Science.gov

Sample records for head volume coil

  1. A microstrip transmission line volume coil for human head MR imaging at 4T.

    PubMed

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2003-04-01

    A high-frequency RF volume coil based on the use of microstrip transmission line (MTL) has been developed for in vivo 1H MR applications on the human head at 4T. This coil is characterized by major advantages: (i) completely distributed coil circuit, (ii) high-quality factor (Q), (iii) simple coil structure, and (iv) better sensitivity and less signal-intensity variation in the MR image of the human head compared with an RF shielded birdcage coil of similar coil size. The proposed MTL volume coil does not require additional RF shielding for preventing Q degradation from radiation losses due to the unique MTL structure; thus, it provides a maximal useable space inside the volume coil when compared with most volume coils available at high fields with the same overall coil size. The intrinsic B(1) distribution of the MTL volume coil effectively compensates for the dielectric resonance effect at 4T and improves the signal homogeneity in human head MR images in the transaxial planes. The results of this study demonstrate that the MTL volume coil design provides an efficient and simple solution to RF volume coil design for human MR studies at high fields.

  2. Comparison of volume, four- and eight-channel head coils using standard and parallel imaging.

    PubMed

    Gizewski, Elke R; Maderwald, Stefan; Wanke, Isabel; Goehde, Susanne; Forsting, Michael; Ladd, Mark E

    2005-08-01

    Array coils can potentially offer increased signal-to-noise ratio (SNR) over standard coils adjacent to the array elements, while preserving the SNR at the center of the volume. The SNR advantage should theoretically increase with the number of array elements. Parallel acquisition techniques (PAT), on the other hand, can benefit acquisition times or spatial resolution at a cost to SNR as well as image quality. This study examines the question of whether SNR and image quality are still acceptable with two different array coils (four and eight channels) in conjunction with PAT when compared to standard imaging with a volume coil. All imaging was on a 1.5 T MR scanner. T2-weighted, FLAIR, diffusion-weighted, and time of flight (TOF) angiography images were performed with and without PAT in a phantom and in ten healthy volunteers. The phantom measurements demonstrated superior SNR for the eight-channel coil versus the four-channel and standard head coils. Using the eight-channel head coil for in vivo imaging, image quality with PAT (acceleration factor=2) was scored similar to images without PAT using the volume coil. The four-channel head coil suffered from inhomogeneity, lower SNR and poorer image quality when using PAT compared to standard imaging with the volume head coil. Both the in vivo and the phantom results indicate that the eight-channel head coil should be used for the highest quality brain images; this coil can be combined with PAT sequences for shorter acquisition time without a significant decrease in image quality relative to a volume coil without PAT.

  3. 4 T Split TEM Volume Head and Knee Coils for Improved Sensitivity and Patient Accessibility

    PubMed Central

    Avdievich, Nikolai I.; Bradshaw, Ken; Lee, Jing-Huei; Kuznetsov, Andrey M.; Hetherington, Hoby P.

    2009-01-01

    Split RF coils offer improved patient access by eliminating the need for the coil to be slid over the region of interest. For unshielded birdcage coils, the presence of end ring currents necessitates a direct electrical connection between two halves of the coil. For high-field (>3T) shielded birdcage coils, both the shield and the coil must be split and reliably connected electrically. This problem can be circumvented by the use of split TEM volume coils. Since the elements of a TEM coil are coupled inductively, no direct electrical connection between the halves is necessary. In this work we demonstrate that the effects of splitting the shield for head and knee TEMs can be compensated for, and performance retained. For the knee, the improved access allowed the coil diameter to be reduced, enhancing the sensitivity by 15–20 %. PMID:17533142

  4. 4T split TEM volume head and knee coils for improved sensitivity and patient accessibility.

    PubMed

    Avdievich, Nikolai I; Bradshaw, Ken; Lee, Jing-Huei; Kuznetsov, Andrey M; Hetherington, Hoby P

    2007-08-01

    Split RF coils offer improved patient access by eliminating the need for the coil to be slid over the region of interest. For unshielded birdcage coils, the presence of end ring currents necessitates a direct electrical connection between two halves of the coil. For high-field (>3T) shielded birdcage coils, both the shield and the coil must be split and reliably connected electrically. This problem can be circumvented by the use of split TEM volume coils. Since the elements of a TEM coil are coupled inductively, no direct electrical connection between the halves is necessary. In this work we demonstrate that the effects of splitting the shield for head and knee TEMs can be compensated for, and performance retained. For the knee, the improved access allowed the coil diameter to be reduced, enhancing the sensitivity by 15-20%.

  5. A MRI rotary phased array head coil.

    PubMed

    Li, Bing Keong; Weber, Ewald; Crozier, Stuart

    2013-08-01

    A new rotary phased array (RPA) head coil that can provide homogenous brain images comparable to volumetric radiofrequency coils is proposed for magnetic resonance brain imaging applications. The design of the RPA head coil is a departure from conventional circumferential array design method, as coil elements of the RPA head coil have a "paddle-like" structure consisting of a pair of main conductors located on opposite sides, inserted equi-angularly around and over the head. A prototype 2T receive-only 4-element RPA head coil was constructed and experimentally tested against a conventional receive-only 4-element phased array head coil and a commercial receive-only quadrature birdcage head coil. Homogenous phantom images acquired by the RPA head coil show that signal intensity deep at the center of the phantom was improved as compared to the conventional phased array head coil and this improvement allow the RPA head coil to acquire homogenous brain images similar to brain images acquired with the birdcage head coil. In addition, partial parallel imaging was used in conjunction with the RPA head coil to enable rapid imaging.

  6. Heating induced near deep brain stimulation lead electrodes during magnetic resonance imaging with a 3 T transceive volume head coil.

    PubMed

    Shrivastava, Devashish; Abosch, Aviva; Hughes, John; Goerke, Ute; DelaBarre, Lance; Visaria, Rachana; Harel, Noam; Vaughan, J Thomas

    2012-09-07

    Heating induced near deep brain stimulation (DBS) lead electrodes during magnetic resonance imaging with a 3 T transceive head coil was measured, modeled, and imaged in three cadaveric porcine heads (mean body weight = 85.47 ± 3.19 kg, mean head weight = 5.78 ± 0.32 kg). The effect of the placement of the extra-cranial portion of the DBS lead on the heating was investigated by looping the extra-cranial lead on the top, side, and back of the head, and placing it parallel to the coil's longitudinal axial direction. The heating was induced using a 641 s long turbo spin echo sequence with the mean whole head average specific absorption rate of 3.16 W kg(-1). Temperatures were measured using fluoroptic probes at the scalp, first and second electrodes from the distal lead tip, and 6 mm distal from electrode 1 (T(6 mm)). The heating was modeled using the maximum T(6 mm) and imaged using a proton resonance frequency shift-based MR thermometry method. Results showed that the heating was significantly reduced when the extra-cranial lead was placed in the longitudinal direction compared to the other placements (peak temperature change = 1.5-3.2 °C versus 5.1-24.7 °C). Thermal modeling and MR thermometry may be used together to determine the heating and improve patient safety online.

  7. Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil.

    PubMed

    Nagy, Zoltan; Oliver-Taylor, Aaron; Kuehne, Andre; Goluch, Sigrun; Weiskopf, Nikolaus

    2017-01-01

    The transmit-receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil.

  8. Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil

    PubMed Central

    Nagy, Zoltan; Oliver-Taylor, Aaron; Kuehne, Andre; Goluch, Sigrun; Weiskopf, Nikolaus

    2017-01-01

    The transmit–receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil. PMID:28184184

  9. Heating Induced near Deep Brain Stimulation Lead Electrodes during Magnetic Resonance Imaging with a 3T Transceive Volume Head Coil

    PubMed Central

    Shrivastava, Devashish; Abosch, Aviva; Hughes, John; Goerke, Ute; DelaBarre, Lance; Visaria, Rachana; Harel, Noam; Vaughan, J. Thomas

    2012-01-01

    Heating induced near deep brain stimulation (DBS) lead electrodes during MRI with a 3T transceive head coil was measured, modeled, and imaged in three cadaveric porcine heads (mean body weight = 85.47±3.19 kg, mean head weight = 5.78±0.32 kg). The effect of the placement of the extra-cranial portion of the DBS lead on the heating was investigated by looping the extra-cranial lead on the top, side, and back of the head; and placing it parallel to the coil’s longitudinal axial direction. The heating was induced using a 641 s long turbo spin echo sequence with the mean whole head average SAR of 3.16 W/kg. Temperatures were measured using fluoroptic probes at the scalp, first and second electrodes from the distal lead tip, and 6 mm distal from electrode 1 (T6mm). The heating was modeled using the maximum T6mm and imaged using a proton resonance frequency shift based MR thermometry method. Results showed that the heating was significantly reduced when the extra-cranial lead was placed in the longitudinal direction compared to the other placements (peak temperature change = 1.5–3.2 °C vs 5.1–24.7 °C). Thermal modeling and MR thermometry may be used together to determine the heating and improve patient safety online. PMID:22892760

  10. Eight-channel phased array coil and detunable TEM volume coil for 7 T brain imaging.

    PubMed

    Wiggins, G C; Potthast, A; Triantafyllou, C; Wiggins, C J; Wald, L L

    2005-07-01

    An eight-channel receive-only brain coil and table-top detunable volume transmit coil were developed and tested at 7 T for human imaging. Optimization of this device required attention to sources of interaction between the array elements, between the transmit and receive coils and minimization of common mode currents on the coaxial cables. Circular receive coils (85 mm dia.) were designed on a flexible former to fit tightly around the head and within a 270-mm diameter TEM transmit volume coil. In the near cortex, the array provided a fivefold increase in SNR compared to a TEM transmit-receive coil, a gain larger than that seen in comparable coils at 3 T. The higher SNR gain is likely due to strong dielectric effects, which cause the volume coil to perform poorly in the cortex compared to centrally. The sensitivity and coverage of the array is demonstrated with high-resolution images of the brain cortex.

  11. A 16-element phased-array head coil.

    PubMed

    Porter, J R; Wright, S M; Reykowski, A

    1998-08-01

    Volume-array coils offer increased signal-to-noise ratio (SNR) over standard volume coils near the array elements while preserving the SNR at the center of the volume. As the number of array elements is increased, the SNR advantage as well as the complexity of actually constructing the array increases also. In this study, a 16-channel receive-only array for imaging of the brain is demonstrated and compared to a circularly polarized (CP) head coil of similar shape and diameter. The array was formed from a 2 x 8 grid of square elements placed on a cylindrical form. Mutual coupling was minimized by a combination of overlapping element placement and current-reducing matching networks. Simultaneous data acquisition from the 16 individual elements was performed using a four-channel receiver system with each channel time domain multiplexed by a factor of 4. Theoretical and experimental comparisons between the array and a standard CP head coil show that the array offers an increase in SNR of nearly a factor of 3 near its surface while maintaining a comparable SNR to that of the CP head coil in the center of the region of interest.

  12. 4 T Actively-Detuneable Double-Tuned 1H/31P Head Volume Coil and Four-Channel 31P Phased Array for Human Brain Spectroscopy

    PubMed Central

    Avdievich, N.I.; Hetherington1, H.P.

    2009-01-01

    Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning (31P/ 1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/1H TEM volume transmit/ four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Three-fold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil. PMID:17379554

  13. 4 T Actively detuneable double-tuned 1H/ 31P head volume coil and four-channel 31P phased array for human brain spectroscopy

    NASA Astrophysics Data System (ADS)

    Avdievich, N. I.; Hetherington, H. P.

    2007-06-01

    Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning ( 31P/ 1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/ 1H TEM volume transmit/four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Threefold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil.

  14. New head gradient coil design and construction techniques.

    PubMed

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2014-05-01

    To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. The use of the boundary element method to solve for a gradient coil wire pattern on an arbitrary surface allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design was combined with robust manufacturing techniques and novel cooling methods. The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. The ability to adapt an electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. Copyright © 2013 Wiley Periodicals, Inc.

  15. New head gradient coil design and construction techniques

    PubMed Central

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2013-01-01

    Purpose To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. Materials and Methods The use of the Boundary Element Method to solve for a gradient coil wire pattern on an arbitrary surface has allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design has been combined with robust manufacturing techniques and novel cooling methods. Results The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. Conclusion The ability to adapt your electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. PMID:24123485

  16. Coil optimisation for transcranial magnetic stimulation in realistic head geometry.

    PubMed

    Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J

    Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The design and test of a new volume coil for high field imaging.

    PubMed

    Wen, H; Chesnick, A S; Balaban, R S

    1994-10-01

    A major problem in the development of high field (> 100 MHz) large volume (> 6000 cm3) MR coils is the interaction of the coil with the subject as well as the radiation loss to the environment. To reduce subject perturbation of the coil resonance modes, a volume coil that uses an array of freely rotating resonant elements radially mounted between two concentric cylinders was designed for operation at 170 MHz. Substantial electromagnetic energy is stored in the resonant elements outside the sample region without compromising the efficiency of the overall coil. This stored energy reduces the effect of the subject on the circuit and maintains a high Q, facilitating the tuning and matching of the coil. The unloaded Q of the coil is 680; when loaded with a head, it was 129. The ratio of 5.3 of the unloaded to loaded Q supports the notion that the efficiency of the coil was maintained in comparison with previous designs. The power requirement and signal-to-noise performance are significantly improved. The coil is tuned by a mechanism that imparts the same degree of rotation on all of the elements simultaneously, varying their degree of mutual coupling and preserving the overall coil symmetry. A thin radiofrequency shield is an integral part of the coil to reduce the radiation effect, which is a significant loss mechanism at high fields. MR images were collected at 4T using this coil design with high sensitivity and B1 homogeneity.

  18. Improvement of SNR and acquisition acceleration using a 32-channel head coil compared to a 12-channel head coil at 3T.

    PubMed

    Reiss-Zimmermann, Martin; Gutberlet, Marcel; Köstler, Herbert; Fritzsch, Dominik; Hoffmann, Karl-Titus

    2013-07-01

    Magnetic resonance imaging (MRI) techniques continue to improve in manifold ways. Besides field strength and sequence optimization, technical advances in coil design and sensitivity yield to increase the signal detection and therefore improve image quality. To evaluate the performance of signal-to-noise ratio (SNR) and parallel acquisition technique (PAT) acceleration of a dedicated 32-channel head coil compared with a standard 12-channel head coil. In a clinical 3T setting, spatial resolved SNR values for unaccelerated imaging and PAT with acceleration factors of 2-6 of a 32-channel head coil were evaluated in relation to a 12-channel head coil. SNR was determined quantitatively using proton-density-weighted in-vivo examinations in five healthy volunteers. Quantitative SNR maps for unaccelerated and PAT imaging were calculated using unfiltered MR raw data. Up to three-fold higher SNR values were achieved with the 32-channel head coil, which diminished towards the center to an increase of 40% compared with the 12-channel head coil. When using PAT, the 32-channel head coil resulted in a lower spatial-dependent quantitative noise enhancement, varying between 0% at R = 2 and 33% at R = 5. The 32-channel head coil provided superior SNR both with and without PAT compared with a 12-channel head coil, especially close to the brain surface. Using PAT, the unavoidable noise enhancement is diminished up to acceleration factors of 6 for the 32-channel head coil. Therefore, the 32-channel head coil is considered as a preferable tool for high-resolution neuroradiological imaging.

  19. On the SAR and field inhomogeneity of birdcage coils loaded with the human head.

    PubMed

    Jin, J; Chen, J

    1997-12-01

    Birdcage coils are widely used as a radiofrequency (RF) resonator in magnetic resonance imaging (MRI) because of their capability to produce a highly homogeneous B1 field over a large volume within the coil. When they are employed for high-frequency MRI, the interaction between the electromagnetic field and the object to be imaged deteriorates the B1-field homogeneity and increases the specific absorption rate (SAR) in the object. To investigate this problem, a finite-element method (FEM) is developed to analyze the SAR and the B1 field in a two-dimensional (2D) model of a birdcage coil loaded with a 2D model of a human head. The electric field, magnetic field, and SAR distributions are shown, and a comprehensive study is carried out for both linear and quadrature birdcage coils at 64, 128, 171, and 256 MHz. It is shown that to generate the same value of the B1 field, the SAR is increased significantly with the frequency, and for the same imaging method the SAR produced by a quadrature coil is significantly lower than that of a linear coil. It is also shown that the B1-field inhomogeneity is increased significantly with the frequency.

  20. Design and numerical evaluation of a volume coil array for parallel MR imaging at ultrahigh fields

    PubMed Central

    Pang, Yong; Wong, Ernest W.H.; Yu, Baiying

    2014-01-01

    In this work, we propose and investigate a volume coil array design method using different types of birdcage coils for MR imaging. Unlike the conventional radiofrequency (RF) coil arrays of which the array elements are surface coils, the proposed volume coil array consists of a set of independent volume coils including a conventional birdcage coil, a transverse birdcage coil, and a helix birdcage coil. The magnetic fluxes of these three birdcage coils are intrinsically cancelled, yielding a highly decoupled volume coil array. In contrast to conventional non-array type volume coils, the volume coil array would be beneficial in improving MR signal-to-noise ratio (SNR) and also gain the capability of implementing parallel imaging. The volume coil array is evaluated at the ultrahigh field of 7T using FDTD numerical simulations, and the g-factor map at different acceleration rates was also calculated to investigate its parallel imaging performance. PMID:24649435

  1. Improved transcranial magnetic stimulation coil design with realistic head modeling

    NASA Astrophysics Data System (ADS)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2013-03-01

    We are investigating Transcranial magnetic stimulation (TMS) as a noninvasive technique based on electromagnetic induction which causes stimulation of the neurons in the brain. TMS can be used as a pain-free alternative to conventional electroconvulsive therapy (ECT) which is still widely implemented for treatment of major depression. Development of improved TMS coils capable of stimulating subcortical regions could also allow TMS to replace invasive deep brain stimulation (DBS) which requires surgical implantation of electrodes in the brain. Our new designs allow new applications of the technique to be established for a variety of diagnostic and therapeutic applications of psychiatric disorders and neurological diseases. Calculation of the fields generated inside the head is vital for the use of this method for treatment. In prior work we have implemented a realistic head model, incorporating inhomogeneous tissue structures and electrical conductivities, allowing the site of neuronal activation to be accurately calculated. We will show how we utilize this model in the development of novel TMS coil designs to improve the depth of penetration and localization of stimulation produced by stimulator coils.

  2. An improved asymmetric gradient coil design for high-resolution MRI head imaging.

    PubMed

    Tang, Fangfang; Liu, Feng; Freschi, Fabio; Li, Yu; Repetto, Maurizio; Giaccone, Luca; Wang, Yaohui; Crozier, Stuart

    2016-12-21

    For head magnetic resonance imaging, local gradient coils are often used to achieve high solution images. To accommodate the human head and shoulder, the head gradient coils are usually designed in an asymmetric configuration, allowing the region-of-uniformity (ROU) close to the coil's patient end. However, the asymmetric configuration leads to technical difficulties in maintaining a high gradient performance for the insertable head coil with very limited space. In this work, we present a practical design configuration of an asymmetric insertable gradient head coil offering an improved performance. In the proposed design, at the patient end, the primary and secondary coils are connected using an additional radial surface, thus allowing the coil conductors distributed on the flange to ensure an improvement in the coil performance. At the service end, the primary and shielding coils are not connected, to permit access to shim trays, cooling system piping, cabling, and so on. The new designs are compared with conventional coil configurations and the simulation results show that, with a similar field quality in the ROU, the proposed coil pattern has improved construction characteristics (open service end, well-distributed wire pattern) and offers a better coil performance (lower inductance, higher efficiency, etc) than conventional head coil configurations.

  3. An improved asymmetric gradient coil design for high-resolution MRI head imaging

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Liu, Feng; Freschi, Fabio; Li, Yu; Repetto, Maurizio; Giaccone, Luca; Wang, Yaohui; Crozier, Stuart

    2016-12-01

    For head magnetic resonance imaging, local gradient coils are often used to achieve high solution images. To accommodate the human head and shoulder, the head gradient coils are usually designed in an asymmetric configuration, allowing the region-of-uniformity (ROU) close to the coil’s patient end. However, the asymmetric configuration leads to technical difficulties in maintaining a high gradient performance for the insertable head coil with very limited space. In this work, we present a practical design configuration of an asymmetric insertable gradient head coil offering an improved performance. In the proposed design, at the patient end, the primary and secondary coils are connected using an additional radial surface, thus allowing the coil conductors distributed on the flange to ensure an improvement in the coil performance. At the service end, the primary and shielding coils are not connected, to permit access to shim trays, cooling system piping, cabling, and so on. The new designs are compared with conventional coil configurations and the simulation results show that, with a similar field quality in the ROU, the proposed coil pattern has improved construction characteristics (open service end, well-distributed wire pattern) and offers a better coil performance (lower inductance, higher efficiency, etc) than conventional head coil configurations.

  4. Coiled-coil unwinding at the smooth muscle myosin head-rod junction is required for optimal mechanical performance.

    PubMed Central

    Lauzon, A M; Fagnant, P M; Warshaw, D M; Trybus, K M

    2001-01-01

    Myosin II has two heads that are joined together by an alpha-helical coiled-coil rod, which can separate in the region adjacent to the head-rod junction (Trybus, K. M. 1994. J. Biol. Chem. 269:20819-20822). To test whether this flexibility at the head-rod junction is important for the mechanical performance of myosin, we used the optical trap to measure the unitary displacements of heavy meromyosin constructs in which a stable coiled-coil sequence derived from the leucine zipper was introduced into the myosin rod. The zipper was positioned either immediately after the heads (0-hep zip) or following 15 heptads of native sequence (15-hep zip). The unitary displacement (d) decreased from d = 9.7 +/- 0.6 nm for wild-type heavy meromyosin (WT HMM) to d = 0.1 +/- 0.3 nm for the 0-hep zip construct (mean +/- SE). Native values were restored in the 15-hep zip construct (d = 7.5 +/- 0.7 nm). We conclude that flexibility at the myosin head-rod junction, which is provided by an unstable coiled-coil region, is essential for optimal mechanical performance. PMID:11259302

  5. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil.

    PubMed

    Van de Moortele, Pierre-François; Akgun, Can; Adriany, Gregor; Moeller, Steen; Ritter, Johannes; Collins, Christopher M; Smith, Michael B; Vaughan, J Thomas; Uğurbil, Kāmil

    2005-12-01

    RF behavior in the human head becomes complex at ultrahigh magnetic fields. A bright center and a weak periphery are observed in images obtained with volume coils, while surface coils provide strong signal in the periphery. Intensity patterns reported with volume coils are often loosely referred to as "dielectric resonances," while modeling studies ascribe them to superposition of traveling waves greatly dampened in lossy brain tissues, raising questions regarding the usage of this term. Here we address this question experimentally, taking full advantage of a transceiver coil array that was used in volume transmit mode, multiple receiver mode, or single transmit surface coil mode. We demonstrate with an appropriately conductive sphere phantom that destructive interferences are responsible for a weak B(1) in the periphery, without a significant standing wave pattern. The relative spatial phase of receive and transmit B(1) proved remarkably similar for the different coil elements, although with opposite rotational direction. Additional simulation data closely matched our phantom results. In the human brain the phase patterns were more complex but still exhibited similarities between coil elements. Our results suggest that measuring spatial B(1) phase could help, within an MR session, to perform RF shimming in order to obtain more homogeneous B(1) in user-defined areas of the brain.

  6. Eight channel transmit array volume coil using on-coil radiofrequency current sources

    PubMed Central

    Kurpad, Krishna N.; Boskamp, Eddy B.

    2014-01-01

    Background At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. Methods An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. Results B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. Conclusions Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner. PMID:24834418

  7. Eight channel transmit array volume coil using on-coil radiofrequency current sources.

    PubMed

    Kurpad, Krishna N; Boskamp, Eddy B; Wright, Steven M

    2014-04-01

    At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner.

  8. Quadrature RF Coil for In Vivo Brain MRI of a Macaque Monkey in a Stereotaxic Head Frame

    PubMed Central

    ROOPNARIANE, COLIN A.; RYU, YEUN-CHUL; TOFIGHI, MOHAMMAD-REZA; MILLER, PATTI A.; OH, SUKHOON; WANG, JIANLI; PARK, BU SIK; ANSEL, LUKAS; LIEU, CHRISTOPHER A.; SUBRAMANIAN, THYAGARAJAN; YANG, QING X.; COLLINS, CHRISTOPHER M.

    2012-01-01

    We present a quadrature volume coil designed for brain imaging of a macaque monkey fixed in a sphinx position (facing down the bore) within a stereotactic frame at 3 T, where the position of the monkey and presence of the frame preclude use of existing coils. Requirements include the ability to position and remove the coil without disturbing the position of the monkey in the frame. A saddle coil and a solenoid were combined on a modified cylindrical former and connected in quadrature as to produce a homogeneous circularly polarized field throughout the brain. To allow the loops of the saddle coil to encompass the ear posts, partial disassembly and reassembly were facilitated by embedding pin and socket contacts into separate pieces of the former. Coil design included simulation of the electromagnetic fields for the coil containing a 3D model of a monkey’s head. The resulting coil produced adequate homogeneity and signal-to-noise ratio throughout the brain. PMID:22611340

  9. An inverse design of an open, head/neck RF coil for MRI.

    PubMed

    Lawrence, Ben G; Crozier, Stuart; Cowin, Gary; Yau, Desmond D

    2002-09-01

    Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.

  10. Interactions between head motion and coil sensitivity in accelerated fMRI.

    PubMed

    Faraji-Dana, Z; Tam, F; Chen, J J; Graham, S J

    2016-09-01

    Parallel imaging is widely adopted to accelerate functional MRI (fMRI) data acquisition, through various strategies that involve multi-channel receiver coils. However, the non-uniform spatial sensitivity of multi-channel receiver coils may introduce unwanted artifacts when head motion occurs during the few-minute long fMRI scans. Although prospective correction provides a promising solution for alleviating the head motion artifacts in fMRI, the relative position of the fixed multi-channel receiver coils moves in the moving reference frame, potentially resulting in artifactual signal. We used numerical simulations to investigate this effect on fMRI using two parallel imaging schemes: sensitivity encoding (SENSE) and generalized autocalibrating partially parallel acquisitions (GRAPPA) with acceleration factors 2 and 4, towards characterizing the regime over which parallel-imaging fMRI with prospective motion correction will benefit from updating coil sensitivities to reflect relative positional change between the head and the receiver coil. Moreover, six subjects were scanned with acceleration factors 2 and 4 while performing a simple finger-tapping task with and without overt head motion. Updating coil sensitivities showed significant positive impact on standard deviation and activation maps in presence of overt head motion compared to that obtained with no overt head motion. The parallel imaging fMRI with updated coil sensitivity maps were compared to that with the coil sensitivity maps acquired at the reference position. Head motion in relation to a fixed multi-channel coil can adversely affect the quality of parallel imaging fMRI data; and updating coil sensitivity map can mitigate this effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A fast parallel imaging rotary phased array head coil with improved sensitivity profile deep in the center of the brain.

    PubMed

    Weber, Ewald; Li, Bing Keong; Liu, Feng; Crozier, Stuart

    2007-01-01

    A new class of a receive-only 2T 4-element rotary phased array head coil has been proposed for MRI brain imaging applications. Coil elements of the rotary phased array head coil have "paddle-like" structures consisting of a pair of main conductors located on opposite sides, inserted equi-angularly around and over the head. Using such a unique design, the proposed rotary head coil can improve the sensitivity deep at the centre of the brain and produces highly homogeneous brain images. The rotary phased array head coil is numerically modeled using a hybrid MoM/FEM method and a prototype was constructed accordingly. In vivo MR brain imaging using the prototype rotary phased array head coil has been undertaken and the acquired brain images show high homogeneity as anticipated. In addition, parallel imaging, VD-GRAPPA, is used in conjunction with the rotary phased array head coil to enable rapid imaging.

  12. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation.

    PubMed

    Wiggins, Graham C; Polimeni, Jonathan R; Potthast, Andreas; Schmitt, Melanie; Alagappan, Vijay; Wald, Lawrence L

    2009-09-01

    The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive-only phased-array head coil with 96 receive elements constructed on a close-fitting helmet-shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal-to-noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g-factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32-channel array built on an identical helmet-shaped former and to a larger commercial 12-channel head coil. The 96-channel coil provided substantial SNR gains in the distal cortex compared to the 12- and 32-channel coils. The central SNR for the 96-channel coil was similar to the 32-channel coil for optimum SNR combination and 20% lower for root-sum-of-squares combination. There was a significant reduction in the maximum g-factor for 96 channels compared to 32; for example, the 96-channel maximum g-factor was 65% of the 32-channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images.

  13. 96-Channel Receive-Only Head Coil for 3 Tesla: Design Optimization and Evaluation

    PubMed Central

    Wiggins, Graham C.; Polimeni, Jonathan R.; Potthast, Andreas; Schmitt, Melanie; Alagappan, Vijay; Wald, Lawrence L.

    2010-01-01

    The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive-only phased-array head coil with 96 receive elements constructed on a close-fitting helmet-shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal-to-noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g-factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32-channel array built on an identical helmet-shaped former and to a larger commercial 12-channel head coil. The 96-channel coil provided substantial SNR gains in the distal cortex compared to the 12- and 32-channel coils. The central SNR for the 96-channel coil was similar to the 32-channel coil for optimum SNR combination and 20% lower for root-sum-of-squares combination. There was a significant reduction in the maximum g-factor for 96 channels compared to 32; for example, the 96-channel maximum g-factor was 65% of the 32-channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images. PMID:19623621

  14. A volume microstrip RF coil for MRI microscopy.

    PubMed

    Jasiński, Krzysztof; Młynarczyk, Anna; Latta, Peter; Volotovskyy, Vyacheslav; Węglarz, Władyslaw P; Tomanek, Bogusław

    2012-01-01

    Quantitative magnetic resonance imaging (MRI) studies of small samples such as a single cell or cell clusters require application of radiofrequency (RF) coils that provide homogenous B(1) field distribution and high signal-to-noise ratio (SNR). We present a novel design of an MRI RF volume microcoil based on a microstrip structure. The coil consists of two parallel microstrip elements conducting RF currents in the opposite directions, thus creating homogenous RF field within the space between the microstrips. The construction of the microcoil is simple, efficient and cost-effective. Theoretical calculations and finite element method simulations were used to optimize the coil geometry to achieve optimal B(1) and SNR distributions within the sample and predict parameters of the coil. The theoretical calculations were confirmed with MR images of a 1-mm-diameter capillary and a plant obtained with the double microstrip RF microcoil at 11.7 T. The in-plane resolution of MR images was 24 μm × 24 μm.

  15. Evaluation of quantitative head impulse testing using search coils versus video-oculography in older individuals.

    PubMed

    Agrawal, Yuri; Schubert, Michael C; Migliaccio, Americo A; Zee, David S; Schneider, Erich; Lehnen, Nadine; Carey, John P

    2014-02-01

    To evaluate the validity of 2D video-oculography (VOG) compared with scleral search coils for horizontal AVOR gain estimation in older individuals. Cross-sectional validation study. Tertiary care academic medical center. Six individuals age 70 and older. Simultaneous eye movement recording with scleral search coil (over right eye) and EyeSeeCam VOG camera (over left eye) during horizontal head impulses. Best estimate search coil and VOG horizontal AVOR gain, presence of compensatory saccades using both eye movement recording techniques. We observed a significant correlation between search coil and VOG best estimate horizontal AVOR gain (r = 0.86, p = 0.0002). We evaluated individual head impulses and found that the shapes of the head movement and eye movement traces from the coil and VOG systems were similar. Specific features of eye movements seen in older individuals, including overt and covert corrective saccades and anticompensatory eye movements, were captured by both the search coil and VOG systems. These data suggest that VOG is a reasonable proxy for search coil eye movement recording in older subjects to estimate VOR gain and the approximate timing of corrective eye movements. VOG offers advantages over the conventional search coil method; it is portable and easy to use, allowing for quantitative VOR estimation in diverse settings such as a routine office-based practice, at the bedside, and potentially in larger scale population analyses.

  16. Echo planar diffusion-weighted imaging: possibilities and considerations with 12- and 32-channel head coils.

    PubMed

    Morelli, John N; Saettele, Megan R; Rangaswamy, Rajesh A; Vu, Lan; Gerdes, Clint M; Zhang, Wei; Ai, Fei

    2012-01-01

    Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss) and an approach to readout-segmented (rs) echo planar imaging (EPI) are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  17. Comparison of a 32-channel head coil and a 2-channel surface coil for MR imaging of the temporomandibular joint at 3.0 T

    PubMed Central

    Spinner, Georg; Wyss, Michael; Filli, Lukas; Erni, Stefan; Ettlin, Dominik A; Ulbrich, Erika J; Kuhn, Felix P; Gallo, Luigi M; Andreisek, Gustav

    2016-01-01

    Objective: To quantitatively and qualitatively compare MRI of the temporomandibular joint (TMJ) using a standard TMJ surface coil and a head coil at 3.0 T. Methods: 22 asymptomatic volunteers were MR imaged using a 2-channel surface coil (standard TMJ coil) and a 32-channel head coil at 3.0 T (Philips Ingenia; Philips Healthcare, Netherlands). Imaging protocol consisted of an oblique sagittal proton density weighted turbo spin echo sequence (repetition time/echo time, 2700/26 ms). For quantitative assessment, a spherical phantom was imaged using the same sequence including a noise scan and a B1+ scan. Signal-to-noise ratio (SNR) maps and B1+ maps were calculated on a voxelwise basis. For qualitative evaluation, all volunteers underwent MRI of both TMJs with the jaw in the closed position. Two independent blinded readers assessed accuracy of TMJ anatomical representation and overall image quality on a 5-point scale. Quantitative and qualitative measurements were compared between coils using t-tests and Wilcoxon signed-rank test, respectively. Results: Quantitative analysis showed similar B1+ and significantly higher SNR for the head coil than the TMJ surface coil. Qualitative analysis showed significantly better visibility and delineation of clinically relevant anatomical structures of the TMJ, including the articular disc, bilaminar zone and lateral pterygoid muscle. Furthermore, better overall image quality was observed for the head coil than for the TMJ surface coil. Conclusions: A 32-channel head coil is preferable to a standard 2-channel TMJ surface coil when imaging the TMJ at 3.0 T, because it yields higher SNR, thus increasing accuracy of the anatomical representation of the TMJ. PMID:26837671

  18. Comparison of a 32-channel head coil and a 2-channel surface coil for MR imaging of the temporomandibular joint at 3.0 T.

    PubMed

    Manoliu, Andrei; Spinner, Georg; Wyss, Michael; Filli, Lukas; Erni, Stefan; Ettlin, Dominik A; Ulbrich, Erika J; Kuhn, Felix P; Gallo, Luigi M; Andreisek, Gustav

    2016-01-01

    To quantitatively and qualitatively compare MRI of the temporomandibular joint (TMJ) using a standard TMJ surface coil and a head coil at 3.0 T. 22 asymptomatic volunteers were MR imaged using a 2-channel surface coil (standard TMJ coil) and a 32-channel head coil at 3.0 T (Philips Ingenia; Philips Healthcare, Netherlands). Imaging protocol consisted of an oblique sagittal proton density weighted turbo spin echo sequence (repetition time/echo time, 2700/26 ms). For quantitative assessment, a spherical phantom was imaged using the same sequence including a noise scan and a B1+ scan. Signal-to-noise ratio (SNR) maps and B1+ maps were calculated on a voxelwise basis. For qualitative evaluation, all volunteers underwent MRI of both TMJs with the jaw in the closed position. Two independent blinded readers assessed accuracy of TMJ anatomical representation and overall image quality on a 5-point scale. Quantitative and qualitative measurements were compared between coils using t-tests and Wilcoxon signed-rank test, respectively. Quantitative analysis showed similar B1+ and significantly higher SNR for the head coil than the TMJ surface coil. Qualitative analysis showed significantly better visibility and delineation of clinically relevant anatomical structures of the TMJ, including the articular disc, bilaminar zone and lateral pterygoid muscle. Furthermore, better overall image quality was observed for the head coil than for the TMJ surface coil. A 32-channel head coil is preferable to a standard 2-channel TMJ surface coil when imaging the TMJ at 3.0 T, because it yields higher SNR, thus increasing accuracy of the anatomical representation of the TMJ.

  19. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging.

    PubMed

    Pang, Yong; Xie, Zhentian; Li, Ye; Xu, Duan; Vigneron, Daniel; Zhang, Xiaoliang

    2011-07-28

    In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF) field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD) method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  20. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging

    PubMed Central

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations. PMID:26909652

  1. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging.

    PubMed

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations.

  2. The lung volume reduction coil for the treatment of emphysema: a new therapy in development.

    PubMed

    Klooster, Karin; Ten Hacken, Nick H T; Slebos, Dirk-Jan

    2014-09-01

    Lung volume reduction (LVR) coil treatment is a novel therapy for patients with severe emphysema. In this bilateral bronchoscopic treatment, approximately 10 LVR coils per lobe are delivered under fluoroscopic guidance in two sequential procedures. The LVR coil reduces lung volume by compressing the most destructed areas of the lung parenchyma and restores the lung elastic recoil. Both patients with upper- and lower-lobe predominant emphysema as well as a homogeneous emphysema distribution can be treated. LVR coil treatment results in an improvement of pulmonary function, exercise tolerance and quality of life. The LVR-coil treatment has been evaluated in several European clinical trials since 2008 and received CE mark approval in 2010. Currently, two large multicenter randomized controlled trials are underway in Europe and North America to assess the efficacy and safety of the LVR-coil treatment at 12 months compared with usual care. In this review, we share our experience with the LVR-coil treatment.

  3. Structured light-based motion tracking in the limited view of an MR head coil

    NASA Astrophysics Data System (ADS)

    Erikshøj, M.; Olesen, O. V.; Conradsen, K.; Højgaard, L.; Larsen, R.

    2013-02-01

    A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions of the facial surface. The point clouds are continuously realigned to a reference scan to obtain pose estimates. The system has been tested on a mannequin head performing controlled rotational and translational axial movements within the head coil outside the range of the magnetic field. The RMS of the residual error of the rotation was 0.11° and the RMS difference in the translation with the control system was 0.17 mm, within the trackable range of movement.

  4. On the accurate analysis of vibroacoustics in head insert gradient coils.

    PubMed

    Winkler, Simone A; Alejski, Andrew; Wade, Trevor; McKenzie, Charles A; Rutt, Brian K

    2017-10-01

    To accurately analyze vibroacoustics in MR head gradient coils. A detailed theoretical model for gradient coil vibroacoustics, including the first description and modeling of Lorentz damping, is introduced and implemented in a multiphysics software package. Numerical finite-element method simulations were used to establish a highly accurate vibroacoustic model in head gradient coils in detail, including the newly introduced Lorentz damping effect. Vibroacoustic coupling was examined through an additional modal analysis. Thorough experimental studies were used to validate simulations. Average experimental sound pressure levels (SPLs) and accelerations over the 0-3000 Hz frequency range were 97.6 dB, 98.7 dB, and 95.4 dB, as well as 20.6 g, 8.7 g, and 15.6 g for the X-, Y-, and Z-gradients, respectively. A reasonable agreement between simulations and measurements was achieved. Vibroacoustic coupling showed a coupled resonance at 2300 Hz for the Z-gradient that is responsible for a sharp peak and the highest SPL value in the acoustic spectrum. We have developed and used more realistic multiphysics simulation methods to gain novel insights into the underlying concepts for vibroacoustics in head gradient coils, which will permit improved analyses of existing gradient coils and novel SPL reduction strategies for future gradient coil designs. Magn Reson Med 78:1635-1645, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Calorimetric calibration of head coil SAR estimates displayed on a clinical MR scanner.

    PubMed

    Gorny, Krzysztof R; Bernstein, Matt A; Felmlee, Joel P; Ward, Heidi A; McGee, Kiaran P; Lanners, Diana M; Lee, Kendall H

    2008-05-21

    Calorimetric measurements were performed to determine the average specific absorption rates (SAR) resulting from MRI head examinations. The data were compared with average head coil SAR estimates displayed by the MR scanner in order to refine the imaging protocols used in imaging patients with implanted deep brain stimulators (DBS). The experiments were performed using transmit-receive (TR) head coil on clinical 1.5 T General Electric MR scanners running 11.0 M4 revision software. The average applied SAR was derived from temperature increases measured inside a head phantom, due to deposition of RF energy during MRI scanning with a spin echo imaging sequence. The measurements were repeated for varied levels of RF transmit gain (TG) and analyzed with a range of entered patient weights. The measurements demonstrate that the ratio of the actual average head SAR to the scanner-displayed value (coil correction factor) decreases for decreasing TG or for increasing patient weight and may vary between 0.3 and 2.1. An additional retrospective patient study, however, shows that not all combinations of TG and patient weight are encountered clinically and, instead, TG generally increases with the patient weight. As a result, a much narrower range of coil correction factors (e.g., typically 0.5-1.0) will be encountered in practice. The calorimetric method described in this work could aid the physicians and technologists in refinement of the model-dependent SAR estimates displayed by the MR scanner, and in selection of imaging parameters for MR head examinations within allowable SAR safety levels.

  6. Comparison and evaluation of mouse cardiac MRI acquired with open birdcage, single loop surface and volume birdcage coils.

    PubMed

    Fan, Xiaobing; Markiewicz, Erica J; Zamora, Marta; Karczmar, Gregory S; Roman, Brian B

    2006-12-21

    Although the quality and speed of MR images have vastly improved with the development of novel RF coil technologies, the engineering expertise required to implement them is often not available in many animal in vivo MR laboratories. We present here an open birdcage coil design which is easily constructed with basic RF coil expertise and produces high quality images. The quality and advantages of mouse cardiac MR images acquired with open birdcage coils were evaluated and compared to images acquired with a bent single loop surface, and standard birdcage coils acquired at 4.7 Tesla. Two low pass open birdcage coils, two single loop surface coils, and a low pass volume birdcage coil were constructed and their B(1) distributions were evaluated and compared. The calculated average signal-to-noise ratio for the left ventricular wall was 10, 23 and 32 for the volume birdcage coil, single loop surface coil and open birdcage coil, respectively. The results demonstrate that the open birdcage coil provides greater sensitivity than the volume coil and a higher signal/contrast-to-noise ratio and B(1) homogeneity than the single loop surface coil. The open birdcage coil offers easy access and better quality mouse cardiac imaging than both the single loop surface coil and volume birdcage coil and does not require extensive RF engineering expertise to construct.

  7. NOTE: Comparison and evaluation of mouse cardiac MRI acquired with open birdcage, single loop surface and volume birdcage coils

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobing; Markiewicz, Erica J.; Zamora, Marta; Karczmar, Gregory S.; Roman, Brian B.

    2006-12-01

    Although the quality and speed of MR images have vastly improved with the development of novel RF coil technologies, the engineering expertise required to implement them is often not available in many animal in vivo MR laboratories. We present here an open birdcage coil design which is easily constructed with basic RF coil expertise and produces high quality images. The quality and advantages of mouse cardiac MR images acquired with open birdcage coils were evaluated and compared to images acquired with a bent single loop surface, and standard birdcage coils acquired at 4.7 Tesla. Two low pass open birdcage coils, two single loop surface coils, and a low pass volume birdcage coil were constructed and their B1 distributions were evaluated and compared. The calculated average signal-to-noise ratio for the left ventricular wall was 10, 23 and 32 for the volume birdcage coil, single loop surface coil and open birdcage coil, respectively. The results demonstrate that the open birdcage coil provides greater sensitivity than the volume coil and a higher signal/contrast-to-noise ratio and B1 homogeneity than the single loop surface coil. The open birdcage coil offers easy access and better quality mouse cardiac imaging than both the single loop surface coil and volume birdcage coil and does not require extensive RF engineering expertise to construct.

  8. Feasibility of dynamic susceptibility contrast perfusion MR imaging at 3T using a standard quadrature head coil and eight-channel phased-array coil with and without SENSE reconstruction.

    PubMed

    Lupo, Janine M; Lee, Michael C; Han, Eric T; Cha, Soonmee; Chang, Susan M; Berger, Mitchel S; Nelson, Sarah J

    2006-09-01

    To investigate changes in image and dynamic signal-to-noise ratios (SNRs) of the DeltaR2* curve, as well as magnetic susceptibility-induced artifacts between a standard quadrature head coil and an eight-channel phased-array coil with and without sensitivity-encoding (SENSE) at 3T, compared to the current clinical standard head coil acquisition at 1.5T. Dynamic susceptibility contrast (DSC) perfusion MRI was performed on 80 brain tumor patients using a gradient-echo, echo-planar imaging (EPI) sequence. Image and dynamic SNR were compared between 1.5T and 3T field strengths, a quadrature and eight-channel phased-array coil, and a conventional vs. partially parallel EPI acquisition with SENSE reconstruction. The amount of geometric distortion and signal dropout was quantified and compared between conventional and SENSE EPI acquisitions within the same exam at 3T. An initial 2.6-fold elevation in dynamic SNR was observed in normal-appearing white matter when doubling the field strength (P < 0.001), with an additional 1.7-fold increase found when employing an eight-channel phased-array coil (P < 0.002). Compared to the standard 3T eight-channel coil acquisition, the implementation of SENSE reduced the number of voxels experiencing large anterior shifts in the phase-encode direction, lowered the volume of signal dropout by 2.0-11.5%, and allowed a 1.4-fold increase in slice coverage, while only decreasing the dynamic SNR by 22%. SENSE EPI at 3T yielded a significant improvement in dynamic SNR over the 1.5T acquisitions. A significant reduction in magnetic susceptibility-induced artifacts was achieved with SENSE EPI compared to the standard EPI eight-channel coil acquisition at 3T.

  9. SAR and thermal response effects of a two-arm Archimedean spiral coil in a magnetic induction sensor on a human head.

    PubMed

    Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Ding, Liang

    2015-01-01

    This study investigates the radiation safety of a newly designed magnetic induction sensor. This novel magnetic induction sensor uses a two-arm Archimedean spiral coil (TAASC) as the exciter. A human head model with a real anatomical structure was used to calculate the specific absorption rate (SAR) and temperature change. Computer Simulation Technology (CST) was used to determine the values of the peak 10-g SAR under different operating parameters (current, frequency, horizontal distance between the excitation coil and the receiver coil, vertical distance between the top of the head model and the XOY plane, position of excitation coil, and volume of hemorrhage). Then, the highest response for the SAR and temperature rise was determined. The results showed that this new magnetic induction sensor is safe in the initial state; for safety reasons, the TAASC current should not exceed 4 A. The scalp tissue absorbed most of the electromagnetic energy. The TAASC's SAR/thermal performance was close to that of the circular coil.

  10. Hybrid monopole/loop coil array for human head MR imaging at 7T.

    PubMed

    Yan, Xinqiang; Wei, Long; Xue, Rong; Zhang, Xiaoliang

    2015-05-01

    The monopole coil and loop coil have orthogonal radiofrequency (RF) fields and thus are intrinsically decoupled electromagnetically if they are laid out appropriately. In this study, we proposed a hybrid monopole/loop technique which could combine the advantages of both loop arrays and monopole arrays. To investigate this technique, a hybrid RF coil array containing 4 monopole channels and 4 loop channels was developed for human head MR imaging at 7T. In vivo MR imaging and g-factor results using monopole-only channels, loop-only channels and all channels of the hybrid array were acquired and evaluated. Compared with the monopole-only and loop-only channels, the proposed hybrid array has higher SNR and better parallel imaging performance. Sufficient electromagnetic decoupling and diverse RF magnetic field (B1) distributions of monopole channels and loop channels may contribute to this performance improvement. From experimental results, the hybrid monopole/loop array has low g-factor and excellent SNR at both periphery and center of the brain, which is valuable for human head imaging at ultrahigh fields.

  11. Changes in dynamic lung mechanics after lung volume reduction coil treatment of severe emphysema.

    PubMed

    Makris, Demosthenes; Leroy, Sylvie; Pradelli, Johana; Benzaquen, Jonathan; Guenard, Hervé; Perotin, Jeanne-Marie; Zakynthinos, Spyros; Zakynthinos, Epaminondas; Deslee, Gaëtan; Marquette, Charles Hugo

    2017-09-11

    We assessed the relationships between changes in lung compliance, lung volumes and dynamic hyperinflation in patients with emphysema who underwent bronchoscopic treatment with nitinol coils (coil treatment) (n=11) or received usual care (UC) (n=11). Compared with UC, coil treatment resulted in decreased dynamic lung compliance (CLdyn) (p=0.03) and increased endurance time (p=0.010). The change in CLdyn was associated with significant improvement in FEV1 and FVC, with reduction in residual volume and intrinsic positive end-expiratory pressure, and with increased inspiratory capacity at rest/and at exercise. The increase in end-expiratory lung volume (EELV) during exercise (EELVdyn-ch=EELVisotime EELVrest) demonstrated significant attenuation after coil treatment (p=0.02). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Comparison of a 32-channel with a 12-channel head coil: are there relevant improvements for functional imaging?

    PubMed

    Kaza, Evangelia; Klose, Uwe; Lotze, Martin

    2011-07-01

    To evaluate the suitability of a 12- or 32-channel head coil and of a prescan normalization filter for functional magnetic resonance imaging (fMRI) studies at different brain regions. fMRI was obtained from 36 volunteers executing a visually instructed motor paradigm using a 12-channel head matrix coil and a 32-channel phased-array head coil with and without prescan normalization filtering at 3 T. The time-course signal-to-noise ratio (tSNR) and the magnitude of functional activation (beta-value, t-value, percent signal change) were statistically compared between experimental conditions for the contralateral primary motor and visual cortex, contralateral thalamus, and ipsilateral anterior cerebellar hemispheres. tSNR was higher overall measuring with the 32-channel array and with prescan normalization. Without filtering, the 32-channel array delivered higher functional activation magnitudes for the visual cortex, whereas the 12-channel array seemed superior in this respect in thalamus and cerebellum. Filtering did not considerably affect the fMRI-activation magnitude detected from the 12-channel coil; its application favored the 32-channel coil at the subcortical and cerebellar locations but disfavored it at the cortical ones. The 32-channel coil detected more fMRI-activation cortically but less subcortically than the 12-channel coil; prescan normalization improved activation parameters only at central brain structures. Copyright © 2011 Wiley-Liss, Inc.

  13. Treatment of emphysema using bronchoscopic lung volume reduction coil technology: an update on efficacy and safety.

    PubMed

    Hartman, Jorine E; Klooster, Karin; Ten Hacken, Nick H T; Slebos, Dirk-Jan

    2015-10-01

    In the last decade several promising bronchoscopic lung volume reduction (BLVR) treatments were developed and investigated. One of these treatments is BLVR treatment with coils. The advantage of this specific treatment is that it works independently of collateral flow, and also shows promise for patients with a more homogeneous emphysema disease distribution. Seven years ago, the very first patients were treated with BLVR coil treatment and currently large randomized, controlled trials are underway. The aim of this article is to review the available literature and provide an update on the current knowledge on the efficacy and safety of BLVR treatment with coils.

  14. Examination of a novel head-stalk protein family in Giardia lamblia characterised by the pairing of ankyrin repeats and coiled-coil domains.

    PubMed

    Elmendorf, Heidi G; Rohrer, Sally C; Khoury, Rasha S; Bouttenot, Rachel E; Nash, Theodore E

    2005-08-01

    The intestinal pathogen Giardia lamblia possesses several unusual organelle features, including two equivalent nuclei, no mitochondria or peroxisomes, and a developmentally regulated rough endoplasmic reticulum and Golgi. Giardia also possesses a number of complex and unique cytoskeleton structures that dictate cell shape, motility and attachment. Our investigations of cytoskeletal proteins have revealed the presence of a new protein family. Proteins in this family contain both ankyrin repeats and coiled-coil domains; although these are common protein motifs, their pairing is unique, thus establishing a new class of head-stalk proteins. Examination of the G. lamblia genome shows evidence for at least 18 genes coding for proteins with a series of ankyrin repeats followed by a lengthy coiled-coil domain and at least an additional 14 genes coding for proteins with a prominent coiled-coil domain flanked by two series of ankyrin repeats. We have examined one of these proteins, Giardia Axoneme Associated Protein (GASP-180), in detail. GASP-180 is a 180 kDa protein containing five ankyrin repeats in a 200 amino acid N-terminal domain separated by a short spacer from an approximately 1375 amino acid coiled-coil domain. Using anti-peptide antibodies raised against a unique 20 amino acid sequence found at the C-terminus, we have determined that GASP-180 is present in cytoskeleton extractions of the parasite and localises to the proximal base of the anterior flagellar axonemes. The combination of the localisation and the structural and functional motifs of GASP-180 make it a strong candidate to participate in control of flagellar activity.

  15. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil.

    PubMed

    Aydin, Omer; Buyukkaya, Ramazan; Hakyemez, Bahattin

    2017-01-01

    Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21. In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading.

  16. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil

    PubMed Central

    Aydin, Omer; Buyukkaya, Ramazan; Hakyemez, Bahattin

    2017-01-01

    Summary Background Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Material/Methods Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. Results There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21 Conslusions In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading. PMID:28439322

  17. Design of an Electrically Automated RF Transceiver Head Coil in MRI

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Magnetic resonance imaging (MRI) is a widely used nonionizing and noninvasive diagnostic instrument to produce detailed images of the human body. The radio-frequency (RF) coil is an essential part of MRI hardware as an RF front-end. RF coils transmit RF energy to the subject and receive the returning MR signal. This paper presents an MRI-compatible hardware design of the new automatic frequency tuning and impedance matching system. The system automatically corrects the detuned and mismatched condition that occurs due to loading effects caused by the variable subjects (i.e., different human heads or torsos). An eight-channel RF transceiver head coil with the automatic system has been fabricated and tested at 7 Tesla (T) MRI system. The automatic frequency tuning and impedance matching system uses digitally controlled capacitor arrays with real-time feedback control capability. The hardware design is not only compatible with current MRI scanners in all aspects but also it operates the tuning and matching function rapidly and accurately. The experimental results show that the automatic function increases return losses from 8.4 dB to 23.7 dB (maximum difference) and from 12.7 dB to 19.6 dB (minimum difference) among eight channels within 550 ms. The reflected RF power decrease from 23.1 % to 1.5 % (maximum difference) and from 5.3 % to 1.1 % (minimum difference). Therefore, these results improve signal-to-noise ratio (SNR) in MR images with phantoms. PMID:25361512

  18. Design of an Electrically Automated RF Transceiver Head Coil in MRI.

    PubMed

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-10-01

    Magnetic resonance imaging (MRI) is a widely used nonionizing and noninvasive diagnostic instrument to produce detailed images of the human body. The radio-frequency (RF) coil is an essential part of MRI hardware as an RF front-end. RF coils transmit RF energy to the subject and receive the returning MR signal. This paper presents an MRI-compatible hardware design of the new automatic frequency tuning and impedance matching system. The system automatically corrects the detuned and mismatched condition that occurs due to loading effects caused by the variable subjects (i.e., different human heads or torsos). An eight-channel RF transceiver head coil with the automatic system has been fabricated and tested at 7 Tesla (T) MRI system. The automatic frequency tuning and impedance matching system uses digitally controlled capacitor arrays with real-time feedback control capability. The hardware design is not only compatible with current MRI scanners in all aspects but also it operates the tuning and matching function rapidly and accurately. The experimental results show that the automatic function increases return losses from 8.4 dB to 23.7 dB (maximum difference) and from 12.7 dB to 19.6 dB (minimum difference) among eight channels within 550 ms . The reflected RF power decrease from 23.1% to 1.5% (maximum difference) and from 5.3% to 1.1% (minimum difference). Therefore, these results improve signal-to-noise ratio (SNR) in MR images with phantoms.

  19. An inverse methodology for high frequency RF head coil design with preemphasized B/sub 1/ field in MRI.

    PubMed

    Xu, B; Crozier, S; Li, B K; Wei, Q; Liu, F

    2004-01-01

    An inverse methodology to assist in the design of radio-frequency (RF) head coils for high field MRI application is described in this work. Free space time-harmonic electromagnetic Green's functions and preemphasized B/sub 1/ field are used to calculate the current density on the coil cylinder. With B/sub 1/ field preemphasized and lowered in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the EM field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T is calculated using inverse methodology with preemphasized B/sub 1/ fields. FDTD is employed to calculate B/sub 1/ field and signal intensity inside a homogenous cylindrical phantom and human head. A comparison with conventional RF birdcage coil is reported here and demonstrated that inverse-method designed coil with preemphasized B/sub 1/ field can help in decreasing the notorious bright region caused by EM field/tissue interactions in the human head images at 4 T.

