 1000 s/mm 2 ) and standard-b-value (800-1000 s/mm 2 ) DWI regarding diagnostic performance in the detection of prostate cancer. The MEDLINE and EMBASE databases were searched up to April 1, 2017. The analysis included diagnostic accuracy studies in which high- and standard-b-value DWI were used for prostate cancer detection with histopathologic examination as the reference standard. Methodologic quality was assessed with the revised Quality Assessment of Diagnostic Accuracy Studies tool. Sensitivity and specificity of all studies were calculated and were pooled and plotted in a hierarchic summary ROC plot. Meta-regression and multiple-subgroup analyses were performed to compare the diagnostic performances of high- and standard-b-value DWI. Eleven studies (789 patients) were included. High-b-value DWI had greater pooled sensitivity (0.80 [95% CI, 0.70-0.87]) (p = 0.03) and specificity (0.92 [95% CI, 0.87-0.95]) (p = 0.01) than standard-b-value DWI (sensitivity, 0.78 [95% CI, 0.66-0.86]); specificity, 0.87 [95% CI, 0.77-0.93] (p < 0.01). Multiple-subgroup analyses showed that specificity was consistently higher for high- than for standard-b-value DWI (p ≤ 0.05). Sensitivity was significantly higher for high- than for standard-b-value DWI only in the following subgroups: peripheral zone only, transition zone only, multiparametric protocol (DWI and T2-weighted imaging), visual assessment of DW images, and per-lesion analysis (p ≤ 0.04). In a head-to-head comparison, high-b-value DWI had significantly better sensitivity and specificity for detection of prostate cancer than did standard-b-value DWI. Multiple-subgroup analyses showed that specificity was consistently superior for high-b-value DWI.

  15. A new metric for assessing IMRT modulation complexity and plan deliverability.

    PubMed

    McNiven, Andrea L; Sharpe, Michael B; Purdie, Thomas G

    2010-02-01

    To evaluate the utility of a new complexity metric, the modulation complexity score (MCS), in the treatment planning and quality assurance processes and to evaluate the relationship of the metric with deliverability. A multisite (breast, rectum, prostate, prostate bed, lung, and head and neck) and site-specific (lung) dosimetric evaluation has been completed. The MCS was calculated for each beam and the overall treatment plan. A 2D diode array (MapCHECK, Sun Nuclear, Melbourne, FL) was used to acquire measurements for each beam. The measured and planned dose (PINNACLE3, Phillips, Madison, WI) was evaluated using different percent differences and distance to agreement (DTA) criteria (3%/ 3 mm and 2%/ 1 mm) and the relationship between the dosimetric results and complexity (as measured by the MCS or simple beam parameters) assessed. For the multisite analysis (243 plans total), the mean MCS scores for each treatment site were breast (0.92), rectum (0.858), prostate (0.837), prostate bed (0.652), lung (0.631), and head and neck (0.356). The MCS allowed for compilation of treatment site-specific statistics, which is useful for comparing different techniques, as well as for comparison of individual treatment plans with the typical complexity levels. For the six plans selected for dosimetry, the average diode percent pass rate was 98.7% (minimum of 96%) for 3%/3 mm evaluation criteria. The average difference in absolute dose measurement between the planned and measured dose was 1.7 cGy. The detailed lung analysis also showed excellent agreement between the measured and planned dose, as all beams had a diode percentage pass rate for 3%/3 mm criteria of greater than 95.9%, with an average pass rate of 99.0%. The average absolute maximum dose difference for the lung plans was 0.7 cGy. There was no direct correlation between the MCS and simple beam parameters which could be used as a surrogate for complexity level (i.e., number of segments or MU). An evaluation criterion of 2%/ 1 mm reliably allowed for the identification of beams that are dosimetrically robust. In this study we defined a robust beam or plan as one that maintained a diode percentage pass rate greater than 90% at 2%/ 1 mm, indicating delivery that was deemed accurate when compared to the planned dose, even under stricter evaluation criterion. MCS and MU threshold criteria were determined by defining a required specificity of 1.0. A MCS threshold of 0.8 allowed for identification of robust deliverability with a sensitivity of 0.36. In contrast, MU had a lower sensitivity of 0.23 for a threshold of 50 MU. The MCS allows for a quantitative assessment of plan complexity, on a fixed scale, that can be applied to all treatment sites and can provide more information related to dose delivery than simple beam parameters. This could prove useful throughout the entire treatment planning and QA process.

  16. Ménière's Disease: A CHEER Database Study of Local and Regional Patient Encounter and Procedure Patterns.

    PubMed

    Crowson, Matthew G; Schulz, Kristine; Parham, Kourosh; Vambutas, Andrea; Witsell, David; Lee, Walter T; Shin, Jennifer J; Pynnonen, Melissa A; Nguyen-Huynh, Anh; Ryan, Sheila E; Langman, Alan

    2016-07-01

    (1) Integrate practice-based patient encounters using the Dartmouth Atlas Medicare database to understand practice treatments for Ménière's disease (MD). (2) Describe differences in the practice patterns between academic and community providers for MD. Practice-based research database review. CHEER (Creating Healthcare Excellence through Education and Research) network academic and community providers. MD patient data were identified with ICD-9 and CPT codes. Demographics, unique visits, and procedures per patient were tabulated. The Dartmouth Atlas of Health Care was used to reference regional health care utilization. Statistical analysis included 1-way analyses of variance, bivariate linear regression, and Student's t tests, with significance set at P < .05. A total of 2071 unique patients with MD were identified from 8 academic and 10 community otolaryngology-head and neck surgery provider centers nationally. Average age was 56.5 years; 63.9% were female; and 91.4% self-reported white ethnicity. There was an average of 3.2 visits per patient. Western providers had the highest average visits per patient. Midwest providers had the highest average procedures per patient. Community providers had more visits per site and per patient than did academic providers. Academic providers had significantly more operative procedures per site (P = .0002) when compared with community providers. Health care service areas with higher total Medicare reimbursements per enrollee did not report significantly more operative procedures being performed. This is the first practice-based clinical research database study to describe MD practice patterns. We demonstrate that academic otolaryngology-head and neck surgery providers perform significantly more operative procedures than do community providers for MD, and we validate these data with an independent Medicare spending database. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  17. Potential of pedestrian protection systems--a parameter study using finite element models of pedestrian dummy and generic passenger vehicles.

    PubMed

    Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D

    2011-08-01

    To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent (CSDM) to 85 percent (HIC). Both the active (autonomous braking) and passive deployable system studied had a potential to decrease pedestrian upper body loading. An integrated pedestrian safety system combining the active and passive systems increased the potential of the individual systems in reducing pedestrian head and chest loading.

  18. SU-E-I-27: Estimating KERMA Area Product for CT Localizer Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogden, K; Greene-Donnelly, K; Bennett, R

    2015-06-15

    Purpose: To estimate the free-in-air KERMA-Area Product (KAP) incident on patients due to CT localizer scans for common CT exams. Methods: In-plane beam intensity profiles were measured in localizer acquisition mode using OSLs for a 64 slice MDCT scanner (Lightspeed VCT, GE Medical Systems, Waukesha WI). The z-axis beam width was measured as a function of distance from isocenter. The beam profile and width were used to calculate a weighted average air KERMA per unit mAs as a function of intercepted x-axis beam width for objects symmetric about the localizer centerline.Patient areas were measured using manually drawn regions and dividedmore » by localizer length to determine average width. Data were collected for 50 head exams (lateral localizer only), 15 head/neck exams, 50 chest exams, and 50 abdomen/pelvis exams. Mean patient widths and acquisition techniques were used to calculate the weighted average free-in-air KERMA, which was multiplied by the patient area to estimate KAP. Results: Scan technique was 120 kV tube voltage, 10 mA current, and table speed of 10 cm/s. The mean ± standard deviation values of KAP were 120 ± 11.6, 469 ± 62.6, 518 ± 45, and 763 ± 93 mGycm{sup 2} for head, head/neck, chest, and abdomen/pelvis exams, respectively. For studies with AP and lateral localizers, the AP/lateral area ratio was 1.20, 1.33, and 1.24 for the head/neck, chest, and abdomen/pelvis exams, respectively. However, the AP/lateral KAP ratios were 1.12, 1.08, and 1.07, respectively. Conclusion: Calculation of KAP in CT localizers is complicated by the non-uniform intensity profile and z-axis beam width. KAP values are similar to those for simple radiographic exams such as a chest radiograph and represent a small fraction of the x-ray exposure at CT. However, as CT doses are reduced the localizer contribution will be a more significant fraction of the total exposure.« less

  19. Pain after discharge following head and neck surgery in children.

    PubMed

    Wilson, Caroline A; Sommerfield, David; Drake-Brockman, Thomas F E; von Bieberstein, Lita; Ramgolam, Anoop; von Ungern-Sternberg, Britta S

    2016-10-01

    It is well established that children experience significant pain for a considerable period following adenotonsillectomy. Less is known, however, about pain following other common head and neck operations. The aim of this study was to describe the severity and duration of postoperative pain experienced by children undergoing elective head and neck procedures (primary outcomes). Behavioral disturbance, nausea and vomiting, parental satisfaction, and medical reattendance rates were also measured (secondary outcomes). Parents of children (0-18 years) undergoing common head and neck operations were invited to participate. Pain scores on the day of surgery and each day post discharge were collected via multiple telephone interviews. Data collected included pain levels, analgesia prescribed and given, behavioral disturbance rates, and nausea and vomiting scores. Follow-up was continued until pain resolved. Two hundred and fifty-one patients were analyzed (50 adenoidectomy, 51 adenotonsillectomy, 19 myringoplasty, 52 myringotomy, 43 strabismus, and 36 tongue tie divisions). On the day of surgery myringoplasty, strabismus surgery, and adenotonsillectomy patients on average had moderate pain, whereas adenoidectomy, tongue tie, and myringotomy patients had mild pain. Adenotonsillectomy patients continued to have moderate pain for several days with pain lasting on average 9 days. From day 1 postoperatively mild pain was experienced in the other surgical groups with the average duration of pain varying from 1 to 3 days depending on the surgery performed. Frequency of behavioral issues closely followed pain scores for each group. Analgesic prescribing and regimes at home varied widely, both within and between the different surgical groups. Rates of nausea and vomiting following discharge were low in all groups. The overall unplanned medical reattendance rate was 16%. Adenotonsillectomy patients represent the biggest challenge in postoperative pain management of the head and neck surgeries evaluated. The low rates of pain, nausea, and vomiting reported in the days following surgery for the other procedures suggests that children can be cared for at home with simple analgesia. Discharge information and analgesia prescribing on discharge should be tailored to the operation performed. © 2016 John Wiley & Sons Ltd.

  20. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-01

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  1. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies.

    PubMed

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-07

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  2. Perfusion Neuroimaging Abnormalities Alone Distinguish National Football League Players from a Healthy Population.

    PubMed

    Amen, Daniel G; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A

    2016-04-25

    National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players.

  3. Perfusion Neuroimaging Abnormalities Alone Distinguish National Football League Players from a Healthy Population

    PubMed Central

    Amen, Daniel G.; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A.

    2016-01-01

    Background: National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. Objective: To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. Method: A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. Results: NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Conclusion: Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players. PMID:27128374

  4. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: An exploratory study.

    PubMed

    Chen, Xiaojian; Oshima, Kiyoko; Schott, Diane; Wu, Hui; Hall, William; Song, Yingqiu; Tao, Yalan; Li, Dingjie; Zheng, Cheng; Knechtges, Paul; Erickson, Beth; Li, X Allen

    2017-01-01

    In an effort for early assessment of treatment response, we investigate radiation induced changes in quantitative CT features of tumor during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Diagnostic-quality CT data acquired daily during routine CT-guided CRT using a CT-on-rails for 20 pancreatic head cancer patients were analyzed. On each daily CT, the pancreatic head, the spinal cord and the aorta were delineated and the histograms of CT number (CTN) in these contours were extracted. Eight histogram-based radiomic metrics including the mean CTN (MCTN), peak position, volume, standard deviation (SD), skewness, kurtosis, energy and entropy were calculated for each fraction. Paired t-test was used to check the significance of the change of specific metric at specific time. GEE model was used to test the association between changes of metrics over time for different pathology responses. In general, CTN histogram in the pancreatic head (but not in spinal cord) changed during the CRT delivery. Changes from the 1st to the 26th fraction in MCTN ranged from -15.8 to 3.9 HU with an average of -4.7 HU (p<0.001). Meanwhile the volume decreased, the skewness increased (less skewed), and the kurtosis decreased (less peaked). The changes of MCTN, volume, skewness, and kurtosis became significant after two weeks of treatment. Patient pathological response is associated with the changes of MCTN, SD, and skewness. In cases of good response, patients tend to have large reductions in MCTN and skewness, and large increases in SD and kurtosis. Significant changes in CT radiomic features, such as the MCTN, skewness, and kurtosis in tumor were observed during the course of CRT for pancreas cancer based on quantitative analysis of daily CTs. These changes may be potentially used for early assessment of treatment response and stratification for therapeutic intensification.

  5. SU-G-TeP1-08: LINAC Head Geometry Modeling for Cyber Knife System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B; Li, Y; Liu, B

    Purpose: Knowledge of the LINAC head information is critical for model based dose calculation algorithms. However, the geometries are difficult to measure precisely. The purpose of this study is to develop linac head models for Cyber Knife system (CKS). Methods: For CKS, the commissioning data were measured in water at 800mm SAD. The measured full width at half maximum (FWHM) for each cone was found greater than the nominal value, this was further confirmed by additional film measurement in air. Diameter correction, cone shift and source shift models (DCM, CSM and SSM) are proposed to account for the differences. Inmore » DCM, a cone-specific correction is applied. For CSM and SSM, a single shift is applied to the cone or source physical position. All three models were validated with an in-house developed pencil beam dose calculation algorithm, and further evaluated by the collimator scatter factor (Sc) correction. Results: The mean square error (MSE) between nominal diameter and the FWHM derived from commissioning data and in-air measurement are 0.54mm and 0.44mm, with the discrepancy increasing with cone size. Optimal shift for CSM and SSM is found to be 9mm upward and 18mm downward, respectively. The MSE in FWHM is reduced to 0.04mm and 0.14mm for DCM and CSM (SSM). Both DCM and CSM result in the same set of Sc values. Combining all cones at SAD 600–1000mm, the average deviation from 1 in Sc of DCM (CSM) and SSM is 2.6% and 2.2%, and reduced to 0.9% and 0.7% for the cones with diameter greater than 15mm. Conclusion: We developed three geometrical models for CKS. All models can handle the discrepancy between vendor specifications and commissioning data. And SSM has the best performance for Sc correction. The study also validated that a point source can be used in CKS dose calculation algorithms.« less

  6. The Impact of Child Safety Restraint Status and Age in Motor Vehicle Collisions in Predicting Type and Severity of Bone Fractures and Traumatic Injuries.

    PubMed

    Loftis, Christopher M; Sawyer, Jeffrey R; Eubanks, James W; Kelly, Derek M

    2017-12-01

    Although morbidity and mortality in children increases in motor vehicle collisions (MVC) if child restraints are not used, no data exist correlating specific injuries with proper or improper use of safety restraints or age. The purpose of this study was to evaluate correlations between childhood MVC injuries, age, and restraint status. A medical record search for pediatric patients involved in a MVC was conducted at a pediatric hospital (level 1 trauma). Charts were reviewed for demographics and injury-specific information. Patients were grouped by age, restraint use, and injuries. Nine hundred sixty-seven patients ≤12 years (average age 6.39 y) were identified. Being properly restrained was most common in all age groups except the 4- to 8-year age group in which being improperly restrained was most common. Unrestrained patients were most commonly found in the 9- to 12-year age group. A statistically significant difference was not observed for orthopaedic injuries among the restraint groups, but internal thoracic injuries, open head wound, and open upper extremity wounds were significantly more common in improperly or unrestrained patients. Improperly restrained infants had a significantly higher rate of intracranial bleeds and abrasions than those properly restrained. Unrestrained and improperly restrained 9- to 12-year olds had significantly more open head, open upper extremity, and vascular injuries. When comparing injury types with age groups, upper extremity fractures, femoral fractures, dislocations, and spinal fractures were found to be significantly higher in older children. Preventing orthopaedic injuries in older children may be accomplished by changes in regulations or automotive safety equipment. Rear-facing child safety seats could possibly be improved to prevent head trauma in the youngest patients. There is a continued need to reinforce the importance of proper use of child safety devices to parents. Knowledge of the patient's age, along with restraint status, might aid in diagnosis of less obvious MCV injuries. Level III.

  7. Reduction in radiation doses from paediatric CT scans in Great Britain.

    PubMed

    Lee, Choonsik; Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy

    2016-01-01

    Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. We retrieved 1073 CT film sets from 36 hospitals. The patients were 0-19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current-time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0-4, 5-9, 10-14 and 15-19 years) and scan year (<1990, 1990-1994, 1995-1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0-4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0-4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. We found that mAs for head and trunk CTs was approximately halved starting around 1990, and age-specific mAs was generally used for paediatric scans after this date. These changes will have substantially reduced the radiation exposure to children from CT scans in Great Britain. The study shows that mAs and major organ doses for paediatric CT scans in Great Britain began to decrease around 1990.

  8. Reduction in radiation doses from paediatric CT scans in Great Britain

    PubMed Central

    Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy

    2016-01-01

    Objective: Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. Methods: We retrieved 1073 CT film sets from 36 hospitals. The patients were 0–19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current–time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0–4, 5–9, 10–14 and 15–19 years) and scan year (<1990, 1990–1994, 1995–1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. Results: For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0–4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0–4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. Conclusion: We found that mAs for head and trunk CTs was approximately halved starting around 1990, and age-specific mAs was generally used for paediatric scans after this date. These changes will have substantially reduced the radiation exposure to children from CT scans in Great Britain. Advances in knowledge: The study shows that mAs and major organ doses for paediatric CT scans in Great Britain began to decrease around 1990. PMID:26864156

  9. Generation of Accurate Lateral Boundary Conditions for a Surface-Water Groundwater Interaction Model

    NASA Astrophysics Data System (ADS)

    Khambhammettu, P.; Tsou, M.; Panday, S. M.; Kool, J.; Wei, X.

    2010-12-01

    The 106 mile long Peace River in Florida flows south from Lakeland to Charlotte Harbor and has a drainage basin of approximately 2,350 square miles. A long-term decline in stream flows and groundwater potentiometric levels has been observed in the region. Long-term trends in rainfall, along with effects of land use changes on runoff, surface-water storage, recharge and evapotranspiration patterns, and increased groundwater and surface-water withdrawals have contributed to this decline. The South West Florida Water Management District (SWFWMD) has funded the development of the Peace River Integrated Model (PRIM) to assess the effects of land use, water use, and climatic changes on stream flows and to evaluate the effectiveness of various management alternatives for restoring stream flows. The PRIM was developed using MODHMS, a fully integrated surface-water groundwater flow and transport simulator developed by HydroGeoLogic, Inc. The development of the lateral boundary conditions (groundwater inflow and outflow) for the PRIM in both historical and predictive contexts is discussed in this presentation. Monthly-varying specified heads were used to define the lateral boundary conditions for the PRIM. These head values were derived from the coarser Southern District Groundwater Model (SDM). However, there were discrepancies between the simulated SDM heads and measured heads: the likely causes being spatial (use of a coarser grid) and temporal (monthly average pumping rates and recharge rates) approximations in the regional SDM. Finer re-calibration of the SDM was not feasible, therefore, an innovative approach was adopted to remove the discrepancies. In this approach, point discrepancies/residuals between the observed and simulated heads were kriged with an appropriate variogram to generate a residual surface. This surface was then added to the simulated head surface of the SDM to generate a corrected head surface. This approach preserves the trends associated with groundwater pumping / recharge in the SDM and adds the kriged residual surface as variations back to the trend. The variations could be from the scale effects of grid resolution and from the temporal averaging of stresses (pumping, recharge, etc.,). The validity of the approach is demonstrated by visual and statistical comparison of the observed and simulated heads before and after correction. For predictive simulations, an Artificial Neural Network was trained to predict heads at monitoring wells based on precipitation and pumping. These predicted head values could then be used as surrogate observations for correcting the results of the regional SDM. In summary, an appropriate approach to link a regional groundwater model to a detailed surface-water groundwater interaction model is demonstrated with an example.

  10. Head circumference and height in autism: a study by the Collaborative Program of Excellence in Autism.

    PubMed

    Lainhart, Janet E; Bigler, Erin D; Bocian, Maureen; Coon, Hilary; Dinh, Elena; Dawson, Geraldine; Deutsch, Curtis K; Dunn, Michelle; Estes, Annette; Tager-Flusberg, Helen; Folstein, Susan; Hepburn, Susan; Hyman, Susan; McMahon, William; Minshew, Nancy; Munson, Jeff; Osann, Kathy; Ozonoff, Sally; Rodier, Patricia; Rogers, Sally; Sigman, Marian; Spence, M Anne; Stodgell, Christopher J; Volkmar, Fred

    2006-11-01

    Data from 10 sites of the NICHD/NIDCD Collaborative Programs of Excellence in Autism were combined to study the distribution of head circumference and relationship to demographic and clinical variables. Three hundred thirty-eight probands with autism-spectrum disorder (ASD) including 208 probands with autism were studied along with 147 parents, 149 siblings, and typically developing controls. ASDs were diagnosed, and head circumference and clinical variables measured in a standardized manner across all sites. All subjects with autism met ADI-R, ADOS-G, DSM-IV, and ICD-10 criteria. The results show the distribution of standardized head circumference in autism is normal in shape, and the mean, variance, and rate of macrocephaly but not microcephaly are increased. Head circumference tends to be large relative to height in autism. No site, gender, age, SES, verbal, or non-verbal IQ effects were present in the autism sample. In addition to autism itself, standardized height and average parental head circumference were the most important factors predicting head circumference in individuals with autism. Mean standardized head circumference and rates of macrocephaly were similar in probands with autism and their parents. Increased head circumference was associated with a higher (more severe) ADI-R social algorithm score. Macrocephaly is associated with delayed onset of language. Although mean head circumference and rates of macrocephaly are increased in autism, a high degree of variability is present, underscoring the complex clinical heterogeneity of the disorder. The wide distribution of head circumference in autism has major implications for genetic, neuroimaging, and other neurobiological research.