  20. 12-channel receive array with a volume transmit coil for hand/wrist imaging at 7 T.

    PubMed

    Raghuraman, Sairamesh; Mueller, Matthias F; Zbýň, Štefan; Baer, Peter; Breuer, Felix A; Friedrich, Klaus M; Trattnig, Siegfried; Lanz, Titus; Jakob, Peter M

    2013-07-01

    To develop a coil configuration for high-resolution imaging of different regions of the hand and wrist at 7 T. A quadrature bandpass birdcage and a 12-channel high density receive array were developed for imaging metacarpus and wrist. Workbench and magnetic resonance imaging (MRI) measurements were done to characterize the coil and obtain in vivo images. Electromagnetic simulations were performed to assess the uniformity of transmit profile and calculate the specific absorption rate (SAR). The results obtained show that the constructed transmit coil can be used in combination with receive arrays, without the need to retune the same. The developed wrist array was used to produce images of ultrahigh resolution (0.19 × 0.19 × 0.5 mm(3) ), revealing fine anatomical details. Simulations show that a near-uniform transmit profile is possible throughout the hand. No inhomogeneities were observed in the transmit profile, unlike a human head or abdomen at 7 T, due to the small volume of the hand and its low conductive regions. While transceive arrays are usually preferred at 7 T due to issues related to decrease in wavelength, it is shown in this study that with regard to hand-imaging optimized high-density receive arrays are a good solution to obtain images of extremely fine resolution of different regions. Copyright © 2012 Wiley Periodicals, Inc.

  1. Evaluation of image quality of a 32-channel versus a 12-channel head coil at 1.5T for MR imaging of the brain.

    PubMed

    Parikh, P T; Sandhu, G S; Blackham, K A; Coffey, M D; Hsu, D; Liu, K; Jesberger, J; Griswold, M; Sunshine, J L

    2011-02-01

    Multichannel phased-array head coils are undergoing exponential escalation of coil element numbers. While previous technical studies have found gains in SNR and spatial resolution with the addition of element coils, it remains to be determined how these gains affect clinical reading. The purpose of this clinical study was to determine if the SNR and spatial resolution characteristics of a 32-channel head coil result in improvements in perceived image quality and lesion evaluation. Twenty-one patients underwent MR imaging of the brain at 1.5T sequentially with both a 12-channel and a 32-channel receive-only phased-array head coil. Axial T2WIs, T1WIs, FLAIR images, and DWIs were acquired. Anonymized images were compared side-by-side and by sequence for image quality, lesion evaluation, and artifacts by 3 neuroradiologists. Results of the comparison were analyzed for the preference for a specific head coil. FLAIR and DWI images acquired with the 32-channel coil showed significant improvement in image quality in several parameters. T2WIs also improved significantly with acquisition by the 32-channel coil, while T1WIs improved in a limited number of parameters. While lesion evaluation also improved with acquisition of images by the 32-channel coil, there was no apparent improvement in diagnostic quality. There was no difference in artifacts between the 2 coils. Improvements in SNR and spatial resolution attributed to image acquisition with a 32-channel head coil are paralleled by perceived improvements in image quality.

  2. 13C MRS of occipital and frontal lobes at 3 T using a volume coil for stochastic proton decoupling.

    PubMed

    Li, Shizhe; Zhang, Yan; Wang, Shumin; Araneta, Maria Ferraris; Johnson, Christopher S; Xiang, Yun; Innis, Robert B; Shen, Jun

    2010-10-01

    Previously, we devised a novel strategy for in vivo 13C MRS using [2-13C]glucose infusion and low-power proton decoupling, and proposed that this strategy could be used to acquire 13C MR spectra from the frontal lobe of the human brain. Here, we demonstrate, for the first time, in vivo 13C MRS of human frontal lobe acquired at 3 T. Because the primary metabolites of [2-13C]glucose can be decoupled using very-low-radiofrequency power, we used a volume coil for proton decoupling in this study. The homogeneous B(1) field of the volume coil was found to significantly enhance the decoupling efficiency of the stochastic decoupling sequence. Detailed specific absorption rates inside the human head were analyzed using the finite difference time domain method to ensure experimental safety. In vivo 13C spectra from the occipital and frontal lobes of the human brain were obtained. At a decoupling power of 30 W (time-averaged power, 2.45 W), the spectra from the occipital lobe showed well-resolved spectral resolution and excellent signal-to-noise ratio. Although frontal lobe 13C spectra were affected by local B(0) field inhomogeneity, we demonstrated that the spectral quality could be improved using post-acquisition data processing. In particular, we showed that the frontal lobe glutamine C5 at 178.5 ppm and aspartate C4 at 178.3 ppm could be spectrally resolved with effective proton decoupling and B(0) field correction. Because of its large spatial coverage, volume coil decoupling provides the potential to acquire 13C MRS from more than one brain region simultaneously. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Finite-Element Electromagnetic Simulation of a Volume Coil with Slotted End-Rings for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Vazquez, J. F.; Rodriguez, A. O.

    2008-08-01

    Radiofrequency volume coils are still a vital part to detect the magnetic resonance signal. This is mainly due to its highly uniform field over large regions of interest at expense of a relatively low signal-to-noise ratio. In this work, a new volume coil design with slotted end-rings is proposed for high field magnetic resonance imaging applications and, its electromagnetic properties studied via a numerical study. The slotted end-rings avoid breaking the coil structure into small segments degrading the coil performance and, improving the poor signal at the end-rings usually found in the traditional birdcage coil. Numerical simulations were evaluated by solving Maxwell's equations with the finite element method. Hence, both the electric and magnetic fields were evaluated and presented in the form of bi-dimensional images for the slotted end-ring coil and the birdcage coil for comparison purposes. From the magnetic field images of both coil designs, uniformity profiles were calculated at the midsection and the end-rings of the coil and compared. A substantial improvement can be appreciated at the end-rings for the slotted end-ring coil whereas for the midsection it had an acceptable enhancement. These encouraging results suggest that the slotted end-ring coil have an improved performance compared to the birdcage coil.

  4. 3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil.

    PubMed

    Osorio, Joseph A; Ozturk-Isik, Esin; Xu, Duan; Cha, Soonmee; Chang, Susan; Berger, Mitchel S; Vigneron, Daniel B; Nelson, Sarah J

    2007-07-01

    To implement proton magnetic resonance spectroscopic imaging (1H MRSI) at 3 Tesla (3T) using an eight-channel phased-array head coil in a population of brain-tumor patients. A total of 49 MRI/MRSI examinations were performed on seven volunteers and 34 patients on a 3T GE Signa EXCITE scanner using body coil excitation and reception with an eight-channel phased-array head coil. 1H MRSI was acquired using point-resolved spectroscopy (PRESS) volume selection and three-dimensional (3D) phase encoding using a 144-msec echo time (TE). The mean choline to N-acetyl aspartate ratio (Cho/NAA) was similar within regions of normal-appearing white matter (NAWM) in volunteers (0.5 +/- 0.04) and patients (0.6 +/- 0.1, P = 0.15). This ratio was significantly higher in regions of T2-hyperintensity lesion (T2L) relative to NAWM for patients (1.4 +/- 0.7, P = 0.001). The differences between metabolite intensities in lesions and NAWM were similar, but there was an increase in SNR of 1.95 when an eight-channel head coil was used at 3T vs. previous results at 1.5T. The realized increase in SNR means that clinically relevant data can be obtained in five to 10 minutes at 3T and used to predict the spatial extent of tumor in a manner similar to that previously used to acquire 1.5T data in 17 minutes. Copyright 2007 Wiley-Liss, Inc.

  5. Two configurations of the four-ring birdcage coil for 1H imaging and 1H-decoupled 31P spectroscopy of the human head.

    PubMed

    Murphy-Boesch, J; Srinivasan, R; Carvajal, L; Brown, T R

    1994-02-01

    The four-ring birdcage resonator, a new class of dual-tuned birdcage resonators, is described. We report two configurations of the coil: the low-pass, high-pass (LP-HP) and the low-pass, low-pass (LP-LP), both of which can be operated in dual quadrature mode at 1.5 T. As head coils, both configurations exhibit greatly reduced tuning interactions between frequencies, permitting rapid, noniterative tuning. Compared with single-tuned, two-ring birdcage resonators of similar volume, the sensitivity and transmitter efficiencies of the resonators are better than 85% for the proton frequency and the same to within 5% for the phosphorus frequency. Circuit models have been developed to refine coil tuning and aid the calculation of B1 field contour plots. Both configurations have been used for integrated examinations involving acquisition of high-quality 1H images and 1H-decoupled 31P CSI spectra of the human head. A scaled-down version of the LP-LP configuration has been demonstrated for use with the human calf.

  6. Two Configurations of the Four-Ring Birdcage Coil for 1H Imaging and 1H-Decoupled 31P Spectroscopy of the Human Head

    NASA Astrophysics Data System (ADS)

    Murphyboesch, J.; Srinivasan, R.; Carvajal, L.; Brown, T. R.

    The four-ring birdcage resonator, a new class of dual-tuned birdeage resonators, is described. We report two configurations of the coil: the low-pass, high-pass (LP-HP) and the low-pass, low-pass (LP-LP), both of which can be operated in dual quadrature mode at 1.5 T. As head coils, both configurations exhibit greatly reduced tuning interactions between frequencies, permitting rapid, noniterative tuning. Compared with single-tuned, two-ring birdcage resonators of similar volume, the sensitivity and transmitter efficiencies of the resonators are better than 85% for the proton frequency and the same to within 5% for the phosphorus frequency. Circuit models have been developed to refine coil tuning and aid the calculation of B1 field contour plots. Both configurations have been used for integrated examinations involving acquisition of high-quality 1H images and 1H-decoupled 31P CSI spectra of the human head. A scaled-down version of the LP-LP configuration has been demonstrated for use with the human calf.

  7. Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain

    NASA Astrophysics Data System (ADS)

    Nouls, John C.; Izenson, Michael G.; Greeley, Harold P.; Johnson, G. Allan

    2008-04-01

    We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4 T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B1 homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60 ± 0.1 K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10 × 10 × 20 μm for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5 h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20 μm.

  8. Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain.

    PubMed

    Nouls, John C; Izenson, Michael G; Greeley, Harold P; Johnson, G Allan

    2008-04-01

    We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B(1) homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60+/-0.1K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10x10x20mum for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20mum.

  9. Potential impact of a 32-channel receiving head coil technology on the results of a functional MRI paradigm.

    PubMed

    Albrecht, J; Burke, M; Haegler, K; Schöpf, V; Kleemann, A M; Paolini, M; Wiesmann, M; Linn, J

    2010-12-01

    The authors investigated the potential of a 32-channel (32ch) receiving head coil for functional magnetic resonance imaging (fMRI) compared to a standard eight-channel (8ch) coil using a motor task. Brain activation was analyzed in 14 healthy right-handed subjects performing finger tapping with the right index finger (block design) during two experimental sessions, one with the 8ch and one with the 32ch coil (applied in a pseudorandomized order). Additionally, a phantom study was performed to compare signal-to-noise ratios (SNRs) of both coils. During both fMRI sessions, analysis of motor conditions resulted in an activation of the left "hand knob" (precentral gyrus). Application of the 32ch coil obtained additional activation clusters in the right cerebellum, left superior frontal gyrus (SMA), left supramarginal gyrus, and left postcentral gyrus. The phantom study revealed a significantly higher SNR for the 32ch coil compared to the 8ch coil in superficial cortical areas located near the surface of the brain. The 32ch technology has a potential impact on fMRI studies, especially in paradigms that result in activation of cortical areas located near the surface of the brain.

  10. Black body and transverse electromagnetic resonators operating at 340 MHz: volume RF coils for ultra high field MRI.

    PubMed

    Robitaille, P M

    1999-01-01

    The purpose of this work was to describe the newly formulated black body (BB) resonator with historical perspective and to outline the construction and assembly of the transverse electromagnetic (TEM) RF coil for use in ultra high field MRI (UHFMRI) studies at 340 MHz. TEM and BB resonators were machined from acrylic and Teflon tubing, copper foil, and brass connectors. Tuning was accomplished through adjustable TEM elements. Variable Teflon-based capacitors were utilized to provide matching to the 50 omega line. The TEM resonator operated in quadrature, and the BB resonator operated in linear mode. The final resonators were fully adjustable from 63 to 430 MHz. Quality (Q) values were measured using a network analyzer over this frequency range for the unloaded and loaded coils. Coil performance was also evaluated using gradient and spin echo imaging at 8 T. Both resonators yielded excellent images from mineral oil phantoms, with good homogeneity throughout the imaging volume. The BB resonator was characterized with enhanced signal-to-noise ratio and greatly reduced RF power requirements relative to the TEM resonator. Images obtained from the human head at 8 T with the TEM resonator were also excellent. Tuning remains a tedious process. The TEM resonator provides an excellent RF coil for imaging studies up to 340 MHz. Its homogeneity reliability remains to be improved. In part as a result of its inability to sustain radiative loses, the BB resonator has extremely low RF power requirements. The BB resonator may have important uses in limiting RF power requirements and enhancing signal-to-noise ratio at other frequencies. Larger slightly modified versions may also prove useful in human imaging, depending on tolerances and final quality factors.

  11. WE-G-217A-08: Routine ACR SNR Measurement Failed to Detect 32-Channel Head Coil Receiver Malfunction.

    PubMed

    Peng, Q

    2012-06-01

    To study if malfunction of a receiver can be detected robustly using the simple ACR SNR measurement approach on a 32-channel head coil. Standard ACR T1W images (11slice) were acquired with a commercial 32 channel head coil on a 3T Philips Achieva MR scanner following the ACR recommended setup. Raw data were saved and were used to reconstruct 32 image datasets, each with one coil channel turned off and signal were excluded from reconstruction. Routine simple SNR evaluation method was used to measure SNR for each dataset. Specifically, region of interest (ROI) analysis was performed on slice #7 for each dataset. Signal was the mean value of the pixel intensity measured using an ROI with area of 200 cm(2) positioned at the center of phantom. Noise was the standard deviation derived from an ROI positioned in the background in a corner of the image. SNR was then calculated from signal divided by noise. For comparison purposes, we empirically chose 5% SNR drop compared to the full 32 channel dataset SNR as a significant SNR drop that is correlated a potential coil channel defect. Among the 32 image datasets reconstructed each with one receiver turned off, only 4 showed SNR drop of more than 5% or more compared to the reference SNR obtained from the original dataset. Four other datasets had SNR drop between 0.1-5%. The rest (24 image sets) did not show any SNR drop. Therefore, SNR monitoring based on the large ROI approach as the routine ACR QC procedure failed detect receiver malfunction in this coil. More advanced and thorough coil evaluation methods, instead of the routine simple ACR SNR measurement method, have to be applied to evaluate the performance of the phased-array head coil with 32 or more channels. © 2012 American Association of Physicists in Medicine.

  12. Parallel imaging of head with a dedicated multi-coil on a 0.4T open MRI.

    PubMed

    Takizawa, Masahiro; Shimoda, Takahide; Nonaka, Masayuki; Mochizuki, Hiroyuki; Kawasaki, Shinji; Takeuchi, Hiroyuki; Tachibana, Miki; Takahashi, Tetsuhiko

    2005-01-01

    Parallel imaging is widely used for cylindrical magnetic resonance imaging (MRI); however, few studies apply parallel imaging to open MRI. We previously developed a parallel method called "RAPID" (rapid acquisition through a parallel imaging design) for imaging the heart on a 0.7T open MRI apparatus, and we have now developed a RAPID head coil and shading correction algorithm for imaging the brain with a 0.4T open MRI apparatus. Images acquired with RAPID were compared with those acquired using a conventional quadrature-detection (QD) head coil. The images were acquired using a dedicated 4-channel RF receiving coil consisting of a solenoid coil and surface coils. For MRI of the brain, we developed 2 methods to acquire the necessary calibration data: a pre-scan method that acquires the calibration data before the main scans and a self-calibration method that acquires the calibration data and imaging data simultaneously. We also modified the algorithm for calculating the shading distribution so that it only uses acquired image data and then corrects the shading. RAPID was applied for T1-weighted, T2-weighted, fluid-attenuation inversion recovery (FLAIR), time-of-flight (TOF), and diffusion-weighted echo-planar (DW-EPI) imaging. The RAPID images had no visible unfolded artifacts or motion artifacts. Images with the same contrast as that with a conventional QD coil were acquired using the RAPID coil and shading correction. These preliminary results show that RAPID can be applied to imaging of the head using a 0.4T open MRI apparatus.

  13. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry.

    PubMed

    Wiggins, G C; Triantafyllou, C; Potthast, A; Reykowski, A; Nittka, M; Wald, L L

    2006-07-01

    A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g-factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g-factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g-factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images. Copyright (c) 2006 Wiley-Liss, Inc.

  14. Comparison of a 28 Channel-Receive Array Coil and Quadrature Volume Coil for Morphologic Imaging and T2 Mapping of Knee Cartilage at 7 Tesla

    PubMed Central

    Chang, Gregory; Wiggins, Graham C.; Xia, Ding; Lattanzi, Riccardo; Madelin, Guillaume; Raya, Jose G.; Finnerty, Matthew; Fujita, Hiroyuki; Recht, Michael P.; Regatte, Ravinder R.

    2011-01-01

    Purpose To compare a new birdcage-transmit, 28 channel-receive array (28 Ch) coil and a quadrature volume coil for 7 Tesla morphologic MRI and T2 mapping of knee cartilage. Methods The right knees of ten healthy subjects were imaged on a 7 Tesla whole body MR scanner using both coils. 3-dimensional fast low-angle shot (3D-FLASH) and multi-echo spin-echo (MESE) sequences were implemented. Cartilage signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), thickness, and T2 values were assessed. Results SNR/CNR was 17–400% greater for the 28 Ch compared to the quadrature coil (p≤0.005). Bland-Altman plots show mean differences between measurements of tibial/femoral cartilage thickness and T2 values obtained with each coil to be small (−0.002±0.009 cm/0.003±0.011 cm) and large (−6.8±6.7 ms/−8.2±9.7 ms), respectively. For the 28 Ch coil, when parallel imaging with acceleration factors (AF) 2, 3, and 4 was performed, SNR retained was: 62–69%, 51–55%, and 39–45%. Conclusion A 28 Ch knee coil provides increased SNR/CNR for 7T cartilage morphologic imaging and T2 mapping. Coils should be switched with caution during clinical studies because T2 values may differ. The greater SNR of the 28 Ch coil could be used to perform parallel imaging with AF2 and obtain similar SNR as the quadrature coil. PMID:22095723

  15. Comparison of a 28-channel receive array coil and quadrature volume coil for morphologic imaging and T2 mapping of knee cartilage at 7T.

    PubMed

    Chang, Gregory; Wiggins, Graham C; Xia, Ding; Lattanzi, Riccardo; Madelin, Guillaume; Raya, Jose G; Finnerty, Matthew; Fujita, Hiroyuki; Recht, Michael P; Regatte, Ravinder R

    2012-02-01

    To compare a new birdcage-transmit, 28-channel receive array (28-Ch) coil and a quadrature volume coil for 7T morphologic MRI and T2 mapping of knee cartilage. The right knees of 10 healthy subjects were imaged on a 7T whole body magnetic resonance (MR) scanner using both coils. 3D fast low-angle shot (3D-FLASH) and multiecho spin-echo (MESE) sequences were implemented. Cartilage signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), thickness, and T2 values were assessed. SNR/CNR was 17%-400% greater for the 28-Ch compared to the quadrature coil (P ≤ 0.005). Bland-Altman plots show mean differences between measurements of tibial/femoral cartilage thickness and T2 values obtained with each coil to be small (-0.002 ± 0.009 cm / 0.003 ± 0.011 cm) and large (-6.8 ± 6.7 msec/-8.2 ± 9.7 msec), respectively. For the 28-Ch coil, when parallel imaging with acceleration factors (AF) 2, 3, and 4 was performed SNR retained was: 62%-69%, 51%-55%, and 39%-45%. A 28-Ch knee coil provides increased SNR/CNR for 7T cartilage morphologic imaging and T2 mapping. Coils should be switched with caution during clinical studies because T2 values may differ. The greater SNR of the 28-Ch coil could be used to perform parallel imaging with AF2 and obtain similar SNR as the quadrature coil. Copyright © 2011 Wiley Periodicals, Inc.

  16. Design, simulation and evaluation of uniform magnetic field systems for head-free eye movement recordings with scleral search coils.

    PubMed

    Eibenberger, Karin; Eibenberger, Bernhard; Rucci, Michele

    2016-08-01

    The precise measurement of eye movements is important for investigating vision, oculomotor control and vestibular function. The magnetic scleral search coil technique is one of the most precise measurement techniques for recording eye movements with very high spatial (≈ 1 arcmin) and temporal (>kHz) resolution. The technique is based on measuring voltage induced in a search coil through a large magnetic field. This search coil is embedded in a contact lens worn by a human subject. The measured voltage is in direct relationship to the orientation of the eye in space. This requires a magnetic field with a high homogeneity in the center, since otherwise the field inhomogeneity would give the false impression of a rotation of the eye due to a translational movement of the head. To circumvent this problem, a bite bar typically restricts head movement to a minimum. However, the need often emerges to precisely record eye movements under natural viewing conditions. To this end, one needs a uniform magnetic field that is uniform over a large area. In this paper, we present the numerical and finite element simulations of the magnetic flux density of different coil geometries that could be used for search coil recordings. Based on the results, we built a 2.2 × 2.2 × 2.2 meter coil frame with a set of 3 × 4 coils to generate a 3D magnetic field and compared the measured flux density with our simulation results. In agreement with simulation results, the system yields a highly uniform field enabling high-resolution recordings of eye movements.

  17. Long-term follow-up after bronchoscopic lung volume reduction treatment with coils in patients with severe emphysema

    PubMed Central

    Hartman, Jorine E; Klooster, Karin; Gortzak, Kiki; ten Hacken, Nick HT; Slebos, Dirk-Jan

    2015-01-01

    Background and objective Bronchoscopic lung volume reduction coil (LVR-coil) treatment has been shown to be safe and clinically effective in patients with severe emphysema in the short term; however, long-term safety and effectiveness has not been evaluated. The aim of this study was to investigate the long-term safety and effectiveness of LVR-coil treatment in patients with severe emphysema. Methods Thirty-eight patients with severe emphysema (median age is 59 years, forced expiratory volume in 1 s is 27% predicted) who were treated in LVR-coil clinical trials were invited for a voluntary annual visit. Safety was evaluated by chest X-ray and recording of adverse events and by efficacy by pulmonary function testing, 6-min walk distance (6MWD) and questionnaires. Results Thirty-five patients visited the hospital 1 year, 27 patients 2 years and 22 patients 3 years following coil placement. No coil migrations were observed on X-rays. At 1-year follow-up, all clinical outcomes significantly improved compared with baseline. At 2 years, residual volume % pred, modified Medical Research Council (mMRC) and the SGRQ score were still significantly improved. At 3 years, a significant improvement in mMRC score remained, with 40% of the patients reaching the 6MWD minimal important difference, and 59% for the St George's Respiratory Questionnaire (SGRQ) minimal important difference. Conclusions Follow-up of the patients treated with LVR-coils in our pilot studies showed that the coil treatment is safe with no late pneumothoraces, coil migrations or unexpected adverse events. Clinical benefit gradually declines over time; at 3 years post-treatment, around 50% of the patients maintained improvement in 6MWD, SGRQ and mMRC. PMID:25418910

  18. Design of a parallel transmit head coil at 7T with magnetic wall distributed filters.

    PubMed

    Connell, Ian R O; Gilbert, Kyle M; Abou-Khousa, Mohamed A; Menon, Ravi S

    2015-04-01

    Ultra-high field magnetic resonance imaging (MRI) scanners ( ≥ 7T) require radio-frequency (RF) coils to operate in the range of the electromagnetic spectrum where the effective wavelength in the tissue approaches the patient dimensions. Multi-channel transmit arrays, driven in parallel, have been developed to increase the transmit field (B1(+)) uniformity in this wavelength regime. However, the closely packed array elements interact through mutual coupling. This paper expands on the ability of a distributed planar filter (the "magnetic wall") to decouple individual elements in an entire array. A transmit RF coil suitable for neuroimaging at 7T was constructed. The transmit coil, composed of 10 individual surface coil elements, was decoupled with magnetic walls. A separate receive coil array was used for signal reception. The hardware and imaging performance of the transmit coil was validated with electromagnetic simulation, bench-top measurements, and in vivo MRI experiments. Analysis and measurements confirmed that the magnetic wall decoupling method provides high isolation between transmit channels, while minimally affecting the B1(+) field profiles. Electromagnetic simulations confirmed that the decoupling method did not correlate to local specific absorption rate (SAR) "hot spots" or increase local-to-global SAR fractions in comparison to previously reported 7T multi-channel transmit arrays employing different decoupling methods.

  19. A novel strategy for utilizing voice coil servoactuators in tensile tests of low volume protein hydrogels

    PubMed Central

    Saqlain, Farees; Popa, Ionel; Fernández, Julio M.; Alegre-Cebollada, Jorge

    2015-01-01

    We present a novel tensile testing system optimized for the mechanical loading of microliter volume protein hydrogels. Our apparatus incorporates a voice coil servoactuator capable of carrying out fixed velocity extension-relaxation cycles as well as extension step protocols. The setup is equipped with an acrylic cuvette permitting day-long incubations in solution. To demonstrate the functionality of the device, we photochemically crosslinked polyproteins of the I91 immunoglobulin domain from the muscle protein titin to create solid hydrogels that recapitulate elastic properties of muscle. We present data from tensile tests of these low volume biomaterials that support protein unfolding as a main determinant of the elasticity of protein hydrogels. Our results demonstrate the potential use of protein hydrogels as biomaterials whose elastic properties dynamically respond to their environment. PMID:25960689

  20. Low head, high volume pump apparatus

    DOEpatents

    Avery, Don E.; Young, Bryan F.

    1989-01-01

    An inner cylinder and a substantially larger outer cylinder are joined as two verticle concentric cylinders. Verticle partitions between the cylinders divide the space between the cylinders into an inlet chamber and an outlet chamber which is substantially larger in volume than the inner chamber. The inner cylinder has a central pumping section positioned between upper and lower valve sections. In the valve section ports extend through the inner cylinder wall to the inlet and outlet chambers. Spring loaded valves close the ports. Tension springs extend across the inlet chamber and compression springs extend across the inner cylinder to close the inlet valves. Tension springs extend across the inner cylinder the close the outlet valves. The elastomeric valve flaps have rigid curved backing members. A piston rod extends through one end cover to move a piston in the central section. An inlet is connected to the inlet chamber and an outlet is connected to the outlet chamber.

  1. Resting-state networks in healthy adult subjects: a comparison between a 32-element and an 8-element phased array head coil at 3.0 Tesla.

    PubMed

    Paolini, Marco; Keeser, Daniel; Ingrisch, Michael; Werner, Natalie; Kindermann, Nicole; Reiser, Maximilian; Blautzik, Janusch

    2015-05-01

    Little research exists on the influence of a magnetic resonance imaging (MRI) head coil's channel count on measured resting-state functional connectivity. To compare a 32-element (32ch) and an 8-element (8ch) phased array head coil with respect to their potential to detect functional connectivity within resting-state networks. Twenty-six healthy adults (mean age, 21.7 years; SD, 2.1 years) underwent resting-state functional MRI at 3.0 Tesla with both coils using equal standard imaging parameters and a counterbalanced design. Independent component analysis (ICA) at different model orders and a dual regression approach were performed. Voxel-wise non-parametric statistical between-group contrasts were determined using permutation-based non-parametric inference. Phantom measurements demonstrated a generally higher image signal-to-noise ratio using the 32ch head coil. However, the results showed no significant differences between corresponding resting-state networks derived from both coils (p < 0.05, FWE-corrected). Using the identical standard acquisition parameters, the 32ch head coil does not offer any significant advantages in detecting ICA-based functional connectivity within RSNs. © The Foundation Acta Radiologica 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Computational and experimental optimization of a double-tuned (1)H/(31)P four-ring birdcage head coil for MRS at 3T.

    PubMed

    Duan, Yunsuo; Peterson, Bradley S; Liu, Feng; Brown, Truman R; Ibrahim, Tamer S; Kangarlu, Alayar

    2009-01-01

    To optimize the homogeneity and efficiency of the B(1) magnetic field of a four-ring birdcage head coil that is double-tuned at the Larmor frequencies of both (31)P and (1)H and optimized to acquire magnetic resonance spectroscopy (MRS) data at 3T for the study of infants. We developed a finite difference time domain (FDTD) tool in-house to iteratively compute and seek the range of geometric and electromagnetic parameters of a dual-tuned, four-ring birdcage coil that would produce the desired resonance patterns, optimize homogeneity of the B(1)-field, and maximize efficiency of the coil. To demonstrate the validity of our computational results, we constructed three RF coils: one dual-tuned coil that was based on the calculated optimized parameters and two single-tuned coils that had dimensions similar to those of the dual-tuned coil, but tuned at the Larmor frequencies of both (31)P and (1)H, respectively. We then tested and compared the performances of the dual-tuned coil and single-tuned coils at both of these frequencies. We found that a dual-tuned, four-ring birdcage coil with a diameter of 180 mm, an inner birdcage length of 100-300 mm, and an outer birdcage length of 25-100 mm produces the desired resonance patterns. For the use of this coil with human infants, optimization of the homogeneity of the B(1) field, combined with improved coil efficiency, yielded a dual-tuned birdcage coil with diameter of 180mm, an inner birdcage length of 150 mm, an outer birdcage length of 25 mm, and corresponding inner and outer capacitances of 17.2 pF and 7.6 pF, respectively. The experimental results from a constructed coil having the same parameters with the modeled coil agreed well with the computational results from the modeled coil. This optimized design overcame the deficiencies of existing dual-tuned, four-ring birdcage coils. The homogeneity and efficiency of the B(1) field for (31)P/(1)H dual-tuned, four-ring birdcage coils can be optimized well using our FDTD tool

  3. Evaluation of adaptive combination of 30-channel head receive coil array data in 23Na MR imaging.

    PubMed

    Benkhedah, Nadia; Hoffmann, Stefan H; Biller, Armin; Nagel, Armin M

    2016-02-01

    The aim was to optimally combine multichannel coil array data in sodium ((23) Na) MRI. (23) Na MRI was conducted on a 3 Tesla MR system using a 30-channel head receive coil array. The parameters used for the adaptive combination (ADC) reconstruction of the low signal-to-noise ratio (SNR) dataset have been optimized by finding the maximum mean SNR. A pseudo multiple-replica approach has been used to obtain SNR maps of the combined images. To prove reproducibility of the combination algorithm, the procedure was repeated for several measurements. For low SNR data, sum-of-squares (SOS) reconstruction leads to high background noise and a signal bias in the imaged object. The ADC reconstruction clearly reduces noise in the image and leads to an increase of the mean SNR in the range of 8% to 50%, compared to weighted SOS depending on the absolute SNR of the image. The evaluation of the effects of different noise scans showed that a small number of projections can be used to estimate noise statistics of the coil array without substantially decreasing the resulting SNR. (23) Na MRI can be markedly improved by using a 30-channel receive array and ADC reconstruction. The ADC reconstruction showed robust results for all measurements without the need for sensitivity maps. © 2015 Wiley Periodicals, Inc.

  4. Is the Ellipsoid Formula the New Standard for 3-Tesla MRI Prostate Volume Calculation without Endorectal Coil?

    PubMed

    Haas, Matthias; Günzel, Karsten; Miller, Kurt; Hamm, Bernd; Cash, Hannes; Asbach, Patrick

    2017-01-01

    Prostate volume in multiparametric MRI (mpMRI) is of clinical importance. For 3-Tesla mpMRI without endorectal coil, there is no distinctive standard for volume calculation. We tested the accuracy of the ellipsoid formula with planimetric volume measurements as reference and investigated the correlation of gland volume and cancer detection rate on MRI/ultrasound (MRI/US) fusion-guided biopsy. One hundred forty-three patients with findings on 3-Tesla mpMRI suspicious of cancer and subsequent MRI/US fusion-guided targeted biopsy and additional systematic biopsy were analyzed. T2-weighted images were used for measuring the prostate diameters and for planimetric volume measurement by a segmentation software. Planimetric and calculated prostate volumes were compared with clinical data. The median prostate volume was 48.1 ml (interquartile range (IQR) 36.9-62.1 ml). Volume calculated by the ellipsoid formula showed a strong concordance with planimetric volume, with a tendency to underestimate prostate volume (median volume 43.1 ml (IQR 31.2-58.8 ml); r = 0.903, p < 0.001). There was a moderate, significant inverse correlation of prostate volume to a positive biopsy result (r = -0.24, p = 0.004). The ellipsoid formula gives sufficient approximation of prostate volume on 3-Tesla mpMRI without endorectal coil. It allows a fast, valid volume calculation in prostate MRI datasets.

  5. A three-coil RF probe-head at 2.35 T: Potential applications to the (23)Na and to the hyperpolarized (129)Xe MRI in small animals.

    PubMed

    Asfour, Aktham

    2010-01-01

    We present in this paper a dedicated home-built RF probe-head for the MRI of rat brain at 2.35 T. This probe consists of an association of three coils: a double-tuned birdcage coil, which could be used for both transmitting and receiving, and a single-tuned surface coil that is used for the only receiving. This single-tuned coil is actively decoupled from the double-tuned volume coil. The active decoupling is based on the pole insertion technique using PIN diodes circuitry. This development was initially motivated by its potential and future application to the brain perfusion measurements by the MRI of hyperpolarized xenon-129 (HP (129)Xe). However, one of underlying ideas behind this work is to proceed well beyond this specific application. Particularly, the developed coil could also be dedicated for the sodium-23 ((23)Na) MRI in the rat brain. Indeed we tried to make the design versatile, simple and easy to replicate by other research groups, with a low cost, minimum development time and accepted performances. We believe that this design could by useful for groups who consider building own hardware. This is why we describe in some details the practical aspects of the workbench design as well as the coil characterization. For simplicity reasons, the first results of developed prototype were obtained at 100 MHz and 26.4 MHz (proton and sodium-23 frequencies at 2.35 T). MR images of phantoms were realized. In-vivo (1)H images and (23)Na spectra of the rat brain were also obtained. Future validation would concern the MRI of HP (129)Xe.

  6. Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3T.

    PubMed

    Franke, Philipp; Markl, Michael; Heinzelmann, Sonja; Vaith, Peter; Bürk, Jonas; Langer, Mathias; Geiger, J

    2014-10-01

    The aim of this study was to evaluate the diagnostic value of a 32-channel head coil for the characterization of mural inflammation patterns in the superficial cranial arteries in patients with giant cell arteritis (GCA) compared to a standard 12-channel coil at 3T MRI. 55 patients with suspected GCA underwent high resolution T1-weighted post-contrast MRI at 3T to detect inflammation related vessel wall enhancement using both coils. To account for different time delays between contrast agent injection and sequence acquisition, the patients were divided into two cohorts: 27 patients were examined with the 32-channel coil first and 28 patients with the 12-channel coil first. Images were evaluated by two blinded readers with regard to image quality, artifact level and arteries' inflammation according to a standardized ranking scale; furthermore signal-to-noise ratio (SNR) measurements were performed at three locations. Identification of arteries' inflammation was achieved with both coils with excellent inter-observer agreement (κ=0.89 for 12-channel and κ=0.96 for 32-channel coil). Regarding image grading, the inter-observer variability was moderate for the 12-channel (κ=0.5) and substantial for the 32-channel coil (κ=0.63). Significantly higher SNR and improved image quality (p<0.01) were obtained with the 32-channel coil in either coil order. Image quality for depiction of the superficial cranial arteries was superior for the 32-channel coil. For standardized GCA diagnosis, the 12-channel coil was sufficient.

  7. Radiofrequency heating in porcine models with a "large" 32 cm internal diameter, 7 T (296 MHz) head coil.

    PubMed

    Shrivastava, Devashish; Hanson, Timothy; Kulesa, Jeramy; Tian, Jinfeng; Adriany, Gregor; Vaughan, J Thomas

    2011-07-01

    Temperatures were measured in vivo in four pigs (mean animal weight = 110.75 kg and standard deviation = 6.13 kg) due to a continuous wave radiofrequency (RF) power irradiation with a 31.75 cm internal diameter and a 15.24 cm long, 7 T (296 MHz), eight channel, transverse electromagnetic head coil. The temperatures were measured in the subcutaneous layer of the scalp, 5, 10, 15, and 20 mm deep in the brain, and rectum using fluoroptic temperature probes. The RF power was delivered to the pig's head for ∼3 h (mean deposition time = 3.14 h and standard deviation = 0.06 h) at the whole head average specific absorption rate of ∼3 W kg(-1) (mean average specific absorption rate = 3.08 W kg(-1) and standard deviation = 0.09 W kg(-1)). Next, simple bioheat transfer models were used to simulate the RF power induced temperature changes. Results show that the RF power produced uniform temperature changes in the pigs' heads (mean temperature change = 1.68°C and standard deviation = 0.13°C) with no plateau achieved during the heating. No thermoregulatory alterations were detected due to the heating because the temperature responses of the pre-RF and post-RF epochs were not statistically significantly different. Simple, validated bioheat models may provide accurate temperature changes. Copyright © 2011 Wiley-Liss, Inc.

  8. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.

    PubMed

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2014-08-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1(+) near-field with the trapezoidal shape.

  9. A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI.

    PubMed

    Faraji-Dana, Zahra; Tam, Fred; Chen, J Jean; Graham, Simon J

    2016-10-01

    Prospective motion correction is a promising candidate solution to suppress the effects of head motion during fMRI, ideally allowing the imaging plane to remain fixed with respect to the moving head. Residual signal artifacts may remain, however, because head motion in relation to a fixed multi-channel receiver coil (with non-uniform sensitivity maps) can potentially introduce unwanted signal variations comparable to the weak fMRI BOLD signal (~1%-4% at 1.5-3.0T). The present work aimed to investigate the magnitude of these residual artifacts, and characterize the regime over which prospective motion correction benefits from adjusting sensitivity maps to reflect relative positional change between the head and the coil. Numerical simulations were used to inform human fMRI experiments. The simulations indicated that for axial imaging within a commonly used 12-channel head coil, 5° of head rotation in-plane produced artifact signal changes of ~3%. Subsequently, six young adults were imaged with and without overt head motions of approximately this extent, with and without prospective motion correction using the Prospective Acquisition CorrEction (PACE) method, and with and without sensitivity map adjustments. Sensitivity map adjustments combined with PACE strongly protected against the artifacts of interest, as indicated by comparing three metrics of data quality (number of activated voxels, Dice coefficient of activation overlap, temporal standard deviation of baseline fMRI timeseries data) across the different experimental conditions. It is concluded that head motion in relation to a fixed multi-channel coil can adversely affect fMRI with prospective motion correction, and that sensitivity map adjustment can mitigate this effect at 3.0T. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Peripheral nerve stimulation characteristics of an asymmetric head-only gradient coil compatible with a high-channel-count receiver array.

    PubMed

    Lee, Seung-Kyun; Mathieu, Jean-Baptiste; Graziani, Dominic; Piel, Joseph; Budesheim, Eric; Fiveland, Eric; Hardy, Christopher J; Tan, Ek Tsoon; Amm, Bruce; Foo, Thomas K-F; Bernstein, Matt A; Huston, John; Shu, Yunhong; Schenck, John F

    2016-12-01

    To characterize peripheral nerve stimulation (PNS) of an asymmetric head-only gradient coil that is compatible with a commercial high-channel-count receive-only array. Two prototypes of an asymmetric head-only gradient coil set with a 42-cm inner diameter were constructed for brain imaging at 3T with maximum performance specifications of up to 85 mT/m and 708 T/m/s. Tests were performed in 24 volunteers to measure PNS thresholds with the transverse (x = left-right; y = anterior-posterior [A/P]) gradient coils of both prototypes. Fourteen of these 24 volunteers were also tested for the z-gradient PNS in the second prototype and were scanned with high-slew-rate echo planar imaging (EPI) immediately after the PNS tests. For both prototypes, the y-gradient PNS threshold was markedly higher than the x-gradient threshold. The z-gradient threshold was intermediate between those for the x- and y-coils. Of the 24 volunteers, only two experienced y-gradient PNS at 80 mT/m and 500 T/m/s. All volunteers underwent the EPI scan without PNS when the readout direction was set to A/P. Measured PNS characteristics of asymmetric head-only gradient coil prototypes indicate that such coils, especially in the A/P direction, can be used for fast EPI readout in high-performance neuroimaging scans with substantially reduced PNS concerns compared with conventional whole body gradient coils. Magn Reson Med 76:1939-1950, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  11. Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells

    SciTech Connect

    Takemura, T.; Sato, F.; Saga, K.; Suzuki, Y.; Sato, K. )

    1991-02-01

    Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; an initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.

  12. Bleeding Complications After Endoscopic Lung Volume Reduction Coil Treatment: A Retrospective Observational Study.

    PubMed

    Simon, Marcel; Ittrich, Harald; Harbaum, Lars; Oqueka, Tim; Kluge, Stefan; Klose, Hans

    2016-12-01

    Endoscopic lung volume reduction coil (LVRC) treatment is an option for selected patients with severe emphysema. This study was conducted to determine the incidence of bleeding complications after LVRC treatment, to identify risk factors and to discuss treatment options in case of hemoptysis which does not resolve spontaneously. Retrospective observational study conducted in the Department of Respiratory Medicine at the University Medical Center Hamburg-Eppendorf in all subjects in whom LVRC treatment was performed between April 1, 2012 and September 30, 2015. During the study period, 101 LVRC procedures were performed in 62 subjects. Early post-procedural bleeding was encountered in 65.3% of cases. Hemoptysis was significantly more likely to occur in patients receiving acetylsalicylic acid (P=.005). Hemoptysis resolved spontaneously in 98.5% of cases. In the one case (1.5%) with persistent hemoptysis, bronchial artery embolization was successful in terminating bleeding. Hospital stay was significantly prolonged in subjects with hemoptysis (P=.01). No significant differences were found between subjects with or without hemoptysis in terms of chronic obstructive pulmonary disease exacerbations within four weeks after LVRC treatment (P=.18). Late bleeding complications were observed in 3 subjects (3.0%). In 2 of these cases, bronchial artery embolization was performed and bleeding was successfully terminated. Self-limiting low volume bleeding is a common finding in the first days after LVRC treatment. However, persistent bleeding may occur in the early post-procedural phase and late after LVRC treatment. In these cases, bronchial artery embolization was a feasible and successful approach to terminating bleeding. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Coil Design Considerations for Deep Transcranial Magnetic Stimulation

    PubMed Central

    Deng, Zhi-De; Lisanby, Sarah H.; Peterchev, Angel V.

    2014-01-01

    Objectives To explore the field characteristics and design tradeoffs of coils for deep transcranial magnetic stimulation (dTMS). Methods We simulated parametrically two dTMS coil designs on a spherical head model using the finite element method, and compare them with five commercial TMS coils, including two that are FDA approved for the treatment of depression (ferromagnetic-core figure-8 and H1 coil). Results Smaller coils have a focality advantage over larger coils; however, this advantage diminishes with increasing target depth. Smaller coils have the disadvantage of producing stronger field in the superficial cortex and requiring more energy. When the coil dimensions are large relative to the head size, the electric field decay in depth becomes linear, indicating that, at best, the electric field attenuation is directly proportional to the depth of the target. Ferromagnetic cores improve electrical efficiency for targeting superficial brain areas; however magnetic saturation reduces the effectiveness of the core for deeper targets, especially for highly focal coils. Distancing winding segments from the head, as in the H1 coil, increases the required stimulation energy. Conclusions Among standard commercial coils, the double cone coil offers high energy efficiency and balance between stimulated volume and superficial field strength. Direct TMS of targets at depths of ~ 4 cm or more results in superficial stimulation strength that exceeds the upper limit in current rTMS safety guidelines. Approaching depths of ~ 6 cm is almost certainly unsafe considering the excessive superficial stimulation strength and activated brain volume. Significance Coil design limitations and tradeoffs are important for rational and safe exploration of dTMS. PMID:24411523

  14. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T.

    PubMed

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G; Poser, Benedikt A; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using [Formula: see text] mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T.

  15. Optimum coil shape for a given volume of conductor to obtain maximum central field in an air core solenoid

    SciTech Connect

    Hernandez, P.

    1995-02-01

    This paper is an expansion of engineering notes prepared in 1961 to address the question of how to wind circular coils so as to obtain the maximum axial field with the minimum volume of conductor. At the time this was a germain question because of the advent of superconducting wires which were in very limited supply, and the rapid push for generation of very high fields, with little concern for uniformity.

  16. Reduce volume of head-up display by image stitching

    NASA Astrophysics Data System (ADS)

    Chiu, Yi-Feng; Su, Guo-Dung J.

    2016-09-01

    Head-up Display (HUD) is a safety feature for automobile drivers. Although there have been some HUD systems in commercial product already, their images are too small to show assistance information. Another problem, the volume of HUD is too large. We proposed a HUD including micro-projectors, rear-projection screen, microlens array (MLA) and the light source is 28 mm x 14 mm realized a 200 mm x 100 mm image in 3 meters from drivers. We want to use the MLA to reduce the volume by virtual image stitching. We design the HUD's package dimensions is 12 cm x 12 cm x 9 cm. It is able to show speed, map-navigation and night vision information. We used Liquid Crystal Display (LCD) as our image source due to its brighter image output required and the minimum volume occupancy. The MLA is a multi aperture system. The proposed MLA consists of many optical channels each transmitting a segment of the whole field of view. The design of the system provides the stitching of the partial images, so that we can see the whole virtual image.

  17. An inverted-microstrip resonator for human head proton MR imaging at 7 tesla.

    PubMed

    Zhang, Xiaoliang; Ugurbil, Kamil; Sainati, Robert; Chen, Wei

    2005-03-01

    As an extension of the previously developed microstrip transmission line (MTL) RF coil design, a high-frequency RF volume coil using multiple inverted MTL (iMTL) resonators for human head imaging at high magnetic field strength of 7 tesla (T) is reported. Compared to conventional MTL resonators, iMTL resonators can operate at higher frequency with lower losses and, thus, are suitable for designs of high-frequency RF volume coils with large coil size for human MR imaging and spectroscopy at high fields. An approach using capacitive terminations was analyzed and applied to the design of the iMTL volume coil for improving RF field homogeneity and broadening frequency-tuning range. A performance-comparison study was conducted between the prototype iMTL volume coil and a custom-built TEM volume coil at 7 T. The iMTL volume coil presents a comparable SNR and intrinsic B1 homogeneity to the TEM volume coil. Phantom and the human head images acquired using the iMTL volume coil are also presented. The proposed iMTL volume coil provides an efficient and alternative solution to design high-frequency and large-size volume coils for human MR applications at very high fields.

  18. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    PubMed

    Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected. Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the 'adult' MR-coil. Our findings strengthen the importance of

  19. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil

    PubMed Central

    Smith-Collins, Adam PR; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H.; Pruessmann, Klaas P.; Boecker, Henning

    2017-01-01

    Background Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Patients / methods Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an ‘adult’ 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected. Results Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the ‘adult’ MR-coil

  20. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  1. Comparison of single voxel brain MRS AT 3T and 7T using 32-channel head coils.

    PubMed

    Pradhan, Subechhya; Bonekamp, Susanne; Gillen, Joseph S; Rowland, Laura M; Wijtenburg, S Andrea; Edden, Richard A E; Barker, Peter B

    2015-10-01

    The purpose of this study was to compare magnetic resonance spectroscopy (MRS) of three different regions of the human brain between 3 and 7 Tesla, using the same subjects and closely matched methodology at both field strengths. A semi-LASER (sLASER) pulse sequence with TE 32ms was used to acquire metabolite spectrum along with the water reference at 3T and 7T using similar experimental parameters and hardware at both field strengths (n=4 per region and field). Spectra were analyzed in LCModel using a simulated basis set. Signal-to-noise ratio (SNR) at 7T was higher compared to 3T, and linewidths (in ppm) at both field strengths were comparable in ppm scale. Of the 13 metabolites reported in the paper, most metabolites were measured with higher precision at 7T in all three regions. The study confirms gains in SNR and measurement precision at 7T in all three representative brain regions using the sLASER pulse sequence coupled with a 32-channel phased-array head coil. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Electromagnetic characterization of an MR volume coil with multilayered cylindrical load using a 2-D analytical approach.

    PubMed

    Tiberi, Gianluigi; Costagli, Mauro; Stara, Riccardo; Cosottini, Mirco; Tropp, James; Tosetti, Michela

    2013-05-01

    We present an analytical method for the analysis of Radio Frequency (RF) volume coils for Magnetic Resonance Imaging (MRI), using a 2-D full wave solution with loading by multilayered cylinders. This allows the characterization of radio-frequency E, H, B1, B1(+) fields. Comparisons are provided with experimental data obtained at 7.0 T. The procedure permits us to clearly separate the solution to single line source problem (which we call the primordial solution) and the composite solution (i.e. full coil, i.e. the summations of primordial solutions according to the resonator drive configuration). The capability of separating the primordial solution and the composite one is fundamental for a thorough analysis of the phenomena of dielectric resonance, and of standing wave and multi-source interference. We show that dielectric resonance can be identified only by looking at the electromagnetic field from a single line source. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Transcranial Magnetic Stimulation-coil design with improved focality

    NASA Astrophysics Data System (ADS)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  4. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure.

    PubMed

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5-19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol

  5. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure

    PubMed Central

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E.; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M.; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5–19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol

  6. Dedicated head-neck coil in MR angiography of the supra-aortic arteries from the aortic arch to the circle of Willis.

    PubMed

    Strotzer, M; Fellner, C; Fraunhofer, S; Gmeinwieser, J; Albrich, H; Seitz, J; Feuerbach, S

    1998-05-01

    To evaluate the usefulness of a dedicated head-neck coil in preoperative imaging of the supra-aortic arteries. Forty consecutive patients with suspected carotid artery stenosis underwent MR angiography (MRA). Using a dedicated head-neck coil, we made a complete evaluation of the supra-aortic arteries and graded the internal carotid artery (ICA) stenoses. MRA was performed at 1.5 T with: coronal 3D FISP from the aortic arch to the circle of Willis; transverse 2D FLASH and 3D TONE of the carotid bifurcation; transverse 3D TONE of the carotid siphon and the circle of Willis; and transverse 3D FISP of the aortic arch. I.a. digital subtraction angiography (DSA) was used as the reference. ICA stenoses of 70% and more at DSA (NASCET methodology) were regarded as severe. Severe ICA stenoses were detected with high sensitivity and specificity: 93% and 92% respectively for coronal 3D FISP; 90% and 85% respectively for transverse 2D FLASH; and 97% and 94% respectively for transverse 3D TONE. The carotid siphon and the intracranial ICA were best depicted by 3D TONE. None of the applied sequences gave a satisfactory visualization of the aortic arch or of the origins of the vertebral arteries. With the head-neck coil, the supra-aortic arteries (including the intracranial vessels) were visualized without the need to reposition the patient, but depiction of the aortic arch was not acceptable. The quantification of ICA stenoses was reliable.

  7. Continuous ASL (CASL) perfusion MRI with an array coil and parallel imaging at 3T.

    PubMed

    Wang, Ze; Wang, Jiongjiong; Connick, Thomas J; Wetmore, Gabriel S; Detre, John A

    2005-09-01

    The purpose of this work was to assess the feasibility and efficacy of using an array coil and parallel imaging in continuous arterial spin labeling (CASL) perfusion MRI. An 8-channel receive-only array head coil was used in conjunction with a surrounding detunable volume transmit coil. The signal to noise ratio (SNR), temporal stability, cerebral blood flow (CBF), and perfusion image coverage were measured from steady state CASL scans using: a standard volume coil, array coil, and array coil with 2- and 3-fold accelerated parallel imaging. Compared to the standard volume coil, the array coil provided 3 times the average SNR increase and higher temporal stability for the perfusion weighted images, even with threefold acceleration. Although perfusion images of the array coil were affected by the inhomogeneous coil sensitivities, this effect was invisible in the quantitative CBF images, which showed highly reproducible perfusion values compared to the standard volume coil. The unfolding distortions of parallel imaging were suppressed in the perfusion images by pairwise subtraction, though they sharply degraded the raw EPI images. Moreover, parallel imaging provided the potential of acquiring more slices due to the shortened acquisition time and improved coverage in brain regions with high static field inhomogeneity. Such results highlight the potential utility of array coils and parallel imaging in ASL perfusion MRI. Copyright (c) 2005 Wiley-Liss, Inc.

  8. Where is the coiled tubing wave headed. [The increased use of coiled tube drilling equipment in the oil and gas industry

    SciTech Connect

    Newman, K. )

    1994-09-01

    In the late 1980s, the coiled tubing (CT) service market began a wave of growth and expansion unparalleled by other oil field services. In 1989, market growth was so rapid it was referred to as a ''CT revolution.'' The trend has continued through the early 1990s with annual growth rates of 20%--30%, while other oil field service markets have been stagnant or even shrinking. With the recent advent of open-hole CT drilling (CTD) and CT completions (CTC), the wave's momentum is increasing with no end in sight. Advances in CT manufacturing, fatigue prediction, larger-diameter tubing, CT logging and other CT equipment made in the late 1980s improved the reliability and effectiveness of CT services, triggering this wave of activity. The status of this technology is discussed along with the performance and reliability of coiled tubing drills.

  9. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T

    PubMed Central

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G.; Poser, Benedikt A.; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    Purpose To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. Methods A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using B1+ mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. Results The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. Conclusion The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T. PMID:27911950

  10. Increased cerebellar gray matter volume in head chefs

    PubMed Central

    Sarica, Alessia; Martino, Iolanda; Fabbricatore, Carmelo; Tomaiuolo, Francesco; Rocca, Federico; Caracciolo, Manuela; Quattrone, Aldo

    2017-01-01

    Objective Chefs exert expert motor and cognitive performances on a daily basis. Neuroimaging has clearly shown that that long-term skill learning (i.e., athletes, musicians, chess player or sommeliers) induces plastic changes in the brain thus enabling tasks to be performed faster and more accurately. How a chef's expertise is embodied in a specific neural network has never been investigated. Methods Eleven Italian head chefs with long-term brigade management expertise and 11 demographically-/ psychologically- matched non-experts underwent morphological evaluations. Results Voxel-based analysis performed with SUIT, as well as, automated volumetric measurement assessed with Freesurfer, revealed increased gray matter volume in the cerebellum in chefs compared to non-experts. The most significant changes were detected in the anterior vermis and the posterior cerebellar lobule. The magnitude of the brigade staff and the higher performance in the Tower of London test correlated with these specific gray matter increases, respectively. Conclusions We found that chefs are characterized by an anatomical variability involving the cerebellum. This confirms the role of this region in the development of similar expert brains characterized by learning dexterous skills, such as pianists, rock climbers and basketball players. However, the nature of the cellular events underlying the detected morphological differences remains an open question. PMID:28182712

  11. Increased cerebellar gray matter volume in head chefs.

    PubMed

    Cerasa, Antonio; Sarica, Alessia; Martino, Iolanda; Fabbricatore, Carmelo; Tomaiuolo, Francesco; Rocca, Federico; Caracciolo, Manuela; Quattrone, Aldo

    2017-01-01

    Chefs exert expert motor and cognitive performances on a daily basis. Neuroimaging has clearly shown that that long-term skill learning (i.e., athletes, musicians, chess player or sommeliers) induces plastic changes in the brain thus enabling tasks to be performed faster and more accurately. How a chef's expertise is embodied in a specific neural network has never been investigated. Eleven Italian head chefs with long-term brigade management expertise and 11 demographically-/ psychologically- matched non-experts underwent morphological evaluations. Voxel-based analysis performed with SUIT, as well as, automated volumetric measurement assessed with Freesurfer, revealed increased gray matter volume in the cerebellum in chefs compared to non-experts. The most significant changes were detected in the anterior vermis and the posterior cerebellar lobule. The magnitude of the brigade staff and the higher performance in the Tower of London test correlated with these specific gray matter increases, respectively. We found that chefs are characterized by an anatomical variability involving the cerebellum. This confirms the role of this region in the development of similar expert brains characterized by learning dexterous skills, such as pianists, rock climbers and basketball players. However, the nature of the cellular events underlying the detected morphological differences remains an open question.

  12. Development of a full-ring ;add-on PET; prototype: A head coil with DOI-PET detectors for integrated PET/MRI

    NASA Astrophysics Data System (ADS)

    Nishikido, F.; Fujiwara, M.; Tashima, H.; Akram, M. S. H.; Suga, M.; Obata, T.; Yamaya, T.