  11. Non-Agricultural Databases and Thesauri: Retrieval of Subject Headings and Non-Controlled Terms in Relation to Agriculture

    ERIC Educational Resources Information Center

    Bartol, Tomaz

    2012-01-01

    Purpose: The paper aims to assess the utility of non-agriculture-specific information systems, databases, and respective controlled vocabularies (thesauri) in organising and retrieving agricultural information. The purpose is to identify thesaurus-linked tree structures, controlled subject headings/terms (heading words, descriptors), and principal…

  12. Derivation of an Extra-Large PASGT Helmet

    DTIC Science & Technology

    1988-07-01

    IED GROUP SU"!jRUP j" Anthropometry ~p Head Length ) I II jHead Circumfirence, Helmet Standoff, Head Breadth PASGT Helmets t IIABSTRACT (Conhwe on m.wn...publication. I,9 LIST OF REFZRENCES 1. DF, STRNC-ICAA, dtd 26 January 1987, XL PASGT Helmet. 2. Military Specification, MIL-H-44099A (Revision 1986). Helmet

  13. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... heads; P = Minimum required bursting pressure in psig; S = Minimum tensile strength of plate material in p.s.i. as prescribed in AAR Specifications for Tank Cars, appendix M, Table M1; t = Minimum... seamless heads; L = Main inside radius to which head is dished, measured on concave side in inches; P...

  14. Which CSR-Related Headings Do "Fortune" 500 Companies Use on Their Websites?

    ERIC Educational Resources Information Center

    Smith, Katherine Taken; Alexander, Julie J.

    2013-01-01

    This article examines website headings used by "Fortune" 500 companies in their efforts to inform stakeholders about corporate social responsibility (CSR). Instead of using "Corporate Social Responsibility" as a heading, companies often use specific terms to identify various CSR initiatives. The purpose of this article is to identify common…

  15. NHSA Position Paper: The Design of a Head Start Training and Technical Assistance System.

    ERIC Educational Resources Information Center

    NHSA Journal, 1994

    1994-01-01

    This position paper examines the current Head Start training and technical assistance (TTA) system and proposes specific improvements. These include the creation of regional TTA offices, the use of satellite and interactive communications technology, and a reevaluation of the role of teaching centers, national training contracts, and Head Start…

  16. Steric interactions lead to collective tilting motion in the ribosome during mRNA-tRNA translocation

    NASA Astrophysics Data System (ADS)

    Nguyen, Kien; Whitford, Paul C.

    2016-02-01

    Translocation of mRNA and tRNA through the ribosome is associated with large-scale rearrangements of the head domain in the 30S ribosomal subunit. To elucidate the relationship between 30S head dynamics and mRNA-tRNA displacement, we apply molecular dynamics simulations using an all-atom structure-based model. Here we provide a statistical analysis of 250 spontaneous transitions between the A/P-P/E and P/P-E/E ensembles. Consistent with structural studies, the ribosome samples a chimeric ap/P-pe/E intermediate, where the 30S head is rotated ~18°. It then transiently populates a previously unreported intermediate ensemble, which is characterized by a ~10° tilt of the head. To identify the origins of head tilting, we analyse 781 additional simulations in which specific steric features are perturbed. These calculations show that head tilting may be attributed to specific steric interactions between tRNA and the 30S subunit (PE loop and protein S13). Taken together, this study demonstrates how molecular structure can give rise to large-scale collective rearrangements.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, K; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N

    Purpose: The aim of this study was to confirm On-Board Imager cone-beam computed tomography (CBCT) using a histogram-matching algorithm as a useful method for proton dose calculation in head and neck radiotherapy. Methods: We studied one head and neck phantom and ten patients with head and neck cancer treated using intensity-modulated radiation therapy (IMRT) and proton beam therapy. We modified Hounsfield unit (HU) values of CBCT (mCBCT) using a histogram-matching algorithm. In order to evaluate the accuracy of the proton dose calculation, we compared dose differences in dosimetric parameters (Dmean) for clinical target volume (CTV), planning target volume (PTV) andmore » left parotid and proton ranges (PR) between the planning CT (reference) and CBCT or mCBCT, and gamma passing rates of CBCT and mCBCT. To minimize the effect of organ deformation, we also performed image registration. Results: For patients, the average differences in Dmean for CTV, PTV, and left parotid between planning CT and CBCT were 1.63 ± 2.34%, 3.30 ± 1.02%, and 5.42 ± 3.06%, respectively. Similarly, the average differences between planning CT and mCBCT were 0.20 ± 0.19%, 0.58 ±0.43%, and 3.53 ±2.40%, respectively. The average differences in PR between planning CT and CBCT or mCBCT of a 50° beam for ten patients were 2.1 ± 2.1 mm and 0.3 ± 0.5 mm, respectively. Similarly, the average differences in PR of a 120° beam were 2.9 ± 2.6 mm and 1.1 ± 0.9 mm, respectively. The average dose and PR differences of mCBCT were smaller than those of CBCT. Additionally, the average gamma passing rates of mCBCT were larger than those of CBCT. Conclusion: We evaluated the accuracy of the proton dose calculation in CBCT and mCBCT with the image registration for ten patients. Our results showed that HU modification using a histogram-matching algorithm could improve the accuracy of the proton dose calculation.« less

  18. AFT Program Description Navigation/Strike Tasks. Phase II,

    DTIC Science & Technology

    1972-09-01

    1 Subroutine ............... 2- 96 2-23 Data Input/Output - PMSG : 1 Subroutine ................ 2-97 2-24 Data Input/Output - LPMSG: 1 Subroutine...T99DI3 GOFLAG Exercise Start Flag PAD Roll Rate (degrees/second) PHIS Bank Angle (degrees) PMSG 17 KBP Message INPUT STUDENT FILE DATA 2-41 PMSG T3 KBP...Message CRASH PMSG T4 KBP Message DEPRESS THE RESET-TO-ZERO CONSOLE BUTTON PSI F-4 Heading (degrees) PSIAFT Desired AFT Heading RCIS Average Rate-of

  19. Improvement of thermal management in the composite Yb:YAG/YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. I.; Mukhin, I. B.; Palashov, O. V.

    2016-04-01

    To improve the thermal management in the composite Yb:YAG/YAG thin-disk laser a new design of laser head is developed. Thermal-induced phase distortions, small signal gain and lasing in the upgraded laser head are investigated and compared with previously published results. A substantial decrease of the thermal lens optical power and phase aberrations and increase of the laser slope efficiency are observed. A continuous-wave laser with 440 W average power and 44% slope efficiency is constructed.

  20. Development of Elasto-Acoustic Integral Equation Based Solver to Assess/Simulate Sound Conducting Mechanisms in Human Head

    DTIC Science & Technology

    2013-09-09

    indicates energy flowing into and out of the bone. (b) The average energy flux density through the surface of the cochlear cavity (relative to the incident...simulation tool capable of handling a variety of aspects of wave propagation and the resulting energy flow in a human head subject to an incident...small amounts of energy transferred from air to a dense inhomogeneous object: such small energy flows are relevant only because of the exceedingly high

  1. Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications

    NASA Astrophysics Data System (ADS)

    Yan, Wensheng; Dottermusch, Stephan; Reitz, Christian; Richards, Bryce S.

    2016-10-01

    We designed and fabricated an anti-reflection surface of hexagonal arrays of round-head silicon nanopillars. The measurements show a significant reduction in reflectivity across a broad spectral range. However, we then grew a conformal titanium dioxide coating via atomic layer deposition to achieve an extremely low weighted average reflection of 2.1% over the 460-1040 nm wavelength range. To understand the underlying reasons for the reduced reflectance, the simulations were conducted and showed that it is due to strong forward scattering of incident light into the silicon substrate. The calculated normalized scattering cross section demonstrates a broadband distribution feature, and the peak has a red-shift to longer wavelengths. Finally, we report two-dimensional weighted average reflectance as a function of both wavelength and angle of incidence and present the resulting analysis contour map.

  2. Cementless total hip arthroplasty with ceramic-on-ceramic bearing in patients younger than 45 years with femoral-head osteonecrosis

    PubMed Central

    Choi, Yoowang; Kim, Jun-Shik

    2009-01-01

    Despite improvements in the quality of alumina ceramics, osteolysis has been reported anecdotally after total hip arthroplasty (THA) with use of a contemporary alumina-on-alumina ceramic bearing. The purpose of this study was to evaluate the clinical and radiographic outcomes of THA using alumina-on-alumina ceramic bearing and to determine osteolysis using radiographs and computed tomographic (CT) scans in young patients. Consecutive primary cementless THA using alumina-on-alumina ceramic bearing were performed in 64 patients (93 hips) who were younger than 45 years of age with femoral-head osteonecrosis. There were 55 men (84 hips) and nine women (nine hips). Average age was 38.2 (range 24–45) years. Average follow-up was 11.1 (range 10–13) years. Preoperative Harris Hip Score was 52.9 (range 22–58) points, which improved to 96 (range 85−100) points at the final follow-up examination. Two of 93 hips (2%) had clicking or squeaking sound. No hip had revision or aseptic loosening. Radiographs and CT scans demonstrated that no acetabular or femoral osteolysis was detected in any hip at the latest follow-up. Contemporary cementless acetabular and femoral components with alumina-on-alumina ceramic bearing couples function well with no osteolysis at a ten year minimum and average of 11.1-year follow-up in this series of young patients with femoral-head osteonecrosis. PMID:19784647

  3. Effects of feeding level of milk replacer on body growth, plasma metabolite and insulin concentrations, and visceral organ growth of suckling calves.

    PubMed

    Kamiya, Mitsuru; Matsuzaki, Masatoshi; Orito, Hideki; Kamiya, Yuko; Nakamura, Yoshi-nori; Tsuneishi, Eisaku

    2009-12-01

    The objective was to evaluate effects of feeding level of milk replacer on body growth, plasma metabolite and insulin concentrations, and allometric growth of visceral organs in suckling calves. Holstein bull calves (n = 8; 3-4 days of age) were fed either a low amount (average 0.63 kgDM/day, LM) or high amount (average 1.15 kgDM/day, HM) of high protein milk replacer until they were slaughtered at 6 weeks of age. Body weight (BW) at 4, 5, and 6 weeks of age, feed intake, average daily gain, and feed efficiency were higher in the HM than LM calves. The HM group had higher plasma glucose at 3 and 4 weeks of age and insulin levels after the age of 4 weeks compared with LM calves whereas no effect was detected on plasma nonesterified fatty acid or urea nitrogen concentrations. The HM calves had greater empty body weight (EBW), viscera-free BW and most of the organs dissected than LM calves. Relative weights (% of EBW) of liver, spleen, kidneys, and internal fat were higher, whereas head and large intestine was lower in HM than LM calves. The results suggest that increased milk feeding levels would accelerate the growth of the body and specific organs.

  4. The organizational commitment of emergency physicians in Spanish public hospitals

    PubMed

    Noval de la Torre, A; Bulchand Gidumal, J; Melián González, S

    2016-12-30

    Background. There are not too many studies that deal with the organizational commitment of emergency physicians. This commitment has been shown to impact organizational performance. The aim of this paper is to analyse the degree of commitment of the emergency physicians in Spanish public hospitals and the factors that may influence it. Method. Online survey using SurveyMonkey to emergency physicians in Spanish public hospitals. Results. Two hundred and five questionnaires were received, 162 from physicians and 43 from heads of the emergency service. Results show an intermediate level of commitment, with affective commitment showing the lowest level and continuance commitment showing the highest level. The capabilities of the physician have an influence on their affective commitment; specific training in emergency procedures and seniority has an influence on their continuance commitment; and the opinion they hold about the organization of their service influences affective commitment. Conclusions. Emergency physicians show an average involvement in the hospital in which they work (average 3.8 on a range of 1 to 5), feel an average affection for it (3.4), and have a high intention to keep working there (4.0). The resources the hospital has due to its level do not have an influence on this commitment, while the training and perceptions of the service do have an influence.

  5. Comparison of the Canadian CT head rule and the New Orleans criteria in patients with minor head injury in a Spanish hospital.

    PubMed

    Valle Alonso, Joaquín; Fonseca Del Pozo, Francisco Javier; Vaquero Álvarez, Manuel; Lopera Lopera, Elisa; Garcia Segura, Marisol; García Arévalo, Ricardo

    2016-12-16

    To compare two scales for assessment of patients with mild head injury. The Canadian CT Head Rule (CCHR) and New Orleans Criteria (NOC) according to their diagnostic accuracy in patients attending an emergency department, and to determine the most important predictive values. Cross-sectional study in a first-level Hospital in the period of January 2011 to January 2013. Patients with mild head injury criteria were included. All the patients underwent a computed tomography (CT) of the head as part of internal protocol and the CCHR and NOC criteria were recorded for each patient. We consider the main variable the presence of traumatic lesions on CT and, as secondary variables, neurosurgical intervention and post-concussion syndrome. Sensitivity, specificity, predictive values and validity index (VI) of the CCHR and the NO criteria in the subgroup of patients with a Glasgow Coma Scale (GCS) score of 15 points were compared. A total of 217 patients, of whom 197 had a GCS score of 15 points were evaluated. Both rules showed 100% sensitivity when a significant injury was presented in the CT, the CCHR 100% (95% CI: 97.4%-100%) and the NO criteria 100% (95% CI: 97.4%-100%); but the CCHR achieved higher values of specificity 25.3% (95% CI: 18.6%-32%), positive predictive value (PPV) and VI. The two rules showed a 100% sensitivity regarding neurosurgical intervention; however the CCHR with high-risk criteria showed better specificity, PPV and VI 55.2 (95% CI: 8.3%-62.2%) compared to the NO criteria 7.6 (95% CI: 3.8%-11.5%). With regard to post-concussion syndrome criteria NO criteria showed better sensitivity 100% (95% CI: 96.2%-100%) and predictive values, but lower specificity and VI compared with the CCHR 76.9% (95% CI: 50.2%-100%). Our study demonstrates the high sensitivity of the CCHR and the NO criteria in patients with mild head injury, both to detect a significant clinical lesion on CT or the need for neurosurgical intervention and better specificity of CCHR compared with NO criteria. The adoption of clinical prediction rules, especially the CCHR, to request a CT scan in patients with mild head injury should be recommended in the emergency department. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  6. The risk of avascular necrosis following chevron osteotomy: a prospective study using bone scintigraphy.

    PubMed

    Shariff, Raheel; Attar, Fahad; Osarumwene, Donald; Siddique, Rehan; Attar, Gulam Dastagir

    2009-04-01

    Controversy exists with regard to the effects of chevron osteotomy on blood supply and subsequent development of avascular necrosis (AVN) of the first metatarsal head. The aim of this study was to assess the incidence of avascular necrosis in our centre following chevron osteotomy for hallux valgus, using bone scintigraphy. Thirty nine patients who had a chevron osteotomy for treatment of hallux valgus were prospectively studied. Mean follow-up was 14 months. Bone scintigraphy was used to assess metatarsal head perfusion at an average 8.5 weeks post operatively. Three patients (7.7%) showed abnormal bone scan around the metatarsal head. Further evaluation of these patients did not show any sign of AVN. We conclude there appears to be a risk of circulatory disturbance to the metatarsal head following chevron osteotomy of the first metarsal (7.7% in this study); however this does not translate into clinically significant AVN.

  7. Mitochondrial DNA typing from human axillary, pubic and head hair shafts - success rates and sequence comparisons.

    PubMed

    Pfeiffer, H; Hühne, J; Ortmann, C; Waterkamp, K; Brinkmann, B

    1999-01-01

    The analysis of mitochondrial DNA (mtDNA) from shed hairs has gained high importance in forensic casework since telogen hairs are one of the most common types of evidence left at the crime scene. In this systematic study of hair shafts from 20 individuals, the correlation of mtDNA recovery with hair morphology (length, diameter, volume, colour), with sex, and with body localisation (head, armpit, pubis) was investigated. The highest average success rate of hypervariable region 1 (HV 1) sequencing was found in head hair shafts (75%) followed by pubic (66%) and axillary hair shafts (52%). No statistically significant correlation between morphological parameters or sex and the success rate of sequencing was found. MtDNA sequences of buccal cells, head, pubic and axillary hair shafts did not show intraindividual differences. Heteroplasmic base positions were observed neither in the hair shafts nor in control samples of buccal cells.

  8. Transverse Cervical Artery: Consistent Anatomical Landmarks and Clinical Experience with Its Use as a Recipient Artery in Complex Head and Neck Reconstruction.

    PubMed

    Tessler, Oren; Gilardino, Mirko S; Bartow, Matthew J; St Hilaire, Hugo; Womac, Daniel; Dionisopoulos, Tassos; Lessard, Lucie

    2017-03-01

    Many head and neck reconstructions occur in patients with extensive history of surgery or radiation treatment. This leads to complicated free flap reconstructions, especially in choosing recipient vessels in a "frozen neck." The transverse cervical artery is an optimal second-line recipient artery in head and neck reconstruction. Seventy-two neck sides in 36 cadavers were dissected, looking for the transverse cervical artery and transverse cervical vein. Anatomical location of these vessels, their diameter, and length were documented. A retrospective analysis on 19 patients who had head and neck reconstruction using the transverse cervical artery as a recipient artery was undertaken as well with regard to outcome of procedures, reason for surgery, previous operations, and use of vein grafts during surgery. The transverse cervical artery was present in 72 of 72 of cadaveric specimens, and was infraclavicular in two of 72 specimens. Transverse cervical artery length ranged from 4.0 to 7.0 cm, and the mean diameter was 2.65 mm. The transverse cervical vein was present in 61 of 72 cadaveric specimens, the length ranged from 4.0 to 7.0 cm, and the mean diameter was 2.90 mm. The transverse cervical artery averaged 33 mm from midline, and branched off the thyrocervical trunk at an average 17 mm superior to the clavicle. Transverse cervical artery stenosis was markedly less in comparison with external carotid artery stenosis. In a 20-year clinical follow-up study, the transverse cervical artery was the recipient artery in 19 patients. A vein graft was used in one patient, and no flap loss occurred in any of the 19 patients. The transverse cervical artery is a reliable and robust option as a recipient artery in free flap head and neck reconstruction.

  9. Backset and cervical retraction capacity among occupants in a modern car.

    PubMed

    Jonsson, Bertil; Stenlund, Hans; Svensson, Mats Y; Björnstig, Ulf

    2007-03-01

    The horizontal distance between the back of the head and the frontal of the head restraint (backset) and rearward head movement relative to the torso (cervical retraction) were studied in different occupant postures and positions in a modern car. A stratified randomized population of 154 test subjects was studied in a Volvo V70 year model 2003 car, in driver, front passenger, and rear passenger position. In each position, the subjects adopted (i) a self-selected posture, (ii) a sagging posture, and (iii) an erect posture. Cervical retraction, backset, and vertical distance from the top of the head restraint to the occipital protuberance in the back of the head of the test subject were measured. These data were analyzed using repeated measures ANOVA and linear regression analysis with a significance level set to p < 0.05. In the self-selected posture, the average backset was 61 mm for drivers, 29 mm for front passengers, and 103 mm for rear passengers (p < 0.001). Women had lower mean backset (40 mm) than men (81 mm), particularly in the self-selected driving position. Backset was larger and cervical retraction capacity lower in the sagging posture than in the self-selected posture for occupants in all three occupant positions. Rear passengers had the largest backset values. Backset values decreased with increased age. The average cervical retraction capacity in self-selected posture was 35 mm for drivers, 30 mm for front passengers, and 33 mm for rear passengers (p < 0.001). Future design of rear-end impact protection may take these study results into account when trying to reduce backset before impact. Our results might be used for future development and use of BioRID manikins and rear-end tests in consumer rating test programs such as Euro-NCAP.

  10. Origin of the direct and reflected head of the rectus femoris: an anatomic study.

    PubMed

    Ryan, John M; Harris, Joshua D; Graham, William C; Virk, Sohrab S; Ellis, Thomas J

    2014-07-01

    This study aimed to define the footprint of the direct and reflected heads of the rectus femoris and the relation of the anterior inferior iliac spine (AIIS) to adjacent neurovascular (lateral circumflex femoral artery and femoral nerve), bony (anterior superior iliac spine [ASIS]), and tendinous structures (iliopsoas). Twelve fresh-frozen cadaveric hip joints from 6 cadavers, average age of 44.5 (±9.9) years, were carefully dissected of skin and fascia to expose the muscular, capsular, and bony structures of the anterior hip and pelvis. Using digital calipers, measurements were taken of the footprint of the rectus femoris on the AIIS, superior-lateral acetabulum and hip capsule, and adjacent anatomic structures. The average dimensions of the footprint of the direct head of the rectus femoris were 13.4 mm (±1.7) × 26.0 mm (±4.1), whereas the dimensions of the reflected head footprint were 47.7 mm (±4.4) × 16.8 mm (±2.2). Important anatomic structures, including the femoral nerve, psoas tendon, and lateral circumflex femoral artery, were noted in proximity to the AIIS. The neurovascular structure closest to the AIIS was the femoral nerve (20.8 ± 3.4 mm). The rectus femoris direct and reflected heads originate over a broad area of the anterolateral pelvis and are in close proximity to critical neurovascular structures, and care must be taken to avoid them during hip arthroscopy. A thorough knowledge of the anatomy of the proximal rectus femoris is valuable for any surgical exposure of the anterior hip joint, particularly arthroscopic subspine decompression and open femoroacetabular impingement (FAI) surgery. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles.

    PubMed

    Zhao, Wei; Ji, Songbai

    2017-04-01

    Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29-17.89 % in the whole brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9 %) but not pattern (correlation coefficient of 0.94-0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91 % on average, with a typical range of 0-6 %). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future.

  12. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles

    PubMed Central

    Zhao, Wei; Ji, Songbai

    2016-01-01

    Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles, and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction, and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29–17.89% in the whole-brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9%) but not pattern (correlation coefficient of 0.94–0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91% on average, with a typical range of 0–6%). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future. PMID:27644441

  13. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis

    NASA Astrophysics Data System (ADS)

    Hallez, Hans; Staelens, Steven; Lemahieu, Ignace

    2009-10-01

    EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.

  14. Dynamic variability of the heading-flowering stages of single rice in China based on field observations and NDVI estimations.

    PubMed

    Zhang, Zhao; Song, Xiao; Chen, Yi; Wang, Pin; Wei, Xing; Tao, Fulu

    2015-05-01

    Although many studies have indicated the consistent impact of warming on the natural ecosystem (e.g., an early flowering and prolonged growing period), our knowledge of the impacts on agricultural systems is still poorly understood. In this study, spatiotemporal variability of the heading-flowering stages of single rice was detected and compared at three different scales using field-based methods (FBMs) and satellite-based methods (SBMs). The heading-flowering stages from 2000 to 2009 with a spatial resolution of 1 km were extracted from the SPOT/VGT NDVI time series data using the Savizky-Golay filtering method in the areas in China dominated by single rice of Northeast China (NE), the middle-lower Yangtze River Valley (YZ), the Sichuan Basin (SC), and the Yunnan-Guizhou Plateau (YG). We found that approximately 52.6 and 76.3 % of the estimated heading-flowering stages by a SBM were within ±5 and ±10 days estimation error (a root mean square error (RMSE) of 8.76 days) when compared with those determined by a FBM. Both the FBM data and the SBM data had indicated a similar spatial pattern, with the earliest annual average heading-flowering stages in SC, followed by YG, NE, and YZ, which were inconsistent with the patterns reported in natural ecosystems. Moreover, diverse temporal trends were also detected in the four regions due to different climate conditions and agronomic factors such as cultivar shifts. Nevertheless, there were no significant differences (p > 0.05) between the FBM and the SBM in both the regional average value of the phenological stages and the trends, implying the consistency and rationality of the SBM at three scales.

  15. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure

    PubMed Central

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E.; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M.; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5–19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol exposure, but raise concerns about the predictive value of this metric at an individual-subject level. PMID:26928125

  16. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure.

    PubMed

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5-19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol exposure, but raise concerns about the predictive value of this metric at an individual-subject level.

  17. Effects of Soccer Heading on Brain Structure and Function

    PubMed Central

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety guidelines that could help to minimize the risk of possible adverse effects of soccer on brain structure and function. PMID:27047444

  18. Is ExacTrac x-ray system an alternative to CBCT for positioning patients with head and neck cancers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemente, Stefania; Chiumento, Costanza; Fiorentino, Alba

    Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences inmore » shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients.« less

  19. Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, Helin; Yang, Aijun; Chen, Zhongshi; Geng, Yan

    2014-08-01

    A reflective fiber temperature sensor based on the optical temperature dependent characteristics of a quantum dots (QDs) thin film is developed by depositing the CdSe/ZnS core/shell quantum dots on the SiO2 glass substrates. As the temperature is changed from 30 to 200°C, the peak wavelengths of PL spectra from the sensing head increase linearly with the temperature, while the peak intensity and the full width at half maximum (FWHM) of PL spectra vary exponentially according to the specific physical law. Using the obtained temperature-dependent peak-wavelength shift, the average resolution of the designed fiber temperature sensor can reach 0.12 nm/°C, while it reaches 0.056 nm/°C according to the FWHM of PL spectrum.

  20. Hawk Eyes II: Diurnal Raptors Differ in Head Movement Strategies When Scanning from Perches

    PubMed Central

    O'Rourke, Colleen T.; Pitlik, Todd; Hoover, Melissa; Fernández-Juricic, Esteban

    2010-01-01

    Background Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper's Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Conclusions Cooper's Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction. PMID:20877650

  1. Hawk eyes II: diurnal raptors differ in head movement strategies when scanning from perches.

    PubMed

    O'Rourke, Colleen T; Pitlik, Todd; Hoover, Melissa; Fernández-Juricic, Esteban

    2010-09-22

    Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper's Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Cooper's Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction.

  2. Control of head morphogenesis in an invertebrate asexually produced larva-like bud ( Cassiopea andromeda; Cnidaria: Scyphozoa).

    PubMed

    Thieme, Claudia; Hofmann, Dietrich Kurt

    2003-04-01

    Scyphopolyps of Cassiopea andromeda propagate asexually by forming larva-like buds which separate from the parent in a developmentally quiescent state. These buds metamorphose into sessile polyps when exposed to specific biogenic, chemical inducers. Morphogenesis of transversely dissected buds indicates the presence of pattern-determining signals; whereas the basal bud fragments may still form a complete scyphistoma the apical bud fragments develop spontaneously in the absence of an inducer into a polyp head without stalk and foot. Based on these findings Neumann (dissertation, Cologne University, 1980) postulated a head-inhibiting signal which is released at the basal pole and inhibits head formation at the apical end. Contrary to this hypothesis dissection itself might induce the development of head structures. The present study deals with the control of polyp head formation in C. andromeda. It concentrates on two points, namely the postulated head inhibitor and the involvement of compounds known to act during metamorphosis (the enzyme protein kinase C and the specific metamorphosis inducer Z-GPGGPA). We found that compared to intact buds and apical bud fragments transversely incised buds reached an intermediate stage of head development. This confirms Neumann's hypothesis. Consequently we focused on the mode of action and the chemical nature of the head-inhibiting signal in C. andromeda. Our results indicate that the head inhibitor may be included in one of six pooled fractions isolated from bud homogenate via gel filtration on a Sephadex G-50 column. The inhibitor is supposed to be water-soluble and to have a molecular weight of 850-1,500 Da. Furthermore we prove that head formation is not promoted by the metamorphosis-inducer Z-GPGGPA but is prevented by the inhibitors psychosine, chelerythrine and RO-32-0432 showing the involvement of protein kinase C in this process.

  3. A Music Program for Training Head Start Teachers Using a Sequential, Cognitive, Developmental Process with Pre-school Children.

    ERIC Educational Resources Information Center

    Brodhecker, Shirley G.

    This practicum report addresses the need to supply Head Start teachers with: (1) specific preschool music objectives; (2) a sequential preschool developmental program in music to match the child's cognitive level; (3) how to choose instructional material to encourage specific basic school readiness skills; and (4) workshops to accomplish these…

  4. Effect of metatarsal pad placement on plantar pressure in people with diabetes mellitus and peripheral neuropathy.

    PubMed

    Hastings, Mary K; Mueller, Michael J; Pilgram, Thomas K; Lott, Donovan J; Commean, Paul K; Johnson, Jeffrey E

    2007-01-01

    Standard prevention and treatment strategies to decrease peak plantar pressure include a total contact insert with a metatarsal pad, but no clear guidelines exist to determine optimal placement of the pad with respect to the metatarsal head. The purpose of this study was to determine the effect of metatarsal pad location on peak plantar pressure in subjects with diabetes mellitus and peripheral neuropathy. Twenty subjects with diabetes mellitus, peripheral neuropathy, and a history of forefoot plantar ulcers were studied (12 men and eight women, mean age=57+/-9 years). CT determined the position of the metatarsal pad relative to metatarsal head and peak plantar pressures were measured on subjects in three footwear conditions: extra-depth shoes and a 1) total contact insert, 2) total contact insert and a proximal metatarsal pad, and 3) total contact insert and a distal metatarsal pad. The change in peak plantar pressure between shoe conditions was plotted and compared to metatarsal pad position relative to the second metatarsal head. Compared to the total contact insert, all metatarsal pad placements between 6.1 mm to 10.6 mm proximal to the metatarsal head line resulted in a pressure reduction (average reduction=32+/-16%). Metatarsal pad placements between 1.8 mm distal and 6.1 mm proximal and between 10.6 mm proximal and 16.8 mm proximal to the metatarsal head line resulted in variable peak plantar pressure reduction (average reduction=16+/-21%). Peak plantar pressure increased when the metatarsal pad was located more than 1.8 mm distal to the metatarsal head line. Consistent peak plantar pressure reduction occurred when the metatarsal pad in this study was located between 6 to 11 mm proximal to the metatarsal head line. Pressure reduction lessened as the metatarsal pad moved outside of this range and actually increased if the pad was located too distal of this range. Computational models are needed to help predict optimal location of metatarsal pad with a variety of sizes, shapes, and material properties.

  5. [Flicker comparison of optic disc photographs: sensitivity and specificity].

    PubMed

    Funk, Jens; Lagrèze, Wolf; Zeyen, Thierry

    2002-12-01

    Examination and documentation of the optic nerve head are essential in monitoring glaucoma patients. Even minor changes in optic nerve head morphology can be visualised using the so-called flicker test: Two optic nerve head photographs, taken at consecutive examinations, are superimposed by projection. When occluding the pictures in a rapid alternating fashion, changes in optic nerve head morphology appear as motion. In this study, we evaluated sensitivity and specificity of the flicker test. A set of 33 pairs of serial optic disc slides was used as gold standard. These 33 pairs had been classified earlier by 3 independent groups of experts. 23 had been classified as "no change over time", 10 had been classified as "change". All 33 pairs were now evaluated by flicker comparison in a masked fashion. Flicker comparison usually took 1 minute per pair of slides. Sensitivity was 90 %, specificity was 65 %. The sensitivity was reasonably high. The moderate specificity was due to some cases showing "change" with the flicker comparison which might have been overlooked by the expert groups. Flicker comparison is an easy, fast and reliable technique to evaluate pairs of consecutive optic disc photographs.

  6. Do you use your head or follow your heart? Self-location predicts personality, emotion, decision making, and performance.

    PubMed

    Fetterman, Adam K; Robinson, Michael D

    2013-08-01

    The head is thought to be rational and cold, whereas the heart is thought to be emotional and warm. In 8 studies (total N = 725), we pursued the idea that such body metaphors are widely consequential. Study 1 introduced a novel individual difference variable, one asking people to locate the self in the head or the heart. Irrespective of sex differences, head-locators characterized themselves as rational, logical, and interpersonally cold, whereas heart-locators characterized themselves as emotional, feminine, and interpersonally warm (Studies 1-3). Study 4 showed that head-locators were more accurate in answering general knowledge questions and had higher grade point averages, and Study 5 showed that heart-locators were more likely to favor emotional over rational considerations in moral decision making. Study 6 linked self-locations to reactivity phenomena in daily life--for example, heart-locators experienced greater negative emotion on high stressor days. In Study 7, we manipulated attention to the head versus the heart and found that head-pointing facilitated intellectual performance, whereas heart-pointing led to emotional decision making. Study 8 replicated Study 3's findings with a nearly year-long delay between the self-location and outcome measures. The findings converge on the importance of head-heart metaphors for understanding individual differences in cognition, emotion, and performance.

  7. Hydra multiple head star sensor and its in-flight self-calibration of optical heads alignment

    NASA Astrophysics Data System (ADS)

    Majewski, L.; Blarre, L.; Perrimon, N.; Kocher, Y.; Martinez, P. E.; Dussy, S.

    2017-11-01

    HYDRA is EADS SODERN new product line of APS-based autonomous star trackers. The baseline is a multiple head sensor made of three separated optical heads and one electronic unit. Actually the concept which was chosen offers more than three single-head star trackers working independently. Since HYDRA merges all fields of view the result is a more accurate, more robust and completely autonomous multiple-head sensor, releasing the AOCS from the need to manage the outputs of independent single-head star trackers. Specific to the multiple head architecture and the underlying data fusion, is the calibration of the relative alignments between the sensor optical heads. The performance of the sensor is related to its estimation of such alignments. HYDRA design is first reminded in this paper along with simplification it can bring at system level (AOCS). Then self-calibration of optical heads alignment is highlighted through descriptions and simulation results, thus demonstrating the performances of a key part of HYDRA multiple-head concept.

  8. Distinguishing body lice from head lice by multiplex real-time PCR analysis of the Phum_PHUM540560 gene.

    PubMed

    Drali, Rezak; Boutellis, Amina; Raoult, Didier; Rolain, Jean Marc; Brouqui, Philippe

    2013-01-01

    Body louse or head louse? Once removed from their environment, body and head lice are indistinguishable. Neither the morphological criteria used since the mid-18th century nor the various genetic studies conducted since the advent of molecular biology tools have allowed body lice and head lice to be differentiated. In this work, using a portion of the Phum_PHUM540560 gene from the body louse, we aimed to develop a multiplex real-time polymerase chain reaction (PCR) assay to differentiate between body and head lice in a single reaction. A total of 142 human lice were collected from mono-infested hosts from 13 countries on five continents. We first identified the louse clade using a cytochrome b (CYTB) PCR sequence alignment. We then aligned a fragment of the Phum_PHUM540560 gene amplified from head and body lice to design-specific TaqMan(©) FAM- and VIC-labeled probes. All the analyzed lice were Clade A lice. A total of 22 polymorphisms between the body and head lice were characterized. The multiplex real-time PCR analysis enabled the body and head lice to be distinguished in two hours. This method is simple, with 100% specificity and sensitivity. We confirmed that the Phum_PHUM540560 gene is a useful genetic marker for the study of lice.

  9. Transcranial magnetic stimulation over the cerebellum delays predictive head movements in the coordination of gaze.

    PubMed

    Zangemeister, W H; Nagel, M

    2001-01-01

    We investigated coordinated saccadic eye and head movements following predictive horizontal visual targets at +/- 30 degrees by applying transcranial magnetic stimulation (TMS) over the cerebellum before the start of the gaze movement in 10 young subjects. We found three effects of TMS on eye-head movements: 1. Saccadic latency effect. When stimulation took place shortly before movements commenced (75-25 ms before), significantly shorter latencies were found between predictive target presentation and initiation of saccades. Eye latencies were significantly decreased by 45 ms on average, but head latencies were not. 2. Gaze amplitude effect. Without TMS, for the 60 degrees target amplitudes, head movements usually preceded eye movements, as expected (predictive gaze type 3). With TMS 5-75 ms before the gaze movement, the number of eye movements preceding head movements by 20-50 ms was significantly increased (p < 0.001) and the delay between eye and head movements was reversed (p < 0.001), i.e. we found eye-predictive gaze type 1. 3. Saccadic peak velocity effect. For TMS 5-25 s before the start of head movement, mean peak velocity of synkinetic eye saccades increased by 20-30% up to 600 degrees/s, compared to 350-400 degrees/s without TMS. We conclude that transient functional cerebellar deficits exerted by means of TMS can change the central synkinesis of eye-head coordination, including the preprogramming of the saccadic pulse and step of a coordinated gaze movement.

  10. Infant head circumference growth is saltatory and coupled to length growth.

    PubMed

    Lampl, Michelle; Johnson, Michael L

    2011-05-01

    Rapid growth rates of head circumference and body size during infancy have been reported to predict developmental pathologies that emerge during childhood. This study investigated whether growth in head circumference was concordant with growth in body length. Forty infants (16 males) were followed between the ages of 2 days and 21 months for durations ranging from 4 to 21 months (2616 measurements). Longitudinal anthropometric measurements were assessed weekly (n=12), semi-weekly (n=24) and daily (n=4) during home visits. Individual head circumference growth was investigated for the presence of saltatory patterns. Coincident analysis tested the null hypothesis that head growth was randomly coupled to length growth. Head circumference growth during infancy is saltatory (p<0.05), characterized by median increments of 0.20 cm (95% confidence interval, 0.10-0.30 cm) in 24-h, separated by intervals of no growth ranging from 1 to 21 days. Daily assessments identified that head growth saltations were coupled to length growth saltations within a median time frame of 2 days (interquartile 0-4, range 1-8 days). Assessed at semi-weekly and weekly intervals, an average 82% (SD 0.13) of head growth saltations was non-randomly concordant with length growth (p≤0.006). Normal infant head circumference grows by intermittent, episodic saltations that are temporally coupled to growth in total body length by a process of integrated physiology that remains to be described. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The Effects of Tulsa's CAP Head Start Program on Middle-School Academic Outcomes and Progress

    ERIC Educational Resources Information Center

    Phillips, Deborah; Gormley, William; Anderson, Sara

    2016-01-01

    This study presents evidence pertinent to current debates about the lasting impacts of early childhood educational interventions and, specifically, Head Start. A group of students who were first studied to examine the immediate impacts of the Tulsa, Oklahoma, Community Action Project (CAP) Head Start program were followed-up in middle school,…

  12. Who Drops out of Early Head Start Home Visiting Programs?

    ERIC Educational Resources Information Center

    Roggman, Lori A.; Cook, Gina A.; Peterson, Carla A.; Raikes, Helen H.

    2008-01-01

    Research Findings: Early Head Start home-based programs provide services through weekly home visits to families with children up to age 3, but families vary in how long they remain enrolled. In this study of 564 families in home-based Early Head Start programs, "dropping out" was predicted by specific variations in home visits and certain family…

  13. Challenges of Roll Orientation with Respect to Vehicle Heading at Touchdown for the Orion Command Module

    NASA Technical Reports Server (NTRS)

    Gay, Robert S.; Bihari, Brian D.

    2008-01-01

    Due to mass constraints, the Orion Command Module landing attention system requires that the capsule be oriented in a specific direction with respect to the horizontal surface-relative velocity (Heading) at touchdown in order to keep crew and vehicle loads within specifications. These constraints apply to both land and water landings. In fact, water landings are even more constrained with the addition of impact angle requirements necessary to slice through the water. There are two primary challenges with achieving this touchdown orientation: 1. Navigation knowledge of velocity (needed to determine Heading) with and without GPS, including the effects of the Heading angle itself becoming undefined as horizontal velocity decreases, and 2. Controlling to the desired orientation in the presences of chute torque and wind gusts that may change the Heading just prior to touchdown. This paper will discuss the design and performance of the current Orion navigation and control system used to achieve the desired orientation at touchdown.

  14. Population and food problems in Indonesia.

    PubMed

    Rusli, S

    1979-06-01

    This discussion examines the relationship between population growth and food problems in Indonesia and their connection with the total food production requirement particularly of staples or basic foods in the country. In 1976 Indonesia's population numbered about 130 million. The uneven distribution of population by regions is 1 of the outstanding features of Indonesia's demographic situation. The estimates of mortality levels for the period 1961-1971 mostly refer to life expectancies at birth over 40 years. Using 1971 census data Nicoli and Mamas estimated that life expectancy at birth in Indonesia during 1960-1970 was around 45-46 years. Heligman, considering the situation of economics, food, health facilities, and so forth questioned that there was a considerable improvement in mortality levels during the 1960s compared with that in the 1950s. In the 1960-1970 period the infant mortality rate was estimated at about 143/1000 births. The crude birthrate was around 43-44/1000 for the whole of Indonesia over the 1970-1971 period. Currently, Indonesia is implementing a family planning program which the government adopted in 1968. The recent estimate of crude birthrate is about 38/1000. Indonesia's projected population in 1990-1991 ranges from 180-202 million; its range will be from 209-272 million around the year 2000. A wide range of foods is produced in Indonesia, but some are more prominent than others. These are the basic foods such as rice, corn (maize), cassava. The availability of food production per head per year in Indonesia is at this time relatively similar to what it was in the pre World War 2 period, although rice production per head per year has increased in recent years due to wet land extensification and the involvement of Indonesia in the green revolution. Non-rice basic food available per head continues to seem far below that in the pre World War 2 period. Population increase is in part responsible for the deteriorating non-rice basic food available per head per year and the relatively constant level of rice available per head per year. In Indonesia the food consumption level has been unsatisfactory for decades. Official figures showed average protein consumption originating from cattle and poultry in 1969 and 1970 and was only 2.22 and 2.07 grams per head per day. Rice is the most popular basic food. The better availability of food per head has failed to directly improve the average consumption level of the mass population. By means of new dimensions of development, e.g., the family planning program and the green revolution, the country manages to feed its people. In the future, considerable effort will be required to improve the average level of food consumption and to solve other food problems.

  15. [Transhumeral head plasty and massive osteocartilaginous allograft transplantation for the management of large hill-sachs lesions].