    2017-08-01

    We developed a full-ring ;add-on PET; prototype which is brain-dedicated and consists of a RF-head coil with four-layer depth-of-interaction (DOI) PET detectors for integrated PET/MRI in order to evaluate performance of our previously proposed add-on PET system and to investigate the mutual influences between the individual PET and MRI modalities when they are integrated in simultaneous measurements. In this add-on PET prototype, the DOI detectors are mounted on the head coil and close to the patient head. As a result, higher sensitivity and higher spatial resolution can be achieved for the integrated PET/MRI, compared with conventional whole body PET/MRI systems. In addition, implementation cost can be reduced, tuning of the RF-coil can be optimized and PET and MRI images can be obtained simultaneously in exactly the same positions. Specifically, the full-ring prototype consists of eight DOI-PET detectors and a birdcage type head coil of a 3T MRI. The radius of the PET ring is 123.9 mm. The distance from the center to the RF-coil elements is 130.5 mm. The scintillator blocks consist of lutetium-yttrium oxyorthosilicate scintillators arranged in 19×6×4 layers with reflectors inserted between them. The size of each crystal element is 2.0 mm×2.0 mm ×5.0 mm. We evaluated performance of the full-ring prototype in simultaneous measurements of the integrated PET/MRI. We obtained spatial resolutions of 2.3 mm at the center of the field-of-view (FOV) and lower than 3.5 mm in the whole FOV. The energy resolution of 19.4% was obtained for 511 keV gamma-rays. In addition, we observed no degradation of PET performance caused by the MRI measurement. The signal-to-noise ratio (SNR) of the MRI image was 209.4 in simultaneous measurements with the PET. The maximum ΔB0 and maximum difference of the secondary magnetic field due to the eddy current effect were smaller than 0.8 ppm and ±5.0 μT, respectively. We concluded that sufficient spatial resolution and detector

  13. Improved SNR for combined TMS-fMRI: A support device for commercially available body array coil.

    PubMed

    Wang, Wen-Tung; Xu, Benjamin; Butman, John A

    2017-09-01

    Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation tool extensively used in clinical and cognitive neuroscience research. TMS has been applied during functional magnetic resonance imaging (i.e., concurrent/interleaved TMS-fMRI) to understand neural mechanisms underlying cognitive functions. However, no advanced commercial multi-channel whole-brain array MR coils can fit the large TMS coil. We developed a low-cost and easy-to-configure setup that takes advantage of the superior signal-to-noise ratio (SNR) performance of commercially available flexible body array coils that can accommodate the TMS coil. Two flexible MRI body array coils (i.e., the Combo coil) were fitted on a simple coil support with a TMS-coil holder. Phantom and in vivo images acquired using the Combo coil with and without a TMS coil were compared with those from a product 12-channel (12CH) form-fit head array coil. Relative to the 12CH head coil, images acquired using the Combo coil were of similar quality, but with increased noise levels, leading to moderately reduced temporal SNR values. A previous study reported that the temporal SNR of a product 12CH head coil was twice that of a transmit/receive volume birdcage coil commonly used in combined TMS-fMRI. Together with the results of the present work, they indicate that the Combo-coil setup improves SNR performance for combined TMS-fMRI acquisition. The inexpensive and easy-to-configure Combo-coil setup offers an effective and likely superior alternative to transmit/receive birdcage coil for combined TMS-fMRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Three-dimensional (3D) visualization of endolymphatic hydrops after intratympanic injection of Gd-DTPA: optimization of a 3D-real inversion-recovery turbo spin-echo (TSE) sequence and application of a 32-channel head coil at 3T.

    PubMed

    Naganawa, Shinji; Ishihara, Shunichi; Iwano, Shingo; Sone, Michihiko; Nakashima, Tsutomu

    2010-01-01

    To enable volume visualization of endolymphatic hydrops of Ménière's disease via a volume rendering (VR) technique, a three-dimensional (3D) inversion-recovery (IR) sequence with real reconstruction (3D-real IR) sequence after intratympanic injection of Gd-DTPA was optimized for higher spatial resolution using a 32-channel head coil at 3T. Pulse sequence parameters were optimized using a diluted Gd-DTPA phantom. Then, 11 patients who had been clinically diagnosed with Ménière's disease and a patient with sudden hearing loss were scanned. Images were processed using commercially available 3D-VR software. 3D-real IR data was processed to produce endolymph and perilymph fluid volume images in different colors. 3D-CISS data was processed to generate total fluid volume images. While maintaining a comparable signal-to-noise ratio (SNR) and scan time, the voxel volume could be reduced from 0.4 x 0.4 x 2 mm(3) with a 12-channel coil to 0.4 x 0.4 x 0.8 mm(3) with a 32-channel coil. A newly-optimized protocol allowed the smooth, three-dimensional visualization of endolymphatic hydrops in all patients with Ménière's disease. Volumetrically separate visualization of endo-/perilymphatic space is now feasible in patients with Ménière's disease using an optimized 3D-real IR sequence, a 32-channel head coil, at 3T, after intratympanic administration of Gd-DTPA. This will aid the understanding of the pathophysiology of Ménière's disease. (c) 2009 Wiley-Liss, Inc.

  15. Lung Motion and Volume Measurement by Dynamic 3D MRI Using a 128-Channel Receiver Coil1

    PubMed Central

    Tokuda, Junichi; Schmitt, Melanie; Sun, Yanping; Patz, Samuel; Tang, Yi; Mountford, Carolyn E.; Hata, Nobuhiko; Wald, Lawrence L.; Hatabu, Hiroto

    2009-01-01

    Rationale and Objectives The authors present their initial experience using a 3-T whole-body scanner equipped with a 128-channel coil applied to lung motion assessment. Recent improvements in fast magnetic resonance imaging (MRI) technology have enabled several trials of free-breathing three-dimensional (3D) imaging of the lung. A large number of image frames necessarily increases the difficulty of image analysis and therefore warrants automatic image processing. However, the intensity homogeneities of images of prior dynamic 3D lung MRI studies have been insufficient to use such methods. In this study, initial data were obtained at 3 T with a 128-channel coil that demonstrate the feasibility of acquiring multiple sets of 3D pulmonary scans during free breathing and that have sufficient quality to be amenable to automatic segmentation. Materials and Methods Dynamic 3D images of the lungs of two volunteers were acquired with acquisition times of 0.62 to 0.76 frames/s and an image matrix of 128 × 128, with 24 to 30 slice encodings. The volunteers were instructed to take shallow and deep breaths during the scans. The variation of lung volume was measured from the segmented images. Results Dynamic 3D images were successfully acquired for both respiratory conditions for each subject. The images showed whole-lung motion, including lifting of the chest wall and the displacement of the diaphragm, with sufficient contrast to distinguish these structures from adjacent tissues. The average time to complete segmentation for one 3D image was 4.8 seconds. The tidal volume measured was consistent with known tidal volumes for healthy subjects performing deep-breathing maneuvers. The temporal resolution was insufficient to measure tidal volumes for shallow breathing. Conclusion This initial experience with a 3-T whole-body scanner and a 128-channel coil showed that the scanner and imaging protocol provided dynamic 3D images with spatial and temporal resolution sufficient to

  16. Safety of brain 3-T MR imaging with transmit-receive head coil in patients with cardiac pacemakers: pilot prospective study with 51 examinations.

    PubMed

    Naehle, Claas P; Meyer, Carsten; Thomas, Daniel; Remerie, Susann; Krautmacher, Carsten; Litt, Harold; Luechinger, Roger; Fimmers, Rolf; Schild, Hans; Sommer, Torsten

    2008-12-01

    To evaluate the safety and feasibility of 3-T magnetic resonance (MR) imaging of the brain in patients with implanted cardiac pacemakers (PMs) by using a transmit-receive head coil. The study protocol was approved by the institutional review board. Signed informed consent was obtained from all subjects. In vitro testing at 3 T was performed with 32 PMs and 45 PM leads that were evaluated for force and torque (by using a floating platform) and radiofrequency (RF)-related heating by using a transmit-receive head coil (maximum specific absorption rate, 3.2 W/kg). Patient examinations at 3 T were performed in 44 patients with a cardiac PM and a strong clinical need; patients underwent a total of 51 MR examinations of the brain by using a transmit-receive head coil to minimize RF exposure of the PM system. An electrocardiograph and pulse oximetry were used for continuous monitoring during MR imaging. The technical and functional PM status was assessed prior to and immediately after MR imaging and at 3 months thereafter. Serum troponin I level was measured before and 12 hours after imaging to detect myocardial thermal injury. PM reprogramming was performed prior to MR imaging depending on the patient's intrinsic heart rate (< 60 beats per minute, asynchronous pacing; > or = 60 beats per minute, sense-only mode). For in vitro testing, the maximum translational force was 2150 mN (mean, 374.38 mN +/- 392.75 [standard deviation]), and maximum torque was 17.8 x 10(-3) N x m (mean, [2.29 +/- 4.08] x 10(-3) N x m). The maximum temperature increase was 2.98 degrees C (mean, 0.16 degrees C +/- 0.45). For patient examinations, all MR examinations (51 of 51) were completed safely. There were no significant (P < .05) changes in lead impedance, pacing capture threshold level, or serum troponin I level. MR imaging of the brain at 3 T in patients with a cardiac PM can be performed safely when dedicated safety precautions (including the use of a transmit-receive head coil) are taken

  17. A comparison of the I-Gel supraglottic device with endotracheal intubation for bronchoscopic lung volume reduction coil treatment.

    PubMed

    Arevalo-Ludeña, Julian; Arcas-Bellas, Jose Juan; Alvarez-Rementería, Rafael; Flandes, Javier; Morís, Laura; Muñoz Alameda, Luis E

    2016-06-01

    To compare the use of the I-gel airway with orotracheal intubation (OTI) for bronchoscopic lung volume reduction (BLVR) coil treatment in patients with severe chronic obstructive pulmonary disease (COPD) with heterogeneous emphysema, since it has been proved that supraglottic airways have lower incidence of postoperative respiratory complaints compared to OTI. A comparative, prospective observational study was designed to assess the use of the I-gel airway compared with the OTI. Bronchoscopy room at the University Hospital Fundación Jimenez Diaz, Madrid. Tertiary care center. Thirty-three procedures were carried out in 22 patients diagnosed with COPD with severe heterogeneous emphysema undergoing BLVR coil treatment under general anaesthesia. Seventeen procedures were carried out with I-gel and 16 with endotracheal tube. Airway device choice was left to the attendant anesthesiologist. Tidal volume, peak pressure, and the presence of gas leaks were compared. Adverse events during the procedure and within the first 3 hours later were also recorded. Ventilation parameters obtained showed no significant differences. Mean tidal volume was 466.6 ± 28.2 mL and 478.7 ± 34.0 mL (P > .05), mean peak pressure was 17.9 ± 2.5 cmH2O and 19.4 ± 2.4 cmH2O (P > .05) and mean gas leaks was 71 ± 17.6 mL and 79 ± 15.5 mL (P > .05) for I-gel group (IgelG) and endotracheal tube group respectively. No serious complications were reported. One case of pneumothorax was reported in the endotracheal tube group, which was resolved with a chest drainage tube without further complications. The I-gel airway ensures appropriate ventilation and makes the use of the flexible fiberoptic bronchoscope quite easy. Therefore, we consider that the I-gel device is an effective and safe alternative to classical OTI for airway management in COPD patients with severe heterogeneous emphysema undergoing BLVR coil treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Advances in otolaryngology-Head and neck surgery. Volume 1

    SciTech Connect

    Myers, E.N. ); Bluestone, C.D. )

    1987-01-01

    This book consists of 14 sections. The section titles are: The impact of AIDS on otolaryngology--head and neck surgery; The management of sleep apneas and snoring; Antimicrobial agents for infections in the ear, nose, and throat--head and neck; Nasal allergy: Medical and surgical treatment; Uses of computerized tomography and magnetic resonance imaging in temporal bone imaging; Surgical management of otitis media with effusion; middle ear reconstruction: Current status; Cochlear implants: an overview; Diagnosis and management of acute facial paralysis; The use of the laser in head and neck surgery; The management and prevention of subglottic stenosis in infants and children; Management of the mass in the thyroid; Suction-assisted lipectomy of the head and neck area; and Ambulatory surgery.

  19. 3D time-of-flight MR angiography of the intracranial vessels: optimization of the technique with water excitation, parallel acquisition, eight-channel phased-array head coil and low-dose contrast administration.

    PubMed

    Ozsarlak, O; Van Goethem, J W; Parizel, P M

    2004-11-01

    The aim of this study is three folds: to compare the eight-channel phased-array and standard circularly polarized (CP) head coils in visualisation of the intracranial vessels, to compare the three-dimensional (3D) time-of-flight (TOF) MR angiography (MRA) techniques, and to define the effects of parallel imaging in 3D TOF MRA. Fifteen healthy volunteers underwent 3D TOF MRA of the intracranial vessels using eight-channel phased-array and CP standard head coils. The following MRA techniques were obtained on each volunteer: (1) conventional 3D TOF MRA with magnetization transfer; (2) 3D TOF MRA with water excitation for background suppression; and (3) low-dose (0.5 ml) gadolinium-enhanced 3D TOF MRA with water excitation. Results are demonstrating that water excitation is a valuable background suppression technique, especially when applied with an eight-channel phased-array head coil. For central and proximal portions of the intracranial arteries, unenhanced TOF MRA with water excitation was the best technique. Low-dose contrast enhanced TOF MRA using an eight-channel phased-array head coil is superior in the evaluation of distal branches over the standard CP head coil. Parallel imaging with an acceleration factor of two allows an important time gain without a significant decrease in vessel evaluation. Water excitation allows better background suppression, especially around the orbits and at the periphery, when compared to conventional acquisitions.

  20. Actively Decoupled Transmit-Receive Coil-Pair for Mouse Brain MRI.

    PubMed

    Garbow, Joel R; McIntosh, Charlie; Conradi, Mark S

    2008-10-01

    A low-cost, high performance RF coil-pair for MR imaging of mouse brain is described. A surface receiving coil is used for high spin-sensitivity, while a larger transmit coil, located outside the mouse holder, delivers good B1 uniformity across the brain with reasonable efficiency. The volume coil is constructed with an open architecture, making experimental setup easy and providing clear access to the head of the mouse. Each coil is switched between active and inactive modes using PIN diodes driven by a small amplifier external to the spectrometer. Because of this active decoupling, there is no requirement for orthogonal orientation of the coils. The coil pair is platform independent, requiring only a transmit/receive (T/R) signal to switch the amplifier that drives the PIN diodes, and can therefore be used with virtually any commercial or home-built MR scanner.

  1. Lung Volume Reduction Coils as a Novel Bronchoscopic Treatment for Emphysema

    PubMed Central

    Connolly, Timothy A.

    2016-01-01

    Chronic obstructive pulmonary disease remains a major cause of morbidity and mortality worldwide. Despite regular advances in pharmacology, there remains great potential for addressing structural deficiencies, especially in emphysema. The loss of alveolar attachments to small bronchial tubes results in diffuse loss of elastic recoil and airway collapse during exhalation. This appears physiologically as hyperinflation of lung volumes with flattened diaphragms and significantly elevated residual volumes (RV) on pulmonary function testing (predicted RV > 175%). PMID:28298960

  2. New directions in the design of MRI gradient coils

    NASA Astrophysics Data System (ADS)

    Baig, Tanvir Noor

    In this dissertation new designs for gradient coils are presented. The principal work is on better shielding for fringe field reduction. Fringe fields from gradient coils produce eddy currents in surrounding metal structures. Such eddy currents can degrade image quality and lead to acoustic noise. The acoustic effects are magnified for high-field Magnetic Resonance Imaging (MRI) scanners because of increased Lorentz forces. Conventional actively shielded gradient assemblies consist of primary and secondary coils in the shape of cylindrical shells surrounding the imaging volume. One of the principal regions of field leakage is at the ends of the gradient structure, and these fields are responsible for substantial eddy current generation. Our new shielded gradient coil designs that feature the inclusion of an endcap have significantly reduced fringe field at the cryostat inner bore. We discuss the degree to which the suppression of peak fringe fields corresponds to a reduction in the acoustic noise generated near the end of the warm bore. Energy efficient capped actively shielded elliptical gradient coils are also designed. In comparison with traditional uncapped elliptical designs the newly proposed design substantially reduces the fringe field at the inner cryostat bore. And compared to a cylindrical design (with a diameter matched to the elliptical semi-major axis), a good reduction in magnetic energy is observed. In addition, a design for a very short, symmetrical, and winged X-gradient insertable head coil is presented. With a smaller radius, an insertable head gradient coil has the advantage of less stored magnetic energy. The corresponding smaller inductance leads to higher slew rates. Lower torque from Lorentz forces is another advantage for these coils. When designing an insertable head coil one must remember the geometry is impacted by the shoulders. In consequence, asymmetric unshielded and shielded designs have been developed. Gradient designs with a

  3. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 32, Coil assembly documentation. Volume 5

    SciTech Connect

    Weber, C.M.

    1995-08-18

    This document is intended to address the contract requirement for providing coil assembly documentation, as required in the applicable Statement of Work: `Provide preliminary procedures and preliminary design and supporting analysis of the equipment, fixtures, and hardware required to integrate and align the impregnated coil assemblies with the coil cases and intercoil structure. Each of the three major processes associated with the coil case and intercoil structure (ICS), TF Case Fabrication, Coil Preparation for Case Assembly are examined in detail. The specific requirements, processes, equipment, and technical concerns for each of these assembly processes is presented.

  4. Conversion Tables. Volume 3, Subject Headings-LC and Dewey. Second Edition.

    ERIC Educational Resources Information Center

    Scott, Mona L.

    This volume contains tables that list Library of Congress subject headings with corresponding Library of Congress and Dewey Decimal classification numbers (i.e., call numbers). Materials referenced in the conversion tables are the 21st edition of the "Dewey Decimal Classification," the most current edition of the various volumes of the…

  5. Diving in Head First: Finding the Volume of Norris lake

    ERIC Educational Resources Information Center

    Foster, Drew W.

    2008-01-01

    This article allows students to apply their knowledge and experience of area and volume to find the volume of Norris Lake, a large reservoir lake in Tennessee. Students have the opportunity to demonstrate their skills in using maps and scales as well as to incorporate the use of technology in developing the solution. This project satisfied the…

  6. Diving in Head First: Finding the Volume of Norris lake

    ERIC Educational Resources Information Center

    Foster, Drew W.

    2008-01-01

    This article allows students to apply their knowledge and experience of area and volume to find the volume of Norris Lake, a large reservoir lake in Tennessee. Students have the opportunity to demonstrate their skills in using maps and scales as well as to incorporate the use of technology in developing the solution. This project satisfied the…

  7. Single breath-hold assessment of ventricular volumes using 32-channel coil technology and an extracellular contrast agent.

    PubMed

    Parish, Victoria; Hussain, Tarique; Beerbaum, Philip; Greil, Gerald; Nagel, Eike; Razavi, Reza; Schaeffter, Tobias; Uribe, Sergio

    2010-04-01

    To evaluate the feasibility of a single breath-hold 3D cine balanced steady-state free precession (b-SSFP) sequence after gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA) injection for volumetric cardiac assessment. Fifteen adult patients routinely referred for cardiac magnetic resonance imaging (MRI) underwent quantitative ventricular volumetry on a clinical 1.5T MR-scanner using a 32-channel cardiac coil. A stack of 2D cine b-SSFP slices covering the ventricles was used as reference, followed by a single breath-hold 3D cine balanced SSFP protocol acquired before and after administration of Gd-DTPA. The acquisition was accelerated using SENSE in both phase encoding directions. Volumetric and contrast-to-noise data for each technique were assessed and compared. The 3D cine protocol was accomplished within one breath-hold (mean acquisition time 20 sec; spatial resolution 2.1 x 2.1 x 10 mm; temporal resolution 51 msec). The contrast-to-noise ratio between blood and myocardium was 234 determined for the multiple 2D cine data, and could be increased for the 3D acquisition from 136 (3D precontrast) to 203 (3D postcontrast) after injecting Gd-DTPA. In addition the endocardial definition was significantly improved in postcontrast 3D cine b-SSFP. There was no significant difference for left and right ventricular volumes between standard 2D and 3D postcontrast cine b-SSFP. However, Bland-Altman plots showed greater bias and scatter when comparing 2D with 3D cine b-SSFP without contrast. 3D cine b-SSFP imaging of the heart using 32 channel coil technology and spatial undersampling allows reliable volumetric assessment within a single breath-hold after application of Gd-DTPA. (c) 2010 Wiley-Liss, Inc.

  8. Comprehensive management of head and neck tumors, volume 1

    SciTech Connect

    Thawley, S.E.; Panje, W.R.

    1987-01-01

    This book consists of 14 parts, each containing several papers. The parts are: General Considerations in the Management of Patients with Head and Neck Tumors, Tumors of the Ear, Tumors of the Nasal Cavity and Paranasal Sinuses, Tumors of the Oral Cavity, Tumors of the Pharynx, Tumors of the Larynx, Tumors of the Skin, Dental and Jaw Tumors, Tumors of the Thyroid and Parathyroid Glands, Tumors of the Trachea, Tumors of the Eye, Orbit, and Lacrimal Apparatus, and Special Topics.

  9. Measurement of creatine kinase reaction rate in human brain using magnetization transfer image-selected in vivo spectroscopy (MT-ISIS) and a volume ³¹P/¹H radiofrequency coil in a clinical 3-T MRI system.

    PubMed

    Jeong, Eun-Kee; Sung, Young-Hoon; Kim, Seong-Eun; Zuo, Chun; Shi, Xianfeng; Mellon, Eric A; Renshaw, Perry F

    2011-08-01

    High-energy phosphate metabolism, which allows the synthesis and regeneration of adenosine triphosphate (ATP), is a vital process for neuronal survival and activity. In particular, creatine kinase (CK) serves as an energy reservoir for the rapid buffering of ATP levels. Altered CK enzyme activity, reflecting compromised high-energy phosphate metabolism or mitochondrial dysfunction in the brain, can be assessed using magnetization transfer (MT) MRS. MT (31)P MRS has been used to measure the forward CK reaction rate in animal and human brain, employing a surface radiofrequency coil. However, long acquisition times and excessive radiofrequency irradiation prevent these methods from being used routinely for clinical evaluations. In this article, a new MT (31)P MRS method is presented, which can be practically used to measure the CK forward reaction rate constant in a clinical MRI system employing a volume head (31)P coil for spatial localization, without contamination from the scalp muscle, and an acquisition time of 30 min. Other advantages associated with the method include radiofrequency homogeneity within the regions of interest of the brain using a volume coil with image-selected in vivo spectroscopy localization, and reduction of the specific absorption rate using nonadiabatic radiofrequency pulses for MT saturation. The mean value of k(f) was measured as 0.320 ± 0.075 s(-1) from 10 healthy volunteers with an age range of 18-40 years. These values are consistent with those obtained using earlier methods, and the technique may be used routinely to evaluate energetic processes in the brain on a clinical MRI system. Copyright © 2010 John Wiley & Sons, Ltd.

  10. A volume birdcage coil with an adjustable sliding tuner ring for neuroimaging in high field vertical magnets: ex and in vivo applications at 21.1 T

    PubMed Central

    Qian, Chunqi; Masad, Ihssan S.; Rosenberg, Jens T.; Elumalai, Malathy; Brey, William W.; Grant, Samuel C.; Gor’kov, Peter L.

    2012-01-01

    A tunable 900 MHz transmit/receive volume coil was constructed for 1H MR imaging of biological samples in a 21.1 T vertical bore magnet. To accommodate a diverse range of specimen and RF loads at such a high frequency, a sliding-ring adaptation of a low-pass birdcage was implemented through simultaneous alteration of distributed capacitance. To make efficient use of the constrained space inside the vertical bore, a modular probe design was implemented with a bottom-adjustable tuning and matching apparatus. The sliding ring coil displays good homogeneity and sufficient tuning range for different samples of various dimensions representing large span of RF loads. High resolution in vivo and ex vivo images of large rats (up to 350 g), mice and human postmortem tissues were obtained to demonstrate coil functionality and to provide examples of potential applications at 21.1 T. PMID:22750638

  11. Multiple-Coil, Pulse-Induction Metal Detector

    NASA Technical Reports Server (NTRS)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.

    1988-01-01

    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  12. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers.

    PubMed

    Moody, Katherine Lynn; Hollingsworth, Neal A; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C; Wright, Steven M; McDougall, Mary Preston

    2014-09-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.

  13. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.

    PubMed

    Obata, Takayuki; Uemura, Koji; Nonaka, Hiroi; Tamura, Mitsuru; Tanada, Shuji; Ikehira, Hiroo

    2006-01-01

    To acquire high-resolution magnetic resonance (MR) images, we developed a new blinking artifact reduced pulse (BARP) sequence with a surface coil specialized for microscopic imaging (47 mm in diameter). To reduce eye movement, we ascertained that the subjects' eyes were kept open and fixated to the target in the 1.5-T MR gantry. To reduce motion artifacts from blinking, we inserted rest periods for blinking (1.5 s within every 5 s) during MR scanning (T2-weighted fast spin echo; repetition time, 5 s; echo time, 100 ms; echo train, 11; matrix, 256 x 128; field of view, 5 cm; 1-mm thickness x 30 slices). Three scans (100 s x 3) were performed for each normal subject, and they were added together after automatic adjustment for location to reduce quality loss caused by head motion. T2-weighted MR images were acquired with a high resolution and a high signal-to-noise ratio. Motion artifacts were reduced with BARP, as compared with those with random blinking. Intraocular structures such as the iris and ciliary muscles were clearly visualized. Because the whole eye can be covered with a 1-mm thickness by this method, three-dimensional maps can easily be generated from the obtained images. The application of BARP with a surface coil of the human eye might become a useful and widely adopted procedure for MR microimaging.

  14. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    PubMed Central

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-01-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system. PMID:25072190

  15. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    NASA Astrophysics Data System (ADS)

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-09-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.

  16. Head posture and pharyngeal airway volume changes after bimaxillary surgery for mandibular prognathism.

    PubMed

    Kim, Min-Ah; Kim, Bo-Ram; Youn, Jong-Kuk; Kim, Yoon-Ji R; Park, Yang-Ho

    2014-07-01

    The purpose of this study was to evaluate head posture and the pharyngeal airway volume changes using 3D imaging after bimaxillary surgery in mandibular prognathism patients by null hypothesis. Cone-beam computed tomography (CBCT) scans were obtained for 25 mandibular prognathism patients before bimaxillary surgery (T1) and 6 months after surgery (T2). The head posture of each patient was assessed by measuring cranio-cervical angle on a midsagittal plane passing through the anterior nasal spine at T1 and T2. Additionally, the volume of each subject's pharyngeal airway was measured using InVivoDental 3D imaging software. The cranio-cervical angle increased significantly 6 months after bimaxillary surgery (p < 0.01). The total volume of the pharyngeal airway slightly decreased (p > 0.05) at the same timepoints, while naso- and oro-pharyngeal airway volume decreased significantly (p < 0.05, p < 0.05). There was significant relationship between the changes of head posture and those of total airway volume (p < 0.05). The null hypothesis was rejected. Bimaxillary surgery resulted in significant head flexion and a slight decrease in total pharyngeal airway volume. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. WE-G-217A-05: Automatic Method for RF Coil Assessment in Clinical MRI: A Three-Dimensional Approach.

    PubMed

    Peng, Q

    2012-06-01

    MRI RF coil assessment is usually evaluated with region-of-interest (ROI) analysis from a single 2D phantom image. This simple approach has worked well for large volume coils or phased-array coil with large receivers, but not the high density phased-array coils characterized by 3D array arrangement of their multiple receivers. This abstract proposes a novel approach for quantitative coil assessment based on 3D imaging and 3D ROI analysis. To characterize all receivers of the coil of interest, a large uniform phantom (preferably a corresponding anthropometric phantom) and a large 3D geometric coverage fully includes the coil sensitivity volume was applied during MR imaging. After imaging, data from all receivers were used to reconstruct a composite 3D image, and to reconstruct 3D images from each individual receiver, leading to a total of N+1 3D image datasets (where N is the number of coil channels). IDL programs were developed to automatically perform ROI analysis on the composite image and on the individual receiver images. Instead of choosing one single 2D slice out of each 3D dataset, the whole 3D dataset was treated as a 3D image, and 3D ROIs were automatically generated for coil assessment. This 3D coil evaluation approach could be applied to all clinical coils including quadrature body/head coils, and phased-array coils with 2 to 32 channels. 3D sensitivity map could be generated to check receiver function visually. 3D mean SNR, max SNR, and uniformity could be obtained from composite and individual channel 3D images fully automatically. Coil/receiver performance assessment was very fast and straightforward, regardless of the number of receivers of the coil. 3D imaging in combination with 3D automatic ROI analysis is a fast, convenient, and less subjective approach for quantitative coil assessment, particularly for high density phased-array coils. © 2012 American Association of Physicists in Medicine.

  18. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs

    PubMed Central

    Deng, Zhi-De; Lisanby, Sarah H.; Peterchev, Angel V.

    2012-01-01

    Background Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. Objective To quantify the electric field focality and depth of penetration of various TMS coils. Methods The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d1/2, and focality by the tangential spread, S1/2, defined as the half-value volume (V1/2) divided by the half-value depth, S1/2 = V1/2/d1/2. Results The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth–focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d1/2 are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0–3.5 cm and 0.9–3.4 cm, respectively. However, figure-8 field coils are more focal, having S1/2 as low as 5 cm2 compared to 34 cm2 for circular field coils. Conclusions For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d1/2 and S1/2. PMID:22483681

  19. Noninvasive Intracranial Volume and Pressure Measurements Using Ultrasound (Head and Spinal)

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1999-01-01

    Prevention of secondary brain injuries following head trauma can be accomplished most easily when intracranial pressure (ICP) is monitored. However, current measurement techniques are invasive and thus not practical in the combat environment. The Pulsed Phase Lock Loop device, which was developed and patented by consultants Drs. Yost and Cantrell, uses a unique, noninvasive ultrasonic phase comparison method to measure slight changes in cranial volume which occur with changes in ICP. Year two studies included whole body head-up and head-down tilting effects on intracranial compliance and pressure in six healthy volunteers.

  20. Head Circumference as a Useful Surrogate for Intracranial Volume in Older Adults

    PubMed Central

    Hshieh, Tammy T.; Fox, Meaghan L.; Kosar, Cyrus M.; Cavallari, Michele; Guttmann, Charles R.G.; Alsop, David; Marcantonio, Edward R.; Schmitt, Eva M.; Jones, Richard N.; Inouye, Sharon K.

    2015-01-01

    Background Intracranial volume (ICV) has been proposed as a measure of maximum lifetime brain size. Accurate ICV measures require neuroimaging which is not always feasible for epidemiologic investigations. We examined head circumference as a useful surrogate for intracranial volume in older adults. Methods 99 older adults underwent Magnetic Resonance Imaging (MRI). ICV was measured by Statistical Parametric Mapping 8 (SPM8) software or Functional MRI of the Brain Software Library (FSL) extraction with manual editing, typically considered the gold standard. Head circumferences were determined using standardized tape measurement. We examined estimated correlation coefficients between head circumference and the two MRI-based ICV measurements. Results Head circumference and ICV by SPM8 were moderately correlated (overall r=0.73, men r=0.67, women r=0.63). Head circumference and ICV by FSL were also moderately correlated (overall r=0.69, men r=0.63, women r=0.49). Conclusions Head circumference measurement was strongly correlated with MRI-derived ICV. Our study presents a simple method to approximate ICV among older patients, which may prove useful as a surrogate for cognitive reserve in large scale epidemiologic studies of cognitive outcomes. This study also suggests the stability of head circumference correlation with ICV throughout the lifespan. PMID:26631180

  1. A 150 nm ultraviolet excitation volume on a porous silicon membrane for direct optical observation of DNA coil relaxation during capture into nanopores

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hirohito; Esashika, Keiko; Saiki, Toshiharu

    2017-06-01

    We report the first optical observation of DNA coil relaxation during capture into silicon nanopores, which was achieved using fluorescence microscopy with a 150 nm observation volume. Compared with our previous results, the gradual increase and steep decay of the fluorescence signal can be interpreted as the capture of the DNA molecule and its translocation through the nanopore, respectively. Furthermore, a longer dwell time was obtained when we used a nanoporous membrane with high porosity. From a numerical calculation of the electric field distribution in the vicinity of the nanopore, we concluded that a ‘biased’ electric field, as well as funneling of the field into surrounding nanopores, hinders DNA coil relaxation. Our result showed the capability of a UV excitation volume on a silicon membrane for observation of DNA capture into nanopores at a single-molecule level.

  2. Prospective motion correction using inductively coupled wireless RF coils.

    PubMed

    Ooi, Melvyn B; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D; Bammer, Roland

    2013-09-01

    A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency coils, or "wireless markers," for position tracking. Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers' unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Wireless-marker position measurements were comparable to measurements using traditional wired radio-frequency tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. Wireless-marker safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid radio-frequency safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. Copyright © 2013 Wiley Periodicals, Inc.

  3. Prospective Motion Correction using Inductively-Coupled Wireless RF Coils

    PubMed Central

    Ooi, Melvyn B.; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D.; Bammer, Roland

    2013-01-01

    Purpose A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency (RF) coils, or “wireless markers”, for position tracking. Methods Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers’ unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Results Wireless-marker position measurements were comparable to measurements using traditional wired RF tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. RF safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Conclusion Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid RF safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. PMID:23813444

  4. Effect of cesium on the volume of the helix-coil transition of dA.dT polymers and their ligand complexes.

    PubMed

    Shi, Xuesong; Macgregor, Robert B

    2007-11-01

    The pressure dependence of the helix-coil transition of poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)] in aqueous solutions of NaCl and CsCl at concentrations between 10 and 200 mM is reported and used to calculate the accompanying volume change. We also investigated the binding parameters and volume change of ethidium bromide binding with poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)] in aqueous solutions of these two salts. The volume change of helix-coil transition of poly(dA).poly(dT) in Cs(+)-containing solutions differs by less than 1 cm(3) mol(-1) from the value measured when Na(+) is the counter-ion. We propose that this insensitivity towards salt type arises if the counter-ions are essentially fully hydrated around DNA and the DNA conformation is not significantly altered by salt types. Circular dichroism spectroscopy showed that the previously observed large volumetric disparity for the helix-coil transition of poly[d(A-T)].poly[d(A-T)] in solutions containing Na(+) and Cs(+) is likely result of a Cs(+)-induced conformation change that is specific for poly[d(A-T)].poly[d(A-T)]. This cation-specific conformation difference is mostly absent for poly(dA).poly(dT) and EB bound poly[d(A-T)].poly[d(A-T)].

  5. Voice Coil Percussive Mechanism Concept for Hammer Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi

    2009-01-01

    A hammer drill design of a voice coil linear actuator, spring, linear bearings, and a hammer head was proposed. The voice coil actuator moves the hammer head to produce impact to the end of the drill bit. The spring is used to store energy on the retraction and to capture the rebound energy after each impact for use in the next impact. The maximum actuator stroke is 20 mm with the hammer mass being 200 grams. This unit can create impact energy of 0.4 J with 0.8 J being the maximum. This mechanism is less complex than previous devices meant for the same task, so it has less mass and less volume. Its impact rate and energy are easily tunable without changing major hardware components. The drill can be driven by two half-bridges. Heat is removed from the voice coil via CO2 conduction.

  6. Volume-outcome relationships for head and neck cancer surgery in a universal health care system.

    PubMed

    Eskander, Antoine; Irish, Jonathan; Groome, Patti A; Freeman, Jeremy; Gullane, Patrick; Gilbert, Ralph; Hall, Stephen F; Urbach, David R; Goldstein, David P

    2014-09-01

    We aimed to assess whether surgeon and/or institution resection volume predicts long-term overall survival in head and neck cancer in a publicly funded healthcare system. Population-based retrospective cohort study. Head and neck cancer patients in Ontario, Canada, who underwent a resection confirmed by both hospital-level and physician-level administrative data between 1993 and 2010, comprised our cohort (N = 5,720). Physician and hospital volumes were calculated based on number of cases performed in the year prior by the physician and at an institution performing each case, respectively. A multilevel hierarchical Cox regression model was used to estimate the effect on overall survival of each 25 increase in procedure volume. A crude model without patient or treatment characteristics demonstrated that both surgeon volume (hazard ratio [HR]: 0.927, 95% confidence interval [CI]: 0.879-0.978, P = .006) and hospital volume (HR: 0.980, 95% CI: 0.970-0.991, P = .0003) were associated with improved overall survival. After controlling for clustering and patient/treatment covariates, hospital volume (HR: 0.976, 95% CI: 0.955-0.997, P = .02), but not physician volume (HR: 1.042, 95% CI: 0.941-1.155, P = .43), remained a statistically significant predictor of overall survival. This translates into a 2.4% decrease in the HR for every 25 additional cases performed at an institution. Both high-volume surgeons and hospitals are predictors of better overall survival in head and neck cancer patients. However, the effect is largely explained by hospital volume. This benefit, at the institution level, could potentially be explained by important processes of care that contribute to overall survival. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Magnetic Field Modeling with a Set of Individual Localized Coils

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2010-01-01

    A set of generic, circular individual coils is shown to be capable of generating highly complex magnetic field distributions in a flexible fashion. Arbitrarily oriented linear field gradients can be generated in three-dimensional as well as sliced volumes at amplitudes that allow imaging applications. The multi-coil approach permits the simultaneous generation of linear MRI encoding fields and complex shim fields by the same setup, thereby reducing system complexity. The choice of the sensitive volume over which the magnetic fields are optimized remains temporally and spatially variable at all times. The restriction of the field synthesis to experimentally relevant, smaller volumes such as single slices directly translates into improved efficiency, i.e. higher magnetic field amplitudes and/or reduced coil currents. For applications like arterial spin labeling, signal spoiling and diffusion weighting, perfect linearity of the gradient fields is not required and reduced demands on accuracy can also be readily translated into improved efficiency. The first experimental realization was achieved for mouse head MRI with 24 coils that were mounted on the surface of a cylindrical former. Oblique linear field gradients of 20 kHz/cm (47 mT/m) were generated with a maximum current of 1.4 A which allowed radial imaging of a mouse head. The potential of the new approach for generating arbitrary magnetic field shapes is demonstrated by synthesizing the more complex, higher order spherical harmonic magnetic field distributions X2-Y2, Z2 and Z2X. The new multi-coil approach provides the framework for the integration of conventional imaging and shim coils into a single multi-coil system in which shape, strength, accuracy and spatial coverage of the magnetic field can be specifically optimized for the application at hand. PMID:20347360

  8. Contrast-enhanced 3-dimensional SPACE versus MP-RAGE for the detection of brain metastases: considerations with a 32-channel head coil.

    PubMed

    Reichert, Miriam; Morelli, John N; Runge, Val M; Tao, Ai; von Ritschl, Ruediger; von Ritschl, Andreas; Padua, Abraham; Dix, James E; Marra, Michael J; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-01-01

    The aim of this study was to compare the detection of brain metastases at 3 T using a 32-channel head coil with 2 different 3-dimensional (3D) contrast-enhanced sequences, a T1-weighted fast spin-echo-based (SPACE; sampling perfection with application-optimized contrasts using different flip angle evolutions) sequence and a conventional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence. Seventeen patients with 161 brain metastases were examined prospectively using both SPACE and MP-RAGE sequences on a 3-T magnetic resonance system. Eight healthy volunteers were similarly examined for determination of signal-to-noise ratio (SNR) values. Parameters were adjusted to equalize acquisition times between the sequences (3 minutes and 30 seconds). The order in which sequences were performed was randomized. Two blinded board-certified neuroradiologists evaluated the number of detectable metastatic lesions with each sequence relative to a criterion standard reading conducted at the Gamma Knife facility by a neuroradiologist with access to all clinical and imaging data. In the volunteer assessment with SPACE and MP-RAGE, SNR (10.3 ± 0.8 vs 7.7 ± 0.7) and contrast-to-noise ratio (0.8 ± 0.2 vs 0.5 ± 0.1) were statistically significantly greater with the SPACE sequence (P < 0.05). Overall, lesion detection was markedly improved with the SPACE sequence (99.1% of lesions for reader 1 and 96.3% of lesions for reader 2) compared with the MP-RAGE sequence (73.6% of lesions for reader 1 and 68.5% of lesions for reader 2; P < 0.01). A 3D T1-weighted fast spin echo sequence (SPACE) improves detection of metastatic lesions relative to 3D T1-weighted gradient-echo-based scan (MP-RAGE) imaging when implemented with a 32-channel head coil at identical scan acquisition times (3 minutes and 30 seconds).

  9. Influence of the volume of osteonecrosis on the outcome of core decompression of the femoral head

    PubMed Central

    Mazieres, B.; Marin, F.; Chiron, P.; Moulinier, L.; Amigues, J.; Laroche, M.; Cantagrel, A.

    1997-01-01

    OBJECTIVES—To assess the outcome of core decompression in the treatment of osteonecrosis of the femoral head related to the volume of necrotic bone measured according to a previously reported method.
METHODS—Twenty hips corresponding to strictly Ficat stage II underwent magnetic resonance imaging and the volume of necrotic bone was expressed as a percentage of the volume of the entire head measured on each slice. All hips underwent core decompression and the outcome was evaluated at 24 months. The primary evaluation criterion was radiological appearance: the outcome was considered as good if the hip remained stage II and poor if the disease progressed.
RESULTS—Twenty four months after core decompression, half the cases remained stable and in half the disease had progressed. Outcome seemed to be related to the volume of necrotic bone (average 22% in the good outcome group versus 45% in the poor outcome group (p = 0.0051)) and was independent of risk factors, age, and histological type.
CONCLUSIONS—The volume of necrotic bone should be taken into account in the evaluation of any treatment, bearing in mind that in more than one third of cases this volume will probably decrease, especially at the beginning of the disease process.

 PMID:9496156

  10. MR angiography of the supra-aortic arteries using a dedicated head and neck coil: image quality and assessment of stenoses.

    PubMed

    Fellner, C; Strotzer, M; Fraunhofer, S; Held, P; Spies, V; Seitz, J; Fellner, F

    1997-11-01

    Our purpose was to evaluate a dedicated head and neck coil for demonstration of supra-aortic arteries with optimised magnetic resonance angiography techniques. We performed 47 examinations with a 1.5-T system. We used coronal 3D fast imaging with steady precession (FISP), axial 3D tilted optimised nonsaturating excitation (TONE) and 2D fast low-angle shot (FLASH) for the carotid bifurcation, axial 3D TONE with or without magnetisation transfer (MT) for intracranial arteries, and axial 3D FISP or TONE for the aortic arch. Evaluation included visual assessment of image quality and grading of stenoses near the carotid bifurcation; digital subtraction angiography was used as the reference method. Axial 3D TONE gave superior image quality at the carotid bifurcation, MT-TONE intracranially, and 3D FISP for the aortic arch vessels. Nevertheless, sensitivity and specificity for detection of significant stenoses were similar with coronal 3D FISP (96.3%, 94.0%), axial 3D TONE (92.6%, 92.5%) and axial 2D FLASH (96.3%, 86.6%). Image quality at the aortic arch needs further improvement.

  11. Guidelines for delineation of lymphatic clinical target volumes for high conformal radiotherapy: head and neck region

    PubMed Central

    2011-01-01

    The success of radiotherapy depends on the accurate delineation of the clinical target volume. The delineation of the lymph node regions has most impact, especially for tumors in the head and neck region. The purpose of this article was the development an atlas for the delineation of the clinical target volume for patients, who should receive radiotherapy for a tumor of the head and neck region. Literature was reviewed for localisations of the adjacent lymph node regions and their lymph drain in dependence of the tumor entity. On this basis the lymph node regions were contoured on transversal CT slices. The probability for involvement was reviewed and a recommendation for the delineation of the CTV was generated. PMID:21854585

  12. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    PubMed

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  13. The association of lymph node volume with cervical metastatic lesions in head and neck cancer patients.

    PubMed

    Liang, Ming-Tai; Chen, Clayton Chi-Chang; Wang, Ching-Ping; Wang, Chen-Chi; Lin, Whe-Dar; Liu, Shih-An

    2009-06-01

    The aim of this study was to determine if volume of cervical lymph node measured via computed tomography (CT) could differentiate metastatic from benign lesions in head and neck cancer patients. We conducted a retrospective review of chart and images in a tertiary referring center in Taiwan. Patients with head and neck cancers underwent radical, modified radical or functional neck dissection were enrolled. The CT images before operation were reassessed by a radiologist and were compared with the results of pathological examination. A total of 102 patients were included for final analyses. Most patients were male (n = 96, 94%) and average age was 50.1 years. Although the average nodal volume in patients with cervical metastases was higher than those of patients without cervical metastases, it was not an independent factor associated with cervical metastasis after controlling for other variables; however, central nodal necrosis on enhanced CT image [odds ratio (OR) 18.95, P = 0.008) and minimal axial diameter >7.5 mm (OR 6.868, P = 0.001) were independent factors correlated with cervical metastasis. Therefore, the volume of cervical lymph node measured from CT images cannot predict cervical metastases in head and neck cancer patients. Measurement of minimal axial diameter of the largest lymph node is a simple and more accurate way to predict cervical metastasis instead.

  14. A guideline for head volume conductor modeling in EEG and MEG.

    PubMed

    Vorwerk, Johannes; Cho, Jae-Hyun; Rampp, Stefan; Hamer, Hajo; Knösche, Thomas R; Wolters, Carsten H

    2014-10-15

    For accurate EEG/MEG source analysis it is necessary to model the head volume conductor as realistic as possible. This includes the distinction of the different conductive compartments in the human head. In this study, we investigated the influence of modeling/not modeling the conductive compartments skull spongiosa, skull compacta, cerebrospinal fluid (CSF), gray matter, and white matter and of the inclusion of white matter anisotropy on the EEG/MEG forward solution. Therefore, we created a highly realistic 6-compartment head model with white matter anisotropy and used a state-of-the-art finite element approach. Starting from a 3-compartment scenario (skin, skull, and brain), we subsequently refined our head model by distinguishing one further of the above-mentioned compartments. For each of the generated five head models, we measured the effect on the signal topography and signal magnitude both in relation to a highly resolved reference model and to the model generated in the previous refinement step. We evaluated the results of these simulations using a variety of visualization methods, allowing us to gain a general overview of effect strength, of the most important source parameters triggering these effects, and of the most affected brain regions. Thereby, starting from the 3-compartment approach, we identified the most important additional refinement steps in head volume conductor modeling. We were able to show that the inclusion of the highly conductive CSF compartment, whose conductivity value is well known, has the strongest influence on both signal topography and magnitude in both modalities. We found the effect of gray/white matter distinction to be nearly as big as that of the CSF inclusion, and for both of these steps we identified a clear pattern in the spatial distribution of effects. In comparison to these two steps, the introduction of white matter anisotropy led to a clearly weaker, but still strong, effect. Finally, the distinction between skull

  15. Human hip joint cartilage: MRI quantitative thickness and volume measurements discriminating acetabulum and femoral head.

    PubMed

    Li, Wei; Abram, François; Beaudoin, Gilles; Berthiaume, Marie-Josée; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne

    2008-12-01

    This paper aims at developing a quantitative system for measuring human hip cartilage thickness and volume using magnetic resonance imaging (MRI). A new MRI-acquisition technique, named axial rotation, where the acquisition planes are organized around a virtual axis, was used. The MRI protocol consists of a 2-D multiple-echo data image combination (MEDIC) using water excitation. Inner and outer interface contours of acetabulum and femoral head cartilage are obtained using a semiautomated 3-D segmentation method and combined to form 3-D surfaces. A local spherical coordinate system computed from the original contours enables cartilage thickness and volume computation. An anatomical labeling is performed automatically for thickness and volume measurements in predefined subregions: inferior, anterior, superior, and posterior. A registration module is introduced allowing the assessment of cartilage changes over time. Validation of the system was conducted with three protocols each involving data obtained from nine subjects: 1) registration process accuracy; 2) intrareader reproducibility; and 3) intervisit coefficient of variation. Data showed excellent correlation coefficients for either the intrareader (r>or=0.0942, p<0.0001 ) or intervisit (r>or=0.0837, p<0.005) protocols. This noninvasive system, which enables the quantification of cartilage thickness and volume in the human hip joint using MRI, is the first to discriminate the acetabular and femoral head cartilage throughout the entire hip without the use of an external device, and to implement hip registration for follow-up studies on the same subject.

  16. Coil combination of multichannel MRSI data at 7 T: MUSICAL

    PubMed Central

    Strasser, B; Chmelik, M; Robinson, S D; Hangel, G; Gruber, S; Trattnig, S; Bogner, W

    2013-01-01

    The goal of this study was to evaluate a new method of combining multi-channel 1H MRSI data by direct use of a matching imaging scan as a reference, rather than computing sensitivity maps. Seven healthy volunteers were measured on a 7-T MR scanner using a head coil with a 32-channel array coil for receive-only and a volume coil for receive/transmit. The accuracy of prediction of the phase of the 1H MRSI data with a fast imaging pre-scan was investigated with the volume coil. The array coil 1H MRSI data were combined using matching imaging data as coil combination weights. The signal-to-noise ratio (SNR), spectral quality, metabolic map quality and Cramér–Rao lower bounds were then compared with the data obtained by two standard methods, i.e. using sensitivity maps and the first free induction decay (FID) data point. Additional noise decorrelation was performed to further optimize the SNR gain. The new combination method improved significantly the SNR (+29%), overall spectral quality and visual appearance of metabolic maps, and lowered the Cramér–Rao lower bounds (−34%), compared with the combination method based on the first FID data point. The results were similar to those obtained by the combination method using sensitivity maps, but the new method increased the SNR slightly (+1.7%), decreased the algorithm complexity, required no reference coil and pre-phased all spectra correctly prior to spectral processing. Noise decorrelation further increased the SNR by 13%. The proposed method is a fast, robust and simple way to improve the coil combination in 1H MRSI of the human brain at 7 T, and could be extended to other 1H MRSI techniques. © 2013 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:24038331

  17. Coil combination of multichannel MRSI data at 7 T: MUSICAL.

    PubMed

    Strasser, B; Chmelik, M; Robinson, S D; Hangel, G; Gruber, S; Trattnig, S; Bogner, W

    2013-12-01

    The goal of this study was to evaluate a new method of combining multi-channel (1)H MRSI data by direct use of a matching imaging scan as a reference, rather than computing sensitivity maps. Seven healthy volunteers were measured on a 7-T MR scanner using a head coil with a 32-channel array coil for receive-only and a volume coil for receive/transmit. The accuracy of prediction of the phase of the (1)H MRSI data with a fast imaging pre-scan was investigated with the volume coil. The array coil (1)H MRSI data were combined using matching imaging data as coil combination weights. The signal-to-noise ratio (SNR), spectral quality, metabolic map quality and Cramér-Rao lower bounds were then compared with the data obtained by two standard methods, i.e. using sensitivity maps and the first free induction decay (FID) data point. Additional noise decorrelation was performed to further optimize the SNR gain. The new combination method improved significantly the SNR (+29%), overall spectral quality and visual appearance of metabolic maps, and lowered the Cramér-Rao lower bounds (-34%), compared with the combination method based on the first FID data point. The results were similar to those obtained by the combination method using sensitivity maps, but the new method increased the SNR slightly (+1.7%), decreased the algorithm complexity, required no reference coil and pre-phased all spectra correctly prior to spectral processing. Noise decorrelation further increased the SNR by 13%. The proposed method is a fast, robust and simple way to improve the coil combination in (1)H MRSI of the human brain at 7 T, and could be extended to other (1)H MRSI techniques. © 2013 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  18. Ultrahigh head pump/turbine development program: Volume 4, Advanced design: Strength manufacturability, controls, and reliability: Final report

    SciTech Connect

    Yokoyama, T.

    1987-01-01

    The commercial availability of an ultrahigh head pump/turbine whose output can be regulated makes underground and ultrahigh head-pumped storage creditable options for utility use by reducing construction costs and plant complexity. This new turbine operates at double the head of existing equipment yet uses commercial materials, proven design concepts, and manageable manufacturing techniques. This volume discusses the stress analysis and fatigue evaluation, manufacturability, control system, and reliability and maintainability analyses.

  19. The role of blood vessels in high-resolution volume conductor head modeling of EEG.

    PubMed

    Fiederer, L D J; Vorwerk, J; Lucka, F; Dannhauer, M; Yang, S; Dümpelmann, M; Schulze-Bonhage, A; Aertsen, A; Speck, O; Wolters, C H; Ball, T

    2016-03-01

    Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to

  20. The role of blood vessels in high-resolution volume conductor head modeling of EEG

    PubMed Central

    Fiederer, L.D.J.; Vorwerk, J.; Lucka, F.; Dannhauer, M.; Yang, S.; Dümpelmann, M.; Schulze-Bonhage, A.; Aertsen, A.; Speck, O.; Wolters, C.H.; Ball, T.

    2016-01-01

    Reconstruction of the electrical sources of human EEG activity at high spatiotemporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebrospinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7 T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17 × 106 nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15 mm. Large errors (>2 cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura — structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to

  1. Atlas-based semiautomatic target volume definition (CTV) for head-and-neck tumors.

    PubMed

    Strassmann, Gerd; Abdellaoui, Soulimane; Richter, Detlef; Bekkaoui, Fayzal; Haderlein, Marlene; Fokas, Emmanouil; Timmesfeld, Nina; Vogel, Birgitt; Henzel, Martin; Engenhart-Cabillic, Rita

    2010-11-15

    To develop a new semiautomatic method to improve target delineation in head-and-neck cancer. We implemented an atlas-based software program using fourteen anatomic landmarks as well as the most superior and inferior computerd tomography slices for automatic target delineation, using an advanced laryngeal carcinoma as an example. Registration was made by an affine transformation. Evaluation was performed with manually drawn contours for comparison. Three physicians sampled and further applied a target volume atlas to ten other computer tomography data sets. In addition, a rapid three-dimensional (3D) correction program was developed. The mean time to the first semiautomatic target delineation proposal was 2.7 minutes. Manual contouring required 20.2 minutes per target, whereas semiautomatic target volume definition with the rapid 3D correction was completed in only 9.7 minutes. The net calculation time for image registration of the target volume atlas was negligible (approximately 0.6 seconds). Our method depicted a sufficient adaptation of the target volume atlas on the new data sets, with a mean similarity index of 77.2%. The similarity index increased up to 85% after 3D correction performed by the physicians. We have developed a new, feasible method for semiautomatic contouring that saves a significant amount (51.8%) of target delineation time for head-and-neck cancer patients. This approach uses a target volume atlas and a landmark model. The software was evaluated by means of laryngeal cancer but has important implications for various tumor types whereby target volumes remain constant in form and do not move with respiration. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Atlas-Based Semiautomatic Target Volume Definition (CTV) for Head-and-Neck Tumors

    SciTech Connect

    Strassmann, Gerd; Abdellaoui, Soulimane; Richter, Detlef; Bekkaoui, Fayzal; Haderlein, Marlene; Fokas, Emmanouil; Timmesfeld, Nina; Vogel, Birgitt M.D.; Henzel, Martin; Engenhart-Cabillic, Rita

    2010-11-15

    Purpose: To develop a new semiautomatic method to improve target delineation in head-and-neck cancer. Methods and Materials: We implemented an atlas-based software program using fourteen anatomic landmarks as well as the most superior and inferior computerd tomography slices for automatic target delineation, using an advanced laryngeal carcinoma as an example. Registration was made by an affine transformation. Evaluation was performed with manually drawn contours for comparison. Three physicians sampled and further applied a target volume atlas to ten other computer tomography data sets. In addition, a rapid three-dimensional (3D) correction program was developed. Results: The mean time to the first semiautomatic target delineation proposal was 2.7 minutes. Manual contouring required 20.2 minutes per target, whereas semiautomatic target volume definition with the rapid 3D correction was completed in only 9.7 minutes. The net calculation time for image registration of the target volume atlas was negligible (approximately 0.6 seconds). Our method depicted a sufficient adaptation of the target volume atlas on the new data sets, with a mean similarity index of 77.2%. The similarity index increased up to 85% after 3D correction performed by the physicians. Conclusions: We have developed a new, feasible method for semiautomatic contouring that saves a significant amount (51.8%) of target delineation time for head-and-neck cancer patients. This approach uses a target volume atlas and a landmark model. The software was evaluated by means of laryngeal cancer but has important implications for various tumor types whereby target volumes remain constant in form and do not move with respiration.

  3. Computational representation of a realistic head and brain volume conductor model: electroencephalography simulation and visualization study.