    PubMed

    Hart, R; Okál, F; Komzák, M

    2010-10-01

    The aim of this presentation is to inform the medical community about causal therapy (transhumeral head plasty or massive osteochondral allograft transplantation) for large Hill-Sachs lesions which frequently cause failure of anterior stabilisation following ventral shoulder dislocations. Seven men with an average age of 26 years (19 to 33 years) undergoing surgery in 2006 and 2007 were evaluated. The minimum follow-up was 18 months (41 to 18 months). Impressions on more than 30 % of the articular surface, or those whose critical size was larger than one-eighth of the humeral diameter (on CT scan) were taken as indications for surgery. Four patients had had previous surgery for anterior instability and three had a primary procedure. Four men underwent acute surgery and three had elective operations.Trans- humeral head plasty was used in five and massive osteochondral allograft in two patients. In the patients with large lesions in the anterior aspect of the shoulder joint, transhumeral head plasty involving repair of the ventral structures from the anterior approach was indicatedúúú in those with an isolated posterior bony defect, a massive osteochondral allograft was transplanted through the posterior approach. The Constant-Murley score was used to assess clinical status before (not in acute conditions) and after surgery. All patients reported improved clinical status. The average Constant-Murley score at final follow-up was 95.9 points (83-100 points). In the patients not having an acute procedure in whom pre-operative Constant-Murley scores were obtained, the average improvement was by 22.7 points (8 - 37 points). No general surgical complications were recorded. All patients reported subjective satisfaction and willingness to undergo surgery under the same conditions again. A Hill-Sachs lesion is a frequent injury to the humeral head resulting from anterior shoulder dislocation. To distinguish between major and minor defects in terms of clinical significance is essential for the choice of appropriate shoulder treatment. Up to now large lesions have mostly been managed by non-causal techniques affecting shoulder biomechanics. Transhumeral head plasty or transplantation of a massive osteochondral allograft, on the other hand, offers a causal treatment. However, these two methods have rarely been mentioned in the international literature, and usually only as case reports. Transhumeral head plasty and transplantation of a massive osteochondral allograft offer a causal therapy for the management of Hill-Sachs lesions that does not alter shoulder biomechanics. They are not associated with a higher percentage of post-operative complications. Neither technique is more demanding than non-causal procedures. Operations carried out as primary and not as "salvage" procedures restored the function of the shoulder joint to normal. After secondary surgery, occasional shoulder pain may persist as well as its restricted range of motion.

  16. Outcomes of coronoid-first repair in terrible triad injuries of the elbow.

    PubMed

    Zhang, Junren; Tan, Mark; Kwek, Ernest Beng Kee

    2017-09-01

    Clinical outcomes of terrible triad injuries (TTIs) of the elbow are historically poor. To date, it is still debatable whether the coronoid needs to be fixed and if so, how and in which sequence. Between 2010 and 2013, 13 patients were treated surgically for acute TTIs of the elbow at a Tertiary Level 1 Trauma Centre by a single surgeon, using a standardized protocol, which included coronoid-brachialis complex fixation via pull-through trans-osseous sutures, radial head fixation or prosthetic replacement and a repair of the lateral ulnar collateral ligament. Repair of the medial collateral ligament (MCL) was done if valgus-stress test demonstrated persistent instability. Patients were then followed-up with clinical and radiological evaluation by the senior author until fracture union and elbow range of motion reached a plateau. Outcomes measured were range of motion, DASH scores and MEPS, as well as surgical complications. Intraoperative stability was achieved in all 13 cases, MCL repair was required in 3 cases and application of external fixation was not required in any case. Patients were followed-up for an average length of 27.7 months and the minimum follow-up period was 12 months. The average age of patients was 46.4 years (range 35-79 years old) at the time of trauma. This included eight Regan-Morrey Type I and five Regan-Morrey Type II coronoid fractures, with ten Mason Type I/II and three Mason Type III radial head fractures. The average arc of ulno-humeral motion was 105.0° (range 80°-135°). The average flexion contracture was 15.0° (range 0°-40°). The average supination-pronation arc was 114.9° (range 0°-180°). The average MEPS was 85 of 100 (range 45-100) and the average DASH score was 21.2 of 100 (range 1.7-61.2). A single case of radio-ulnar synostosis, heterotropic ossification and two cases of recurrent elbow instability were noted. The coronoid-first surgical approach, using a suture-lasso fixation method, has technical benefits for us and showed good clinical success in our series. This is important with postero-medial rotatory instability being common in our series of TTIs. We emphasize not to miss a TTI in an apparently isolated low Mason class radial head fracture.

  17. Head impact exposure in youth football.

    PubMed

    Daniel, Ray W; Rowson, Steven; Duma, Stefan M

    2012-04-01

    The head impact exposure for athletes involved in football at the college and high school levels has been well documented; however, the head impact exposure of the youth population involved with football has yet to be investigated, despite its dramatically larger population. The objective of this study was to investigate the head impact exposure in youth football. Impacts were monitored using a custom 12 accelerometer array equipped inside the helmets of seven players aged 7-8 years old during each game and practice for an entire season. A total of 748 impacts were collected from the 7 participating players during the season, with an average of 107 impacts per player. Linear accelerations ranged from 10 to 100 g, and the rotational accelerations ranged from 52 to 7694 rad/s(2). The majority of the high level impacts occurred during practices, with 29 of the 38 impacts above 40 g occurring in practices. Although less frequent, youth football can produce high head accelerations in the range of concussion causing impacts measured in adults. In order to minimize these most severe head impacts, youth football practices should be modified to eliminate high impact drills that do not replicate the game situations.

  18. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  19. Head injury trends and helmet use in skiers and snowboarders in Western Canada, 2008-2009 to 2012-2013: an ecological study.

    PubMed

    Dickson, T J; Trathen, S; Terwiel, F A; Waddington, G; Adams, R

    2017-02-01

    This research explored associations between helmet use and head injuries in snowsports by investigating reported snowsport injuries in Western Canada from 2008-2009 to 2012-2013. The key finding was that increased helmet use (from 69% to 80%) was not associated with a reduction in reported head injuries. Over the study period, the average rate of reported head injuries was 0.2/1000 skier visits, with a statistically significant variation (P < 0.001). The line of best fit showed an non-significant upward trend (P = 0.13). Lacerations were the only subcategory of head injuries that decreased significantly with helmet use. A higher proportion of people who reported a head injury were wearing a helmet than for injuries other than to the head. Skiers were more likely to report a head injury when wearing a helmet than snowboarders (P < 0.001 cf. P = 0.22). There were significant differences in characteristics of helmet and non-helmet wearers. Helmet wearers were more likely to be: young adults (P < 0.001); beginner/novices (P = 0.004); and snowboarders (P < 0.001), but helmet wearing was not associated with gender (P = 0.191). Further research is needed to explore the possible reasons for the failure of helmets to reduce head injuries, for example, increased reporting of head injuries and increased risk-taking combined with over-rating of the helmets' protection. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain.

    PubMed Central

    Stevenson, S C; Rollence, M; White, B; Weaver, L; McClelland, A

    1995-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to cell surface receptors. The identity of the cellular receptor which mediates binding is unknown, although there is evidence suggesting that two distinct adenovirus receptors interact with the group C (adenovirus type 5 [Ad5]) and the group B (Ad3) adenoviruses. In order to define the determinants of adenovirus receptor specificity, we have carried out a series of competition binding experiments using recombinant native fiber polypeptides from Ad5 and Ad3 and chimeric fiber proteins in which the head domains of Ad5 and Ad3 were exchanged. Specific binding of fiber to HeLa cell receptors was assessed with radiolabeled protein synthesized in vitro, and by competition analysis with baculovirus-expressed fiber protein. Fiber produced in vitro was found as both monomer and trimer, but only the assembled trimers had receptor binding activity. Competition data support the conclusion that Ad5 and Ad3 interact with different cellular receptors. The Ad5 receptor distribution on several cell lines was assessed with a fiber binding flow cytometric assay. HeLa cells were found to express high levels of receptor, while CHO and human diploid fibroblasts did not. A chimeric fiber containing the Ad5 fiber head domain blocked the binding of Ad5 fiber but not Ad3 fiber. Similarly, a chimeric fiber containing the Ad3 fiber head blocked the binding of labeled Ad3 fiber but not Ad5 fiber. In addition, the isolated Ad3 fiber head domain competed effectively with labeled Ad3 fiber for binding to HeLa cell receptors. These results demonstrate that the determinants of receptor binding are located in the head domain of the fiber and that the isolated head domain is capable of trimerization and binding to cellular receptors. Our results also show that it is possible to change the receptor specificity of the fiber protein by manipulation of sequences contained in the head domain. Modification or replacement of the fiber head domain with novel ligands may permit adenovirus vectors with new receptor specificities which could be useful for targeted gene delivery in vivo to be engineered. PMID:7707507

  1. Complex proximal humerus fractures: Hertel's criteria reliability to predict head necrosis.

    PubMed

    Campochiaro, G; Rebuzzi, M; Baudi, P; Catani, F

    2015-09-01

    The risk of post-traumatic humeral head avascular necrosis (AVN), regardless of the treatment, has a high reported incidence. In 2004, Hertel et al. stated that the most relevant predictors of ischemia after intracapsular fracture treated with osteosynthesis are the calcar length, medial hinge integrity and some specific fracture types. Based on Hertel's model, the purpose of this study is to evaluate both its reliability and weaknesses in our series of 267 fractures, assessing how the anatomical configuration of fracture, the quality of reduction and its maintenance were predictive of osteonecrosis development, and so to suggest a treatment choice algorithm. A retrospective study, level of evidence IV, was conducted to duly assess the radiographic features of 267 fractures treated from 2004 to 2010 following Hertel's criteria treated with open reduction and internal fixation by angular stability plates and screws. The average age was 65.2 years. The average follow-up was 28.3 ± 17.0 months. The percentage of AVN, the quality and maintenance of reduction obtained during surgery were evaluated. The AVN incidence was 3.7 %. No significant correlation with gender, age and fracture type was found. At the last follow-up X-ray, only 30 % presented all Hertel's good predictors in the AVN group, 4.7 % in the non-AVN group (p < 0.05). About quality of reduction in the AVN group, it was poor in 50 %; while in the non-AVN group, it was poor in 3.4 % (p < 0.05). Four patients with AVN were symptomatic, and three needed a second surgery. Hertel's criteria are important in the surgical planning, but they are not sufficient: an accurate evaluation of the calcar area fracture in three planes is required. All fractures involving calcar area should be studied with CT.

  2. Glaucoma-related Changes in the Mechanical Properties and Collagen Micro-architecture of the Human Sclera

    PubMed Central

    Coudrillier, Baptiste; Pijanka, Jacek K.; Jefferys, Joan L.; Goel, Adhiraj; Quigley, Harry A.; Boote, Craig; Nguyen, Thao D.

    2015-01-01

    Objective The biomechanical behavior of the sclera determines the level of mechanical insult from intraocular pressure to the axons and tissues of the optic nerve head, as is of interest in glaucoma. In this study, we measure the collagen fiber structure and the strain response, and estimate the material properties of glaucomatous and normal human donor scleras. Methods Twenty-two posterior scleras from normal and diagnosed glaucoma donors were obtained from an eyebank. Optic nerve cross-sections were graded to determine the presence of axon loss. The specimens were subjected to pressure-controlled inflation testing. Full-field displacement maps were measured by digital image correlation (DIC) and spatially differentiated to compute surface strains. Maps of the collagen fiber structure across the posterior sclera of each inflated specimen were obtained using synchrotron wide-angle X-ray scattering (WAXS). Finite element (FE) models of the posterior scleras, incorporating a specimen-specific representation of the collagen structure, were constructed from the DIC-measured geometry. An inverse finite element analysis was developed to estimate the stiffness of the collagen fiber and inter-fiber matrix. Results The differences between glaucoma and non-glaucoma eyes were small in magnitude. Sectorial variations of degree of fiber alignment and peripapillary scleral strain significantly differed between normal and diagnosed glaucoma specimens. Meridional strains were on average larger in diagnosed glaucoma eyes compared with normal specimens. Non-glaucoma specimens had on average the lowest matrix and fiber stiffness, followed by undamaged glaucoma eyes, and damaged glaucoma eyes but the differences in stiffness were not significant. Conclusion The observed biomechanical and microstructural changes could be the result of tissue remodeling occuring in glaucoma and are likely to alter the mechanical environment of the optic nerve head and contribute to axonal damage. PMID:26161963

  3. Evaluation of spectral domain optical coherence tomography parameters in ocular hypertension, preperimetric, and early glaucoma

    PubMed Central

    Aydoğan, Tuğba; Akçay, Betül İlkay Sezgin; Kardeş, Esra; Ergin, Ahmet

    2017-01-01

    Purpose: The objective of this study is to evaluate the diagnostic ability of retinal nerve fiber layer (RNFL), macular, optic nerve head (ONH) parameters in healthy subjects, ocular hypertension (OHT), preperimetric glaucoma (PPG), and early glaucoma (EG) patients, to reveal factors affecting the diagnostic ability of spectral domain-optical coherence tomography (SD-OCT) parameters and risk factors for glaucoma. Methods: Three hundred and twenty-six eyes (89 healthy, 77 OHT, 94 PPG, and 66 EG eyes) were analyzed. RNFL, macular, and ONH parameters were measured with SD-OCT. The area under the receiver operating characteristic curve (AUC) and sensitivity at 95% specificity was calculated. Logistic regression analysis was used to determine the glaucoma risk factors. Receiver operating characteristic regression analysis was used to evaluate the influence of covariates on the diagnostic ability of parameters. Results: In PPG patients, parameters that had the largest AUC value were average RNFL thickness (0.83) and rim volume (0.83). In EG patients, parameter that had the largest AUC value was average RNFL thickness (0.98). The logistic regression analysis showed average RNFL thickness was a risk factor for both PPG and EG. Diagnostic ability of average RNFL and average ganglion cell complex thickness increased as disease severity increased. Signal strength index did not affect diagnostic abilities. Diagnostic ability of average RNFL and rim area increased as disc area increased. Conclusion: When evaluating patients with glaucoma, patients at risk for glaucoma, and healthy controls RNFL parameters deserve more attention in clinical practice. Further studies are needed to fully understand the influence of covariates on the diagnostic ability of OCT parameters. PMID:29133640

  4. [Clinical observation on the different treatments targeted at different types of radial head fracture and radial neck fracture].

    PubMed

    Zhang, Ying-Ze; Guo, Ming-Ke; Zheng, Zhan-le; Zhang, Qi; Chen, Wei

    2009-06-15

    To assess the effect of the different treatments targeted at different types of radial head fracture and radial neck fracture. A retrospective study was performed in 87 patients from February 2006 to March 2007. Fifty-four patients with radial head fractures included 36 males and 18 females, aged from 18 to 65 years (the average age was 33); Forty of them resulted from crashing, 8 from traffic injury and 6 from falling injury. According to Mason classification system, there were 15 type I, 23 type II and 16 type III. Thirty-three patients with radial neck fractures included 21 males and 12 females, aged from 9 to 17 years (the average age was 13), 29 of them resulted from crashing, 1 from traffic injury and 3 from falling injury. According to O'Brien classification system, there were 8 type I, 14 type II and 11 type III. Type I of radial head fractures and radial neck fractures were immobilization with cast, the patients with type II of radial head fractures were treated with open reduction and micro-screw or T-trapezoid and bridge-shaped plate fixation and type III had operations to fix with bridge-shaped locked plate and repair the broken annular ligament, or replace heads with prosthesis. All patients with type II and type III of radial neck fractures were treated with closed reduction by leverage and percutaneous intra-medullary nailing. The patients were followed up for 4-12 months (mean 7.2 months). The functional recovery degrees were evaluated with Wheeler's evaluation system. In group of radial head fractures, the results were excellent in 26 patients, good in 20, fair in 6 and poor in 2, the excellent and good rate was 85.2%. In group of radial neck fractures, the results were excellent in 20 patients, good in 9, fair in 4 and poor in no patient, and the excellent and good rate was 87.9%. Different types of fractures should choose different surgical methods according to their characters. The excellent functional recovery depend on anatomical reduction, retaining the head of radius, early repairing and protecting the broken annular ligament of radius, and early functional training.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loughran, B; Singh, V; Jain, A

    Purpose: Although generalized linear system analytic metrics such as GMTF and GDQE can evaluate performance of the whole imaging system including detector, scatter and focal-spot, a simplified task-specific measured metric may help to better compare detector systems. Methods: Low quantum-noise images of a neuro-vascular stent with a modified ANSI head phantom were obtained from the average of many exposures taken with the high-resolution Micro-Angiographic Fluoroscope (MAF) and with a Flat Panel Detector (FPD). The square of the Fourier Transform of each averaged image, equivalent to the measured product of the system GMTF and the object function in spatial-frequency space, wasmore » then divided by the normalized noise power spectra (NNPS) for each respective system to obtain a task-specific generalized signal-to-noise ratio. A generalized measured relative object detectability (GM-ROD) was obtained by taking the ratio of the integral of the resulting expressions for each detector system to give an overall metric that enables a realistic systems comparison for the given detection task. Results: The GM-ROD provides comparison of relative performance of detector systems from actual measurements of the object function as imaged by those detector systems. This metric includes noise correlations and spatial frequencies relevant to the specific object. Additionally, the integration bounds for the GM-ROD can be selected to emphasis the higher frequency band of each detector if high-resolution image details are to be evaluated. Examples of this new metric are discussed with a comparison of the MAF to the FPD for neuro-vascular interventional imaging. Conclusion: The GM-ROD is a new direct-measured task-specific metric that can provide clinically relevant comparison of the relative performance of imaging systems. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less

  6. Computational Electromagnetic Analysis in a Human Head Model with EEG Electrodes and Leads Exposed to RF-Field Sources at 915 MHz and 1748 MHz

    PubMed Central

    Angelone, Leonardo M.; Bit-Babik, Giorgi; Chou, Chung-Kwang

    2010-01-01

    An electromagnetic analysis of a human head with EEG electrodes and leads exposed to RF-field sources was performed by means of Finite-Difference Time-Domain simulations on a 1-mm3 MRI-based human head model. RF-field source models included a half-wave dipole, a patch antenna, and a realistic CAD-based mobile phone at 915 MHz and 1748 MHz. EEG electrodes/leads models included two configurations of EEG leads, both a standard 10–20 montage with 19 electrodes and a 32-electrode cap, and metallic and high resistive leads. Whole-head and peak 10-g average SAR showed less than 20% changes with and without leads. Peak 1-g and 10-g average SARs were below the ICNIRP and IEEE guideline limits. Conversely, a comprehensive volumetric assessment of changes in the RF field with and without metallic EEG leads showed an increase of two orders of magnitude in single-voxel power absorption in the epidermis and a 40-fold increase in the brain during exposure to the 915 MHz mobile phone. Results varied with the geometry and conductivity of EEG electrodes/leads. This enhancement confirms the validity of the question whether any observed effects in studies involving EEG recordings during RF-field exposure are directly related to the RF fields generated by the source or indirectly to the RF-field-induced currents due to the presence of conductive EEG leads. PMID:20681803

  7. Are head-to-head trials of biologics needed? The role of value of information methods in arthritis research.

    PubMed

    Welton, Nicky J; Madan, Jason; Ades, Anthony E

    2011-09-01

    Reimbursement decisions are typically based on cost-effectiveness analyses. While a cost-effectiveness analysis can identify the optimum strategy, there is usually some degree of uncertainty around this decision. Sources of uncertainty include statistical sampling error in treatment efficacy measures, underlying baseline risk, utility measures and costs, as well as uncertainty in the structure of the model. The optimal strategy is therefore only optimal on average, and a decision to adopt this strategy might still be the wrong decision if all uncertainty could be eliminated. This means that there is a quantifiable expected (average) loss attaching to decisions made under uncertainty, and hence a value in collecting information to reduce that uncertainty. Value of information (VOI) analyses can be used to provide guidance on whether more research would be cost-effective, which particular model inputs (parameters) have the most bearing on decision uncertainty, and can also help with the design and sample size of further research. Here, we introduce the key concepts in VOI analyses, and highlight the inputs required to calculate it. The adoption of the new biologic treatments for RA and PsA tends to be based on placebo-controlled trials. We discuss the possible role of VOI analyses in deciding whether head-to-head comparisons of the biologic therapies should be carried out, illustrating with examples from other fields. We emphasize the need for a model of the natural history of RA and PsA, which reflects a consensus view.

  8. A Systematic Review and Head-to-Head Meta-Analysis of Outcomes following Direct-to-Implant versus Conventional Two-Stage Implant Reconstruction.

    PubMed

    Basta, Marten N; Gerety, Patrick A; Serletti, Joseph M; Kovach, Stephen J; Fischer, John P

    2015-12-01

    Innovative approaches to reconstruction have ushered in an era of breast reconstruction in which direct-to-implant procedures can provide an immediately reconstructed breast. Balancing the benefits against its technical challenges is vital. The authors evaluated the safety and efficacy of using direct-to-implant versus conventional two-stage reconstruction through a systematic meta-analysis. A literature search identified all articles published after 1999 involving prosthetic-based breast reconstruction as a two-stage tissue expander/implant or direct-to-implant technique. The primary outcomes of interest, including implant loss, capsular contracture, reoperation, and infection, were analyzed by means of head-to-head meta-analysis. Thirteen studies involving 5216 breast reconstructions were included. The average patient age was 47.2 ± 1.0 years, the average body mass index was 24.9 ± 0.8 mg/k2, and the average follow-up was 40.8 months. Wound infection, seroma, and capsular contracture risk were similar between groups. However, direct-to-implant reconstruction was associated with a higher risk for skin flap necrosis (OR, 1.43; p = 0.01; I2 = 51 percent) and reoperation (OR, 1.25; p = 0.04; I2 = 43 percent). Ultimately, the risk for implant loss was nearly two-fold higher with direct-to-implant reconstruction compared with tissue expander/implant reconstruction (OR, 1.87; p = 0.04; I2 = 33 percent). Although direct-to-implant and two-stage tissue expander/implant reconstruction are successful approaches, this meta-analysis demonstrates significantly greater risk of flap necrosis and implant failure with direct-to-implant reconstruction. The authors' findings suggest that the critical component of patient selection is judgment of mastectomy flap tissue quality. These findings can enhance the risk counseling process and highlight the need for additional investigations to optimize outcomes.

  9. Co-registration of cone beam CT and planning CT in head and neck IMRT dose estimation: a feasible adaptive radiotherapy strategy

    PubMed Central

    Yip, C; Thomas, C; Michaelidou, A; James, D; Lynn, R; Lei, M

    2014-01-01

    Objective: To investigate if cone beam CT (CBCT) can be used to estimate the delivered dose in head and neck intensity-modulated radiotherapy (IMRT). Methods: 15 patients (10 without replan and 5 with replan) were identified retrospectively. Weekly CBCT was co-registered with original planning CT. Original high-dose clinical target volume (CTV1), low-dose CTV (CTV2), brainstem, spinal cord, parotids and external body contours were copied to each CBCT and modified to account for anatomical changes. Corresponding planning target volumes (PTVs) and planning organ-at-risk volumes were created. The original plan was applied and calculated using modified per-treatment volumes on the original CT. Percentage volumetric, cumulative (planned dose delivered prior to CBCT + adaptive dose delivered after CBCT) and actual delivered (summation of weekly adaptive doses) dosimetric differences between each per-treatment and original plan were calculated. Results: There was greater volumetric change in the parotids with an average weekly difference of between −4.1% and −27.0% compared with the CTVs/PTVs (−1.8% to −5.0%). The average weekly cumulative dosimetric differences were as follows: CTV/PTV (range, −3.0% to 2.2%), ipsilateral parotid volume receiving ≥26 Gy (V26) (range, 0.5–3.2%) and contralateral V26 (range, 1.9–6.3%). In patients who required replan, the average volumetric reductions were greater: CTV1 (−2.5%), CTV2 (−6.9%), PTV1 (−4.7%), PTV2 (−11.5%), ipsilateral (−10.4%) and contralateral parotids (−12.1%), but did not result in significant dosimetric changes. Conclusion: The dosimetric changes during head and neck simultaneous integrated boost IMRT do not necessitate adaptive radiotherapy in most patients. Advances in knowledge: Our study shows that CBCT could be used for dose estimation during head and neck IMRT. PMID:24288402

  10. Tumor margin assessment of surgical tissue specimen of cancer patients using label-free hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Lu, Guolan; Wang, Xu; Zhang, Hongzheng; Little, James V.; Magliocca, Kelly R.; Chen, Amy Y.

    2017-02-01

    We are developing label-free hyperspectral imaging (HSI) for tumor margin assessment. HSI data, hypercube (x,y,λ), consists of a series of high-resolution images of the same field of view that are acquired at different wavelengths. Every pixel on the HSI image has an optical spectrum. We developed preprocessing and classification methods for HSI data. We used spectral features from HSI data for the classification of cancer and benign tissue. We collected surgical tissue specimens from 16 human patients who underwent head and neck (H&N) cancer surgery. We acquired both HSI, autofluorescence images, and fluorescence images with 2-NBDG and proflavine from the specimens. Digitized histologic slides were examined by an H&N pathologist. The hyperspectral imaging and classification method was able to distinguish between cancer and normal tissue from oral cavity with an average accuracy of 90+/-8%, sensitivity of 89+/-9%, and specificity of 91+/-6%. For tissue specimens from the thyroid, the method achieved an average accuracy of 94+/-6%, sensitivity of 94+/-6%, and specificity of 95+/-6%. Hyperspectral imaging outperformed autofluorescence imaging or fluorescence imaging with vital dye (2-NBDG or proflavine). This study suggests that label-free hyperspectral imaging has great potential for tumor margin assessment in surgical tissue specimens of H&N cancer patients. Further development of the hyperspectral imaging technology is warranted for its application in image-guided surgery.

  11. Thermal effects of whole head submersion in cold water on nonshivering humans.

    PubMed

    Pretorius, Thea; Bristow, Gerald K; Steinman, Alan M; Giesbrecht, Gordon G

    2006-08-01

    This study isolated the effect of whole head submersion in cold water, on surface heat loss and body core cooling, when the confounding effect of shivering heat production was pharmacologically eliminated. Eight healthy male subjects were studied in 17 degrees C water under four conditions: the body was either insulated or uninsulated, with the head either above the water or completely submersed in each body-insulation subcondition. Shivering was abolished with buspirone (30 mg) and meperidine (2.5 mg/kg), and subjects breathed compressed air throughout all trials. Over the first 30 min of immersion, exposure of the head increased core cooling both in the body-insulated conditions (head out: 0.47 +/- 0.2 degrees C, head in: 0.77 +/- 0.2 degrees C; P < 0.05) and the body-exposed conditions (head out: 0.84 +/- 0.2 degrees C and head in: 1.17 +/- 0.5 degrees C; P < 0.02). Submersion of the head (7% of the body surface area) in the body-exposed conditions increased total heat loss by only 10%. In both body-exposed and body-insulated conditions, head submersion increased core cooling rate much more (average of 42%) than it increased total heat loss. This may be explained by a redistribution of blood flow in response to stimulation of thermosensitive and/or trigeminal receptors in the scalp, neck and face, where a given amount of heat loss would have a greater cooling effect on a smaller perfused body mass. In 17 degrees C water, the head does not contribute relatively more than the rest of the body to surface heat loss; however, a cold-induced reduction of perfused body mass may allow this small increase in heat loss to cause a relatively larger cooling of the body core.

  12. Recent and Long-Term Soccer Heading Exposure Is Differentially Associated With Neuropsychological Function in Amateur Players.

    PubMed

    Levitch, Cara F; Zimmerman, Molly E; Lubin, Naomi; Kim, Namhee; Lipton, Richard B; Stewart, Walter F; Kim, Mimi; Lipton, Michael L

    2018-02-01

    The present study examined the relative contribution of recent or long-term heading to neuropsychological function in amateur adult soccer players. Soccer players completed a baseline questionnaire (HeadCount-12m) to ascertain heading during the prior 12 months (long-term heading, LTH) and an online questionnaire (HeadCount-2w) every 3 months to ascertain heading during the prior 2 weeks (recent heading, RH). Cogstate, a battery of six neuropsychological tests, was administered to assess neuropsychological function. Generalized estimating equations were used to test if LTH or RH was associated with neuropsychological function while accounting for the role of recognized concussion. A total of 311 soccer players completed 630 HeadCount-2w. Participants had an average age of 26 years. Participants headed the ball a median of 611 times/year (mean=1,384.03) and 9.50 times/2 weeks (mean=34.17). High levels of RH were significantly associated with reduced performance on a task of psychomotor speed (p=.02), while high levels of LTH were significantly associated with poorer performance on tasks of verbal learning (p=.03) and verbal memory (p=.04). Significantly better attention (p=.02) was detectable at moderately high levels of RH, but not at the highest level of RH. One hundred and seven (34.4%) participants reported a lifetime history of concussion, but this was not related to neuropsychological function and did not modify the association of RH or LTH with neuropsychological function. High levels of both RH and LTH were associated with poorer neuropsychological function, but on different domains. The clinical manifestations following repetitive exposure to heading could change with chronicity of exposure. (JINS, 2018, 24, 147-155).

  13. Orbital invasion routes of non-melanoma skin cancers and survival outcomes.

    PubMed

    Dundar, Yusuf; Cannon, Richard; Wiggins, Richard; Monroe, Marcus M; Buchmann, Luke O; Hunt, Jason P

    2018-02-21

    Overall non-melanoma head and neck skin cancer has a good prognosis; however, rarely patients have an aggressive variant which results in orbital invasion via perineural spread or direct extension. Despite these consequences, there are limited published studies defining this clinical entity. The main objectives of the current study are to describe orbital invasion patterns of non-melanoma head and neck skin cancers and their impact on survival. Retrospective case series from a tertiary-care, academic institution performed between 2004 and 2014. Demographic and tumour characteristics are reported as well as patterns of orbital invasion, types of treatments received, and survival outcomes. There were 17 consecutive patients with non-melanoma skin cancer and orbital invasion who met inclusion criteria. Average age at orbital invasion diagnosis was 70.8 years old. 76% were male. Mean follow-up time was 28.5 months. Of these patients, 71% had squamous cell carcinoma and 29% had basal cell carcinoma. Brow (41%) was the most common primary sub-site followed by cheek (23%) and temple (12%). 76% of patients had a history of prior treatment. The lateral orbital wall (41%) was the most common site of invasion, followed by the medial orbital wall (29%) and antero-superior invasion (23%). Age, histology, and location of orbital invasion were associated with disease-specific and overall survival. Orbital invasion for non-melanoma head and neck skin cancers creates a treatment dilemma and the patterns of invasion are described. In addition, the location of orbital invasion is associated with survival outcomes.

  14. Maternal Night-Fasting Interval during Pregnancy Is Directly Associated with Neonatal Head Circumference and Adiposity in Girls but Not Boys.

    PubMed

    Loy, See Ling; Wee, Poh Hui; Colega, Marjorelee T; Cheung, Yin Bun; Aris, Izzuddin M; Chan, Jerry Kok Yen; Godfrey, Keith M; Gluckman, Peter D; Tan, Kok Hian; Shek, Lynette Pei-Chi; Chong, Yap-Seng; Natarajan, Padmapriya; Müller-Riemenschneider, Falk; Lek, Ngee; Rajadurai, Victor Samuel; Tint, Mya-Thway; Lee, Yung Seng; Chong, Mary Foong-Fong; Yap, Fabian

    2017-07-01

    Background: Synchrony between daily feeding-fasting signals and circadian rhythms has been shown to improve metabolic health in animals and adult humans, but the potential programming effect on fetal growth is unknown. Objective: We examined the associations of the maternal night-fasting interval during pregnancy with offspring birth size and adiposity. Methods: This was a cross-sectional study of mother-offspring dyads within the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort. For 384 mothers aged 30.8 ± 4.8 y (mean ± SD), the night-fasting interval at 26-28 wk of gestation was determined from a 3-d food diary based on the average of the fasting duration at night (1900-0659). Offspring birth weight, length, and head circumference were measured and converted to weight-for-gestational age (GA), length-for-GA, and head circumference-for-GA z scores, respectively, by using local customized percentile charts. The percentage of neonatal total body fat (TBF) was derived by using a validated prediction equation. Multivariable general linear models, stratified by child sex, were performed. Results: The mean ± SD maternal night-fasting interval was 9.9 ± 1.3 h. In infant girls, each 1-h increase in the maternal night-fasting interval was associated with a 0.22-SD (95% CI: 0.05-, 0.40-SD; P = 0.013) increase in birth head circumference-for-GA and a 0.84% (95% CI: 0.19%, 1.49%; P = 0.012) increase in TBF at birth, after adjustment for confounders. In infant boys, no associations were observed between the maternal night-fasting interval and birth size or TBF. Conclusions: An increased maternal night-fasting interval in the late second trimester of pregnancy is associated with increased birth head circumference and TBF in girls but not boys. Our findings are in accordance with previous observations that suggest that there are sex-specific responses in fetal brain growth and adiposity, and raise the possibility of the maternal night-fasting interval as an underlying influence. This trial was registered at clinicaltrials.gov as NCT01174875. © 2017 American Society for Nutrition.

  15. Agronomic performance of new open pollinated experimental lines of broccoli (Brassica oleracea L. var. italica) evaluated under organic farming

    PubMed Central

    Moehring, Jens; Zikeli, Sabine; Fleck, Michael; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2018-01-01

    In order to develop new open pollinating cultivars of broccoli for organic farming, two experiments were conducted during fall 2015 and spring 2016. This study was aimed at comparing the agronomic performance of eleven new open pollinating breeding lines of broccoli to introduce new lines and to test their seasonal suitability for organic farming. Field experiments were carried out at the organic research station Kleinhohenheim of the University of Hohenheim (Stuttgart-Germany). Different agronomic traits total biomass fresh weight, head fresh weight, head diameter, hollow-stem, fresh weight harvest index and marketable yield were assessed together with commercial control cultivars. The data from both experiments were analyzed using a two-stage mixed model approach. In our study, genotype, growing season and their interaction had significant effects on most traits. Plants belonging to the fall growing season had bigger sizes in comparison to spring with significantly (p< 0.0001) higher biomass fresh weight. Some experimental lines had significant lower head fresh weight in spring in comparison to the fall season. The high temperature during the harvest period for the spring season affected the yield negatively through decreasing the firmness of broccoli heads. The low average minimum temperatures during the spring growing season lead to low biomass fresh weight but high fresh weight harvest index. Testing the seasonal suitability of all open pollinating lines showed that the considered fall season was better for broccoli production. However, the change in yield between the fall and the spring growing season was not significant for “Line 701” and “CHE-MIC”. Considering the expression of different agronomic traits, “CHE-GRE-G”, “Calinaro” and “CAN-SPB” performed the best in the fall growing season, and “CHE-GRE-G”, “CHE-GRE-A”, “CHE-BAL-A” and “CHE-MIC” and “Line 701” were best in the spring growing season, specifically due to the highest marketable yield and proportion of marketable heads. PMID:29738530

  16. Discrete normal plantar stress variations with running speed.

    PubMed

    Gross, T S; Bunch, R P

    1989-01-01

    The distribution of force beneath the plantar foot surface during shod distance running, a kinetic descriptor of locomotion not previously reported, was recorded for ten rearfoot striking runners. Normal discrete stresses were assessed while the subjects ran on a treadmill at 2.98, 3.58, and 4.47 ms-1, with eight piezoceramic transducers secured inside the left shoe. Between 2.98 and 4.47 ms-1, mean peak stress increased significantly beneath the calcaneus (303.9-426.6 kPa), second metatarsal head (633.5-730.5 kPa), and hallux (575.1-712.4 kPa). Calcaneal stresses were notable for their rapid loading rate, averaging 10.1 kPa (ms)-1 at 3.58 ms-1. Highest stresses were measured beneath the second and third metatarsal heads and hallux. Peak first metatarsal head stress was less than peak second and third metatarsal head stresses in each of the 30 combinations of subjects and running speeds. However, lower stresses do not necessarily imply lower forces, as the force bearing surface area of each metatarsal head must be considered.

  17. Dynamics of influence on hierarchical structures

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Rabbat, Michael G.

    2013-08-01

    Dichotomous spin dynamics on a pyramidal hierarchical structure (the Bethe lattice) are studied. The system embodies a number of classes, where a class comprises nodes that are equidistant from the root (head node). Weighted links exist between nodes from the same and different classes. The spin (hereafter state) of the head node is fixed. We solve for the dynamics of the system for different boundary conditions. We find necessary conditions so that the classes eventually repudiate or acquiesce in the state imposed by the head node. The results indicate that to reach unanimity across the hierarchy, it suffices that the bottommost class adopts the same state as the head node. Then the rest of the hierarchy will inevitably comply. This also sheds light on the importance of mass media as a means of synchronization between the topmost and bottommost classes. Surprisingly, in the case of discord between the head node and the bottommost classes, the average state over all nodes inclines towards that of the bottommost class regardless of the link weights and intraclass configurations. Hence the role of the bottommost class is signified.

  18. An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Hosen, A. S. M. Sanwar; Cho, Gi Hwan

    2018-01-01

    Clustering is an effective way to prolong the lifetime of a wireless sensor network (WSN). The common approach is to elect cluster heads to take routing and controlling duty, and to periodically rotate each cluster head’s role to distribute energy consumption among nodes. However, a significant amount of energy dissipates due to control messages overhead, which results in a shorter network lifetime. This paper proposes an energy-centric cluster-based routing mechanism in WSNs. To begin with, cluster heads are elected based on the higher ranks of the nodes. The rank is defined by residual energy and average distance from the member nodes. With the role of data aggregation and data forwarding, a cluster head acts as a caretaker for cluster-head election in the next round, where the ranks’ information are piggybacked along with the local data sending during intra-cluster communication. This reduces the number of control messages for the cluster-head election as well as the cluster formation in detail. Simulation results show that our proposed protocol saves the energy consumption among nodes and achieves a significant improvement in the network lifetime. PMID:29751663

  19. Cost-effectiveness of simultaneous versus sequential surgery in head and neck reconstruction.

    PubMed

    Wong, Kevin K; Enepekides, Danny J; Higgins, Kevin M

    2011-02-01

    To determine whether simultaneous (ablation and reconstruction overlaps by two teams) head and neck reconstruction is cost effective compared to sequentially (ablation followed by reconstruction) performed surgery. Case-controlled study. Tertiary care hospital. Oncology patients undergoing free flap reconstruction of the head and neck. A match paired comparison study was performed with a retrospective chart review examining the total time of surgery for sequential and simultaneous surgery. Nine patients were selected for both the sequential and simultaneous groups. Sequential head and neck reconstruction patients were pair matched with patients who had undergone similar oncologic ablative or reconstructive procedures performed in a simultaneous fashion. A detailed cost analysis using the microcosting method was then undertaken looking at the direct costs of the surgeons, anesthesiologist, operating room, and nursing. On average, simultaneous surgery required 3 hours 15 minutes less operating time, leading to a cost savings of approximately $1200/case when compared to sequential surgery. This represents approximately a 15% reduction in the cost of the entire operation. Simultaneous head and neck reconstruction is more cost effective when compared to sequential surgery.

  20. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Heading (Primary flight crew reference) 0−360° and Discrete “true” or “mag” ±2° 1 0.5° When true or magnetic heading can be selected as the primary heading reference, a discrete indicating selection must be... synchronization reference On-Off (Discrete)None 1 Preferably each crew member but one discrete acceptable for all...

  1. The Role of Prothrombotic Factors in the Ocular Manifestations of Abusive and Non-Abusive Head Trauma: A Feasibility Study

    ERIC Educational Resources Information Center

    Yu, Anna; Stephens, Derek; Feldman, Brian M.; Parkin, Patricia C.; Kahr, Walter H. A.; Brandao, Leonardo R.; Shouldice, Michelle; Levin, Alex V.

    2012-01-01

    Objectives: Retinal hemorrhage is a cardinal manifestation of abusive head injury. Thrombophilia is relatively common in the general population and in adults can be associated with retinal hemorrhage. The specificity of retinal hemorrhage for abusive head trauma in the presence of prothrombotic factors, in particular following non-abusive head…

  2. Study of Goat Herdering System in Sawohan Village, Buduran District, Sidoarjo

    NASA Astrophysics Data System (ADS)

    Nasich, M.; Suyadi; Ciptadi, G.; Budiarto, A.

    2018-02-01

    The aim of this research was to evaluate and analyze goat herdering system in group of goat “Oro-oro” in Sawohan Village, Buduran District, Sidoarjo. This research was conducted by case study method, using 5 members of goat farmers “Oro-oro” with 298 goats. The results of this study indicate that the average number of goat ownership was more than 50 head/farmer. The goat breed that raising by the farmers was Kacang goats. Average daily gains was 53.32 + 36.01 gram, litter size 1.34 + 0.51 head, mean of kidding interval 7,41 + 0,99 month and mortality of kid prenatal period was 20,4%. From this research can be concluded that productivity of goat in Sawohan village was good with herdering system, so it can be used as one of alternative in developing goat farming system in other area.

  3. Injury rates in Shotokan karate

    PubMed Central

    Critchley, G. R.; Mannion, S.; Meredith, C.

    1999-01-01

    OBJECTIVE: To document the injury rate in three British Shotokan karate championships in consecutive years. In these tournaments strict rules governed contact, with only "light" or "touch" contact allowed. Protective padding for the head, hands, or feet was prohibited. METHODS: Prospective recording of injuries resulting from 1770 bouts in three national competitions of 1996, 1997, and 1998. Details of ages and years of karate experience were also obtained. RESULTS: 160 injuries were sustained in 1770 bouts. The overall rate of injury was 0.09 per bout and 0.13 per competitor. 91 (57%) injuries were to the head. The average age of those injured was 22 years, with an average of nine years of experience in karate. CONCLUSIONS: The absence of protective padding does not result in higher injury rates than in most other series of Shotokan karate injuries. Strict refereeing is essential, however, to maintain control and minimise contact. 


 PMID:10378069

  4. Sensitivity of barley varieties to weather in Finland.

    PubMed

    Hakala, K; Jauhiainen, L; Himanen, S J; Rötter, R; Salo, T; Kahiluoto, H

    2012-04-01

    Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such 'weather response diversity' within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3-7 weeks after sowing, a temperature change 3-4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (⩾25°C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading.

  5. Impact of pre-operative body mass index in head and neck cancer patients undergoing microvascular reconstruction.

    PubMed

    Hyun, D-J; Joo, Y-H; Kim, M-S

    2017-11-01

    To analyse the relationship of pre-operative body mass index with surgical complications and oncological outcomes in patients undergoing microvascular reconstruction for head and neck squamous cell cancer. A retrospective review was conducted of 259 patients who underwent microvascular free flap reconstruction after head and neck ablative surgery. Mean body mass index was 22.48 kg/m2. There were no correlations between body mass index and: flap failure (p = 0.739), flap ischaemia (p = 0.644), pharyngocutaneous fistula (p = 0.141) or wound infection (p = 0.224). The five-year disease-specific survival rate was 63 per cent. On univariate analysis, the five-year disease-specific survival rate was significantly correlated with pre-operative body mass index, based on Kaplan-Meier survival curves (p = 0.028). The five-year disease-specific survival rates in underweight, normal weight, overweight and obese groups were 47 per cent, 55 per cent, 65 per cent and 80 per cent, respectively. Pre-operative body mass index was a useful predictor for recurrence and survival in patients who underwent microvascular reconstruction for head and neck squamous cell cancer.