    PubMed

    Kybartaite, Asta

    2012-11-01

    Computational head and brain volume conductor modeling is a practical and non-invasive method to investigate neuroelectrical activity in the brain. Anatomical structures included in a model affect the flow of volume currents and the resulting scalp surface potentials. The influence of different tissues within the head on scalp surface potentials was investigated by constructing five highly detailed, realistic head models from segmented and processed Visible Human Man digital images. The models were: (1) model with 20 different tissues, that is, skin, dense connective tissue (fat), aponeurosis (muscle), outer, middle and inner tables of the scalp, dura matter, arachnoid layer (including cerebrospinal fluid), pia matter, six cortical layers, eye tissue, muscle around the eye, optic nerve, temporal muscle, white matter and internal air, (2) model with three main inhomogeneities, that is, scalp, skull, brain, (3) model with homogeneous scalp and remaining inhomogeneities, (4) model with homogeneous skull and remaining inhomogeneities, and (5) model with homogeneous brain matter and remaining inhomogeneities. Scalp potentials because of three different dipolar sources in the parietal-occipital lobe were computed for all five models. Results of a forward solution revealed that tissues included in the model and the dipole source location directly affect the simulated scalp surface potentials. The major finding indicates that significant change in the scalp surface potentials is observed when the brain's distinctions are removed. The other modifications, for example, layers of the scalp and skull are important too, but they have less effect on the overall results.

  4. Sodium imaging of human brain at 7 T with 15-channel array coil.

    PubMed

    Qian, Yongxian; Zhao, Tiejun; Wiggins, Graham C; Wald, Lawrence L; Zheng, Hai; Weimer, Jonathan; Boada, Fernando E

    2012-12-01

    Signal-to-noise ratio (SNR) is a major challenge to sodium magnetic resonance imaging. Phased array coils have been shown significantly improving SNR in proton imaging over volume coils. This study investigates SNR advantage of a 15-channel array head coil (birdcage volume coil for transmit/receive and 15-channel array insert for receive-only) in sodium imaging at 7 T. Phantoms and healthy human brains were scanned on a whole-body 7 T magnetic resonance imaging scanner using a customer-developed pulse sequence with the twisted projection imaging trajectory. Noise-only images were acquired with blanked radiofrequency excitations for noise measurement on a pixel basis. SNR was calculated on the root of sum-of-squares images. When compared with the volume coil, the 15-channel array produced SNR more than doubled at the periphery and slightly increased at the center of the phantoms and human brains. Decorrelation of noise across channels of the array coil extended the SNR-doubled region into deep area of the brain. The spatial modulation of element sensitivities on the sum-of-squares combined image was removed by performing self-calibrated sensitivity encoding parallel image reconstruction and uniform image intensity across entire field of view was attained. The 15-channel array coil is an efficient tool to substantially improve SNR in sodium imaging on human brain. Copyright © 2012 Wiley Periodicals, Inc.

  5. Tumor delineation using PET in head and neck cancers: Threshold contouring and lesion volumes

    SciTech Connect

    Ford, Eric C.; Kinahan, Paul E.; Hanlon, Lorraine; Alessio, Adam; Rajendran, Joseph; Schwartz, David L.; Phillips, Mark

    2006-11-15

    Tumor boundary delineation using positron emission tomography (PET) is a promising tool for radiation therapy applications. In this study we quantify the uncertainties in tumor boundary delineation as a function of the reconstruction method, smoothing, and lesion size in head and neck cancer patients using FDG-PET images and evaluate the dosimetric impact on radiotherapy plans. FDG-PET images were acquired for eight patients with a GE Advance PET scanner. In addition, a 20 cm diameter cylindrical phantom with six FDG-filled spheres with volumes of 1.2 to 26.5 cm{sup 3} was imaged. PET emission scans were reconstructed with the OSEM and FBP algorithms with different smoothing parameters. PET-based tumor regions were delineated using an automatic contouring function set at progressively higher threshold contour levels and the resulting volumes were calculated. CT-based tumor volumes were also contoured by a physician on coregistered PET/CT patient images. The intensity value of the threshold contour level that returns 100% of the actual volume, I{sub V100}, was measured. We generated intensity-modulated radiotherapy (IMRT) plans for an example head and neck patient, treating 66 Gy to CT-based gross disease and 54 Gy to nodal regions at risk, followed by a boost to the FDG-PET-based tumor. The volumes of PET-based tumors are a sensitive function of threshold contour level for all patients and phantom datasets. A 5% change in threshold contour level can translate into a 200% increase in volume. Phantom data indicate that I{sub V100} can be set as a fraction, f, of the maximum measured uptake. Fractional threshold values in the cylindrical water phantom range from 0.23 to 0.51. Both the fractional threshold and the threshold-volume curve are dependent on lesion size, with lesions smaller than approximately 5 cm{sup 3} displaying a more pronounced sensitivity and larger fractional threshold values. The threshold-volume curves and fractional threshold values also depend

  6. Microvascular transplants in head and neck reconstruction: 3D evaluation of volume loss.

    PubMed

    Bittermann, Gido; Thönissen, Philipp; Poxleitner, Philipp; Zimmerer, Ruediger; Vach, Kirstin; Metzger, Marc C

    2015-10-01

    Despite oversized latissimus dorsi free flap reconstruction in the head and neck area, esthetic and functional problems continue to exist due to the well-known occurrence of transplant shrinkage. The purpose of this study was to acquire an estimation of the volume and time of the shrinkage process. The assessment of volume loss was performed using a 3D evaluation of two postoperative CT scans. A retrospective review was conducted on all latissimus dorsi free flap reconstructions performed between 2004 and 2013. Inclusion criteria for the assessment were: resection of an oral carcinoma and microsurgical defect coverage with latissimus dorsi free flap; a first postoperative CT (CT1) performed between 3 weeks and a maximum of 3 months after reconstruction surgery; and an additional CT scan (CT2) performed at least one year postoperatively. The exclusion criterion was surgical intervention in the local area between the acquisition of CT1 and CT2. The effect of adjuvant radiation therapy was considered. Volume determination of the transplant was carried out in CT1 and CT2 by manual segmentation of the graft. Fifteen patients were recruited. 3D evaluation showed an average volume loss of 34.4%. In the consideration of postoperative radiotherapy the volume reduction was 39.2% in patients with radiotherapy and 31.3% in patients without radiotherapy. The reconstruction flap volume required for overcorrection of the surgical defect was investigated. This study indicates that a volume loss of more than 30% could be expected one or more years after latissimus dorsi free flap reconstruction. Clinical trial number DRKS00007534. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Postradiation Metabolic Tumor Volume Predicts Outcome in Head-and-Neck Cancer

    SciTech Connect

    Murphy, James D.; La, Trang H.; Chu, Karen; Quon, Andrew; Fischbein, Nancy J.; Maxim, Peter G.; Graves, Edward E.; Loo, Billy W.; Le, Quynh-Thu

    2011-06-01

    Purpose: To explore the prognostic value of metabolic tumor volume measured on postradiation {sup 18}F-fluorodeoxyglucose positron emission tomography (PET) imaging in patients with head-and-neck cancer. Methods and Materials: Forty-seven patients with head-and-neck cancer who received pretreatment and posttreatment PET/computed tomography (CT) imaging along with definitive chemoradiotherapy were included in this study. The PET/CT parameters evaluated include the maximum standardized uptake value, metabolic tumor volume (MTV{sub 2.0}-MTV{sub 4.0}; where MTV{sub 2.0} refers to the volume above a standardized uptake value threshold of 2.0), and integrated tumor volume. Kaplan-Meier and Cox regression models were used to test for association between PET endpoints and disease-free survival and overall survival. Results: Multiple postradiation PET endpoints correlated significantly with outcome; however, the most robust predictor of disease progression and death was MTV{sub 2.0}. An increase in MTV{sub 2.0} of 21cm{sup 3} (difference between 75th and 25th percentiles) was associated with an increased risk of disease progression (hazard ratio [HR]= 2.5, p = 0.0001) and death (HR = 2.0, p = 0.003). In patients with nonnasopharyngeal carcinoma histology (n = 34), MTV{sub 2.0} <18 cm{sup 3} and MTV{sub 2.0} {>=}18 cm{sup 3} yielded 2-year disease-free survival rates of 100% and 63%, respectively (p = 0.006) and 2-year overall survival rates of 100% and 81%, respectively (p = 0.009). There was no correlation between MTV{sub 2.0} and disease-free survival or overall survival with nasopharyngeal carcinoma histology (n = 13). On multivariate analysis, only postradiation MTV{sub 2.0} was predictive of disease-free survival (HR = 2.47, p = 0.0001) and overall survival (HR = 1.98, p = 0.003). Conclusions: Postradiation metabolic tumor volume is an adverse prognostic factor in head-and-neck cancer. Biomarkers such as MTV are important for risk stratification and will be valuable in

  8. Post-Radiation Metabolic Tumor Volume Predicts Outcome in Head-and-Neck Cancer

    PubMed Central

    Murphy, James D; La, Trang H.; Chu, Karen; Quon, Andrew; Fischbein, Nancy J.; Maxim, Peter G.; Graves, Edward E.; Loo, Billy W.; Le, Quynh-Thu

    2010-01-01

    Purpose To explore the prognostic value of metabolic tumor volume measured on post-radiation 18F-fluorodeoxyglucose positron emission tomography (PET) imaging in head-and-neck cancer patients. Methods and Materials Forty-seven head-and-neck cancer patients who received pre- and post-treatment PET/CT imaging along with definitive chemoradiotherapy were included in this study. PET/CT parameters evaluated include the maximum standardized uptake value, metabolic tumor volume (MTV2.0-MTV4.0; where MTV2.0 refers to the volume above an SUV threshold of 2.0), and integrated tumor volume. Kaplan-Meier and Cox-regression models were used to test for association between PET endpoints and disease-free survival (DFS) and overall survival (OS). Results Multiple post-radiation PET endpoints correlated significantly with outcome, however the most robust predictor of disease progression and death was MTV2.0. An increase in MTV2.0 of 21cm3 (difference between 75th and 25th percentile) was associated with an increased risk of disease progression (hazard ratio [HR]=2.5, p=0.0001) and death (HR=2.0, p=0.003). In patients with non-nasopharyngeal carcinoma (non-NPC) histology (n=34), MTV2.0<18cm3 and MTV2.0≥18cm3 yielded 2-year DFS rates of 100% and 63%, respectively (p=0.006) and 2-year OS rates of 100% and 81%, respectively (p=0.009). There was no correlation between MTV2.0 and DFS or OS with NPC histology (n=13). On multivariate analysis only post-radiation MTV2.0 was predictive of DFS (HR=2.47, p=0.0001) and OS (HR=1.98, p=0.003). Conclusions Post-radiation metabolic tumor volume is an adverse prognostic factor in head-and-neck cancer. Biomarkers such as MTV are important for risk stratification, and will be valuable in the future with risk-adapted therapies. PMID:20646870

  9. A high-throughput eight-channel probe head for murine MRI at 9.4 T.

    PubMed

    Lanz, Titus; Müller, Matthias; Barnes, Hannah; Neubauer, Stefan; Schneider, Jürgen E

    2010-07-01

    Murine MRI studies are conducted on dedicated MR systems, typically equipped with ultra-high-field magnets (>or=4.7 T; bore size: approximately 12-25 cm), using a single transmit-receive coil (volume or surface coil in linear or quadrature mode) or a transmit-receive coil combination. Here, we report on the design and characterization of an eight-channel volume receive-coil array for murine MRI at 400 MHz. The array was combined with a volume-transmit coil and integrated into one probe head. Therefore, the animal handling is fully decoupled from the radiofrequency setup. Furthermore, fixed tune and match of the coils and a reduced number of connectors minimized the setup time. Optimized preamplifier design was essential for minimizing the noise coupling between the elements. A comprehensive characterization of transmit volume resonator and receive coil array is provided. The performance of the coil array is compared to a quadrature-driven birdcage coil with identical sensitive volume. It is shown that the miniature size of the elements resulted in coil noise domination and therefore reduced signal-to-noise-ratio performance in the center compared to the quadrature birdcage. However, it allowed for 3-fold accelerated imaging of mice in vivo, reducing scan time requirements and thus increasing the number of mice that can be scanned per unit of time.

  10. A High-Throughput Eight-Channel Probe Head for Murine MRI at 9.4 T

    PubMed Central

    Lanz, Titus; Müller, Matthias; Barnes, Hannah; Neubauer, Stefan; Schneider, Jürgen E

    2010-01-01

    Murine MRI studies are conducted on dedicated MR systems, typically equipped with ultra-high-field magnets (≥4.7 T; bore size: ∼12–25 cm), using a single transmit-receive coil (volume or surface coil in linear or quadrature mode) or a transmit-receive coil combination. Here, we report on the design and characterization of an eight-channel volume receive-coil array for murine MRI at 400 MHz. The array was combined with a volume-transmit coil and integrated into one probe head. Therefore, the animal handling is fully decoupled from the radiofrequency setup. Furthermore, fixed tune and match of the coils and a reduced number of connectors minimized the setup time. Optimized preamplifier design was essential for minimizing the noise coupling between the elements. A comprehensive characterization of transmit volume resonator and receive coil array is provided. The performance of the coil array is compared to a quadrature-driven birdcage coil with identical sensitive volume. It is shown that the miniature size of the elements resulted in coil noise domination and therefore reduced signal-to-noise-ratio performance in the center compared to the quadrature birdcage. However, it allowed for 3-fold accelerated imaging of mice in vivo, reducing scan time requirements and thus increasing the number of mice that can be scanned per unit of time. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc. PMID:20572149

  11. Influence of FDG-PET on primary nodal target volume definition for head and neck carcinomas.

    PubMed

    van Egmond, Sylvia L; Piscaer, Vera; Janssen, Luuk M; Stegeman, Inge; Hobbelink, Monique G; Grolman, Wilko; Terhaard, Chris H

    The role of 2-[(18)F]-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in routine diagnostic staging remains controversial. In case of discordance between FDG-PET and CT, a compromise has to be made between the risk of false positive FDG-PET and the risk of delaying appropriate salvage intervention. Second, with intensity modulated radiation therapy (IMRT), smaller radiation fields allow tissue sparing, but could also lead to more marginal failures. We retrospectively studied 283 patients with head and neck carcinoma scheduled for radiotherapy between 2002 and 2010. We analyzed the influence of FDG-PET/CT versus CT alone on defining nodal target volume definition and evaluated its long-term clinical results. Second, the location of nodal recurrences was related to the radiation regional dose distribution. In 92 patients, CT and FDG-PET, performed in mold, showed discordant results. In 33%, nodal staging was altered by FDG-PET. In 24%, FDG-PET also led to an alteration in nodal treatment, including a nodal upstage of 18% and downstage of 6%. In eight of these 92 patients, a regional recurrence occurred. Only two patients had a recurrence in the discordant node on FDG-PET and CT and both received a boost (high dose radiation). These results support the complementary value of FDG-PET/CT compared to CT alone in defining nodal target volume definition for radiotherapy of head and neck cancer.

  12. Segmentation of organs at risk in CT volumes of head, thorax, abdomen, and pelvis

    NASA Astrophysics Data System (ADS)

    Han, Miaofei; Ma, Jinfeng; Li, Yan; Li, Meiling; Song, Yanli; Li, Qiang

    2015-03-01

    Accurate segmentation of organs at risk (OARs) is a key step in treatment planning system (TPS) of image guided radiation therapy. We are developing three classes of methods to segment 17 organs at risk throughout the whole body, including brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin. The three classes of segmentation methods include (1) threshold-based methods for organs of large contrast with adjacent structures such as lungs, trachea, and skin; (2) context-driven Generalized Hough Transform-based methods combined with graph cut algorithm for robust localization and segmentation of liver, kidneys and spleen; and (3) atlas and registration-based methods for segmentation of heart and all organs in CT volumes of head and pelvis. The segmentation accuracy for the seventeen organs was subjectively evaluated by two medical experts in three levels of score: 0, poor (unusable in clinical practice); 1, acceptable (minor revision needed); and 2, good (nearly no revision needed). A database was collected from Ruijin Hospital, Huashan Hospital, and Xuhui Central Hospital in Shanghai, China, including 127 head scans, 203 thoracic scans, 154 abdominal scans, and 73 pelvic scans. The percentages of "good" segmentation results were 97.6%, 92.9%, 81.1%, 87.4%, 85.0%, 78.7%, 94.1%, 91.1%, 81.3%, 86.7%, 82.5%, 86.4%, 79.9%, 72.6%, 68.5%, 93.2%, 96.9% for brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin, respectively. Various organs at risk can be reliably segmented from CT scans by use of the three classes of segmentation methods.

  13. Visualization of an unstable coiled coil from the scallop myosin rod.

    PubMed

    Li, Yu; Brown, Jerry H; Reshetnikova, Ludmilla; Blazsek, Antal; Farkas, László; Nyitray, László; Cohen, Carolyn

    2003-07-17

    Alpha-helical coiled coils in muscle exemplify simplicity and economy of protein design: small variations in sequence lead to remarkable diversity in cellular functions. Myosin II is the key protein in muscle contraction, and the molecule's two-chain alpha-helical coiled-coil rod region--towards the carboxy terminus of the heavy chain--has unusual structural and dynamic features. The amino-terminal subfragment-2 (S2) domains of the rods can swing out from the thick filament backbone at a hinge in the coiled coil, allowing the two myosin 'heads' and their motor domains to interact with actin and generate tension. Most of the S2 rod appears to be a flexible coiled coil, but studies suggest that the structure at the N-terminal region is unstable, and unwinding or bending of the alpha-helices near the head-rod junction seems necessary for many of myosin's functional properties. Here we show the physical basis of a particularly weak coiled-coil segment by determining the 2.5-A-resolution crystal structure of a leucine-zipper-stabilized fragment of the scallop striated-muscle myosin rod adjacent to the head-rod junction. The N-terminal 14 residues are poorly ordered; the rest of the S2 segment forms a flexible coiled coil with poorly packed core residues. The unusual absence of interhelical salt bridges here exposes apolar core atoms to solvent.

  14. Triple Halo Coil: Development and Comparison with Other TMS Coils

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  15. Coiled tubing solves multiple downhole problems

    SciTech Connect

    Bedford, S. ); Smith, I. )

    1994-11-01

    Declining reservoir pressure and water breakthrough in the UK North Sea Magnus field has coincided with general advances in application of coiled tubing and a continuous drive to reduce operating costs, particularly in a climate of weak oil prices. These factors have led to a dramatic increase in diversity and volume of coiled tubing interventions. In the following article, coiled tubing interventions, and results of those interventions, are discussed. An assessment of future coiled tubing activity on Magnus field is provided.

  16. Increased mitochondrial fission and volume density by blocking glutamate excitotoxicity protect glaucomatous optic nerve head astrocytes.

    PubMed

    Ju, Won-Kyu; Kim, Keun-Young; Noh, You Hyun; Hoshijima, Masahiko; Lukas, Thomas J; Ellisman, Mark H; Weinreb, Robert N; Perkins, Guy A

    2015-05-01

    Abnormal structure and function of astrocytes have been observed within the lamina cribrosa region of the optic nerve head (ONH) in glaucomatous neurodegeneration. Glutamate excitotoxicity-mediated mitochondrial alteration has been implicated in experimental glaucoma. However, the relationships among glutamate excitotoxicity, mitochondrial alteration and ONH astrocytes in the pathogenesis of glaucoma remain unknown. We found that functional N-methyl-d-aspartate (NMDA) receptors (NRs) are present in human ONH astrocytes and that glaucomatous human ONH astrocytes have increased expression levels of NRs and the glutamate aspartate transporter. Glaucomatous human ONH astrocytes exhibit mitochondrial fission that is linked to increased expression of dynamin-related protein 1 and its phosphorylation at Serine 616. In BAC ALDH1L1 eGFP or Thy1-CFP transgenic mice, NMDA treatment induced axon loss as well as hypertrophic morphology and mitochondrial fission in astrocytes of the glial lamina. In human ONH astrocytes, NMDA treatment in vitro triggered mitochondrial fission by decreasing mitochondrial length and number, thereby reducing mitochondrial volume density. However, blocking excitotoxicity by memantine (MEM) prevented these alterations by increasing mitochondrial length, number and volume density. In glaucomatous DBA/2J (D2) mice, blocking excitotoxicity by MEM inhibited the morphological alteration as well as increased mitochondrial number and volume density in astrocytes of the glial lamina. However, blocking excitotoxicity decreased autophagosome/autolysosome volume density in both astrocytes and axons in the glial lamina of glaucomatous D2 mice. These findings provide evidence that blocking excitotoxicity prevents ONH astrocyte dysfunction in glaucomatous neurodegeneration by increasing mitochondrial fission, increasing mitochondrial volume density and length, and decreasing autophagosome/autolysosome formation. GLIA 2015;63:736-753.

  17. Increased Mitochondrial Fission and Volume Density by Blocking Glutamate Excitotoxicity Protect Glaucomatous Optic Nerve Head Astrocytes

    PubMed Central

    Ju, Won-Kyu; Kim, Keun-Young; Noh, You Hyun; Hoshijima, Masahiko; Lukas, Thomas J; Ellisman, Mark H; Weinreb, Robert N; Perkins, Guy A

    2015-01-01

    Abnormal structure and function of astrocytes have been observed within the lamina cribrosa region of the optic nerve head (ONH) in glaucomatous neurodegeneration. Glutamate excitotoxicity-mediated mitochondrial alteration has been implicated in experimental glaucoma. However, the relationships among glutamate excitotoxicity, mitochondrial alteration and ONH astrocytes in the pathogenesis of glaucoma remain unknown. We found that functional N-methyl-d-aspartate (NMDA) receptors (NRs) are present in human ONH astrocytes and that glaucomatous human ONH astrocytes have increased expression levels of NRs and the glutamate aspartate transporter. Glaucomatous human ONH astrocytes exhibit mitochondrial fission that is linked to increased expression of dynamin-related protein 1 and its phosphorylation at Serine 616. In BAC ALDH1L1 eGFP or Thy1-CFP transgenic mice, NMDA treatment induced axon loss as well as hypertrophic morphology and mitochondrial fission in astrocytes of the glial lamina. In human ONH astrocytes, NMDA treatment in vitro triggered mitochondrial fission by decreasing mitochondrial length and number, thereby reducing mitochondrial volume density. However, blocking excitotoxicity by memantine (MEM) prevented these alterations by increasing mitochondrial length, number and volume density. In glaucomatous DBA/2J (D2) mice, blocking excitotoxicity by MEM inhibited the morphological alteration as well as increased mitochondrial number and volume density in astrocytes of the glial lamina. However, blocking excitotoxicity decreased autophagosome/autolysosome volume density in both astrocytes and axons in the glial lamina of glaucomatous D2 mice. These findings provide evidence that blocking excitotoxicity prevents ONH astrocyte dysfunction in glaucomatous neurodegeneration by increasing mitochondrial fission, increasing mitochondrial volume density and length, and decreasing autophagosome/autolysosome formation. PMID:25557093

  18. Improvement of Head-Up Display Standards. Volume 3. An Evaluation of Head-Up Display Safety.

    DTIC Science & Technology

    1987-09-01

    result was the PERSEPOLIS display (21). These displays both make use of the fundamental relationship "I’. between ALPHA, GAMMA, and THETA and use air...designed to emphasize the unique relationship between THETA, GAMMA, and ALPHA. The Klopfstein and PERSEPOLIS HUDs, designed for transport airplanes made...CSF 21 H. Suisse, Head-Up Display System -- PERSEPOLIS Symbology, Dassault Report DGT-16433, September 1979 22 "A Word from the Navy," ALPA Head-Up

  19. Dose-volume factors correlating with trismus following chemoradiation for head and neck cancer

    PubMed Central

    RAO, SHYAM D.; SALEH, ZIAD H.; SETTON, JEREMY; TAM, MOSES; MCBRIDE, SEAN M.; RIAZ, NADEEM; DEASY, JOSEPH O.; LEE, NANCY Y.

    2016-01-01

    Background To investigate the dose-volume factors in mastication muscles that are implicated as possible causes of trismus in patients following treatment with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy for head and neck cancers. Material and methods All evaluable patients treated at our institution between January 2004 and April 2009 with chemotherapy and IMRT for squamous cell cancers of the oropharynx, nasopharynx, hypopharynx or larynx were included in this analysis (N = 421). Trismus was assessed using CTCAE 4.0. Bi-lateral masseter, temporalis, lateral pterygoid and medial pterygoid muscles were delineated on axial computed tomography (CT) treatment planning images, and dose-volume parameters were extracted to investigate univariate and multimetric correlations. Results Forty-six patients (10.9%) were observed to have chronic trismus of grade 1 or greater. From analysis of baseline patient characteristics, toxicity correlated with primary site and patient age. From dose-volume analysis, the steepest dose thresholds and highest correlations were seen for mean dose to ipsilateral masseter (Spearman’s rank correlation coefficient Rs = 0.25) and medial pterygoid (Rs = 0.23) muscles. Lyman-Kutcher-Burman modeling showed highest correlations for the same muscles. The best correlation for multimetric logistic regression modeling was with V68Gy to the ipsilateral medial pterygoid (Rs = 0.29). Conclusion Chemoradiation-induced trismus remains a problem particularly for patients with oropharyngeal carcinoma. Strong dose-volume correlations support the hypothesis that limiting dose to the ipsilateral masseter muscle and, in particular, the medial pterygoid muscle may reduce the likelihood of trismus. PMID:25920361

  20. Dose-volume factors correlating with trismus following chemoradiation for head and neck cancer.

    PubMed

    Rao, Shyam D; Saleh, Ziad H; Setton, Jeremy; Tam, Moses; McBride, Sean M; Riaz, Nadeem; Deasy, Joseph O; Lee, Nancy Y

    2016-01-01

    To investigate the dose-volume factors in mastication muscles that are implicated as possible causes of trismus in patients following treatment with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy for head and neck cancers. All evaluable patients treated at our institution between January 2004 and April 2009 with chemotherapy and IMRT for squamous cell cancers of the oropharynx, nasopharynx, hypopharynx or larynx were included in this analysis (N = 421). Trismus was assessed using CTCAE 4.0. Bi-lateral masseter, temporalis, lateral pterygoid and medial pterygoid muscles were delineated on axial computed tomography (CT) treatment planning images, and dose-volume parameters were extracted to investigate univariate and multimetric correlations. Forty-six patients (10.9%) were observed to have chronic trismus of grade 1 or greater. From analysis of baseline patient characteristics, toxicity correlated with primary site and patient age. From dose-volume analysis, the steepest dose thresholds and highest correlations were seen for mean dose to ipsilateral masseter (Spearman's rank correlation coefficient Rs = 0.25) and medial pterygoid (Rs = 0.23) muscles. Lyman-Kutcher-Burman modeling showed highest correlations for the same muscles. The best correlation for multimetric logistic regression modeling was with V68Gy to the ipsilateral medial pterygoid (Rs = 0.29). Chemoradiation-induced trismus remains a problem particularly for patients with oropharyngeal carcinoma. Strong dose-volume correlations support the hypothesis that limiting dose to the ipsilateral masseter muscle and, in particular, the medial pterygoid muscle may reduce the likelihood of trismus.

  1. Effect of leg exercise training on vascular volumes during 30 days of 6 deg head-down bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1992-01-01

    In order to investigate the effects of leg exercise training on vascular volumes during 30 d of 6-deg head-down bed rest, plasma and red cell volumes, body density, and water balance were measured in 19 men confined to bed rest (BR). One group had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise (ITE) for 60 min/d, and the third near-maximal intermittent isokinetic exercise (IKE) for 60 min/d. Mean energy costs for the NOE, IKE, and ITE regimens were determined. Body densities within groups and mean urine volumes between groups were unchanged during BR. Changes in red cell volume followed changes in plasma volume. There was close coupling between resting plasma volume and plasma protein and osmotic content. It is argued that the ITE training protocol is better than the IKE protocol for maintaining plasma volume during prolonged exposure to BR.

  2. Effect of leg exercise training on vascular volumes during 30 days of 6 deg head-down bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1992-01-01

    In order to investigate the effects of leg exercise training on vascular volumes during 30 d of 6-deg head-down bed rest, plasma and red cell volumes, body density, and water balance were measured in 19 men confined to bed rest (BR). One group had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise (ITE) for 60 min/d, and the third near-maximal intermittent isokinetic exercise (IKE) for 60 min/d. Mean energy costs for the NOE, IKE, and ITE regimens were determined. Body densities within groups and mean urine volumes between groups were unchanged during BR. Changes in red cell volume followed changes in plasma volume. There was close coupling between resting plasma volume and plasma protein and osmotic content. It is argued that the ITE training protocol is better than the IKE protocol for maintaining plasma volume during prolonged exposure to BR.

  3. Repeated head trauma is associated with smaller thalamic volumes and slower processing speed: the Professional Fighters’ Brain Health Study

    PubMed Central

    Bernick, Charles; Banks, Sarah J; Shin, Wanyong; Obuchowski, Nancy; Butler, Sam; Noback, Michael; Phillips, Michael; Lowe, Mark; Jones, Stephen; Modic, Michael

    2015-01-01

    Objectives Cumulative head trauma may alter brain structure and function. We explored the relationship between exposure variables, cognition and MRI brain structural measures in a cohort of professional combatants. Methods 224 fighters (131 mixed martial arts fighters and 93 boxers) participating in the Professional Fighters Brain Health Study, a longitudinal cohort study of licensed professional combatants, were recruited, as were 22 controls. Each participant underwent computerised cognitive testing and volumetric brain MRI. Fighting history including years of fighting and fights per year was obtained from self-report and published records. Statistical analyses of the baseline evaluations were applied cross-sectionally to determine the relationship between fight exposure variables and volumes of the hippocampus, amygdala, thalamus, caudate, putamen. Moreover, the relationship between exposure and brain volumes with cognitive function was assessed. Results Increasing exposure to repetitive head trauma measured by number of professional fights, years of fighting, or a Fight Exposure Score (FES) was associated with lower brain volumes, particularly the thalamus and caudate. In addition, speed of processing decreased with decreased thalamic volumes and with increasing fight exposure. Higher scores on a FES used to reflect exposure to repetitive head trauma were associated with greater likelihood of having cognitive impairment. Conclusions Greater exposure to repetitive head trauma is associated with lower brain volumes and lower processing speed in active professional fighters. PMID:25633832

  4. Heteronuclear Micro-Helmholtz Coil Facilitates µm-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips

    PubMed Central

    Spengler, Nils; Höfflin, Jens; Moazenzadeh, Ali; Mager, Dario; MacKinnon, Neil; Badilita, Vlad; Wallrabe, Ulrike; Korvink, Jan G.

    2016-01-01

    We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design, the sample holder chips can be simply sealed with adhesive tape, with excellent adhesion due to the smooth surfaces surrounding the fluidic ports, and so withstand pressures of ∼2.5 bar, while simultaneously enabling high spectral resolution up to 0.62 Hz for H2O, due to its optimised geometry. We have additionally reworked the coil design and fabrication processes, replacing liquid photoresists by dry film stock, whose final thickness does not depend on accurate volume dispensing or precise levelling during curing. We further introduced mechanical alignment structures to avoid time-intensive optical alignment of the chip stacks during assembly, while we exchanged the laser-cut, PMMA spacers by diced glass spacers, which are not susceptible to melting during cutting. Doing so led to an overall simplification of the entire fabrication chain, while simultaneously increasing the yield, due to an improved uniformity of thickness of the individual layers, and in addition, due to more accurate vertical positioning of the wirebonded coils, now delimited by a post base plateau. We demonstrate the capability of the design by acquiring a 1H spectrum of ∼ 11 nmol sucrose dissolved in D2O, where we achieved a linewidth of 1.25 Hz for the TSP reference peak. Chemical shift imaging experiments were further recorded from voxel volumes of only ∼ 1.5nL, which corresponded to amounts of just 1.5 nmol per voxel for a 1 M concentration. To extend the micro-detector to other nuclei of interest, we have implemented a trap circuit, enabling heteronuclear spectroscopy, demonstrated by two 1H/13C 2D HSQC experiments. PMID

  5. Heteronuclear Micro-Helmholtz Coil Facilitates µm-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips.

    PubMed

    Spengler, Nils; Höfflin, Jens; Moazenzadeh, Ali; Mager, Dario; MacKinnon, Neil; Badilita, Vlad; Wallrabe, Ulrike; Korvink, Jan G

    2016-01-01

    We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design, the sample holder chips can be simply sealed with adhesive tape, with excellent adhesion due to the smooth surfaces surrounding the fluidic ports, and so withstand pressures of ∼2.5 bar, while simultaneously enabling high spectral resolution up to 0.62 Hz for H2O, due to its optimised geometry. We have additionally reworked the coil design and fabrication processes, replacing liquid photoresists by dry film stock, whose final thickness does not depend on accurate volume dispensing or precise levelling during curing. We further introduced mechanical alignment structures to avoid time-intensive optical alignment of the chip stacks during assembly, while we exchanged the laser-cut, PMMA spacers by diced glass spacers, which are not susceptible to melting during cutting. Doing so led to an overall simplification of the entire fabrication chain, while simultaneously increasing the yield, due to an improved uniformity of thickness of the individual layers, and in addition, due to more accurate vertical positioning of the wirebonded coils, now delimited by a post base plateau. We demonstrate the capability of the design by acquiring a 1H spectrum of ∼ 11 nmol sucrose dissolved in D2O, where we achieved a linewidth of 1.25 Hz for the TSP reference peak. Chemical shift imaging experiments were further recorded from voxel volumes of only ∼ 1.5 nL, which corresponded to amounts of just 1.5 nmol per voxel for a 1 M concentration. To extend the micro-detector to other nuclei of interest, we have implemented a trap circuit, enabling heteronuclear spectroscopy, demonstrated by two 1H/13C 2D HSQC experiments.

  6. Investigation of tDCS volume conduction effects in a highly realistic head model

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Rampersad, S. M.; Aydin, Ü.; Vorwerk, J.; Oostendorp, T. F.; Neuling, T.; Herrmann, C. S.; Stegeman, D. F.; Wolters, C. H.

    2014-02-01

    Objective. We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. Approach. We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. Main results. We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. Significance. Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.

  7. Metabolic Tumor Volume Predicts for Recurrence and Death in Head-and-Neck Cancer

    SciTech Connect

    La, Trang H.; Filion, Edith J.; Turnbull, Brit B.; Chu, Jackie N.; Lee, Percy; Nguyen, Khoa; Maxim, Peter; Quon, Andy; Graves, Edward E.; Loo, Billy W.; Le, Quynh-Thu

    2009-08-01

    Purpose: To evaluate the prognostic value of metabolic tumor volume measured on 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging and other clinical factors in patients treated for locally advanced head-and-neck cancer (HNC) at a single institution. Materials and Methods: Between March 2003 and August 2007, 85 patients received positron emission tomography (PET)/computed tomography-guided chemoradiotherapy for HNC. Metabolically active tumor regions were delineated on pretreatment PET scans semiautomatically using custom software. We evaluated the relationship of {sup 18}F-fluorodeoxyglucose-PET maximum standardized uptake value (SUV) and total metabolic tumor volume (MTV) with disease-free survival (DFS) and overall survival (OS). Results: Mean follow-up for surviving patients was 20.4 months. The estimated 2-year locoregional control, DFS, and OS for the group were 88.0%, 69.5%, and 78.4%, respectively. The median time to first failure was 9.8 months among the 16 patients with relapse. An increase in MTV of 17.4 mL (difference between the 75th and 25th percentiles) was significantly associated with an increased hazard of first event (recurrence or death) (1.9-fold, p < 0.001), even after controlling for Karnofsky performance status (KPS) (1.8-fold, p = 0.001), and of death (2.1-fold, p < 0.001). We did not find a significant relationship of maximum SUV, stage, or other clinical factors with DFS or OS. Conclusions: Metabolic tumor volume is an adverse prognostic factor for disease recurrence and death in HNC. MTV retained significance after controlling for KPS, the only other significant adverse prognostic factor found in this cohort. MTV is a direct measure of tumor burden and is a potentially valuable tool for risk stratification and guiding treatment in future studies.

  8. Pulse Coil Tester

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1988-01-01

    Set of relays tested easily and repeatedly. Pulse coil tester causes coil under test to generate transient voltage; waveform indicates condition of coil. Tester accommodates assembly of up to four coils at a time.

  9. The Effects of Head Start Health Services: Report of the Head Start Health Evaluation. Volume I and II.

    ERIC Educational Resources Information Center

    Fosburg, Linda B.; And Others

    In 1977, a longitudinal study was initiated to assess the effectiveness of health services provided by Head Start. The study provided for 10 domains: pediatric health examinations, health history recordings, dental evaluation, anthropometric assessment, diet and nutrition assessment, and hematology evaluations, as well as for developmental,…

  10. Design, analyses, fabrication and characterization of Nb3Sn coil in 1 W pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Kumar, Nitish; Pradhan, Subrata

    2017-02-01

    A laboratory scale Nb3Sn coil is designed, analysed, fabricated and characterized in 1 W pulse tube cryocooler in solid nitrogen cooling mode and in conduction cooling mode. The magnetic field profile in axial and radial direction, Lorentz force component across the winding volume in operational condition are estimated in COMSOL. The coil is designed for 1.5 T at 100 A. It is fabricated in wind and react method. Before winding, the insulated Nb3Sn strand is wound on a copper mandrel which is thermally anchored with the 2nd stage of the cold head unit via a 10 mm thick copper ‘Z’ shaped plate The temperature distribution in 2nd cold stage, copper z plate and coil is monitored in both solid nitrogen cooling and conduction cooling mode. In solid nitrogen cooling mode, the quench of the coil occurs at 150 A for 0.01 A/s current ramp rate. The magnetic field at the centre of the coil bore is measured using transverse Hall sensor. The measured magnetic field value is compared with the analytical field value and they are found to be deviating ∼5% in magnitude. Again the coil is tested in conduction cooling mode maintaining the same current ramp rate and it is observed that the coil gets quenched at 70 A at temperature ∼ 10K.

  11. Leading the Way: Characteristics and Early Experiences of Selected Early Head Start Programs. Volume II: Program Profiles.

    ERIC Educational Resources Information Center

    Kisker, Ellen Eliason; Love, John M.; Raikes, Helen; Boller, Kimberly; Paulsell, Diane; Rosenberg, Linda; Coolahan, Kathleen; Berlin, Lisa J.

    Early Head Start (EHS) is a comprehensive, two-generation program providing intensive services from before birth to age 3 to promote improved outcomes in children's development, family development, staff development, and community development. The second of a 3-volume series designed to share the experiences of the 17 EHS programs participating in…

  12. Tumor response parameters for head and neck cancer derived from tumor-volume variation during radiation therapy

    SciTech Connect

    Chvetsov, Alexei V.

    2013-03-15

    Purpose: The main goal of this paper is to reconstruct a distribution of cell survival fractions from tumor-volume variation for a heterogeneous group of head and neck cancer patients and compare this distribution to the data from predictive assays. Methods: To characterize the tumor-volume variation during radiation therapy treatment, the authors use a two-level tumor-volume model of cell population that separates the entire tumor cell population into two subpopulations of viable cells and lethally damaged cells. This parameterized radiobiological model is integrated with a least squares objective function and a simulated annealing optimization algorithm to describe time-dependent tumor-volume variation rates in individual patients. Several constraints have been used in the optimization problem because tumor-volume variation during radiotherapy is described by a sum of exponentials; therefore, the problem of accurately fitting a model to measured data is ill-posed. The model was applied to measured tumor-volume variation curves from a clinical study on tumor-volume variation during radiotherapy for 14 head and neck cancer patients in which an integrated CT/linear particle accelerator (LINAC) system was used for tumor-volume measurements. Results: The two-level cell population tumor-volume modeling is capable of describing tumor-volume variation throughout the entire treatment for 11 of the 14 patients. For three patients, the tumor-volume variation was described only during the initial part of treatment, a fact that may be related to the neglected hypoxia in the two-level approximation. The predicted probability density distribution for the survival fractions agrees with the data obtained using in vitro studies with predictive assays. The mean value 0.35 of survival fraction obtained in this study is larger than the value 0.32 from in vitro studies, which could be expected because of greater repair in vivo. The mean half-life obtained in this study for the head

  13. Magnetic Coiling

    NASA Image and Video Library

    2016-07-18

    One broad active region sported a wonderful example of coiled magnetic field lines over almost a four-day period (July 15-18, 2016). The magnetic lines are easily visible in this 171 Angstrom wavelength of extreme ultraviolet light be cause charged particles are spiraling along the lines. The active region is a hotbed of struggling magnetic forces that were pushing out above the sun's surface. http://photojournal.jpl.nasa.gov/catalog/PIA17911

  14. Prognostic Value of Metabolic Tumor Volume and Velocity in Predicting Head-and-Neck Cancer Outcomes

    SciTech Connect

    Chu, Karen P.; Murphy, James D.; La, Trang H.; Krakow, Trevor E.; Iagaru, Andrei; Graves, Edward E.; Hsu, Annie; Maxim, Peter G.; Loo, Billy; Chang, Daniel T.; Le, Quynh-Thu

    2012-08-01

    Purpose: We previously showed that metabolic tumor volume (MTV) on positron emission tomography-computed tomography (PET-CT) predicts for disease recurrence and death in head-and-neck cancer (HNC). We hypothesized that increases in MTV over time would correlate with tumor growth and biology, and would predict outcome. We sought to examine tumor growth over time in serial pretreatment PET-CT scans. Methods and Materials: From 2006 to 2009, 51 patients had two PET-CT scans before receiving HNC treatment. MTV was defined as the tumor volume {>=}50% of maximum SUV (SUV{sub max}). MTV was calculated for the primary tumor, nodal disease, and composite (primary tumor + nodes). MTV and SUV velocity were defined as the change in MTV or SUV{sub max} over time, respectively. Cox regression analyses were used to examine correlations between SUV, MTV velocity, and outcome (disease progression and overall survival). Results: The median follow-up time was 17.5 months. The median time between PET-CT scans was 3 weeks. Unexpectedly, 51% of cases demonstrated a decrease in SUV{sub max} (average, -0.1 cc/week) and MTV (average, -0.3 cc/week) over time. Despite the variability in MTV, primary tumor MTV velocity predicted disease progression (hazard ratio 2.94; p = 0.01) and overall survival (hazard ratio 1.85; p = 0.03). Conclusions: Primary tumor MTV velocity appears to be a better prognostic indicator of disease progression and survival in comparison to nodal MTV velocity. However, substantial variability was found in PET-CT biomarkers between serial scans. Caution should be used when PET-CT biomarkers are integrated into clinical protocols for HNC.

  15. Ultrahigh head pump/turbine development program. Volume 1. Technical summary. Final report

    SciTech Connect

    Yokoyama, T.

    1986-07-01

    The commercial availability of an ultrahigh head pump/turbine whose output can be regulated makes underground and ultrahigh head-pumped storage creditable options for utility use by reducing construction costs and plant complexity. This new turbine operates at double the head of existing equipment yet uses commercial materials, proven design concepts, and manageable manufacturing techniques.

  16. 7-T (1) H MRS with adiabatic refocusing at short TE using radiofrequency focusing with a dual-channel volume transmit coil.

    PubMed

    Boer, V O; van Lier, A L H M W; Hoogduin, J M; Wijnen, J P; Luijten, P R; Klomp, D W J

    2011-11-01

    In vivo MRS of the human brain at ultrahigh field allows for the identification of a large number of metabolites at higher spatial resolutions than currently possible in clinical practice. However, the in vivo localization of single-voxel spectroscopy has been shown to be challenging at ultrahigh field because of the low bandwidth of refocusing radiofrequency (RF) pulses. Thus far, the proposed methods for localized MRS at 7 T suffer from long TE, inherent signal loss and/or a large chemical shift displacement artifact that causes a spatial displacement between resonances, and results in a decreased efficiency in editing sequences. In this work, we show that, by driving a standard volume coil with two RF amplifiers, focusing the B 1+ field in a certain location and using high-bandwidth adiabatic refocusing pulses, a semi-LASER (semi-localized by adiabatic selective refocusing) localization is feasible at short TE in the human brain with full signal acquisition and a low chemical shift displacement artifact at 7 T. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Head-repositioning does not reduce the reproducibility of fMRI activation in a block-design motor task.

    PubMed

    Soltysik, David A; Thomasson, David; Rajan, Sunder; Gonzalez-Castillo, Javier; DiCamillo, Paul; Biassou, Nadia

    2011-06-01

    It is hypothesized that, based upon partial volume effects and spatial non-uniformities of the scanning environment, repositioning a subject's head inside the head coil between separate functional MRI scans will reduce the reproducibility of fMRI activation compared to a series of functional runs where the subject's head remains in the same position. Nine subjects underwent fMRI scanning where they performed a sequential, oppositional finger-tapping task. The first five runs were conducted with the subject's head remaining stable inside the head coil. Following this, four more runs were collected after the subject removed and replaced his/her head inside the head coil before each run. The coefficient of variation was calculated for four metrics: the distance from the anterior commisure to the center of mass of sensorimotor activation, maximum t-statistic, activation volume, and average percent signal change. These values were compared for five head-stabilization runs and five head-repositioning runs. Voxelwise intraclass correlation coefficients were also calculated to assess the spatial distribution of sources of variance. Interestingly, head repositioning was not seen to significantly affect the reproducibility of fMRI activation (p<0.05). In addition, the threshold level affected the reproducibility of activation volume and percent signal change.

  18. The role of tumor volume in radiotherapy of patients with head and neck cancer

    PubMed Central

    2014-01-01

    The assumption that the larger tumor contains a higher number of clonogenic cells what may deteriorate prognosis of patients treated with RT has been confirmed in many clinical studies. Significant prognostic influence of tumor volume (TV) on radiotherapy (RT) outcome has been found for tumors of different localizations including patients with head and neck cancer (HNC). Although TV usually is a stronger prognostic factor than T stage, commonly used TNM classification system dose not incorporate TV data. The aim of the paper is to refresh clinical data regarding the role of TV in RT of patients with HNC. At present somehow new meaning of TV could be employed in the aspect of modern RT techniques and combined treatment strategies. For larger TV more aggressive treatment options may be considered. In modern RT techniques escalated dose could be provided highly conformal or RT can be combined with systemic treatment increasing therapeutic ratio. In the study several reports estimating prognostic value of TV for patients with HNC treated with RT has been reviewed. Due to substantially various reported groups of patients as to tumor site, stage of disease or treatment strategies, precise cut-off value could not be establish in general, but the significant association between TV and treatment outcome had been found in almost all studies. There is a strong suggestion that TV should supplement clinical decision in the choice of optimal treatment strategy for patients with HNC. PMID:24423415

  19. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed COIL

    SciTech Connect

    Aksinin, V I; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N; Antsiferov, S A; Velikanov, S D; Kalinovskii, V V; Konovalov, V V; Mikhalkin, V N; Sevryugin, I V

    2014-02-28

    The influence of gas temperature on the characteristics of a self-sustained volume discharge was studied in the working mixtures of a chemical oxygen – iodine laser with pulsed electricdischarge production of iodine atoms. In experiments, laser working mixtures were modelled by the mixture of air and iodide C{sub 2}H{sub 5}I. It was established that mixture heating is accompanied by an increase in the voltage across the discharge plasma and by a decrease in the discharge current. By varying the temperature of the mixture with the iodine content of ∼2.7% and initial pressure p=12 Torr from 22 °C to 96 °C, the current amplitude falls by ∼12%, and at the instant corresponding to a maximal current the voltage raises by ∼22%. Such a change in the discharge characteristics is explained by a higher rate of electron attachment to vibrationally excited iodide molecules at elevated temperatures. (active media)

  20. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-04-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  1. Dosimetric comparison of split field and fixed jaw techniques for large IMRT target volumes in the head and neck.

    PubMed

    Srivastava, Shiv P; Das, Indra J; Kumar, Arvind; Johnstone, Peter A S

    2011-01-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ± 1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights

  2. Analytical and experimental analysis of tube coil heat exchanger

    NASA Astrophysics Data System (ADS)

    Smusz, R.

    2016-09-01

    The paper presents the analytical and experimental analysis of heat transfer for the finned tube coil heat exchanger immersed in thermal storage tank. The tank is equipped with three helical-shaped heating coils and cylindrical- shaped stratification device. Two coils, upper and lower, use the water as a heating medium. The third, double wall heat exchanger coil, located at the bottom head on the tank is filled by the refrigerant (freon). Calculations of thermal power of water coil were made. Correlations of heat transfer coefficients in curved tubes were applied. In order to verify the analytical calculations the experimental studies of heat transfer characteristic for coil heat exchanger were performed.

  3. Conical coils counter-current chromatography for preparative isolation and purification of tanshinones from Salvia miltiorrhiza Bunge.

    PubMed

    Liang, Junling; Meng, Jie; Guo, Mengzhe; Yang, Zhi; Wu, Shihua

    2013-05-03

    Modern counter-current chromatography (CCC) originated from the helical coil planet centrifuge. Recently, spiral coils were found to possess higher separation efficiency in both the retention of stationary phase and solutes resolution than other CCC coils like the helical and toroidal coils used on type-J CCC and cross-axis CCC. In this work, we built a novel conical coil CCC for the preparative isolation and purification of tanshinones from Salvia miltiorrhiza Bunge. The conical coils were wound on three identical upright tapered holders in head-to-tail and left-handed direction and connected in series. Compared with helical and spiral coil CCC, conical coil CCC not only placed CCC column in a two-dimensional centrifugal field, but also provided a potential centrifugal force gradient both in axial and radial directions. The extra centrifugal gradient made mobile phase move faster and enabled CCC much higher retention of stationary phase and better resolution. As a result, higher efficiency has been obtained with the solvent system of hexane-ethyl acetate-methanol-water (HEMWat) with the volume ratio of 5:5:7:3 by using conical coil CCC apparatus. Four tanshinones, including cryptotanshinone (1), tanshinone I (2), 1,2-dihydrotanshinquinone (3) and tanshinone IIA (4), were well resolved from 500mg to 1g crude samples with high purity. Furthermore, the conical coil CCC can make a much higher solid phase retention, which makes it to be a powerful separation tool with high throughput. This is the first report about conical coil CCC for separation of tanshinones and it may also be an important advancement for natural products isolation.

  4. Diffusion weighted imaging: a comprehensive evaluation of a fast spin echo DWI sequence with BLADE (PROPELLER) k-space sampling at 3 T, using a 32-channel head coil in acute brain ischemia.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Stemmer, Alto; Williams, Kenneth D; Naul, L Gill; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-10-01

    To evaluate the signal-to-noise ratio (SNR) and diagnostic quality of diffusion weighted imaging (DWI) using a fast spin echo (FSE) sequence with BLADE k-space trajectory at 3 T in combination with a 32-channel head coil. The scan was compared with a standard spin echo (SE) echo-planar imaging (EPI) DWI and a high resolution SE EPI DWI sequence. Fourteen patients with acute brain ischemia were included in this Institutional Review Board approved study. All patients were evaluated with 3 different image sequences, using a 3 T scanner and a 32-channel head coil: (a) a standard SE EPI DWI (matrix size 192 x 192), (b) a high resolution SE EPI DWI (matrix size of 256 x 256) and (c) a FSE DWI BLADE (matrix size 192 x 192). The SNR of the 3 scans was compared in 10 healthy volunteers by a paired student t test. Image quality was evaluated with 4 dedicated questions in a blinded read: (1) The scans were ranked in terms of bulk susceptibility artifact. (2) The scan preference for diagnosis of any diffusion abnormality that might occur and (3) the preference for visualization of the diffusion abnormality actually present was determined. (4) The influence of bulk susceptibility on image evaluation for the diffusion abnormality present was assessed. For visualization of the diffusion abnormality present, BLADE DWI was the scan sequence preferred most by both readers (reader 1: 41.7%, reader 2: 35.7%). For visualization of any diffusion abnormality present, BLADE DWI was the preferred scan in 13 of 14 cases for reader 1 (93%) and in 11 of 14 cases for reader 2 (78.6%). No high resolution SE EPI DWI scan was rated best by reader 1. Reader 2 rated the high resolution SE EPI DWI scan superior in only 1 of 56 judgments. The standard EPI DWI sequence (21.8 +/- 5.3) had in comparison to the high resolution EPI DWI (11.9 +/- 2.6) and the BLADE DWI scans (11.3 +/- 3.8) significantly higher SNR mean values. Our preliminary data demonstrates the feasibility of a FSE EPI DWI scan with

  5. Relative volume measured with magnetic resonance imaging is an articular collapse predictor in hematological pediatric patients with femoral head osteonecrosis

    PubMed Central

    Ippolito, Davide; Masetto, Alessandro; Talei Franzesi, Cammillo; Bonaffini, Pietro A; Casiraghi, Alessandra; Sironi, Sandro

    2016-01-01

    AIM To assess the potential value of femoral head (FH) volume measurements to predict joint collapse, as compared to articular surface involvement, in post-treatment osteonecrosis (ON) in pediatric patients affected by lymphoproliferative diseases. METHODS Considering 114 young patients with lymphoproliferative diseases undergone a lower-limbs magnetic resonance imaging (MRI) examination between November 2006 and August 2012 for a suspected post-treatment ON, we finally considered a total of 13 cases (7 males, mean age 15.2 ± 4.8 years), which developed a FH ON lesions (n = 23). The MRI protocol included coronal short tau inversion recovery and T1-weighted sequences, from the hips to the ankles. During the follow-up (elapsed time: 9.2 ± 2 mo), 13/23 FH articular surface (FHS) developed articular deformity. The first MRI studies with diagnosis of ON were retrospectively analyzed, measuring FH volume (FHV), FHS, ON volume (ONV) and the articular surface involved by ON (ONS). The relative involvement of FHS, in terms of volume [relative volume (RV): ONV/FHV] and articular surface [relative surface (RS): ONS/FHS], was then calculated. RESULTS By using receiver operating characteristic curve analysis (threshold of 23% of volume involvement), RV predicted articular deformity in 13/13 FHS [sensitivity 100%, specificity 90%, accuracy 95%, positive predictive value (PPV) 93%, negative predictive value (NPV) 100%]. Considering a threshold of 50% of articular involvement, RS predicted articular deformity in 10/13 femoral heads (sensitivity 77%, specificity 100%, accuracy 87%, PPV 100%, NPV 77%). CONCLUSION RV might be a more reliable parameter than RS in predicting FH deformity and could represent a potential complementary diagnostic tool in the follow-up of femoral heads ON lesions. PMID:27648169

  6. Tumor-Volume Simulation During Radiotherapy for Head-and-Neck Cancer Using a Four-Level Cell Population Model

    SciTech Connect

    Chvetsov, Alexei V. Dong Lei; Palta, Jantinder R.; Amdur, Robert J.

    2009-10-01

    Purpose: To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. Methods: The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. Results: We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Conclusions: Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.

  7. Coiled-Coil Design: Updated and Upgraded.

    PubMed

    Woolfson, Derek N

    2017-01-01

    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  8. Ultrahigh head pump/turbine development program: Volume 5, Model tests: Basic performance: Final report

    SciTech Connect

    Yokoyama, T.

    1987-01-01

    Pump/turbine model tests for the Ultra-High Head Pump/Turbine Development Program were conducted for evaluating and refining the pump/turbine design, rated speed 720 rpm, net head 1450, output 655 MW on the scale model at Hitachi Hydraulic Research Laboratory. The basic testing resulted in verification of the design, analysis, and performance of the high head pump/turbine.

  9. Institutional Clinical Trial Accrual Volume and Survival of Patients With Head and Neck Cancer

    PubMed Central

    Wuthrick, Evan J.; Zhang, Qiang; Machtay, Mitchell; Rosenthal, David I.; Nguyen-Tan, Phuc Felix; Fortin, André; Silverman, Craig L.; Raben, Adam; Kim, Harold E.; Horwitz, Eric M.; Read, Nancy E.; Harris, Jonathan; Wu, Qian; Le, Quynh-Thu; Gillison, Maura L.