  6. Development of an empirical typology of African American family functioning.

    PubMed

    Mandara, Jelani; Murray, Carolyn B

    2002-09-01

    This study empirically identified types of African American families. Adolescents (N = 111) were assessed on family functioning. With cluster analytic methods, 3 types of families were identified. The cohesive-authoritative type was above average on parental education and income, averaged about 2 children, exhibited a high quality of family functioning and high self-esteem in adolescents. The conflictive-authoritarian type had average parental education and income, an average of 2.7 children, exhibited controlling and rigid discipline, and placed a high emphasis on achievement. The defensive-neglectful type was predominately headed by single mothers with below average education and income and averaged about 3 children. Such families displayed chaotic family processes, and adolescents tended to suffer from low self-esteem. The typology exhibited good reliability. The implications of the typology are discussed.

  7. SAR Simulation with Magneto Chiral Effects for Human Head Radiated from Cellular Phones

    NASA Astrophysics Data System (ADS)

    Torres-Silva, H.

    2008-09-01

    A numerical method for a microwave signal emitted by a cellular phone, propagating in a magneto-chiral media, characterized by an extended Born-Fedorov formalism, is presented. It is shown that the use of a cell model, combined with a real model of the human head, derived from the magnetic resonance of images allows a good determination of the near fields induced in the head when the brain chirality and the battery magnetic field are considered together. The results on a 2-Dim human head model show the evolution of the specific absorption rate, (SAR coefficient) and the spatial peak specific absorption rate which are sensitives to the magneto-chiral factor, which is important in the brain layer. For GSM/PCN phones, extremely low frequency real pulsed magnetic fields (in the order of 10 to 60 milligauss) are added to the model through the whole of the user's head. The more important conclusion of our work is that the head absorption is bigger than the results for a classical model without the magneto chiral effect. Hot spots are produced due to the combination of microwave and the magnetic field produced by the phone's operation. The FDTD method was used to compute the SARs inside the MRI based head models consisting of various tissues for 1.8 GHz. As a result, we found that in the head model having more than four kinds of tissue, the localized peak SAR reaches maximum inside the head for over five tissues including skin, bone, blood and brain cells.

  8. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. I. Characteristics of evoked head movements.

    PubMed

    Quessy, Stephan; Freedman, Edward G

    2004-06-01

    The nucleus reticularis gigantocellularis (NRG) receives monosynaptic input from the superior colliculus (SC) and projects directly to neck motor neuron pools. Neurons in NRG are well situated to play a critical role in transforming SC signals into head movement commands. A previous study of movements evoked by NRG stimulation in the primate reported a variety of ipsilateral and contralateral head movements with horizontal, vertical and torsional components. In addition to head movements, it was reported that NRG stimulation could evoke movements of the pinnae, face, upper torso, and co-contraction of neck muscles. In this report, the role of the rhesus monkey NRG in head movement control was investigated using electrical stimulation of the rostral portion of the NRG. The goal was to characterize head movements evoked by NRG stimulation, describe the effects of altering stimulation parameters, and assess the relative movements of the eyes and head. Results indicate that electrical stimulation in the rostral portion of the NRG of the primate can consistently evoke ipsilateral head rotations in the horizontal plane. Head movement amplitude and peak velocity depend upon stimulation parameters (primarily frequency and duration of stimulation trains). During stimulation-induced head movements the eyes counter-rotate (presumably a result of the vestibulo-ocular reflex: VOR). At 46 stimulation sites from two subjects the average gain of this counter-rotation was -0.38 (+/-0.18). After the end of the stimulation train the head generally continued to move. During this epoch, after electrical stimulation ceased, VOR gain remained at this reduced level. In addition, VOR gain was similarly low when electrical stimulation was carried out during active fixation of a visual target. These data extend existing descriptions of head movements evoked by electrical stimulation of the NRG, and add to the understanding of the role of this structure in producing head movements.

  9. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms

    PubMed Central

    Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S.; Pietak, Alexis; Lobo, Daniel; Levin, Michael

    2015-01-01

    The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria. PMID:26610482

  10. Spatiotemporal Patterns of Contact Across the Rat Vibrissal Array During Exploratory Behavior

    PubMed Central

    Hobbs, Jennifer A.; Towal, R. Blythe; Hartmann, Mitra J. Z.

    2016-01-01

    The rat vibrissal system is an important model for the study of somatosensation, but the small size and rapid speed of the vibrissae have precluded measuring precise vibrissal-object contact sequences during behavior. We used a laser light sheet to quantify, with 1 ms resolution, the spatiotemporal structure of whisker-surface contact as five naïve rats freely explored a flat, vertical glass wall. Consistent with previous work, we show that the whisk cycle cannot be uniquely defined because different whiskers often move asynchronously, but that quasi-periodic (~8 Hz) variations in head velocity represent a distinct temporal feature on which to lock analysis. Around times of minimum head velocity, whiskers protract to make contact with the surface, and then sustain contact with the surface for extended durations (~25–60 ms) before detaching. This behavior results in discrete temporal windows in which large numbers of whiskers are in contact with the surface. These “sustained collective contact intervals” (SCCIs) were observed on 100% of whisks for all five rats. The overall spatiotemporal structure of the SCCIs can be qualitatively predicted based on information about head pose and the average whisk cycle. In contrast, precise sequences of whisker-surface contact depend on detailed head and whisker kinematics. Sequences of vibrissal contact were highly variable, equally likely to propagate in all directions across the array. Somewhat more structure was found when sequences of contacts were examined on a row-wise basis. In striking contrast to the high variability associated with contact sequences, a consistent feature of each SCCI was that the contact locations of the whiskers on the glass converged and moved more slowly on the sheet. Together, these findings lead us to propose that the rat uses a strategy of “windowed sampling” to extract an object's spatial features: specifically, the rat spatially integrates quasi-static mechanical signals across whiskers during the period of sustained contact, resembling an “enclosing” haptic procedure. PMID:26778990

  11. Neurology cases evaluated by the U.S. Air Force School of Aerospace Medicine 2000-2012.

    PubMed

    Hesselbrock, Roger; Heaton, John

    2014-05-01

    Historically, neurologic conditions are a major cause for removing aviators from flying status. Early neuropsychiatry studies included psychiatric conditions along with neurologic disorders. Previously reported data specifically addressing neurologic conditions in aviators are limited. And there is little current neurology-specific data reported. A retrospective review was done on patients with diagnoses evaluated by Neurology at the U.S. Air Force School of Aerospace Medicine Aeromedical Consultation Service (ACS) between 2000 and 2012 using ACS records and databases to identify cases. Patient demographics, major diagnoses with associated International Classification of Diseases (9th rev.) codes, and aeromedical disposition recommendations were abstracted into a separate database for analysis. In total, 871 cases were identified. Patients were predominantly male (91%) with average age 34 and were predominantly pilots (69%). The top neurology-related diagnoses found in our series were headaches, head injuries, and radiculopathies. Of the cases evaluated, 570 aviators (65%) were recommended by ACS to return to flying status. Waiver authorities accepted 88% of ACS recommendations. Current patterns in neurologic conditions in the selected population of cases evaluated by the ACS were presented. Of the neurologic diagnoses seen, a novel finding was the prominence of head injuries in our series not seen in previous studies. This may be due to more stringent aeromedical standards with advances in medical practice and underscores that this issue is not just about disability but affects aircrew operational readiness. Most cases of neurologic disease evaluated by the ACS were recommended for return to flying status.

  12. A subject-specific anisotropic visco-hyperelastic finite element model of the female pelvic floor stress and strain during the second stage of labor

    PubMed Central

    Jing, Dejun; Ashton-Miller, James A.; DeLancey, John O.L.

    2012-01-01

    Objectives To develop an improved model representation of the biomechanics of the levator muscles during the second stage of labor and to use a sensitivity analysis to explore the pathomechanics of levator muscle injury. Methods A subject-specific finite element model of human pelvic floor and fetal head was developed based on in vivo MRI data of a fetal head and maternal pelvis. An anisotropic visco-hyperelastic constitutive model employed material parameters estimated from biaxial tests on pelvic floor tissues. Boundary conditions reflected both anatomic constraints and the curve of Carus. A short second stage of labor, scaled to 10 minutes, was then simulated using a single expulsive push made in the absence of levator co-contraction. Results Large levator stresses occured near the levator hiatus reaching 9 MPa at the pubovisceral muscle enthesis. The dominant principal stresses were located at, and aligned with, the edge of the hiatus. Muscle stretch bordering the levator hiatus was inhomogeneous: The average levator was 3.55 with a high of 4.64 at the pubovisceral muscle enthesis. Decreasing perineal body stiffness by 40%, 50%, and 60% led to reductions in the maximum principal stretch ratio at the pubovisceral muscle enthesis of 8%, 13%, and 18%, respectively. Conclusions The pubovisceral muscle enthesis and the muscle near the perineal body are the regions of greatest strain thereby placing them at highest risk for stretch-related injury. Decreasing perineal body tissue stiffness significantly reduced tissue stress and strain, and therefore injury risk, in those regions. PMID:22209507

  13. The Fusion Protein Specificity of the Parainfluenza Virus Hemagglutinin-Neuraminidase Protein Is Not Solely Defined by the Primary Structure of Its Stalk Domain

    PubMed Central

    Ito, Morihiro; Ohtsuka, Junpei; Hara, Kenichiro; Komada, Hiroshi; Nishio, Machiko; Nosaka, Tetsuya

    2015-01-01

    ABSTRACT Virus-specific interaction between the attachment protein (HN) and the fusion protein (F) is prerequisite for the induction of membrane fusion by parainfluenza viruses. This HN-F interaction presumably is mediated by particular amino acids in the HN stalk domain and those in the F head domain. We found in the present study, however, that a simian virus 41 (SV41) F-specific chimeric HPIV2 HN protein, SCA, whose cytoplasmic, transmembrane, and stalk domains were derived from the SV41 HN protein, could not induce cell-cell fusion of BHK-21 cells when coexpressed with an SV41 HN-specific chimeric PIV5 F protein, no. 36. Similarly, a headless form of the SV41 HN protein failed to induce fusion with chimera no. 36, whereas it was able to induce fusion with the SV41 F protein. Interestingly, replacement of 13 amino acids of the SCA head domain, which are located at or around the dimer interface of the head domain, with SV41 HN counterparts resulted in a chimeric HN protein, SCA-RII, which induced fusion with chimera no. 36 but not with the SV41 F protein. More interestingly, retroreplacement of 11 out of the 13 amino acids of SCA-RII with the SCA counterparts resulted in another chimeric HN protein, IM18, which induced fusion either with chimera no. 36 or with the SV41 F protein, similar to the SV41 HN protein. Thus, we conclude that the F protein specificity of the HN protein that is observed in the fusion event is not solely defined by the primary structure of the HN stalk domain. IMPORTANCE It is appreciated that the HN head domain initially conceals the HN stalk domain but exposes it after the head domain has bound to the receptors, which allows particular amino acids in the stalk domain to interact with the F protein and trigger it to induce fusion. However, other regulatory roles of the HN head domain in the fusion event have been ill defined. We have shown in the current study that removal of the head domain or amino acid substitutions in a particular region of the head domain drastically change the F protein specificity of the HN protein, suggesting that the ability of a given HN protein to interact with an F protein is defined not only by the primary structure of the HN stalk domain but also by its conformation. This notion seems to account for the unidirectional substitutability among rubulavirus HN proteins in triggering noncognate F proteins. PMID:26423949

  14. Diagnosis of unstable cervical spine injuries: laboratory support for the use of axial traction to diagnose cervical spine instability.

    PubMed

    Kalantar, Babak S; Hipp, John A; Reitman, Charles A; Dreiangel, Niv; Ben-Galim, Peleg

    2010-10-01

    The ability to detect damage to the intervertebral structures is critical in the management of patients after blunt trauma. A practical and inexpensive method to identify severe structural damage not clearly seen on computed tomography would be of benefit. The objective of this study was to assess whether ligamentous injury in the subaxial cervical spine can be reliably detected by analysis of lateral radiographs taken with and without axial traction. Twelve fresh, whole, postrigor-mortis cadavers were used for this study. Lateral cervical spine radiographs were obtained during the application of 0 N, 89 N, and 178 N of axial traction applied to the head. Progressive incremental sectioning of posterior structures was then performed at C4-C5 with traction imaging repeated after each intervention. Intervertebral distraction was analyzed using computer-assisted software. Almost imperceptible intervertebral separation was found when traction was applied to intact spines. In the subaxial cervical spine, the average posterior disc height consistently increased under traction in severely injured spines. The average disc height increase was 14% of the C4 upper endplate width, compared with an average of 2% in the noninjured spines. A change of more than 5% in posterior disc height under traction was above the 95% confidence interval for intact spines, with sensitivity of 83% and specificity of 80%. Applied force of 89 N (20 lb) was sufficient to demonstrate injury. The combination of assessing alignment and distraction under traction increased both the sensitivity and specificity to nearly 100%. This study supports further clinical investigations to determine whether low-level axial traction may be a useful adjunct for detecting unstable subaxial cervical spine injuries in an acute setting.

  15. Head insulation and heat loss in naked and clothed newborns using a thermal mannequin.

    PubMed

    Elabbassi, Elmountacer Billah; Chardon, Karen; Bach, Véronique; Telliez, Frédéric; Delanaud, Stéphane; Libert, Jean-Pierre

    2002-06-01

    In newborns, large amounts of heat are lost from the head, due to its high skin surface area. Insulating the head (for example, with a hat or bonnet) can be a simple and effective method of reducing dry heat loss. In the present study, we evaluated the safety aspects of insulating the head of low-birth-weight naked or clothed newborns by using a heated mannequin that simulates a low-birth-weight newborn. Experimental conditions (comprising a nude and three clothed setups) were performed in a closed incubator at three different air temperatures (29 degrees C, 32 degrees C, and 34 degrees C) and with and without the head being covered with a bonnet in each case, i.e., 24 experimental conditions in all. The study shows that added clothing elements and insulating the head decreases the total heat loss of the mannequin as a whole. As regards the dry heat exchange from the head, wearing a bonnet decreases the local heat loss by an average of 18.9% in all clothed and thermal conditions. This phenomenon could be at the origin of brain overheating in heavily dressed newborns, when unrestricted heat loss is limited to the face only. Our results suggest that--apart from accidental hypothermia-in order to achieve thermal equilibrium of the body, it is preferable to leave the head unprotected and to increase the level of clothing insulation over the rest of the body.

  16. Effects of Olympic-style taekwondo kicks on an instrumented head-form and resultant injury measures.

    PubMed

    Fife, Gabriel P; O'Sullivan, David M; Pieter, Willy; Cook, David P; Kaminski, Thomas W

    2013-12-01

    The objective of this study was to assess the effect of taekwondo kicks and peak foot velocity (FVEL) on resultant head linear acceleration (RLA), head injury criterion (HIC15) and head velocity (HVEL). Each subject (n=12) randomly performed five repetitions of the turning kick (TK), clench axe kick (CA), front leg axe kick, jump back kick (JB) and jump spinning hook kick (JH) at the average standing head height for competitors in their weight division. A Hybrid II Crash Test Dummy head was fitted with a protective taekwondo helmet and instrumented with a triaxial accelerometer and fixed to a height-adjustable frame. Resultant head linear acceleration, HVEL, FVEL data were captured and processed using Qualysis Track Manager. The TK (130.11 ± 51.67 g) produced a higher RLA than the CA (54.95 ± 20.08 g, p<0.001, d=1.84) and a higher HIC15 than the JH (672.74 ± 540.89 vs 300.19 ± 144.35, p<0.001, ES=0.97). There was no difference in HVEL of the TK (4.73 ± 1.67 m/s) and that of the JB (4.43 ± 0.78 m/s; p=0.977, ES<0.01). The TK is of concern because it is the most common technique and cause of concussion in taekwondo. Future studies should aim to understand rotational accelerations of the head.

  17. The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field

    NASA Astrophysics Data System (ADS)

    Virtanen, H.; Keshvari, J.; Lappalainen, R.

    2007-03-01

    As the use of radiofrequency (RF) electromagnetic (EM) fields has increased along with increased use of wireless communication, the possible related health risks have also been widely discussed. One safety aspect is the interaction of medical implants and RF devices like mobile phones. In the literature, effects on active implants like pacemakers have been discussed but the studies of passive metallic (i.e. conductive) implants are rare. However, some studies have shown that the EM power absorption in tissues may be enhanced due to metallic implants. In this study, the effect of authentic passive metallic implants in the head region was examined. A half-wave dipole antenna was used as an exposure source and the specific absorption rate (SAR, W kg-1) in the near field was studied numerically. The idea was to model the presumably worst cases of most common implants in an accurate MRI-based phantom. As exposure frequencies GSM (900 and 1800 MHz) and UMTS (2450 MHz) regions were considered. The implants studied were skull plates, fixtures, bone plates and ear rings. The results indicate that some of the implants, under very rare exposure conditions, may cause a notable enhancement in peak mass averaged SAR.

  18. Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies

    PubMed Central

    Arellano, Jon I.; Benavides-Piccione, Ruth; DeFelipe, Javier; Yuste, Rafael

    2007-01-01

    Dendritic spines are critical elements of cortical circuits, since they establish most excitatory synapses. Recent studies have reported correlations between morphological and functional parameters of spines. Specifically, the spine head volume is correlated with the area of the postsynaptic density (PSD), the number of postsynaptic receptors and the ready-releasable pool of transmitter, whereas the length of the spine neck is proportional to the degree of biochemical and electrical isolation of the spine from its parent dendrite. Therefore, the morphology of a spine could determine its synaptic strength and learning rules. To better understand the natural variability of neocortical spine morphologies, we used a combination of gold-toned Golgi impregnations and serial thin-section electron microscopy and performed three-dimensional reconstructions of spines from layer 2/3 pyramidal cells from mouse visual cortex. We characterized the structure and synaptic features of 144 completed reconstructed spines, and analyzed their morphologies according to their positions. For all morphological parameters analyzed, spines exhibited a continuum of variability, without clearly distinguishable subtypes of spines or clear dependence of their morphologies on their distance to the soma. On average, the spine head volume was correlated strongly with PSD area and weakly with neck diameter, but not with neck length. The large morphological diversity suggests an equally large variability of synaptic strength and learning rules. PMID:18982124

  19. The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field.

    PubMed

    Virtanen, H; Keshvari, J; Lappalainen, R

    2007-03-07

    As the use of radiofrequency (RF) electromagnetic (EM) fields has increased along with increased use of wireless communication, the possible related health risks have also been widely discussed. One safety aspect is the interaction of medical implants and RF devices like mobile phones. In the literature, effects on active implants like pacemakers have been discussed but the studies of passive metallic (i.e. conductive) implants are rare. However, some studies have shown that the EM power absorption in tissues may be enhanced due to metallic implants. In this study, the effect of authentic passive metallic implants in the head region was examined. A half-wave dipole antenna was used as an exposure source and the specific absorption rate (SAR, W kg(-1)) in the near field was studied numerically. The idea was to model the presumably worst cases of most common implants in an accurate MRI-based phantom. As exposure frequencies GSM (900 and 1800 MHz) and UMTS (2450 MHz) regions were considered. The implants studied were skull plates, fixtures, bone plates and ear rings. The results indicate that some of the implants, under very rare exposure conditions, may cause a notable enhancement in peak mass averaged SAR.

  20. Effect of Booster Seat Design on Children’s Choice of Seating Positions During Naturalistic Riding

    PubMed Central

    Andersson, Marianne; Bohman, Katarina; Osvalder, Anna-Lisa

    2010-01-01

    The purpose of this naturalistic study was to investigate the effect of booster seat design on the choice of children’s seating positions during naturalistic riding. Data was collected through observations of children during in-vehicle riding by means of a film camera. The children were positioned in high back boosters in the rear seat while a parent drove the car. The study included two different booster designs: one with large head and torso side supports, and one with small head side supports and no torso side supports. Six children between three and six years of age participated in the study. Each child was observed in both boosters. The duration of the seating positions that each child assumed was quantified. The design with large side head supports resulted more often in seating positions without head and shoulder contact with the booster’s back. There was shoulder-to-booster back contact during an average of 45% of riding time in the seat with the large head side supports compared to 75% in the seat with the small head supports. The children in the study were seated with the head in front of the front edge of the head side supports more than half the time, in both boosters. Laterally, the children were almost constantly positioned between the side supports of the booster in both seats. The observed seating positions probably reduce the desired protective effect by the side supports in side impact, and may increase the probability of head impact with the vehicle interior in frontal impact. PMID:21050601

  1. Head circumference in young children with autism: the impact of different head circumference charts.

    PubMed

    Morhardt, Duncan R; Barrow, William; Jaworski, Margie; Accardo, Pasquale J

    2014-03-01

    The hypothesis that the presence of macrocephaly might vary with the specific growth chart used was tested by using the Nellahus, CDC, and recent Rollins et al revision head circumference charts to plot the head circumferences of 253 children with neurodevelopmental disorders and with ages between 12 to 36 months; of these children, 59 had a diagnosis of autism spectrum disorder. The CDC and Rollins et al head circumference charts identified more cases of macrocephaly and fewer cases of microcephaly than did the older Nellhaus chart but did not significantly differ in their identification of macrocephaly in children with autism.

  2. [Genetic basis of head and neck cancers and gene therapy].

    PubMed

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  3. Head Start Substance Abuse Guide: A Resource Handbook for Head Start Grantees and Other Collaborating Community Programs.

    ERIC Educational Resources Information Center

    Collins, Raymond C.; Anderson, Penny R.

    The purpose of this guide is to amplify the specific issues concerning substance abuse which Head Start grantees need to address, and to suggest resources and strategies to respond to these issues. The guide consists of five chapters, a bibliography, and two appendixes. An introduction (chapter I) discusses the problem of substance abuse and the…

  4. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.

    PubMed

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  5. An Evidence-Based Discussion of Heading the Ball and Concussions in High School Soccer.

    PubMed

    Comstock, R Dawn; Currie, Dustin W; Pierpoint, Lauren A; Grubenhoff, Joseph A; Fields, Sarah K

    2015-09-01

    Soccer, originally introduced as a safer sport for children and adolescents, has seen a rapid increase in popularity in the United States over the past 3 decades. Recently, concerns have been raised regarding the safety of soccer ball heading (when an athlete attempts to play the ball in the air with his or her head) given the rise in concussion rates, with some calling for a ban on heading among soccer players younger than 14 years. To evaluate trends over time in boys' and girls' soccer concussions, to identify injury mechanisms commonly leading to concussions, to delineate soccer-specific activities during which most concussions occur, to detail heading-related soccer concussion mechanisms, and to compare concussion symptom patterns by injury mechanism. Retrospective analysis of longitudinal surveillance data collected from 2005-2006 through 2013-2014 in a large, nationally representative sample of US high schools. Participants were boys and girls who were high school soccer players. Concussions sustained during high school-sanctioned soccer games and practices. Mechanism and sport-specific activity of concussion. Overall, 627 concussions were sustained during 1,393,753 athlete exposures (AEs) among girls (4.50 concussions per 10,000 AEs), and 442 concussions were sustained during 1,592,238 AEs among boys (2.78 concussions per 10,000 AEs). For boys (68.8%) and girls (51.3%), contact with another player was the most common concussion mechanism. Heading was the most common soccer-specific activity, responsible for 30.6% of boys' concussions and 25.3% of girls' concussions. Contact with another player was the most common mechanism of injury in heading-related concussions among boys (78.1%) and girls (61.9%). There were few differences in concussion symptom patterns by injury mechanism. Although heading is the most common activity associated with concussions, the most frequent mechanism was athlete-athlete contact. Such information is needed to drive evidence-based, targeted prevention efforts to effectively reduce soccer-related concussions. Although banning heading from youth soccer would likely prevent some concussions, reducing athlete-athlete contact across all phases of play would likely be a more effective way to prevent concussions as well as other injuries.

  6. Effect of pillow height on the biomechanics of the head-neck complex: investigation of the cranio-cervical pressure and cervical spine alignment

    PubMed Central

    Yang, Hui; Zhou, Yan; Lin, Jin

    2016-01-01

    Background While appropriate pillow height is crucial to maintaining the quality of sleep and overall health, there are no universal, evidence-based guidelines for pillow design or selection. We aimed to evaluate the effect of pillow height on cranio-cervical pressure and cervical spine alignment. Methods Ten healthy subjects (five males) aged 26 ± 3.6 years were recruited. The average height, weight, and neck length were 167 ± 9.3 cm, 59.6 ± 11.9 kg, and 12.9 ± 1.2 cm respectively. The subjects lay on pillows of four different heights (H0, 110 mm; H1, 130 mm; H2, 150 mm; and H3, 170 mm). The cranio-cervical pressure distribution over the pillow was recorded; the peak and average pressures for each pillow height were compared by one-way ANOVA with repeated measures. Cervical spine alignment was studied using a finite element model constructed based on data from the Visible Human Project. The coordinate of the center of each cervical vertebra were predicted for each pillow height. Three spine alignment parameters (cervical angle, lordosis distance and kyphosis distance) were identified. Results The average cranial pressure at pillow height H3 was approximately 30% higher than that at H0, and significantly different from those at H1 and H2 (p < 0.05). The average cervical pressure at pillow height H0 was 65% lower than that at H3, and significantly different from those at H1 and H2 (p < 0.05). The peak cervical pressures at pillow heights H2 and H3 were significantly different from that at H0 (p < 0.05). With respect to cervical spine alignment, raising pillow height from H0 to H3 caused an increase of 66.4% and 25.1% in cervical angle and lordosis distance, respectively, and a reduction of 43.4% in kyphosis distance. Discussion Pillow height elevation significantly increased the average and peak pressures of the cranial and cervical regions, and increased the extension and lordosis of the cervical spine. The cranio-cervical pressures and cervical spine alignment were height-specific, and they were believed to reflect quality of sleep. Our results provide a quantitative and objective evaluation of the effect of pillow height on the biomechanics of the head-neck complex, and have application in pillow design and selection. PMID:27635354

  7. Functional Coordination of a Full-Body Gaze Control Mechanisms Elicited During Locomotion

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Cohen, Helen S.

    2003-01-01

    Control of locomotion requires precise interaction between several sensorimotor subsystems. Exposure to the microgravity environment of spaceflight leads to postflight adaptive alterations in these multiple subsystems leading to postural and gait disturbances. Countermeasures designed to mitigate these postflight gait alterations will need to be assessed with a new generation of functional tests that evaluate the interaction of various elements central to locomotor control. The goal of this study is to determine how the multiple, interdependent, full- body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated. To explore this question two experiments were performed. In the first study (Study 1) we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects (n=9) performed two discreet gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at eye level. The second study (Study 2) investigated the potential of adaptive remodeling of the full-body gaze control systems following exposure to visual-vestibular conflict. Subjects (n=14) walked (6.4 km/h) on the treadmill before and after they were exposed to 0.5X minifying lenses worn for 30 minutes during self-generated sinusoidal vertical head rotations performed while seated. In both studies we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. Results from Study 1 showed that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movements were on average 22% greater 2) the peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects 3) the knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle. Results from Study 2 indicate that following exposure to visual-vestibular conflict changes in full-body strategies were observed consistent with the requirement to aid gaze stabilization during locomotion.

  8. Development, Evaluation and Implementation of Chief Complaint Groupings to Activate Data Collection: A Multi-Center Study of Clinical Decision Support for Children with Head Trauma.

    PubMed

    Deakyne, S J; Bajaj, L; Hoffman, J; Alessandrini, E; Ballard, D W; Norris, R; Tzimenatos, L; Swietlik, M; Tham, E; Grundmeier, R W; Kuppermann, N; Dayan, P S

    2015-01-01

    Overuse of cranial computed tomography scans in children with blunt head trauma unnecessarily exposes them to radiation. The Pediatric Emergency Care Applied Research Network (PECARN) blunt head trauma prediction rules identify children who do not require a computed tomography scan. Electronic health record (EHR) based clinical decision support (CDS) may effectively implement these rules but must only be provided for appropriate patients in order to minimize excessive alerts. To develop, implement and evaluate site-specific groupings of chief complaints (CC) that accurately identify children with head trauma, in order to activate data collection in an EHR. As part of a 13 site clinical trial comparing cranial computed tomography use before and after implementation of CDS, four PECARN sites centrally developed and locally implemented CC groupings to trigger a clinical trial alert (CTA) to facilitate the completion of an emergency department head trauma data collection template. We tested and chose CC groupings to attain high sensitivity while maintaining at least moderate specificity. Due to variability in CCs available, identical groupings across sites were not possible. We noted substantial variability in the sensitivity and specificity of seemingly similar CC groupings between sites. The implemented CC groupings had sensitivities greater than 90% with specificities between 75-89%. During the trial, formal testing and provider feedback led to tailoring of the CC groupings at some sites. CC groupings can be successfully developed and implemented across multiple sites to accurately identify patients who should have a CTA triggered to facilitate EHR data collection. However, CC groupings will necessarily vary in order to attain high sensitivity and moderate-to-high specificity. In future trials, the balance between sensitivity and specificity should be considered based on the nature of the clinical condition, including prevalence and morbidity, in addition to the goals of the intervention being considered.

  9. ANALYSIS OF LABOUR ACCIDENTS DUE TO ROCK FALL EVENTS IN CUTTING FACE OF TUNNEL AND STUDY OF THE COUNTERMEASURES FOR SAFETY

    NASA Astrophysics Data System (ADS)

    Kikkawa, Naotaka; Itoh, Kazuya; Hori, Tomohito; Tamate, Satoshi; Toyosawa, Yasuo

    In this paper, we analysed the labour accidents which had casualties due to rock fall events in the headings of tunnel and cleared the condition of the occurrence. It was clearly revealed that the accidents mostly happened when the workers mounted the explosive and the steel arch in the headings of the mountain tunnel. In addition, the dimension of the rocks fallen were averagely 0.6m diameter, it was not so much large. Therefore, the countermeasures based on both soft and hard faces would be useful and effective, such as the displacement measurement of a cutting face of tunnel, securing the sufficient lights to observe the cutting face, boring for drainage and shotcreting in a heading of tunnel.

  10. Multi-cylinder hot gas engine

    DOEpatents

    Corey, John A.

    1985-01-01

    A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

  11. Retrograde Intramedullary Nail With Femoral Head Allograft for Large Deficit Tibiotalocalcaneal Arthrodesis.

    PubMed

    Bussewitz, Bradly; DeVries, J George; Dujela, Michael; McAlister, Jeffrey E; Hyer, Christopher F; Berlet, Gregory C

    2014-07-01

    Large bone defects present a difficult task for surgeons when performing single-stage, complex combined hindfoot and ankle reconstruction. There exist little data in a case series format to evaluate the use of frozen femoral head allograft during tibiotalocalcaneal arthrodesis in various populations in the literature. The authors evaluated 25 patients from 2003 to 2011 who required a femoral head allograft and an intramedullary nail. The average time of final follow-up visit was 83 ± 63.6 weeks (range, 10-265). Twelve patients healed the fusion (48%). Twenty-one patients resulted in a braceable limb (84%). Four patients resulted in major amputation (16%). This series may allow surgeons to more accurately predict the success and clinical outcome of these challenging cases. Level IV, case series. © The Author(s) 2014.

  12. Rapid motor learning in the translational vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Zhou, Wu; Weldon, Patrick; Tang, Bingfeng; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    Motor learning was induced in the translational vestibulo-ocular reflex (TVOR) when monkeys were repeatedly subjected to a brief (0.5 sec) head translation while they tried to maintain binocular fixation on a visual target for juice rewards. If the target was world-fixed, the initial eye speed of the TVOR gradually increased; if the target was head-fixed, the initial eye speed of the TVOR gradually decreased. The rate of learning acquisition was very rapid, with a time constant of approximately 100 trials, which was equivalent to <1 min of accumulated stimulation. These learned changes were consolidated over >or=1 d without any reinforcement, indicating induction of long-term synaptic plasticity. Although the learning generalized to targets with different viewing distances and to head translations with different accelerations, it was highly specific for the particular combination of head motion and evoked eye movement associated with the training. For example, it was specific to the modality of the stimulus (translation vs rotation) and the direction of the evoked eye movement in the training. Furthermore, when one eye was aligned with the heading direction so that it remained motionless during training, learning was not expressed in this eye, but only in the other nonaligned eye. These specificities show that the learning sites are neither in the sensory nor the motor limb of the reflex but in the sensory-motor transformation stage of the reflex. The dependence of the learning on both head motion and evoked eye movement suggests that Hebbian learning may be one of the underlying cellular mechanisms.

  13. Experimental Injury Biomechanics of the Pediatric Head and Brain

    NASA Astrophysics Data System (ADS)

    Margulies, Susan; Coats, Brittany

    Traumatic brain injury (TBI) is a leading cause of death and disability among children and young adults in the United States and results in over 2,500 childhood deaths, 37,000 hospitalizations, and 435,000 emergency department visits each year (Langlois et al. 2004). Computational models of the head have proven to be powerful tools to help us understand mechanisms of adult TBI and to determine load thresholds for injuries specific to adult TBI. Similar models need to be developed for children and young adults to identify age-specific mechanisms and injury tolerances appropriate for children and young adults. The reliability of these tools, however, depends heavily on the availability of pediatric tissue material property data. To date the majority of material and structural properties used in pediatric computer models have been scaled from adult human data. Studies have shown significant age-related differences in brain and skull properties (Prange and Margulies 2002; Coats and Margulies 2006a, b), indicating that the pediatric head cannot be modeled as a miniature adult head, and pediatric computer models incorporating age-specific data are necessary to accurately mimic the pediatric head response to impact or rotation. This chapter details the developmental changes of the pediatric head and summarizes human pediatric properties currently available in the literature. Because there is a paucity of human pediatric data, material properties derived from animal tissue are also presented to demonstrate possible age-related differences in the heterogeneity and rate dependence of tissue properties. The chapter is divided into three main sections: (1) brain, meninges, and cerebral spinal fluid (CSF); (2) skull; and (3) scalp.

  14. Comparative analysis of assessment of the craniocervical equilibrium through two methods: cephalometry of Rocabado and cervical range of motion.

    PubMed

    de Oliveira, Lilian Becerra; Cajaíba, Franklin; Costa, Wesley; Rocabado, Mariano; Lazo-Osório, Rodrigo; Ribeiro, Sanzia

    2012-01-01

    There are several instruments of evaluation of the craniocervical equilibrium; the most reliable are the radiographies. This study used the cephalometric analysis of Rocabado to measure the sensibility and specificity of the Cervical Range of Motion (CROM), a goniometer designed to assess cervical movements in degrees, and measure the forward head position in centimeters. This instrument frequently used, has been tested as a reliable instrument to evaluate the cervical movements but not the forward head. The sample consisted of 30 volunteers, 18 females, 12 males, mean age of 24.63 years. All participants were evaluated with CROM and radiographies in the resting head position and in erect head position. The values considered by the cephalometry consisted in the angle made between the McGregor plane and the vertical line formed by the base of the odontoid process to its apex; the posterior space between C0-C1 and C1-C2 and the hyoid triangle. 30% of the subjects had forward head posture, according to de cephalometry of Rocabado (decreased space between C0-C1, C1-C2) and 43,3% according to CROM. 16,6% had decreased posterior-inferior angle, and 13% had the hyoid triangle facing up. ROC curve of identifying forward head posture yielded area under the curve of 0,778 (95% confidence interval 0,596-0,960). The sensibility of CROM was: 77%. The specificity 71%. This study suggests that CROM has a moderate sensibility and specificity, useful for clinic use, but not for research.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Martin; Enemark, Eric J.

    The crystal structure of the N-terminal domain of thePyrococcus furiosusminichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation.

  16. Characterization of the head-twitch response induced by hallucinogens in mice: detection of the behavior based on the dynamics of head movement.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2013-06-01

    The head-twitch response (HTR) is a rapid side-to-side rotational head movement that occurs in rats and mice after administration of serotonergic hallucinogens and other 5-HT2A agonists. The HTR is widely used as a behavioral assay for 5-HT2A activation and to probe for interactions between the 5-HT2A receptor and other transmitter systems. High-speed video recordings were used to analyze the head movement that occurs during head twitches in C57BL/6J mice. Experiments were also conducted in C57BL/6J mice to determine whether a head-mounted magnet and a magnetometer coil could be used to detect the HTR induced by serotonergic hallucinations based on the dynamics of the response. Head movement during the HTR was highly rhythmic and occurred within a specific frequency range (mean head movement frequency of 90.3 Hz). Head twitches produced wave-like oscillations of magnetometer coil voltage that matched the frequency of head movement during the response. The magnetometer coil detected the HTR induced by the serotonergic hallucinogens 2,5-dimethoxy-4-iodoamphetamine (DOI; 0.25, 0.5, and 1.0 mg/kg, i.p.) and lysergic acid diethylamide (LSD; 0.05, 0.1, 0.2, and 0.4 mg/kg, i.p.) with extremely high sensitivity and specificity. Magnetometer coil recordings demonstrated that the non-hallucinogenic compounds (+)-amphetamine (2.5 and 5.0 mg/kg, i.p.) and lisuride (0.8, 1.6, and 3.2 mg/kg, i.p.) did not induce the HTR. These studies confirm that a magnetometer coil can be used to detect the HTR induced by hallucinogens. The use of magnetometer-based HTR detection provides a high-throughput, semi-automated assay for this behavior, and offers several advantages over traditional assessment methods.

  17. Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Single-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20 degrees /s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non-eye-movement (n = 52) and eye-movement-related (n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 +/- 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement-related units tended to have rotational responses that were correlated with head velocity. On the other hand, non-eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important for controlling postural reflexes and constructing a central percept of body orientation and movement in space.

  18. Assessment of musculoskeletal impairment in head and neck cancer patients.

    PubMed

    Ghiam, Michael K; Mannion, Kyle; Dietrich, Mary S; Stevens, Kristen L; Gilbert, Jill; Murphy, Barbara A

    2017-07-01

    This study aims to describe the types of musculoskeletal impairment in head and neck cancer survivors and to evaluate objective and subjective measures of musculoskeletal impairment and identify areas of need in future studies. This is a cross-sectional pilot study of 29 head and neck cancer patients who were treated with resection and reconstruction. Subjective measures of musculoskeletal impairment (Neck Disability Index, Shoulder Pain and Disability Index, Vanderbilt Head and Neck Symptom Survey, General Symptom Survey) were collected and compared to objective measures (Cervical Range of Motion Device, Inter-incisal Distance). Digital photography was used to assess the severity of postural abnormalities. Findings were summarized using descriptive statistical and graphical methods. The majority of patients in this cohort suffered from neck disability (69%). Thirty-five percent of patients had shoulder pain and disability. Cervical range of motion deficits were observed in all directions. Inter-incisal distance averaged 33.4 mm and inversely correlated with self-reported jaw and trismus symptoms. Digital photography identified shoulder misalignment in 93% of subjects, head tilt in 89% of subjects, and postural deviation in 68% of subjects. Musculoskeletal impairment is a significant side effect in head and neck cancer survivors that results in chronic neck pain, shoulder disability, trismus, and postural deficits. Tools to describe postural deficits are needed.

  19. Head Lice.

    PubMed

    Meister, Laura; Ochsendorf, Falk

    2016-11-11

    Conflicting information about the proper treatment of head lice has given rise to uncertainty among patients and treating personnel. For example, the reported efficacy of permethrin fell from 97% in the 1990s to 30% in 2010. Review of the literature based on a selective search of PubMed. In Germany, outbreaks of head lice mainly occur among 5- to 13-year-olds returning to school after the summer vacation. Nymphs hatch from eggs after an average of 8 days and become sexually mature lice over the ensuing 9 days. The main route of transmission is direct head-to-head contact; transmission via inanimate objects is of no relevance. Symptoms arise 4-6 weeks after an initial infestation; many affected persons have no symptoms at all. Wet combing is the most sensitive method of establishing the diagnosis and monitoring treatment. Resistance to neurotoxic pediculocidal drugs is increasing around the world. Dimethicones are the treatment of choice, with 97% efficacy. Outbreaks must be managed with the synchronous treatment of all infested persons to break the chain of infestation. If the agent used is not ovicidal, the treatment must be repeated in 8-10 days and sometimes in a further 7 days as well. Outbreaks of head lice can be successfully terminated by synchronous treatment with ovicidal dimethicones.

  20. The effect of decibel level of music stimuli and gender on head circumference and physiological responses of premature infants in the NICU.

    PubMed

    Cassidy, Jane W

    2009-01-01

    The purpose of this study was to examine different protocols with regard to the presentation of music stimuli and compare gender differential reactions to those stimuli. Subjects for this study (N = 63) were premature infants in the Neonatal Intensive Care Unit (NICU) between the gestational ages of 28 and 33 weeks. Half of the experimental infants listened to 20 mins of lullaby music (female voice with orchestral background) on 2 days followed by 20 mins of classical music (Mozart string music) on 2 days. The other half listened to the same music in the reverse order. One quarter of the males and one quarter of the females listened to music presented at an average of 65 dB, one quarter at an average of 70 dB, one quarter at an average of 75 dB, and one quarter did not listen to any music and served as control subjects. Head circumference data were collected four times by the researcher: (a) upon receipt of parental consent, (b) on the first day of music presentation (1 week after consent), (c) on the last day of music presentation, and (d) 1 week after music presentation. Physiological data (heart rate, respiratory rate, oxygen saturation) were recorded by the researcher at 2-minute intervals starting 4 minutes prior to and ending 4 minutes after music presentation. There was a significant difference (p < .0001) in average daily head growth across time, but this seems unrelated to the music condition as the same curvilinear trend (larger gain during days of treatment, smaller gain during baseline before and after treatment) was noted for control infants who did not listen to music. Results indicate a significant (p = .002), but biologically unimportant, decrease in heart rate over the course of data collection. No differences due to gender were noted.