    2015-01-01

    Purpose National Comprehensive Cancer Network guidelines recommend patients with head and neck cancer (HNC) receive treatment at centers with expertise, but whether provider experience affects survival is unknown. Patients and Methods The effect of institutional experience on overall survival (OS) in patients with stage III or IV HNC was investigated within a randomized trial of the Radiation Therapy Oncology Group (RTOG 0129), which compared cisplatin concurrent with standard versus accelerated fractionation radiotherapy. As a surrogate for experience, institutions were classified as historically low- (HLACs) or high-accruing centers (HHACs) based on accrual to 21 RTOG HNC trials (1997 to 2002). The effect of accrual volume on OS was estimated by Cox proportional hazards models. Results Median RTOG accrual (1997 to 2002) at HLACs was four versus 65 patients at HHACs. Analysis included 471 patients in RTOG 0129 (2002 to 2005) with known human papillomavirus and smoking status. Patients at HLACs versus HHACs had better performance status (0: 62% v 52%; P = .04) and lower T stage (T4: 26.5% v 35.3%; P = .002) but were otherwise similar. Radiotherapy protocol deviations were higher at HLACs versus HHACs (18% v 6%; P < .001). When compared with HHACs, patients at HLACs had worse OS (5 years: 51.0% v 69.1%; P = .002). Treatment at HLACs was associated with increased death risk of 91% (hazard ratio [HR], 1.91; 95% CI, 1.37 to 2.65) after adjustment for prognostic factors and 72% (HR, 1.72; 95% CI, 1.23 to 2.40) after radiotherapy compliance adjustment. Conclusion OS is worse for patients with HNC treated at HLACs versus HHACs to cooperative group trials after accounting for radiotherapy protocol deviations. Institutional experience substantially influences survival in locally advanced HNC. PMID:25488965

  10. Validation that Metabolic Tumor Volume Predicts Outcome in Head and Neck Cancer

    PubMed Central

    Tang, Chad; Murphy, James D.; Khong, Brian; La, Trang H.; Kong, Christina; Fischbein, Nancy J.; Colevas, A. Dimitrios; Iagaru, Andrei H.; Graves, Edward E.; Loo, Billy W.; Le, Quynh-Thu

    2011-01-01

    Purpose We have previously reported that metabolic tumor volume (MTV) obtained from pre-treatment FDG PET/CT predicted outcome in patients with head-and-neck cancer (HNC). The purpose of this study is to validate these results on an independent dataset, determine if the primary tumor or nodal MTV drives this correlation, and explore the interaction with p16INK4a status as a surrogate marker for HPV. Methods and Materials The validation dataset in this study included 83 patients with squamous cell HNC who had a FDG PET/CT scan prior to definitive radiotherapy. MTV and SUVmax were calculated for the primary tumor, involved nodes, and the combination of both. The primary endpoint was to validate that MTV predicted progression-free survival and overall survival. Secondary analyses included determining the prognostic utility of primary tumor versus nodal MTV. Results Similar to our prior findings, an increase in total MTV of 17 cm3 (difference between 75th and 25th percentile) was associated with a 2.1 fold increase in the risk of disease progression (p=0.0002), and a 2.0 fold increase in the risk of death (p=0.0048). SUVmax was not associated with either outcome. Primary tumor MTV predicted progression-free (HR=1.94; p<0.0001) and overall (HR=1.57; p<0.0001) survival, whereas nodal MTV did not. In addition, MTV predicted progression-free (HR=4.23; p<0.0001) and overall (HR=3.21; p=0.0029) survival in patients with p16INK4a positive oropharyngeal cancer. Conclusions This study validates our previous findings that MTV independently predicts outcomes in HNC. MTV should be considered as a potential risk stratifying biomarker in future studies of HNC. PMID:22270174

  11. Early Head Start: Research Findings. Early Childhood Highlights. Volume 1, Issue 2

    ERIC Educational Resources Information Center

    Child Trends, 2010

    2010-01-01

    Early Head Start is a federally funded community-based program for low-income families with infants and toddlers and for low-income pregnant women. Created in 1995, Early Head Start strives to promote healthy prenatal outcomes for pregnant women, to enhance the development of children ages birth to three, and to promote healthy family functioning.…

  12. Early Head Start: Research Findings. Early Childhood Highlights. Volume 1, Issue 2

    ERIC Educational Resources Information Center

    Child Trends, 2010

    2010-01-01

    Early Head Start is a federally funded community-based program for low-income families with infants and toddlers and for low-income pregnant women. Created in 1995, Early Head Start strives to promote healthy prenatal outcomes for pregnant women, to enhance the development of children ages birth to three, and to promote healthy family functioning.…

  13. Impact of Node Negative Target Volume Delineation on Contralateral Parotid Gland Dose Sparing Using IMRT in Head and Neck Cancer.

    PubMed

    Magnuson, William J; Urban, Erich; Bayliss, R Adam; Harari, Paul M

    2015-06-01

    There is considerable practice variation in treatment of the node negative (N0) contralateral neck in patients with head and neck cancer. In this study, we examined the impact of N0 neck target delineation volume on radiation dose to the contralateral parotid gland. Following institutional review board approval, 12 patients with head and neck cancer were studied. All had indications for treatment of the N0 neck, such as midline base of tongue or soft palate extension or advanced ipsilateral nodal disease. The N0 neck volumes were created using the Radiation Therapy Oncology Group head and neck contouring atlas. The physician-drawn N0 neck clinical target volume (CTV) was expanded by 25% to 200% to generate volume variation, followed by a 3-mm planning target volume (PTV) expansion. Surrounding organs at risk were contoured and complete intensity-modulated radiation therapy plans were generated for each N0 volume expansion. The median N0 target volume drawn by the radiation oncologist measured 93 cm(3) (range 71-145). Volumetric expansion of the N0 CTV by 25% to 200% increased the resultant mean dose to the contralateral parotid gland by 1.4 to 8.5 Gray (Gy). For example, a 4.1-mm increase in the N0 neck CTV translated to a 2.0-Gy dose increase to the parotid, 7.4 mm to a 4.5 Gy dose increase, and 12.5 mm to an 8.5 Gy dose increase, respectively. The treatment volume designated for the N0 neck has profound impact on resultant dose to the contralateral parotid gland. Variations of up to 15 mm are routine across physicians in target contouring, reflecting individual preference and training expertise. Depending on the availability of immobilization and image guidance techniques, experts commonly recommend 3 to 10 mm margin expansions to generate the PTV. Careful attention to the original volume of the N0 neck CTV, as well as expansion margins, is important in achieving effective contralateral gland sparing to reduce the resultant xerostomia and dysguesia that may ensue

  14. Wedding ring shaped excitation coil

    DOEpatents

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  15. Validation that Metabolic Tumor Volume Predicts Outcome in Head-and-Neck Cancer

    SciTech Connect

    Tang, Chad; Murphy, James D.; Khong, Brian; La, Trang H.; Kong, Christina; Fischbein, Nancy J.; Colevas, A. Dimitrios; Iagaru, Andrei H.; Graves, Edward E.; Loo, Billy W.; Le, Quynh-Thu

    2012-08-01

    Purpose: We have previously reported that metabolic tumor volume (MTV) obtained from pretreatment {sup 18}F-fluorodeoxydeglucose positron emission tomography (FDG PET)/ computed tomography (CT) predicted outcome in patients with head-and-neck cancer (HNC). The purpose of this study was to validate these results on an independent dataset, determine whether the primary tumor or nodal MTV drives this correlation, and explore the interaction with p16{sup INK4a} status as a surrogate marker for human papillomavirus (HPV). Methods and Materials: The validation dataset in this study included 83 patients with squamous cell HNC who had a FDG PET/CT scan before receiving definitive radiotherapy. MTV and maximum standardized uptake value (SUV{sub max}) were calculated for the primary tumor, the involved nodes, and the combination of both. The primary endpoint was to validate that MTV predicted progression-free survival and overall survival. Secondary analyses included determining the prognostic utility of primary tumor vs. nodal MTV. Results: Similarly to our prior findings, an increase in total MTV of 17 cm{sup 3} (difference between the 75th and 25th percentiles) was associated with a 2.1-fold increase in the risk of disease progression (p = 0.0002) and a 2.0-fold increase in the risk of death (p = 0.0048). SUV{sub max} was not associated with either outcome. Primary tumor MTV predicted progression-free (hazard ratio [HR] = 1.94; p < 0.0001) and overall (HR = 1.57; p < 0.0001) survival, whereas nodal MTV did not. In addition, MTV predicted progression-free (HR = 4.23; p < 0.0001) and overall (HR = 3.21; p = 0.0029) survival in patients with p16{sup INK4a}-positive oropharyngeal cancer. Conclusions: This study validates our previous findings that MTV independently predicts outcomes in HNC. MTV should be considered as a potential risk-stratifying biomarker in future studies of HNC.

  16. Comparison of radiofrequency body coils for MRI at 3 Tesla: a simulation study using parallel transmission on various anatomical targets

    PubMed Central

    Wu, Xiaoping; Zhang, Xiaotong; Tian, Jinfeng; Schmitter, Sebastian; Hanna, Brian; Strupp, John; Pfeuffer, Josef; Hamm, Michael; Wang, Dingxin; Nistler, Juergen; He, Bin; Vaughan, J. Thomas; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2015-01-01

    The performance of multichannel transmit coil layouts and parallel transmission (pTx) radiofrequency (RF) pulse design was evaluated with respect to transmit B1 (B1+) homogeneity and Specific Absorption Rate (SAR) at 3 Tesla for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with 2 or 3 identical rings, stacked in the z-axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1+ homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to ~8 fold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the 3-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1+ homogeneity, particularly for a “z-stacked” double-ring design with coil elements arranged on two transaxial rings. PMID:26332290

  17. Volume of focal brain lesions and hippocampal formation in relation to memory function after closed head injury in children.

    PubMed

    Di Stefano, G; Bachevalier, J; Levin, H S; Song, J X; Scheibel, R S; Fletcher, J M

    2000-08-01

    (1) A study of verbal learning and memory in children who had sustained a closed head injury (CHI) at least 3 months earlier. (2) To relate memory function to focal brain lesion and hippocampal formation volumes using morphometric analysis of MRI. A group of 245 children who had been admitted to hospital for CHI graded by the Glasgow coma scale (GCS), including 161 patients with severe and 84 with mild CHI completed the California verbal learning test (CVLT) and underwent MRI which was analysed for focal brain lesion volume independently of memory test data. Brain MRI with 1.5 mm coronal slices obtained in subsets of 25 patients with severe and 25 patients with mild CHI were analysed for hippocampal formation volume. Interoperator reliability in morphometry was satisfactory. Severity of CHI and age at study significantly affected memory performance. Regression analysis showed that bifrontal, left frontal, and right frontal lesion volumes incremented prediction of various learning and memory indices after entering the GCS score and age into the model. Extrafrontal lesion volume did not contribute to predicting memory performance. Prefrontal lesions contribute to residual impairment of learning and memory after severe CHI in children. Although effects of CHI on hippocampal formation volume might be difficult to demonstrate in non-fatal paediatric CHI, further investigation using functional brain imaging could potentially demonstrate hippocampal dysfunction.

  18. Leg muscle volume during 30-day 6-degree head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Lee, P. L.; Ellis, S.; Selzer, R. H.; Ortendahl, D. A.

    1994-01-01

    Magnetic resonance imaging (MRI) was used to compare the effect of two modes of lower-extremity exercise training on the mass (volume) of posterior leg group (PLG) muscles (soleus, flexor hallucis longus, tibialis posterior, lateral and medial gastrocnemius, and flexor digitorum longus) on 19 men (ages 32-42 years) subjected to intense dynamic-isotonic (ITE, cycle ergometer, number of subjects (N) = 7), isokinetic (IKE, torque egrometer, N = 7), and no exercise (NOE, N = 5) training for 60 min/day during head-down bed rest (HDBR). Total volume of the PLG muscles decreased (p less than 0.05) similarly: ITE = 4.3 +/- SE 1.6%, IKE = 7.7 +/- 1.6%, and NOE = 6.3 +/- 0.8%; combined volume (N = 19) loss was 6.1 +/- 0.9%. Ranges of volume changes were 2.6% to -9.0% (ITE), -2.1% to -14.9% (IKE), and -3.4% to -8/1% (NOE). Correlation coefficients (r) of muscle volume versus thickness measured with ultrasonography were: ITE r + 0.79 (p less than 0.05), IKE r = 0.27 (not significant (NS)), and NOE r = 0.63 (NS). Leg-muscle volume and thickness were highly correlated (r = 0.79) when plasma volume was maintained during HDBR with ITE. Thus, neither intensive lower extremity ITE nor IKE training influence the normal non-exercised posterior leg muscle atrophy during HDBR. The relationship of muscle volume and thickness may depend on the mode of exercise training associated with the maintenance of plasma volume.

  19. Frequency-difference MIT imaging of cerebral haemorrhage with a hemispherical coil array: numerical modelling.

    PubMed

    Zolgharni, M; Griffiths, H; Ledger, P D

    2010-08-01

    The feasibility of detecting a cerebral haemorrhage with a hemispherical MIT coil array consisting of 56 exciter/sensor coils of 10 mm radius and operating at 1 and 10 MHz was investigated. A finite difference method combined with an anatomically realistic head model comprising 12 tissue types was used to simulate the strokes. Frequency-difference images were reconstructed from the modelled data with different levels of the added phase noise and two types of a priori boundary errors: a displacement of the head and a size scaling error. The results revealed that a noise level of 3 m degrees (standard deviation) was adequate for obtaining good visualization of a peripheral stroke (volume approximately 49 ml). The simulations further showed that the displacement error had to be within 3-4 mm and the scaling error within 3-4% so as not to cause unacceptably large artefacts on the images.

  20. Interchangeable neck shape-specific coils for a clinically realizable anterior neck phased array system.

    PubMed

    Beck, Michael J; Parker, Dennis L; Bolster, Bradley D; Kim, Seong-Eun; McNally, J Scott; Treiman, Gerald S; Hadley, J Rock

    2017-02-10

    To demonstrate the interchangeable neck shape-specific (NSS) coil concept that supplements standard commercial spine and head/neck coils to provide simultaneous high-resolution (hi-res) head/neck imaging with high signal-to-noise ratio (SNR). Two NSS coils were constructed on formers designed to fit two different neck shapes. A 7-channel (7ch) ladder array was constructed on a medium neck former, and a 9-channel (9ch) ladder array was constructed on large neck former. Both coils were interchangeable with the same preamp housing. The 7ch and 9ch coils demonstrate SNR gains of approximately 4 times and 3 times over the Siemens 20-channel head/neck coil in the carotid arteries of our volunteers, respectively. Coupling between the Siemens 32-channel spine coil, Siemens 20-channel head/neck coil, and the NSS coils was negligible, allowing for simultaneous hi-res head/neck imaging with high SNR. This study demonstrates that supplementing existing commercial spine and head/neck coils with an NSS coil allows uniform simultaneous hi-res imaging with high SNR in the anterior neck, while maintaining SNR of the commercial coil in the head and posterior neck. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.

    PubMed

    Huang, Yu; Parra, Lucas C; Haufe, Stefan

    2016-10-15

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or "New York Head". It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms

  2. Evolutionary Patterns in Coiled-Coils

    PubMed Central

    Surkont, Jaroslaw; Pereira-Leal, Jose B.

    2015-01-01

    Models of protein evolution are used to describe evolutionary processes, for phylogenetic analyses and homology detection. Widely used general models of protein evolution are biased toward globular domains and lack resolution to describe evolutionary processes for other protein types. As three-dimensional structure is a major constraint to protein evolution, specific models have been proposed for other types of proteins. Here, we consider evolutionary patterns in coiled-coil forming proteins. Coiled-coils are widespread structural domains, formed by a repeated motif of seven amino acids (heptad repeat). Coiled-coil forming proteins are frequently rods and spacers, structuring both the intracellular and the extracellular spaces that often form protein interaction interfaces. We tested the hypothesis that due to their specific structure the associated evolutionary constraints differ from those of globular proteins. We showed that substitution patterns in coiled-coil regions are different than those observed in globular regions, beyond the simple heptad repeat. Based on these substitution patterns we developed a coiled-coil specific (CC) model that in the context of phylogenetic reconstruction outperforms general models in tree likelihood, often leading to different topologies. For multidomain proteins containing both a coiled-coil region and a globular domain, we showed that a combination of the CC model and a general one gives higher likelihoods than a single model. Finally, we showed that the model can be used for homology detection to increase search sensitivity for coiled-coil proteins. The CC model, software, and other supplementary materials are available at http://www.evocell.org/cgl/resources (last accessed January 29, 2015). PMID:25577198

  3. Sedimentation of wormlike coils. II

    NASA Astrophysics Data System (ADS)

    Hearst, John E.; Reese, Dennis A.

    1980-09-01

    An application of the theories of Hearst and Stockmayer for the sedimentation coefficient of wormlike coils of length shorter than 2.2 Kuhn statistical lengths, and Gray, Bloomfield and Hearst for longer wormlike coils with excluded volume to recent sedimentation data on homogeneous DNA samples is presented. The data is entirely consistent with the predictions of the theories. The molecular parameters obtained from the analysis of the data are a Kuhn statistical length at 0.2 ionic strength of 1150 Å; at 0.1 ionic strength of 1290 Å; and a chain backbone diameter of 20-30 Å.

  4. Sex and seasonal differences in hippocampal volume and neurogenesis in brood-parasitic brown-headed cowbirds (Molothrus ater).

    PubMed

    Guigueno, Mélanie F; MacDougall-Shackleton, Scott A; Sherry, David F

    2016-11-01

    Brown-headed cowbirds (Molothrus ater) are one of few species in which females show more complex space use than males. Female cowbirds search for, revisit, and parasitize host nests and, in a previous study, outperformed males on an open field spatial search task. Previous research reported a female-biased sex difference in the volume of the hippocampus, a region of the brain involved in spatial memory. Neurons produced by adult neurogenesis may be involved in the formation of new memories and replace older neurons that could cause interference in memory. We tested for sex and seasonal differences in hippocampal volume and neurogenesis of brood-parasitic brown-headed cowbirds and the closely related non-brood-parasitic red-winged blackbird (Agelaius phoeniceus) to determine whether there were differences in the hippocampus that reflected space use in the wild. Females had a larger hippocampus than males in both species, but hippocampal neurogenesis, measured by doublecortin immunoreactivity (DCX+), was greater in female than in male cowbirds in the absence of any sex difference in blackbirds, supporting the hypothesis of hippocampal specialization in female cowbirds. Cowbirds of both sexes had a larger hippocampus with greater hippocampal DCX+ than blackbirds. Hippocampus volume remained stable between breeding conditions, but DCX+ was greater post-breeding, indicating that old memories may be lost through hippocampal reorganization following breeding. Our results support, in part, the hypothesis that the hippocampus of cowbirds is specialized for brood parasitism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1275-1290, 2016.

  5. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  6. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  7. Hydrogel-Coated Coils: Product Description and Clinical Applications

    PubMed Central

    Ferral, Hector

    2015-01-01

    Hydrogel-coated coils are truly detachable coils with a platinum core covered with hydrogel. The coils are available in 0.018- and 0.035-in systems. These coils have the ability to expand up to four times their size ∼20 minutes after deployment, thus providing a very effective mechanical vascular occlusion effect. The vessel-occlusive effect of these coils is a volume, space-occupying effect, not a thrombotic effect, as seen in fibered coils. Hydrogel-coated coils were originally developed and designed to treat brain aneurysms; however, their use has expanded to peripheral applications. Hydrogel-coated coils have been used in the management of visceral aneurysms, high-flow vascular arteriovenous fistulae, and endoleaks after endovascular thoracic and abdominal aneurysm repair. The purpose of this article is to describe the hydrogel-coated coil system, the mechanism of action, technical details for optimal deployment, and clinical applications. PMID:26622096

  8. Phase reconstruction from multiple coil data using a virtual reference coil.

    PubMed

    Parker, Dennis L; Payne, Allison; Todd, Nick; Hadley, J Rock

    2014-08-01

    This study develops a method to obtain optimal estimates of absolute magnetization phase from multiple-coil MRI data. The element-specific phases of a multi-element receiver coil array are accounted for by using the phase of a real or virtual reference coil that is sensitive over the entire imaged volume. The virtual-reference coil is generated as a weighted combination of measurements from all receiver coils. The phase-corrected multiple coil complex images are combined using the inverse covariance matrix. These methods are tested on images of an agar phantom, an in vivo breast, and an anesthetized rabbit obtained using combinations of four, nine, and three receiver channels, respectively. The four- and three-channel acquisitions require formation of a virtual-reference receiver coil while one channel of the nine-channel receive array has a sensitivity profile covering the entire imaged volume. Referencing to a real or virtual coil gives receiver phases that are essentially identical except for the individual receiver channel noise. The resulting combined images, which account for receiver channel noise covariance, show the expected reduction in phase variance. The proposed virtual reference coil method determines a phase distribution for each coil from which an optimal phase map can be obtained. Copyright © 2013 Wiley Periodicals, Inc.

  9. Phase reconstruction from multiple coil data using a virtual reference coil

    PubMed Central

    Parker, Dennis L.; Payne, Allison; Todd, Nick; Hadley, J. Rock

    2013-01-01

    Purpose This paper develops a method to obtain optimal estimates of absolute magnetization phase from multiple-coil MRI data. Methods The element-specific phases of a multi-element receiver coil array are accounted for by using the phase of a real or virtual reference coil that is sensitive over the entire imaged volume. The virtual-reference coil is generated as a weighted combination of measurements from all receiver coils. The phase-corrected multiple coil complex images are combined using the inverse covariance matrix. These methods are tested on images of an agar phantom, an in vivo breast, and an anesthetized rabbit obtained using combinations of four, nine, and three receiver channels, respectively. Results The four- and three- channel acquisitions require formation of a virtual-reference receiver coil while one channel of the nine-channel receive array has a sensitivity profile covering the entire imaged volume. Referencing to a real or virtual coil gives receiver phases that are essentially identical except for the individual receiver channel noise. The resulting combined images, which account for receiver channel noise covariance, show the expected reduction in phase variance. Conclusions The proposed virtual reference coil method determines a phase distribution for each coil from which an optimal phase map can be obtained. PMID:24006172

  10. Cervical computed tomography in patients with obstructive sleep apnea: influence of head elevation on the assessment of upper airway volume

    PubMed Central

    Souza, Fábio José Fabrício de Barros; Evangelista, Anne Rosso; Silva, Juliana Veiga; Périco, Grégory Vinícius; Madeira, Kristian

    2016-01-01

    Objective : Obstructive sleep apnea syndrome (OSAS) has a high prevalence and carries significant cardiovascular risks. It is important to study new therapeutic approaches to this disease. Positional therapy might be beneficial in reducing the apnea-hypopnea index (AHI). Imaging methods have been employed in order to facilitate the evaluation of the airways of OSAS patients and can be used in order to determine the effectiveness of certain treatments. This study was aimed at determining the influence that upper airway volume, as measured by cervical CT, has in patients diagnosed with OSAS. Methods : This was a quantitative, observational, cross-sectional study. We evaluated 10 patients who had been diagnosed with OSAS by polysomnography and on the basis of the clinical evaluation. All of the patients underwent conventional cervical CT in the supine position. Scans were obtained with the head of the patient in two positions (neutral and at a 44° upward inclination), and the upper airway volume was compared between the two. Results : The mean age, BMI, and neck circumference were 48.9 ± 14.4 years, 30.5 ± 3.5 kg/m2, and 40.3 ± 3.4 cm, respectively. The mean AHI was 13.7 ± 10.6 events/h (range, 6.0-41.6 events/h). The OSAS was classified as mild, moderate, and severe in 70%, 20%, and 10% of the patients, respectively. The mean upper airway volume was 7.9 cm3 greater when the head was at a 44° upward inclination than when it was in the neutral position, and that difference (17.5 ± 11.0%) was statistically significant (p = 0.002). Conclusions : Elevating the head appears to result in a significant increase in the caliber of the upper airways in OSAS patients. PMID:26982042

  11. Design Options for the Assessment of Head Start Quality Enhancements: Final Report. Volume I

    ERIC Educational Resources Information Center

    Ross, Christine; Kirby, Gretchen; Schochet, Peter; Hall, John; Sprachman, Susan; Boller, Kimberly; Paulsell, Diane; McConnell, Sheena

    2005-01-01

    Head Start, the largest federally funded preschool program, provides comprehensive services to economically disadvantaged children and their families so that children can enter kindergarten ready to succeed in school. Performance standards include requirements for the intensity and quality of a broad range of services for children and families.…

  12. Ocular MR imaging: evaluation of different coil setups in a phantom study.

    PubMed

    Erb-Eigner, Katharina; Warmuth, Carsten; Taupitz, Matthias; Bertelmann, Eckart; Hamm, Bernd; Asbach, Patrick

    2013-01-01

    Small loop surface coils are generally recommended for ocular magnetic resonance (MR) imaging, but the optimal coil setup has not been systematically investigated. In this phantom study, we investigated which coil setup of those coils available for our MR imaging system provides the highest signal-to-noise ratio (SNR) in ocular MR imaging at 1.5 tesla. Using a phantom to simulate the eyeball and the orbital fat, we employed loop surface coils of 4- and 6-cm diameter and a multi-channel head coil to obtain images using a T1-weighted spin-echo sequence and then measured the SNR for each coil and coil combination. Use of the 6-cm loop coil alone yielded the highest mean SNR (27.5). Even in superficial regions (mesial and temporal), the SNR was higher using the 6-cm loop coil (33.6 and 45.5) than the 4-cm loop coil (28.0 and 33.8). Additional use of the head coil reduced the mean SNR to 10.4. This quantitative analysis suggests that use of a 6-cm loop surface coil offers the best results in ocular MR imaging. Combinations of loop coils or additional use of a head coil cannot be recommended because higher noise degrades image quality.

  13. Comparison of shape memory polymer foam versus bare metal coil treatments in an in vivo porcine sidewall aneurysm model.

    PubMed

    Horn, John; Hwang, Wonjun; Jessen, Staci L; Keller, Brandis K; Miller, Matthew W; Tuzun, Egemen; Hartman, Jonathan; Clubb, Fred J; Maitland, Duncan J

    2017-10-01

    The endovascular delivery of platinum alloy bare metal coils has been widely adapted to treat intracranial aneurysms. Despite the widespread clinical use of this technique, numerous suboptimal outcomes are possible. These may include chronic inflammation, low volume filling, coil compaction, and recanalization, all of which can lead to aneurysm recurrence, need for retreatment, and/or potential rupture. This study evaluates a treatment alternative in which polyurethane shape memory polymer (SMP) foam is used as an embolic aneurysm filler. The performance of this treatment method was compared to that of bare metal coils in a head-to-head in vivo study utilizing a porcine vein pouch aneurysm model. After 90 and 180 days post-treatment, gross and histological observations were used to assess aneurysm healing. At 90 days, the foam-treated aneurysms were at an advanced stage of healing compared to the coil-treated aneurysms and showed no signs of chronic inflammation. At 180 days, the foam-treated aneurysms exhibited an 89-93% reduction in cross-sectional area; whereas coiled aneurysms displayed an 18-34% area reduction. The superior healing in the foam-treated aneurysms at earlier stages suggests that SMP foam may be a viable alternative to current treatment methods. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1892-1905, 2017. © 2016 Wiley Periodicals, Inc.

  14. Electromagnetic perspective on the operation of RF coils at 1.5-11.7 Tesla.

    PubMed

    Ibrahim, Tamer S; Mitchell, Chad; Schmalbrock, Petra; Lee, Robert; Chakeres, Donald W

    2005-09-01

    In this work experimental and numerical studies of the MR signal were performed at frequencies ranging from 64 MHz to 485 MHz, utilizing three different MRI coils: a single-strut transverse electromagnetic (TEM)-based coil, a TEM resonator, and a high-pass birdcage coil. The experimental analyses were conducted using 1.5 and 8 Tesla whole-body systems and volume RF head coils. The simulation data were obtained utilizing an in-house-developed finite difference time domain (FDTD) model. Pertinent data from the numerical and experimental setups were compared, and a remarkable agreement between the two methods was found that clearly demonstrates the effectiveness of the FDTD method when it is applied rigorously. The numerical and experimental studies demonstrate the complexity of the electromagnetic (EM) fields and their role in the MR signal. These studies also reveal unique similarities and differences between the transmit and receive field distributions at various field strengths. Finally, for ultra high-field operations, it was demonstrated mathematically, numerically, and experimentally that highly asymmetric inhomogeneous images can be acquired even for linear excitation, symmetrical load geometries, and symmetrical load positioning within the coil.

  15. Is micro-computed tomography useful for wear assessment of ceramic femoral heads? A preliminary evaluation of volume measurements.

    PubMed

    Parrilli, Annapaola; Falcioni, Stefano; Fini, Milena; Affatato, Saverio

    2016-11-02

    Wear associated with hip components represents the main clinical problem in these patients, and it is important to develop new techniques for more accurate measurements of that wear. Currently, the gravimetric method is the gold standard for assessing mass measurements in preclinical evaluations. However, this method does not give other information such as volumetric loss or surface deviation. This work aimed to develop and validate a new technique to quantify ceramic volume loss from in vitro experiments using micro-computed tomography (micro-CT). An alumina (BIOLOX® forte) femoral head (Ø = 28 mm) was used. Mass and volume loss were approached by gravimetric method (using a four decimal place digital microbalance) and by using Skyscan 1176 microtomographic system, respectively. Standard error and coefficient of variance of both gravimetric and experimental groups demonstrated the reliability of the micro-CT analysis technique. In conclusion, the findings of the present study suggest that this new protocol could be considered an important tool for wear assessment and that we have found a reliable metrological protocol for volumetric analysis of ceramic femoral head prostheses, demonstrating that the micro-CT technique can be an important tool for wear assessment.

  16. Restoration of plasma volume after 16 days of head-down tilt induced by a single bout of maximal exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Ludwig, D. A.; Doerr, D. F.

    1996-01-01

    Seven healthy men performed maximal exercise 24 h before the end of 16 days exposure to 6 degrees head-down tilt (HDT) to test the hypothesis that such an exercise technique could restore plasma volume (PV) at the end of a simulated space mission. Exercise consisted of supine cycling with graded work rates increasing by 16 W/min to volitional fatigue and required an average of 16 min. The experimental protocol was a standard cross-over design in which the order of treatment (exercise or control) was counterbalanced across all seven subjects. PV, fluid intake (ad libitum), urine output, renal function, and hormones associated with fluid homeostasis were measured before HDT, 24 h before the end of HDT just prior to exercise, and at the end of HDT 24 h after exercise. HDT reduced PV by 16% in both control and exercise conditions. Maximal exercise completely restored plasma volume within 24 h to 3.9 +/- 3.2% of pre-HDT levels despite continued HDT. Compared with control, exercise induced a 660-ml larger positive fluid balance because of greater fluid intake and reduced urine volume during the 24 h after exercise. These results suggest that one bout of maximal leg exercise before return from 16 days of spaceflight may be completely effective in stimulating thirst and restoring plasma volume to preflight levels.

  17. Restoration of plasma volume after 16 days of head-down tilt induced by a single bout of maximal exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Ludwig, D. A.; Doerr, D. F.

    1996-01-01

    Seven healthy men performed maximal exercise 24 h before the end of 16 days exposure to 6 degrees head-down tilt (HDT) to test the hypothesis that such an exercise technique could restore plasma volume (PV) at the end of a simulated space mission. Exercise consisted of supine cycling with graded work rates increasing by 16 W/min to volitional fatigue and required an average of 16 min. The experimental protocol was a standard cross-over design in which the order of treatment (exercise or control) was counterbalanced across all seven subjects. PV, fluid intake (ad libitum), urine output, renal function, and hormones associated with fluid homeostasis were measured before HDT, 24 h before the end of HDT just prior to exercise, and at the end of HDT 24 h after exercise. HDT reduced PV by 16% in both control and exercise conditions. Maximal exercise completely restored plasma volume within 24 h to 3.9 +/- 3.2% of pre-HDT levels despite continued HDT. Compared with control, exercise induced a 660-ml larger positive fluid balance because of greater fluid intake and reduced urine volume during the 24 h after exercise. These results suggest that one bout of maximal leg exercise before return from 16 days of spaceflight may be completely effective in stimulating thirst and restoring plasma volume to preflight levels.

  18. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  19. Coiling of viscous jets

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.

    2004-11-01

    A stream of viscous fluid falling from a sufficient height onto a surface forms a series of regular coils. I use a numerical model for a deformable fluid thread to predict the coiling frequency as a function of the thread's radius, the flow rate, the fall height, and the fluid viscosity. Three distinct modes of coiling can occur: viscous (e.g. toothpaste), gravitational (honey falling from a moderate height) and inertial (honey falling from a great height). When inertia is significant, three states of steady coiling with different frequencies can exist over a range of fall heights. The numerically predicted coiling frequencies agree well with experimental measurements in the inertial coiling regime.

  20. Quantitative analysis of free flap volume changes in head and neck reconstruction.

    PubMed

    Yamaguchi, Kazuaki; Kimata, Yoshihiro; Onoda, Satoshi; Mizukawa, Nobuyoshi; Onoda, Tomoo

    2012-10-01

    The purpose of this study was to determine whether free flap volume decreases or increases in the long-term postoperative period. We used a retrospective analysis of 17 patients to measure muscle and fat volume in free flap with 3-dimensional (3D) images using the AZE Virtual Place Lexus64. Seventeen patients underwent free flap reconstruction with rectus abdominis musculocutaneous flaps (n = 11) or anterolateral thigh flaps (n = 6). Median follow-up was 28.9 months (range, 2.1-48.4 months). Total flap volume was significantly decreased in flaps including ≥40% muscle (p = .011). Mean final muscle volume was 50% at an average of 12 months. Final fat volume was significantly higher for cases with no evidence of disease (mean, 116.7%) than for died-of-the-disease cases (mean, 70.3%; p = .007). Use of free flaps with a high ratio of fat to muscle is sustainable and can gain volume over time, as transplanted fat can increase depending on host condition. Copyright © 2011 Wiley Periodicals, Inc.

  1. Immune responses to coiled coil supramolecular biomaterials.

    PubMed

    Rudra, Jai S; Tripathi, Pulak K; Hildeman, David A; Jung, Jangwook P; Collier, Joel H

    2010-11-01

    Self-assembly has been increasingly utilized in recent years to create peptide-based biomaterials for 3D cell culture, tissue engineering, and regenerative medicine, but the molecular determinants of these materials' immunogenicity have remained largely unexplored. In this study, a set of molecules that self-assembled through coiled coil oligomerization was designed and synthesized, and immune responses against them were investigated in mice. Experimental groups spanned a range of oligomerization behaviors and included a peptide from the coiled coil region of mouse fibrin that did not form supramolecular structures, an engineered version of this peptide that formed coiled coil bundles, and a peptide-PEG-peptide triblock bioconjugate that formed coiled coil multimers and supramolecular aggregates. In mice, the native peptide and engineered peptide did not produce any detectable antibody response, and none of the materials elicited detectable peptide-specific T cell responses, as evidenced by the absence of IL-2 and interferon-gamma in cultures of peptide-challenged splenocytes or draining lymph node cells. However, specific antibody responses were elevated in mice injected with the multimerizing peptide-PEG-peptide. Minimal changes in secondary structure were observed between the engineered peptide and the triblock peptide-PEG-peptide, making it possible that the triblock's multimerization was responsible for this antibody response.

  2. Evaluation of atlas based auto-segmentation for head and neck target volume delineation in adaptive/replan IMRT

    NASA Astrophysics Data System (ADS)

    Speight, R.; Karakaya, E.; Prestwich, R.; Sen, M.; Lindsay, R.; Harding, R.; Sykes, J.

    2014-03-01

    IMRT for head and neck patients requires clinicians to delineate clinical target volumes (CTV) on a planning-CT (>2hrs/patient). When patients require a replan-CT, CTVs must be re-delineated. This work assesses the performance of atlas-based autosegmentation (ABAS), which uses deformable image registration between planning and replan-CTs to auto-segment CTVs on the replan-CT, based on the planning contours. Fifteen patients with planning-CT and replan-CTs were selected. One clinician delineated CTVs on the planning-CTs and up to three clinicians delineated CTVs on the replan-CTs. Replan-CT volumes were auto-segmented using ABAS using the manual CTVs from the planning-CT as an atlas. ABAS CTVs were edited manually to make them clinically acceptable. Clinicians were timed to estimate savings using ABAS. CTVs were compared using dice similarity coefficient (DSC) and mean distance to agreement (MDA). Mean inter-observer variability (DSC>0.79 and MDA<2.1mm) was found to be greater than intra-observer variability (DSC>0.91 and MDA<1.5mm). Comparing ABAS to manual CTVs gave DSC=0.86 and MDA=2.07mm. Once edited, ABAS volumes agreed more closely with the manual CTVs (DSC=0.87 and MDA=1.87mm). The mean clinician time required to produce CTVs reduced from 169min to 57min when using ABAS. ABAS segments volumes with accuracy close to inter-observer variability however the volumes require some editing before clinical use. Using ABAS reduces contouring time by a factor of three.

  3. Clinical management of tumour volume changes in VMAT head & neck radiation treatment

    NASA Astrophysics Data System (ADS)

    Alexander, K. M.; Gooding, J.; Schreiner, L. J.; Olding, T.

    2017-05-01

    The impact of changing anatomy due to tumour shrinkage was assessed for a VMAT head & neck plan optimized according to our centre’s planning protocol. A custom-built wax phantom accommodating ion chamber, MOSFET, EBT3 film and Fricke-xylenol orange-gelatin (FXG) gel dosimeters and a variable size bolus ‘tumour’ was used in the investigation. Results indicate that the practice of initiating a patient re-scan and verification plan is appropriate when a change in external body contour greater than 1 cm compared to the original anatomy is observed.

  4. Plasma volume shifts and exercise thermoregulation with water immersion and six-degree head-down tilt

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew Carl

    1994-01-01

    The hypothesized fluid shifts and resultant responses that occur during spaceflight are simulated by six-degree head down tilt (HDT) and water immersion (WI). The purpose of this study was to compare exercise thermoregulation before and after physiologic mechanisms reduce plasma volume (PV) in response to 24-hr HDT (HDT24). A secondary study utilized WI to reproduce the PV reduction of HDT24. Seven males were studied in two conditions: during 70 minutes of supine cycling ergometry at 58 percent of peak oxygen consumption following 1-hr HDT (HDT1) and HDT24; and up to 6 hr WI at 34.5 C. Plasma volume was reduced by 10.4 percent in HDT24 when compared to HDT1. Pre-exercise rectal temperature, T(sub re), was an average 0.22 C higher after HDT24. Rectal temperature increased during exercise with no interaction between time and treatment. The reduced PV and elevated pre-exercise T(sub re) had offsetting effects on thermoregulatory mechanisms, suggesting no alteration in the response at a given T(sub re). Plasma volume was reduced by 4.3 +/- 2.3 percent and 1.1 +/- 1.8 percent following HDT24 and WI, respectively, compared to upright chair rest. Although the reductions in PV were not significantly different, great intra-individual variability was evident. The ability to reproduce PV changes consistently with HDT and WI is limited by this variability.

  5. Elective breast radiotherapy including level I and II lymph nodes: A planning study with the humeral head as planning risk volume.

    PubMed

    Surmann, Kathrin; van der Leer, Jorien; Branje, Tammy; van der Sangen, Maurice; van Lieshout, Maarten; Hurkmans, Coen W

    2017-01-18

    The aim of this study was to assess the dose to the humeral head planning risk volume with the currently used high tangential fields (HTF) and compare different planning techniques for breast radiotherapy including axillary level I and II lymph nodes (PTVn) while sparing the humeral head. Ten patients with left-sided breast cancer were enrolled in a planning study with 16 fractions of 2.66 Gy. Four planning techniques were compared: HTF, HTF with sparing of the humeral head, 6-field IMRT with sparing of the humeral head and VMAT with sparing of the humeral head. The humeral head + 10 mm was spared by restricting V40Gy < 1 cc. The dose to the humeral head was too high with HTF (V40Gy on average 20.7 cc). When sparing the humeral head in HTF, PTVn V90% decreased significantly from 97.9% to 89.4%. 6-field IMRT and VMAT had a PTVn V90% of 98.2% and 99.5% respectively. However, dose to the lungs, heart and especially the contralateral breast increased with VMAT. The humeral head is rarely spared when using HTF. When sparing the humeral head, the 6-field IMRT technique leads to adequate PTV coverage while not increasing the dose to the OARs.

  6. TPX correction coil studies

    SciTech Connect

    Hanson, J.D.

    1994-11-03

    Error correction coils are planned for the TPX (Tokamak Plasma Experiment) in order to avoid error field induced locked modes and disruption. The FT (Fix Tokamak) code is used to evaluate the ability of these correction coils to remove islands caused by symmetry breaking magnetic field errors. The proposed correction coils are capable of correcting a variety of error fields.

  7. [Ultrafast MR sialography: comparison of two coil systems including an alternative surface coil].

    PubMed

    Weber, T F; Cramer, M C; Aldefeld, D; Weiss, F; Petersen, K U; Reitmeier, F; Jaehne, M; Adam, G; Habermann, C R

    2008-11-01

    To compare the visualization of salivary ducts by ultrafast magnetic resonance sialography (MR sialography) using an alternative surface coil and a conventional head-neck coil. In 11 healthy volunteers, ultrafast MR sialography (single shot turbo spin echo; acquisition time, 2.8 s) was performed before and after oral application of a sialogogue. Each subject received examinations with both a bilateral surface coil (SC) and a conventional head-neck coil (HNC). The depiction of parotideal and submandibular duct systems was graded from 1 to 5 (5 = poor) by four independent radiologists. ANOVA served for statistical analysis of duct rankings, and interobserver variability was determined by Intraclass Correlation Coefficient (ICC). With an excellent ICC of 0.96, both coil systems offered symmetric visualization of salivary ducts, and the image quality increased after oral application of sialogogue (p < 0.001). In total, the overall rating was worse for SC than for HNC (2.13 +/- 1.24 vs. 1.45 +/- 0.65, p < 0.001). SC was especially inferior in depiction of submandibular and extraglandular duct components compared to HNC (p < 0.001). Most notably due to the reduced visualization of extraglandular and submandibular ducts, the specific surface coil used in this study was inferior in image quality and does not constitute a reasonable alternative to conventional coil systems.

  8. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI.

    PubMed

    Trakic, A; Jin, J; Li, M Y; McClymont, D; Weber, E; Liu, F; Crozier, S

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field-tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  9. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  10. Comparison of RF body coils for MRI at 3  T: a simulation study using parallel transmission on various anatomical targets.

    PubMed

    Wu, Xiaoping; Zhang, Xiaotong; Tian, Jinfeng; Schmitter, Sebastian; Hanna, Brian; Strupp, John; Pfeuffer, Josef; Hamm, Michael; Wang, Dingxin; Nistler, Juergen; He, Bin; Vaughan, Thomas J; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2015-10-01

    The performance of multichannel transmit coil layouts and parallel transmission (pTx) RF pulse design was evaluated with respect to transmit B1 (B1 (+)) homogeneity and specific absorption rate (SAR) at 3 T for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with two or three identical rings, stacked in the z axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1 (+) homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to about eightfold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils, including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging, with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the three-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1 (+) homogeneity, particularly for a "z-stacked" double-ring design with coil elements arranged on two transaxial rings. Copyright © 2015 John Wiley & Sons, Ltd.

  11. NCSX Trim Coil Design

    SciTech Connect

    M. Kalish, A. Brooks, J. Rushinski, R. Upcavage

    2009-05-29

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure.

  12. Ultrahigh head pump/turbine development program: Volume 8, Confirmatory testing plan: Final report

    SciTech Connect

    Yokoyama, T.

    1987-01-01

    This report concerns the studies made in Task 6, ''Confirmatory Model Testing Plan and Procedure.'' This task reviews the entire design and testing development program of the two-stage pump/turbine. Task 6 is aimed at evaluating whatever additional work is required to demonstrate and verify to the utilities the reliability and actual performance of the developed machine. Purpose of this entire program is to provide the utilities with the best available technological and practical design for a trouble free two-stage pump/turbine. The following three plans are proposed and studied to further confirm the reliability and performance of the prototype pump/turbine: construction of pilot machine; actual head test in laboratory; and component tests in shop.

  13. Dose-volume histogram analysis of brainstem necrosis in head and neck tumors treated using carbon-ion radiotherapy.

    PubMed

    Shirai, Katsuyuki; Fukata, Kyohei; Adachi, Akiko; Saitoh, Jun-Ichi; Musha, Atsushi; Abe, Takanori; Kanai, Tatsuaki; Kobayashi, Daijiro; Shigeta, Yuka; Yokoo, Satoshi; Chikamatsu, Kazuaki; Ohno, Tatsuya; Nakano, Takashi

    2017-08-31

    We aimed to evaluate the relationship between brainstem necrosis and dose-volume histograms in patients with head and neck tumors after carbon-ion radiotherapy. We evaluated 85 patients with head and neck tumors who underwent carbon-ion radiotherapy and were followed-up for ≥12months. Brainstem necrosis was evaluated using the Common Terminology Criteria for Adverse Events (version 4.0). The median follow-up was 24months, and four patients developed grade 1 brainstem necrosis, with 2-year and 3-year cumulative rates of 2.8% and 6.5%, respectively. Receiver operating characteristic curve analysis revealed the following significant cut-off values: a maximum brainstem dose of 48Gy (relative biological effectiveness [RBE]), D1cm(3) of 27Gy (RBE), V40Gy (RBE) of 0.1cm(3), V30Gy (RBE) of 0.7cm(3), and V20Gy (RBE) of 1.4cm(3). Multivariate analysis revealed that V30Gy (RBE) was most significantly associated with brainstem necrosis. The 2-year cumulative rates were 33% and 0% for V30Gy (RBE) of ≥0.7cm(3) and <0.7cm(3), respectively (p<0.001). The present study indicated that the dose constraints might help minimize brainstem necrosis after carbon-ion radiotherapy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Automatic detection and measurement of structures in fetal head ultrasound volumes using sequential estimation and Integrated Detection Network (IDN).

    PubMed

    Sofka, Michal; Zhang, Jingdan; Good, Sara; Zhou, S Kevin; Comaniciu, Dorin

    2014-05-01

    Routine ultrasound exam in the second and third trimesters of pregnancy involves manually measuring fetal head and brain structures in 2-D scans. The procedure requires a sonographer to find the standardized visualization planes with a probe and manually place measurement calipers on the structures of interest. The process is tedious, time consuming, and introduces user variability into the measurements. This paper proposes an automatic fetal head and brain (AFHB) system for automatically measuring anatomical structures from 3-D ultrasound volumes. The system searches the 3-D volume in a hierarchy of resolutions and by focusing on regions that are likely to be the measured anatomy. The output is a standardized visualization of the plane with correct orientation and centering as well as the biometric measurement of the anatomy. The system is based on a novel framework for detecting multiple structures in 3-D volumes. Since a joint model is difficult to obtain in most practical situations, the structures are detected in a sequence, one-by-one. The detection relies on Sequential Estimation techniques, frequently applied to visual tracking. The interdependence of structure poses and strong prior information embedded in our domain yields faster and more accurate results than detecting the objects individually. The posterior distribution of the structure pose is approximated at each step by sequential Monte Carlo. The samples are propagated within the sequence across multiple structures and hierarchical levels. The probabilistic model helps solve many challenges present in the ultrasound images of the fetus such as speckle noise, signal drop-out, shadows caused by bones, and appearance variations caused by the differences in the fetus gestational age. This is possible by discriminative learning on an extensive database of scans comprising more than two thousand volumes and more than thirteen thousand annotations. The average difference between ground truth and automatic

  15. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  16. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  17. Ultrahigh head pump/turbine development program: Volume 6, Model tests: Special performance: Final report

    SciTech Connect

    Yokoyama, T.

    1987-01-01

    The model pump/turbine was supplied not only for the basic hydraulic performance tests but also various special tests which inform important data utilized for designing mechanical components and analyzing hydraulic transient. The special tests carried out in this program contains four quadrant characteristics, hydraulic thrust(axial), wicket gate torque, radial thrust, air supply and exhaust, and velocity distribution. This volume contains the report of witness tests performed both for the basic hydraulic performance test and the special tests.

  18. Pulsed COIL initiated by discharge

    NASA Astrophysics Data System (ADS)

    Yuryshev, Nikolai N.

    2004-06-01

    Pulsed mode makes COIL possible to produce pulses which power can significantly exceed that of CW COIL mode at the same flowrate of chemicals. Such a mode can find application in material treatment, in drilling for oil wells, as an optical locator, in laser frequency conversion via non-linear processes, in laser propulsion, etc. The method of volume generation of iodine atoms was shown to be the most effective one in generation of high power pulses. The base of method is substitution of molecular iodine in operation mixture for iodide which is stable in the mixture with singlet oxygen, and subsequent forced dissociation of iodide. In this approach the advantage of direct I-atom injection in laser active medium is demonstrated. The comparison of experimental results obtained with different sources used for iodide dissociation shows the electric discharge provides significantly higher electrical laser efficiency in comparison with photolysis initiation. At the same time, the specific energy of the electric discharge initiated COIL is at disadvantage in relation with that obtained with photolysis initiation. This fact is a result of active medium temperature increase due to insufficient initiation selectivity of electric discharge. Both longitudinal and transverse electric discharges were investigated as possible sources for laser initiation. The transverse discharge is more promising for increased operation pressure of active medium. The operation pressure is limited by dark reaction of iodide with singlet delta oxygen. The repetitively pulsed operation with repetition rate of up to 75 Hz of pulsed COIL is demonstrated.

  19. Application of anatomically shaped surface coils in MRI at 0.5 T.

    PubMed

    Doornbos, J; Grimbergen, H A; Booijen, P E; te Strake, L; Bloem, J L; Vielvoye, G J; Boskamp, E

    1986-04-01

    The construction and application of eight different MRI surface coils is described. The coils consist of an anatomically shaped copper wire loop as an antenna and a printed circuit board containing electronic components for tuning and matching. The electronic device for tuning and matching is interchangeable between the various coils. Surface coils for signal detection yield images with high signal-to-noise ratio in comparison to the usual saddle-shaped head or body coils. The sensitivity of a surface coil decreases with increasing distance between the coil and the object of interest and therefore the coils are constructed to fit the anatomical structure under examination as well as possible. The application of dedicated surface coils for superficial structures in the body extends the possibilities of the MRI system. Photographs of the coils positioned on the body and MR images of volunteers and patients are shown.

  20. Analytic approach to the design of transverse gradient coils with co-axial return paths.

    PubMed

    Bowtell, R; Peters, A

    1999-03-01

    Transverse gradient coils with co-axial return paths offer reduced acoustic noise compared with standard cylindrical gradient coils, due to local force balancing, and can also easily be made to have a length to diameter ratio that is less than one. Analytic expressions for the magnetic field and vector potential generated by this type of coil are described here, along with a formula for calculating the coil inductance. It is shown that these expressions allow the implementation of powerful analytic methods of coil design, as well as the incorporation of active magnetic screening. It is also demonstrated how the mathematics specifies the best parameters to use when designing coils with small numbers of elements. A head gradient coil for use at 3.0 T has been designed using the analytic approach described here. The process of coil design and construction is outlined and the performance of the coil in comparison with a similar standard cylindrical coil is described.

  1. Effects of MR surface coils on PET quantification

    PubMed Central

    MacDonald, Lawrence R.; Kohlmyer, Steve; Liu, Chi; Lewellen, Thomas K.; Kinahan, Paul E.

    2011-01-01

    Purpose: The goal of this work was to investigate the effects of MRI surface coils on attenuation-corrected PET emission data. The authors studied the cases where either an MRI or a CT scan would be used to provide PET attenuation correction (AC). Combined MR∕PET scanners that use the MRI for PET AC (MR-AC) face the challenge of absent surface coils in MR images and thus cannot directly account for attenuation in the coils. Combining MR and PET images could be achieved by transporting the subject on a stereotactically registered table between independent MRI and PET scanners. In this case, conventional PET CT-AC methods could be used. A challenge here is that high atomic number materials within MR coils cause artifacts in CT images and CT based AC is typically not validated for coil materials. Methods: The authors evaluated PET artifacts when MR coils were absent from AC data (MR-AC), or when coil attenuation was measured by CT scanning (CT-AC). They scanned PET phantoms with MR surface coils on a clinical PET∕CT system and used CT-AC to reconstruct PET data. The authors then omitted the coil from the CT-AC image to mimic the MR-AC scenario. Images were acquired using cylinder and anthropomorphic phantoms. They evaluated and compared the following five scenarios: (1) A uniform cylinder phantom and head coil scanned and reconstructed using CT-AC; (2) similar emission data (with head coil present) were reconstructed without the head coil in the AC data; (3) the same cylinder scanned without the head coil present (reference scan); (4) a PET torso phantom with a full MR torso coil present in both PET and CT; (5) only half of the separable torso coil present in the PET∕CT acquisition. The authors also performed analytic simulations of the first three scenarios. Results: Streak artifacts were present in CT images containing MR surface coils due to metal components. These artifacts persisted after the CT images were converted for PET AC. The artifacts were

  2. Effects of MR surface coils on PET quantification.

    PubMed

    MacDonald, Lawrence R; Kohlmyer, Steve; Liu, Chi; Lewellen, Thomas K; Kinahan, Paul E

    2011-06-01

    The goal of this work was to investigate the effects of MRI surface coils on attenuation-corrected PET emission data. The authors studied the cases where either an MRI or a CT scan would be used to provide PET attenuation correction (AC). Combined MR/PET scanners that use the MRI for PET AC (MR-AC) face the challenge of absent surface coils in MR images and thus cannot directly account for attenuation in the coils. Combining MR and PET images could be achieved by transporting the subject on a stereotactically registered table between independent MRI and PET scanners. In this case, conventional PET CT-AC methods could be used. A challenge here is that high atomic number materials within MR coils cause artifacts in CT images and CT based AC is typically not validated for coil materials. The authors evaluated PET artifacts when MR coils were absent from AC data (MR-AC), or when coil attenuation was measured by CT scanning (CT-AC). They scanned PET phantoms with MR surface coils on a clinical PET/CT system and used CT-AC to reconstruct PET data. The authors then omitted the coil from the CT-AC image to mimic the MR-AC scenario. Images were acquired using cylinder and anthropomorphic phantoms. They evaluated and compared the following five scenarios: (1) A uniform cylinder phantom and head coil scanned and reconstructed using CT-AC; (2) similar emission data (with head coil present) were reconstructed without the head coil in the AC data; (3) the same cylinder scanned without the head coil present (reference scan); (4) a PET torso phantom with a full MR torso coil present in both PET and CT; (5) only half of the separable torso coil present in the PET/CT acquisition. The authors also performed analytic simulations of the first three scenarios. Streak artifacts were present in CT images containing MR surface coils due to metal components. These artifacts persisted after the CT images were converted for PET AC. The artifacts were significantly reduced when half of the

  3. Modified van Vaals-Bergman coaxial cable coil (lambda coil) for high-field imaging.

    PubMed

    Matsuzawa, H; Nakada, T

    1996-03-01

    An easily constructed, low-capacitive coupling volume coil based on the van Vaals-Bergman coaxial cable coil for high field imaging is described. The coil (designated "lambda coil") was constructed using two 5/4 length 50 omega coaxial cables matched to a 50 omega transmission line with LC bridge balun. The standing wave on the single 5/4 lambda length coaxial cable provides two points of current maxima in oppositional direction. Therefore, the four current elements necessary for effective B1 field generation can be obtained by two 5/4 lambda length coaxial cables arranged analogous to 1/2 lambda T-antenna. Capacitive coupling between the coil elements and conductive samples (i.e. animals) is minimized by simply retaining the shield of the coaxial cable for the area of voltage maxima. The lambda coil exhibited excellent performance as a volume coil with a high quality factor and highly homogeneous rf fields. Because of its dramatically simple architecture and excellent performance, the lambda coil configuration appears to be an economical alternative to the original van Vaals-Bergman design, especially for research facilities with a high field magnet and limited bore space.

  4. Engineered coiled-coil protein microfibers.

    PubMed

    Hume, Jasmin; Sun, Jennifer; Jacquet, Rudy; Renfrew, P Douglas; Martin, Jesse A; Bonneau, Richard; Gilchrist, M Lane; Montclare, Jin Kim

    2014-10-13

    The fabrication of de novo proteins able to self-assemble on the nano- to meso-length scales is critical in the development of protein-based biomaterials in nanotechnology and medicine. Here we report the design and characterization of a protein engineered coiled-coil that not only assembles into microfibers, but also can bind hydrophobic small molecules. Under ambient conditions, the protein forms fibers with nanoscale structure possessing large aspect ratios formed by bundles of α-helical homopentameric assemblies, which further assemble into mesoscale fibers in the presence of curcumin through aggregation. Surprisingly, these biosynthesized fibers are able to form in conditions of remarkably low concentrations. Unlike previously designed coiled-coil fibers, these engineered protein microfibers can bind the small molecule curcumin throughout the assembly, serving as a depot for encapsulation and delivery of other chemical agents within protein-based 3D microenvironments.

  5. Coil bobbin for stable superconducting coils

    SciTech Connect

    Kashima, T.; Yamanaka, A.; Nishijima, S.; Okada, T.