  1. Interventional Therapy of Head and Neck Cancer with Lipid Nanoparticle-Carried Rhenium-186 Radionuclide

    PubMed Central

    French, J. Tyler; Goins, Beth; Saenz, Marcela; Li, Shihong; Garcia-Rojas, Xavier; Phillips, William T.; Otto, Randal A.; Bao, Ande

    2010-01-01

    Purpose Minimally invasive interventional cancer therapy of drug-carrying lipid nanoparticles (liposomes) via convection enhanced delivery generally applied by the use of an infusion pump can increase intratumoral drug concentration and retention while facilitating broad distribution throughout solid tumors. We investigated the utility of liposome-carrying β-emitting radionuclides to treat head and neck cancer in nude rats by direct intratumoral infusion. Methods Four groups of nude rats were subcutaneously inoculated with human tongue cancer cells. After tumors reached an average size of 1.6 cm3, the treatment group received an intratumoral infusion of liposomal rhenium-186 (186Re) (185 MBq (5 mCi)/cm3 tumor). Three control groups were intratumorally infused with either, 1) unlabeled liposomes, 2) unencapsulated 186Re-perrhenate, or 3) unencapsulated intermediate 186Re-compound (186Re-BMEDA). In vivo distribution of 186Re-activity was measured by planar gamma camera imaging. Tumor therapy and toxicity were assessed by measurements of tumor size, body weight, and hematology. Results Average tumor volume of the 186Re-liposome group on post-treatment day-14 decreased to 87.7±20.1%, while tumor volumes increased to 395.0% - 514.4% on average in other three groups (P<0.001 vs 186Re-liposome group). 186Re-liposomes provided much higher intratumoral retention of 186Re-activity, resulting in an average tumor radiation absorbed dose of 526.3±93.3 Gy, whereas 186Re-perrhenate and 186Re-BMEDA groups had only 3.3±1.2 and 13.4±9.2 Gy tumor doses respectively. No systemic toxicity was observed. Conclusion Liposomal 186Re effectively treated the head and neck cancer with minimal side effects after convection enhanced interventional delivery. These results suggest the potential of liposomal 186Re for clinical application in interventional therapy of cancer. PMID:20478719

  2. The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck

    NASA Astrophysics Data System (ADS)

    Al-Hallaq, H. A.; Reft, C. S.; Roeske, J. C.

    2006-03-01

    The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours.

  3. The control of upper body segment speed and velocity during the golf swing.

    PubMed

    Horan, Sean A; Kavanagh, Justin J

    2012-06-01

    Understanding the dynamics of upper body motion during the downswing is an important step in determining the control strategies required for a successful and repeatable golf swing. The purpose of this study was to examine the relationship between head, thorax, and pelvis motion, during the downswing of professional golfers. Three-dimensional data were collected for 14 male professional golfers (age 27 +/- 8 years, golf-playing experience 13.3 +/- 8 years) using an optical motion analysis system. The amplitude and timing of peak speed and peak velocities were calculated for the head, thorax, and pelvis during the downswing. Cross-correlation analysis was used to examine the strength of coupling and phasing between and within segments. The results indicated the thorax segment had the highest peak speeds and peak velocities for the upper body during the downswing. A strong coupling relationship was evident between the thorax and pelvis (average R2 = 0.92 across all directions), while the head and thorax showed a much more variable relationship (average R2 = 0.76 across all directions). The strong coupling between the thorax and pelvis is possibly a method for simplifying the motor control strategy used during the downswing, and a way of ensuring consistent motor patterns.

  4. Frey procedure for surgical management of chronic pancreatitis in children.

    PubMed

    Rollins, Michael D; Meyers, Rebecka L

    2004-06-01

    The authors adopted the Frey procedure for the surgical management of chronic pancreatitis after one of their patients had recurrent disease in the head of the gland after a longitudinal pancreaticojejunostomy (LPJ or modified Puestow procedure). This is the first description of its use in children. A retrospective chart review was performed of all children undergoing a drainage or resection procedure for chronic pancreatitis from 1995 to 2002. Eleven children (6 boys, 5 girls, ages 8 to 18 years) underwent either the LPJ (3) or Frey (8) procedure. Etiologies included: idiopathic (5), familial (2), congenital anomaly of the major papilla (1), pancreatic head mass (1), short bowel syndrome (1), and pancreatic divisum (1). Before surgical therapy, patients had been symptomatic 2.3 years (range, 1 month to 6 years) and had been hospitalized for pancreatitis 4 times (range, 1 to 10). Four patients did not respond to endoscopic stenting, and 5 had a pancreatic pseudocyst. Patients were followed up in clinic an average of 2.5 years, with total time elapsed since surgery averaging 4.6 years. Eight of 11 patients experienced excellent or good results subsequent to surgical intervention. The Frey procedure is effective for children who have not responded to conservative management of chronic pancreatitis and may prevent recurrent disease in the head of the gland.

  5. Acoustic property reconstruction of a neonate Yangtze finless porpoise's (Neophocaena asiaeorientalis) head based on CT imaging.

    PubMed

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon.

  6. Highly preserved consensus gene modules in human papilloma virus 16 positive cervical cancer and head and neck cancers.

    PubMed

    Zhang, Xianglan; Cha, In-Ho; Kim, Ki-Yeol

    2017-12-26

    In this study, we investigated the consensus gene modules in head and neck cancer (HNC) and cervical cancer (CC). We used a publicly available gene expression dataset, GSE6791, which included 42 HNC, 14 normal head and neck, 20 CC and 8 normal cervical tissue samples. To exclude bias because of different human papilloma virus (HPV) types, we analyzed HPV16-positive samples only. We identified 3824 genes common to HNC and CC samples. Among these, 977 genes showed high connectivity and were used to construct consensus modules. We demonstrated eight consensus gene modules for HNC and CC using the dissimilarity measure and average linkage hierarchical clustering methods. These consensus modules included genes with significant biological functions, including ATP binding and extracellular exosome. Eigengen network analysis revealed the consensus modules were highly preserved with high connectivity. These findings demonstrate that HPV16-positive head and neck and cervical cancers share highly preserved consensus gene modules with common potentially therapeutic targets.

  7. A neural model of motion processing and visual navigation by cortical area MST.

    PubMed

    Grossberg, S; Mingolla, E; Pack, C

    1999-12-01

    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.

  8. Fluid-electrolyte shifts and thermoregulation - Rest and work in heat with head cooling

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Van Beaumont, W.; Brock, P. J.; Montgomery, L. D.; Morse, J. T.; Shvartz, E.; Kravik, S.

    1980-01-01

    The effects of head cooling on thermoregulation and associated plasma fluid and electrolyte shifts during rest and submaximal exercise in the heat are investigated. Thermoregulatory responses and plasma volume were measured in four male subjects fitted with liquid-cooled neoprene headgear during 60 min of rest, 60 min of ergometer exercise at 45% maximal oxygen uptake and 30 min of recovery in the supine position at 40.1 C and 40% relative humidity. It is found that, compared to control responses, head cooling decreased thigh sweating and increased mean skin temperature at rest and attenuated increases in thigh sweating, heart rate, rectal temperature and ventilation during exercise. During recovery, cooling is observed to facilitate decreases in sweat rate, heart rate, rectal temperature and forearm blood flow and enhance the increase in average temperature. Cooling had no effect on plasma protein, osmotic or electrolyte shifts, and decreased plasma volume losses. The findings indicate the effectiveness of moderate head cooling for the improvement of human performance during exercise in heat.

  9. Highly preserved consensus gene modules in human papilloma virus 16 positive cervical cancer and head and neck cancers

    PubMed Central

    Zhang, Xianglan; Cha, In-Ho; Kim, Ki-Yeol

    2017-01-01

    In this study, we investigated the consensus gene modules in head and neck cancer (HNC) and cervical cancer (CC). We used a publicly available gene expression dataset, GSE6791, which included 42 HNC, 14 normal head and neck, 20 CC and 8 normal cervical tissue samples. To exclude bias because of different human papilloma virus (HPV) types, we analyzed HPV16-positive samples only. We identified 3824 genes common to HNC and CC samples. Among these, 977 genes showed high connectivity and were used to construct consensus modules. We demonstrated eight consensus gene modules for HNC and CC using the dissimilarity measure and average linkage hierarchical clustering methods. These consensus modules included genes with significant biological functions, including ATP binding and extracellular exosome. Eigengen network analysis revealed the consensus modules were highly preserved with high connectivity. These findings demonstrate that HPV16-positive head and neck and cervical cancers share highly preserved consensus gene modules with common potentially therapeutic targets. PMID:29371966

  10. Direct intralesional ethanol sclerotherapy of extensive venous malformations with oropharyngeal involvement after a temporary tracheotomy in the head and neck: Initial results.

    PubMed

    Wang, Deming; Su, Lixin; Han, Yifeng; Wang, Zhenfeng; Zheng, Lianzhou; Li, Jichen; Fan, Xindong

    2017-02-01

    The purpose of this study was to evaluate the safety and efficacy of direct intralesional ethanol sclerotherapy for venous malformations (VMs) with oropharyngeal involvement after a temporary tracheotomy. A retrospective assessment was carried out to evaluate the efficacy of direct intralesional ethanol sclerotherapy on 21 consecutive patients presenting with extensive VMs involving the oropharynx in the head and neck and who had undergone tracheotomy. Of the 21 patients, 4 were treated once and 17 were treated from 2 to 5 times. The duration of follow-up was, on average, 9.1 months. Of the 21 patients, 7 (33.3%) had complete palliation, whereas the rest (66.7%) achieved partial palliation. Minor complications occurred in 12 of the 21 patients. Direct intralesional ethanol sclerotherapy after a temporary tracheotomy is a safe and effective treatment for extensive VMs involving oropharyngeal areas of the head and neck. © 2016 Wiley Periodicals, Inc. Head Neck 39: 288-296, 2017. © 2016 Wiley Periodicals, Inc.

  11. Mitigation of pedestrian heat stress using parasols in a humid subtropical region

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinichi; Ishii, Jin

    2017-11-01

    Concerns over heat illness have been an increasing social problem in humid subtropical regions. One measure for avoiding excessive heat stress in hot outdoor environments is the use of parasols or umbrellas. The advantage of parasols is that they are a mobile and inexpensive way to provide personal shade outdoors. The objectives of this study were to compare the wet-bulb globe temperature (WBGT) under parasols and at an unshaded point as a reference, and to quantify the reduction in WBGT from the use of parasols in a humid subtropical region. Measurements using three parasols of different colors and materials were conducted at the athletics field at Daido University, Nagoya, Japan, between 9:00 and 15:00 Japan Standard Time in August 2015. The WBGT was obtained at heights of 0.1 m (ankles), 1.1 m (abdomen), and 1.7 m (head) above ground, according to the measurement procedure described in ISO 7243. On a sunny and partly cloudy day, the use of a parasol lowered the average globe temperature by up to 6.2 °C, through blocking direct solar radiation. The average reduction in WBGT by the parasol was found to be 1.8 °C at head level in sunny conditions with solar radiation of over 800 W/m2. The reduction in WBGT at head level by the use of parasols in sunny conditions was greater than that in cloudy conditions. However, although parasols can reduce WBGT at the head level of the user regardless of solar radiation, they cannot reduce it at the level of the abdomen or ankles.

  12. Head impacts in a junior rugby league team measured with a wireless head impact sensor: an exploratory analysis.

    PubMed

    King, Doug; Hume, Patria; Gissane, Conor; Clark, Trevor

    2017-01-01

    OBJECTIVE The aim of this study was to investigate the frequency, magnitude, and distribution of head impacts sustained by players in a junior rugby league over a season of matches. METHODS The authors performed a prospective cohort analysis of impact magnitude, frequency, and distribution on data collected with instrumented XPatches worn behind the ear of players in an "under-11" junior rugby league team (players under 11 years old). RESULTS A total of 1977 impacts were recorded. Over the course of the study, players sustained an average of 116 impacts (average of 13 impacts per player per match). The measured linear acceleration ranged from 10g to 123g (mean 22g, median 16g, and 95th percentile 57g). The rotational acceleration ranged from 89 rad/sec 2 to 22,928 rad/sec 2 (mean 4041 rad/sec 2 , median 2773 rad/sec 2 , and 95th percentile 11,384 rad/sec 2 ). CONCLUSIONS The level of impact severity based on the magnitude of impacts for linear and rotational accelerations recorded was similar to the impacts reported in studies of American junior and high school football, collegiate football, and youth ice hockey players, but the players in the rugby league cohort were younger, had less body mass, and played at a slower speed than the American players. Junior rugby league players are required to tackle the player to the ground and use a different tackle technique than that used in American football, likely increasing the rotational accelerations recorded at the head.

  13. Evaluation of emergency medicine discharge instructions in pediatric head injury.

    PubMed

    Sarsfield, Matthew J; Morley, Eric J; Callahan, James M; Grant, William D; Wojcik, Susan M

    2013-08-01

    Pediatric head trauma is a common occurrence. There is mounting evidence that even patients with minor head injury require limits on school activities and/or removal from sports and play to help speed recovery and limit morbidity. The objective of this study was to determine whether discharge instructions given to children who had sustained head injuries included information regarding activity restrictions, activity time constraints, and/or specifics of follow-up care. This was a retrospective chart review of patients aged 2 to 18 years evaluated and treated for head injury during a 4-month period at a level I trauma center (volume ∼23,000 pediatric patients per year). Included were those children seen, evaluated, and diagnosed with any of the following: mild head injury, concussion, minor head trauma, or mild traumatic brain injury (mTBI). Subjects were excluded if there was a positive acute head injury computed tomography finding (other than findings of a simple linear skull fracture) or if the subject required admission. Among the 204 patients meeting eligibility, 95.1% received instruction to follow up with a physician, 82.8% received anticipatory guidance regarding expected symptoms, 15.2% received specific restriction time from sports, and 21.5% were removed from sports. Of these patients, 113 patients were determined "likely" to have sustained an mTBI. Patients with sports-related mTBI received return-to-sports restrictions (χ2 = 11.225, P < 0.008) and to remove the child from play (χ2 = 9.781, P < 0.004) as discharge instructions significantly more than did patients with motor vehicle accident or other mechanisms of injury. Children sustaining head injury were inadequately instructed to restrict athletic activities upon discharge. This is particularly true for patients who sustain an mTBI from non-sports-related activity.

  14. 75 FR 18107 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Oregon Chub...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... ``maximum water depth'' and ``average water depth'' were rendered incorrect or impossible to read in several.... 1073; Scheerer and McDonald 2003, p. 69). The second paragraph under the heading ``Food, Water, Air...

  15. Use your head! Perception of action possibilities by means of an object attached to the head.

    PubMed

    Wagman, Jeffrey B; Hajnal, Alen

    2016-03-01

    Perceiving any environmental property requires spontaneously assembling a smart perceptual instrument-a task-specific measurement device assembled across potentially independent anatomical units. Previous research has shown that to a large degree, perception of a given environmental property is anatomically independent. We attempted to provide stronger evidence for this proposal by investigating perception by an organization of anatomical and inert components that likely requires the spontaneous assembly of a novel smart perceptual instrument-a rod attached to the head. Specifically, we compared cephalic and manual perception of whether an inclined surface affords standing on. In both conditions, perception reflected the action capabilities of the perceiver and not the appendage used to wield the rod. Such results provide stronger evidence for anatomical independence of perception within a given perceptual system and highlight that flexible task-specific detection units can be assembled across units that span the body and inert objects.

  16. Abnormal cardiovascular responses induced by localized high power microwave exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.-T; Brown, D.O.; Johnson, C.E.

    1992-05-01

    A hypothesis of microwave-induced circulatory under perfusion was tested in ketamine anesthetized rats whose heart rate, mean arterial pressure, pulse pressure, respiration rate, and body temperatures were monitored continuously. Fifty-eight ventral head and neck exposures in a waveguide consisted of sham-exposure and exposure to continuous wave (CW) and pulsed 1.25 GHz microwaves for 5 min. The 0.5 Hz and 16 Hz pulsemodulated microwaves were delivered at 400 kW peak power. The CW microwaves were 2 and 6.4 W. The average specific absorption rate was 4.75 W/kg per watt transmitted in the brain and 17.15 W/kg per watt transmitted in themore » neck. Respiration rate and mean arterial pressure were not altered. Changes in heart rate and pulse pressure were observed in rats exposed to higher power but not to the lower average power microwaves. Depression of pulse pressure, an indication of a decrease in stroke volume, and increased or decreased heart rate were noted in presence of whole-body hyperthermia. The cardiac output of those animals exposed to higher average power microwaves was considered to be below normal as hypothesized. Decreased cardiac output and normal mean arterial pressure resulted in an increase in the total peripheral resistance which was contrary to the anticipated thermal response of animals.« less

  17. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    PubMed Central

    Ellis, Stephanie J.; Lostchuck, Emily; Goult, Benjamin T.; Bouaouina, Mohamed; Fairchild, Michael J.; López-Ceballos, Pablo; Calderwood, David A.; Tanentzapf, Guy

    2014-01-01

    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. PMID:25393120

  18. Simultaneous optical and meteor head echo measurements using the Middle Atmosphere Alomar Radar System (MAARSY): Data collection and preliminary analysis

    NASA Astrophysics Data System (ADS)

    Brown, P.; Stober, G.; Schult, C.; Krzeminski, Z.; Cooke, W.; Chau, J. L.

    2017-07-01

    The initial results of a two year simultaneous optical-radar meteor campaign are described. Analysis of 105 double-station optical meteors having plane of sky intersection angles greater than 5° and trail lengths in excess of 2 km also detected by the Middle Atmosphere Alomar Radar System (MAARSY) as head echoes was performed. These events show a median deviation in radiants between radar and optical determinations of 1.5°, with 1/3 of events having radiant agreement to less than one degree. MAARSY tends to record average speeds roughly 0.5 km/s and 1.3 km higher than optical records, in part due to the higher sensitivity of MAARSY as compared to the optical instruments. More than 98% of all head echoes are not detected with the optical system. Using this non-detection ratio and the known limiting sensitivity of the cameras, we estimate that the limiting meteoroid detection mass of MAARSY is in the 10-9-10-10 kg (astronomical limiting meteor magnitudes of +11 to +12) appropriate to speeds from 30 to 60 km/s. There is a clear trend of higher peak RCS for brighter meteors between 35 and -30 dBsm. For meteors with similar magnitudes, the MAARSY head echo radar cross-section is larger at higher speeds. Brighter meteors at fixed heights and similar speeds have consistently, on average, larger RCS values, in accordance with established scattering theory. However, our data show RCS ∝ v/2, much weaker than the normally assumed RCS ∝ v3, a consequence of our requiring head echoes to also be detectable optically. Most events show a smooth variation of RCS with height broadly following the light production behavior. A significant minority of meteors show large variations in RCS relative to the optical light curve over common height intervals, reflecting fragmentation or possibly differential ablation. No optically detected meteor occurring in the main radar beam and at times when the radar was collecting head echo data went unrecorded by MAARSY. Thus there does not appear to be any large scale bias in MAARSY head echo detections for the (comparatively) larger optical events in our dataset, even at very low speeds.

  19. Combined influence of vergence and eye position on three-dimensional vestibulo-ocular reflex in the monkey.

    PubMed

    Misslisch, H; Hess, B J M

    2002-11-01

    This study examined two kinematical features of the rotational vestibulo-ocular reflex (VOR) of the monkey in near vision. First, is there an effect of eye position on the axes of eye rotation during yaw, pitch and roll head rotations when the eyes are converged to fixate near targets? Second, do the three-dimensional positions of the left and right eye during yaw and roll head rotations obey the binocular extension of Listing's law (L2), showing eye position planes that rotate temporally by a quarter as far as the angle of horizontal vergence? Animals fixated near visual targets requiring 17 or 8.5 degrees vergence and placed at straight ahead, 20 degrees up, down, left, or right during yaw, pitch, and roll head rotations at 1 Hz. The 17 degrees vergence experiments were performed both with and without a structured visual background, the 8.5 degrees vergence experiments with a visual background only. A 40 degrees horizontal change in eye position never influenced the axis of eye rotation produced by the VOR during pitch head rotation. Eye position did not affect the VOR eye rotation axes, which stayed aligned with the yaw and roll head rotation axes, when torsional gain was high. If torsional gain was low, eccentric eye positions produced yaw and roll VOR eye rotation axes that tilted somewhat in the directions predicted by Listing's law, i.e., with or opposite to gaze during yaw or roll. These findings were seen in both visual conditions and in both vergence experiments. During yaw and roll head rotations with a 40 degrees vertical change in gaze, torsional eye position followed on average the prediction of L2: the left eye showed counterclockwise (ex-) torsion in down gaze and clockwise (in-) torsion in up gaze and vice versa for the right eye. In other words, the left and right eye's position plane rotated temporally by about a quarter of the horizontal vergence angle. Our results indicate that torsional gain is the central mechanism by which the brain adjusts the retinal image stabilizing function of the VOR both in far and near vision and the three dimensional eye positions during yaw and roll head rotations in near vision follow on average the predictions of L2, a kinematic pattern that is maintained by the saccadic/quick phase system.

  20. Mild traumatic brain injury: a risk factor for neurodegeneration

    PubMed Central

    2010-01-01

    Recently, it has become clear that head trauma can lead to a progressive neurodegeneration known as chronic traumatic encephalopathy. Although the medical literature also implicates head trauma as a risk factor for Alzheimer's disease, these findings are predominantly based on clinical diagnostic criteria that lack specificity. The dementia that follows head injuries or repetitive mild trauma may be caused by chronic traumatic encephalopathy, alone or in conjunction with other neurodegenerations (for example, Alzheimer's disease). Prospective longitudinal studies of head-injured individuals, with neuropathological verification, will not only improve understanding of head trauma as a risk factor for dementia but will also enhance treatment and prevention of a variety of neurodegenerative diseases. PMID:20587081

Top