    1996-12-31

    The coil bobbin for a.c. coils have been prepared with the high strength polyethylene fiber (DF) reinforced plastics (DFRP) or with hybrid composites reinforced by DF and glass fiber (GF). The coils with the bobbin were found to be markedly stable. The DF has a large negative thermal expansion coefficient and hence the circumferential thermal strain of bobbin can be designed by changing the ratio of DF to GF layer thickness (DF/GF). It was found that the thermal expansion coefficient in the circumferential direction of the outer surface changed from negative to positive with increasing DF/GF and became nearly zero at a DF/GF of approximately 5.1 kA rms class a.c. coils having a bobbin with a negative thermal expansion coefficient or small thermal contraction in the circumferential direction were fabricated and were confirmed to show higher quench current than that with a GFRP bobbin.

  6. Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture

    PubMed Central

    Brady, Rhys D; Grills, Brian L; Church, Jarrod E; Walsh, Nicole C; McDonald, Aaron C; Agoston, Denes V; Sun, Mujun; O’Brien, Terence J; Shultz, Sandy R; McDonald, Stuart J

    2016-01-01

    Concomitant traumatic brain injury (TBI) and long bone fracture are commonly observed in multitrauma and polytrauma. Despite clinical observations of enhanced bone healing in patients with TBI, the relationship between TBI and fracture healing remains poorly understood, with clinical data limited by the presence of several confounding variables. Here we developed a novel trauma model featuring closed-skull weight-drop TBI and concomitant tibial fracture in order to investigate the effect of TBI on fracture healing. Male mice were assigned into Fracture + Sham TBI (FX) or Fracture + TBI (MULTI) groups and sacrificed at 21 and 35 days post-injury for analysis of healing fractures by micro computed tomography (μCT) and histomorphometry. μCT analysis revealed calluses from MULTI mice had a greater bone and total tissue volume, and displayed higher mean polar moment of inertia when compared to calluses from FX mice at 21 days post-injury. Histomorphometric results demonstrated an increased amount of trabecular bone in MULTI calluses at 21 days post-injury. These findings indicate that closed head TBI results in calluses that are larger in size and have an increased bone volume, which is consistent with the notion that TBI induces the formation of a more robust callus. PMID:27682431

  7. Dose-volume analysis of radiation-induced trismus in head and neck cancer patients.

    PubMed

    Gebre-Medhin, Maria; Haghanegi, Mahnaz; Robért, Lotta; Kjellén, Elisabeth; Nilsson, Per

    2016-11-01

    Trismus is a treatment-related late side effect in patients treated for cancer in the head and neck region (HNC). The condition can have a considerable negative impact on nutrition, dental hygiene, ability to speak and quality of life. We have previously studied trismus within the frame of a randomized phase 3 study of HNC patients treated with mainly three-dimensional (3D) conformal radiotherapy (CRT) and found a strong association to mean radiation dose to the mastication muscles, especially the ipsilateral masseter muscle (iMAS). In the present study we have investigated trismus prevalence and risk factors in a more recent cohort of patients, treated with todays' more updated radiation techniques. Maximal interincisal distance (MID) was measured on 139 consecutive patients. Trismus was defined as MID ≤35 mm. Patient-, disease- and treatment-specific data were retrospectively recorded. Differences between groups were analyzed and mean absorbed dose to mastication structures was evaluated. Dosimetric comparisons were made between this study and our previous results. The prevalence of trismus was 24% at a median of 16 months after completion of radiotherapy. In bivariate analysis treatment technique (3DCRT vs. intensity modulated radiotherapy or helical tomotherapy), tumor site (oropharynx vs. other sites) and mean radiation doses to the ipsilateral lateral pterygoid muscle, the paired masseter muscles and the iMAS were significantly associated with MID ≤35 mm. In multivariable analysis only mean radiation dose to the iMAS was significantly associated to MID ≤35 mm. Mean radiation dose to the ipsilateral masseter muscle is an important risk factor for trismus development. Dose reduction to this structure during radiotherapy should have a potential to diminish the prevalence of trismus in this patient group.

  8. Accept My Profile: Perspectives for Head Start Profiles of Program Effects on Children. Appendices to Technical Report. Volume III (Revised Edition).

    ERIC Educational Resources Information Center

    Mediax Associates, Inc., Westport, CT.

    The third of three volumes, this document provides (1) a reduced list of child development characteristics obtained from parents, teachers, and staff participating in Head Start Input Workshops set up to identify desirable program effects; (2) a Tabulation of Importance Ratings, showing how workshop participants valued specific statements of child…

  9. Accept My Profile: Perspectives for Head Start Profiles of Program Effects on Children. Appendices to Technical Report. Volume III (Revised Edition).

    ERIC Educational Resources Information Center

    Mediax Associates, Inc., Westport, CT.

    The third of three volumes, this document provides (1) a reduced list of child development characteristics obtained from parents, teachers, and staff participating in Head Start Input Workshops set up to identify desirable program effects; (2) a Tabulation of Importance Ratings, showing how workshop participants valued specific statements of child…

  10. 7T transmit/receive arrays using ICE decoupling for human head MR imaging.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Feng, Baotong; Ma, ChuangXin; Wei, Long; Xue, Rong

    2014-09-01

    In designing large-sized volume type phased array coils for human head imaging at ultrahigh fields, e.g., 7T, minimizing electromagnetic coupling among array elements is technically challenging. A new decoupling method based on induced current compensation or elimination (ICE) for a microstrip line planar array has recently been proposed. In this study, an eight-channel transmit/receive volume array with ICE-decoupled loop elements was built and investigated to demonstrate its feasibility and robustness for human head imaging at 7T. Isolation between adjacent loop elements was better than - 25 dB with a human head load. The worst-case of the isolation between all of the elements was about - 17.5 dB. All of the MRI experiments were performed on a 7T whole-body human MR scanner. Images of the phantom and human head were acquired and g-factor maps were measured and calculated to evaluate the performance of the coil array. Compared with the conventional capacitively decoupled array, the ICE-decoupled array demonstrated improved parallel imaging ability and had a higher SNR. The experimental results indicate that the transceiver array design with ICE decoupling technique might be a promising solution to designing high performance transmit/receive coil arrays for human head imaging at ultrahigh fields.

  11. Coiled tubing velocity string hangoff method and apparatus

    SciTech Connect

    Gipson, T.C.

    1991-07-02

    This patent describes a method for hanging off a coiled tube velocity string in an active gas production well tubing run, the run having at least a master valve and a first line valve. It includes installing a hangoff assembly in the production well tubing run between the master valve and the first line valve the hangoff assembly comprising a hangoff head, a second line valve, an upper valve, and a hydraulic packoff valve, the hangoff head further comprising a threaded body member, a slip bowl and a threaded cap; inserting through the hydraulic packoff valve, the upper valve, and the hangoff head, coiled tubing for fluid communication with well gases and fluids in the production well tubing run, the coiled tubing having a first downhole end being open to immediately receive and conduct the gases and fluids; opening gas and fluid communication between the production well tubing run and the open end of the coiled tubing whereby the well gases and fluid may pass up through the coiled tubing, the hangoff head sealing the gases and fluids from passing to the hydraulic packoff valve, the upper valve and the second line valve; further inserting the coiled tubing to a desired depth in the production well tubing run; and rotating the cap of the hangoff head to expose the slip bowl.

  12. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  13. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  14. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  15. Coiling Viscous Jets

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.

    1996-11-01

    A thin stream of glycerine or other viscous fluid poured onto a horizontal plane from a sufficient height piles up in a regular coil. In its steady state, this motion is analogous to the coiling of a flexible rope (L. Mahadevan and J.B. Keller, Proc. Roy. Soc.(A) to appear.). This analogy is used to solve the nonlinear free-boundary problem for the frequency of coiling and the coil radius. The results are compared with experimental results that go back to the the work of G.I. Taylor (1969).

  16. Poster - Thur Eve - 13: Quantifying specific absorption rate of shielded RF coils through electromagnetic simulations for 7-T MRI.

    PubMed

    Belliveau, J-G; Gilbert, K M; Abou-Khousa, M; Menon, R S

    2012-07-01

    Ultra-high field MRI has many advantages such as increasing spatial resolution and exploiting contrast never before seen in-vivo. This contrast has been shown to be beneficial for many applications such as monitoring early and late effect to radiation therapy and transient changes during disease to name a few. However, at higher field strengths the RF wave, needed to for transmitting and receiving signal, approaches that of the head. This leads to constructive and deconstructive interference and a non -uniform flip angle over the volume being imaged. A transmit or transceive RF surface coil arrays is currently a method of choice to overcome this problem; however, mutual inductance between elements poses a significant challenge for the designer. A method to decouple elements in such an array is by using circumferential shielding; however, the potential benefits and/or disadvantages have not been investigated. This abstract primarily focuses on understanding power deposition - measured through Specific Absorption Rate - in the sample using circumferentially shielded RF coils. Various geometries of circumferentially shielded coils are explored to determine the behaviour of shield width and its effect on required transmit power and power deposition to the sample. Our results indicate that there is an optimization on shield width depending on the imaging depth. Additionally, the circumferential shield focuses the field more than unshielded coils, meaning that slight SAR may even be lower for circumferential shielded RF coils in array. © 2012 American Association of Physicists in Medicine.

  17. Coil system for plasmoid thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  18. Theoretical design of gradient coils with minimum power dissipation: Accounting for the discretization of current density into coil windings

    NASA Astrophysics Data System (ADS)

    While, Peter T.; Korvink, Jan G.; Shah, N. Jon; Poole, Michael S.

    2013-10-01

    Gradient coil windings are typically constructed from either variable width copper tracks or fixed width wires. Excessive power dissipation within these windings during gradient coil operation limits the maximum drive current or duty cycle of the coil. It is common to design gradient coils in terms of a continuous minimum power current density and to perform a discretization to obtain the locations of the coil tracks or wires. However, the existence of finite gaps between these conductors and a maximum conductor width leads to an underestimation of coil resistance when calculated using the continuous current density. Put equivalently, the actual current density within the tracks or wires is higher than that used in the optimization and this departure results in suboptimal coil designs. In this work, a mapping to an effective current density is proposed to account for these effects and provide the correct contribution to the power dissipation. This enables the design of gradient coils that are genuinely optimal in terms of power minimization, post-discretization. The method was applied to the theoretical design of a variety of small x- and z-gradient coils for use in small animal imaging and coils for human head imaging. Computer-driven comparisons were made between coils designed with and without the current density mapping, in terms of simulated power dissipation. For coils to be built using variable width tracks, the method provides slight reductions in power dissipation in most cases and substantial gains only in cases where the minimum separation between track centre-lines is less than twice the gap size. However, for coils to be built using fixed width wires, very considerable reductions in dissipated power are consistently attainable (up to 60%) when compared to standard approaches of coil optimization.

  19. TEM transmission line coil with double nuclear capability.

    PubMed

    Erickson, Matthew G; Kurpad, Krishna N; Holmes, James H; Fain, Sean B

    2007-10-01

    MR imaging and spectroscopy requires RF fields of high homogeneity. Quadrature volume coils meeting this requirement include the birdcage coil and the TEM resonator. We describe here a quadrature volume coil designed around a modified coaxial transmission line in which multiple inner conductors are arrayed on a circular perimeter and surrounded by a common shield. Current antinodes are established at appropriate points on the inner conductors by series transmission line stubs, either open circuit or short circuit, which terminate the line. Quadrature phasing is generated by a novel circuit constructed from a pair of high-performance current baluns and a commercial quadrature hybrid. The coil is a "pure" TEM coil as it is simply a resonant transmission line. There is no mode structure to consider. The construction of a prototype quadrature four-element coil is described and preliminary test results from this coil in a 4.7T horizontal bore magnet are reported. A related double nuclear coil design for (3)He and (1)H in which two linear transmission line coils are arrayed on a circular perimeter and simultaneously tuned and matched to their respective frequencies is also described. Preliminary tests from this coil in a 1.5T clinical scanner are reported.

  20. Study on cross section of high temperature superconducting coil

    NASA Astrophysics Data System (ADS)

    Ishiguri, Shinichi; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Sato, Takao

    2007-01-01

    It is in particular of importance for HTS coils to secure a larger central magnetic field and/or a large stored energy with shorter length of HTS tapes. The critical current of an HTS tape depends on both the flux density and the flux angle against tapes. From this point, the performance improvement of HTS coils is taken into account with an analytical model. The minimum volume coil derived from the Fabry Factor constant curve is taken concerning the original coil shape, which is often employed in low temperature superconducting coils. The coil critical current was analyzed in consideration of the anisotropic properties of the tape. The electric field of HTS tapes in the coil was calculated at the coil critical current and the high electric field portion were cut out. The optimal coil cross section is obtained by iterating this calculation process. As a result, the critical current and the stored energy density of the coil were improved. The stored energy density increased about 17% and the central magnetic field was almost kept constant regardless of 19% reduction of HTS tapes, as compared with the original coil with the rectangular cross section.

  1. Single coil bistable, bidirectional micromechanical actuator

    SciTech Connect

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  2. Numerical dosimetry of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  3. Modeling Endovascular Coils as Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Yadollahi Farsani, H.; Herrmann, M.; Chong, B.; Frakes, D.

    2016-12-01

    Minimally invasive surgeries are the stat-of-the-art treatments for many pathologies. Treating brain aneurysms is no exception; invasive neurovascular clipping is no longer the only option and endovascular coiling has introduced itself as the most common treatment. Coiling isolates the aneurysm from blood circulation by promoting thrombosis within the aneurysm. One approach to studying intra-aneurysmal hemodynamics consists of virtually deploying finite element coil models and then performing computational fluid dynamics. However, this approach is often computationally expensive and requires extensive resources to perform. The porous medium approach has been considered as an alternative to the conventional coil modeling approach because it lessens the complexities of computational fluid dynamics simulations by reducing the number of mesh elements needed to discretize the domain. There have been a limited number of attempts at treating the endovascular coils as homogeneous porous media. However, the heterogeneity associated with coil configurations requires a more accurately defined porous medium in which the porosity and permeability change throughout the domain. We implemented this approach by introducing a lattice of sample volumes and utilizing techniques available in the field of interactive computer graphics. We observed that the introduction of the heterogeneity assumption was associated with significant changes in simulated aneurysmal flow velocities as compared to the homogeneous assumption case. Moreover, as the sample volume size was decreased, the flow velocities approached an asymptotical value, showing the importance of the sample volume size selection. These results demonstrate that the homogeneous assumption for porous media that are inherently heterogeneous can lead to considerable errors. Additionally, this modeling approach allowed us to simulate post-treatment flows without considering the explicit geometry of a deployed endovascular coil mass

  4. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-01

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., < 1 μL, 1-10 μL and 10-100 μL) were fabricated and used. The horizontally-operated NTV sample introduction was interfaced to an axially-viewed ICP-AES (inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 μL volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg (~ 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 μL volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for "taking part of the lab to the sample" applications, such as testing for Cu concentration-compliance with the lead-copper rule of the Environmental

  5. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  6. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  7. Dependence of the head of a centrifugal inclined Archimedean screw pump on the volume of cavitation cavities in the flow area of the pump

    NASA Astrophysics Data System (ADS)

    Grabovskaia, T. A.

    A comparison of theoretical and experimental results shows that the dependence of the head of a centrifugal inclined Archimedean screw pump on the volume of cavities in the flow area of the pump during oscillations is ambiguous and is determined by the effect of cavities in the flow area as well as by the head of the forepump. It is concluded that this finding should be taken into account in the calculation of unsteady processes for regimes with intense reverse flows at the inlet to the pump.

  8. Molecular basis of coiled-coil oligomerization-state specificity.

    PubMed

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  9. CC+: a relational database of coiled-coil structures

    PubMed Central

    Testa, Oliver D.; Moutevelis, Efrosini; Woolfson, Derek N.

    2009-01-01

    We introduce the CC+ Database, a detailed, searchable repository of coiled-coil assignments, which is freely available at http://coiledcoils.chm.bris.ac.uk/ccplus. Coiled coils were identified using the program SOCKET, which locates coiled coils based on knobs-into-holes packing of side chains between α-helices. A method for determining the overall sequence identity of coiled-coil sequences was introduced to reduce statistical bias inherent in coiled-coil data sets. There are two points of entry into the CC+ Database: the ‘Periodic Table of Coiled-coil Structures’, which presents a graphical path through coiled-coil space based on manually validated data, and the ‘Dynamic Interface’, which allows queries of the database at different levels of complexity and detail. The latter entry level, which is the focus of this article, enables the efficient and rapid compilation of subsets of coiled-coil structures. These can be created and interrogated with increasingly sophisticated pull-down, keyword and sequence-based searches to return detailed structural and sequence information. Also provided are means for outputting the retrieved coiled-coil data in various formats, including PyMOL and RasMol scripts, and Position-Specific Scoring Matrices (or amino-acid profiles), which may be used, for example, in protein-structure prediction. PMID:18842638

  10. Coil Embolization for Intracranial Aneurysms

    PubMed Central

    2006-01-01

    . Aneurysm recurrences after successful coiling may require repeat treatment with endovascular or surgical procedures. Experts caution that long-term angiographic outcomes of coil embolization are unknown at this time. Informed consent for and long-term follow-up after coil embolization are recommended. The decision to treat an intracranial aneurysm with surgical clipping or coil embolization needs to be made jointly by the neurosurgeon and neuro-intervention specialist, based on the clinical status of the patient, the size and morphology of the aneurysm, and the preference of the patient. The performance of endovascular coil embolization should take place in centres with expertise in both neurosurgery and endovascular neuro-interventions, with adequate treatment volumes to maintain good outcomes. Distribution of the technology should also take into account that patients with SAH should be treated as soon as possible with minimal disruption. PMID:23074479

  11. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  12. Volume-averaged SAR in adult and child head models when using mobile phones: a computational study with detailed CAD-based models of commercial mobile phones.

    PubMed

    Keshvari, Jafar; Heikkilä, Teemu

    2011-12-01

    Previous studies comparing SAR difference in the head of children and adults used highly simplified generic models or half-wave dipole antennas. The objective of this study was to investigate the SAR difference in the head of children and adults using realistic EMF sources based on CAD models of commercial mobile phones. Four MRI-based head phantoms were used in the study. CAD models of Nokia 8310 and 6630 mobile phones were used as exposure sources. Commercially available FDTD software was used for the SAR calculations. SAR values were simulated at frequencies 900 MHz and 1747 MHz for Nokia 8310, and 900 MHz, 1747 MHz and 1950 MHz for Nokia 6630. The main finding of this study was that the SAR distribution/variation in the head models highly depends on the structure of the antenna and phone model, which suggests that the type of the exposure source is the main parameter in EMF exposure studies to be focused on. Although the previous findings regarding significant role of the anatomy of the head, phone position, frequency, local tissue inhomogeneity and tissue composition specifically in the exposed area on SAR difference were confirmed, the SAR values and SAR distributions caused by generic source models cannot be extrapolated to the real device exposures. The general conclusion is that from a volume averaged SAR point of view, no systematic differences between child and adult heads were found.

  13. Determining optimal clinical target volume margins in head-and-neck cancer based on microscopic extracapsular extension of metastatic neck nodes

    SciTech Connect

    Apisarnthanarax, Smith; Elliott, Danielle D.; El-Naggar, Adel K.; Asper, Joshua A. P.A.; Blanco, Angel; Ang, K. Kian; Garden, Adam S.; Morrison, William H.; Rosenthal, David; Weber, Randal S.; Chao, K.S. Clifford . E-mail: cchao@mdanderson.org

    2006-03-01

    Purpose: To determine the optimal clinical target volume margins around the gross nodal tumor volume in head-and-neck cancer by assessing microscopic tumor extension beyond cervical lymph node capsules. Methods and Materials: Histologic sections of 96 dissected cervical lymph nodes with extracapsular extension (ECE) from 48 patients with head-and-neck squamous cell carcinoma were examined. The maximum linear distance from the external capsule border to the farthest extent of the tumor or tumoral reaction was measured. The trends of ECE as a function of the distance from the capsule and lymph node size were analyzed. Results: The median diameter of all lymph nodes was 11.0 mm (range: 3.0-30.0 mm). The mean and median ECE extent was 2.2 mm and 1.6 mm, respectively (range: 0.4-9.0 mm). The ECE was <5 mm from the capsule in 96% of the nodes. As the distance from the capsule increased, the probability of tumor extension declined. No significant difference between the extent of ECE and lymph node size was observed. Conclusion: For N1 nodes that are at high risk for ECE but not grossly infiltrating musculature, 1 cm clinical target volume margins around the nodal gross tumor volume are recommended to cover microscopic nodal extension in head-and-neck cancer.

  14. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    PubMed

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans.

  15. Coiled-coil length: Size does matter.

    PubMed

    Surkont, Jaroslaw; Diekmann, Yoan; Ryder, Pearl V; Pereira-Leal, Jose B

    2015-12-01

    Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints. © 2015 Wiley Periodicals, Inc.

  16. Commercial applications for COIL

    NASA Astrophysics Data System (ADS)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  17. Portal vein embolization with plug/coils improves hepatectomy outcome.

    PubMed

    Malinowski, Maciej; Geisel, Dominik; Stary, Victoria; Denecke, Timm; Seehofer, Daniel; Jara, Maximillian; Baron, Annekathrin; Pratschke, Johann; Gebauer, Bernhard; Stockmann, Martin

    2015-03-01

    Portal vein embolization (PVE) has become the standard of care before extended hepatectomy. Various PVE methods using different embolization materials have been described. In this study, we compared PVE with polyvinyl alcohol particles alone (PVA only) versus PVA with plug or coils (PVA + plug/coils). Patients undergoing PVE before hepatectomy were included. PVA alone was used until December 2013, thereafter plug or coils were placed in addition. The volume of left lateral liver lobe (LLL), clinical parameters, and liver function tests were measured before PVE and resection. A total of 43 patients were recruited into the PVA only group and 42 were recruited into the PVA + plug/coils group. There were no major differences between groups except significantly higher total bilirubin level before PVE in the PVA only group, which improved before hepatectomy. Mean LLL volume increased by 25.7% after PVE in the PVA only group and by 44% in the PVA + plug/coils group (P < 0.001). Recanalization was significantly less common in the PVA + plug/coils group. In multivariate regression, initial LLL volume and use of plug or coils were the only parameters influencing LLL volume increase. The postoperative liver failure rate was significantly reduced in PVA + plug/coils group (P = <0.001). PVE using PVA particles together with plug or coils is a safe and efficient method to increase future liver remnant volume. The additional central embolization with plug or coils led to an increased hypertrophy, due to lower recanalization rates, and subsequently decreased incidence of postoperative liver failure. No additional procedure-specific complications were observed in this series. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of bimaxillary surgery on adaptive condylar head remodeling: metric analysis and image interpretation using cone-beam computed tomography volume superimposition.

    PubMed

    Park, Soo-Byung; Yang, Yu-Mi; Kim, Yong-Il; Cho, Bong-Hae; Jung, Yun-Hoa; Hwang, Dae-Seok

    2012-08-01

    The aim of the present study was to use cone-beam computed tomography volume superimposition to investigate the effect of bimaxillary orthognathic surgery on condylar head remodeling. Using a retrospective study design, 2 investigators evaluated the cone-beam computed tomography data of subjects who had undergone Le Fort I osteotomy and mandibular setback surgery. The predictor variable was time, grouped as preoperative versus postoperative. The outcome variables were the measurement changes of the condylar heads and the distribution of the condylar head remodeling signs. Paired t and χ(2) tests were performed for the purposes of the 2-dimensional metric analysis and the condylar head remodeling distribution. P < .05 was considered significant. The sample was composed of 22 adults (11 men and 11 women, age 20.3 ± 3.2 years) diagnosed with skeletal Class III malocclusion. The intra- and interoperator reliabilities of the image interpretation showed substantial agreement, according to Cohen's kappa index. The condylar heights on the sagittal and coronal planes decreased after surgery. Bone resorption occurred predominantly in the anterior and superior areas on the sagittal plane, the superior and lateral areas on the coronal plane, and the anterolateral and posterolateral areas on the axial plane (P < .05). Bone formation was apparent only in the anteromedial area on the axial plane (P < .05). Bimaxillary orthognathic surgery caused a decrease in the condylar heights and condylar head remodeling. The cone-beam computed tomography volume superimposition method showed that the condylar head had undergone remodeling after bimaxillary surgery. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Toroid cavity/coil NMR multi-detector

    DOEpatents

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  20. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  1. ELECTRICAL COIL STRUCTURE

    DOEpatents

    Baker, W.R.; Hartwig, A.

    1962-09-25

    A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)

  2. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  3. Performance of large-size superconducting coil in 0.21T MRI system.

    PubMed

    Lee, K H; Cheng, M C; Chan, K C; Wong, K K; Yeung, Simon S M; Lee, K C; Ma, Q Y; Yang, Edward S

    2004-11-01

    A high-temperature superconductor (HTS) was used on magnetic resonance imaging (MRI) receiver coils to improve image quality because of its intrinsic low electrical resistivity. Typical HTS coils are surface coils made of HTS thin-film wafers. Their applications are severely limited by the field of view (FOV) of the surface coil configuration, and the improvement in image quality by HTS coil is also reduced as the ratio of sample noise to coil noise increases. Therefore, previous HTS coils are usually used to image small in vitro samples, small animals, or peripheral human anatomies. We used large-size HTS coils (2.5-, 3.5-, and 5.5-in mean diameter) to enhance the FOV and we evaluated their performance through phantom and human MR images. Comparisons were made among HTS surface coils, copper surface coils, and cool copper surface coils in terms of the signal-to-noise ratio (SNR) and sensitivity profile of the images. A theoretical model prediction was also used to compare against the experimental result. We then selected several human body parts, including the wrist, feet, and head, to illustrate the advantage of HTS coil over copper coil when used in human imaging. The results show an SNR gain of 200% for 5.5-in HTS coil versus same size copper coils, while for 2.5- and 3.5-in coils it is 250%. We also address the various factors that affect the performance of large size HTS coils, including the coil-to-sample spacing due to cryogenic probe and the coil-loading effect.

  4. Coil Knotting during Endovascular Coil Embolization for Ruptured MCA Aneurysm

    PubMed Central

    Kwon, S.C.; Lyo, I.U.; Shin, S.H.; Park, J.B.; Kim, Y.

    2008-01-01

    Summary Complications during coil embolization of cerebral aneurysms include thromboembolic events, hemorrhagic complications related to procedural aneurysmal rupture and parent vessel perforation, and coil-related complications. The present report describes a rare coil-related complication involving spontaneous coil knotting. PMID:20557732

  5. A periodic table of coiled-coil protein structures.

    PubMed

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  6. Facilitated diffusion with DNA coiling.

    PubMed

    Lomholt, Michael A; van den Broek, Bram; Kalisch, Svenja-Marei J; Wuite, Gijs J L; Metzler, Ralf

    2009-05-19

    When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins.

  7. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  8. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease.

    PubMed

    Modjtahedi, Nazanine; Tokatlidis, Kostas; Dessen, Philippe; Kroemer, Guido

    2016-03-01

    Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.

  9. Enhancing Induction Coil Reliability

    NASA Astrophysics Data System (ADS)

    Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.

    2014-12-01

    In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.

  10. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  11. Linear Rogowski coil.

    PubMed

    Nassisi, V; Delle Side, D

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (∼100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  12. Linear Rogowski coil

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (˜100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  13. Evidence that the stalk of Drosophila kinesin heavy chain is an alpha- helical coiled coil

    PubMed Central

    1992-01-01

    Kinesin is a mechanochemical enzyme composed of three distinct domains: a globular head domain, a rodlike stalk domain, and a small globular tail domain. The stalk domain has sequence features characteristic of alpha-helical coiled coils. To gain insight into the structure of the kinesin stalk, we expressed it from a segment of the Drosophila melanogaster kinesin heavy chain gene and purified it from Escherichia coli. When observed by EM, this protein formed a rodlike structure 40- 55 nm long that was occasionally bent at a hingelike region near the middle of the molecule. An additional EM study and a chemical cross- linking study showed that this protein forms a parallel dimer and that the two chains are in register. Finally, using circular dichroism spectroscopy, we showed that this protein is approximately 55-60% alpha- helical in physiological aqueous solution at 25 degrees C, and approximately 85-90% alpha-helical at 4 degrees C. From these results, we conclude that the stalk of kinesin heavy chain forms an alpha- helical coiled coil structure. The temperature dependence of the circular dichroism signal has two major transitions, at 25-30 degrees C and at 45-50 degrees C, which suggests that a portion of the alpha- helical structure in the stalk is less stable than the rest. By producing the amino-terminal (coil 1) and carboxy-terminal (coil 2) halves of the stalk separately in E. coli, we showed that the region that melts below 30 degrees C lies within coil 1, while the majority of coil 2 melts above 45 degrees C. We suggest that this difference in stability may play a role in the force-generating mechanism or regulation of kinesin. PMID:1734025

  14. NCSX Toroidal Field Coil Design

    SciTech Connect

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  15. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  16. Prognostic significance and predictive performance of volume-based parameters of F-18 FDG PET/CT in squamous cell head and neck cancers.

    PubMed

    Sager, Sait; Asa, Sertaç; Yilmaz, Mehmet; Uslu, Lebriz; Vatankulu, Betul; Halaç, Metin; Sönmezoglu, Kerim; Kanmaz, Bedii

    2014-01-01

    It has been previously reported that metabolic tumor volume on positron emission tomography-computed tomography predicts disease recurrence and death in head-and-neck cancer. In this study, we assessed the prognostic value of metabolic tumor volume measured using F18-Fluorodeoxyglucose PET/CT in patients with head and neck squamous cell carcinoma. We analyzed the imaging findings of 74 patients (age 57±16) retrospectively, with head and neck cancer who underwent PET/CT scan for staging and after treatment. Forty-tree patients had nasopharynx, 15 patients had hypopharynx, 9 patients had larynx, and 7 patients had oropharynx cancer. The MTVs of primary sites with or without lymph nodes were measured, and outcomes were assessed using the treatment response evaluation by the Response Evaluation Criteria in Solid Tumors and recurrence events during follow-up. A total of 48 patients had complete response or no recurrence was detected as of in the last follow-up. Of the first PET/CT scan, the median primary tumor SUVmax was 18.8 and the median nodal SUVmax was 13.4. The median primary tumor MTV% 50s ranged from 11.12 cm3 to 16.28 cm3, and the MTV after the therapy ranged from 1.18 cm3 to 3.51 cm3. Metabolic tumor volume (MTV) represents tumor burden, which shows F18-Fluorodeoxyglucose uptake and has a potential value in predicting short-term outcome and disease-free survival in patients with head and neck cancer.

  17. Primary Tumor Volume Is an Important Predictor of Clinical Outcomes Among Patients With Locally Advanced Squamous Cell Cancer of the Head and Neck Treated With Definitive Chemoradiotherapy

    SciTech Connect

    Strongin, Anna; Yovino, Susannah; Taylor, Rodney; Wolf, Jeffrey; Cullen, Kevin; Zimrin, Ann; Strome, Scott; Regine, William; Suntharalingam, Mohan

    2012-04-01

    Purpose: The tumor volume has been established as a significant predictor of outcomes among patients with head-and-neck cancer undergoing radiotherapy alone. The present study attempted to add to the existing data on tumor volume as a prognostic factor among patients undergoing chemoradiotherapy. Methods and Materials: A total of 78 patients who had undergone definitive chemoradiotherapy for Stage III-IV squamous cell cancer of the hypopharynx, oropharynx, and larynx were identified. The primary tumor volumes were calculated from the treatment planning computed tomography scans, and these were correlated to the survival and tumor control data obtained from the retrospective analysis. Results: The interval to progression correlated with the primary tumor volume (p = .007). The critical cutoff point for the tumor volume was identified as 35 cm{sup 3}, and patients with a tumor volume <35 cm{sup 3} had a significantly better prognosis than those with a tumor volume >35 cm{sup 3} at 5 years (43% vs. 71%, p = .010). Longer survival was also correlated with smaller primary tumor volumes (p = .022). Similarly, patients with a primary tumor volume <35 cm{sup 3} had a better prognosis in terms of both progression-free survival (61% vs. 33%, p = .004) and overall survival (84% vs. 41%, p = < .001). On multivariate analysis, the primary tumor volume was the best predictor of recurrence (hazard ratio 4.7, 95% confidence interval 1.9-11.6; p = .001) and survival (hazard ratio 10.0, 95% confidence interval 2.9-35.1; p = < .001). In contrast, the T stage and N stage were not significant factors. Analysis of variance revealed that tumors with locoregional failure were on average 21.6 cm{sup 3} larger than tumors without locoregional failure (p = .028) and 27.1-cm{sup 3} larger than tumors that recurred as distant metastases (p = .020). Conclusion: The results of our study have shown that the primary tumor volume is a significant prognostic factor in patients with advanced cancer

  18. Measuring the orthogonality error of coil systems

    USGS Publications Warehouse

    Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.

    2012-01-01

    Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.

  19. A twenty-eight channel coil array for improved optic nerve imaging

    NASA Astrophysics Data System (ADS)

    Merrill, Robb Phillip

    The purpose of this work was to design and construct a radio-frequency coil optimized for imaging the Optic Nerve (ON) on a Siemens 3T magnetic resonance imaging (MRI) scanner. The specific goals were to optimize signal sensitivity from the orbit to the optic chiasm and improve SNR over designs currently in use. The constructed coil features two fiberglass formers that can slide over each other to accommodate any arbitrary head size, while maintaining close coupling near the eyes and around the head in general. This design eliminates the air void regions that occur between the coil elements and the forehead when smaller heads are imaged in one-piece, nonadjustable coil formers. The 28 coil elements were placed using a soccer-ball pattern layout to maximize head coverage. rSNR profiles from phantom imaging studies show that the ON coil provides approximately 55% greater rSNR at the region of the optic chiasm and approximately 400% near the orbits compared to the 12-channel commercial coil. The improved rSNR in the optic nerve region allows performance of high resolution DTI, which provides a qualitative measurement for evaluating optic neuritis. Images from volunteer and patient studies with the ON coil reveal plaques that correspond well with the patient disease history of chronic bilateral optic neuritis. Correspondence of image findings with patient disease histories demonstrates that optic neuritis can be visualized and detected in patients using 3T MRI with advanced imaging coils, providing improved patient care.

  20. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    SciTech Connect

    Solis, S. E.; Tomasi, D.; Rodriguez, A. O.

    2008-08-11

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  1. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    NASA Astrophysics Data System (ADS)

    Solis, S. E.; Tomasi, D.; Rodríguez, A. O.

    2008-08-01

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  2. Transmit/receive radiofrequency coil with individually shielded elements.

    PubMed

    Gilbert, Kyle M; Curtis, Andrew T; Gati, Joseph S; Klassen, L Martyn; Villemaire, Lauren E; Menon, Ravi S

    2010-12-01

    A novel method for decoupling coil elements of transmit/receive (transceive) arrays is reported. Each element of a coil array is shielded both concentrically and radially to reduce the magnetic flux linkage between neighboring coils; this substantially reduces the mutual inductance between coil elements and allows them to behave independently. A six-channel transceive coil was developed using this decoupling scheme and compared with two conventional decoupling schemes: the partial overlapping of adjacent elements and capacitive decoupling. The radiofrequency coils were designed to image the human head and were tested on a 7-T Varian scanner. The decoupling, transmit uniformity, transmit efficiency, signal-to-noise ratio, and geometry factors were compared between coils. The individually shielded coil achieved higher minimum isolation between elements (2.7-4.0 dB) and lower geometry factors (2-14%) than the overlapped and capacitively decoupled coils, while showing a reduction in transmit efficiency (2.8-5.9 dB) and signal-to-noise ratio (up to 34%). No difference was found in the power absorbed by the sample during a 90° radiofrequency pulse. The inset distance of coil elements within their shields was then reduced, resulting in significant improvement of the transmit efficiency (1.3 dB) and signal-to-noise ratio (28%). The greatest asset of this decoupling method lies in its versatility: transceive coils can be created with elements of arbitrary shape, size, location, and resonant frequency to produce three-dimensional conformal arrays. Copyright © 2010 Wiley-Liss, Inc.

  3. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors

    SciTech Connect

    Suzuki, Minoru . E-mail: msuzuki@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Nagata, Kenji; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira; Kato, Ituro; Fuwa, Nobukazu; Hiratsuka, Junichi; Imahori, Yoshio

    2006-12-01

    Purpose: To analyze the dose-volume histogram (DVH) of head-and-neck tumors treated with boron neutron capture therapy (BNCT) and to determine the advantage of the intra-arterial (IA) route over the intravenous (IV) route as a drug delivery system for BNCT. Methods and Materials: Fifteen BNCTs for 12 patients with recurrent head-and-neck tumors were included in the present study. Eight irradiations were done after IV administration of boronophenylalanine and seven after IA administration. The maximal, mean, and minimal doses given to the gross tumor volume were assessed using a BNCT planning system. Results: The results are reported as median values with the interquartile range. In the IA group, the maximal, mean, and minimal dose given to the gross tumor volume was 68.7 Gy-Eq (range, 38.8-79.9), 45.0 Gy-Eq (range, 25.1-51.0), and 13.8 Gy-Eq (range, 4.8-25.3), respectively. In the IV group, the maximal, mean, and minimal dose given to the gross tumor volume was 24.2 Gy-Eq (range, 21.5-29.9), 16.4 Gy-Eq (range, 14.5-20.2), and 7.8 Gy-Eq (range, 6.8-9.5), respectively. Within 1-3 months after BNCT, the responses were assessed. Of the 6 patients in the IV group, 2 had a partial response, 3 no change, and 1 had progressive disease. Of 4 patients in the IA group, 1 achieved a complete response and 3 a partial response. Conclusion: Intra-arterial administration of boronophenylalanine is a promising drug delivery system for head-and-neck BNCT.

  4. The Impact of Positron Emission Tomography/Computed Tomography in Edge Delineation of Gross Tumor Volume for Head and Neck Cancers

    SciTech Connect

    Ashamalla, Hani . E-mail: hashamalla@aol.com; Guirgius, Adel; Bieniek, Ewa; Rafla, Sameer; Evola, Alex; Goswami, Ganesh; Oldroyd, Randall; Mokhtar, Bahaa; Parikh, Kapila

    2007-06-01

    Purpose: To study anatomic biologic contouring (ABC), using a previously described distinct halo, to unify volume contouring methods in treatment planning for head and neck cancers. Methods and Materials: Twenty-five patients with head and neck cancer at various sites were planned for radiation therapy using positron emission tomography/computed tomography (PET/CT). The ABC halo was used in all PET/CT scans to contour the gross tumor volume (GTV) edge. The CT-based GTV (GTV-CT) and PET/CT-based GTV (GTV-ABC) were contoured by two independent radiation oncologists. Results: The ABC halo was observed in all patients studied. The halo had a standard unit value of 2.19 {+-} 0.28. The mean halo thickness was 2.02 {+-} 0.21 mm. Significant volume modification ({>=}25%) was seen in 17 of 25 patients (68%) after implementation of GTV-ABC. Concordance among observers was increased with the use of the halo as a guide for GTV determination: 6 patients (24%) had a {<=}10% volume discrepancy with CT alone, compared with 22 (88%) with PET/CT (p < 0.001). Interobserver variability decreased from a mean GTV difference of 20.3 cm{sup 3} in CT-based planning to 7.2 cm{sup 3} in PET/CT-based planning (p < 0.001). Conclusions: Using the 'anatomic biologic halo' to contour GTV in PET/CT improves consistency among observers. The distinctive appearance of the described halo and its presence in all of the studied tumors make it attractive for GTV contouring in head and neck tumors. Additional studies are needed to confirm the correlation of the halo with presence of malignant cells.

  5. Variability of Gross Tumor Volume Delineation in Head-and-Neck Cancer Using PET/CT Fusion, Part II: The Impact of a Contouring Protocol

    SciTech Connect

    Berson, Anthony M. Stein, Nicholas F.; Riegel, Adam C.; Destian, Sylvie; Ng, Tracy; Tena, Lawrence B.; Mitnick, Robin J.; Heiba, Sherif

    2009-04-01

    The purpose of this study was to assess the efficacy of a gross tumor volume (GTV) contouring protocol on interobserver variability between 4 physicians in positron emission therapy/computed tomography (PET/CT) treatment planning of head-and-neck cancer. A GTV contouring protocol for PET/CT treatment planning was developed utilizing 4 stages: Preliminary contouring on CT alone, determination of appropriate PET windowing, accurate image registration, and modification of CT contouring with correctly formatted PET/CT display and rules for modality disagreement. Two neuroradiologists and 2 radiation oncologists (designated as A, B, C, and D, respectively) were given a tutorial of PET/CT coregistered imaging individualized to their skill level, which included a step-by-step explanation of the protocol with clinical examples. Opportunities for questions and hands-on practice were given. The physicians were asked to re-contour 16 head-and-neck patients from Part I on PET/CT fusion imaging. Differences in volume magnitude were analyzed for statistical significance by analysis of variance (ANOVA) and paired t-tests ({alpha} < 0.05). Volume overlap was analyzed for statistical significance using Wilcoxon signed-rank tests ({alpha} < 0.05). Volume overlap increased significantly from Part I to Part II (p < 0.05). One previously significant difference between physicians disappeared with the protocol in place. The mean fusion volume of Physician C, however, remained significantly larger than that of Physician D (p < 0.01). This result is unchanged from Part I. The multidisciplinary contouring protocol significantly improved the coincidence of GTVs contoured by multiple physicians. The magnitudes of the volumes showed marginal improvement in consistency. Developing an institutional contouring protocol for PET/CT treatment planning is highly recommended to reduce interobserver variability.

  6. FDTD based SAR analysis in human head using irregular volume averaging techniques of different resolutions at GSM 900 band

    NASA Astrophysics Data System (ADS)

    Ali, Md Faruk; Ray, Sudhabindu

    2014-06-01

    Specific absorption rate (SAR) induced inside human head in the near-field of a mobile phone antenna has been investigated for three different SAR resolutions using Finite Difference in Time Domain (FDTD) method at GSM 900 band. Voxel based anthropomorphic human head model, consisting of different anatomical tissues, is used to calculate the peak SAR values averaged over 10-g, 1-g and 0.1-g mass. It is observed that the maximum local SAR increases significantly for smaller mass averages.

  7. Zero-plasma-current equilibria generated by tilted planar coils

    NASA Astrophysics Data System (ADS)

    Li, J.; Israeli, B.; Hammond, K. C.; Volpe, F. A.

    2016-10-01

    It is known that a periodic toroidal arrangement of tilted planar coils, combined with vertical field coils, can generate a helical magnetic field. One question, though, is: is this coil-set a generator or an amplifier of rotational transform? In other words, is a finite plasma-current needed? A numerical scan of coil-currents shows that configurations exist, for which no plasma-current is needed, and yet torsatron plasmas of finite volume can be obtained. The case of six tilted circular coils has been examined in great detail because of its relevance to the CIRCUS device operated by Columbia, a generalization of the two-tilted-coil CNT stellarator, also at Columbia. More axisymmetric configurations featuring a higher number of tilted circular coils are also being investigated. The calculations are performed with the aid of a numerical field-line tracer and the VMEC equilibrium solver, slightly modified to reflect the simplicity of the coil geometry: the coils are not discretized; instead, their field is evaluated by means of analytical expressions. This allows for faster calculations and rapid, fine scans of large parameter spaces.

  8. The Whole Elephant: A Synoptic View of Liquid Rope Coiling

    NASA Astrophysics Data System (ADS)

    Ribe, Neil

    2016-11-01

    Liquid rope coiling is the instability that occurs when e.g. a thin stream of honey is poured onto toast. While we now have a fine-grained understanding of each of the four principal coiling modes (viscous, gravitational, inertio-gravitational and inertial), we still lack a global view of how the modes cohere to form a larger whole. Using a numerical continuation procedure, I determine how the dimensionless coiling frequency depends on the dimensionless fall height and flow rate, for several values of the dimensionless nozzle diameter. Starting with the onset of coiling, I propose a purely geometrical definition of the critical surface between coiling and no coiling as the locus of points where the radius a1 of the rope at the contact point is just equal to the coil radius R. Coiling with a1 > R is impossible because the rope would intersect itself. I characterize the asymptotic limits of the critical surface as well as the structure of the supercritical volume inside that surface. The procedure reveals a new mode of coiling onset that has not yet been identified.

  9. Coiled coils and SAH domains in cytoskeletal molecular motors.

    PubMed

    Peckham, Michelle

    2011-10-01

    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  10. Heterotrimeric Coiled Coils with Core Residue Urea Side Chains

    PubMed Central

    Diss, Maria L.; Kennan, Alan J.

    2009-01-01

    We report several coiled coil heterotrimers with varying core residue buried polar groups, all with Tm values > 43° C. Introduction of new synthetic side chain structures, including some terminating in mono-substituted ureas, diversifies the pool of viable core residue candidates. A study of core charge pairings demonstrates that, unlike dimeric systems, trimeric coiled coils do not tolerate guanidine-guanidine contacts, even in the presence of a compensating carboxylate. Overall, the roster of feasible coiled coil designs is significantly expanded. PMID:19032043

  11. Comparison of Pressure Changes by Head and Neck Position between High-Volume Low-Pressure and Taper-Shaped Cuffs: A Randomized Controlled Trial.

    PubMed

    Komasawa, Nobuyasu; Mihara, Ryosuke; Imagawa, Kentaro; Hattori, Kazuo; Minami, Toshiaki

    2015-01-01

    The present study compared changes in cuff pressure by head and neck position between high-volume low-pressure (HVLP) and taper-shaped (taper) cuffs in a prospective randomized clinical trial. Methods. Forty patients were intubated using tracheal tubes with either HVLP (n = 20; HVLP group) or taper-shaped (n = 20; Taper group) cuffs. Initial cuff pressure was adjusted to 15, 20, or 25 cmH2O in the neutral position. Cuff pressure was evaluated after changing the head and neck positions to flexion, extension, and rotation. Results. Cuff pressure significantly increased with flexion in both HVLP and Taper groups at all initial cuff pressures. It significantly increased with extension in the HVLP group, but not in the Taper group. Cuff pressure did not significantly differ with rotation in either group and was significantly smaller in the Taper group during flexion and extension than in the HVLP group, regardless of initial cuff pressure. Conclusion. Cuff pressure changes with head and neck flexion and extension were smaller in the Taper group than in the HVLP group. Our results highlight the potential for taper cuffs to prevent excessive cuff pressure increases with positional changes in the head and neck. This trial is registered with UMIN000016119.

  12. Design and performance issues of RF coils utilized in ultra high field MRI: experimental and numerical evaluations.

    PubMed

    Ibrahim, Tamer S; Kangarlu, Alayar; Chakeress, Donald W

    2005-07-01

    In this paper, two TEM resonators were evaluated experimentally and numerically at 8 tesla (T) (340 MHz for 1H imaging). The coils were constructed to be 21.2-cm long (standard) and 11-cm long (a proposed less claustrophobic design). The experimental evaluation was done on a single cadaver using an ultra high field, 8 T, whole-body magnet. The numerical modeling was performed using an in-house finite difference time domain packagethat treats the coil and the load (anatomically detailed human head model) as a single system. The coils were tested with quadrature excitation at different coil alignment positions with respect to human head. For head imaging at 8 T, the overall numerical and experimental results demonstrated that when compared to the longer coil, the shorter coil provides superior signal-to-noise ratio, coil sensitivity, and excite field in the biological regions that lie within both of the coils' structures. A study of the RF (excite/receive fields) homogeneity showed variations in the performance of both coils that are mostly dependant on the region of interest and the position of coil with respect to the head. As such, depending on the application, the shorter coil could be effectively utilized.

  13. Flexible heating head for induction heating

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor)

    1993-01-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  14. Aneurysm permeability following coil embolization: packing density and coil distribution

    PubMed Central

    Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J

    2015-01-01

    Background Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Methods Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. Results All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r2=0.73) than with packing density alone (r2=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. Conclusions A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. PMID:25031179

  15. Further advances in coiled-tubing drilling

    SciTech Connect

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.L.

    1994-12-31

    The use of coiled tubing to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefit of being able to drill at balance, safely and in a controlled manner, using nitrogen to reduce down hole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing impairment to the formation. The paper describes such a horizontal re-entry drilled in the shallow depleted water flooded reservoir Barenburg in Northern Germany. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the coiled tubing injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting of pipe and down hole tools was placed on the substructure. The development of a surface controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8 in. coiled tubing. This program represents a significant extension of the capabilities of drilling with coiled tubing.

  16. How loads affect coiled tubing life

    SciTech Connect

    Walker, E.J. Inc., AK )

    1992-01-01

    Fatigue testing was performed on 1-3/4-in OD, 0.125 in. wall thickness (WT) coiled tubing using a standard coiled tubing unit (CTU) as shown in this paper. Testing was conducted under Prudhoe Bay, Alaska oil well, conditions to determine the effects of axial load, internal pressure and bending stress on the longevity, or usable running footage, that can be expected with larger diameter tubing. The CTU was rigged up in a standard configuration with injector head 50 ft off the ground, the worst case for bending on most currently available North Slope units. Internal pressure was supplied by a small triplex pump and the end of tubing was closed off with a fishing neck and bull plug. Weight, for the first four tests, was suspended from the coiled tubing by a special clamp. The tubing was cycled up and over the guide arch until a loss of internal coiled tubing pressure (CTP) occurred, or until the tubing became stuck in the stripper brass.

  17. Correction coil cable

    DOEpatents

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  18. Fabrication of superconductor coils

    NASA Astrophysics Data System (ADS)

    Dorris, S. E.; Dusek, J. T.; Picciolo, J. J.; Leu, H. J.; Singh, J. P.; Cazzato, A.; Poeppel, R. B.

    1989-10-01

    Small coils of superconducting YBa2Cu3O(7-x)(123) can be formed in the green state using a layered superconductor/insulator tape. In this approach, the insulator prevents contact between the turns of the coil during firing. The insulator must be chemically compatible with 123 during firing, and ideally should match 123 with respect to firing shrinkage and thermal expansion. Fabrication of small coils from the layered superconductor/insulator composites 123/Y2BaCuO5 and 123/BaCuO2 will be discussed. The issue of chemical compatibility will be addressed, and measurements of the firing shrinkage and thermal expansion will be presented for 123 and the two insulators Y2BaO5 and BaCuO2. In addition, the superconducting properties of 123 in the composites will be presented.

  19. TESLA Coil Research

    DTIC Science & Technology

    1992-05-01

    Sloan’s work was actually predated by the earlier work of Nikola Tesla . Sloan mistakenly identified " Tesla Coils" as lumped tuned resonators. The...Lefvw WsnJ L REPORT o]i 3. REPRT TYPE AND OATES COVEIRD May 1992 Special/Aug 1992 - May 1992 Z TITLE AND 5U§nUT S. FUNDING NUMIHRS Tesla Coil Research...STATEMENT 1211. ’ISTRIUUTION COOD Approved for public release; dis~ribution is unlimited 13. ABSTRACT (Masrmum 200 worw) High repetition rate Tesla

  20. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe.

    PubMed

    Ohtaka, Ayami; Saito, Takamune T; Okuzaki, Daisuke; Nojima, Hiroshi

    2007-05-18

    Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  1. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    PubMed Central

    Ohtaka, Ayami; Saito, Takamune T; Okuzaki, Daisuke; Nojima, Hiroshi

    2007-01-01

    Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe. PMID:17509158

  2. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.

    PubMed

    Erb-Eigner, K; Warmuth, C; Taupitz, M; Willerding, G; Bertelmann, E; Asbach, P

    2013-09-01

    Generally, high-resolution MRI of the eye is performed with small loop surface coils. The purpose of this phantom and patient study was to investigate the influence of magnetic field strength and receiver coils on image quality in ocular MRI. The eyeball and the complex geometry of the facial bone were simulated by a skull phantom with swine eyes. MR images were acquired with two small loop surface coils with diameters of 4 cm and 7 cm and with a multi-channel head coil at 1.5 and 3 Tesla, respectively. Furthermore, MRI of the eye was performed prospectively in 20 patients at 1.5 Tesla (7 cm loop surface coil) and 3 Tesla (head coil). These images were analysed qualitatively and quantitatively and statistical significance was tested using the Wilcoxon-signed-rank test (a p-value of less than 0.05 was considered to indicate statistical significance). The analysis of the phantom images yielded the highest mean signal-to-noise ratio (SNR) at 3 Tesla with the use of the 4 cm loop surface coil. In the phantom experiment as well as in the patient studies the SNR was higher at 1.5 Tesla by applying the 7 cm surface coil than at 3 Tesla by applying the head coil. Concerning the delineation of anatomic structures no statistically significant differences were found. Our results show that the influence of small loop surface coils on image quality (expressed in SNR) in ocular MRI is higher than the influence of the magnetic field strength. The similar visibility of detailed anatomy leads to the conclusion that the image quality of ocular MRI at 3 Tesla remains acceptable by applying the head coil as a receiver coil. © Georg Thieme Verlag KG Stuttgart · New York.

  3. The Head Start Debates

    ERIC Educational Resources Information Center

    Zigler, Edward, Ed.; Styfco, Sally J., Ed.

    2004-01-01

    The future of Head Start depends on how well people learn from and apply the lessons from its past. That's why everyone involved in early education needs this timely, forward-thinking book from the leader of Head Start. The first book to capture the Head Start debates in all their complexity and diversity, this landmark volume brings together the…

  4. The Head Start Debates

    ERIC Educational Resources Information Center

    Zigler, Edward, Ed.; Styfco, Sally J., Ed.

    2004-01-01

    The future of Head Start depends on how well people learn from and apply the lessons from its past. That's why everyone involved in early education needs this timely, forward-thinking book from the leader of Head Start. The first book to capture the Head Start debates in all their complexity and diversity, this landmark volume brings together the…

  5. Coiled tubing; Operations and services

    SciTech Connect

    Brown, P.T.; Wimberly, R.D.

    1992-10-01

    Oil and gas wells that flow on initial completion eventually reach a condition of liquid loading that kills the wells. This results form declining reservoir pressure, decreased gas volume (velocity), increased water production and other factors that cause liquids to accumulate at the bottom of the well and exert back pressure on the formation. This restricts or in some cases prevents fluid entry into the wellbore form the formation. Flowing production can be restored or increased by reducing surface backpressure, well bore stimulation, pressure maintenance or by installing a string of smaller diameter tubing. This paper reports on installation (hanging off) of a concentric string of coiled tubing inside existing production tubing which is an economically viable, safe, convenient and effective alterative for returning some of these liquid loaded )logged-up) wells to flowing status.

  6. Efficient high-frequency body coil for high-field MRI.

    PubMed

    Vaughan, J T; Adriany, G; Snyder, C J; Tian, J; Thiel, T; Bolinger, L; Liu, H; DelaBarre, L; Ugurbil, K

    2004-10-01

    The use of body coils is favored for homogeneous excitation, and such coils are often paired with surface coils or arrays for sensitive reception in many MRI applications. While the body coil's physical size and resultant electrical length make this circuit difficult to design for any field strength, recent efforts to build efficient body coils for applications at 3T and above have been especially challenging. To meet this challenge, we developed an efficient new transverse electromagnetic (TEM) body coil and demonstrated its use in human studies at field strengths up to 4 T. Head, body, and breast images were acquired within peak power constraints of <8 kW. Bench studies indicate that these body coils are feasible to 8 T. RF shimming was used to remove a high-field-related cardiac imaging artifact in these preliminary studies. P41RR13230

  7. Facilitated diffusion with DNA coiling

    PubMed Central

    Lomholt, Michael A.; van den Broek, Bram; Kalisch, Svenja-Marei J.; Wuite, Gijs J. L.; Metzler, Ralf

    2009-01-01

    When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins. PMID:19420219

  8. Improved Coil for Hydrogen Dissociators

    NASA Technical Reports Server (NTRS)

    Vessot, R.

    1984-01-01

    Flat coil has rigid printed circuit substrate. New coil structure minimizes RF electric field near glass walls of plasma vessel; therefore reduces direct electron bombardment of glass. Design lends itself well to high production and standardized dimensions.

  9. Pulse Test of Coil Insulation

    NASA Technical Reports Server (NTRS)

    Kroy, Ralph E.

    1987-01-01

    Waveform of back-electromotive force reveals defects. Simple pulse test reveals defects in inductor coils. Devised for use on servovalve solenoid coils on Space Shuttle, test also applicable to transformer windings, chokes, relays, and the like.

  10. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  11. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  12. An orientable search coil

    NASA Astrophysics Data System (ADS)

    Holt, P. J.; Poblocki, M.

    2017-01-01

    We provide a design for a low cost orientable search coil that can be used to investigate the variation of magnetic flux with angle. This experiment is one of the required practical activities in the current A level physics specification for the AQA examination board in the UK. We demonstrate its performance and suggest other suitable investigations that can be undertaken.

  13. Sensitivity of an eight-element phased array coil in 3 Tesla MR imaging: a basic analysis.

    PubMed

    Hiratsuka, Yoshiyasu; Miki, Hitoshi; Kikuchi, Keiichi; Kiriyama, Ikuko; Mochizuki, Teruhito; Takahashi, Shizue; Sadamoto, Kazuhiko

    2007-01-01

    To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.

  14. System Control Facilities: Head-Ends and Central Processors. A Survey of Technical Requirements for Broadband Cable Teleservices; Volume Four.

    ERIC Educational Resources Information Center

    Smith, Ernest K.; And Others

    The system control facilities in broadband communication systems are discussed in this report. These facilities consist of head-ends and central processors. The first section summarizes technical problems and needs, and the second offers a cursory overview of systems, along with an incidental mention of processors. Section 3 looks at the question…

  15. Magnetic resonance imaging receiver coil decoupling using circumferential shielding structures.

    PubMed

    Yeh, Jhy-Neng Tasso; Fa-Hsuan Lin

    2016-08-01

    We propose a flexible phased-array design using circular coils with circumferential shielding structure to achieve robust decoupling between coil elements when the array is either bended or on a flat plane. Two types of circumferential shielding were tested through numerical simulation and imaging experiment. The results demonstrated that our arrays have good decoupling between coils when they are on a curved surface with S21 <; -16.72 dB. Both types perform higher SNR images than a commercially available 32-channel adult head coil array. Future work will empirically construct a multi-channel array with the number of channel matched to commercial phased array in order to validate the performance in vivo.

  16. Dose–Volume Modeling of Brachial Plexus-Associated Neuropathy After Radiation Therapy for Head-and-Neck Cancer: Findings From a Prospective Screening Protocol

    SciTech Connect

    Chen, Allen M.; Wang, Pin-Chieh; Daly, Megan E.; Cui, Jing; Hall, William H.; Vijayakumar, Srinivasan; Phillips, Theodore L.; Farwell, D. Gregory; Purdy, James A.

    2014-03-15

    Purpose: Data from a prospective screening protocol administered for patients previously irradiated for head-and-neck cancer was analyzed to identify dosimetric predictors of brachial plexus-associated neuropathy. Methods and Materials: Three hundred fifty-two patients who had previously completed radiation therapy for squamous cell carcinoma of the head and neck were prospectively screened from August 2007 to April 2013 using a standardized self-administered instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from radiation therapy was 40 months (range, 6-111 months). A total of 177 patients (50%) underwent neck dissection. Two hundred twenty-one patients (63%) received concurrent chemotherapy. Results: Fifty-one patients (14%) reported brachial plexus-related neuropathic symptoms with the most common being ipsilateral pain (50%), numbness/tingling (40%), and motor weakness and/or muscle atrophy (25%). The 3- and 5-year estimates of freedom from brachial plexus-associated neuropathy were 86% and 81%, respectively. Clinical/pathological N3 disease (P<.001) and maximum radiation dose to the ipsilateral brachial plexus (P=.01) were significantly associated with neuropathic symptoms. Cox regression analysis revealed significant dose–volume effects for brachial plexus-associated neuropathy. The volume of the ipsilateral brachial plexus receiving >70 Gy (V70) predicted for symptoms, with the incidence increasing with V70 >10% (P<.001). A correlation was also observed for the volume receiving >74 Gy (V74) among patients treated without neck dissection, with a cutoff of 4% predictive of symptoms (P=.038). Conclusions: Dose–volume guidelines were developed for radiation planning that may limit brachial plexus-related neuropathies.

  17. Wet Winding Improves Coil Encapsulation

    NASA Technical Reports Server (NTRS)

    Hill, A. J.

    1987-01-01

    Wet-winding process encapsulates electrical coils more uniformily than conventional processes. Process requires no vacuum pump and adapts easily to existing winding machines. Encapsulant applied to each layer of wire as soon as added to coil. Wet-winding process eliminates voids, giving more uniformly encapsulated coil.

  18. Coiled tubing operations and services

    SciTech Connect

    Jaworsky, A.S. II )

    1991-11-01

    Coiled tubing offers many advantages over conventional jointed tubing used for drilling in oil fields, including time savings, pumping flexibility, fluid placement, reduced formation damage and safety. The article gives an overview of coiled tubing history and development. Operating concepts are explained, along with descriptions of the major equipment and components associated with coiled tubing use in the oil field today.

  19. Modular coils: a promising toroidal-reactor-coil system

    SciTech Connect

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration.

  20. Coil Tolerance Impact on Plasma Surface Quality for NCSX

    SciTech Connect

    Art Brooks; Wayne Reiersen

    2003-10-20

    The successful operation of the National Compact Stellarator Experiment (NCSX) machine will require producing plasma configurations with good flux surfaces, with a minimum volume of the plasma lost to magnetic islands or stochastic regions. The project goal is to achieve good flux surfaces over 90% of the plasma volume. NCSX is a three period device designed to be operated with iota ranging from {approx}0.4 on axis to {approx}0.7 at the edge. The field errors of most concern are those that are resonant with 3/5 and 3/6 modes (for symmetry preserving field errors) and the 1/2 and 2/3 modes (for symmetry breaking field errors). In addition to losses inherent in the physics configuration itself, there will be losses from field errors arising from coil construction and assembly errors. Some of these losses can be recovered through the use of trim coils or correction coils. The impact of coil tolerances on plasma surface quality is evaluated herein for the NCSX design. The methods used in this evaluation are discussed. The ability of the NCSX trim coils to correct for field errors is also examined. The results are used to set coils tolerances for the various coil systems.

  1. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  2. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    PubMed

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  3. Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy

    SciTech Connect

    Kruijf, Wilhelmus de . E-mail: kruijf.de.w@bvi.nl; Heijmen, Ben; Levendag, Peter C.

    2007-05-01

    Purpose: To quantify the trade-off between parotid gland sparing and planning target volume (PTV) underdosages for head-and-neck intensity-modulated radiotherapy. Methods and Materials: A planning study was performed for 4 patients with either soft palate or tonsil tumors treated with external radiotherapy up to 46 Gy. The trade-off between underdosages in the PTV and sparing of the parotid glands was investigated by systematically varying the optimization objectives for the inverse planning. A new way of presenting dose-volume information allows easy detection of small PTV subvolumes with underdosages that cannot be assessed in conventional cumulative dose-volume histograms. A simple radiobiological model to estimate the control probability for an electively irradiated neck level was developed. Results: The average dose to the parotid glands can decrease by >10 Gy by allowing the PTV to be underdosed in such a way that the radiobiological model predicts a decrease in subclinical disease control probability of (typically) 1% to a few percent. Conclusion: The trade-off between parotid gland sparing and underdosages in the PTV has been quantified by the use of an alternative method to present dose-volume information and by the use of a radiobiological model to predict subclinical disease control probability.

  4. Measurement of the trapezius muscle volume: A new assessment strategy of shoulder dysfunction after neck dissection for the treatment of head and neck cancers.

    PubMed

    Cho, Jae-Gu; Lee, Naree; Park, Min-Woo; Baek, Seung-Kuk; Kwon, Soon-Young; Jung, Kwang-Yoon; Woo, Jeong-Soo

    2015-05-01

    The purpose of this study was to determine the actual degree of shoulder muscle change and its relation to symptoms after neck dissection for head and neck cancers. Forty-two patients who underwent unilateral neck dissection were selected. Data obtained from each subject were trapezius muscle volume ratio and a Shoulder Disability Questionnaire (SDQ) score. Patients who had undergone neck dissection with spinal accessory nerve (SAN) preservation were compared with those who had received radical neck dissection. The preservation group was further separated into subgroups by the extent of neck dissection. Trapezius muscle volume ratio was higher and SDQ score was significantly lower in the SAN preservation group compared to the radical neck dissection group. However, the SAN preservation subgroups did not differ from each other. In addition, a good correlation between the muscle volume ratio and SDQ score was observed. With trapezius muscle volume ratio, clinicians may be able to diagnose shoulder dysfunction after neck dissection. Further research on the subject is warranted. This suggests a novel strategy for assessing the degree of shoulder dysfunction. © 2014 Wiley Periodicals, Inc.

  5. Design of catheter radio frequency coils using coaxial transmission line resonators for interventional neurovascular MR imaging

    PubMed Central

    Martin, Alastair; Jordan, Caroline; Lillaney, Prasheel; Losey, Aaron; Pang, Yong; Hu, Jeffrey; Wilson, Mark; Cooke, Daniel; Hetts, Steven W.

    2017-01-01

    Background It is technically challenging to design compact yet sensitive miniature catheter radio frequency (RF) coils for endovascular interventional MR imaging. Methods In this work, a new design method for catheter RF coils is proposed based on the coaxial transmission line resonator (TLR) technique. Due to its distributed circuit, the TLR catheter coil does not need any lumped capacitors to support its resonance, which simplifies the practical design and construction and provides a straightforward technique for designing miniature catheter-mounted imaging coils that are appropriate for interventional neurovascular procedures. The outer conductor of the TLR serves as an RF shield, which prevents electromagnetic energy loss, and improves coil Q factors. It also minimizes interaction with surrounding tissues and signal losses along the catheter coil. To investigate the technique, a prototype catheter coil was built using the proposed coaxial TLR technique and evaluated with standard RF testing and measurement methods and MR imaging experiments. Numerical simulation was carried out to assess the RF electromagnetic field behavior of the proposed TLR catheter coil and the conventional lumped-element catheter coil. Results The proposed TLR catheter coil was successfully tuned to 64 MHz for proton imaging at 1.5 T. B1 fields were numerically calculated, showing improved magnetic field intensity of the TLR catheter coil over the conventional lumped-element catheter coil. MR images were acquired from a dedicated vascular phantom using the TLR catheter coil and also the system body coil. The TLR catheter coil is able to provide a significant signal-to-noise ratio (SNR) increase (a factor of 200 to 300) over its imaging volume relative to the body coil. Conclusions Catheter imaging RF coil design using the proposed coaxial TLR technique is feasible and advantageous in endovascular interventional MR imaging applications. PMID:28516044

  6. Design of catheter radio frequency coils using coaxial transmission line resonators for interventional neurovascular MR imaging.

    PubMed

    Zhang, Xiaoliang; Martin, Alastair; Jordan, Caroline; Lillaney, Prasheel; Losey, Aaron; Pang, Yong; Hu, Jeffrey; Wilson, Mark; Cooke, Daniel; Hetts, Steven W

    2017-04-01

    It is technically challenging to design compact yet sensitive miniature catheter radio frequency (RF) coils for endovascular interventional MR imaging. In this work, a new design method for catheter RF coils is proposed based on the coaxial transmission line resonator (TLR) technique. Due to its distributed circuit, the TLR catheter coil does not need any lumped capacitors to support its resonance, which simplifies the practical design and construction and provides a straightforward technique for designing miniature catheter-mounted imaging coils that are appropriate for interventional neurovascular procedures. The outer conductor of the TLR serves as an RF shield, which prevents electromagnetic energy loss, and improves coil Q factors. It also minimizes interaction with surrounding tissues and signal losses along the catheter coil. To investigate the technique, a prototype catheter coil was built using the proposed coaxial TLR technique and evaluated with standard RF testing and measurement methods and MR imaging experiments. Numerical simulation was carried out to assess the RF electromagnetic field behavior of the proposed TLR catheter coil and the conventional lumped-element catheter coil. The proposed TLR catheter coil was successfully tuned to 64 MHz for proton imaging at 1.5 T. B1 fields were numerically calculated, showing improved magnetic field intensity of the TLR catheter coil over the conventional lumped-element catheter coil. MR images were acquired from a dedicated vascular phantom using the TLR catheter coil and also the system body coil. The TLR catheter coil is able to provide a significant signal-to-noise ratio (SNR) increase (a factor of 200 to 300) over its imaging volume relative to the body coil. Catheter imaging RF coil design using the proposed coaxial TLR technique is feasible and advantageous in endovascular interventional MR imaging applications.

  7. Operation and Maintenance, 9-Foot Navigation Channel, Upper Mississippi River, Head of Navigation to Guttenberg, Iowa. Volume 2. Exhibits.

    DTIC Science & Technology

    1974-08-01

    Flying Squirrel (llaucorrs volans Occasional p Plains Pocket Gopher Geomys bursarius Occasional S Beaver Castor canadensis Common Western Harvest Mouse... TYPE OF REPORT & PERIOD COVERED STATEMENT, OPERATION AND MAINTENANCE 9-FOOT Final NAVIGATION CHANNGEL, UPPER MISSISSIPPI RIVER HEAD OF NAVIGATION TO...Population 151 of Major Types of Livestock and Poultry in the Area of Pool 3 127 Commercial Lockages in Pool 3, 1960 - 1972 152 128 Pool 3 Waterborne

  8. Ultrahigh head pump/turbine development program: Volume 3, Advanced design: Static stress analysis, main components: Final report

    SciTech Connect

    Yokoyama, T.

    1987-01-01

    This report concerns the progress of the stress and deformation analyses made during the period from August to December, 1982. The structure designed in the early period of Task 2 was used for the analyses. Analyses are made for the major components; the top stage runner, the wicket gates, the return guide, the spiral casing and speed ring, the head cover and the bottom cover.

  9. Lipid suppression for brain MRI and MRSI by means of a dedicated crusher coil.

    PubMed

    Boer, Vincent O; van de Lindt, Tessa; Luijten, Peter R; Klomp, Dennis W J

    2015-06-01

    Lipid suppression in MR brain imaging and spectroscopy has been a long-standing problem for which various techniques have been developed. Most methods are based on inversion recovery or spatially or spectrally selective excitation of the lipid signal followed by dephasing. All techniques require additional RF pulses, gradient crushers and delays, which increase the duration and complexity of sequences. In addition, the lipid signal is poorly shimmed, and is composed of different resonance frequencies that have different relaxation properties. In this work, a novel approach for suppression of extra cranial lipids is presented, by means of an outer volume crusher coil. It is based on the principle of surface spoiling gradients, which generate a very local and inhomogeneous magnetic field in the outer layer of the head, and thereby destroys the phase coherence of the extra cranial signals. Dephasing of the signal can be incorporated in almost any sequence because it requires only a short pulse of the coil, and does not require additional RF pulses or delays. Examples of lipid suppression are shown in both gradient echo imaging and spectroscopic imaging. Outer volume crushing allows for simple fat suppression and boosts scanning efficiency, which is particularly beneficial at ultra-high field strengths. © 2014 Wiley Periodicals, Inc.

  10. Degradation analysis of REBCO coils

    NASA Astrophysics Data System (ADS)

    Ma, D. X.; Matsumoto, S.; Teranishi, R.; Ohmura, T.; Kiyoshi, T.; Otsuka, A.; Hamada, M.; Maeda, H.; Yanagisawa, Y.; Nakagome, H.; Suematsu, H.

    2014-08-01

    RE-Ba-Cu-O (REBCO) layer-wound coils were operated to investigate their properties under electromagnetic forces in an external magnetic field of up to 17.2 T. While REBCO coils were successfully operated under electromagnetic forces over 200 MPa, some showed degradation after quenching. To develop high-temperature superconducting (HTS) magnets, the reasons for the degradation of REBCO coils should be investigated. In this study, the degraded REBCO coils were carefully rewound. The critical current (Ic) of the rewound REBCO conductor was measured to check the damaged parts in the degraded REBCO coils, and the possible causes for the degradation were discussed.

  11. Long-term outcome and toxicity of hypofractionated stereotactic body radiotherapy as a boost treatment for head and neck cancer: the importance of boost volume assessment

    PubMed Central

    2012-01-01

    Background The aim of this study was to report the long-term clinical outcomes of patients who received stereotactic body radiotherapy (SBRT) as a boost treatment for head and neck cancer. Materials and methods Between March 2004 and July 2007, 26 patients with locally advanced, medically inoperable head and neck cancer or gross residual tumors in close proximity to critical structures following head and neck surgery were treated with SBRT as a boost treatment. All patients were initially treated with standard external beam radiotherapy (EBRT). SBRT boost was prescribed to the median 80% isodose line with a median dose of 21 (range 10–25) Gy in 2–5 (median, 5) fractions. Results The median follow-up after SBRT was 56 (range 27.6 − 80.2) months. The distribution of treatment sites in 26 patients was as follows: the nasopharynx, including the base of the skull in 10 (38.5%); nasal cavity or paranasal sinus in 8 (30.8%); periorbit in 4 (15.4%); tongue in 3 (11.5%); and oropharyngeal wall in 1 (3.8%). The median EBRT dose before SBRT was 50.4 Gy (range 39.6 − 70.2). The major response rate was 100% with 21 (80.8%) complete responses (CR). Severe (grade ≥ 3) late toxicities developed in 9 (34.6%) patients, and SBRT boost volume was a significant parameter predicting severe late complication. Conclusions The present study demonstrates that a modern SBRT boost is a highly efficient tool for local tumor control. However, we observed a high frequency of serious late complications. More optimized dose fractionation schedule and patient selection are required to achieve excellent local control without significant late morbidities in head and neck boost treatment. PMID:22691266

  12. Thermophoresis of polymers: nondraining vs draining coil.

    PubMed

    Morozov, Konstantin I; Köhler, Werner

    2014-06-10

    Present theories for the thermophoretic mobility of polymers in dilute solution without long-ranged electrostatic interaction are based on a draining coil model with short-ranged segment-solvent interaction. We show that the characteristic thermophoretic interaction decays as r(-2) with the distance from the chain segment, which is of much longer range than the underlying rapidly decaying binary van der Waals interaction (∝ r(-6)). As a consequence, thermophoresis on the monomer level is governed by volume forces, resulting in hydrodynamic coupling between the chain segments. The inner parts of the nondraining coil do not actively participate in thermophoresis. The flow lines penetrate only into a thin surface layer of the coil and cause tangential stresses along the surface of the entire coil, not the individual segments. This model is motivated by recent experimental findings for thermoresponsive polymers and core-shell particles, and it explains the well-known molar mass independent thermophoretic mobility of polymers in dilute solution.

  13. Optimization of gradient coil technology for human magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chronik, Blaine Alexander

    with and without water cooling to characterize the thermal response. Gradient uniformity was verifed by imaging a grid phantom. Eddy current measurements were made with all axes and compensated for There is a large Bo eddy current field produced by the z-axis of the coil. Preliminary imaging results in phantoms, animals, and humans were successfully carried out and results are shown. A simple linear model of gradient coil magnetostimulation is derived and the relative stimulation potential is introduced as an important quantity in comparing very different gradient coil designs. Three regimes of gradient coil operation are defined as a consequence of the linear stimulation model. A twenty subject experimental trial was conducted to directly measure stimulation thresholds for both a whole body gradient coil and the head/neck gradient coil described above. The results of the experiment support the linear models derived. The data were used in combination with numerical calculations of induced electric fields to extract the underlying tissue parameters of rheobase and chronaxie for the first time in a head specific gradient coil experiment. This data will allow the prediction of stimulation thresholds for future gradient coils at the design stage.

  14. The significant impact of framing coils on long-term outcomes in endovascular coiling for intracranial aneurysms: how to select an appropriate framing coil.

    PubMed

    Ishida, Wataru; Sato, Masayuki; Amano, Tatsuo; Matsumaru, Yuji

    2016-09-01

    OBJECTIVE The importance of a framing coil (FC)-the first coil inserted into an aneurysm during endovascular coiling, also called a lead coil or a first coil-is recognized, but its impact on long-term outcomes, including recanalization and retreatment, is not well established. The purposes of this study were to test the hypothesis that the FC is a significant factor for aneurysmal recurrence and to provide some insights on appropriate FC selection. METHODS The authors retrospectively reviewed endovascular coiling for 280 unruptured intracranial aneurysms and gathered data on age, sex, aneurysm location, aneurysm morphology, maximal size, neck width, adjunctive techniques, recanalization, retreatment, follow-up periods, total volume packing density (VPD), volume packing density of the FC, and framing coil percentage (FCP; the percentage of FC volume in total coil volume) to clarify the associated factors for aneurysmal recurrence. RESULTS Of 236 aneurysms included in this study, 33 (14.0%) had recanalization, and 18 (7.6%) needed retreatment during a mean follow-up period of 37.7 ± 16.1 months. In multivariate analysis, aneurysm size (odds ratio [OR] = 1.29, p < 0.001), FCP < 32% (OR 3.54, p = 0.009), and VPD < 25% (OR 2.96, p = 0.015) were significantly associated with recanalization, while aneurysm size (OR 1.25, p < 0.001) and FCP < 32% (OR 6.91, p = 0.017) were significant predictors of retreatment. VPD as a continuous value or VPD with any cutoff value could not predict retreatment with statistical significance in multivariate analysis. CONCLUSIONS FCP, which is equal to the FC volume as a percentage of the total coil volume and is unaffected by the morphology of the aneurysm or the measurement error in aneurysm length, width, or height, is a novel predictor of recanalization and retreatment and is more significantly predictive of retreatment than VPD. To select FCs large enough to meet the condition of FCP ≥ 32% is a potential relevant factor for better

  15. Effect of leg exercise training on vascular volumes during 30 days of 6 degrees head-down bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1992-01-01

    Plasma and red cell volumes, body density, and water balance were measured in 19 men (32-42 yr) confined to bed rest (BR). One group (n = 5) had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise for 60 min/day (ITE; n = 7), and the third near-maximal intermittent isokinetic exercise for 60 min/day (IKE; n = 7). Caloric intake was 2,678-2,840 kcal/day; mean body weight (n = 19) decreased by 0.58 +/- 0.35 (SE) kg during BR due to a negative fluid balance (diuresis) on day 1. Mean energy costs for the NOE, and IKE, and ITE regimens were 83 (3.6 +/- 0.2 ml O2.min-1.kg-1), 214 (8.9 +/- 0.5 ml.min-1.kg-1), and 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1), respectively. Body densities within groups and mean urine volumes (1,752-1,846 ml/day) between groups were unchanged during BR. Resting changes in plasma volume (ml/kg) after BR were -1.5 +/- 2.3% (NS) in ITE, -14.7 +/- 2.8% (P less than 0.05) in NOE, and -16.8 +/- 2.9% (P less than 0.05) in IKE, and mean water balances during BR were +295, -106, and +169 ml/24 h, respectively. Changes in red cell volume followed changes in plasma volume. The significant chronic decreases in plasma volume in the IKE and NOE groups and its maintenance in the ITE group could not be accounted for by water balance or by responses of the plasma osmotic, protein, vasopressin, or aldosterone concentrations or plasma renin activity. There was close coupling between resting plasma volume and plasma protein and osmotic content.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Effect of leg exercise training on vascular volumes during 30 days of 6 degrees head-down bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1992-01-01

    Plasma and red cell volumes, body density, and water balance were measured in 19 men (32-42 yr) confined to bed rest (BR). One group (n = 5) had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise for 60 min/day (ITE; n = 7), and the third near-maximal intermittent isokinetic exercise for 60 min/day (IKE; n = 7). Caloric intake was 2,678-2,840 kcal/day; mean body weight (n = 19) decreased by 0.58 +/- 0.35 (SE) kg during BR due to a negative fluid balance (diuresis) on day 1. Mean energy costs for the NOE, and IKE, and ITE regimens were 83 (3.6 +/- 0.2 ml O2.min-1.kg-1), 214 (8.9 +/- 0.5 ml.min-1.kg-1), and 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1), respectively. Body densities within groups and mean urine volumes (1,752-1,846 ml/day) between groups were unchanged during BR. Resting changes in plasma volume (ml/kg) after BR were -1.5 +/- 2.3% (NS) in ITE, -14.7 +/- 2.8% (P less than 0.05) in NOE, and -16.8 +/- 2.9% (P less than 0.05) in IKE, and mean water balances during BR were +295, -106, and +169 ml/24 h, respectively. Changes in red cell volume followed changes in plasma volume. The significant chronic decreases in plasma volume in the IKE and NOE groups and its maintenance in the ITE group could not be accounted for by water balance or by responses of the plasma osmotic, protein, vasopressin, or aldosterone concentrations or plasma renin activity. There was close coupling between resting plasma volume and plasma protein and osmotic content.(ABSTRACT TRUNCATED AT 250 WORDS).

  17. Comparison of three commercially available radio frequency coils for human brain imaging at 3 Tesla.

    PubMed

    Mekle, Ralf; van der Zwaag, Wietske; Joosten, Andreas; Gruetter, Rolf

    2008-03-01

    To evaluate a transverse electromagnetic (TEM), a circularly polarized (CP) (birdcage), and a 12-channel phased array head coil at the clinical field strength of B0 = 3T in terms of signal-to-noise ratio (SNR), signal homogeneity, and maps of the effective flip angle alpha. SNR measurements were performed on low flip angle gradient echo images. In addition, flip angle maps were generated for alpha(nominal) = 30 degrees using the double angle method. These evaluation steps were performed on phantom and human brain data acquired with each coil. Moreover, the signal intensity variation was computed for phantom data using five different regions of interest. In terms of SNR, the TEM coil performs slightly better than the CP coil, but is second to the smaller 12-channel coil for human data. As expected, both the TEM and the CP coils show superior image intensity homogeneity than the 12-channel coil, and achieve larger mean effective flip angles than the combination of body and 12-channel coil with reduced radio frequency power deposition. At 3T the benefits of TEM coil design over conventional lumped element(s) coil design start to emerge, though the phased array coil retains an advantage with respect to SNR performance.

  18. Heterodimeric coiled-coil interactions of human GABAB receptor

    PubMed Central

    Burmakina, Svetlana; Geng, Yong; Chen, Yan; Fan, Qing R.

    2014-01-01

    Metabotropic GABAB receptor is a G protein-coupled receptor that mediates inhibitory neurotransmission in the CNS. It functions as an obligatory heterodimer of GABAB receptor 1 (GBR1) and GABAB receptor 2 (GBR2) subunits. The association between GBR1 and GBR2 masks an endoplasmic reticulum (ER) retention signal in the cytoplasmic region of GBR1 and facilitates cell surface expression of both subunits. Here, we present, to our knowledge, the first crystal structure of an intracellular coiled-coil heterodimer of human GABAB receptor. We found that polar interactions buried within the hydrophobic core determine the specificity of heterodimer pairing. Disruption of the hydrophobic coiled-coil interface with single mutations in either subunit impairs surface expression of GBR1, confirming that the coiled-coil interaction is required to inactivate the adjacent ER retention signal of GBR1. The coiled-coil assembly buries an internalization motif of GBR1 at the heterodimer interface. The ER retention signal of GBR1 is not part of the core coiled-coil structure, suggesting that it is sterically shielded by GBR2 upon heterodimer formation. PMID:24778228

  19. Exploring functional connectivity networks with multichannel brain array coils.

    PubMed

    Anteraper, Sheeba Arnold; Whitfield-Gabrieli, Susan; Keil, Boris; Shannon, Steven; Gabrieli, John D; Triantafyllou, Christina

    2013-01-01

    The use of multichannel array head coils in functional and structural magnetic resonance imaging (MRI) provides increased signal-to-noise ratio (SNR), higher sensitivity, and parallel imaging capabilities. However, their benefits remain to be systematically explored in the context of resting-state functional connectivity MRI (fcMRI). In this study, we compare signal detectability within and between commercially available multichannel brain coils, a 32-Channel (32Ch), and a 12-Channel (12Ch) at 3T, in a high-resolution regime to accurately map resting-state networks. We investigate whether the 32Ch coil can extract and map fcMRI more efficiently and robustly than the 12Ch coil using seed-based and graph-theory-based analyses. Our findings demonstrate that although the 12Ch coil can be used to reveal resting-state connectivity maps, the 32Ch coil provides increased detailed functional connectivity maps (using seed-based analysis) as well as increased global and local efficiency, and cost (using graph-theory-based analysis), in a number of widely reported resting-state networks. The exploration of subcortical networks, which are scarcely reported due to limitations in spatial-resolution and coil sensitivity, also proved beneficial with the 32Ch coil. Further, comparisons regarding the data acquisition time required to successfully map these networks indicated that scan time can be significantly reduced by 50% when a coil with increased number of channels (i.e., 32Ch) is used. Switching to multichannel arrays in resting-state fcMRI could, therefore, provide both detailed functional connectivity maps and acquisition time reductions, which could further benefit imaging special subject populations, such as patients or pediatrics who have less tolerance in lengthy imaging sessions.

  20. Electrospun Buckling Coils

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Reneker, Darrell

    2009-03-01

    Electrospinning offers a useful way to produce fibers with micron and nanometer scale diameter. The present work deals with the buckling phenomenon characteristic of a jet impinging upon the surface of collector. A viscous jet may have either tensile or compressive forces along its axis. The periodic buckling that is often observed is attributed to the occurrence of compressive forces as the jet decelerates at the collector. With the increase of axial compressive stresses along the jet, a jet with circular cross sections first buckles by formation of sharp folds, and then by formation of coils. The resulting buckling patterns include zigzag patterns and coils that which can be controlled by changing parameters, such as density, viscosity, conductivity, voltage, polymer concentration, distance and volumetric flow rate. Uniformly buckled polymer fibers can be made at a rate of one turn per microsecond. An experimental apparatus was built to continuously collect buckling coils of nylon 6, from a water surface, into a multilayer sheet. These small ``springs'' and sheets will be tested for mechanical properties needed in biomedical applications.

  1. Analysis of interfractional set-up errors and intrafractional organ motions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins.

    PubMed

    Suzuki, Minoru; Nishimura, Yasumasa; Nakamatsu, Kiyoshi; Okumura, Masahiko; Hashiba, Hisayuki; Koike, Ryuta; Kanamori, Shuichi; Shibata, Toru

    2006-03-01

    To analyze the interfractional set-up errors and intrafractional organ motions and to define appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins in intensity-modulated radiotherapy (IMRT) for head and neck tumors. Twenty-two patients with head and neck or brain tumors who were treated with IMRT were enrolled. The set-up errors were defined as the displacements of the coordinates of bony landmarks on the beam films from those on the simulation films. The organ motions were determined as the displacements of the coordinates of the landmarks on the images recorded every 3 min for 15 min on the X-ray simulator from those on the initial image. The standard deviations (SDs) of the systematic set-up errors (Sigma-INTER) and organ motions (Sigma-intra) distributed with a range of 0.7-1.3 and 0.2-0.8 mm, respectively. The average of the SDs of the random set-up errors (sigma-INTER) and organ motions (sigma-intra) ranged from 0.7 to 1.6 mm and from 0.3 to 0.6 mm, respectively. Appropriate PTV-margins and PRV-margins for all the landmarks ranged from 2.0 to 3.6 mm and from 1.8 to 2.4 mm, respectively. We have adopted a PTV-margin of 5mm and a PRV-margin of 3mm for head and neck IMRT at our department.

  2. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer

    SciTech Connect

    Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Koshy, Mary; Howell, Rebecca; Schuster, David; Davis, Lawrence W.

    2005-04-01

    Purpose: To compare the gross tumor volume (GTV) identified on CT to that obtained from fluorodeoxyglucose (FDG) positron emission tomography (PET) and determine the differences in volume and dose coverage of the PET-GTV when the CT-GTV is used for radiotherapy planning. Methods and Materials: A total of 40 patients with intact squamous cell carcinoma arising in the head-and-neck region underwent intensity-modulated radiotherapy (IMRT) at one department. All patients underwent CT simulation for treatment planning followed by PET-CT in the treatment position. CT simulation images were fused to the CT component of the PET-CT images. The GTV using the CT simulation images was contoured (CT-GTV), as was the GTV based on the PET scan (PET-GTV). The IMRT plans were obtained using the CT-GTV. Results: The PET-GTV was smaller, the same size, and larger than the CT-GTV in 30 (75%), 3 (8%), and 7 (18%) cases respectively. The median PET-GTV and CT-GTV volume was 20.3 cm{sup 3} (range, 0.2-294) and 37.2 cm{sup 3} (range, 2-456), respectively. The volume of PET-GTV receiving at least 95% of the prescribed dose was 100% in 20 (50%), 95-99% in 10 (25%), 90-94% in 3 (8%), 85-89% in 1 (3%), 80-84% in 2 (5%), 75-79% in 1 (3%), and <75% in 3 (8%) cases. The minimal dose received by 95% of the PET-GTV was {>=}100% in 19 (48%), 95-99% in 11 (28%), 90-94% in 5 (13%), 85-89% in 2 (5%), and <75% in 3 (8%) cases. Conclusion: The PET-GTV was larger than the CT-GTV in 18% of cases. In approximately 25% of patients with intact head-and-neck cancer treated using IMRT, the volume of PET-GTV receiving at least 95% of the prescribed dose and minimal dose received by 95% of the PET-GTV were less than optimal.

  3. Early Prediction of Outcome in Advanced Head-and-Neck Cancer Based on Tumor Blood Volume Alterations During Therapy: A Prospective Study

    SciTech Connect

    Cao Yue Popovtzer, Aron; Li, Diana; Chepeha, Douglas B.; Moyer, Jeffrey S.; Prince, Mark E.; Worden, Francis; Teknos, Theodoros; Bradford, Carol; Mukherji, Suresh K.; Eisbruch, Avraham

    2008-12-01

    Purpose: To assess whether alterations in tumor blood volume (BV) and blood flow (BF) during the early course of chemo-radiotherapy (chemo-RT) for head-and-neck cancer (HNC) predict treatment outcome. Methods and Materials: Fourteen patients receiving concomitant chemo-RT for nonresectable, locally advanced HNC underwent dynamic contrast-enhanced (DCE) MRI scans before therapy and 2 weeks after initiation of chemo-RT. The BV and BF were quantified from DCE MRI. Preradiotherapy BV and BF, as well as their changes during RT, were evaluated separately in the primary gross tumor volume (GTV) and nodal GTV for association with outcomes. Results: At a median follow-up of 10 months (range, 5-27 months), 9 patients had local-regional controlled disease. One patient had regional failure, 3 had local failures, and 1 had local-regional failure. Reduction in tumor volume after 2 weeks of chemo-RT did not predict for local control. In contrast, the BV in the primary GTV after 2 weeks of chemo-RT was increased significantly in the local control patients compared with the local failure patients (p < 0.03). Conclusions: Our data suggest that an increase in available primary tumor blood for oxygen extraction during the early course of RT is associated with local control, thus yielding a predictor with potential to modify treatment. These findings require validation in larger studies.

  4. Dental MRI using a dedicated RF-coil at 3 Tesla.

    PubMed

    Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara

    2015-12-01

    To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Compressing DNA sequence databases with coil

    PubMed Central

    White, W Timothy J; Hendy, Michael D

    2008-01-01

    Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work. PMID:18489794

  6. Development of a patch antenna array RF coil for ultra-high field MRI.

    PubMed

    Nakajima, Manabu; Nakajima, Iwao; Obayashi, Shigeru; Nagai, Yuji; Obata, Takayuki; Hirano, Yoshiyuki; Ikehira, Hiroo

    2007-01-01

    In radiofrequency (RF) coil design for ultra-high-field magnetic resonance (MR) imaging, short RF wavelengths present various challenges to creating a big volume coil. When imaging a human body using an ultra-high magnetic field MR imaging system (magnetic flux density of 7 Tesla or more), short wavelength may induce artifacts from dielectric effect and other factors. To overcome these problems, we developed a patch antenna array coil (PAAC), which is a coil configured as a combination of patch antennas. We prototyped this type of coil for 7T proton MR imaging, imaged a monkey brain, and confirmed the coil's utility as an RF coil for ultra-high-field MR imaging.

  7. Natural convection from vertical helical coiled tubes in air

    SciTech Connect

    Ali, M.E.

    1999-07-01

    Helically coiled tubes are used in many engineering applications, such as heating, refrigerating and HVAC systems. They are used also in steam generator and condenser design in power plants because of their large surface area per unit volume. In spite of their widespread use, there is very little information available in the literature on natural convection from such coils. Two experimental investigation have been reported on steady state laminar and transition natural convection from the outer surface of vertically oriented helical coiled tubes in air. Four coils at constant heat flux boundary condition have been used with coil diameter to tube diameter ratio of 16.45 and 23.94. Six more coils have been used at variable surface temperature boundary condition with coil diameter to tube diameter ratio 19.923, 15.904, and 12.798. Local average heat transfer coefficients are obtained for laminar and transition natural convection. The data are correlated with Rayleigh number using the tube diameter as a characteristic length. It has been found that the Nusselt number decreases as Rayleigh number increases for constant heat flux. Transition to turbulent natural convection regime has obtained at a critical Rayleigh number of about 5,000 and it characterizes by a waveform like relation between Nusselt number and Rayleigh number.

  8. Development and implementation of an 84-channel matrix gradient coil.

    PubMed

    Littin, Sebastian; Jia, Feng; Layton, Kelvin J; Kroboth, Stefan; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2017-04-25

    Design, implement, integrate, and characterize a customized coil system that allows for generating spatial encoding magnetic fields (SEMs) in a highly-flexible fashion. A gradient coil with a high number of individual elements was designed. Dimensions of the coil were chosen to mimic a whole-body gradient system, scaled down to a head insert. Mechanical shape and wire layout of each element were optimized to increase the local gradient strength while minimizing eddy current effects and simultaneously considering manufacturing constraints. Resulting wire layout and mechanical design is presented. A prototype matrix gradient coil with 12 × 7 = 84 elements consisting of two element types was realized and characterized. Measured eddy currents are <1% of the original field. The coil is shown to be capable of creating nonlinear, and linear SEMs. In a DSV of 0.22 m gradient strengths between 24 mT∕m and 78 mT∕m could be realized locally with maximum currents of 150 A. Initial proof-of-concept imaging experiments using linear and nonlinear encoding fields are demonstrated. A shielded matrix gradient coil setup capable of generating encoding fields in a highly-flexible manner was designed and implemented. The presented setup is expected to serve as a basis for validating novel imaging techniques that rely on nonlinear spatial encoding fields. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Designing with null flux coils

    SciTech Connect

    Davey, K.R.

    1997-09-01

    Null flux were suggested by Danby and Powell in the late 1960`s as a useful means for realizing induced lift with little drag. As an array of alternating magnets is translated past a set of null flux coils, the currents induced in these coils act to vertically center the magnets on those coils. At present, one Japanese MAGLEV system company and two American-based companies are employing either null flux or flux eliminating coils in their design for high speed magnetically levitated transportation. The principle question addressed in paper is: what is the proper choice of coil length to magnet length in a null flux system? A generic analysis in the time and frequency domain is laid out with the intent of showing the optimal design specification in terms of coil parameters.

  10. In vivo prostate magnetic resonance imaging and magnetic resonance spectroscopy at 3 Tesla using a transceive pelvic phased array coil: preliminary results.

    PubMed

    Kim, Hee-Won; Buckley, David L; Peterson, David M; Duensing, G Randy; Caserta, Jim; Fitzsimmons, Jeffrey; Blackband, Stephen J

    2003-07-01

    Magnetic resonance (MR) systems operating at 3 Telsa (T) and above have demonstrated considerable potential in human studies, offering improved signal-to-noise ratio and spectral resolution. However, because of radiofrequency limitations and concerns, and the lack of large volume body coils, most studies have been limited to the head. In this study we describe the design and construction of a transceive pelvic phased array coil with which MR images and spectra of the human prostate at 3 T have been obtained. Comparison with 1.5 T instruments with different hardware configurations is difficult; however, in a preliminary comparison the signal-to-noise ratio is improved in phantoms and humans when compared with a 1.5 T receive-only pelvic phased array coil, and high quality spectral resolution is demonstrated through the delineation of the citrate quadruplet in localized 1H prostate spectra. Higher fields offer the potential for MR prostate studies without the use of an endorectal coil.

  11. Investigation of cryosorption vacuum system and operation process for COIL

    NASA Astrophysics Data System (ADS)

    Xia, Liang-zhi; Wang, Jin-qu; Sang, Feng-ting; Zhao, Su-qin; Jin, Yu-qi; Fang, Ben-jie

    2007-05-01

    Cryosorption vacuum system for COIL is researched and developed. Adsorption chiller has been proposed and developed by improving the heat exchanger chiller. Compared with the heat exchanger chiller, the volume and LN II consumption of the new chiller were favourably reduced. In the present work, the new adsorption operation process, cryogenic pressure swing adsorption is adopted. Compared with thermal swing adsorption, regeneration time is shortened and LN II consumption is saved at least 80% in the new operation process. The cryosorption vacuum system was integrated to COIL and tested successfully. The weight of sorbent in adsorption bed is 22Kg, the total gas flowrate is about 0.5mol/s, the COIL's power maintains over 2kW, the total COIL's working time accounts to 100 seconds. It is concluded that the cryosorption vacuum system has the same pressure recovery capability as the large vacuum tank.

  12. Error-tolerant RF litz coils for NMR/MRI.

    PubMed

    Doty, F D; Entzminger, G; Hauck, C D

    1999-09-01

    A new class of NMR RF volume coils is being developed that permits improved tuning range, B(1) homogeneity, tuning stability, and sensitivity compared to birdcages over a wide range of practical conditions, especially for microscopy and wraparound flexible applications. They are denoted litz coils, as their flux transparency and current distribution is obtained from woven foil patterns with insulated crossovers. Contrary to the design criteria of phased arrays, the parallel routes in litz coils use high coupling coefficients to achieve optimal current distribution, which is highly independent of tuning, balancing, and matching adjustments and is compatible with multiple capacitive segmentation. Magnetic filling factors, loaded Q, and inhomogeneity measurements and calculations are presented for a variety of litz coils with frequency-diameter products from 7 to 20 MHz-m and are compared to similar birdcages. Copyright 1999 Academic Press.

  13. Error-Tolerant RF Litz Coils for NMR/MRI

    NASA Astrophysics Data System (ADS)

    Doty, F. David; Entzminger, George; Hauck, Cory D.

    1999-09-01

    A new class of NMR RF volume coils is being developed that permits improved tuning range, B1 homogeneity, tuning stability, and sensitivity compared to birdcages over a wide range of practical conditions, especially for microscopy and wraparound flexible applications. They are denoted litz coils, as their flux transparency and current distribution is obtained from woven foil patterns with insulated crossovers. Contrary to the design criteria of phased arrays, the parallel routes in litz coils use high coupling coefficients to achieve optimal current distribution, which is highly independent of tuning, balancing, and matching adjustments and is compatible with multiple capacitive segmentation. Magnetic filling factors, loaded Q, and inhomogeneity measurements and calculations are presented for a variety of litz coils with frequency-diameter products from 7 to 20 MHz-m and are compared to similar birdcages.

  14. Techniques For Microfabricating Coils For Microelectromechanical Systems Applications

    NASA Astrophysics Data System (ADS)

    Woods, R. C.; Powell, A. L.

    2008-01-01

    The advanced technology necessary for building future space exploration vehicles includes microfabricated coils for making possible self-inductances integrated with other passive and active electronic components. Integrated inductances make possible significant improvements in reliability over the traditional arrangement of using external discrete inductances, as well as allowing significant size (volume) reductions (also important in space vehicles). Two possible fabrication techniques (one using proprietary branded "Foturan" glass, the other using silicon wafer substrates) for microscopic coils are proposed, using electroplating into channels. The techniques have been evaluated for fabricating the planar electrical coils needed for typical microelectromechanical systems applications. There remain problems associated with processing using "Foturan" glass, but coil fabrication on silicon wafers was successful. Fabrication methods such as these are expected to play an important part in the development of systems and subsystems for forthcoming space exploration missions.

  15. Techniques For Microfabricating Coils For Microelectromechanical Systems Applications

    SciTech Connect

    Woods, R. C.; Powell, A. L.

    2008-01-21

    The advanced technology necessary for building future space exploration vehicles includes microfabricated coils for making possible self-inductances integrated with other passive and active electronic components. Integrated inductances make possible significant improvements in reliability over the traditional arrangement of using external discrete inductances, as well as allowing significant size (volume) reductions (also important in space vehicles). Two possible fabrication techniques (one using proprietary branded 'Foturan' glass, the other using silicon wafer substrates) for microscopic coils are proposed, using electroplating into channels. The techniques have been evaluated for fabricating the planar electrical coils needed for typical microelectromechanical systems applications. There remain problems associated with processing using 'Foturan' glass, but coil fabrication on silicon wafers was successful. Fabrication methods such as these are expected to play an important part in the development of systems and subsystems for forthcoming space exploration missions.

  16. Coiled tubing; Operations and services

    SciTech Connect

    Welch, J.L.; Stephens, R.K. )

    1992-09-01

    This paper reports on coiled tubing units which are used for many types of remedial well operations, including sand plugbacks, cement squeezes, fill cleanouts, underreaming, acid stimulations, and fishing. Fishing operations include removal of inflatable bridge plugs, lock mandrels stuck in profile nipples, coiled tubing, coiled tubing bottomhole assemblies (BHAs) and wireline. Recommended guidelines for selecting candidates, proper tool string configuration and operational techniques are presented here to assist coiled tubing supervisors and company representatives in the planning and implementation of efficient and effective fishing operations. Treatment of these areas are not intended to be exhaustive, but rather generally representative of common applications. Each fishing operation requires individualized analysis and planning.

  17. Materials and methods for higher performance screen-printed flexible MRI receive coils.

    PubMed

    Corea, Joseph R; Lechene, P Balthazar; Lustig, Michael; Arias, Ana C

    2017-08-01

    To develop methods for characterizing materials used in screen-printed MRI coils and improve signal-to-noise ratio (SNR) with new lower-loss materials. An experimental apparatus was created to characterize dielectric properties of plastic substrates used in receive coils. Coils were fabricated by screen printing conductive ink onto several plastic substrates. Unloaded and sample loaded quality factor (QUnloaded /QLoaded ) measurements and scans on a 3T scanner were used to characterize coil performance. An experimental method was developed to describe the relationship between a coil's QUnloaded and the SNR it provides in images of a phantom. In addition, 3T scans of a phantom and the head of a volunteer were obtained with a proof-of-concept printed eight-channel array, and the results were compared with a commercial 12-channel array. Printed coils with optimized substrates exhibited up to 97% of the image SNR when compared with a traditional coil on a loading phantom. QUnloaded and the SNR of coils were successfully correlated. The printed array resulted in images comparable to the quality given by the commercial array. Using the proposed methods and materials, the SNR of printed coils approached that of commercial coils while using a new fabrication technique that provided more flexibility and close contact with the patient's body. Magn Reson Med 78:775-783, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. A 32-channel coil system for MR vessel wall imaging of intracranial and extracranial arteries at 3T.

    PubMed

    Hu, Xiaoqing; Li, Ye; Zhang, Lei; Zhang, Xiaoliang; Liu, Xin; Chung, Yiu-Cho

    2017-02-01

    To develop a RF coil system for joint imaging of intracranial and extracranial arterial vessel wall at 3T. The coil system consists of a 24-channel head coil combined with an 8-channel carotid coil. It is compared with a standard coil configuration (12-channel head coil+4-channel neck coil+8-channel carotid coil) for SNR and g-factors in phantoms and healthy volunteers. The clinical relevance of the proposed coil system is also evaluated in patients. In phantom experiments, the SNR of the proposed coil system is 53% higher than the maximum SNR of the standard coil configuration at the center of the phantom which usually corresponds to the intracranial region of the head. The g-factors of the proposed coil system in the sagittal plane are lower than the standard coil configuration (by 10.8% and 26.6% for R=2 and 4 respectively) in the same experiment. In healthy volunteer experiments, 55% of the pixels have SNR above 100 for the proposed coil system, which is 33% more than that of the standard coil configuration. The maximum g-factors in the standard configuration are higher than those from the new coil design by 12% at R=2 and up to 36% at R=4 in the sagittal plane. In patients, in-vivo intracranial and extracranial arterial wall images at an isotropic spatial resolution of 0.6mm can be acquired using the proposed coil system. Plaques are well depicted from the images. The performance of the proposed coil set is superior to the standard coil configuration, providing high SNR, low g-factor and good spatial coverage needed for simultaneous high resolution imaging of intracranial and extracranial arterial walls. Images acquired in 7.6min using the proposed coil system can achieve an isotropic spatial resolution of 0.6mm and can be used to depict plaques on the intracranial and extracranial arterial walls in patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Competition between Coiled-Coil Structures and the Impact on Myosin-10 Bundle Selection.

    PubMed

    Vavra, Kevin C; Xia, Youlin; Rock, Ronald S

    2016-06-07

    Coiled-coil fusions are a useful approach to enforce dimerization in protein engineering. However, the final structures of coiled-coil fusion proteins have received relatively little attention. Here, we determine the structural outcome of adjacent parallel and antiparallel coiled coils. The targets are coiled coils that stabilize myosin-10 in single-molecule biophysical studies. We reveal the solution structure of a short, antiparallel, myosin-10 coiled-coil fused to the parallel GCN4-p1 coiled coil. Surprisingly, this structure is a continuous, antiparallel coiled coil where GCN4-p1 pairs with myosin-10 rather than itself. We also show that longer myosin-10 segments in these parallel/antiparallel fusions are dynamic and do not fold cooperatively. Our data resolve conflicting results on myosin-10 selection of actin filament bundles, demonstrating the importance of understanding coiled-coil orientation and stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed Central

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  1. Magnetic resonance microscopy of spinal cord injury in mouse using a miniaturized implantable RF coil.

    PubMed

    Bilgen, Mehmet

    2007-01-15

    A magnetic resonance neuroimaging method is described for high-resolution imaging of spinal cord injury in live mouse. The method is based on a specially designed radio frequency coil system formed by a combination of an implantable coil and an external volume coil. The implantable coil is a 5 mm x 10 mm rectangular design with a 9.1 pF capacitor and 22 gauge copper wire and optimal for surgical implantation over the cervical or thoracic spine. The external volume coil is a standard birdcage resonator. The coils are inductively overcoupled for imaging the spinal cord at 9.4 T magnetic field strength. The inductive overcoupling provides flexibility in tuning the resonant frequency and matching the impedance of the implanted coil remotely using the tuning and matching capabilities of the volume coil. After describing the implementation of the imaging setup, in vivo data are gathered to demonstrate the imaging performance of the coil system and the feasibility of performing MR microscopy on injured mouse spinal cord.

  2. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    SciTech Connect

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-08-11

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging.

  3. Automated volume analysis of head and neck lesions on CT scans using 3D level set segmentation.

    PubMed

    Street, Ethan; Hadjiiski, Lubomir; Sahiner, Berkman; Gujar, Sachin; Ibrahim, Mohannad; Mukherji, Suresh K; Chan, Heang-Ping

    2007-11-01

    The authors have developed a semiautomatic system for segmentation of a diverse set of lesions in head and neck CT scans. The system takes as input an approximate bounding box, and uses a multistage level set to perform the final segmentation. A data set consisting of 69 lesions marked on 33 scans from 23 patients was used to evaluate the performance of the system. The contours from automatic segmentation were compared to both 2D and 3D gold standard contours manually drawn by three experienced radiologists. Three performance metric measures were used for the comparison. In addition, a radiologist provided quality ratings on a 1 to 10 scale for all of the automatic segmentations. For this pilot study, the authors observed that the differences between the automatic and gold standard contours were larger than the interobserver differences. However, the system performed comparably to the radiologists, achieving an average area intersection ratio of 85.4% compared to an average of 91.2% between two radiologists. The average absolute area error was 21.1% compared to 10.8%, and the average 2D distance was 1.38 mm compared to 0.84 mm between the radiologists. In addition, the quality rating data showed that, despite the very lax assumptions made on the lesion characteristics in designing the system, the automatic contours approximated many of the lesions very well.

  4. 18F-Fluorodeoxyglucose-PET/CT in locally advanced head and neck cancer can influence the stage migration and nodal radiation treatment volumes.

    PubMed

    Mazzola, Rosario; Alongi, Pierpaolo; Ricchetti, Francesco; Fiorentino, Alba; Fersino, Sergio; Giaj-Levra, Niccolò; Salgarello, Matteo; Alongi, Filippo

    2017-08-28

    To analyze the impact of 18F-fluorodeoxyglucose-PET/CT (PET/CT) in the radiotherapy (RT) planning strategy in HNC, correlating CT-scan and PET/CT performances. Inclusion criteria were: age >18 years old, histologically proven head and neck cancer (HNC), patients candidate to definitive RT ± chemotherapy, stage of disease by means of PET/TC and CT-scan performed at our Cancer Care Center. Sixty patients were analyzed. The following primary tumor sites were investigated: nasopharynx (13%), oropharynx (42%), oral cavity (32%) and larynx non-glottic (13%). Globally, PET/CT findings caused changes on nodal radiation treatment volumes in 10% of all the population of study. Specifically, in 5 cases out of 19 oral cavity tumors (26%), PET/CT detected neck-nodes positive (not detected at CT-scan). These findings have allowed to change the patients management, including PET/CT neck-nodes positive in the high-risk RT volumes. In the RT planning strategy, the present findings support the use of PET/CT to improve upfront regional staging of HNC disease, particularly for oral cavity tumors. Further investigations are advocated to evaluate if this strategy could impact on long-term outcomes in terms of local control and overall survival.

  5. A Parallel Coiled-Coil Tetramer with Offset Helices

    SciTech Connect

    Liu,J.; Deng, Y.; Zheng, Q.; Cheng, C.; Kallenbach, N.; Lu, M.

    2006-01-01

    Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between {alpha} helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of {alpha}-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete {alpha}-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 {angstrom} resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.

  6. Helical coil thermal hydraulic model

    NASA Astrophysics Data System (ADS)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  7. Evaluation of Coils for Imaging Histological Slides: Signal-to-Noise Ratio and Filling Factor

    PubMed Central

    Hoang, Dung Minh; Voura, Evelyn B.; Zhang, Chao; Fakri-Bouchet, Latifa; Wadghiri, Youssef Zaim

    2013-01-01

    Purpose To investigate the relative gain in sensitivity of five histology coils designed in-house to accommodate tissue sections of various sizes and compare with commercial mouse head coils. Methods The coil set was tailored to house tissue sections ranging from 5 to 1000 μm encased in either glass slides or coverslips. Results Our simulations and experimental measurements demonstrated that although the sensitivity of this flat structure consistently underperforms relative to a birdcage head coil based on the gain expected from their respective filling factor ratios, our results demonstrate that it can still provide a remarkable gain in sensitivity. Our study also describes preparation protocols for freshly excised sections, as well as pre-mounted tissue slides of both mouse and human specimens. Examples of the exceptional level of tissue detail and the near-perfect magnetic resonance imaging to light microscopic image coregistration are provided. Conclusion The increase in filling factor achieved by the histology radiofrequency (RF) probe overcomes the losses associated with electric leaks inherent to this structure, leading to a 6.7-fold improvement in performance for the smallest coil implemented. Alternatively, the largest histology coil design exhibited equal sensitivity to the mouse head coil while nearly doubling the RF planar area coverage. PMID:23857590

  8. Evaluation of coils for imaging histological slides: signal-to-noise ratio and filling factor.

    PubMed

    Hoang, Dung Minh; Voura, Evelyn B; Zhang, Chao; Fakri-Bouchet, Latifa; Wadghiri, Youssef Zaim

    2014-05-01

    To investigate the relative gain in sensitivity of five histology coils designed in-house to accommodate tissue sections of various sizes and compare with commercial mouse head coils. The coil set was tailored to house tissue sections ranging from 5 to1000 µm encased in either glass slides or coverslips. Our simulations and experimental measurements demonstrated that although the sensitivity of this flat structure consistently underperforms relative to a birdcage head coil based on the gain expected from their respective filling factor ratios, our results demonstrate that it can still provide a remarkable gain in sensitivity. Our study also describes preparation protocols for freshly excised sections, as well as premounted tissue slides of both mouse and human specimens. Examples of the exceptional level of tissue detail and the near-perfect magnetic resonance imaging to light microscopic image coregistration are provided. The increase in filling factor achieved by the histology radiofrequency (RF) probe overcomes the losses associated with electric leaks inherent to this structure, leading to a 6.7-fold improvement in performance for the smallest coil implemented. Alternatively, the largest histology coil design exhibited equal sensitivity to the mouse head coil while nearly doubling the RF planar area coverage. Copyright © 2013 Wiley Periodicals, Inc.

  9. Replaceable Sleeve Protects Welder Coil

    NASA Technical Reports Server (NTRS)

    Baker, W. L.; Simpson, C., E.

    1983-01-01

    New replaceable carbon insert for deflection coil in electron-beam welder promises to decrease maintenance costs. Inserts made from materials other than carbon (not yet tried) are less expensive, thus reducing costs even further. With carbon insert, deflection coils last longer and are easier to maintain.

  10. Collapse pressure of coiled tubing

    SciTech Connect

    Yang, Y.S.

    1996-09-01

    The collapse pressure is a measure of an external force required to collapse a tube in the absence of internal pressure. It is defined as the minimum pressure required to yield the tube in the absence of internal pressure. Coiled tubing is sometimes used in high-pressure wells. If the external pressure becomes too high, the coiled tubing will collapse. This could not only lead to serious well-control problems, but may result in extensive fishing operations. A reliable safety criterion of collapse pressure for the coiled tubing is needed by the coiled tubing operators. Theoretical models of collapse pressure are well developed for perfectly round coiled tubing but not for oval coiled tubing. Coiled tubing is initially manufactured with nearly perfect roundness, sometimes having a small ovality (typically {le} 0.5%). Perfectly round CT becomes oval owing to the plastic mechanical deformation of the coiled tubing as it spooled on and off the reel and over the gooseneck. As the cycling continues, the ovality usually increases. This ovality significantly decreases the collapse failure pressure as compared to perfectly round tubing. In this paper, an analytical model of collapse pressure for oval tubing under axial tension or compression is developed based on elastic instability theory and the von Mises criterion. The theoretical model shows satisfactory agreement with experimental data.

  11. Replaceable Sleeve Protects Welder Coil

    NASA Technical Reports Server (NTRS)

    Baker, W. L.; Simpson, C., E.

    1983-01-01

    New replaceable carbon insert for deflection coil in electron-beam welder promises to decrease maintenance costs. Inserts made from materials other than carbon (not yet tried) are less expensive, thus reducing costs even further. With carbon insert, deflection coils last longer and are easier to maintain.

  12. COIL technology development at Boeing

    NASA Astrophysics Data System (ADS)

    Hurlock, Steve C.

    2002-05-01

    The historical COIL contributions at the McDonnell Douglas Research Laboratory, the Rocketdyne Division of Rockwell International and Boeing's Laser and Electro-Optic Systems organization are briefly described. The latter organization now contains the capabilities of the two heritage organizations. Boeing's new high pressure sealed COIL is also described.

  13. Magnet Coil Shorted Turn Detector

    SciTech Connect

    Dinkel, J.A.; Biggs, J.E.

    1994-03-01

    The Magnet Coil Shorted Turn Detector has been developed to facilitate the location of shorted turns in magnet coils. Finding these shorted turns is necessary to determine failure modes that are a necessary step in developing future production techniques. Up to this point, coils with shorted turns had the insulation burned off without the fault having been located. This disassembly process destroyed any chance of being able to find the fault. In order to maintain a flux balance in a coupled system such as a magnet coil, the current in a shorted turn must be opposed to the incident current. If the direction of the current in each conductor can be measured relative to the incident current, then the exact location of the short can be determined. In this device, an AC voltage is applied to the magnet under test. A small hand held B-dot pickup coil monitors the magnetic field produced by current in the individual magnet conductors. The relative phase of this pickup coil voltage is compared to a reference signal derived from the input current to detect a current reversal as the B-dot pickup coil is swept over the conductors of the coil under test. This technique however, is limited to only those conductors that are accessible to the hand held probe.

  14. Evaluation of Common RF Coil Setups for MR Imaging at Ultrahigh Magnetic Field: A Numerical Study.

    PubMed

    Lu, Jonathan; Pang, Yong; Wang, Chunsheng; Wu, Bing; Vigneron, Daniel B; Zhang, Xiaoliang

    2011-01-01

    This study is an evaluation of the ratio of electric field to magnetic field (E/B1), specific absorption rate (SAR) and signal-to-noise ratio (SNR) generated by three different RF transceiver coil setups: surface coil, surface coil with shielding, and microstrip using a finite discrete time domain (FDTD) simulation in the presence of a head phantom. One of our main focuses in this study is to better understand coil designs that would improve patient safety at high fields by studying a coil type that may potentially minimize SAR while examining potential changes in SNR. In the presence of a human head load, the microstrip's E/B1 ratio was on average smallest while its SAR was also on average smallest of the three setups, suggesting the microstrip may be a better RF coil choice for MRI concerning patient safety and parallel excitation applications than the other two coils. In addition, the study suggests that the microstrip also has a higher SNR compared with the other two coils demonstrating the possibility that the microstrip could lead to higher quality MRI images.

  15. Evaluation of Common RF Coil Setups for MR Imaging at Ultrahigh Magnetic Field: A Numerical Study

    PubMed Central

    Lu, Jonathan; Pang, Yong; Wang, Chunsheng; Wu, Bing; Vigneron, Daniel B

    2017-01-01

    This study is an evaluation of the ratio of electric field to magnetic field (E/B1), specific absorption rate (SAR) and signal-to-noise ratio (SNR) generated by three different RF transceiver coil setups: surface coil, surface coil with shielding, and microstrip using a finite discrete time domain (FDTD) simulation in the presence of a head phantom. One of our main focuses in this study is to better understand coil designs that would improve patient safety at high fields by studying a coil type that may potentially minimize SAR while examining potential changes in SNR. In the presence of a human head load, the microstrip's E/B1 ratio was on average smallest while its SAR was also on average smallest of the three setups, suggesting the microstrip may be a better RF coil choice for MRI concerning patient safety and parallel excitation applications than the other two coils. In addition, the study suggests that the microstrip also has a higher SNR compared with the other two coils demonstrating the possibility that the microstrip could lead to higher quality MRI images. PMID:28966929

  16. Dose-volume-related dysphagia after constrictor muscles definition in head and neck cancer intensity-modulated radiation treatment.

    PubMed

    Mazzola, R; Ricchetti, F; Fiorentino, A; Fersino, S; Giaj Levra, N; Naccarato, S; Sicignano, G; Albanese, S; Di Paola, G; Alterio, D; Ruggieri, R; Alongi, F

    2014-12-01

    Dysphagia remains a side effect influencing the quality of life of patients with head and neck cancer (HNC) after radiotherapy. We evaluated the relationship between planned dose involvement and acute and late dysphagia in patients with HNC treated with intensity-modulated radiation therapy (IMRT), after a recontouring of constrictor muscles (PCs) and the cricopharyngeal muscle (CM). Between December 2011 and December 2013, 56 patients with histologically proven HNC were treated with IMRT or volumetric-modulated arc therapy. The PCs and CM were recontoured. Correlations between acute and late toxicity and dosimetric parameters were evaluated. End points were analysed using univariate logistic regression. An increasing risk to develop acute dysphagia was observed when constraints to the middle PCs were not respected [mean dose (Dmean) ≥50 Gy, maximum dose (Dmax) >60 Gy, V50 >70% with a p = 0.05]. The superior PC was not correlated with acute toxicity but only with late dysphagia. The inferior PC was not correlated with dysphagia; for the CM only, Dmax >60 Gy was correlated with acute dysphagia ≥ grade 2. According to our analysis, the superior PC has a major role, being correlated with dysphagia at 3 and 6 months after treatments; the middle PC maintains this correlation only at 3 months from the beginning of radiotherapy, but it does not have influence on late dysphagia. The inferior PC and CM have a minimum impact on swallowing symptoms. We used recent guidelines to define dose constraints of the PCs and CM. Two results emerge in the present analysis: the superior PC influences late dysphagia, while the middle PC influences acute dysphagia.

  17. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains.

    PubMed

    Wang, C; Stewart, R J; Kopecek, J

    1999-02-04

    Stimuli-sensitive polymer hydrogels, which swell or shrink in response to changes in the environmental conditions, have been extensively investigated and used as 'smart' biomaterials and drug-delivery systems. Most of these responsive hydrogels are prepared from a limited number of synthetic polymers and their derivatives, such as copolymers of (meth)acrylic acid, acrylamide and N-isopropyl acrylamide. Water-soluble synthetic polymers have also been crosslinked with molecules of biological origin, such as oligopeptides and oligodeoxyribonucleotides, or with intact native proteins. Very often there are several factors influencing the relationship between structure and properties in these systems, making it difficult to engineer hydrogels with specified responses to particular stimuli. Here we report a hybrid hydrogel system assembled from water-soluble synthetic polymers and a well-defined protein-folding motif, the coiled coil. These hydrogels undergo temperature-induced collapse owing to the cooperative conformational transition of the coiled-coil protein domain. This system shows that well-characterized water-soluble synthetic polymers can be combined with well-defined folding motifs of proteins in hydrogels with engineered volume-change properties.

  18. Apparatus for operating a downhole tool using coil tubing

    SciTech Connect

    Perricone, J.M.

    1992-03-17

    This patent describes a packer for running on coiled tubing inside a well tubing that can be set by reciprocation of the tubing. It comprises a mandrel for attaching to the end of the coiled tubing, a lower packer head attached to the mandrel, an annular packing element on the mandrel supported by the packer head, an upper packer head having a conical outer surface, a slip assembly carried by the mandrel and including slips and means for engaging the well tubing and frictionally resisting movement of the slip means through the well casing, and means connecting the slip assembly to the mandrel to limit upward movement of the slip means relative to the mandrel as the packer is being run into the well tubing and upon reciprocation of the mandrel for allowing the mandrel to move upwardly moving the outer conical surface of the upper packer head under the slips forcing the slips into engagement with the well tubing to hold the upper packer head against further upward movement to allow continued upward movement of the mandrel to compress the packing element between the upper and lower packer heads and force the packing element into sealing engagement with the mandrel and the well tubing.

  19. Evaluation of radiograph-based interstitial implant dosimetry on computed tomography images using dose volume indices for head and neck cancer

    PubMed Central

    Upreti, Ritu Raj; Dayananda, S.; Bhalawat, R. L.; Bedre, Girish N.; Deshpande, D. D.

    2007-01-01

    Conventional radiograph-based implant dosimetry fails to correlate the spatial dose distribution on patient anatomy with lack in dosimetry quality. Though these limitations are overcome in computed tomography (CT)-based dosimetry, it requires an algorithm which can reconstruct catheters on the multi-planner CT images. In the absence of such algorithm, we proposed a technique in which the implanted geometry and dose distribution generated from orthogonal radiograph were mapped onto the CT data using coordinate transformation method. Radiograph-based implant dosimetry was generated for five head and neck cancer patients on Plato Sunrise treatment planning system. Dosimetry was geometrically optimized on volume, and dose was prescribed according to the natural prescription dose. The final dose distribution was retrospectively mapped onto the CT data set of the same patients using coordinate transformation method, which was verified in a phantom prior to patient study. Dosimetric outcomes were evaluated qualitatively by visualizing isodose distribution on CT images and quantitatively using the dose volume indices, which includes coverage index (CI), external volume index (EI), relative dose homogeneity index (HI), overdose volume index (OI) and conformal index (COIN). The accuracy of coordinate transformation was within ±1 mm in phantom and ±2 mm in patients. Qualitative evaluation of dosimetry on the CT images shows reasonably good coverage of target at the expense of excessive normal tissue irradiation. The mean (SD) values of CI, EI and HI were estimated to be 0.81 (0.039), 0.55 (0.174) and 0.65 (0.074) respectively. The maximum OI estimated was 0.06 (mean 0.04, SD = 0.015). Finally, the COIN computed for each patient ranged from 0.4 to 0.61 (mean 0.52, SD = 0.078). The proposed technique is feasible and accurate to implement even for the most complicated implant geometry. It allows the physicist and physician to evaluate the plan both qualitatively and

  20. NMR planar micro coils for micro spectroscopy: design and characterisation.

    PubMed

    Baxan, N; Rengle, A; Châteaux, J-F; Briguet, A; Pasquet, G; Morin, P; Fakri-Bouchet, L

    2006-01-01

    The goal of this study is to determine the concentration sensitivity and the limit of detection of a SNMR receiver planar micro coil with ellipsoidal geometry 1000x500 microm, fabricated using an electroplating technique and used as SNMR receiver coil at 200 MHz. The maximum signal intensity on the NMR images and simulation of RF field distribution allows defining an active volume of 0.8 microL. The localised spectroscopy based on a PRESS sequence shows that the concentration sensitivity is closed to S(C)=2.33 M(-1) and the limit of detection LOD=0.8 M. This micro-system offers the possibility of new investigation techniques based on implantable micro coils used for in vivo study of local cerebral metabolites occupying a small volume (microL to nL order).

  1. The Coil Method in Contemporary Ceramics

    ERIC Educational Resources Information Center

    Nigrosh, Leon I.

    1976-01-01

    For centuries coil building has been the primary method of making pottery the world over. Many classrooms still reflect this preference for symmetrical coil building. Describes coil building and what forms can be made from it. (Author/RK)

  2. Helically Coiled Graphene Nanoribbons.

    PubMed

    Daigle, Maxime; Miao, Dandan; Lucotti, Andrea; Tommasini, Matteo; Morin, Jean-François

    2017-03-07

    Graphene is a zero-gap, semiconducting 2D material that exhibits outstanding charge-transport properties. One way to open a band gap and make graphene useful as a semiconducting material is to confine the electron delocalization in one dimension through the preparation of graphene nanoribbons (GNR). Although several methods have been reported so far, solution-phase, bottom-up synthesis is the most promising in terms of structural precision and large-scale production. Herein, we report the synthesis of a well-defined, helically coiled GNR from a polychlorinated poly(m-phenylene) through a regioselective photochemical cyclodehydrochlorination (CDHC) reaction. The structure of the helical GNR was confirmed by (1) H NMR, FT-IR, XPS, TEM, and Raman spectroscopy. This Riemann surface-like GNR has a band gap of 2.15 eV and is highly emissive in the visible region, both in solution and the solid state.

  3. Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T.

    PubMed

    van der Zwaag, Wietske; Marques, José P; Hergt, Martin; Gruetter, Rolf

    2009-10-01

    In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes.

  4. Protein detection by Western blot via coiled-coil interactions.

    PubMed

    Boucher, Cyril; St-Laurent, Gilles; Jolicoeur, Mario; Crescenzo, Gregory De; Durocher, Yves

    2010-04-01

    We propose an approach for the detection of proteins by Western blot that takes advantage of the high-affinity interaction occurring between two de novo designed peptides, the E and K coils. As a model system, K coil-tagged epidermal growth factor (EGF) was revealed with secreted alkaline phosphatase (SeAP) tagged with E coil (SeAP-Ecoil) as well as with biotinylated E coil. In that respect, we first produced purified SeAP-Ecoil and verified its ability to interact with K coil peptides by surface plasmon resonance biosensing. We demonstrated that protein detection with Ecoil-biotin was more specific than with SeAP-Ecoil. We then showed that our approach is as sensitive as conventional detection strategies relying on nickel-nitrilotriacetic acid-horseradish peroxidase (Ni-NTA-HRP), anti-His-HRP, or anti-EGF. Altogether, our results indicate that the E/K coiled-coil system is a good alternative for protein detection by Western blot. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  5. Vestibulo-Oculomotor Reflex Recording Using the Scleral Search Coil Technique. Review of Peripheral Vestibular Disorders

    PubMed Central

    Boleas-Aguirre, Marisol; Migliaccio, Amerio A.; Carey, John P.

    2010-01-01

    Our goal is to review vestibulo-oculomotor reflex (VOR) studies on several peripheral vestibular disorders (Ménière’s disease, vestibular neuritis, benign paroxysmal positional vertigo, superior canal dehiscence syndrome, and vestibular neuroma), using the scleral search coil (SSC) technique. Head movements are detected by vestibular receptors and the elicited VOR is responsible for compensatory 3 dimensional eye movements. Therefore, to study the VOR it is necessary to assess the direction and velocity of 3 dimensional head, and eye movements. This can be achieved using the SSC technique. Interaction between a scleral search coil and an alternating magnetic field generates an electrical signal that is proportional to eye position. Ideally, eye rotation axis is aligned with head rotation axis and VOR gain (eye velocity/head velocity) for horizontal and vertical head rotations is almost 1. The VOR gain, however, for torsional head rotations is smaller and about 0.7. PMID:17683700

  6. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.

    PubMed

    Shin, Donghyuk; Kim, Gwanho; Kim, Gyuhee; Zheng, Xu; Kim, Yang-Gyun; Lee, Sangho

    2014-12-12

    Coiled coil has served as an excellent model system for studying protein folding and developing protein-based biomaterials. Most designed coiled coils function as oligomers, namely intermolecular coiled coils. However, less is known about structural and biochemical behavior of intramolecular coiled coils where coiled coil domains are covalently linked in one polypeptide. Here we prepare a protein which harbors three coiled coil domains with two short linkers, termed intramolecular tandem coiled coil (ITCC) and characterize its structural and biochemical behavior in solution. ITCC consists of three coiled coil domains whose sequences are derived from Coil-Ser and its domain swapped dimer. Modifications include positioning E (Glu) residue at "e" and K (Lys) at "g" positions throughout heptad repeats to enhance ionic interaction among its constituent coiled coil domains. Molecular modeling of ITCC suggests a compact triple helical bundle structure with the second and the third coiled coil domains forming a canonical coiled coil. ITCC exists as a mixture of monomeric and dimeric species in solution. Small-angle X-ray scattering reveals ellipsoidal molecular envelopes for both dimeric and monomeric ITCC in solution. The theoretically modeled structures of ITCC dock well into the envelopes of both species. Higher ionic strength shifts the equilibrium into monomer with apparently more compact structure while secondary structure remains unchanged. Taken together, our results suggest that our designed ITCC is predominantly monomeric structure through the enhanced ionic interactions, and its conformation is affected by the concentration of ionic species in the buffer.

  7. The feasibility of using 5D CNS software in obtaining standard fetal head measurements from volumes acquired by three-dimensional ultrasonography: comparison with two-dimensional ultrasound.

    PubMed

    Rizzo, Giuseppe; Aiello, Elisa; Pietrolucci, Maria Elena; Arduini, Domenico

    2016-01-01

    To evaluate the performance of a new software (5D CNS) developed to automatically recognize the axial planes of the fetal brain from three-dimensional volumes and to obtain the basic standard biometric measurements. The accuracy, reproducibility, and time required for analysis of 5D CNS were compared with that of two-dimensional (2D) ultrasound. This was a prospective study of 120 uncomplicated singleton pregnancies undergoing routine second trimester examination. For every pregnancy standard biometric measurements including biparietal diameter, head circumference, distal lateral ventricle width, transverse cerebellar diameter and cisterna magna width were obtained using 2D ultrasound and three-dimensional (3D) ultrasound with 5D CNS software. Reliability and agreement of the two techniques were evaluated using intraclass correlation coefficients (ICCs) and proportionate Bland-Altman plots were constructed. The time necessary to complete the measurements with either technique was compared and intraobserver and interobserver agreements of measurements calculated. In 118/120 (98.3%), 5D CNS successfully reconstructed the axial diagnostic planes and calculated all the basic biometric head and brain measurements. The agreement between the two techniques was high for all the measurements considered (all ICCS > 0.920). The time necessary to measure the biometric variables considered was significantly shorter with 5D CNS (54 versus 115 s, p < 0.0001) than with 2D ultrasonography. No significant differences were found in 5D CNS repeated measurements obtained either by the same observer or by two independent observers. 5D CNS software allows us to obtain reliable biometric measurements of the fetal brain and to reduce the examination time. Its application may improve work-flow efficiency in ultrasonographic practices.

  8. Use of kilovoltage X-ray volume imaging in patient dose calculation for head-and-neck and partial brain radiation therapy

    PubMed Central

    2010-01-01

    Background To evaluate the accuracy of using kilovoltage x-ray cone-beam computed tomography (kV-CBCT) imaging for in vivo dose calculations. Methods A Region-of-Interest (ROI) CT number mapping method was developed to generate the cone-beam CT number vs. relative electron density calibration curve for 3D dose calculations. The stability of the results was validated for three consecutive months. The method was evaluated on three brain tumors and three head-and-neck tumor cases. For each patient, kV-CBCT images were acquired on the first treatment day and two-week intervals on the Elekta XVI system. The delivered dose distributions were calculated by applying the patients' treatment plans to the kV-CBCT images. The resulting dose distributions and dose volume histograms (DVHs) of the tumor and critical structures were compared to the original treatment plan. Results The kV-CBCT electron density calibration was stable within 1.5% over a three-month period. The DVH and dose distribution comparison based on the planning CT and the initial kV-CBCT showed good agreements for majority of cases. The doses calculated from the planning CT and kV-CBCT were compared on planes perpendicular to the beam axes and passing through the isocenter. Using γ analysis with a criterion of 2 mm/2% and a threshold of 10%, more than 99.5% of the points on the iso-planes exhibited γ <1. For one patient, kV-CBCT images detected 5.8% dose variation in the right parotid due to tumor shrinkage and patient weight loss. Conclusions ROI mapping method is an effective method for the creation of kV-CBCT electron density calibration curves for head-and-neck and brain tumor patients. Dose variations as monitored using kV-CBCT imaging suggest that some patients can benefit from adaptive treatment plan re-optimization. PMID:20403191

  9. Inductively-overcoupled coil design for high resolution magnetic resonance imaging

    PubMed Central

    Bilgen, Mehmet

    2006-01-01

    Background Maintaining the quality of magnetic resonance images acquired with the current implantable coil technology is challenging in longitudinal studies. To overcome this challenge, the principle of 'inductive overcoupling' is introduced as a method to tune and match a dual coil system. This system consists of an imaging coil built with fixed electrical elements and a matching coil equipped with tuning and matching capabilities. Overcoupling here refers to the condition beyond which the peak of the current in the imaging coil splits. Methods The combined coils are coupled inductively to operate like a transformer. Each coil circuit is electrically represented by equivalent lumped-elements. A theoretical analysis is given to identify the frequency response characteristics of the currents in each coil. The predictions from this analysis are translated into experiments and applied to locally image rat spinal cord at 9.4 T using an implantable coil as the imaging coil and an external volume coil as the matching coil. Results The theoretical analysis indicated that strong coupling between the coils divides the resonance peaks on the response curves of the currents. Once these newly generated peaks were tuned and matched to the desired frequency and impedance of operation, in vivo images were acquired from the rat spinal cord at high quality and high resolution. Conclusion After proper implementation, inductive overcoupling provides a unique opportunity for tuning and matching the coil system, and allows reliable and repeatable acquisitions of magnetic resonance data. This feature is likely to be useful in experimental studies, such as those aimed at longitudinally imaging the rat following spinal cord injury. PMID:16401343

  10. RF Coil Considerations for Short-T2 MRI

    PubMed Central

    Horch, R. Adam; Wilkens, Ken; Gochberg, Daniel F.; Does, Mark D.

    2010-01-01

    With continuing hardware and pulse sequence advancements, modern MRI is gaining sensitivity to signals from short-T2 1H species under practical experimental conditions. However, conventional MRI coils are typically not designed for this type of application they often contain proton-rich construction materials which may contribute confounding 1H background signal during short-T2 measurements. An example of this is shown herein. Separately, a loop-gap style coil was used to compare different coil construction materials and configurations with respect to observed 1H background signal sizes in a small animal imaging system. Background signal sources were spatially identified and quantified in a number of different coil configurations. It was found that the type and placement of structural coil materials around the loop-gap resonator, as well as the coil’s shielding configuration, are critical determinants of the coil’s background signal size. Although this study employed a loop-gap resonator design, these findings are directly relevant to standard volume coils commonly used for MRI. PMID:20665825

  11. Effects of Receive-Only Inserts on SAR, B1+ Field and Tx Coil Performance

    PubMed Central

    Krishnamurthy, Narayanan; Zhao, Tiejun; Ibrahim, Tamer S

    2013-01-01

    Purpose To evaluate the effect of different cylindrical and close conforming receive only array designs on spin excitation and specific absorption rate (SAR) of a 7 Tesla transmit only head coil. Materials and Methods We developed FDTD models of different receive only array geometries. Cylindrical and close fitting helmet arrays with varying copper trace widths; a TEM Tx coil model and two head models were used in numerical simulations. Tx coil coupling was experimentally measured and validated with FDTD modeling. Results Changing copper trace width of loops in array models caused subtle changes in RF absorption (<5%). Changes in SAR distribution were observed in the head models with Rx-only inserts. Peak SAR increased (−1 to +15%) in different tissues for a mean B1+ in the brain of 2 μT. Total absorption in the head models for 1 Watt forward power increased (5 to 21%) in the heads with Rx-only inserts. Changes in RF absorption with different Rx-inserts indicate a change in RF radiation of the Tx coil even when changes in B1+ and coupling between ports of Tx coil were minimal. Conclusion Changes in local/global SAR and subtle changes in B1+ field distributions were observed with the presence of Rx-only inserts. Thus, incorporation of the receive-only array effects are needed when evaluating SAR and designing RF transmit pulse waveform parameters for shimming and/or Tx-SENSE for 7 T MRI. PMID:23913474

  12. The evolution and structure prediction of coiled coils across all genomes.

    PubMed

    Rackham, Owen J L; Madera, Martin; Armstrong, Craig T; Vincent, Thomas L; Woolfson, Derek N; Gough, Julian

    2010-10-29

    Coiled coils are α-helical interactions found in many natural proteins. Various sequence-based coiled-coil predictors are available, but key issues remain: oligomeric state and protein-protein interface prediction and extension to all genomes. We present SpiriCoil (http://supfam.org/SUPERFAMILY/spiricoil), which is based on a novel approach to the coiled-coil prediction problem for coiled coils that fall into known superfamilies: hundreds of hidden Markov models representing coiled-coil-containing domain families. Using whole domains gives the advantage that sequences flanking the coiled coils help. SpiriCoil performs at least as well as existing methods at detecting coiled coils and significantly advances the state of the art for oligomer state prediction. SpiriCoil has been run on over 16 million sequences, including all completely sequenced genomes (more than 1200), and a resulting Web interface supplies data downloads, alignments, scores, oligomeric state classifications, three-dimensional homology models and visualisation. This has allowed, for the first time, a genomewide analysis of coiled-coil evolution. We found that coiled coils have arisen independently de novo well over a hundred times, and these are observed in 16 different oligomeric states. Coiled coils in almost all oligomeric states were present in the last universal common ancestor of life. The vast majority of occasions that individual coiled coils have arisen de novo were before the last universal common ancestor of life; we do, however, observe scattered instances throughout subsequent evolutionary history, mostly in the formation of the eukaryote superkingdom. Coiled coils do not change their oligomeric state over evolution and did not evolve from the rearrangement of existing helices in proteins; coiled coils were forged in unison with the fold of the whole protein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Plasma volume and water/sodium balance differences due to sex and menstrual phase after 4 hours of head-down bed rest (HDBR).

    NASA Astrophysics Data System (ADS)

    Edgell, Heather; Grinberg, Anna; Beavers, Keith; Gagne, Nathalie; Totosy de Zepetnek, Julia; Greaves, Danielle; Hughson, Richard L.

    In both sexes, orthostatic responses are impaired by spaceflight or head-down bed-rest (HDBR), with a greater impact in women. Decreased plasma volume (PV) could contribute to reductions in cardiac output and blood pressure upon an orthostatic challenge. We hypothesized that a greater decrease in PV in women might lead to poorer orthostatic responses. We further hypothesized that the responses in women would differ throughout the menstrual cycle. We studied the responses of men (n=6) and women (n= 6) to 4-hr HDBR and 4-hr seated control (SEAT). Furthermore, we studied women in both the follicular (Day 8-11) and luteal (Day 18-24) phases of menstruation in a repeated measures design. After 4-hr HDBR, PV decreased in men (-175.1 ± 56.8 mL; vs. SEAT: P=0.076) and in the follicular phase, but did not change in the luteal phase (Luteal: -55.0 ± 54.6 mL; Follicular: -226.4 ± 88.2 mL (Interaction effect: P=0.01)). After 4-hr HDBR, only men appear to exhibit increased urine volume (Men, difference from SEAT: +298.3 ± 105.5 mL; Luteal, difference from SEAT: +59.4 ± 34.3 mL; Follicular, difference from SEAT: +43.7 ± 190.0 mL; P=0.16). No changes in urinary sodium after 4-hr HDBR were observed in any group (Men, difference from SEAT: -16.5 ± 13.5 µmol; Luteal, difference from SEAT: -8.0 ± 8.8 µmol; Follicular, difference from SEAT: +28.2 ± 29.5 µmol; P=0.264). No changes in urinary osmolarity were observed after 4-hr HDBR in any group (Men, difference from SEAT: -38.8 ± 126.2 mmol/kg; Luteal, difference from SEAT: -85.1 ± 66.9 mmol/kg; Follicular, difference from SEAT: -99.1 ± 98.5 mmol/kg; P=0.906). The changes in plasma volume do not appear to be a result of urinary water and sodium loss. Perhaps actions of atrial natriuretic peptide, urodilatin, the RAAS pathway, and/or capillary filtration are involved. From these observed changes in plasma volume, we surmise that women in the follicular phase of the menstrual cycle may exhibit lower cardiac output and thus

  14. SU-E-J-241: Wavelet-Based Temporal Feature Extraction From DCE-MRI to Identify Sub-Volumes of Low Blood Volume in Head-And-Neck Cancer

    SciTech Connect

    You, D; Aryal, M; Samuels, S; Eisbruch, A; Cao, Y

    2015-06-15

    Purpose: A previous study showed that large sub-volumes of tumor with low blood volume (BV) (poorly perfused) in head-and-neck (HN) cancers are significantly associated with local-regional failure (LRF) after chemoradiation therapy, and could be targeted with intensified radiation doses. This study aimed to develop an automated and scalable model to extract voxel-wise contrast-enhanced temporal features of dynamic contrastenhanced (DCE) MRI in HN cancers for predicting LRF. Methods: Our model development consists of training and testing stages. The training stage includes preprocessing of individual-voxel DCE curves from tumors for intensity normalization and temporal alignment, temporal feature extraction from the curves, feature selection, and training classifiers. For feature extraction, multiresolution Haar discrete wavelet transformation is applied to each DCE curve to capture temporal contrast-enhanced features. The wavelet coefficients as feature vectors are selected. Support vector machine classifiers are trained to classify tumor voxels having either low or high BV, for which a BV threshold of 7.6% is previously established and used as ground truth. The model is tested by a new dataset. The voxel-wise DCE curves for training and testing were from 14 and 8 patients, respectively. A posterior probability map of the low BV class was created to examine the tumor sub-volume classification. Voxel-wise classification accuracy was computed to evaluate performance of the model. Results: Average classification accuracies were 87.2% for training (10-fold crossvalidation) and 82.5% for testing. The lowest and highest accuracies (patient-wise) were 68.7% and 96.4%, respectively. Posterior probability maps of the low BV class showed the sub-volumes extracted by our model similar to ones defined by the BV maps with most misclassifications occurred near the sub-volume boundaries. Conclusion: This model could be valuable to support adaptive clinical trials with further

  15. Reducing the risk, complexity and cost of coiled tubing drilling

    SciTech Connect

    Portman, L.

    1999-07-01

    Drilling vertical well extensions with coiled tubing, particularly in the underbalanced state, exploits the inherent strengths of coiled tubing including: The ability to enter slim holes against a live well head; The use of small equipment that is fast to rig up and down; and The ability to trip quickly and maintain a steady pressure downhole with continuous circulation. Coiled tubing has successfully been used to deepen hundreds of wells, yet this application has only received sporadic attention. There are some very important technical considerations when drilling non-directionally with coiled tubing that must be addressed to ensure a commercially successful job. A recent vertical drilling job carried out in Western Australia illustrates the critical engineering aspects of an underbalanced, non-directional, coiled tubing drilling job. This job was completed for Arc Energy in April 1999 and produced a well that stabilized at 1.1 MMcfd, where three other wells drilled conventionally into these zones had shown only trace amounts of hydrocarbon.

  16. Coiled tubing - Operations and services

    SciTech Connect

    Gronseth, J.M. )

    1993-04-01

    Drilling with a continuous (rather than jointed) drill string is an old concept that is gaining new attention as a result of recent advances made in coiled tubing and drilling technology. The development of larger diameter, reliable, high-strength coiled tubing and smaller diameter, positive displacement motors, orienting tools, surveying systems and fixed cutting drill bits have given drilling with a continuous drill string a capability that was previously unattainable. Like its many other uses, (e.g., squeeze cementing, wellbore cleanouts, flow initiation, logging) the continuity of coiled tubing gives it several advantages over conventional drill strings. These include: drilling underbalanced safely, significantly reduced trip time, continuous circulation, smaller surface requirements. Coiled tubing drilling operations have smaller surface lease requirements than most conventional rigs due to the smaller footprint of the coiled tubing unit and associated equipment. Current coiled tubing drilling operations have the following limitations: conventional rig assistance is required for well preparation; conventional rigs must assist in running long protective and production casing strings or liners; hole sizes are smaller; working depth capabilities are shallower, coiled tubing life is less. This paper goes on to discuss the history of continuous drill strings and includes information on tubing units, circulating systems, drilling fluids, well control systems, downhole tools, orientation tools, and bottomhole assemblies. It then gives a cost comparison and an application of this type of drilling.

  17. Optimized quadrature surface coil designs

    PubMed Central

    Kumar, Ananda; Bottomley, Paul A.

    2008-01-01

    Background Quadrature surface MRI/MRS detectors comprised of circular loop and figure-8 or butterfly-shaped coils offer improved signal-to-noise-ratios (SNR) compared to single surface coils, and reduced power and specific absorption rates (SAR) when used for MRI excitation. While the radius of the optimum loop coil for performing MRI at depth d in a sample is known, the optimum geometry for figure-8 and butterfly coils is not. Materials and methods The geometries of figure-8 and square butterfly detector coils that deliver the optimum SNR are determined numerically by the electromagnetic method of moments. Figure-8 and loop detectors are then combined to create SNR-optimized quadrature detectors whose theoretical and experimental SNR performance are compared with a novel quadrature detector comprised of a strip and a loop, and with two overlapped loops optimized for the same depth at 3 T. The quadrature detection efficiency and local SAR during transmission for the three quadrature configurations are analyzed and compared. Results The SNR-optimized figure-8 detector has loop radius r8 ∼ 0.6d, so r8/r0 ∼ 1.3 in an optimized quadrature detector at 3 T. The optimized butterfly coil has side length ∼ d and crossover angle of ≥ 150° at the center. Conclusions These new design rules for figure-8 and butterfly coils optimize their performance as linear and quadrature detectors. PMID:18057975

  18. Improved Sensing Coils for SQUIDs

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho

    2007-01-01

    An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.

  19. Accessing Three-Dimensional Crystals with Incorporated Guests through Metal-Directed Coiled-Coil Peptide Assembly.

    PubMed

    Nepal, Manish; Sheedlo, Michael J; Das, Chittaranjan; Chmielewski, Jean

    2016-08-31

    Obtaining three-dimensional (3D) protein and peptide crystals on demand requires a precisely orchestrated hierarchical assembly of biopolymer building blocks. In this work, we disclose a metal-ion-mediated strategy to assemble trimeric coiled-coil peptides in a head-to-tail fashion into linear strands with interstrand interactions. This design led to hexagonal 3D peptide crystal formation within 30 min in the presence of divalent metal ions. The crystal morphology could be controlled by varying the metal ion/peptide ratio, resulting in hexagonal discs to rods. Diffraction studies elucidated the head-to-tail arrangement of the coiled-coil linear strands and their hexagonal, antiparallel packing within the crystal. Unsatisfied ligands at the hexagonal ends of the crystals were harnessed as a powerful means to direct His-tagged fluorophores to distinct locations within the crystals. Overall, the designed hierarchical assembly provides a facile means to obtain 3D peptide crystals and incorporate His-tag-based cargoes and may have potential use in drug delivery and sensor design.

  20. Cross-linking reveals laminin coiled-coil architecture

    PubMed Central

    Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah

    2016-01-01

    Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530

  1. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  2. Coiling of a viscous filament

    NASA Astrophysics Data System (ADS)

    Samuel, A. D. T.; Ryu, W. S.; Mahadevan, L.

    1997-11-01

    A classic demonstration of fluid buckling is a daily occurence at the breakfast table, where a continuous stream of viscous fluid (honey) is often poured onto a flat surface (toast) from a sufficient height. The thin fluid filament quickly settles into a steady state; near the surface it bends into a helical shape while simultaneously rotating about the vertical and is laid out in a regular coil. This behavior is reminiscent of the coiling of a falling flexible rope. We derive a simple scaling law that predicts the coiling frequency in terms of the filament radius and the flow rate. We also verify this scaling law with the results of experiments.

  3. Coiled tubing. operations and services

    SciTech Connect

    Hightower, C.M. )

    1992-11-01

    Coiled tubing is being used with increasing frequency in conventional or traditional production operations. Demand for coiled pipe in these types of applications is expected to experience rapid growth as standard 2 (3/8) and 2 (7/8)-in. OD tubing sizes and units equipped to run larger pipe become more readily available. This paper reports on a recent market survey which indicated that coiled tubing used for velocity strings and standard production tubing installations are two areas with the most potential for immediate and near-term expansion. Other applications include: well casing and liners, gravel packing, artificial lift, flowlines and pipelines.

  4. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  5. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  6. Microfabricated solenoids and Helmholtz coils for NMR spectroscopy of mammalian cells.

    PubMed

    Ehrmann, Klaus; Saillen, Nicolas; Vincent, Franck; Stettler, Matthieu; Jordan, Martin; Wurm, Florian Maria; Besse, Pierre-André; Popovic, Radivoje

    2007-03-01

    NMR-microprobes based on solenoids and Helmholtz coils have been microfabricated and NMR-spectra of mammalian cells have successfully been taken. The microfabrication technology developed for these probes consists of three electroplated copper levels for low resistance coils and three SU-8 layers for the integration of microchannels. This technology allows fabricating solenoids, Helmholtz and planar coils on the same wafer. The coils have inner diameters in the range of 160 to 400 microm and detection volumes of 5 to 22 nL. The solenoid and Helmholtz coils show improved RF-field characteristics compared to a planar coil fabricated with the same process. The fabricated solenoid has a particularly low resistance of only 0.46 Omega at 300 MHz. Moreover, it is very sensitive and has a very uniform RF-field, but shows large line width. The Helmholtz coils are slightly less sensitive, but display a far narrower line width, and are therefore a good compromise. With a Helmholtz coil, a SNR of 620 has been measured after one scan on 9 nL pure water. An NMR-microprobe based on a Helmholtz coil has also been used to take spectra of CHO cells that have been concentrated in the sensitive region of the coil with a mechanical filter integrated into the channel.

  7. Are There Head Volume Alterations at 11 to 14 Weeks in Fetuses with Congenital Heart Defects? A First Trimester Case Series.

    PubMed

    Abu-Rustum, Reem S; Ziade, M Fouad; Abu-Rustum, Sameer E; Daou, Linda S

    2016-04-01

    Objective This study aims to assess head volume (HV) alterations at 11 to 14 weeks in fetuses with congenital heart defects (CHD). Methods A retrospective case-control study on 100 normal and 26 CHD fetuses was conducted. The fetuses had a first trimester scan with volume data sets stored from which HV was calculated. The mean HV and HV as a function of crown-rump length (CRL) in normal fetuses were compared with established normograms. Mean HV, HV as a function of CRL, and HV/CRL were compared between normal and CHD fetuses. Nonparametric Kruskal-Wallis H test was used with p < 0.05 considered significant. Results Overall, 83 normal and 19 CHD fetuses were included. The mean HV and HV as a function of CRL in the normal fetuses were comparable to what has been established (p = 0.451 and 0.801, respectively). The mean HV was statistically smaller in fetuses with CHD, particularly those with hypoplastic left heart (HLH): 10.7 mL in HLH versus 13.0 mL in normal fetuses (p = 0.043). The HV/CRL was statistically smaller in fetuses with CHD (p = 0.01). Conclusion Despite the small sample size, our case series suggests that alterations in HV may potentially be apparent as early as 11 to 14 weeks in CHD fetuses, particularly those with HLH. Larger prospective studies are needed to validate our findings.

  8. High-resolution structures of a heterochiral coiled coil

    DOE PAGES

    Mortenson, David E.; Steinkruger, Jay D.; Kreitler, Dale F.; ...

    2015-10-12

    Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from D amino acids (D peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein–protein interactions. Coiled–coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled–coil interactions were predicted over 50 years ago by Crick, andmore » limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report in this paper two independent crystal structures that elucidate coiled-coil packing between L- and D-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. Finally, however, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.« less

  9. Hydrophobic core packing and backbone flexibility in coiled coils

    NASA Astrophysics Data System (ADS)

    Plecs, Joseph John

    1999-11-01

    An understanding of the structure and function of protein molecules requires an understanding of how their hydrophobic cores are assembled, including how the peptide backbone can adjust to accommodate different packing arrangements. Using coiled-coil molecules as a model of protein structures, we studied several cases in which the arrangement of packing groups in the hydrophobic core controls the structure of a folded molecule. First, we consider an example of a prosthetic packing group, where the addition of a hydrophobic ligand permits a new packing arrangement that incorporates the ligand, leading to a new overall structure. Second, the crystal structures of two peptides designed to adopt a novel fold, the right-handed coiled coils, reveal how a small change in core packing can discriminate between two different folds. And last, the design of heterodimers based on core-packing complementarity establishes that core packing can convey specificity of association between different molecules, as well as determining the molecular structure. The heterodimer designs also demonstrate the importance of a combination of backbone freedom and restriction in predicting the energetics of folded molecules. In this case, a parametrized coiled- coil backbone with appropriate parameters and restrictions was required to predict stabilities. We conclude that core packing can exert a great deal of control over the structure of proteins, and that many of its effects can be accurately predicted by modeling the molecular interactions in the context of a flexible overall structure.

  10. ASTROMAG coil cooling study

    NASA Technical Reports Server (NTRS)

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-01-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  11. Neutron resonance spin flippers: Static coils manufactured by electrical discharge machining

    SciTech Connect

    Martin, N.; Kredler, L.; Häußler, W.; Wagner, J. N.; Dogu, M.; Fuchs, C.; Böni, P.

    2014-07-15

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a μ-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

  12. Neutron resonance spin flippers: static coils manufactured by electrical discharge machining.

    PubMed

    Martin, N; Wagner, J N; Dogu, M; Fuchs, C; Kredler, L; Böni, P; Häußler, W

    2014-07-01

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a μ-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

  13. Radiation Therapy Oncology Group Consensus Panel Guidelines for the Delineation of the Clinical Target Volume in the Postoperative Treatment of Pancreatic Head Cancer

    SciTech Connect

    Goodman, Karyn A.; Regine, William F.; Dawson, Laura A.; Ben-Josef, Edgar; Haustermans, Karin; Bosch, Walter R.; Turian, Julius; Abrams, Ross A.

    2012-07-01

    Purpose: To develop contouring guidelines to be used in the Radiation Therapy Oncology Group protocol 0848, a Phase III randomized trial evaluating the benefit of adjuvant chemoradiation in patients with resected head of pancreas cancer. Methods and Materials: A consensus committee of six radiation oncologists with expertise in gastrointestinal radiotherapy developed stepwise contouring guidelines and an atlas for the delineation of the clinical target volume (CTV) in the postoperative treatment of pancreas cancer, based on identifiable regions of interest and margin expansions. Areas at risk for subclinical disease to be included in the CTV were defined, including nodal regions, anastomoses, and the preoperative primary tumor location. Regions of interest that could be reproducibly contoured on postoperative imaging after a pancreaticoduodenectomy were identified. Standardized expansion margins to encompass areas at risk were developed after multiple iterations to determine the optimal margin expansions. Results: New contouring recommendations based on CT anatomy were established. Written guidelines for the delineation of the postoperative CTV and normal tissues, as well as a Web-based atlas, were developed. Conclusions: The postoperative abdomen has been a difficult area for effective radiotherapy. These new guidelines will help physicians create fields that better encompass areas at risk and minimize dose to normal tissues.

  14. Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure

    SciTech Connect

    Gluck, Iris; Ibrahim, Mohannad; Popovtzer, Aron; Teknos, Theodoros N.; Chepeha, Douglas B.; Prince, Mark E.; Moyer, Jeffrey S.; Bradford, Carol R.; Eisbruch, Avraham

    2009-05-01

    Purpose: To analyze patterns of failure in patients with head-and-neck cutaneous squamous cell carcinoma (HNCSCC) and clinical/radiologic evidence of perineural invasion (CPNI), in order to define neural clinical target volume (CTV) for treatment planning. Methods and Materials: Patients treated with three-dimensional (3D) conformal or intensity-modulated radiotherapy (IMRT) for HNCSCC with CPNI were included in the study. A retrospective review of the clinical charts, radiotherapy (RT) plans and radiologic studies has been conducted. Results: Eleven consecutive patients with HNCSCCs with CPNI were treated from 2000 through 2007. Most patients underwent multiple surgical procedures and RT courses. The most prevalent failure pattern was along cranial nerves (CNs), and multiple CNs were ultimately involved in the majority of cases. In all cases the involved CNs at recurrence were the main nerves innervating the primary tumor sites, as well as their major communicating nerves. We have found several distinct patterns of disease spread along specific CNs depending on the skin regions harboring the primary tumors, including multiple branches of CN V and VII. These patterns and the pertinent anatomy are detailed in the this article. Conclusions: Predictable disease spread patterns along cranial nerves supplying the primary tumor sites were found in this study. Awareness of these patterns, as well as knowledge of the relevant cranial nerve anatomy, should be the basis for CTV definition and delineation for RT treatment planning.

  15. Zero-angle helical coil

    NASA Technical Reports Server (NTRS)

    Troendle, J. A.

    1976-01-01

    Device is constructed of bimetallic stock material formed into segments of small diameters and fastened together by metal strips. Coil is useful in various types of actuators, such as temperature controls.

  16. Adjustable Induction-Heating Coil

    NASA Technical Reports Server (NTRS)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  17. Adjustable Induction-Heating Coil

    NASA Technical Reports Server (NTRS)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  18. Cerebellar Transcranial Magnetic Stimulation: The Role of Coil Geometry and Tissue Depth☆

    PubMed Central

    Hardwick, Robert M.; Lesage, Elise; Miall, R. Chris

    2014-01-01

    Background While transcranial magnetic stimulation (TMS) coil geometry has important effects on the evoked magnetic field, no study has systematically examined how different coil designs affect the effectiveness of cerebellar stimulation. Hypothesis The depth of the cerebellar targets will limit efficiency. Angled coils designed to stimulate deeper tissue are more effective in eliciting cerebellar stimulation. Methods Experiment 1 examined basic input–output properties of the figure-of-eight, batwing and double-cone coils, assessed with stimulation of motor cortex. Experiment 2 assessed the ability of each coil to activate cerebellum, using cerebellar-brain inhibition (CBI). Experiment 3 mapped distances from the scalp to cerebellar and motor cortical targets in a sample of 100 subjects' structural magnetic resonance images. Results Experiment 1 showed batwing and double-cone coils have significantly lower resting motor thresholds, and recruitment curves with steeper slopes than the figure-of-eight coil. Experiment 2 showed the double-cone coil was the most efficient for eliciting CBI. The batwing coil induced CBI only at higher stimulus intensities. The figure-of-eight coil did not elicit reliable CBI. Experiment 3 confirmed that cerebellar tissue is significantly deeper than primary motor cortex tissue, and we provide a map of scalp-to-target distances. Conclusions The double-cone and batwing coils designed to stimulate deeper tissue can effectively stimulate cerebellar targets. The double-cone coil was found to be most effective. The depth map provides a guide to the accessible regions of the cerebellar volume. These results can guide coil selection and stimulation parameters when designing cerebellar TMS studies. PMID:24924734

  19. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth.

    PubMed

    Hardwick, Robert M; Lesage, Elise; Miall, R Chris

    2014-01-01

    While transcranial magnetic stimulation (TMS) coil geometry has important effects on the evoked magnetic field, no study has systematically examined how different coil designs affect the effectiveness of cerebellar stimulation. The depth of the cerebellar targets will limit efficiency. Angled coils designed to stimulate deeper tissue are more effective in eliciting cerebellar stimulation. Experiment 1 examined basic input-output properties of the figure-of-eight, batwing and double-cone coils, assessed with stimulation of motor cortex. Experiment 2 assessed the ability of each coil to activate cerebellum, using cerebellar-brain inhibition (CBI). Experiment 3 mapped distances from the scalp to cerebellar and motor cortical targets in a sample of 100 subjects' structural magnetic resonance images. Experiment 1 showed batwing and double-cone coils have significantly lower resting motor thresholds, and recruitment curves with steeper slopes than the figure-of-eight coil. Experiment 2 showed the double-cone coil was the most efficient for eliciting CBI. The batwing coil induced CBI only at higher stimulus intensities. The figure-of-eight coil did not elicit reliable CBI. Experiment 3 confirmed that cerebellar tissue is significantly deeper than primary motor cortex tissue, and we provide a map of scalp-to-target distances. The double-cone and batwing coils designed to stimulate deeper tissue can effectively stimulate cerebellar targets. The double-cone coil was found to be most effective. The depth map provides a guide to the accessible regions of the cerebellar volume. These results can guide coil selection and stimulation parameters when designing cerebellar TMS studies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. An Asymmetric Birdcage Coil for Small-animal MR Imaging at 7T.

    PubMed

    Kim, Kyoung-Nam; Han, Sang-Doc; Seo, Jeung-Hoon; Heo, Phil; Yoo, Dongkyeom; Im, Geun Ho; Lee, Jung Hee

    2016-09-30

    The birdcage (BC) coil is currently being utilized for uniform radiofrequency (RF) transmit/receive (Tx/Rx) or Tx-only configuration in many magnetic resonance (MR) imaging applications, but insufficient magnetic flux (|B1|) density and their non-uniform distribution still exists in high-field (HF) environments. We demonstrate that the asymmetric birdcage (ABC) transmit/receive (Tx/Rx) volume coil, which is a modified standard birdcage (SBC) coil with the end ring split into two halves, is suitable for improving the |B1| sensitivity in 7T small-animal MR imaging. Cylindrical SBC and ABC coils with 35 mm diameter were constructed and bench tested for mouse body MR imaging at 300 MHz using a 7T scanner. To assess the ABC coil performance, computational electromagnetic (EM) simulation and 7T MR experiment were performed by using a cylindrical phantom and in vivo mouse body and quantitatively compared with the SBC coil in terms of |B1| distribution, RF transmit (|B1(+)|) field, and signal-to-noise ratio (SNR). The bench measurements of the two BC coils are similar, yielding a quality value (Q-value) of 74.42 for the SBC coil and 77.06 for the ABC coil. The computational calculation results clearly show that the proposed ABC coil offers superior |B1| field and |B1(+)| field sensitivity in the central axial slice compared with the SBC coil. There was also high SNR and uniformly distributed flip angle (FA) under the loaded condition of mouse body in the 7T experiment. Although ABC geometry allows a further increase in the |B1| field and |B1(+)| field sensitivity in only the central axial slice, the geometrical modification of the SBC coil can make a high performance RF coil feasible in the central axial slice and also make target imaging possible in the diagonal direction.

  1. Nylon screws make inexpensive coil forms

    NASA Technical Reports Server (NTRS)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  2. Nylon screws make inexpensive coil forms

    NASA Technical Reports Server (NTRS)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  3. Dynamics of liquid rope coiling.

    PubMed

    Habibi, Mehdi; Maleki, Maniya; Golestanian, Ramin; Ribe, Neil M; Bonn, Daniel

    2006-12-01

    We present a combined experimental and numerical investigation of the coiling of a liquid "rope" falling on a solid surface, focusing on three little-explored aspects of the phenomenon: The time dependence of "inertio-gravitational" coiling, the systematic dependence of the radii of the coil and the rope on the experimental parameters, and the "secondary buckling" of the columnar structure generated by high-frequency coiling. Inertio-gravitational coiling is characterized by oscillations between states with different frequencies, and we present experimental observations of four distinct branches of such states in the frequency-fall height space. The transitions between coexisting states have no characteristic period, may take place with or without a change in the sense of rotation, and usually (but not always) occur via an intermediate "figure of eight" state. We present extensive laboratory measurements of the radii of the coil and of the rope within it, and show that they agree well with the predictions of a "slender-rope" numerical model. Finally, we use dimensional analysis to reveal a systematic variation of the critical column height for secondary buckling as a function of (dimensionless) flow rate and surface tension parameters.

  4. Mechanism of stroke enhancement by coiling in carbon nanotube hybrid yarn artificial muscles (presentation video)

    NASA Astrophysics Data System (ADS)

    Haines, Carter S.; Lima, Márcio D.; Li, Na; Spinks, Geoffrey M.; Foroughi, Javad; Madden, John D. W.; Fang, Shaoli; De Andrade, Monica J.; Göktepe, Fatma; Göktepe, Ozer; Mirvakili, Seyed M.; Naficy, Sina; Lepró, Xavier; Oh, Jiyoung; Kozlov, Mikhail E.; Kim, Seon-Jeong; Xu, Xiuru; Wallace, Gordon G.; Baughman, Ray H.

    2014-03-01

    Twisted carbon nanotube yarns have been shown to develop useful torsional and tensile actuation. Particularly useful are those hybrid yarns that incorporate a volume-changing guest material into the yarn pore space. Changing guest volume causes concomitant untwisting and shortening of the twisted yarn. Intriguingly, the magnitude of the tensile actuation can be increased by an order of magnitude by inserting such high twist into the fiber as to cause coiling. The mechanism of coil-induced stroke enhancement is investigated using ordinary spring mechanics and it is shown that tensile actuation can be adequately predicted from the coil and yarn geometries.

  5. Equilibrium field coil concepts for INTOR

    SciTech Connect

    Strickler, D.J.; Peng, Y.K.M.; Brown, T.G.

    1981-08-01

    Methods are presented for reducing ampere-turn requirements in the EF coil system. It is shown that coil currents in an EF coil system external to the toroidal field coils can be substantially reduced by relaxing the triangularity of a D-shaped plasma. Further reductions are realized through a hybrid EF coil system using both internal and external coils. Equilibrium field coils for a poloidally asymmetric, single-null INTOR configuration are presented. It is shown that the shape of field lines in the plasma scrapeoff region and divertor channel improves as triangularity is reduced, but it does so at the possible expense of achievable stable beta values.

  6. Coil compaction and aneurysm growth: image-based quantification using non-rigid registration

    NASA Astrophysics Data System (ADS)

    De Craene, Mathieu; Pozo, José María; Villa, Maria Cruz; Vivas, Elio; Sola, Teresa; Guimaraens, Leopoldo; Blasco, Jordi; Macho, Juan; Frangi, Alejandro

    2008-03-01

    Endovascular treatment of intracranial aneurysms is a minimally-invasive technique recognized as a valid alternative to surgical clipping. However, endovascular treatment can be associated to aneurysm recurrence, either due to coil compaction or aneurysm growth. The quantification of coil compaction or aneurysm growth is usually performed by manual measurements or visual inspection of images from consecutive follow-ups. Manual measurements permit to detect large global deformation but might have insufficient accuracy for detecting subtle or more local changes between images. Image inspection permits to detect a residual neck in the aneurysm but do not differentiate aneurysm growth from coil compaction. In this paper, we propose to quantify independently coil compaction and aneurysm growth using non-rigid image registration. Local changes of volume between images at successive time points are identified using the Jacobian of the non-rigid transformation. Two different non-rigid registration strategies are applied in order to explore the sensitivity of Jacobian-based volume changes against the registration method, FFD registration based on mutual information and Demons. This volume-variation measure has been applied to four patients of which a series of 3D Rotational Angiography (3DRA) images obtained at different controls separated from two months to two years were available. The evolution of coil and aneurysm volumes along the period has been obtained separately, which allows distinguishing between coil compaction and aneurysm growth. On the four cases studied in this paper, aneurysm recurrence was always associated to aneurysm growth, as opposed to strict coil compaction.

  7. The design and performance of a geothermal heat pump system using horizontal sub-slab ground coils

    SciTech Connect

    Jensen, J.; Den Braven, K.

    1999-07-01

    The most significant disadvantage of geothermal or ground-coupled heat pumps (GHPs or GCHPs) is the relatively high cost of installing the ground coil. Installation costs can be reduced by effectively utilizing the soil under slab floors in residential installations, taking advantage of the excavation required for the house foundation and other features. A GHP system with six ground coils was installed in a residence on Lake Coeur d'Alene in northern Idaho. Four horizontal sub-slab ground coils were installed beneath the slab floor of the house and garage. Another ground coil was wrapped around the residential septic tank. A sixth coil was placed in a trench outside the basement wall in a spiral-coiled configuration. The primary purpose of this research was to design and install a geothermal heat pump system using different designs of horizontal sub-slab coils, and to compare the performance of the different types of coil placement. Coils that are placed deeper and/or contacting a greater volume of soil tend to have better performance than those which have shallow placement or are in contact with a smaller amount of soil. The below grade basement sub-slab coils and foundation spiral-coil loop consistently absorbed more energy during the heating season and rejected more heat during the cooling season compared to the garage and septic coils.

  8. Follow-up of intracranial aneurysms treated with detachable coils: comparison of 3D inflow MRA at 3T and 1.5T and contrast-enhanced MRA at 3T with DSA.

    PubMe